WO2016207711A1 - 変性リグニン、エボクシ樹脂、及びその製造方法 - Google Patents

変性リグニン、エボクシ樹脂、及びその製造方法 Download PDF

Info

Publication number
WO2016207711A1
WO2016207711A1 PCT/IB2016/000867 IB2016000867W WO2016207711A1 WO 2016207711 A1 WO2016207711 A1 WO 2016207711A1 IB 2016000867 W IB2016000867 W IB 2016000867W WO 2016207711 A1 WO2016207711 A1 WO 2016207711A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
lignin
present
modified lignin
resin composition
Prior art date
Application number
PCT/IB2016/000867
Other languages
English (en)
French (fr)
Other versions
WO2016207711A8 (ja
Inventor
篤志 海寳
酒井 亮
渡辺 隆司
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015126307A external-priority patent/JP6529164B2/ja
Priority claimed from JP2015126306A external-priority patent/JP6598354B2/ja
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2016207711A1 publication Critical patent/WO2016207711A1/ja
Publication of WO2016207711A8 publication Critical patent/WO2016207711A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols

Definitions

  • the present invention relates to a novel method for producing modified lignin, a novel modified lignin and a novel epoxy resin, a novel bisphenol compound, and a resin composition containing these novel bisphenol compound and novel epoxy resin.
  • biomass a renewable organic resource obtained from animals and plants
  • bioethanol production using edible biomass that can be used as foods such as sugar raw materials and starch raw materials can be mentioned.
  • competition with foods is a problem.
  • non-edible biomass has been attracting attention because it does not compete with food.
  • lignocellulosic biomass which is one of the non-edible biomasses, includes unused thinned wood or residual material in a lumber mill, and wood that is generated when a house is demolished.
  • the use of lignocellulosic biomass is expected from the viewpoint of environment because it is expected to suppress waste and be used as an energy resource.
  • Lignocellulose biomass is composed of cellulose, hemicellulose, and lignin.
  • Lignin is an adhesion molecule that bonds cellulose together. Since the structure is obtained by polymerizing a phenylpropane skeleton, it has attracted attention as a resource for aromatic compounds.
  • Lignin has been limited to use as a fuel or dispersant until now, but in recent years, its use as a chemical industrial product has been sought from a social background. As one of them, since lignin contains a phenolic hydroxyl group, it is expected as a resin raw material such as a phenol resin.
  • Resin physical properties vary greatly depending on the cross-linked structure of phenolic hydroxyl groups.
  • a rigid skeleton type based on an aromatic skeleton has high heat resistance (glass transition temperature), but generally has a problem of poor toughness because of its high viscosity.
  • Non-Patent Document 1 reports that by introducing a spiroacetal skeleton into the molecular structure, impact resistance, tensile strength, and extensibility are improved by relaxation via hydrogen bonds.
  • Epoxy resin compositions are also used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Widely used.
  • epoxy resins using biomass-derived compounds have been studied.
  • an epoxidized product of lignin and a cured product thereof are reported.
  • the lignin extracted from the plant is used as it is, it is a very high molecular weight compound, which may cause a problem in moldability.
  • it is difficult to provide a high degree of reliability that can withstand the use of electrical and electronic materials.
  • Non-patent document 1 reports that homovanillin or homosyringaldehyde is obtained as a monomer obtained from lignin. There is no example of using these lignin monomers as bisphenol compounds, and establishment of a production method has been desired.
  • An object of the present invention is to provide a novel method for producing modified lignin, and to provide a novel bisphenol compound and epoxy resin having a phenylethane skeleton.
  • the present invention relates to a method for producing the modified lignin described below.
  • a method for producing modified lignin comprising a step of heating lignin in the presence of a polyhydric alcohol and an acid catalyst.
  • the method for producing a modified lignin according to item (1) wherein the polyhydric alcohol is pentaerythritol or ditrimethylolpropane.
  • this invention relates to the bisphenol compound and epoxy resin (B) as described below.
  • R 1 and R 2 represent a methoxy group.
  • A is the number of substitutions of R 1 and R 2 and is 0 to 3 (integer), and the number of substitutions of R 1 and R 2
  • b and c are the number of substituted hydroxyl groups and are 1 to 3 (integer), b and c may be different, and
  • X represents a tetravalent linker.
  • A is the number of substitutions of R 1 and R 2 and is 0 to 3 (integer), and the number of substitutions of R 1 and R 2 B and c are the number of substitutions of OG and may be 1 to 3 (integer), b and c may be different, G represents a glycidyl group, X represents a tetravalent linker.
  • An epoxy resin composition comprising an epoxy resin and the bisphenol compound according to any one of items (8) to (10).
  • modified lignin modified with polyhydric alcohol can be efficiently obtained from biomass or lignin separated from biomass.
  • the modified lignin, bisphenol compound, and epoxy resin of the present invention are useful as raw materials for chemical industrial products.
  • Example 4 shows HMQC NMR and peak assignment of the modified lignin obtained in Example 2. It is HMQC NMR of the bisphenol compound obtained by the synthesis example 1, and a peak assignment.
  • the method for producing a modified lignin of the present invention includes a step of heating biomass containing lignin or lignin separated from biomass in a polyhydric alcohol and a hydrocarbon solvent in the presence of an acid catalyst.
  • Biomass in the present invention refers to organic resources derived from renewable organisms excluding fossil resources.
  • lignocellulosic biomass include unused thinned wood and wood left over from lumber mills, woody biomass such as timber generated from demolition of houses, unused biomass such as rice straw, wheat straw, rice husk, sugarcane, corn, and eucalyptus Herbaceous biomass such as
  • Lignin is an aromatic polymer compound present in about 15 to 35% in a wooded plant body.
  • the biomass containing lignin in the present invention is lignocellulosic biomass, for example, biomass originating from a wooded plant. Specifically, cedar, cypress, spruce, pine, eucalyptus, beech, willow, bamboo, etc. Stems and leaves, oil palm fruit shells, tobacco remnants, napiergrass, and Eliansus.
  • lignin separated from lignocellulosic biomass is used, but lignocellulosic biomass itself may be used.
  • the lignin separated from biomass in the present invention is lignin previously separated from biomass separately from the process of the present invention, and depending on the separation method, lignin sulfate, lignin hydrochloride, periodate lignin, dioxane lignin, alcohol lignin Thioglycolic acid lignin, lignosulfonic acid, kraft lignin, soda lignin, Brauns natural lignin, ground lignin, cellulose saccharification residue lignin, hydrothermal lignin, steam explosion lignin and the like.
  • Lignin is an aromatic polymer compound and is a polymer having 4-hydroxyphenylpropane as a monomer.
  • the lignin used in the present invention preferably has an aldehyde group, an acetal structure and / or an enol ether structure. Specifically, lignin decomposed under an acid condition in an alcohol solvent is preferable.
  • the modified lignin means one obtained by modifying lignin with a polyhydric alcohol. Modified lignin does not have a single structure, but also includes a mixture of two or more modified lignins.
  • the polyhydric alcohol used in the present invention is a polyhydric alcohol having 4 or more hydroxyl groups.
  • Specific examples include pentaerythritol or ditrimethylolpropane, which are tetravalent alcohols. Of these, ditrimethylolpropane is preferred.
  • Examples of the acid catalyst used in the present invention include Bronsted acid and Lewis acid.
  • Examples of the Bronsted acid include sulfuric acid, hydrochloric acid, nitric acid, methanesulfonic acid, and examples of the Lewis acid include boron trifluoride, zinc chloride, tin tetrachloride, iron trichloride, and aluminum chloride.
  • sulfuric acid, methanesulfonic acid, and aluminum chloride are preferable, and sulfuric acid having the highest yield of the modified lignin of the present invention is most preferable.
  • the amount of the acid catalyst used in the present invention is too small, the reaction does not proceed easily, and if it is too large, removal after the reaction is difficult, so 0.01% by mass to 5% by mass with respect to the solvent used. Preferably, it is 0.05 mass% to 2 mass%.
  • the present invention includes a step of heating lignin in the presence of a polyhydric alcohol and an acid catalyst.
  • a hydrocarbon may be used as a solvent.
  • the hydrocarbon used in the present invention is preferably a hydrocarbon having 6 to 10 carbon atoms. Specific examples include hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, and chlorobenzene. , Dichlorobenzene, gasoline, petroleum ether, petroleum naphtha, petroleum benzine, mineral spirit, and limonene. The boiling point is preferably 150 ° C. or lower because energy is not required for recovery and reuse. In addition, aromatic hydrocarbons are preferable because of low solubility of the low-molecular lignin obtained by the present invention, and among these, toluene and xylene are most preferable.
  • denatured lignin of this invention includes the following processes. (1) Biomass containing lignin or lignin separated from biomass and polyhydric alcohol are suspended in a hydrocarbon solvent. (2) An acid catalyst is added, and the resulting water or alcohol is heated while distilling out of the system. (3) Add water to the reaction solution and filter. (4) Separate the solvent from the aqueous layer. (5) The solvent is distilled off to obtain a modified lignin.
  • the temperature at which the biomass containing lignin or the lignin separated from the biomass and the polyhydric alcohol is suspended in the hydrocarbon solvent is usually 10 to 50 ° C., but may be appropriately changed according to various conditions. Good.
  • the reaction may be carried out by suspending it.
  • a hydrocarbon or a mixed solvent of hydrocarbon and alcohol may be used.
  • the acid catalyst may be added directly, or may be added by dissolving in a hydrocarbon or alcohol, or a mixed solvent of hydrocarbon and alcohol.
  • the mixing ratio of the mixed solvent of hydrocarbons and alcohols is set within a preferable range.
  • the temperature at which the acid catalyst is added is 10 to 50 ° C., but this is not particular.
  • the temperature of the heating step of the present invention is not particularly limited as long as modified lignin can be produced, but it is preferably 40 ° C to 150 ° C.
  • impurities such as furfural, levoglucosenone, and levulinic acid increase when the cellulose component is present in the biomass, and when the temperature is too low, the denaturation reaction does not proceed sufficiently.
  • the heating method can be appropriately selected depending on the volume of the reaction solution.
  • the container containing the reaction liquid may be heated by a microwave irradiation in addition to being heated by a known heating device such as a water bath or an oil bath.
  • the heating time is not particularly limited as long as the modified lignin can be produced, but if the heating time is too short, the denaturation does not proceed sufficiently, so 5 to 360 minutes, more preferably 10 to 120 minutes, more preferably 30 to 90 minutes. Minutes are more preferred.
  • the reaction solution is cooled to room temperature, and filtration / solvent removal is performed as usual to purify the modified lignin.
  • purification method There is no particular limitation on the purification method. During filtration, water is added to remove the acid catalyst. The temperature at which water is added and filtered is 10 ° C. to 50 ° C. When the temperature is higher than 50 ° C., the obtained modified lignin is decomposed.
  • the temperature for separating from the aqueous layer is 10 ° C to 50 ° C. If removal of the acid catalyst is not sufficient, wash with additional water. You may extract from an aqueous layer using an organic solvent as needed.
  • a derivative which is a modified lignin can be obtained.
  • guide_body obtained is a mixture of 1 type or various compounds, it is difficult to analyze all the individual structures.
  • a compound represented by the following general formula [V] can be given.
  • R 1 to R 4 may be the same or different and each represents a hydrogen atom or a methoxy group.
  • n 1 and n 2 are the number of carbon atoms and are 0 to 2 (integer), and the carbon numbers of n 1 and n 2 may be different.
  • X represents a tetravalent linker.
  • the tetravalent linker is a structure derived from a polyhydric alcohol used in the present invention.
  • the polyhydric alcohol is pentaerythritol, which is a tetravalent alcohol, it has the structure of the formula [II], and when it is ditrimethylolpropane, which is a tetravalent alcohol, it has the structure of the formula [III].
  • the modified lignin obtained by the decomposition method of the present invention has a phenolic hydroxyl group, it can be mixed with an epoxy resin and used as a thermosetting resin composition.
  • the epoxy resin used for the thermosetting resin composition may be any one obtained by epoxidizing the modified lignin obtained by the decomposition method of the present invention by an ordinary method or other epoxy resins.
  • the bisphenol compound of the present invention can be obtained by reacting a 4-hydroxyphenylacetaldehyde derivative with a polyhydric alcohol in the presence of a catalyst.
  • 4-hydroxyphenylacetaldehyde derivatives used in the present invention include 2- (4-hydroxyphenyl) acetaldehyde (formula (1)), homovanillin (formula (2)), homosyringaldehyde (formula (3)), 2- (4-hydroxyphenyl) acetaldehyde dimethyl acetal (formula (4)), homovanillyl aldehyde dimethyl acetal (formula (5)), homosyringaldehyde dimethyl acetal (formula (6)), 4- (2-methoxy Vinyl) phenol (formula (7)), 2-methoxy-4- (2-methoxyvinyl) phenol (formula (8)), 2,6-dimethoxy-4- (2-methoxyvinyl) phenol (formula (9) ) 4-hydroxyphenylacetaldehyde and the like.
  • the polyhydric alcohol used in the present invention is a polyhydric alcohol having 4 or more hydroxyl groups, and specific examples include pentaerythritol or ditrimethylolpropane. Among them, ditrimethylolpropane having good solubility is preferable.
  • the tetravalent linker is a structure derived from a polyhydric alcohol used in the present invention.
  • the polyhydric alcohol is pentaerythritol, which is a tetravalent alcohol, it has the structure of the above formula [II], and when it is ditrimethylolpropane, which is a tetravalent alcohol, it has the structure of the above formula [III].
  • the bisphenol compound of the present invention is obtained by a condensation reaction between a 4-hydroxyphenylacetaldehyde derivative and a polyhydric alcohol in the presence of a catalyst.
  • the amount of the 4-hydroxyphenylacetaldehyde derivative to be used is usually 0.25 to 5.0 mol, preferably 0.03 to 2.5 mol, per 1 mol of the polyhydric alcohol.
  • the amount of the 4-hydroxyphenylacetaldehyde derivative used is less than 0.03 mol relative to 1 mol of the compound represented by the polyhydric alcohol, the residual amount of the 4-hydroxyphenylacetaldehyde derivative increases and the heat resistance decreases. Therefore, it is not preferable, and if it is more than 5.0 mol, there is a possibility of gelation, which is not preferable.
  • Examples of the acid catalyst that can be used in the present invention include organic acid catalysts such as toluenesulfonic acid, xylenesulfonic acid, and oxalic acid, inorganic acid catalysts such as hydrochloric acid and sulfuric acid, phosphotungstic acid, silicotungstic acid, and phosphomolybdenum.
  • organic acid catalysts such as toluenesulfonic acid, xylenesulfonic acid, and oxalic acid
  • inorganic acid catalysts such as hydrochloric acid and sulfuric acid, phosphotungstic acid, silicotungstic acid, and phosphomolybdenum.
  • Preferred examples include, but are not limited to, heteropolyacids such as acid, sodium phosphomolybdate, phosphotungstomolybdic acid, and phosphovanadomolybdic acid.
  • these catalysts may be used independently and may use multiple types together.
  • the amount of the catalyst to be used is usually 0.001 to 15
  • a solvent can be used as necessary.
  • the solvent that can be used is not particularly limited as long as it does not have reactivity with the 4-hydroxyphenylacetaldehyde derivative, but alcohols and aprotic polar solvents are easy in that the compound represented by the polyhydric alcohol is easily dissolved.
  • Aromatic hydrocarbons are preferably used as the solvent.
  • the solvent that can be used include alcohols such as methanol, ethanol, and isopropyl alcohol, aprotic polar solvents such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, methyl ethyl ketone, and methyl isobutyl ketone, and toluene and xylene.
  • alcohols such as methanol, ethanol, and isopropyl alcohol
  • aprotic polar solvents such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, methyl ethyl ketone, and methyl isobutyl ketone
  • aromatic hydrocarbon etc. are mentioned preferably, it is not limited to these. Only one solvent may be used, or two or more solvents may be mixed.
  • the amount used in the case of using a solvent is not particularly limited. For example, it can be used in an amount of 100 to 500 parts by mass with respect to 1 part by mass of the compound represented by the general formula [I].
  • the reaction temperature is usually 10 to 150 ° C, preferably 30 to 130 ° C, particularly preferably 50 ° C to 120 ° C.
  • the reaction time is usually 0.5 to 20 hours, but is not limited to this because the reactivity varies depending on the type of raw material compound.
  • the catalyst is quenched by a known method.
  • an acidic catalyst When an acidic catalyst is used, it may be neutralized with a base or washed with water.
  • Metal carbonates such as metal hydroxides, such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide, sodium carbonate, pentasodium tripolyphosphate, ammonia, potassium carbonate, etc.
  • Preferred examples include phosphates such as sodium phosphate and sodium hydrogen phosphate, basic solids such as ion exchange resins and alumina. At this time, in order to uniformly disperse the base, it is preferable to gradually drop it as an aqueous solution.
  • the modified lignin epoxy resin (A) obtained by the decomposition method of the present invention is obtained by reacting the modified lignin obtained by the above-described method with an epihalohydrin in a solvent and epoxidizing it.
  • the modified lignin obtained by the decomposition method of the present invention is a mixture of various compounds
  • the resulting epoxy resin (A) of the present invention is also a mixture of various compounds.
  • the epoxy resin (B) of the present invention can be obtained by reacting the bisphenol compound of the present invention obtained by the above method with epihalohydrin in a solvent and epoxidizing it.
  • Preferred examples of the epihalohydrin used in the reaction for obtaining the epoxy resin of the present invention include epichlorohydrin, ⁇ -methylepichlorohydrin, ⁇ -methylepichlorohydrin, epibromohydrin and the like, and epichlorohydrin which is easily available industrially is particularly preferable.
  • the amount of the epihalohydrin used is usually 2 to 100 mol per mol of the hydroxyl group of the bisphenol compound of the present invention, and preferably 2 to 8 mol in consideration of economy.
  • an epoxy resin is obtained by a reaction in which a bisphenol compound and an epihalohydrin are added in the presence of an alkali metal oxide and then the resulting 1,2-halohydrin ether group is opened to epoxidize.
  • the alkali metal hydroxide that can be used for the epoxidation reaction include sodium hydroxide and potassium hydroxide, and these may be used as they are, or their aqueous solutions may be used.
  • an aqueous solution the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and separated from a mixture of water and epihalohydrin distilled continuously under reduced pressure or normal pressure. Alternatively, water may be removed and only the epihalohydrin is continuously returned to the reaction system.
  • the amount of the alkali metal hydroxide used is usually 0.9 to 3.0 mol, preferably 1.0 to 2.5 mol, more preferably 1 mol per 1 mol of the hydroxyl group of the bisphenol compound of the present invention.
  • the amount of halogen contained in the epoxy resin obtained can be significantly reduced as compared with using sodium hydroxide as an aqueous solution.
  • the flaky sodium hydroxide is preferably added in portions in the reaction system. By performing divided addition, it is possible to prevent a rapid decrease in the reaction temperature, thereby preventing the formation of 1,3-halohydrin and halomethylene as impurities.
  • a catalyst can be used to accelerate the epoxidation reaction.
  • Preferred examples of the catalyst that can be used include quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride, and tetraethylammonium chloride.
  • the amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the hydroxyl group of the phenol resin of the present invention.
  • the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C.
  • the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours.
  • the reaction product is washed with water or without washing with water, and the epihalohydrin, solvent, etc. are removed from the reaction solution under heating and reduced pressure.
  • the recovered epoxy resin of the present invention is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an alkali such as sodium hydroxide or potassium hydroxide is dissolved.
  • the reaction can be carried out by adding an aqueous solution of metal hydroxide to ensure ring closure.
  • the amount of the alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of the bisphenol compound of the present invention.
  • the reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
  • the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under reduced pressure by heating to obtain the epoxy resin of the present invention.
  • the epoxy resin of this invention precipitates as a crystal
  • the epoxy resin (A) of the present invention has a structure in which the hydroxy group contained in the modified lignin is glycidylated.
  • the epoxy resin (B) of this invention contains what is represented by the following general formula [IV].
  • R 1 and R 2 represent a methoxy group.
  • A is the number of substitutions of R 1 and R 2 and is 0 to 3 (integer)
  • the number of substitutions of R 1 and R 2 B and c are the number of substitutions of OG and may be 1 to 3 (integer)
  • b and c may be different
  • G represents a glycidyl group
  • X represents a tetravalent linker. Show.
  • the epoxy resin composition of the present invention contains at least one of the modified lignin obtained by the method for producing the modified lignin of the present invention, the epoxy resin of the present invention and the bisphenol compound of the present invention as an essential component.
  • the bisphenol compound of the present invention can be used in combination with one or more epoxy resins (the epoxy resin of the present invention and other epoxy resins). Moreover, the epoxy resin of this invention can be used in the epoxy resin composition of this invention individually or in combination with another epoxy resin.
  • epoxy resins used in the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyace
  • the epoxy resin composition of the present invention can also contain a curing agent.
  • a curing agent can be used.
  • the curing agent that can be used include a phenol resin, a phenol compound, an amine compound, an acid anhydride compound, an amide compound, and a carboxylic acid compound.
  • curing agents include phenol resins, phenol compounds; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, -Hydroxybenzaldehyde
  • Preferable phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, and the alkylene portion serving as the linker is benzene.
  • a resin characterized by at least one selected from a structure, a biphenyl structure, and a naphthalene structure specifically examples include zylock, naphthol zylock, phenol biphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.
  • amine compounds and amide compounds include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from linolenic acid and ethylenediamine. It is done.
  • acid anhydride compounds and carboxylic acid compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, and nadic anhydride Hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane- Acid anhydrides such as 2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride; addition of various alcohols, carbinol-modified silicone and the above-mentioned acid anhydrides Examples thereof include carboxylic acid resins obtained by the reaction.
  • the curing agent is not limited to these. These may be used alone or in combination of two or more.
  • the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins.
  • curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator may be used in combination with a curing agent.
  • the curing accelerator include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo ( Tertiary amines such as 5,4,0) undecene-7, phosphines such as triphenylphosphine, quaternary compounds such as tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt Quaternary phosphonium salts such as ammonium salt, triphenylbenzyl phosphonium salt, triphenylethyl phosphonium salt, tetrabutyl phosphonium salt and the like (counter ions of quaternary salt are halogen,
  • the epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10
  • an antioxidant may be added to the epoxy resin composition of the present invention as necessary.
  • Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more.
  • the amount of the antioxidant used is usually 0.008 to 1 part by mass, preferably 0.01 to 0.5 part by mass with respect to 100 parts by mass with respect to the resin component in the curable resin composition of the present invention. It is.
  • antioxidant examples include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-thiobis (3 Methyl-6-tert-butyl
  • sulfur-based antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like. .
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Di-t-butyl-4-methylphenyl) phosphite, bis [2-t-butyl-6-methyl-4- ⁇ 2- (oct)
  • oxaphosphaphenanthrene oxides such as 10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • antioxidants can be used alone, but two or more kinds may be used in combination.
  • a phosphorus-based antioxidant is particularly preferable.
  • a light stabilizer may be added to the epoxy resin composition of the present invention as necessary.
  • the light stabilizer hindered amine-based light stabilizers, particularly HALS and the like are suitable.
  • HALS is not particularly limited, but representative examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetra
  • the epoxy resin composition of the present invention can be blended with a binder resin as necessary.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range not impairing the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by mass, preferably 0.05 to 100 parts by mass with respect to 100 parts by mass of the resin component 20 parts by weight are used as needed.
  • An inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • Preferred examples include, but are not limited to, beads made of spheroids. These may be used alone or in combination of two or more.
  • an amount occupying 0 to 95% by mass in the resin composition of the present invention is used.
  • the resin composition of the present invention includes various compounding agents such as a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, a surfactant, a dye, a pigment, and an ultraviolet absorber.
  • a silane coupling agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate
  • a surfactant such as stearic acid, palmitic acid, zinc stearate, and calcium stearate
  • a dye such as stearic acid, palmitic acid, zinc stearate, and calcium stearate
  • an ultraviolet absorber such as a silicone oils, silicone oils, and zinc stearate, and zinc stearate.
  • a surfactant such as stearic acid, palmitic acid, zinc stearate, and calcium stearate
  • a dye such as stearic acid, palmitic acid, zinc stearate,
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
  • the epoxy resin composition of the present invention can be easily cured by a method similar to a conventionally known method.
  • the bisphenol compound of the present invention, an epoxy resin, and if necessary, a curing agent, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are uniformly used using an extruder, kneader, roll, etc.
  • the cured product of the present invention can be obtained by heating for 2 to 10 hours.
  • the curable resin composition varnish is prepared by dissolving the epoxy resin composition of the present invention in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone as necessary.
  • the curable resin composition of the present invention is obtained by hot press-molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper and drying by heating. It can be set as a cured product.
  • the solvent is used in an amount of 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition of the present invention and the solvent.
  • cured material containing a carbon fiber can also be obtained as it is, for example with a RTM system.
  • the epoxy equivalent was measured under the following conditions. -Epoxy equivalent Measured by the method described in JIS K-7236, the unit is g / eq. It is. ⁇ DSC Suggested scanning calorimeter: TA-instruments DSC Q-2000
  • the composition organism was purified by column chromatography (silica gel / hexane-ethyl acetate). In a flask equipped with a thermometer, stirrer, condenser, and Dean-Stark apparatus, the product (2.8 g), ditrimethylolpropane dissolved in methanol (1.68 g), p-toluenesulfonic acid (20 mg), Toluene (75 mL) was charged, and the reaction was performed at 70 ° C. for 1.5 hours while bubbling nitrogen. Methanol produced during this time was distilled out of the system.
  • Example 1 10 g of wood flour (eucalyptus, 1.5 ⁇ ) was weighed into a microwave reaction vessel, and 120 mL of toluene (first grade, Junsei Chemical Co., Ltd.) was added. 13 mL of sulfuric acid (special grade, Junsei Chemical Co., Ltd.) diluted 100 times with methanol and 17 mL of methanol (first grade, Junsei Chemical Co., Ltd.) were added. A lid was attached to the reaction vessel and set in a microwave synthesizer. Irradiated with microwaves and heated at a reaction temperature of 140 ° C. for 20 minutes.
  • Example 2 The lignin solution obtained in Example 1 was transferred to a flask equipped with a thermometer, a stirrer, a condenser tube, and a Dean-Stark apparatus, and ditrimethylolpropane (202 mg) and p-toluenesulfonic acid (10 mg) dissolved in methanol. The reaction was conducted at 50 ° C. for 2 hours while bubbling nitrogen. Methanol produced during this time was distilled out of the system. After completion of the reaction, the temperature in the system was lowered to room temperature, and water (75 mL) was added. The aqueous layer was then extracted three times with ethyl acetate, and the combined organic layers were dehydrated with magnesium sulfate.
  • HMQC NMR of the obtained modified lignin is shown in FIG.
  • HMQC NMR of Synthesis Example 1 as a standard is shown in FIG. From the comparison between FIG. 1 and FIG. 2, it can be seen that the obtained modified lignin contains a modified lignin having the same crosslinked structure of formula (III) as the compound of Synthesis Example 1.
  • Example 3 A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while the modified lignin (0.9 g), epichlorohydrin (17.7 g) and tetraethylammonium chloride (14 mg) obtained in Example 2 were applied. , Water (44 mg) was added, and the temperature was raised to 90 ° C. Next, 30% aqueous sodium hydroxide solution (334 mg) was added, and the reaction was further performed at 60 ° C. for 30 minutes, 75 ° C. for 30 minutes, and 90 ° C. for 30 minutes. After completion of the reaction, washing was performed, and the solvent of the organic layer was distilled off.
  • Example 4 Except for using cedar instead of eucalyptus, the same operation as in Examples 1 and 2 was performed to obtain the modified lignin of the present invention as a viscous brown solid in a yield of 6 wt%. It was confirmed by HMQC NMR that the modified lignin had the same crosslinked structure of formula (III) as in Example 2.
  • Example 5 The epoxy resin (A) (70 wt%) of the present invention was obtained in the same manner as in Example 3 except that the modified lignin (0.9 g) obtained in Example 4 was used.
  • the epoxy equivalent of the obtained epoxy resin (A) is 396 g / eq. Met.
  • Example 6 The epoxy resin (A) of the present invention obtained in Examples 3 and 5 and the phenol novolak resin (H-1 manufactured by Meiwa Kasei Co., Ltd., hydroxyl group equivalent: 103 g / eq.) Are mixed in an equivalent ratio of epoxy group and hydroxyl group. The mixture was mixed in a 1: 1 ratio and dissolved in methyl ethyl ketone. After adding 1 wt% of triphenylphosphine, the solvent was dried at 110 ° C. for 10 minutes, and the glass transition temperature of the cured product was measured with a suggested scanning calorimeter. The results are shown in Table 1.
  • the modified lignin obtained by the method for producing the modified lignin of the present invention is useful as a resin raw material, and the epoxy resin (A) of the present invention is also cured by a phenol novolac, so that it is a chemical industrial product It is clear that it is useful as a raw material for
  • Example 7 To a flask purged with nitrogen, (methoxymethyl) triphenylphosphonium chloride (8.44 g) was weighed and THF (53 mL) was added. The reaction solution was cooled in an ice bath and potassium tert-butoxide (4.6 g) was added. After stirring for 10 minutes, syringaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd., 3.0 g) dissolved in THF was added dropwise. The reaction temperature was returned to room temperature, and after stirring for 30 minutes, an aqueous ammonium chloride solution was added.
  • the composition organism was purified by column chromatography (silica gel / hexane-ethyl acetate).
  • Methyl isobutyl ketone 50 mL was added to the residue and dissolved, and the temperature was raised to 75 ° C. A 30% aqueous sodium hydroxide solution (60 mg) was added with stirring, and the reaction was carried out for 2 hours. Then, the organic layer was washed with water, and the epoxy resin (B) (2.8 g) of the present invention was obtained by distilling off the solvent such as methyl isobutyl ketone from the obtained organic layer using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin (B) was 372 g / eq.
  • Example 8-9 The same operation as in Example 7 was performed except that syringaldehyde was changed as shown in Table 2.
  • the epoxy resin (B) obtained in Examples 7 to 9 and a phenol novolak resin (H-1 by Meiwa Kasei Co., Ltd., hydroxyl group equivalent: 103 g / eq.) Were mixed at a ratio of 1: 1 and dissolved in methyl ethyl ketone. It was. After adding 1 wt% of triphenylphosphine, the solvent was dried at 110 ° C. for 10 minutes, and the glass transition temperature of the cured product was measured with a suggested scanning calorimeter. The results are shown in Table 2.
  • the bisphenol compound of the present invention is useful as a resin raw material, and the epoxy resin (B) of the present invention is also cured by a phenol novolac, so that it is useful as a raw material for chemical industrial products. it is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、変性リグニンの製造方法、新規変性リグニン及び新規エポキシ樹脂、さらには新規ビスフェノール化合物、これら新規ビスフェノール化合物及び新規エポキシ樹脂を含む樹脂組成物を提供する。より具体的には、本発明は、リグ二ンを、多価アルコールと酸触媒存在下で加熱する工程を含む、変成リグニンの製造方法及び該製造方法により得られる変性リグニン、該変性リグニンから得られるエポキシ樹脂、新規ビスフェノール化合物、及び新規エポキシ樹脂を含む樹脂組成物に関する。

Description

変性リグニン、エポキシ樹脂、及びその製造方法 関連出願
 本出願は、2015年6月24日に出願された日本国特願2015−126306号及び2015年6月24日に出願された日本国特願2015−126307号の優先権を主張するものであり、この日本国出願の明細書は引用することにより本願の開示の一部とされる。
 また、本出願は、平成25年度独立行政法人新エネルギー・産業技術総合開発機構「非可食性植物由来化学品製造プロセス技術開発研究開発項目(2)「木質系バイオマスから化学品までの一貫製造プロセスの開発」」の委託研究、産業技術力強化法第19条の適用を受ける特許出願である。
 本発明は、変性リグニンの新規な製造方法、新規変性リグニン及び新規エポキシ樹脂、さらには新規ビスフェノール化合物、これら新規ビスフェノール化合物及び新規エポキシ樹脂を含む樹脂組成物に関する。
 近年、環境問題の観点からカーボンニュートラルな資源としてバイオマス(動植物から得られる再生可能な有機性資源)が注目されている。例えば、糖質原料及びデンプン原料といった食糧にもなる可食性バイオマスを用いたバイオエタノールの製造が挙げられるが、この場合は食糧との競合が問題となっている。一方、非可食性バイオマスは食糧との競合がなく、注目されている。例えば、非可食性バイオマスの一つであるリグノセルロースバイオマスには、未利用の間伐材又は製材工場での残材、住宅の解体で発生する木材等がある。リグノセルロース系バイオマスの利用は、廃棄物の抑制及びエネルギー資源としての利用が期待されており、環境的観点から重要である。
 リグノセルロースバイオマスは、セルロース、ヘミセルロース、リグニンから構成されている。リグニンはセルロースを繋ぎ合わせる接着分子である。その構造はフェニルプロパン骨格が重合したものであるため、芳香族化合物の資源として注目されている。
 リグニンはこれまで燃料又は分散剤としての利用に限られていたが、近年、社会的背景から化学工業製品としての利用が模索されている。その一つとして、リグニンにはフェノール性の水酸基が含まれているため、フェノール樹脂等の樹脂原料として期待されている。
 樹脂物性はフェノール性水酸基同士の架橋構造によって大きく変化する。たとえば、芳香族骨格をベースとした剛直骨格型では、耐熱性(ガラス転移温度)は高いが、一般的に粘度が高くなるため、靭性に劣る等の問題がある。非特許文献1では、分子構造にスピロアセタール骨格を導入することで、水素結合を介した緩和により耐衝撃性、引張強度、伸張性が向上することが報告されている。
 これまでに知られているリグニンの化学的な修飾は、反応性の高いフェノール性の水酸基を用いているのみであり、その他のアルデヒド基等の官能基を用いて化学的に変成している例はない(非特許文献1)。リグニンは様々な結合様式が含まれているため、樹脂物性を調整することは困難であり、フェノール性水酸基同士を樹脂原料に適した構造に架橋する方法は確立されていない。
 また、エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着性、塗料等の分野で幅広く用いられている。このような分野においてもバイオマス由来の化合物を使用したエポキシ樹脂が検討されている。具体的には特許文献においてはリグニンのエポキシ化物及びその硬化物が報告されている。しかしながら、植物より抽出されたリグニンをそのまま使用していることから、非常に高い分子量の化合物であり、成型性に問題が生じる場合がある。また、電気・電子材料の用途に耐えうる高度な信頼性を持たせることが難しい。
 リグニンから得られるモノマーとしてホモバニリン又はホモシリンガアルデヒドが得られる事が非特許文献1で報告されている。これらのリグニンモノマーをビスフェノール化合物として利用した例はなく、製造方法の確立が望まれていた。
日本国特開2006−066237号公報
M.Ochi,M.Shimbo,M.Saga,N.Takashima,J.Polym.Sci.,Part B:Polym.Phys.,24,2185(1986) Tsuneo Koike,Polymer Engineering and Science,2012,701 A.Kaiho,M.Kogo,R.Sakai,K.Saito,T.Watanabe,Green Chem.2015,17,2780
 本発明の課題は、変性リグニンの新規な製造方法を提供すること、及び、フェニルエタン骨格を有する新規なビスフェノール化合物及びエポキシ樹脂を提供することである。
 本発明は、以下に記載の変性リグニンの製造方法に関する。
(1)リグニンを、多価アルコールと酸触媒存在下で加熱する工程を含む、変成リグニンの製造方法。
(2)多価アルコールが、ペンタエリスリトール又はジトリメチロールプロパンである、項目(1)に記載の変成リグニンの製造方法。
(3)リグニンが、アルデヒド基、アセタール構造又はエノールエーテル構造を含む、項目(1)に記載の変成リグニンの製造方法。
(4)溶媒として炭化水素を用いる、項目(1)に記載の変成リグニンの製造方法。
(5)溶媒としてトルエンを用いる、項目(1)に記載の変成リグニンの製造方法。
(6)前記項目(1)に記載の製造方法より得られる変成リグニンと、エポキシ樹脂とを含むエポキシ樹脂組成物。
(7)前記項目(1)に記載の製造方法より得られる変成リグニンと、エピハロヒドリンとを反応させて得られるエポキシ樹脂(A)。
 さらに、本発明は、以下に記載のビスフェノール化合物及びエポキシ樹脂(B)に関する。
(8)一般式[I]で表されるビスフェノール化合物。
Figure JPOXMLDOC01-appb-I000005
(一般式[I]中、R及びRはメトキシ基を示す。aはR及びRの置換数であって、0~3(整数)であり、R及びRの置換数は異なってもよい。b及びcは水酸基の置換数であって、1~3(整数)であり、b及びcは異なってもよい。Xは4価のリンカーを示す。)
(9)一般式[I]において、ヒドロキシ基がフェニル基の4位にあり、R及びRがフェニル基の3,5位にある、項目(8)に記載のビスフェノール化合物。
(10)一般式[I]中、Xは式[II]
Figure JPOXMLDOC01-appb-I000006
又は、式[III]
Figure JPOXMLDOC01-appb-I000007
で表される、項目(8)に記載のビスフェノール化合物。
(11)項目(8)~(10)のいずれかに記載のビスフェノール化合物に、エピハロヒドリンを反応させることにより得られるエポキシ樹脂(B)。
(12)一般式[IV]で表されるエポキシ樹脂。
Figure JPOXMLDOC01-appb-I000008
(一般式[IV]中、R及びRはメトキシ基を示す。aはR及びRの置換数であって、0~3(整数)であり、R及びRの置換数は異なってもよい。b及びcはOGの置換数であって、1~3(整数)であり、b及びcは異なってもよい。Gはグリシジル基を示す。Xは4価のリンカーを示す。)
(13)エポキシ樹脂と、項目(8)~(10)のいずれかに記載のビスフェノール化合物とを含有するエポキシ樹脂組成物。
(14)さらに硬化剤を含有する、項目(13)に記載のエポキシ樹脂組成物。
(15)エポキシ樹脂が、項目(8)~(10)のいずれかに記載のビスフェノール化合物にエピハロヒドリンを反応させることにより得られるエポキシ樹脂(B)である、項目(13)に記載のエポキシ樹脂組成物。
(16)エポキシ樹脂が、一般式[IV]で表されるエポキシ樹脂である、項目(13)に記載のエポキシ樹脂組成物。
(17)エポキシ樹脂が、その他のエポキシ樹脂である、項目(13)に記載のエポキシ樹脂組成物。
(18)項目(13)に記載のエポキシ樹脂組成物を硬化して得られる硬化物。
 本発明の製造方法により、バイオマス又はバイオマスから分離したリグニンから、多価アルコールにより変性された変性リグニンを効率的に得ることができる。本発明の変性リグニン、ビスフェノール化合物、及びエポキシ樹脂は、化学工業製品の原料として有用である。
実施例2で得られた変性リグニンのHMQC NMR及びピークの帰属である。 合成例1で得られたビスフェノール化合物のHMQC NMR及びピークの帰属である。
 本発明の変性リグニンの製造方法は、リグニンを含有するバイオマス又はバイオマスから分離したリグニンを、酸触媒存在下、多価アルコール及び炭化水素溶媒中において加熱する工程を含む。
 本発明におけるバイオマスとは、再生可能な生物由来の有機性資源であって化石資源を除いたものを言う。リグノセルロース系バイオマスとしては、未利用の間伐材及び製材工場での残材、住宅の解体で発生する木材等の木質系バイオマス、稲藁、麦藁、籾殻等の未利用バイオマス、サトウキビ、トウモロコシ、ユーカリ等の草本系バイオマスが挙げられる。
 リグニンとは、木化した植物体中に15~35%程度存在する芳香族高分子化合物である。本発明におけるリグニンを含有するバイオマスとはリグノセルロース系バイオマスであり、例えば、木化した植物体を起源とするバイオマスである。具体的には、スギ、ヒノキ、トウヒ、マツ、ユーカリ、ブナ、ヤナギ、タケなどの木材、麦わら、稲わら、もみ殻、サトウキビの絞りかす、テンサイ残渣、キャッサバ、ナタネ残渣、大豆残渣、トウモロコシの茎葉、アブラヤシの果実殻、タバコの残管、ネピアグラス、エリアンサスなどが挙げられる。
 本発明において、リグニンはリグノセルロース系バイオマスから分離されたものを用いるが、リグノセルロース系バイオマスそのものを用いてもよい。本発明におけるバイオマスから分離したリグニンとは、本発明の工程とは別に予めバイオマスより分離されたリグニンであり、分離方法の違いにより、硫酸リグニン、塩酸リグニン、過ヨウ素酸リグニン、ジオキサンリグニン、アルコールリグニン、チオグリコール酸リグニン、リグノスルホン酸、クラフトリグニン、ソーダリグニン、Brauns天然リグニン、摩砕リグニン、セルロース糖化残渣リグニン、水熱リグニン、水蒸気爆砕リグニンなどが挙げられる。
 リグニンは、芳香族高分子化合物であって、4−ヒドロキシフェニルプロパンを単量体とする重合体である。本発明において用いるリグニンは、アルデヒド基、アセタール構造及び/又はエノールエーテル構造を持つものが好ましい。具体的には、アルコール溶媒中、酸条件で分解したリグニンが好ましい。本発明において変性リグニンとは、リグニンを多価アルコールで変性して得られるものをいう。変性リグニンは単一の構造を有するものではなく、2種以上の変性リグニンの混合物も含む。
 本発明において用いられる多価アルコールは、水酸基が4つ以上の多価アルコールである。具体例としては4価のアルコールであるペンタエリスリトール又はジトリメチロールプロパンが挙げられる。中でもジトリメチロールプロパンが好ましい。
 本発明において用いられる酸触媒としては、ブレンステッド酸、ルイス酸が挙げられる。ブレンステッド酸としては硫酸、塩酸、硝酸、メタンスルホン酸等であり、ルイス酸としては三フッ化ホウ素、塩化亜鉛、四塩化錫、三塩化鉄、塩化アルミニウム等が挙げられる。このうち、硫酸、メタンスルホン酸、塩化アルミニウムが好ましく、本発明の変性リグニンの収率が最も高い硫酸が最も好ましい。
 本発明において用いられる酸触媒の使用量は、少なすぎると反応が進行しにくく、また多すぎると反応後の除去が困難である理由から、使用する溶媒に対し0.01質量%~5質量%であり、好ましくは0.05質量%~2質量%である。
 本発明は、リグニンを、多価アルコールと酸触媒存在下で加熱する工程を含むが、その際、炭化水素を溶媒として用いてもよい。
 本発明において用いられる炭化水素は、炭素数が6~10の炭化水素であることが好ましく、具体例としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、クロルベンゼン、ジクロルベンゼン、ガソリン、石油エーテル、石油ナフサ、石油ベンジン、ミネラルスピリット、リモネンが挙げられる。回収及び再利用にエネルギーがかからず容易な事から、沸点は150℃以下が好ましい。また、本発明により得られる低分子リグニンの溶解性が良いことから、芳香族炭化水素が好ましく、中でもトルエン、キシレンが最も好ましい。
 本発明の変性リグニンの製造方法は以下の工程を含む。
(1)リグニンを含有するバイオマス、又はバイオマスから分離したリグニンと、多価アルコールとを、炭化水素溶媒に懸濁する。
(2)酸触媒を加え、生成する水又はアルコールを系外に留去しながら加熱する。
(3)反応溶液に水を加えろ過する。
(4)溶媒を水層と分離する。
(5)溶媒を留去し変性リグニンを得る。
 リグニンを含有するバイオマス、又はバイオマスから分離したリグニンと、多価アルコールとを、炭化水素溶媒に懸濁する際の温度は、通常10~50℃であるが、諸条件に応じて適宜変更してよい。
 リグニン及び多価アルコールへの酸触媒の添加方法に制限はない。酸触媒が十分に溶解しない場合は懸濁させて反応を行っても良い。リグニン、多価アルコール又は酸触媒が十分に溶解しない場合は、炭化水素、又は、炭化水素及びアルコールの混合溶媒を用いてもよい。酸触媒は直接加えても、炭化水素もしくはアルコール、炭化水素及びアルコールの混合溶媒のいずれかに溶解し加えてもよい。炭化水素もしくはアルコール、炭化水素及びアルコールの混合溶媒のいずれかに溶解し加える場合は炭化水素及びアルコールの混合溶媒の混合比が好ましい範囲となるようにする。酸触媒を加える温度は10~50℃であるがこれにこだわらない。
 本発明の加熱工程の温度は、変性リグニンが製造できる限り特に限定されないが、40℃~150℃であることが好ましい。温度が高すぎると、バイオマス中にセルロース成分等が存在している場合、フルフラール、レボグルコセノン、及びレブリン酸などの不純物が増加し、温度が低すぎると、変性反応が十分に進行しないため、好ましくは50℃~100℃で加熱する。
 加熱方法に特段の限定はない。反応液の容量等に応じて適宜選択できる。例えば反応液の入った容器をウォーターバス、オイルバス等の公知の加熱装置で加熱するほか、マイクロ波の照射により加熱してもよい。
 加熱時間は、変性リグニンが製造できる限り特に限定されないが、加熱時間は短すぎると変成が十分に進行しないので、5分~360分であり、10分~120分がより好ましく、30分~90分がさらに好ましい。
 加熱後、反応溶液を室温まで冷却し、通常行われる濾過・溶媒除去を行い、変性リグニンを精製する。精製手法に特段の限定はない。なお、濾過の際、酸触媒を取り除くために水を加える。水を加えて濾過する温度は10℃~50℃である。50℃より温度が高いと得られた変性リグニンが分解する。
 水層と分離する温度は10℃~50℃である。酸触媒の除去が十分でない場合はさらに水を加え洗浄する。必要に応じて水層から有機溶媒を用いて抽出しても良い。
 溶媒を溜去する場合は、使用する溶媒の沸点より高い温度で蒸発させ溜去する。高温にすると、リグニンの高分子化が進むので減圧下で行うのがよい。
 本発明の変性法では変性リグニンである誘導体を得ることができる。なお、得られる誘導体は1種又は種々の化合物の混合物であるが、個々の構造を全て解析することは困難である。代表的な誘導体として下記一般式[V]で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000009
 一般式[V]中、RからRは、同一又は異なっていてもよく、水素原子又はメトキシ基を示す。n及びnは炭素数であって、0~2(整数)であり、nとnの炭素数は異なってもよい。Xは4価のリンカーを示す。
 4価のリンカーとは、本発明において用いられる多価アルコール由来の構造である。例えば、多価アルコールが4価のアルコールであるペンタエリスリトールの場合は式[II]の構造であり、4価のアルコールであるジトリメチロールプロパンであれば式[III]の構造である。
Figure JPOXMLDOC01-appb-I000010
 本発明の分解方法により得られた変性リグニンはフェノール性水酸基を有するため、エポキシ樹脂と混合して熱硬化性の樹脂組成物として利用することができる。なお、該熱硬化性の樹脂組成物に用いられるエポキシ樹脂は、本発明の分解方法により得られた変性リグニンを通常の方法でエポキシ化したもの、又は、他のエポキシ樹脂のいずれでもよい。
 本発明のビスフェノール化合物は4−ヒドロキシフェニルアセトアルデヒド誘導体に多価アルコールを触媒の存在下反応させて得られる。
 本発明において用いられる4−ヒドロキシフェニルアセトアルデヒド誘導体としては、例えば2−(4−ヒドロキシフェニル)アセトアルデヒド(式(1))、ホモバニリン(式(2))、ホモシリンガアルデヒド(式(3))、2−(4−ヒドロキシフェニル)アセトアルデヒドジメチルアセタール(式(4))、ホモバニリルアルデヒドジメチルアセタール(式(5))、ホモシリンガアルデヒドジメチルアセタール(式(6))、4−(2−メトキシビニル)フェノール(式(7))、2−メトキシ−4−(2−メトキシビニル)フェノール(式(8))、2,6−ジメトキシ−4−(2−メトキシビニル)フェノール(式(9))4−ヒドロキシフェニルアセトアルデヒド等が挙げられる。
Figure JPOXMLDOC01-appb-I000011
 本発明において用いられる多価アルコールとは、水酸基数が4以上の多価アルコールであり、具体例には、ペンタエリスリトール又はジトリメチロールプロパンが挙げられる。中でも溶解性が良いジトリメチロールプロパンが好ましい。
 4価のリンカーとは、本発明において用いられる多価アルコール由来の構造である。例えば、多価アルコールが4価のアルコールであるペンタエリスリトールの場合は前記式[II]の構造であり、4価のアルコールであるジトリメチロールプロパンであれば前記式[III]の構造である。
 本発明のビスフェノール化合物は、触媒存在下で、4−ヒドロキシフェニルアセトアルデヒド誘導体と多価アルコールとの縮合反応によって得られる。4−ヒドロキシフェニルアセトアルデヒド誘導体の使用量は、多価アルコール1モルに対して通常0.25~5.0モルであり、好ましくは0.03~2.5モルである。4−ヒドロキシフェニルアセトアルデヒド誘導体の使用量が、多価アルコールで表される化合物1モルに対して0.03モルより少ないと、4−ヒドロキシフェニルアセトアルデヒド誘導体の残存量が多くなり、耐熱性が低くなるため好ましくなく、5.0モルより多いとゲル化の恐れがあるため好ましくない。
 本発明において用いることができる酸触媒としては、トルエンスルホン酸、キシレンスルホン酸、シュウ酸等の有機酸触媒、塩酸、硫酸等の無機酸触媒、リンタングステン酸のほかに、ケイタングステン酸、リンモリブデン酸、リンモリブデン酸ナトリウム、リンタングストモリブデン酸、リンバナドモリブデン酸等のヘテロポリ酸が好ましく挙げられるがこれらに限定されるものではない。また、これらの触媒は単独で使用してもよく、複数の種類を併用してもよい。用いる触媒の使用量は、多価アルコール1モルに対して通常0.001~15モルであり、好ましくは0.002~10モルである。
 本発明のビスフェノール化合物を得る反応では、必要に応じて溶剤を使用することができる。用い得る溶剤としては、4−ヒドロキシフェニルアセトアルデヒド誘導体との反応性を有するものでなければ特に制限されないが、多価アルコールで表される化合物を容易に溶解させる点ではアルコール類、非プロトン性極性溶媒、芳香族炭化水素類を溶剤として用いるのが好ましい。
 用いることができる溶剤の具体例としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、メチルエチルケトン、メチルイソブチルケトン等の非プロトン性極性溶媒、トルエン、キシレン等の芳香族炭化水素などが好ましく挙げられるが、これらに限定されない。溶剤はそれだけでもよいし、2種類以上混合してもよい。
 溶剤を使用する場合の使用量は特に制限されないが、例えば、一般式[I]で表される化合物1質量部に対して100~500質量部使用することができる。
 反応温度は、通常10~150℃であり、好ましくは30~130℃であり、特に好ましくは50℃~120℃である。反応時間は、通常0.5~20時間であるが、原料化合物の種類によって反応性に差があるため、この限りではない。
 反応終了後、公知の手法にて触媒のクエンチを行う。酸性触媒を用いた場合、塩基で中和してもよいし、水で洗浄してもよい。塩基性化合物としては特に限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、トリポリリン酸五ナトリウム、アンモニア等、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が好ましく挙げられる。この際、塩基を均一に分散させるために、水溶液として徐々に滴下することが好ましい。
 反応終了後、本発明のビスフェノール化合物を取り出す場合には、反応物を水洗後又は水洗無しに、加熱減圧下で反応液から未反応物及び溶媒等を除去する。未反応物を効率的に除去するために、水蒸気蒸留又は塩基性条件下において水洗を行ってもよい。結晶で取り出す場合、大量の水中に反応液を滴下することにより結晶を析出させる。
 本発明の分解方法により得られた変性リグニンのエポキシ樹脂(A)は、上記手法によって得られた変性リグニンを溶剤中において、エピハロヒドリンと反応させ、エポキシ化することにより得られる。本発明の分解方法により得られた変性リグニンが種々の化合物の混合物である場合、得られる本発明のエポキシ樹脂(A)も種々の化合物の混合物となる。
 本発明のエポキシ樹脂(B)は、上記手法によって得られた本発明のビスフェノール化合物を溶剤中において、エピハロヒドリンと反応させ、エポキシ化することにより得られる。
 本発明のエポキシ樹脂を得る反応において用いるエピハロヒドリンとしては、エピクロルヒドリン、α−メチルエピクロルヒドリン、β−メチルエピクロルヒドリン、エピブロモヒドリン等が好ましく挙げられ、特に、工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は、本発明のビスフェノール化合物の水酸基1モルに対し通常2~100モルであり、経済性を考慮すると好ましくは2~8モルである。通常エポキシ樹脂は、アルカリ金属酸化物の存在下でビスフェノール化合物とエピハロヒドリンとを付加させ、次いで生成した1,2−ハロヒドリンエーテル基を開環させてエポキシ化する反応により得られる。
 エポキシ化反応に使用できるアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が好ましく挙げられ、これらは固形物をそのまま使用しても、あるいはその水溶液を使用してもよい。水溶液を使用する場合は、該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に、減圧下又は常圧下で連続的に留出させた水及びエピハロヒドリンの混合液から分液により水を除去し、エピハロヒドリンのみを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量は、本発明のビスフェノール化合物等の水酸基1モルに対して通常0.9~3.0モルであり、好ましくは1.0~2.5モルであり、より好ましくは1.0~2.0モルであり、特に好ましくは1.0~1.3モルである。また、エポキシ化反応において、特にフレーク状の水酸化ナトリウムを用いることで、水溶液とした水酸化ナトリウムを使用するよりも得られるエポキシ樹脂に含まれるハロゲン量を顕著に低減させることが可能となる。更にこのフレーク状の水酸化ナトリウムは、反応系内に分割添加されることが好ましい。分割添加を行なうことで、反応温度の急激な減少を防ぐことができ、これにより不純物である1,3−ハロヒドリン体やハロメチレン体の生成を防止することができる。
 エポキシ化反応を促進するために、触媒を用いることができる。用いることができる触媒としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、テトラエチルアンモニウムクロライド等の4級アンモニウム塩が好ましく挙げることができる。4級アンモニウム塩の使用量としては、本発明のフェノール樹脂の水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。
 反応温度は、通常30~90℃であり、好ましくは35~80℃である。反応時間は、通常0.5~10時間であり、好ましくは1~8時間である。反応終了後、反応物を水洗後、又は水洗無しに加熱減圧下で反応液からエピハロヒドリンや溶媒等を除去する。また得られたエポキシ樹脂中に含まれるハロゲン量をさらに低減させるために、回収した本発明のエポキシ樹脂を、トルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行ない、閉環を確実なものにすることも出来る。この場合、アルカリ金属水酸化物の使用量は、本発明のビスフェノール化合物の水酸基1モルに対して通常0.01~0.3モルであり、好ましくは0.05~0.2モルである。反応温度は通常50~120℃、反応時間は通常0.5~2時間である。
 反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下で溶剤を留去することにより本発明のエポキシ樹脂が得られる。また、本発明のエポキシ樹脂が結晶として析出する場合は、大量の水に生成した塩を溶解した後に、本発明のエポキシ樹脂の結晶を濾取してもよい。
 本発明のエポキシ樹脂(A)は、前記変性リグニンに含まれるヒドロキシ基がグリシジル化された構造を有する。
 本発明のエポキシ樹脂(B)は、下記一般式[IV]で表されるものを含む。
Figure JPOXMLDOC01-appb-I000012
(一般式[IV]中、R及びRはメトキシ基を示す。aはR及びRの置換数であって、0~3(整数)であり、R及びRの置換数は異なってもよい。b及びcはOGの置換数であって、1~3(整数)であり、b及びcは異なってもよい。Gはグリシジル基を示す。Xは4価のリンカーを示す。)
 以下、本発明のエポキシ樹脂組成物について記載する。本発明のエポキシ樹脂組成物は、本発明の変性リグニンの製造法で得られた変性リグニン、本発明のエポキシ樹脂及び本発明のビスフェノール化合物の少なくともどちらか1つを必須成分として含有する。
 本発明のエポキシ樹脂組成物において、本発明のビスフェノール化合物は1種以上のエポキシ樹脂(本発明のエポキシ樹脂及び他のエポキシ樹脂)と併用して使用することができる。また、本発明のエポキシ樹脂は単独で又は他のエポキシ樹脂と併用して本発明のエポキシ樹脂組成物において使用することが出来る。
 本発明において用いられる他のエポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、等シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、及び/又はエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形又は液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
 本発明のエポキシ樹脂組成物は硬化剤を含有することもできる。硬化剤は単独又は複数を使用できる。用いることができる硬化剤としては、例えばフェノール樹脂、フェノール系化合物、アミン系化合物、酸無水物系化合物、アミド系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としてはフェノール樹脂、フェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類、及び本発明のビスフェノール化合物が挙げられるが、本発明ではこれらに限定するものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 好ましいフェノール樹脂としては、フェノールアラルキル樹脂(芳香族アルキレン構造を有する樹脂)が挙げられ、特に好ましくはフェノール、ナフトール、クレゾールから選ばれる少なくとも一種を有する構造であり、そのリンカーとなるアルキレン部が、ベンゼン構造、ビフェニル構造、ナフタレン構造から選ばれる少なくとも一種であることを特徴とする樹脂(具体的にはザイロック、ナフトールザイロック、フェノールビフェニレンノボラック樹脂、クレゾール−ビフェニレンノボラック樹脂、フェノール−ナフタレンノボラック樹脂などが挙げられる。)である。
 アミン系化合物、アミド系化合物としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物などが挙げられる。
 酸無水物系化合物、カルボン酸系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーンと、前述の酸無水物との付加反応により得られるカルボン酸樹脂などが挙げられる。
 また、その他、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体の化合物なども挙げられる。
 本発明では硬化剤をこれらに限定するものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明のエポキシ樹脂組成物において硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 本発明のエポキシ樹脂組成物においては、硬化剤とともに硬化促進剤を併用しても差し支えない。硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩などの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩が挙げられる(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100質量部に対して0.01~5.0質量部が好ましい。
 本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類又はリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)又はリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量は、リン含有化合物/全エポキシ樹脂=0.1~0.6(質量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明のエポキシ樹脂組成物には、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明の硬化性樹脂組成物中の樹脂成分に対して100質量部に対して、通常0.008~1質量部、好ましくは0.01~0.5質量部である。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。
 フェノール系酸化防止剤の具体例として、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、等のモノフェノール類;2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。
 イオウ系酸化防止剤の具体例として、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリルル−3,3’−チオジプロピオネート等が例示される。
 リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。
 これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。
 さらに本発明のエポキシ樹脂組成物には、必要に応じて光安定剤を添加しても構わない。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ〔{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
 さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としては、ブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100質量部に対して、通常0.05~50質量部、好ましくは0.05~20質量部が必要に応じて用いられる。
 本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体又はこれらを球形化したビーズ等が好ましく挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の樹脂組成物において0~95質量%を占める量が用いられる。更に本発明の樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
 本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。
 本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、本発明のビスフェノール化合物、エポキシ樹脂、並びに必要により硬化剤、硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤を必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して樹脂組成物を得、その樹脂組成物をポッティング、溶融後(液状の場合は溶融無しに)注型あるいはトランスファー成型機などを用いて成型し、さらに80~200℃で2~10時間加熱することにより本発明の硬化物を得ることができる。
 また、本発明のエポキシ樹脂組成物を、必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70質量%、好ましくは15~70質量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
 以下、本発明を実施例で更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。合成例、実施例、比較例において部は質量部を意味する。
 なお、エポキシ当量は以下の条件で測定した。
 ・エポキシ当量
 JIS K−7236に記載された方法で測定し、単位はg/eq.である。
 ・DSC
 示唆走査熱量分析器:TA−instruments製DSC Q−2000
合成例1
 窒素パージを施したフラスコに、(メトキシメチル)トリフェニルホスホニウムクロリド(8.44g)を量りとり、THF(53mL)を加えた。反応溶液を氷浴で冷却し、カリウムtert−ブトキシド(4.6g)を加えた。10分間撹拌した後、THFに溶解させたシリンガアルデヒド(3.0g)を滴下して加えた。反応温度を室温に戻し、30分間撹拌した後に塩化アンモニウム水溶液を加えた。水層を酢酸エチルで三回抽出した後に、有機層を塩水で洗浄し、硫酸マグネシウムで脱水した。ろ過で硫酸マグネシウムを取り除いた後、溶媒をエバポレーターで留去した。組成生物をカラムクロマトグラフィー(シリカゲル/ヘキサン−酢酸エチル)で精製した。温度計、攪拌機、冷却管、及びディーン・スターク装置を付したフラスコに、生成物(2.8g)、メタノールに溶解させたジトリメチロールプロパン(1.68g)、p−トルエンスルホン酸(20mg)、トルエン(75mL)を仕込み、70℃で1.5時間、窒素をバブリングしながら反応を行った。この間に生成したメタノールは系外へ留去した。反応終了後、系内の温度を室温に下げ、水を加えた。次いで、水層を酢酸エチルで三回抽出し、合わせた有機層を硫酸マグネシウムで脱水した。硫酸マグネシウムをろ過で取り除き、溶媒を減圧下、留去して、組成生物を得た。組成生物をカラムクロマトグラフィー(シリカゲル/ヘキサン−酢酸エチル)で精製し、式(III)の架橋構造を有するビスフェノール化合物(2.7g)を得た。
実施例1
 木粉(ユーカリ、1.5φ)をマイクロ波反応容器に10g量りとり、トルエン(一級、純正化学株式会社)を120mL加えた。メタノールで100倍に希釈した硫酸(特級、純正化学株式会社)を13mL、メタノール(一級、純正化学株式会社)を17mL加えた。反応容器に蓋を取り付け、マイクロ波合成装置にセットした。マイクロ波を照射し、反応温度140℃で20分間加熱した。反応溶液の温度が室温まで下がった後に、水(75mL)を加え、桐山漏斗でろ過を行った。水層をトルエンで1回抽出し、有機層を塩水で洗浄し、ホモシリンガアルデヒドジメチルアセタール、ホモバニリルアルデヒドジメチルアセタールを含むリグニン溶液を得た。
実施例2
 実施例1で得られたリグニン溶液を温度計、攪拌機、冷却管、及びディーン・スターク装置を付したフラスコに移し、メタノールに溶解させたジトリメチロールプロパン(202mg)、p−トルエンスルホン酸(10mg)を仕込み、50℃で2時間、窒素をバブリングしながら反応を行った。この間に生成したメタノールは系外へ留去した。反応終了後、系内の温度を室温に下げ、水(75mL)を加えた。次いで、水層を酢酸エチルで三回抽出し、合わせた有機層を硫酸マグネシウムで脱水した。硫酸マグネシウムをろ過で取り除き、溶媒を減圧下、留去して、茶色粘性個体として本発明の変性リグニン(913mg、9wt%)を得た。
 得られた変性リグニンのHMQC NMRを図1に示す。多価アルコールでの架橋構造を確認するために、標品である合成例1のHMQC NMRを図2に示す。図1と図2との比較から、得られた変性リグニン中に合成例1の化合物と同一の式(III)の架橋構造を有する変性リグニンが含まれていることがわかる。
実施例3
 攪拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら実施例2で得られた変性リグニン(0.9g)、エピクロロヒドリン(17.7g)、テトラエチルアンモニウムクロリド(14mg)、水(44mg)を加えて、90℃にまで昇温した。次いで30%水酸化ナトリウム水溶液(334mg)を添加した後、さらに60℃で30分間、75℃で30分間、90℃で30分間反応を行った。反応終了後水洗いを行い、有機層の溶媒を留去した。残留物にメチルイソブチルケトン(21mL)を加え溶解し、75℃にまで昇温した。撹拌下で30%水酸化ナトリウム水溶液(15mg)を加え、2時間反応を行った後、有機層を水洗いし、得られた有機層からロータリーエバポレーターを用いて、メチルイソブチルケトン等の溶媒を留去することで、本発明のエポキシ樹脂(A)(0.81g、90wt%)を得た。得られたエポキシ樹脂(A)のエポキシ当量は387g/eq.であった。
実施例4
 木粉をユーカリの代わりにスギを用いた以外は実施例1及び2と同様の操作を行い、本発明の変性リグニンを粘性茶色個体として6wt%の収率で得た。HMQC NMRにて実施例2と同一の式(III)の架橋構造を有する変性リグニンであることを確認した。
実施例5
 実施例4で得られた変性リグニン(0.9g)を用いたほかは実施例3と同様にして本発明のエポキシ樹脂(A)(70wt%)を得た。得られたエポキシ樹脂(A)のエポキシ当量は396g/eq.であった。
実施例6
 実施例3、5で得られた本発明のエポキシ樹脂(A)とフェノールノボラック樹脂(明和化成株式会社製H−1、水酸基当量103g/eq.)とを、エポキシ基と水酸基とが当量比で1対1となるよう混合し、メチルエチルケトンに溶解させた。1wt%のトリフェニルホスフィンを加えた後に、溶媒を110℃、10分間乾燥させ、示唆走査熱量計により硬化物のガラス転移温度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 以上より、本発明の変成リグニンの製造方法により得られる変性リグニンが樹脂原料として有用であることが示された他、本発明のエポキシ樹脂(A)もフェノールノボラックにより硬化することから、化学工業製品の原料として有用であることが明らかである。
実施例7
 窒素パージを施したフラスコに、(メトキシメチル)トリフェニルホスホニウムクロリド(8.44g)を量りとり、THF(53mL)を加えた。反応溶液を氷浴で冷却し、カリウムtert—ブトキシド(4.6g)を加えた。10分間撹拌した後、THFに溶解させたシリンガアルデヒド(東京化成工業株式会社製、3.0g)を滴下して加えた。反応温度を室温に戻し、30分間撹拌した後に塩化アンモニウム水溶液を加えた。水層を酢酸エチルで三回抽出した後に、有機層を塩水で洗浄し、硫酸マグネシウムで脱水した。ろ過で硫酸マグネシウムを取り除いた後、溶媒をエバポレーターで留去した。組成生物をカラムクロマトグラフィー(シリカゲル/ヘキサン−酢酸エチル)で精製した。温度計、攪拌機、冷却管及びディーン・スターク装置を付したフラスコに、生成物(2.8g)、メタノールに溶解させたジトリメチロールプロパン(1.68g)、p−トルエンスルホン酸(20mg)、トルエン(75mL)を仕込み、70℃で1.5時間、窒素をバブリングしながら反応を行った。この間に生成したメタノールは系外へ留去した。反応終了後、系内の温度を室温に下げ、水を加えた。次いで、水層を酢酸エチルで三回抽出し、合わせた有機層を硫酸マグネシウムで脱水した。硫酸マグネシウムをろ過で取り除き、溶媒を減圧下、留去して、組成生物を得た。組成生物をカラムクロマトグラフィー(シリカゲル/ヘキサン−酢酸エチル)で精製し、目的のビスフェノール化合物(2.7g)を得た。
 攪拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら実施例1で得られたビスフェノール化合物(2.7g)、エピクロロヒドリン(70.2g)、テトラエチルアンモニウムクロリド(10mg)、水(175mg)を加えて、90℃にまで昇温した。次いで30%水酸化ナトリウム水溶液(1.32g)を添加した後、さらに60℃で30分間、75℃で30分間、90℃で30分間反応を行った。反応終了後水洗いを行い、有機層の溶媒を留去した。残留物にメチルイソブチルケトン(50mL)を加え溶解し、75℃にまで昇温した。撹拌下で30%水酸化ナトリウム水溶液(60mg)を加え、2時間反応を行った。その後、有機層を水洗いし、得られた有機層からロータリーエバポレーターを用いて、メチルイソブチルケトン等の溶媒を留去することで本発明のエポキシ樹脂(B)(2.8g)を得た。得られたエポキシ樹脂(B)のエポキシ当量は372g/eqであった。
実施例8~9
 シリンガアルデヒドを表2のように代えた以外は、実施例7と同様の操作を行った。
 実施例7~9で得られたエポキシ樹脂(B)とフェノールノボラック樹脂(明和化成株式会社製H−1、水酸基当量103g/eq.)とを1対1の比率で混合し、メチルエチルケトンに溶解させた。1wt%のトリフェニルホスフィンを加えた後に、溶媒を110℃、10分間で乾燥させ、示唆走査熱量計により硬化物のガラス転移温度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-I000015
 以上より、本発明のビスフェノール化合物が樹脂原料として有用であることが示された他、本発明のエポキシ樹脂(B)もフェノールノボラックにより硬化することから、化学工業製品の原料として有用であることが明らかである。

Claims (14)

  1.  リグニンを、多価アルコールと酸触媒存在下で加熱する工程を含む、変成リグニンの製造方法。
  2.  多価アルコールが、ペンタエリスリトール又はジトリメチロールプロパンである、請求項1に記載の変成リグニンの製造方法。
  3.  リグニンが、アルデヒド基、アセタール構造又はエノールエーテル構造を含む、請求項1に記載の変成リグニンの製造方法。
  4.  請求項1に記載の製造方法より得られる変成リグニンと、エポキシ樹脂とを含むエポキシ樹脂組成物。
  5.  請求項1に記載の製造方法より得られる変成リグニンと、エピハロヒドリンとを反応させて得られるエポキシ樹脂(A)。
  6.  一般式[I]で表されるビスフェノール化合物。
    Figure JPOXMLDOC01-appb-I000001
    (一般式[I]中、R及びRはメトキシ基を示す。aはR及びRの置換数であって、0~3(整数)であり、R及びRの置換数は異なってもよい。b及びcは水酸基の置換数であって、1~3(整数)であり、b及びcは異なってもよい。Xは4価のリンカーを示す。)
  7.  一般式[I]において、ヒドロキシ基がフェニル基の4位にあり、R及びRがフェニル基の3,5位にある、請求項6に記載のビスフェノール化合物。
  8.  一般式[I]中、Xは式[II]
    Figure JPOXMLDOC01-appb-I000002
    又は式[III]
    Figure JPOXMLDOC01-appb-I000003
    で表される、請求項6に記載のビスフェノール化合物。
  9.  請求項6~8のいずれか1項に記載のビスフェノール化合物と、エピハロヒドリンとを反応させることにより得られるエポキシ樹脂(B)。
  10.  一般式[IV]で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000004
    (一般式[IV]中、R及びRはメトキシ基を示す。aはR及びRの置換数であって、0~3(整数)であり、R及びRの置換数は異なってもよい。b及びcはOGの置換数であって、1~3(整数)であり、b及びcは異なってもよい。Xは4価のリンカーを示す。Gはグリシジル基を示す。)
  11.  エポキシ樹脂と、請求項6~8のいずれか1項に記載のビスフェノール化合物とを含有するエポキシ樹脂組成物。
  12.  さらに硬化剤を含有する請求項11に記載のエポキシ樹脂組成物。
  13.  エポキシ樹脂が請求項9に記載のエポキシ樹脂(B)である、請求項11に記載のエポキシ樹脂組成物。
  14.  請求項11~13のいずれか1項に記載のエポキシ樹脂組成物を硬化して得られる硬化物。
PCT/IB2016/000867 2015-06-24 2016-06-22 変性リグニン、エボクシ樹脂、及びその製造方法 WO2016207711A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015126307A JP6529164B2 (ja) 2015-06-24 2015-06-24 エポキシ樹脂、およびその組成物
JP2015126306A JP6598354B2 (ja) 2015-06-24 2015-06-24 変性リグニン、エポキシ樹脂、およびその製造方法
JP2015-126307 2015-06-24
JP2015-126306 2015-06-24

Publications (2)

Publication Number Publication Date
WO2016207711A1 true WO2016207711A1 (ja) 2016-12-29
WO2016207711A8 WO2016207711A8 (ja) 2017-02-23

Family

ID=57584824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/000867 WO2016207711A1 (ja) 2015-06-24 2016-06-22 変性リグニン、エボクシ樹脂、及びその製造方法

Country Status (1)

Country Link
WO (1) WO2016207711A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220024959A1 (en) * 2018-11-29 2022-01-27 Fundacion Tecnalia Research & Innovation Lignin-based polyols
CN115155539A (zh) * 2022-06-20 2022-10-11 华南理工大学 一种磁性木质素酚醛纳米球吸附剂及其制备与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136454A (en) * 1974-09-19 1976-03-27 Adeka Argus Chemical Co Ltd Anteikajukizairyososeibutsu
JPS59148776A (ja) * 1983-02-14 1984-08-25 Mitsubishi Gas Chem Co Inc 多価アルコ−ルの製造方法
JPS60184075A (ja) * 1984-03-01 1985-09-19 Mitsui Petrochem Ind Ltd 新規多環状アセタ−ル化合物,その製造方法およびそれを用いたエポキシ樹脂硬化剤
JP2007126447A (ja) * 2005-10-04 2007-05-24 Mitsubishi Gas Chem Co Inc ジオキサングリコールの製造方法
JP2011184230A (ja) * 2010-03-08 2011-09-22 Forestry & Forest Products Research Institute リグニン系コンクリート混和剤
JP2012236811A (ja) * 2011-05-09 2012-12-06 Kono Shinsozai Kaihatsu Kk 精製リグニン及びエポキシ樹脂
JP2015048361A (ja) * 2013-08-30 2015-03-16 住友ベークライト株式会社 リグニン樹脂組成物、樹脂成形体、プリプレグおよび成形材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136454A (en) * 1974-09-19 1976-03-27 Adeka Argus Chemical Co Ltd Anteikajukizairyososeibutsu
JPS59148776A (ja) * 1983-02-14 1984-08-25 Mitsubishi Gas Chem Co Inc 多価アルコ−ルの製造方法
JPS60184075A (ja) * 1984-03-01 1985-09-19 Mitsui Petrochem Ind Ltd 新規多環状アセタ−ル化合物,その製造方法およびそれを用いたエポキシ樹脂硬化剤
JP2007126447A (ja) * 2005-10-04 2007-05-24 Mitsubishi Gas Chem Co Inc ジオキサングリコールの製造方法
JP2011184230A (ja) * 2010-03-08 2011-09-22 Forestry & Forest Products Research Institute リグニン系コンクリート混和剤
JP2012236811A (ja) * 2011-05-09 2012-12-06 Kono Shinsozai Kaihatsu Kk 精製リグニン及びエポキシ樹脂
JP2015048361A (ja) * 2013-08-30 2015-03-16 住友ベークライト株式会社 リグニン樹脂組成物、樹脂成形体、プリプレグおよび成形材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220024959A1 (en) * 2018-11-29 2022-01-27 Fundacion Tecnalia Research & Innovation Lignin-based polyols
CN115155539A (zh) * 2022-06-20 2022-10-11 华南理工大学 一种磁性木质素酚醛纳米球吸附剂及其制备与应用
CN115155539B (zh) * 2022-06-20 2023-08-22 华南理工大学 一种磁性木质素酚醛纳米球吸附剂及其制备与应用

Also Published As

Publication number Publication date
WO2016207711A8 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5262389B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5682928B2 (ja) フェノール樹脂、エポキシ樹脂及びその硬化物
JP4247658B2 (ja) 新規エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP6091295B2 (ja) エポキシ樹脂組成物及びその硬化物
JP6587284B2 (ja) 変性リグニン、エポキシ樹脂、およびその製造方法
TWI648317B (zh) Phenolic resin, phenol resin mixture, epoxy resin, epoxy resin composition and hardened materials thereof
WO2016207711A1 (ja) 変性リグニン、エボクシ樹脂、及びその製造方法
JP2008195843A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP6618115B2 (ja) エポキシ樹脂、およびその組成物
JP6120363B2 (ja) エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP6660070B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2016089072A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびそれらの硬化物
JP6598354B2 (ja) 変性リグニン、エポキシ樹脂、およびその製造方法
TWI642701B (zh) 酚樹脂、環氧樹脂、環氧樹脂組成物及該等之硬化物
TWI642699B (zh) Method for producing phenol resin, phenol resin, epoxy resin and epoxy resin composition
KR101882720B1 (ko) 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물
JP6041663B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2018178023A (ja) リグニン由来のエポキシ樹脂の製造方法、リグニン由来のエポキシ樹脂、エポキシ樹脂組成物及びその硬化物
KR20160068728A (ko) 페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 프리프레그 및 그것들의 경화물
JP2018178024A (ja) リグニン由来のエポキシ樹脂の製造方法、リグニン由来のエポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP6529164B2 (ja) エポキシ樹脂、およびその組成物
KR102250971B1 (ko) 에폭시 수지 혼합물, 에폭시 수지 조성물, 그 경화물, 및 반도체 장치
KR102291469B1 (ko) 신규한 퓨란계 화합물, 신규한 에폭시 화합물 및 이들을 제조하는 방법
JP2011148855A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2014141688A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813796

Country of ref document: EP

Kind code of ref document: A1