CN104198458B - 一种飞秒激光双光子荧光生物显微成像系统及其成像方法 - Google Patents

一种飞秒激光双光子荧光生物显微成像系统及其成像方法 Download PDF

Info

Publication number
CN104198458B
CN104198458B CN201410503142.XA CN201410503142A CN104198458B CN 104198458 B CN104198458 B CN 104198458B CN 201410503142 A CN201410503142 A CN 201410503142A CN 104198458 B CN104198458 B CN 104198458B
Authority
CN
China
Prior art keywords
laser
light
translation stage
tsunami
femtosecond laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410503142.XA
Other languages
English (en)
Other versions
CN104198458A (zh
Inventor
夏元钦
秦凡
秦一凡
杨兆辉
李茜
张盛
刘斌
赵阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410503142.XA priority Critical patent/CN104198458B/zh
Publication of CN104198458A publication Critical patent/CN104198458A/zh
Application granted granted Critical
Publication of CN104198458B publication Critical patent/CN104198458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种飞秒激光双光子荧光生物显微成像系统及其成像方法,本发明涉及飞秒激光双光子荧光生物显微成像系统及其成像方法。本发明的目的是为了解决目前双光子荧光显微镜成本昂贵、成像速度无法满足需求。外界环境的影响容易导致飞秒激光器失锁,而激光器失锁后无法激励样品产生双光子荧光信号。双光子荧光显微成像是对样品特定成分进行成像,不能对样品进行完整成像。一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述系统包括:可调谐飞秒激光源Tsunami(1)、生物显微镜(2)、光谱仪(3)、光电倍增管(4)、光电二极管(5)、数据采集卡(6)、电动平移台(7)、电动平移台控制器(8)、计算机(9)和分束片(10);所述生物显微镜(2)包括反射镜M1(11)、反射镜M2(12)、二向色镜(13)、发射滤波片(14)、物镜(15)和聚光器(16)。本发明应用于荧光显微成像领域。

Description

一种飞秒激光双光子荧光生物显微成像系统及其成像方法
技术领域
本发明涉及飞秒激光双光子荧光生物显微成像系统及其成像方法。
背景技术
荧光是某些物质受一定波长的光激发后在极短时间内发射出波长大于激发波长的一种发光现象。十九世纪中期,英国科学家G.Stokes利用紫外光照射萤石矿物第一次观察到了荧光现象,但是直到二十世纪三十年代,奥地利科学家M.Haitinger等人才将荧光标记技术引入到生命科学领域,他们使用荧光染料对细菌病毒等特定成分进行标记,推动了荧光显微镜的发展。
荧光显微镜的基本工作原理就是利用光照射有荧光物质标记的样品,产生的荧光信号通过滤波片与激励信号分开后被探测器采集,染料标记区域就会被分辨出来。由于普通荧光显微镜使用的汞灯光源发射的主要是短波长的紫外光,使得成像的分辨率大大提高。但是当我们观察较厚样品时,样品的不同层次深度上均有被标记的结构,而且相互堆叠起来,普通荧光显微镜的光源会同时激发样品在焦点附近的较大一片区域,导致焦点上下的散射光也会被收集,降低了分辨率。除此之外,荧光显微镜受到衍射极限的限制,其分辨率很难达到1μm以下。
20世纪80年代后期,作为目前世界上非常先进的生物学荧光成像技术,共聚焦荧光显微成像技术在生物材料的荧光显微成像领域得到了广泛应用。相比于传统的荧光显微镜,它的技术有以下改进:首先,采用方向性和单色性良好的激光作为光源消除了色差的影响;其次,共聚焦技术中小孔的存在挡住了焦点以外的杂散光,提高了信噪比;最后,逐点逐行扫描只会激发焦平面内极小区域的荧光,避免了标本上相邻点的衍射光和散射光的干扰,大大提高了图像的清晰度和精密度。
共聚焦荧光显微成像技术如图1所示,装置包括激光光源(1)、样品(2)、探测器(3)、物镜(4)、焦点(5)、二向色镜(6)和共焦小孔(7),以光学系统的共焦成像为基础,激光光源(1)、样品(2)和探测器(3)处于彼此共轭的位置。光源经物镜(4)在样品(2)内聚焦成衍射极限的光点,样品发射的荧光被物镜(4)汇聚到达共焦小孔(7)内,被靠近共焦小孔(7)的探测器(3)接收。激光通过对样品进行的扫描而对物体进行成像。然而共焦小孔(5)不仅挡住了焦点(5)以外产生的荧光,还挡住了焦点(5)产生的被生物组织散射的荧光,导致荧光的收集效率下降。
双光子荧光显微成像技术如图2所示,装置包括激光光源(1)、样品(2)、探测器(3)、物镜(4)、焦点(5)和二向色镜(6),与共聚焦荧光显微成像技术不同的是,双光子荧光显微成像技术利用近红外的飞秒激光作为光源而非利用紫外光源。而且双光子吸收的非线性本质使得双光子荧光显微成像技术无需共焦小孔的加入,与传统的单光子激光共聚焦显微镜相比,双光子荧光显微成像技术具有以下几个优点:①荧光收集率高:双光子显微成像无需共焦小孔的加入,因此荧光收集效率大大提高;②光损伤小:双光子荧光显微镜的激励源使用可见光或者近红外光,它们对生物活体组织的光损伤小,因此可以对样品进行长时间的科学研究;③空间分辨率和对比度高:由于在双光子显微成像中,荧光只有在焦平面很小的区域内产生,焦点外无荧光产生,背景荧光影响小;④光漂白区很小:焦点外不发生漂白现象。⑤成像深度大:可见光或近红外光比紫外光的穿透性强,一般情况下,共聚焦荧光显微成像技术的成像深度只能达到50μm左右,而双光子显微成像技术的成像深度可达1600μm;⑥对探测光路的要求低:对于双光子显微成像而言,发射荧光的波长值与激发光相差很大,因此对探测收集系统的要求比单光子共焦显微镜低;⑦适合多标记复合成像:由于很多染料荧光探针的双光子激发光谱比较宽,多种探针可以同时被单一波长的激发光激发,进而得到同一样品的不同信息。
虽然商业化的双光子荧光显微镜已经问世,但是其成本昂贵、成像速度无法满足需求。外界环境的影响很容易导致飞秒激光器失锁,而激光器失锁后无法激励样品产生双光子荧光信号。双光子荧光显微成像是对样品特定成分进行成像,不能对样品进行完整成像。
发明内容
本发明的目的是为了解决目前双光子荧光显微镜成本昂贵、成像速度无法满足需求。外界环境的影响容易导致飞秒激光器失锁,而激光器失锁后无法激励样品产生双光子荧光信号。双光子荧光显微成像是对样品特定成分进行成像,不能对样品进行完整成像。而提出了一种飞秒激光双光子荧光生物显微成像系统及其成像方法。
上述的发明目的是通过以下技术方案实现的:
一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述系统包括:可调谐飞秒激光源Tsunami(1)、生物显微镜(2)、光谱仪(3)、光电倍增管(4)、光电二极管(5)、数据采集卡(6)、电动平移台(7)、电动平移台控制器(8)、计算机(9)和分束片(10);所述生物显微镜(2)包括反射镜M1(11)、反射镜M2(12)、二向色镜(13)、发射滤波片(14)、物镜(15)和聚光器(16);
所述可调谐飞秒激光源Tsunami(1)产生的激光经过分束片(10)对激光进行分束,分别进入生物显微镜(2)和光谱仪(3),光谱仪(3)用于监控可调谐飞秒激光源Tsunami(1)的工作状态,激光进入生物显微镜(2)经反射镜M1(11)反射进入二向色镜(13),通过物镜(15)打到电动平移台(7)上的样品,然后一部分激光穿过样品,经聚光器(16)聚焦,反射镜M2(12)反射,进入光电二极管(5)采集透射信号,把透射信号转换为电信号;另一部分激光返回物镜(15),通过二向色镜(13),经发射虑波片(14)滤除杂波,进入光电倍增管(4)采集荧光信号,把荧光信号转换为电信号;光电倍增管(4)和光电二极管(5)的数据传入数据采集卡(6),数据采集卡(6)的数据传入计算机(9),计算机(9)通过电动平移台控制器(8)控制电动平移台(7)移动,电动平移台(7)位于聚光器(16)和物镜(15)间,由两个表面平坦且相互正交垂直的X轴平移台和Y轴平移台组成;计算机控制电动平移台以完成成像。
一种权利要求1所述飞秒激光双光子荧光生物显微成像系统的成像方法,其特征在于:一种飞秒激光双光子荧光生物显微成像系统的成像方法包括如下步骤:
步骤一、将可调谐飞秒激光源Tsunami发出的激光进行分束:一束激光通过多模光纤与光谱仪连接,从而监控可调谐飞秒激光源Tsunami的工作状态;另一束激光与生物显微镜连接,用来激励样品;
步骤二、光束经过生物显微镜的物镜后,光束分为前向透射光和后向出射光;
步骤三、前向透射光经过聚光器的收集后进入光电二极管,光电二极管输出的信号由数据采集卡进行采集;
步骤四、后向出射光被物镜收集后,通过二向色镜将激光与荧光分开,经发射滤波片后,进入光电倍增管进行探测采集荧光,光电倍增管输出的信号由数据采集卡进行采集;
步骤五、将数据采集卡采集的信息传输到计算机进行双光子荧光显微成像;
步骤六、计算机控制电动平移台以完成成像。
发明效果
采用本发明的双光子荧光显微成像系统的成像方法,可以充分利用已有的仪器设备,而且许多实验器材均为自行组装制作而成,而非购买昂贵的商业化产品,因此自行搭建的双光子荧光显微成像系统的成本相对低廉,而且还可以根据自己需求搭建系统。例如,加入多个二向色镜实现了多通道复合成像,还可以通过选择不同的扫描振镜获得不同的成像速度。
一般情况下,我们很容易通过输出光谱的信息判断激光器的工作状态。图4为激光器在锁模和失锁状态下的输出脉冲的光谱信息,从中可以看出,失锁时输出为一个尖峰信号,与锁模状态下的光谱形状相差较大。因此在实验过程中利用光谱仪监测激光器的输出光谱信息就可以判断激光器的锁模状态。
同时,本发明采用透射成像的原理进行显微成像,透射显微成像就是利用样品的不同位置对通过物镜的光的透过率不同而进行的显微成像。通常入射光被聚焦到样品上从而使得入射光强最大,然后光通过物镜并被目镜收集,眼睛透过目镜便可以看到样品被放大的透射像。透射成像可以对样品进行完整成像,因此,透射显微成像不仅可以检验双光子荧光显微成像的正确性,还对双光子荧光显微成像信息进行了补充。
在进行双光子荧光显微成像时,实验采用UPLSAPO40X2万能平场复消色差物镜,其放大倍数为×40,数值孔径为0.95,滤波片为带通滤波片BP580-70k和红外截止滤波片,将扫描间隔设置为10μm,扫描范围为1×1mm2,得到像素为100×100图像,如图5,激光进入显微镜前功率为45mW,从图中可以明显看出Rhodamine B染料的痕迹。
对于透射显微成像技术,由于光电二极管的增益较大,而数据采集卡的输入范围是+-5v,激光进入显微镜前功率为40μW,其它参数与双光子荧光显微成像设置一致,成像大小1×1mm2,像素为100×100,如图6双光子荧光显微成像和透射成像位置相对应,证明了本发明搭建的双光子荧光显微成像系统的正确性;如图7和图8所示,双光子荧光显微成像和透射成像位置相对应,证明了本发明搭建的双光子荧光生物显微成像系统的正确性。
附图说明
图1是共聚焦显微成像技术原理图;
图2是双光子荧光显微成像技术原理图;
图3是本发明成像系统装置示意图;
图4是可调谐飞秒激光源Tsunami在失锁和锁模状态下的输出光谱,失锁状态用细线表示,锁模状态用粗线表示;
图5是本发明实施例一Rhodamine B样品的双光子荧光显微成像;
图6是本发明实施例一Rhodamine B样品的透射成像;
图7是本发明实施例二双光子荧光显微成像;
图8是本发明实施例二透射成像。
具体实施方式
具体实施方式一:结合图3说明本实施方式,一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述系统包括:可调谐飞秒激光源Tsunami(1)、生物显微镜(2)、光谱仪(3)、光电倍增管(4)、光电二极管(5)、数据采集卡(6)、电动平移台(7)、电动平移台控制器(8)、计算机(9)和分束片(10);所述生物显微镜(2)包括反射镜M1(11)、反射镜M2(12)、二向色镜(13)、发射滤波片(14)、物镜(15)和聚光器(16);
所述可调谐飞秒激光源Tsunami(1)产生的激光经过分束片(10)对激光进行分束,分别进入生物显微镜(2)和光谱仪(3),光谱仪(3)用于监控可调谐飞秒激光源Tsunami(1)的工作状态,激光进入生物显微镜(2)经反射镜M1(11)反射进入二向色镜(13),通过物镜(15)打到电动平移台(7)上的样品,然后一部分激光穿过样品,经聚光器(16)聚焦,反射镜M2(12)反射,进入光电二极管(5)采集透射信号,把透射信号转换为电信号;另一部分激光返回物镜(15),通过二向色镜(13),经发射虑波片(14)滤除杂波,进入光电倍增管(4)采集荧光信号,把荧光信号转换为电信号;光电倍增管(4)和光电二极管(5)的数据传入数据采集卡(6),数据采集卡(6)的数据传入计算机(9),计算机(9)通过电动平移台控制器(8)控制电动平移台(7)移动,电动平移台(7)位于聚光器(16)和物镜(15)间,由两个表面平坦且相互正交垂直的X轴平移台和Y轴平移台组成;计算机控制电动平移台以完成成像。
所述可调谐飞秒激光源Tsunami为美国光谱物理公司(Spectra-Physics)所生产的掺钛蓝宝石固体激光器系统Tsunami,为中心波长800nm,重频82MHz,脉宽约50fs的超短脉冲锁模激光;
所述二向色镜用于反射激光,透射荧光;由美国Chroma公司生产,型号为680dcspxr;
所述发射滤波片由红外截止滤波和带通滤波片构成;带通滤波片是兆九光电公司的产品BP580/70K和BP450/100k。红外截止滤波片为Chroma公司的NC212066-ET670sp型产品;
所述光谱仪是美国海洋光学公司(Ocean Optics)的HR400光纤光谱仪;
所述光电倍增管是日本滨松公司(Hamamatsu)生产的R3896型;
所述光电二极管为PIN型光电二极管;
所述数据采集卡为研华公司生产的PCI-1714型数据采集卡。
所述电动平移台为英国prior公司的H117P2IX型电动平移台。
所述电动平移台控制器用于电动平移台的手动和外部驱动控制;为H31XYZE型控制器。用于H117P2IX型电动平移台的手动和外部驱动控制。
所述计算机利用电动平移台控制器控制电动平移台移动;同时接收数据采集卡传来的数据,进行成像。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述发射滤波片(14)由带通滤波片和红外截止滤波片构成,带通滤波片位于靠近二向色镜(13)的一侧,红外截止滤波片位于靠近光电倍增管(4)的一侧。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述可调谐飞秒激光源Tsunami产生的激光是中心波长为800nm、重频为82MHz、脉宽为50fs的超短脉冲锁模激光。
具体实施方式四:本实施方式与具体实施方式一、二或三不同的是:所述可调谐飞秒激光源Tsunami(1)水平射出,分束片(10)轴向竖直放置,与可调谐飞秒激光源Tsunami(1)同轴设置,表面与光线成45°;反射镜M1(11)、反射镜M2(12)、电动平移台(7)、物镜(15)和聚光器(16)同轴设置,与可调谐飞秒激光源Tsunami(1)水平射出和分束片(10)垂直设置,反射镜M1(11)、反射镜M2(12)轴向与地面成45°放置,表面与光线成45°;二向色镜(13)轴向与地面成45°放置,表面与光线成45°;物镜(15)和聚光器(16)同轴竖直放置;电动平移台(7)与地面成水平放置;发射滤波片(14)轴向竖直放置,表面与光线成90°;光线水平射入光电倍增管(4)、光电二极管(5)。
具体实施方式五:一种权利要求1所述飞秒激光双光子荧光生物显微成像系统的成像方法,其特征在于:一种飞秒激光双光子荧光生物显微成像系统的成像方法包括如下步骤:
步骤一、将可调谐飞秒激光源Tsunami发出的激光进行分束:一束激光通过多模光纤与光谱仪连接,从而监控可调谐飞秒激光源Tsunami的工作状态;另一束激光与生物显微镜连接,用来激励样品;
步骤二、光束经过生物显微镜的物镜后,光束分为前向透射光和后向出射光;
步骤三、前向透射光经过聚光器的收集后进入光电二极管,光电二极管输出的信号由数据采集卡进行采集;
步骤四、后向出射光被物镜收集后,通过二向色镜将激光与荧光分开,经发射滤波片后,进入光电倍增管进行探测采集荧光,光电倍增管输出的信号由数据采集卡进行采集;
步骤五、将数据采集卡采集的信息传输到计算机进行双光子荧光显微成像;
步骤六、计算机控制电动平移台以完成成像。
所述生物显微镜为奥林巴斯研究级倒置显微镜IX71。
光电二极管是一种PIN硅光电二极管,由于可调谐飞秒激光器输出激光的中心波长在800nm,而DET10A在800nm有很好的响应灵敏度,因此DET10A可以用于对透射光进行探测。
二向色镜将入射激光透射至物镜,同时确保产生的荧光信号能够通过反射到达探测器,因此二向色镜的透过率对双光子荧光的收集效率影响很大;该二向色镜对小于700nm波长的光透过率极低,但是对高于720nm波长的光透过率高于90%,可以使大部分激光透过到达待测样品。使用的二向色镜为美国Semrock公司生产的FF705-Di01-25x36型产品;
发射滤波片由带通滤波片和红外截止滤波片构成,带通滤波片用于对RhodamineB和DAPI染料的研究,红外截止滤波片可以滤除400nm-660nm外的杂散光。光电倍增管(Photomultiplier Tube,PMT)是一种基于光电子发射效应、二次电子发射和电子光学理论把微弱入射光转换成电子同时获得倍增效果的重要真空发射器件,使用的光电探测仪器是由日本滨松公司生产的R3896型光电倍增管,其具有较高的量子效率和阳极灵敏度。
数据采集卡是研华公司生产的PCI-1714型数据采集卡,它是一款基于32位PCI总线架构的高性能数据采集卡,采样速度可达30MHz/秒,到主机内存的A/D采样具有连续不间断、高速和流式数据的特点;将包含前向后向出射光的信息送入计算机,进行处理后得到成像信息;
计算机通过电动平移台控制器对电动平移台进行外部驱动操作,电动平移台通过控制电动平移台沿X、Y轴的平移,改变激光照射电动平移台上样品的位置以完成图像采集。
具体实施方式六:本实施方式与具体实施方式五不同的是:所述步骤一中将实验样品放于显微镜的电动平移台上,光束经过显微镜的物镜照射在电动平移台上,从而完成对样品的激励操作。
采用以下实施例验证本发明的有益效果:
实施例一:
采用本发明构建的实验系统对Rhodamine B样品进行双光子荧光显微成像。Rhodamine B样品制备步骤如下:首先,称取4mg的Rhodamine B粉末置于试管中;其次,用移液器移取5ml的蒸馏水至装有粉末样品的试管中;最后,用磁力搅拌机搅拌均匀,得Rhodamine B溶液。将Rhodamine B溶液随意滴在载玻片上,等待风干后,制备成待测样品,利用已搭建好的显微成像系统进行双光子荧光显微成像和透射成像研究。在进行双光子荧光显微成像时,实验采用UPLSAPO40X2万能平场复消色差物镜,其放大倍数为×40,数值孔径为0.95,滤波片为带通滤波片BP580-70k和红外截止滤波片,将扫描间隔设置为10μm,扫描范围为1×1mm2,得到像素为100×100图像,其结果如图5所示。为了避免漂白现象,激光进入显微镜前功率为45mW,从图中可以明显看出RhodamineB染料的痕迹。
对于透射显微成像技术,由于光电二极管的增益较大,而数据采集卡的输入范围是+-5v,激光进入显微镜前功率为40μW,其它参数与双光子荧光显微成像设置一致,成像大小1×1mm2,像素为100×100,其成像结果如图6所示,由对比可知,双光子荧光显微成像和透射成像位置相对应,证明了本发明搭建的双光子荧光生物显微成像系统的正确性。
实施例二:
Rhodamine B也常常用于细胞和生物组织的染色,实验中我们对染有Rhodamine B的Hela细胞进行双光子荧光显微成像,其样品制备过程如下:
(a)制备Rhodamine B储存液:将0.5mg Rhodamine B溶解到1mL PBS缓冲液中,充分搅匀后,制备成Rhodamine B储存液。并置于4℃的温度下保存;
(b)染色:将DAPI储存液稀释1000倍后加入培养基中,与Hela细胞在37℃共同孵育过夜;
(c)漂洗:用PBS缓冲液对细胞进行漂洗,至少漂洗6次从而将未结合的RhodamineB洗掉;
(d)制备细胞悬液:用酶消化后离心得到细胞,将其加入培养基制成细胞悬液;
(e)封片:取少量细胞悬液于载玻片上,盖上盖玻片后封片。
在对染有Rhodamine B染料的细胞进行成像时,采用UPLSAPO40X2万能平场复消色差物镜,其放大倍数为×40,数值孔径为0.95,飞秒激光中心波长800nm,带宽50nm,入射到显微镜之前的激光功率为60mw,利用BP580-70K型带通滤波片。其成像结果如图7和图8所示。由对比可知,双光子荧光显微成像和透射成像位置相对应,证明了本发明搭建的双光子荧光生物显微成像系统的正确性。

Claims (7)

1.一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述系统包括:可调谐飞秒激光源Tsunami(1)、生物显微镜(2)、光谱仪(3)、光电倍增管(4)、光电二极管(5)、数据采集卡(6)、电动平移台(7)、电动平移台控制器(8)、计算机(9)和分束片(10);所述生物显微镜(2)包括反射镜M1(11)、反射镜M2(12)、二向色镜(13)、发射滤波片(14)、物镜(15)和聚光器(16);
所述可调谐飞秒激光源Tsunami(1)产生的激光经过分束片(10)对激光进行分束,分别进入生物显微镜(2)和光谱仪(3),光谱仪(3)用于监控可调谐飞秒激光源Tsunami(1)的工作状态,激光进入生物显微镜(2)经反射镜M1(11)反射进入二向色镜(13),通过物镜(15)打到电动平移台(7)上的样品,然后一部分激光穿过样品,经聚光器(16)聚焦,反射镜M2(12)反射,进入光电二极管(5)采集透射信号,把透射信号转换为电信号;另一部分激光返回物镜(15),通过二向色镜(13),经发射滤波片(14)滤除杂波,进入光电倍增管(4)采集荧光信号,把荧光信号转换为电信号;光电倍增管(4)和光电二极管(5)的数据传入数据采集卡(6),数据采集卡(6)的数据传入计算机(9),计算机(9)通过电动平移台控制器(8)控制电动平移台(7)移动,电动平移台(7)位于聚光器(16)和物镜(15)间,由两个表面平坦且相互正交垂直的X轴平移台和Y轴平移台组成;计算机控制电动平移台以完成成像,成像大小1×1mm2,像素为100×100;
所述物镜(15)采用UPLSAPO40X2万能平场复消色差物镜,放大倍数为×40,数值孔径为0.95;
所述滤波片为带通滤波片BP580-70k和红外截止滤波片,将扫描间隔设置为10μm,扫描范围为1×1mm2
所述数据采集卡(6)的输入范围是±5v,采样速度达30MHz/秒;
所述激光进入显微镜前功率为45mW。
2.根据权利要求1所述一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述发射滤波片(14)由带通滤波片和红外截止滤波片构成,带通滤波片位于靠近二向色镜(13)的一侧,红外截止滤波片位于靠近光电倍增管(4)的一侧。
3.根据权利要求1或2所述一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述可调谐飞秒激光源Tsunami产生的激光是中心波长为800nm、重频为82MHz、脉宽为50fs的超短脉冲锁模激光。
4.根据权利要求1或2所述一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述可调谐飞秒激光源Tsunami(1)水平射出,分束片(10)与可调谐飞秒激光源Tsunami(1)同轴设置,表面与光线成45°;反射镜M1(11)、反射镜M2(12)、电动平移台(7)、物镜(15)和聚光器(16)同轴设置,与可调谐飞秒激光源Tsunami(1)水平射出和分束片(10)的光轴垂直设置,反射镜M1(11)、反射镜M2(12)轴向与地面成45°放置,表面与光线成45°;二向色镜(13)轴向与地面成45°放置,表面与光线成45°;物镜(15)和聚光器(16)同轴竖直放置;电动平移台(7)与地面成水平放置;发射滤波片(14)轴向竖直放置,表面与光线成90°;光线水平射入光电倍增管(4)、光电二极管(5)。
5.根据权利要求3所述一种飞秒激光双光子荧光生物显微成像系统,其特征在于:所述可调谐飞秒激光源Tsunami(1)水平射出,分束片(10)与可调谐飞秒激光源Tsunami(1)同轴设置,表面与光线成45°;反射镜M1(11)、反射镜M2(12)、电动平移台(7)、物镜(15)和聚光器(16)同轴设置,与可调谐飞秒激光源Tsunami(1)水平射出和分束片(10)的光轴垂直设置,反射镜M1(11)、反射镜M2(12)轴向与地面成45°放置,表面与光线成45°;二向色镜(13)轴向与地面成45°放置,表面与光线成45°;物镜(15)和聚光器(16)同轴竖直放置;电动平移台(7)与地面成水平放置;发射滤波片(14)轴向竖直放置,表面与光线成90°;光线水平射入光电倍增管(4)、光电二极管(5)。
6.一种权利要求1所述飞秒激光双光子荧光生物显微成像系统的成像方法,其特征在于:一种飞秒激光双光子荧光生物显微成像系统的成像方法包括如下步骤:
步骤一、将可调谐飞秒激光源Tsunami发出的激光进行分束:一束激光通过多模光纤与光谱仪连接,从而监控可调谐飞秒激光源Tsunami的工作状态;另一束激光与生物显微镜连接,用来激励样品;
步骤二、光束经过生物显微镜的物镜后,光束分为前向透射光和后向出射光;
步骤三、前向透射光经过聚光器的收集后进入光电二极管,光电二极管输出的信号由数据采集卡进行采集;
步骤四、后向出射光被物镜收集后,通过二向色镜将激光与荧光分开,经发射滤波片后,进入光电倍增管进行探测采集荧光,光电倍增管输出的信号由数据采集卡进行采集;
步骤五、将数据采集卡采集的信息传输到计算机进行双光子荧光显微成像;
步骤六、计算机控制电动平移台以完成成像。
7.根据权利要求6所述一种飞秒激光双光子荧光生物显微成像系统的成像方法,其特征在于:所述步骤一中将实验样品放于显微镜的电动平移台上,光束经过显微镜的物镜照射在电动平移台上,从而完成对样品的激励操作。
CN201410503142.XA 2014-09-26 2014-09-26 一种飞秒激光双光子荧光生物显微成像系统及其成像方法 Active CN104198458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410503142.XA CN104198458B (zh) 2014-09-26 2014-09-26 一种飞秒激光双光子荧光生物显微成像系统及其成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410503142.XA CN104198458B (zh) 2014-09-26 2014-09-26 一种飞秒激光双光子荧光生物显微成像系统及其成像方法

Publications (2)

Publication Number Publication Date
CN104198458A CN104198458A (zh) 2014-12-10
CN104198458B true CN104198458B (zh) 2017-02-22

Family

ID=52083783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410503142.XA Active CN104198458B (zh) 2014-09-26 2014-09-26 一种飞秒激光双光子荧光生物显微成像系统及其成像方法

Country Status (1)

Country Link
CN (1) CN104198458B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802300A (zh) * 2017-03-05 2017-06-06 北京工业大学 一种基于视觉反馈的生物显微操作装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142305B (zh) * 2015-02-16 2021-12-14 北京大学 活体动物双光子激发延时检测荧光成像分析方法及设备
CN205091263U (zh) * 2015-07-01 2016-03-16 上海睿钰生物科技有限公司 一种荧光显微成像装置
CN105342561B (zh) * 2015-10-09 2017-12-29 中国科学院自动化研究所 无线声控穿戴式分子影像导航系统
US10026202B2 (en) 2015-10-09 2018-07-17 Institute Of Automation, Chinese Academy Of Sciences Wearable molecular imaging navigation system
CN105548099B (zh) * 2015-12-04 2018-07-27 西北大学 基于双光子激发荧光的文物无损三维成像及成分鉴定方法
CN109313017B (zh) * 2015-12-18 2020-11-13 雅培实验室 组织学染色剂的光谱区分
CN105527261B (zh) * 2015-12-30 2018-07-17 中国科学院苏州生物医学工程技术研究所 一种双光子荧光显微镜的多模态扫描装置
CN105806817A (zh) * 2016-03-31 2016-07-27 北京卓立汉光仪器有限公司 一种基于紫外光激发的全光谱光致发光光谱检测系统
CN105842181B (zh) * 2016-06-03 2018-09-18 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106568754A (zh) * 2016-11-06 2017-04-19 浙江大学 一种用于测量液体样本多光子荧光光谱的光学系统
CN107069391B (zh) * 2017-02-10 2020-07-17 北京大学 飞秒脉冲激光调制器及具有其的微型双光子显微成像装置
CN106923793B (zh) * 2017-02-10 2024-05-03 北京大学 一种自由移动小动物行为成像装置和方法
CN107045187A (zh) * 2017-03-17 2017-08-15 王富 多光子超分辨显微成像装置及方法
CN106970060B (zh) * 2017-05-09 2019-07-16 中国科学院上海光学精密机械研究所 利用飞秒激光微加工系统诱导长磷光光谱的测量方法
CN107462336B (zh) * 2017-09-30 2019-01-22 飞秒激光研究中心(广州)有限公司 一种飞秒激光多模态分子影像系统
CN108982443A (zh) * 2018-07-04 2018-12-11 浙江大学 多光子激发的近红外二区荧光扫描显微成像系统
CN109943335B (zh) * 2019-03-27 2022-04-22 华南理工大学 一种飞秒激光多光子激发长余辉在生物成像中的应用
CN110584612B (zh) * 2019-09-27 2022-07-22 中国科学院深圳先进技术研究院 用于血管成像的光学显微系统
CN110567927B (zh) * 2019-09-27 2022-05-10 中国科学院深圳先进技术研究院 双光子显微成像系统
CN110764246A (zh) * 2019-10-31 2020-02-07 天津大学 一种用于显微镜上拍摄大面积样品的设备及其使用方法
CN111812073A (zh) * 2020-07-28 2020-10-23 山东新华普阳生物技术有限公司 一种双光子荧光免疫分析仪光学控制系统
CN113720842B (zh) * 2021-08-30 2023-04-18 武汉大学 一种生物样品成像辅助装置、生物样品成像系统及方法
CN114894758A (zh) * 2022-04-29 2022-08-12 南方科技大学 荧光分析系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034613A (en) * 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
CN103558193A (zh) * 2013-10-24 2014-02-05 深圳先进技术研究院 一种双光子显微镜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052181A2 (en) * 2002-12-11 2004-06-24 The Regents Of The University Of California Device and method for inducing vascular injury and/or blockage in an animal model
US9201008B2 (en) * 2012-06-26 2015-12-01 Universite Laval Method and system for obtaining an extended-depth-of-field volumetric image using laser scanning imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034613A (en) * 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
CN103558193A (zh) * 2013-10-24 2014-02-05 深圳先进技术研究院 一种双光子显微镜

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Two-photon laser scanning fluorescence microscopy using photonic crystal fiber;Gail McConnell and Erling Riis;《Journal of Biomedical Optics》;20041031;第9卷(第5期);922-927 *
双光子荧光显微镜的研究;王盛满;《中国优秀博硕士学位论文全文数据库(硕士)-工程科技Ⅱ辑》;20060515(第05期);31-47 *
飞秒激光双光子荧光显微成像技术研究;刘斌;《中国优秀硕士学位论文全文数据库-信息科技辑》;20140415(第04期);第20-33页,第3章 飞秒激光双光子荧光显微成像系统的搭建,图3-8,3-17,表3-1 Tsunami主要性能参数 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802300A (zh) * 2017-03-05 2017-06-06 北京工业大学 一种基于视觉反馈的生物显微操作装置
CN106802300B (zh) * 2017-03-05 2019-08-09 北京工业大学 一种基于视觉反馈的生物显微操作装置

Also Published As

Publication number Publication date
CN104198458A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104198458B (zh) 一种飞秒激光双光子荧光生物显微成像系统及其成像方法
US8921809B2 (en) Device for microscopy having selective illumination of a plane
Straub et al. Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope
CN108414442A (zh) 适用于近红外二区荧光活体成像的共聚焦显微系统
CN105004704B (zh) 钕离子敏化上转换纳米晶新用途及高分辨多光子显微系统
CN105467572B (zh) 单波长实现多光子脉冲sted-spim显微系统
EP1637871B1 (en) Measuring apparatus including a light-receiving unit
CN101019060A (zh) 用于具有共焦激发平面的广视场多光子显微的方法及系统
CN103616760A (zh) 激光扫描共焦显微镜成像系统
CN110118726A (zh) 一种并行探测荧光发射差分显微成像的方法和装置
JP7093836B2 (ja) 超解像蛍光顕微鏡及び蛍光寿命測定のためのデバイス及び方法
CN103439242A (zh) 一种单光束生物细胞检测及筛选的微流控系统及方法
CN108956561A (zh) 基于扫描振镜的共聚焦与环形全内反射双模式显微镜系统
CN103163106A (zh) 一种基于受激发射损耗的超分辨荧光寿命成像方法和装置
WO2015030202A1 (ja) 光学測定装置、光学測定方法、及び顕微イメージングシステム
US10444483B2 (en) Method for three-dimensional imaging using upconverting nanoparticles
CN106568755A (zh) 一种近红外激光扫描共聚焦显微成像系统
CN101294902A (zh) 稳态激光泵浦上转换发光显微镜
CN108982443A (zh) 多光子激发的近红外二区荧光扫描显微成像系统
US7453567B2 (en) Fluorescence lifetime distribution image measuring system and its measuring method
CN201242612Y (zh) 稳态激光泵浦上转换发光显微镜
CN106290277B (zh) 一种测量单分散上转换纳米荧光微粒寿命的装置及方法
CN105527265A (zh) 激光泵浦时间分辨上转换发光活体成像系统
CN112161946B (zh) 一种频域发光寿命成像系统
Ulrich et al. Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant