WO2017000926A1 - 集成式荧光激发光源装置 - Google Patents

集成式荧光激发光源装置 Download PDF

Info

Publication number
WO2017000926A1
WO2017000926A1 PCT/CN2016/091901 CN2016091901W WO2017000926A1 WO 2017000926 A1 WO2017000926 A1 WO 2017000926A1 CN 2016091901 W CN2016091901 W CN 2016091901W WO 2017000926 A1 WO2017000926 A1 WO 2017000926A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
fluorescent excitation
excitation light
frame
bright field
Prior art date
Application number
PCT/CN2016/091901
Other languages
English (en)
French (fr)
Inventor
罗浦文
Original Assignee
上海睿钰生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海睿钰生物科技有限公司 filed Critical 上海睿钰生物科技有限公司
Publication of WO2017000926A1 publication Critical patent/WO2017000926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the invention belongs to the technical field of fluorescence analysis, and in particular relates to an integrated fluorescence excitation light source device.
  • fluorescence analysis technology has been widely used in scientific research and production, including extensive application of fluorescence microscope imaging and observation, flow fluorescence detection analysis, real-time PCR PCR gene sequencing and so on.
  • All fluorescence detection and analysis applications include an excitation light (also known as incident light) system that inputs excitation energy, and an emission light collection system that is used to acquire energy that is emitted after the sample is excited.
  • excitation light also known as incident light
  • emission light collection system that is used to acquire energy that is emitted after the sample is excited.
  • fluorescence microscopy imaging systems generally use high-energy, short-lived full-band light sources such as mercury lamps and xenon lamps. After filtering through different filters, the excitation light sources of the corresponding bands are obtained, and the reflection and objective lens through the two-phase color mirror are generally adopted. Concentrating to obtain highly concentrated high-efficiency excitation light energy.
  • the optical path system is complex, the energy consumption of the light source is high, the performance loss is large, and the life span is short.
  • the switching of the light sources of different wavelength bands requires multiple two-phase color mirrors and requires mechanical switching devices, and the light source of different wavelength bands cannot be excited at the same time. .
  • a small part of the above-mentioned mercury lamp and xenon lamp are used to illuminate the light beam, and the light beam is excited by a vertical projection method, but this method may cause a large amount of unwanted stray light to enter the emission light collecting system, which is serious.
  • the accuracy of the interference emission light collection, as well as the need to mechanically switch between different wavelengths of light sources and the simultaneous excitation of multiple bands are used to illuminate the light beam, and the light beam is excited by a vertical projection method, but this method may cause a large amount of unwanted stray light to enter the emission light collecting system, which is serious.
  • Another important fluorescent application is the flow fluorescence detection and analysis system.
  • This type of system uses a laser as a light source to concentrate different wavelengths of light into a single beam to achieve simultaneous multi-band excitation of the sample.
  • a laser as a light source to concentrate different wavelengths of light into a single beam to achieve simultaneous multi-band excitation of the sample.
  • its large size, high cost, and complicated operation make it impossible to obtain universal application.
  • LED light source has the advantages of short starting time, high brightness, low energy consumption, small size, long life, high safety and low cost, and has been widely used in the field of lighting. At present, the manufacturing technology of monochrome high-efficiency LED lamps of various colors has been matured and widely used.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide an integrated fluorescent excitation light source device which is more economical, convenient, fast and efficient.
  • an integrated fluorescent excitation light source device comprising a light source frame, a transmission bright field light source vertically disposed at a center of the light source frame, and a center of two or more surrounding light source frames are obliquely disposed on the light source frame
  • the fluorescent excitation light source, the fluorescent light source and the light beam of the bright field light source form a intersection at a certain position, and the fluorescent excitation light source and the transmission bright field light source are connected with a circuit control system, and the transmission is clear
  • the field light source and the fluorescence excitation light source are controlled by a control circuit of the circuit control system to realize a combination of different light sources in which a single light source is sequentially opened and closed, a plurality of light sources are simultaneously turned on or off, and the light source intensity can be adjusted.
  • the fluorescence excitation light source and the transmission bright field light source are both located above a sample plate, and the transmission bright field light source is installed in the middle of the light source frame, and the fluorescence excitation light source is distributed around the transmission bright field light source centering on the transmission bright field light source.
  • the transmission bright field light source is installed in the middle of the light source frame, and the fluorescence excitation light source is distributed around the transmission bright field light source centering on the transmission bright field light source.
  • the transmission bright field light source and the fluorescence excitation light source are respectively located on upper and lower sides of a sample plate, and the fluorescence excitation light source is evenly distributed around the center of the light source frame at the periphery of the light source frame.
  • the light source adjusting frame is further fixedly mounted on the light source adjusting frame.
  • the side of the light source adjusting frame is provided with a rotating shaft.
  • the light source frame is provided with a shaft hole corresponding to the rotating shaft, and the rotating shaft passes through the shaft hole and an adjusting nut. Splicing to achieve adjustment and fixation of the direction and position of the obliquely fluorescent excitation source.
  • the fluorescent excitation light source is a monochromatic high-efficiency LED light source; the monochromatic high-efficiency LED light The front end of the source is provided with a filter to obtain the light energy of the desired band; the front end of the monochromatic high-efficiency LED light source may also be equipped with a condensing mirror to concentrate the required light energy; the fluorescent excitation light source may also be The laser source; the fluorescent excitation source may also be a light guide column output source.
  • the existing fluorescence microscopy imaging adopts an off-projection excitation mode or a vertical transmission fluorescence excitation light source method through a two-phase color mirror, and neither of the multi-band simultaneous excitation detection of the detection target can be realized.
  • the device such as the flow cytometry analysis instrument can realize multi-band simultaneous excitation of the detection target by means of multi-band laser beam integration, but the structure is complicated and the cost is high.
  • the invention only needs to simultaneously open two or more different wavelengths of the fluorescence excitation light source arranged around the tilt, so that the excitation light of different wavelength bands can simultaneously illuminate and illuminate the detection target, so that multi-band simultaneous excitation can be realized.
  • the invention does not need mechanical movement, and can realize switching of different excitation light sources through circuit switch control. Compared with the current use of roulette type, linear type, thrust type, etc., it is necessary to realize mechanical switching of different fluorescent excitation light sources.
  • the solution makes the invention simpler and more economical.
  • the invention can break through the upper limit of the excitation light power by increasing the number of light sources in the same band, and provides a new solution for obtaining a high power fluorescent excitation light source.
  • two or more oblique fluorescent excitation light sources of the same wavelength band are mounted on the light source frame and simultaneously turned on, thereby obtaining higher or multiple times of optical power than a single light source.
  • the oblique bracket structure with adjustable and fixed angle in the invention can flexibly adjust the incident distance and angle of the oblique fluorescent excitation light source according to requirements, and provides a simple and stable interference for the aberration and stray light interference caused by the oblique source illumination excitation. Optimization plan.
  • the invention provides an integrated, convenient, fast, efficient, low-cost, flexible combination multi-band fluorescence excitation light source scheme and structure for fluorescence microscopic imaging, flow fluorescence analysis or other fluorescence analysis applications.
  • FIG. 1 is a schematic structural view of a fluorescent light source device of Embodiment 1;
  • FIG. 2 is a schematic perspective view showing the structure of a fluorescent light source device of Embodiment 2.
  • an integrated fluorescent light source device includes a light source frame 1 , four fluorescent excitation light sources 5 disposed obliquely on the light source frame 1 , an illuminating bright field light source 6 disposed vertically, and a circuit control system, and a fluorescent excitation light source.
  • 5 comprising a housing, a fluorescent excitation lamp disposed in the housing, a focusing lens disposed at a front end of the housing, and a fluorescence excitation filter disposed at a front end of the focusing lens, wherein the fluorescent excitation lamp and the transmission bright field source 6 are both associated with the circuit control system connection.
  • the fluorescent excitation light source 5 and the transmission bright field light source 6 are both located above the sample plate 7, the transmission bright field light source 6 is installed in the middle of the light source frame 1, and the four fluorescent excitation light sources 5 are distributed around the transmission bright field source 6 around the transmission. The periphery of the field source 6.
  • the fluorescent excitation light source 5 is fixedly mounted on the light source adjusting frame 2, and the light source adjusting frame 2 is connected to the light source frame 1 through the rotating shaft 3 and the adjusting nut 4, and the relative position between the light source adjusting frame 2 and the light source frame 1 is adjusted, and the oblique position can be conveniently adjusted.
  • the fluorescence excitation source 5 has an incident angle.
  • the adjusting nut 4 When using, first loosen the adjusting nut 4, adjust the incident angle of the oblique light source, adjust the appropriate angle according to the requirements of clear imaging, uniform background of the field of view, etc., then tighten the adjusting nut 4 to fix the position of the oblique light source.
  • the transmission bright field source 6 is in the center position and the incident light is perpendicular to the sample plate 7.
  • only the fluorescent excitation filter needs to be replaced to complete the fluorescence signal collection of the multi-color channel, and the switching of the oblique light source is automatically completed by the circuit control system.
  • the difference between the embodiment and the embodiment 1 is that the fluorescent excitation light source 5 and the transmission bright field source 6 are respectively located on the upper and lower sides of the sample plate 7, and the four fluorescent excitation light sources 5 are evenly distributed around the center of the light source frame 1. Distributed on the peripheral edge of the light source 1.
  • the scope of protection of the present invention is not limited to the above two embodiments.
  • the number of fluorescent excitation light sources 5 is not limited to only one, and can be increased according to actual conditions. Oblique light
  • the angle of cooperation between the source (fluorescent excitation source 5) and the direct source (transmission brightfield source 6) can be arbitrarily changed as needed.
  • the fluorescent excitation lamp can be an LED lamp bead or a laser lamp.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种集成式荧光激发光源装置,包括光源架(1)、1个垂直设置于光源架(1)中心的透射明场光源(6)及2个以上环绕光源架(1)的中心倾斜设置于光源架(1)上的荧光激发光源(5),荧光激发光源(5)所发光束与透射明场光源(6)所发光束在某一位置形成交汇,透射明场光源(6)与荧光激发光源(5)通过控制电路控制,以实现单一光源顺序间隔开启和关闭、多种光源同时开启或关闭的不同光源组合,及实现光源光强可调整。本装置以简洁的方式实现对检测目标的多波段同时激发;通过电路开关控制即可实现不同激发光源的切换,更为简便和经济;可通过增加相同波段光源数量的方式来突破激发光功率的上限;可根据需要灵活调节荧光激发光源的入射距离和角度,避免了斜射光源照明激发导致的像差和杂散光干扰。

Description

集成式荧光激发光源装置
本申请要求于2015年07月01日提交中国专利局、申请号为201510376530.0、发明名称为“集成式荧光激发光源装置”的中国专利申请的优先权,以及于2015年07月28日提交中国专利局、申请号为201510449279.6、发明名称为“集成式荧光激发光源装置”的中国专利申请的优先权,两者的全部内容通过引用结合在本申请中。
技术领域
本发明属于荧光分析技术领域,具体涉及一种集成式荧光激发光源装置。
背景技术
近年来,荧光分析技术已广泛应用于科研与生产中,包括广泛应用的荧光显微镜成像和观察、流式荧光检测分析,荧光定量PCR基因测序等等。所有的荧光检测分析应用,均包含输入激发能量的激发光(又称为入射光)系统,和用于采集样品被激发后发射能量的发射光收集系统。目前荧光显微成像系统普遍采用汞灯、氙灯等高能耗、短寿命的全波段光源,通过不同的滤片过滤后得到相应所需波段的激发光源,并普遍采用通过二相色镜反射和物镜聚光以获得高度集中的高效能激发光能量。这一方式光路系统复杂,光源的能耗高、效能损耗大、寿命短,不同波段光源的切换需要多个二相色镜并需要机械切换的装置,并且,无法实现不同波段光源同时对样品激发。在荧光显微成像上,也有少部分采用上述汞灯、氙灯发光过滤后的光束,通过垂直投射式的方式进行激发,但这种方式或导致不需要的杂散光大量进入发射光收集系统,严重干扰发射光收集的准确性,同样,也存在需要机械切换不同波段光源和无法多波段同时激发的问题。在极少的高端显微镜系统中,也有配备1道或2道斜射激光光源作为辅助荧光激发光源的应用,但该方案斜射的荧光光束并未与明场光源进行集约的整合,也不是主要的,而仅仅为辅助的荧光激发方式,且采用激光作为光源,造价高昂,也因为此,该方案仅仅应用于极少数高端的荧光显微镜系统中。
另外一种重要的荧光应用是流式荧光检测分析系统,该类系统采用激光器作为光源,可将不同波段的光集中成一束光,实现对样品的多波段同时激发。但其体积大、成本昂贵,操作复杂,导致其无法得到普遍的应用。
LED光源具有启动时间短、亮度高、能耗低、体积小、寿命长、安全性高、成本低等优点,在照明领域获得了广泛的应用。且目前多种颜色的单色高效能LED灯的制造技术已经成熟并广泛应用。
现有技术中亟需一种能够更方便、快捷、高效的完成多颜色通道的荧光信号采集的荧光光源装置。
发明内容
本发明的目的是为了克服现有技术存在的不足,提供一种更经济、方便、快捷、高效的集成式荧光激发光源装置。
本发明是通过以下技术方案实现的:一种集成式荧光激发光源装置,包括光源架、1个垂直设置于光源架中心的透射明场光源及2个以上环绕光源架的中心倾斜设置于光源架上的荧光激发光源,荧光激发光源所发光束与透射明场光源所发光束在某一位置形成交汇,所述荧光激发光源、所述透射明场光源均与一电路控制系统相连接,透射明场光源与荧光激发光源通过电路控制系统的控制电路控制,以实现单一光源顺序间隔开启和关闭、多种光源同时开启或关闭的不同光源组合,及实现光源光强可调整。
所述荧光激发光源与所述透射明场光源均位于一样品板的上方,透射明场光源安装于所述光源架的中部,荧光激发光源以透射明场光源为中心环绕分布于透射明场光源的周围。
所述透射明场光源与所述荧光激发光源分别位于一样品板的上下两侧,荧光激发光源环绕光源架的中心均匀分布于光源架的四周边缘。
还包括光源调整架,所述荧光激发光源固定安装于该光源调整架上,光源调整架的侧面设置有转轴,所述光源架对应于转轴设置有轴孔,转轴穿过轴孔与一调节螺母螺接,以实现对斜射的荧光激发光源的方向与位置的调节及固定。
所述荧光激发光源为单色高效能LED光源;所述单色高效能LED光 源的前端安装有滤片,以获得所需波段的光能量;所述单色高效能LED光源的前端还可以安装有聚光镜,以对所需光能量进行集中;所述荧光激发光源还可以为激光源;所述荧光激发光源还可以为导光柱方式输出光源。
本发明的创新点是:
1、以简洁的方式实现对检测目标的多波段同时激发。现有的荧光显微成像采用通过二相色镜的落射式激发方式或垂直透射式荧光激发光源方式,均不能实现对检测目标的多波段同时激发检测。流式细胞计数分析仪器等设备采用多波段激光光束整合的方式可以实现对检测目标的多波段同时激发,但结构复杂,造价高昂。本发明只需要同时打开环绕倾斜设置的两个或两个以上的不同波段的荧光激发光源,使不同波段的激发光同时交汇照射到检测目标上,即可实现多波段同时激发。
2、本发明无需进行机械运动,通过电路开关控制即可实现不同激发光源的切换,相较于目前采用轮盘式、直线式、抽插式等需要机械运动才能实现不同荧光激发光源切换的技术方案,本发明更为简便和经济。
3、本发明可通过增加相同波段光源数量的方式来突破激发光功率的上限,为获得高功率荧光激发光源提供了一种新的解决方案。基于本发明的光源架结构,将两个或两个以上相同波段的斜射荧光激发光源安装在光源架上并同时开启,即可获得比单一光源更高或是成倍增加的光功率。
4、本发明中可调节并固定角度的斜射支架结构,可根据需要灵活调节斜射荧光激发光源的入射距离和角度,为斜射光源照明激发导致的像差和杂散光干扰提供了一种简洁和稳定的优化方案。
本发明为荧光显微成像、流式荧光分析或其他荧光分析应用,提供了一种集成式的、方便、快捷、高效、低成本的,可灵活组合的多波段荧光激发光源方案和结构。
附图说明
图1是实施例1的荧光光源装置的结构示意图;
图2是实施例2的荧光光源装置的立体结构示意图。
在图中:1-光源架;2-光源调整架;3-转轴;4-调节螺母;5-荧光激发 光源;6-透射明场光源;7-样品板。
具体实施方式
以下结合附图对本发明作详细描述。
实施例1
以标准配置通道(1个透射明场光源通道和4个荧光激发光源通道)为例。
如图1所示,一种集成式荧光光源装置,包括光源架1、倾斜设置于光源架1上的四个荧光激发光源5、直立设置的透射明场光源6及电路控制系统,荧光激发光源5包括壳体、设置于壳体内的荧光激发灯、设置于壳体前端的聚焦透镜及设置于聚焦透镜前端的荧光激发滤光片,荧光激发灯、透射明场光源6均与电路控制系统相连接。
荧光激发光源5与透射明场光源6均位于样品板7的上方,透射明场光源6安装于光源架1的中部,4个荧光激发光源5以透射明场光源6为中心环绕分布于透射明场光源6的周围。
荧光激发光源5固定安装于光源调整架2上,光源调整架2通过转轴3及调节螺母4与光源架1连接,调整光源调整架2与光源架1之间的相对位置,可以方便的调节斜射的荧光激发光源5的入射角度。
使用时,先拧松调节螺母4,调节斜射光源的入射角度,根据成像清晰、视野背景均匀等要求,调节出合适的角度后,拧紧调节螺母4,固定斜射光源的位置。透射明场光源6位于正中位置,入射光线与样品板7保持垂直。实验过程中,只需要更换荧光激发滤光片即可完成多颜色通道的荧光信号采集,而斜射光源的切换由电路控制系统自动完成。
实施例2
如图2所示,本实施例与实施例1的区别在于:荧光激发光源5与透射明场光源6分别位于样品板7的上下两侧,4个荧光激发光源5环绕光源架1的中心均匀分布于光源1的四周边缘。
当然,本发明的保护范围不局限于以上两个实施例。其中,荧光激发光源5的数量不单单只有4个一种情况,可以根据实际情况增加。斜射光 源(荧光激发光源5)与直射光源(透射明场光源6)的配合角度可以根据需要任意变化。荧光激发灯可以为LED灯珠或激光灯。
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。

Claims (9)

  1. 一种集成式荧光激发光源装置,其特征在于:包括光源架、1个垂直设置于光源架中心的透射明场光源及2个以上环绕光源架的中心倾斜设置于光源架上的荧光激发光源,荧光激发光源所发光束与透射明场光源所发光束在某一位置形成交汇,所述荧光激发光源、所述透射明场光源均与一电路控制系统相连接,透射明场光源与荧光激发光源通过电路控制系统的控制电路控制,以实现单一光源顺序间隔开启和关闭、多种光源同时开启或关闭的不同光源组合,及实现光源光强可调整。
  2. 根据权利要求1所述的集成式荧光激发光源装置,其特征在于:所述荧光激发光源与所述透射明场光源均位于一样品板的上方,透射明场光源安装于所述光源架的中部,荧光激发光源以透射明场光源为中心环绕分布于透射明场光源的周围。
  3. 根据权利要求1所述的集成式荧光激发光源装置,其特征在于:所述透射明场光源与所述荧光激发光源分别位于一样品板的上下两侧,荧光激发光源环绕光源架的中心均匀分布于光源架的四周边缘。
  4. 根据权利要求2或3所述的集成式荧光激发光源装置,其特征在于:还包括光源调整架,所述荧光激发光源固定安装于该光源调整架上,光源调整架的侧面设置有转轴,所述光源架对应于转轴设置有轴孔,转轴穿过轴孔与一调节螺母螺接,以实现对斜射的荧光激发光源的方向与位置的调节及固定。
  5. 根据权利要求4所述的集成式荧光激发光源装置,其特征在于:所述荧光激发光源为单色高效能LED光源。
  6. 根据权利要求5所述的集成式荧光激发光源装置,其特征在于:所述单色高效能LED光源的前端安装有滤片,以获得所需波段的光能量。
  7. 根据权利要求5所述的集成式荧光激发光源装置,其特征在于:所述单色高效能LED光源的前端安装有聚光镜,以对所需光能量进行集中。
  8. 根据权利要求4所述的集成式荧光激发光源装置,其特征在于:所述荧光激发光源为激光源。
  9. 根据权利要求4所述的集成式荧光激发光源装置,其特征在于:所 述荧光激发光源为导光柱方式输出光源。
PCT/CN2016/091901 2015-07-01 2016-07-27 集成式荧光激发光源装置 WO2017000926A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510376530.0 2015-07-01
CN201510376530 2015-07-01
CN201510449279.6A CN105486667A (zh) 2015-07-01 2015-07-28 集成式荧光激发光源装置
CN201510449279.6 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017000926A1 true WO2017000926A1 (zh) 2017-01-05

Family

ID=54164772

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2016/082768 WO2017000701A1 (zh) 2015-07-01 2016-05-20 一种荧光显微成像方法和装置
PCT/CN2016/082769 WO2017000702A1 (zh) 2015-07-01 2016-05-20 荧光激发光源装置及系统和荧光显微成像系统
PCT/CN2016/082767 WO2017000700A1 (zh) 2015-07-01 2016-05-20 一种多荧光通道同步显微成像方法及装置
PCT/CN2016/082770 WO2017000703A1 (zh) 2015-07-01 2016-05-20 自动多通道类流式图像荧光分析系统
PCT/CN2016/091901 WO2017000926A1 (zh) 2015-07-01 2016-07-27 集成式荧光激发光源装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2016/082768 WO2017000701A1 (zh) 2015-07-01 2016-05-20 一种荧光显微成像方法和装置
PCT/CN2016/082769 WO2017000702A1 (zh) 2015-07-01 2016-05-20 荧光激发光源装置及系统和荧光显微成像系统
PCT/CN2016/082767 WO2017000700A1 (zh) 2015-07-01 2016-05-20 一种多荧光通道同步显微成像方法及装置
PCT/CN2016/082770 WO2017000703A1 (zh) 2015-07-01 2016-05-20 自动多通道类流式图像荧光分析系统

Country Status (5)

Country Link
US (1) US10161873B2 (zh)
EP (1) EP3318865A4 (zh)
JP (1) JP2018519550A (zh)
CN (6) CN104990907B (zh)
WO (5) WO2017000701A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990907B (zh) * 2015-07-01 2018-05-08 上海睿钰生物科技有限公司 自动多通道类流式图像荧光分析系统
CN105465745B (zh) * 2015-12-31 2019-04-05 中国科学院苏州生物医学工程技术研究所 多波段荧光照明装置
CA3011719A1 (en) 2016-01-21 2017-07-27 Protein Dynamic Solutions Llc Method and system for spectral data analysis
LU93022B1 (de) * 2016-04-08 2017-11-08 Leica Microsystems Verfahren und Mikroskop zum Untersuchen einer Probe
CN109803762B (zh) * 2016-10-07 2022-04-01 勃林格殷格翰维特梅迪卡有限公司 用于控制分析装置和分析系统的方法
CN107037576B (zh) * 2017-05-03 2023-08-15 中国科学院苏州生物医学工程技术研究所 光学显微成像设备及其成像方法
CN107367456B (zh) * 2017-07-20 2020-04-03 上海睿钰生物科技有限公司 一种免洗涤图像类流式荧光检测方法和系统
CN107356515B (zh) * 2017-07-20 2020-04-03 上海睿钰生物科技有限公司 一种荧光图像的荧光强度确定方法和系统
CN107272196A (zh) * 2017-08-03 2017-10-20 苏州天准科技股份有限公司 一种削弱远心光学系统环形光照明鬼影的方法
CN109932316A (zh) * 2017-12-18 2019-06-25 长光华大基因测序设备(长春)有限公司 基因测序光学装置
CN108318468B (zh) * 2018-05-05 2024-01-16 哈尔滨索飞永诚科技有限公司 一种用于对液体样品中荧光染料染色微粒进行快速计数的计数系统
CN109001900A (zh) * 2018-09-05 2018-12-14 南京大学 一种明场和荧光双模态的显微成像系统及方法
CN111041076B (zh) * 2018-10-11 2023-09-26 深圳华大生命科学研究院 气泡检测方法及系统、基因测序仪、计算机可读存储介质
CN111427142A (zh) 2019-01-09 2020-07-17 卡尔蔡司显微镜有限责任公司 用于显微镜设备的照明模块及相关控制方法和显微镜设备
CN111435192B (zh) * 2019-01-15 2021-11-23 卡尔蔡司显微镜有限责任公司 利用荧光显微镜生成荧光照片的方法
WO2020183433A1 (en) * 2019-03-14 2020-09-17 3M Innovative Properties Company Sterilization indicator reading apparatus with a color sensor
CN111239086B (zh) * 2019-08-30 2024-04-05 北京临近空间飞行器系统工程研究所 视觉背景装置,荧光显微光学系统,扫描分析系统
CN110866918B (zh) * 2019-12-11 2022-04-05 上海睿钰生物科技有限公司 酵母分析方法
CN110991379B (zh) * 2019-12-11 2022-02-22 上海睿钰生物科技有限公司 藻类计数方法
CN111024696B (zh) 2019-12-11 2022-01-11 上海睿钰生物科技有限公司 藻类分析方法
CN110987768B (zh) * 2019-12-11 2022-02-15 上海睿钰生物科技有限公司 酵母计数方法
CN111551531B (zh) * 2020-05-19 2023-04-18 北京金诺美科技股份有限公司 一种荧光激发系统及实时荧光定量pcr仪
CN113946043A (zh) * 2020-07-16 2022-01-18 香港科技大学 一种激发光源和包括该激发光源的荧光显微镜
CN112946673B (zh) * 2021-01-29 2023-01-06 上海睿钰生物科技有限公司 一种激光测距方法、对焦方法、激光测距系统及对焦系统
CN113092428B (zh) * 2021-04-02 2023-07-25 安图实验仪器(郑州)有限公司 一种多重荧光检测方法、装置、设备和系统
CN113109314A (zh) * 2021-05-28 2021-07-13 上海睿钰生物科技有限公司 多荧光信号检测系统和方法
CN114199849A (zh) * 2021-12-17 2022-03-18 广州博鹭腾生物科技有限公司 一种应用于荧光成像的荧光光路系统
CN114441496B (zh) * 2022-02-14 2024-03-01 江苏禹视科技有限公司 一种多光源荧光扫描分析系统和方法
CN115061270B (zh) * 2022-05-30 2024-01-16 中国人民解放军国防科技大学 一种倾斜模式望远显微组合成像方法
CN114813522B (zh) * 2022-06-29 2022-10-21 深圳安侣医学科技有限公司 基于显微放大数字图像的血液细胞分析方法及系统
CN117890580B (zh) * 2024-03-07 2024-05-24 南通戴尔诺斯生物科技有限公司 一种采用荧光标记的免疫层析检测设备及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363839A (zh) * 2008-09-12 2009-02-11 首都师范大学 可观测带荧光生物样品的非损伤微测系统
CN102834718A (zh) * 2010-01-12 2012-12-19 耐克思乐生物科学有限责任公司 计数细胞和生物分子的系统和方法
US20130201322A1 (en) * 2010-08-18 2013-08-08 Nanoentek, Inc. Fluorescent microscope for observing multiple fluorescent images, fluorescent image surveying method using the same, and multiple fluorescent image observing system
CN103969229A (zh) * 2013-01-30 2014-08-06 全视科技有限公司 荧光成像模块
US8901514B2 (en) * 2012-06-28 2014-12-02 Molecular Devices, Llc Sample analysis system with spotlight illumination
WO2014191003A1 (en) * 2013-05-28 2014-12-04 Chemometec A/S Image forming cytometer
CN204789341U (zh) * 2015-07-01 2015-11-18 上海睿钰生物科技有限公司 集成式荧光激发光源装置
CN204945042U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 自动多通道类流式图像荧光分析系统
CN105486667A (zh) * 2015-07-01 2016-04-13 上海睿钰生物科技有限公司 集成式荧光激发光源装置

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164609B2 (ja) * 1990-10-31 2001-05-08 オリンパス光学工業株式会社 内視鏡装置
JP2000235002A (ja) * 1999-02-15 2000-08-29 Fuji Photo Film Co Ltd 撮影方法および撮影装置
JP3783826B2 (ja) * 2000-01-17 2006-06-07 横河電機株式会社 バイオチップ読み取り装置
GB0200938D0 (en) * 2002-01-16 2002-03-06 Solexa Ltd Prism design for scanning applications
CN2522855Y (zh) * 2002-01-30 2002-11-27 无锡市朗珈生物医学工程有限公司 带滤光片转盘的生物芯片荧光检测扫描装置
JP2004325174A (ja) * 2003-04-23 2004-11-18 Olympus Corp 蛍光検出装置
JP2005062023A (ja) * 2003-08-14 2005-03-10 Japan Science & Technology Agency 落射型蛍光測定装置
CN101072997A (zh) * 2003-08-14 2007-11-14 塞通诺米公司 用于粒子分类系统的光学检测器
JP4825426B2 (ja) * 2005-01-31 2011-11-30 財団法人 東京都医学総合研究所 生物顕微鏡に用いる暗視野照明装置
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
FR2889404B1 (fr) 2005-08-01 2009-03-27 Commissariat Energie Atomique Source lumineuse a deux longueurs d'onde et de puissance d'eclairement variable et utilisation d'une telle source lumineuse
GB0614297D0 (en) * 2006-07-19 2006-08-30 Shaw Water Engineering Ltd Apparatus, system and method for detecting particles
CN101191770B (zh) * 2006-11-21 2011-06-15 杭州远方光电信息股份有限公司 发光二极管荧光粉发射光谱测量方法
CN200968935Y (zh) * 2006-11-21 2007-10-31 杭州远方光电信息有限公司 用于发光二极管荧光粉测试的激发与接收装置
CN101149327B (zh) * 2007-11-06 2010-06-30 浙江大学 基于细胞显微图像信息的抗肿瘤药物评价和筛选方法
US8618508B2 (en) 2008-09-25 2013-12-31 Koninklijke Philips N.V. Detection system and method
JP2010134382A (ja) * 2008-12-08 2010-06-17 Olympus Corp 観察装置
WO2010101931A2 (en) * 2009-03-03 2010-09-10 Access Medical System Co., Ltd. Detection system and method for high sensitivity fluorescent assays
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
JP2011028187A (ja) * 2009-07-21 2011-02-10 Kenichi Tanehashi 実体顕微鏡のステージ上に置いて透過蛍光観察をする装置
CN102754011B (zh) * 2010-02-03 2015-08-05 株式会社尼康 观察装置及观察方法
JP2011186182A (ja) * 2010-03-09 2011-09-22 Claro Inc 顕微鏡装置
JP2011237549A (ja) * 2010-05-10 2011-11-24 Iponacology Ltd 顕微鏡照明装置における光源ユニット、およびそれを備える顕微鏡
DE102010023486A1 (de) 2010-06-11 2011-12-15 B. Braun Avitum Ag Nachweisvorrichtung und -verfahren
CN102329725A (zh) * 2010-06-16 2012-01-25 三星泰科威株式会社 光透射温度控制装置、生物诊断设备和方法
JP5707758B2 (ja) * 2010-07-13 2015-04-30 ソニー株式会社 撮像装置、撮像システム、手術用ナビゲーションシステム、及び撮像方法
JP2012168088A (ja) * 2011-02-16 2012-09-06 Ncd:Kk 蛍光反応検出装置
CN102151122B (zh) * 2011-03-17 2012-12-19 中国科学院自动化研究所 激发荧光分子成像系统及一次荧光成像方法
DE202011000688U1 (de) * 2011-03-25 2011-06-09 Leica Microsystems CMS GmbH, 35578 Vorrichtung zur Aufnahme von Filtern für Mikroskope
CN202057599U (zh) * 2011-05-17 2011-11-30 易定容 微多光谱荧光接收和处理系统
CN102305778B (zh) * 2011-05-17 2013-10-30 易定容 微多光谱荧光接收和处理系统
DE102011105181A1 (de) * 2011-06-17 2012-12-20 Leica Microsystems Cms Gmbh Mikroskop und Verfahren zur bildgebenden Fluoreszenzmikroskopie
DE102011051278A1 (de) * 2011-06-22 2012-12-27 Leica Microsystems Cms Gmbh Verfahren und lichtmikroskopische Einrichtung zur bildlichen Darstellung einer Probe
US20130015362A1 (en) * 2011-07-12 2013-01-17 Sharp Kabushiki Kaisha Fluid purification and sensor system
DE102011079942B4 (de) * 2011-07-27 2016-12-15 Leica Microsystems Cms Gmbh Mikroskopbeleuchtungsverfahren und Mikroskop
DE102011083215A1 (de) * 2011-09-22 2013-03-28 Siemens Aktiengesellschaft Probenträger und Verfahren zur mikroskopischen Untersuchung biologischer Proben
CN102507518B (zh) * 2011-10-25 2013-05-08 天津港东科技发展股份有限公司 12灯位多通道原子荧光光度计
CN103134780B (zh) * 2011-12-01 2015-12-09 中国科学院大连化学物理研究所 一种紧贴式激发光路的发光二极管诱导荧光检测器
JP5947553B2 (ja) * 2012-01-27 2016-07-06 浜松ホトニクス株式会社 撮像装置及び撮像装置の製造方法
DE102012201286A1 (de) * 2012-01-30 2013-08-01 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren für die wellenlängenselektive und örtlich hochauflösende Mikroskopie
US9395303B2 (en) 2012-03-12 2016-07-19 Mitsubishi Rayon Co., Ltd. Fluorescence detection device and fluorescence detection method
CN104641222A (zh) * 2012-05-29 2015-05-20 麦考瑞大学 用于发光显微成像的双向扫描
CN103777336B (zh) * 2012-10-22 2017-09-05 承奕科技股份有限公司 显微光学撷取装置用荧光辅具模组、基架及该装置
CN103134784B (zh) * 2013-02-05 2015-04-29 华中科技大学 光纤化活体荧光激发光谱成像装置
CN203337549U (zh) * 2013-06-28 2013-12-11 陕西师范大学 一种适用于微痕量爆炸物荧光检测的光学组件
CN203811540U (zh) * 2013-10-22 2014-09-03 闽浪仪器科技(厦门)有限公司 一种高度集成的多道数字荧光成像系统
CN104568859B (zh) * 2013-10-22 2017-10-13 承奕科技股份有限公司 具多组异角度光源的荧光观测装置、基架及荧光显微镜
CN103645167A (zh) * 2013-12-13 2014-03-19 苏州东胜兴业科学仪器有限公司 一种聚合酶链反应检测仪
CN103995346A (zh) * 2014-06-09 2014-08-20 武汉理工大学 一种显微镜物镜轴向扫描装置
CN204347334U (zh) * 2014-07-09 2015-05-20 闽浪仪器科技(厦门)有限公司 一种阵列式微滤片多道荧光显微镜
CN204330595U (zh) * 2014-07-15 2015-05-13 闽浪仪器科技(厦门)有限公司 一种实时多通道荧光检测系统
CN104198458B (zh) * 2014-09-26 2017-02-22 哈尔滨工业大学 一种飞秒激光双光子荧光生物显微成像系统及其成像方法
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN204389397U (zh) * 2015-01-21 2015-06-10 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN104677871A (zh) * 2015-02-27 2015-06-03 中国科学院自动化研究所 多光子激发光片照明显微成像系统
CN104730054B (zh) * 2015-04-10 2018-08-21 中国科学院烟台海岸带研究所 一种一体化探头式光电水质多参数在线测量系统
CN204945041U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 一种多荧光通道同步显微成像装置
CN204945040U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 荧光激发光源装置及系统和荧光显微成像系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363839A (zh) * 2008-09-12 2009-02-11 首都师范大学 可观测带荧光生物样品的非损伤微测系统
CN102834718A (zh) * 2010-01-12 2012-12-19 耐克思乐生物科学有限责任公司 计数细胞和生物分子的系统和方法
US20130201322A1 (en) * 2010-08-18 2013-08-08 Nanoentek, Inc. Fluorescent microscope for observing multiple fluorescent images, fluorescent image surveying method using the same, and multiple fluorescent image observing system
US8901514B2 (en) * 2012-06-28 2014-12-02 Molecular Devices, Llc Sample analysis system with spotlight illumination
CN103969229A (zh) * 2013-01-30 2014-08-06 全视科技有限公司 荧光成像模块
WO2014191003A1 (en) * 2013-05-28 2014-12-04 Chemometec A/S Image forming cytometer
CN204789341U (zh) * 2015-07-01 2015-11-18 上海睿钰生物科技有限公司 集成式荧光激发光源装置
CN105486667A (zh) * 2015-07-01 2016-04-13 上海睿钰生物科技有限公司 集成式荧光激发光源装置
CN204945042U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 自动多通道类流式图像荧光分析系统

Also Published As

Publication number Publication date
CN105092550A (zh) 2015-11-25
WO2017000703A1 (zh) 2017-01-05
WO2017000702A1 (zh) 2017-01-05
CN104990907A (zh) 2015-10-21
JP2018519550A (ja) 2018-07-19
US10161873B2 (en) 2018-12-25
CN105158220A (zh) 2015-12-16
CN104949953A (zh) 2015-09-30
WO2017000700A1 (zh) 2017-01-05
CN205091263U (zh) 2016-03-16
CN104990907B (zh) 2018-05-08
EP3318865A4 (en) 2018-12-05
WO2017000701A1 (zh) 2017-01-05
US20180188178A1 (en) 2018-07-05
EP3318865A1 (en) 2018-05-09
CN105158220B (zh) 2018-05-01
CN105486667A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017000926A1 (zh) 集成式荧光激发光源装置
CN102588764B (zh) 舞台照明器具
CN101216601B (zh) 使用锥镜实现暗场显微及荧光显微的方法及装置
US8403527B2 (en) Light emitting diode projector
US20120050852A1 (en) Transmitted light fluorescence microscope and kit for adapting a microscope to the transmitted light fluorescence working mode
US20070242336A1 (en) Applications for mixing and combining light utilizing a transmission filter, iris, aperture apparatus
JP2013029837A (ja) 顕微鏡照明方法及び顕微鏡
JP2018536191A (ja) 透過顕微鏡検査および蛍光顕微鏡検査のための顕微鏡
CN204789341U (zh) 集成式荧光激发光源装置
CN204945041U (zh) 一种多荧光通道同步显微成像装置
US20080013169A1 (en) Illumination System For A Microscope
US20070053058A1 (en) Lighting assembly for a luminescence analysis apparatus, in particular a fluorescence mrcroscope, and luminescence analysis apparatus equipped with such a lighting assembly
WO2021129588A1 (zh) 荧光照明装置和显微成像系统
CN220063843U (zh) 一种单样本双通道荧光检测装置
CN110888228A (zh) 一种采用深紫外光源的荧光显微照明方法
CN220926803U (zh) 多通道荧光模块、多通道荧光成像装置及培养监测装置
CN211086792U (zh) 荧光照明装置和显微成像系统
CN217506257U (zh) 多波段耦合led荧光光源
CN219871935U (zh) 一种多波段led荧光显微镜光源系统
WO2022111710A1 (zh) 光路转换装置及光学系统
TWI445998B (zh) 螢光顯微鏡用多波段發光二極體陣列發光裝置及其發光方法
CN114317698A (zh) 一种反射式pcr仪
CN115097618A (zh) 荧光显微成像光路、光学成像系统及细胞分析仪
JP2001154105A (ja) 紫外線顕微鏡
JP2008158166A (ja) 顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817290

Country of ref document: EP

Kind code of ref document: A1