WO2016206430A1 - 固态电解质及其制备方法和含有其的锂离子电池 - Google Patents

固态电解质及其制备方法和含有其的锂离子电池 Download PDF

Info

Publication number
WO2016206430A1
WO2016206430A1 PCT/CN2016/077692 CN2016077692W WO2016206430A1 WO 2016206430 A1 WO2016206430 A1 WO 2016206430A1 CN 2016077692 W CN2016077692 W CN 2016077692W WO 2016206430 A1 WO2016206430 A1 WO 2016206430A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
core
lithium
core material
outer shell
Prior art date
Application number
PCT/CN2016/077692
Other languages
English (en)
French (fr)
Inventor
易观贵
马永军
郭姿珠
王向慧
谢静
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP16813546.5A priority Critical patent/EP3316379A4/en
Publication of WO2016206430A1 publication Critical patent/WO2016206430A1/zh
Priority to US15/852,336 priority patent/US20180123167A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure belongs to the field of lithium ion batteries, and more particularly to a solid electrolyte and a preparation method thereof, and a lithium ion battery using the solid electrolyte.
  • Lithium-ion batteries are widely used in consumer electronics and electric vehicles due to their high energy efficiency, good recharge performance, and low loss. Therefore, the research on lithium ion solid electrolyte has always been one of the hot issues in the research field of lithium ion battery materials.
  • the current electrochemical window of lithium ion solid electrolyte is narrow, and there is a possibility of short circuit of the battery, and the safety performance is low, which greatly limits its practical application in the solid state lithium battery. Therefore, solid electrolytes and their application to lithium ion batteries are yet to be further improved.
  • the present disclosure provides a solid electrolyte comprising a core material and an outer shell material coated on the outer core material; the core material having the following chemical formula: Li 1+x M x Ti 2-x (PO 4 ) 3 Wherein M is at least one selected from the group consisting of Al, La, Cr, Ga, Y or In, 0.05 ⁇ x ⁇ 0.4; the ionic conductivity of the outer shell material is 10 -6 S/cm or more; The electrochemical window is greater than 5 volts.
  • the present disclosure also provides a method of preparing the above solid electrolyte, comprising:
  • the element Li:B:P:F is 0.15-0.165:0.95 in terms of elemental molar content :(1-y): (3y), where 0.01 ⁇ y ⁇ 0.5;
  • the precursor material is subjected to a first calcination, and after cooling, the solid electrolyte is obtained, the solid electrolyte comprising a core material and an outer shell material coated on a surface of the inner core material.
  • the present disclosure also provides a lithium ion battery comprising a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode; the solid electrolyte being a solid electrolyte as described above.
  • the inventors of the present disclosure have found through extensive experiments that although the NASICON structure of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) has a room temperature ionic conductivity conductivity of 10 -4 S/cm, it is currently commercially available.
  • the conductivity of the electrolyte is relatively close.
  • titanium ions when LATP is contacted with a low potential anode material, Ti 4+ is reduced to Ti 3+ , which produces electron conductance, resulting in a narrow electrochemical window.
  • the ion doping of LATP in the prior art although the room temperature ionic conductivity of LATP is improved to some extent, does not improve the problem that such materials are reduced at a low potential. If the above materials are used as a solid electrolyte of a lithium ion battery, it is difficult to avoid a short circuit of the battery due to the generation of electronic conductance.
  • the solid electrolyte provided by the present disclosure has a dense outer shell material (for example, Li 0.15 B 0.95 (PO 4 ) 1-y F 3y ) on the surface of the core material Li 1+x M x Ti 2-x (PO 4 ) 3 . .
  • the outer shell material is capable of full surface contact with the core material and has a wide electrochemical window (electrochemical window > 5V) with low electronic conductivity, forming a complete dense electronic shield on the surface of the core material, allowing the exterior The electrons are shielded from the outer shell material and cannot be in contact with the core material, effectively preventing the redox reaction of the core material.
  • the shell material also has high ionic conductivity and does not affect the conduction of lithium ions.
  • the above solid electrolyte will have a wide electrochemical window (electrochemical window > 5V).
  • the solid electrolyte provided by the present disclosure includes a core material and a shell material coated on the outside of the core material; the core material has the following chemical formula: Li 1+x M x Ti 2-x (PO 4 ) 3 , wherein M is selected From at least one of Al, La, Cr, Ga, Y or In, 0.05 ⁇ x ⁇ 0.4; the ionic conductivity of the outer shell material is 10 -6 S/cm or more; a wide electrochemical window (electrochemical window) >5V).
  • the core material is a Li 1+x M x Ti 2-x (PO 4 ) 3 material of a conventional NASICON structure.
  • M is at least one selected from the group consisting of Al, La, Cr, Ga, Y or In, and 0.05 ⁇ x ⁇ 0.4.
  • the core material meeting the above conditions may be various known materials.
  • the core material is selected from the group consisting of Li 1.1 Y 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.3 Y 0.3 Ti 1.7 (PO 4 ) 3 Li 1.4 Y 0.4 Ti 1.6 (PO 4 ) 3 , Li 1.1 Al 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.05 La 0.05 Ti 1.95 (PO 4 ) 3 , Li 1.1 Cr 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.1 Ga 0.1 Ti 1.9 (PO 4 ) 3 or Li 1.1 In 0.1 Ti 1.9 (PO 4 ) 3 .
  • the above-mentioned core materials have high electrical conductivity and are chemically stable and do not react with air and moisture.
  • the average particle diameter may vary within a wide range.
  • the core material has an average particle diameter of 0.5 to 10 ⁇ m.
  • the outer casing material is coated on the surface of the above-mentioned core material, and the electronic conductivity of the outer casing material is less than 10 -10 S/cm, thereby ensuring that a completely dense electronic shielding layer can be formed on the surface of the core material to make the outer portion
  • the electrons are shielded by the outer shell material from contact with the core material, thereby avoiding the occurrence of redox reactions of the core material, making the electrochemical window of the solid electrolyte higher (greater than 5V).
  • an electrochemical window refers to a section where there is no electrochemical reaction on the electrochemical cyclic voltammetry curve, i.e., only in a charged state within this potential range, and no electrochemical reaction occurs.
  • the electrochemical window can be measured by a conventional electrochemical workstation.
  • the ionic conductivity of the outer shell material is 10 -6 S/cm or more, for example, 10 -6 to 10 -5 S/cm.
  • the outer shell material in order to further improve the ability of the outer shell material to reduce the intergranular resistance of the inner core material, optionally, the outer shell material has the following chemical formula: Li 0.15 B 0.95 (PO 4 ) 1-y F 3y , wherein 0.01 ⁇ y ⁇ 0.5.
  • the outer shell material satisfying the above conditions may be selected from the group consisting of Li 0.15 B 0.95 (PO 4 ) 0.99 F 0.03 , Li 0.15 B 0.95 (PO 4 ) 0.95 F 0.15 , Li 0.15 B 0.95 (PO 4 ) 0.9 F 0.3 , Li 0.15 B 0.95 (PO 4 ) 0.8 F 0.6 , Li 0.15 B 0.95 (PO 4 ) 0.7 F 0.9 or Li 0.15 B 0.95 (PO 4 ) 0.5 F 1.5 at least one of them.
  • the above various shell materials are relatively soft, can be plastically deformed, have low electronic conductivity, and can be in full surface contact with the core material to form a complete and dense electronic shielding layer on the surface of the core material, so that the external electrons are shielded by the outer shell material and cannot be Entering the kernel effectively avoids the occurrence of kernel material reduction reactions.
  • the thickness of the outer shell material coated on the surface of the inner core material is, for example, 10 to 30 nm.
  • the outer casing material is from 0.5 to 10% by weight.
  • the present disclosure also provides a method of preparing the above solid electrolyte, comprising:
  • the element Li:B:P:F is 0.15-0.165:0.95 in terms of elemental molar content :(1-y): (3y), where 0.01 ⁇ y ⁇ 0.5;
  • the precursor material is subjected to a first calcination, and after cooling, the solid electrolyte is obtained, the solid electrolyte comprising a core material and an outer shell material coated on a surface of the inner core material.
  • Li 1+x M x Ti 2-x (PO 4 ) 3 as a core material is a material in the prior art, and a preparation method thereof is known, for example, a titanium source, a metal M source, a core lithium source, and a core phosphoric acid.
  • the salt is mixed and subjected to a second calcination to obtain the core material.
  • the above titanium source may be a conventional titanium-containing compound, for example, the titanium source is TiO 2 .
  • M is at least one selected from the group consisting of Al, La, Cr, Ga, Y, and In.
  • the metal M source may be selected from the corresponding compounds of the above various metals, for example, the metal M source may be selected from the group consisting of Al 2 O 3 , Y 2 O 3 , Ga 2 O 3 , La 2 O 3 , Cr 2 O. 3 , one or more of In 2 O 3 .
  • the core lithium source may employ various lithium-containing compounds commonly used in the art.
  • the core lithium source may be selected from one or more of lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate, and lithium acetate. .
  • the core phosphate may be selected from one or more of NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , H 3 PO 4 .
  • the relative contents of the added titanium source, metal M source, core lithium source, and core phosphate may vary over a wide range.
  • the ratio of the content of the core lithium source, the metal M source, the titanium source, and the core phosphate is (1 to 1.2) (1+x) based on the molar contents of the element Li, the metal M, Ti, and P: x:(2-x): 3.
  • the loss of lithium ions during high-temperature heating can be supplemented by a moderate excess of the addition of the core lithium source without generating other by-products.
  • the method of mixing the above-mentioned core lithium source, metal M source, titanium source, and core phosphate can be carried out by a conventional ball milling process, and after ball milling, a second calcination can be performed to obtain a chemical formula of Li 1+x M x Ti 2-
  • the core material of x (PO 4 ) 3 wherein M is at least one selected from the group consisting of Al, La, Cr, Ga, Y, or In, and 0.05 ⁇ x ⁇ 0.4.
  • the above second calcination process is optionally calcined at a temperature of 750 to 950 ° C for 4 to 16 h.
  • the desired core material can be obtained by the above method, and according to the type and content of the added raw materials, for example, Li 1.1 Y 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.3 Y 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.4 Y 0.4 Ti 1.6 (PO 4 ) 3 , Li 1.1 Al 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.05 La 0.05 Ti 1.95 (PO 4 ) 3 , Li 1.1 At least one of Cr 0.1 Ti 1.9 (PO 4 ) 3 , Li 1.1 Ga 0.1 Ti 1.9 (PO 4 ) 3 or Li 1.1 In 0.1 Ti 1.9 (PO 4 ) 3 .
  • the core material has an average particle diameter of 0.5 to 10 ⁇ m by controlling the ball milling and the second calcination process.
  • the outer shell lithium source, the outer shell phosphate, the fluorine source, and the boron source are dissolved in water according to the composition of the outer shell material to be obtained to form a shell raw material liquid.
  • the element Li:B:P is based on the molar content of the element: F is 0.15 to 0.165: 0.95: (1-y): (3y), wherein 0.01 ⁇ y ⁇ 0.5.
  • an excess of 1.1 times the required content of the outer casing lithium source may be added.
  • the fluorine source is selected from the group consisting of LiF, NH 4 F, and NaF. One or more;
  • the boron source is selected from one or more of H 3 BO 3 , B 2 O 3 , LiBO 2 , and triethyl borate;
  • the outer casing lithium source is selected from one or more of lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate, and lithium acetate;
  • the outer shell phosphate is selected from one or more of NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , H 3 PO 4 .
  • the core material is mixed with the outer shell raw material liquid, and the pH value is adjusted to 8 to 11, so that the outer shell raw material liquid is gel-coated on the surface of the inner core material, and then dried.
  • the precursor material is obtained.
  • the relative content of the two may be varied within a wide range, and optionally, the content of the outer shell material in the solid electrolyte formed is 0.5 to 10 wt%.
  • the outer shell material has a thickness of 10 to 30 nm.
  • the obtained precursor material is subjected to a first calcination, and after cooling, the solid electrolyte is obtained, the solid electrolyte comprising an inner core material and an outer shell material coated on a surface of the inner core material.
  • the obtained precursor material is subjected to a first calcination by raising the temperature to 900 to 1200 ° C at a temperature increase rate of 2 to 10 ° C/min and maintaining the temperature for 8 to 24 hours.
  • the gel coated on the surface of the core material in the precursor material is converted into a solid outer shell material of the formula Li 0.15 B 0.95 (PO 4 ) 1-y F 3y , wherein 0.01 ⁇ y ⁇ 0.5 .
  • the specific chemical formula of the obtained shell material is also different according to the specific material of the shell lithium source, the shell phosphate, the fluorine source and the boron source, and the addition amount.
  • the shell material may be selected from Li 0.15 B 0.95. (PO 4 ) 0.99 F 0.03 , Li 0.15 B 0.95 (PO 4 ) 0.95 F 0.15 , Li 0.15 B 0.95 (PO 4 ) 0.9 F 0.3 , Li 0.15 B 0.95 (PO 4 ) 0.8 F 0.6 , Li 0.15 B 0.95 (PO 4 ) At least one of 0.7 F 0.9 or Li 0.15 B 0.95 (PO 4 ) 0.5 F 1.5 .
  • the first calcination of the precursor material before it calcination of the precursor material, it may be press-formed to form a desired specific shape, for example, a molded body of any shape and thickness such as a sheet or a cylinder. Depending on the design requirements of the solid electrolyte, the first calcination is performed.
  • the present disclosure also provides a lithium ion battery including a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode; the solid electrolyte being a solid electrolyte as described above.
  • the positive electrode and the negative electrode may be made of various materials and structures commonly used in the art, for example,
  • the positive electrode material comprises at least one of lithium cobaltate, lithium manganate, lithium iron phosphate or nickel cobalt manganese ternary material;
  • the negative electrode material comprises metallic lithium, graphite, mesophase carbon microspheres, mesophase carbon fiber, soft carbon, At least one of hard carbon and lithium titanate.
  • the above lithium ion battery can also be produced by a conventional method, for example, assembling a solid electrolyte, a positive electrode, and a negative electrode together into an all-solid lithium ion battery.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure, a method of producing the same, and a lithium ion battery containing the solid electrolyte.
  • step 2 The powder mixed in step 1 is filled into an alumina crucible, and then calcined in a muffle furnace at 800 ° C for 6 h, and cooled to obtain a core material powder of the formula Li 1.1 Al 0.1 Ti 1.9 (PO 4 ) 3 . . Its average particle diameter was 5 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1000 ° C at a heating rate of 2 ° C / min and kept for 24 hours.
  • the desired solid electrolyte sheet A1 was obtained.
  • the thickness of the outer casing material is 30 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • the thickness of the outer casing material is 25 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • Li 2 CO 3 powder, Ga 2 O 3 powder, TiO 2 powder and NH 4 H 2 PO 4 were respectively weighed.
  • the ball mill is evenly mixed.
  • a core material was prepared having an average particle diameter of 2 ⁇ m.
  • the desired solid electrolyte sheet A3 was obtained by the same treatment as in the steps 2 to 4 of Example 1.
  • the thickness of the outer casing material is 10 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 850 ° C for 12 h, and cooled to obtain a Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 core material powder. Its average particle diameter was 2 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1100 ° C at a heating rate of 2 ° C / min and kept for 20 hours.
  • the desired solid electrolyte sheet A4 was obtained.
  • the thickness of the outer casing material is 20 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 850 ° C for 12 h, and cooled to obtain a Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 core material powder. Its average particle diameter was 6 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, and placed in a muffle furnace at 2 ° C.
  • the heating rate of /min was raised to 1,100 ° C and held for 20 hours, and after cooling, the desired solid electrolyte sheet A5 was obtained.
  • the thickness of the outer casing material is 25 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • the same treatment as in the steps 2 to 4 of Example 4 was carried out to obtain the desired solid electrolyte sheet A6.
  • the thickness of the outer casing material is 15 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 850 ° C for 12 h, and cooled to obtain a Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 core material powder. Its average particle diameter was 10 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1100 ° C at a heating rate of 2 ° C / min and kept for 20 hours.
  • the desired solid electrolyte sheet A7 was obtained.
  • the thickness of the outer casing material is 12 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 is filled into an alumina crucible, and then calcined in a muffle furnace at 950 ° C for 10 h, and cooled to obtain a powder of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 core material; The particle size was 0.5 ⁇ m.
  • Li 0.15 B 0.95 (PO 4 ) 0.95 F 0.15 accounted for 0.5wt% of the total mass of the solid electrolyte, weighed the required LiOH, H 3 BO 3 , NH 4 H 2 PO 4 and LiF dissolved in deionized In the water, add the corresponding volume of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 core material powder, stir evenly, and adjust the pH of the system to 8, forming a uniform gel coating on Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) The 3 core material powder particles are dried to obtain a precursor material having a core-shell structure.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to a temperature of 1050 ° C at a heating rate of 2 ° C / min for 12 hours, and then cooled.
  • the desired solid electrolyte sheet A8 was obtained.
  • the thickness of the outer casing material is 20 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 is filled into an alumina crucible, and then calcined in a muffle furnace at 900 ° C for 8 h, and cooled to obtain a powder of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 core material; The particle size was 0.8 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1150 ° C at a heating rate of 2 ° C / min and kept for 8 hours.
  • the desired solid electrolyte sheet A9 was obtained.
  • the thickness of the outer casing material is 23 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 is filled into an alumina crucible, and then calcined in a muffle furnace at 750 ° C for 16 h, and cooled to obtain a powder of Li 1.05 La 0.05 Ti 1.95 (PO 4 ) 3 core material; The particle size was 1 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, and then placed in a muffle furnace to be heated to 1200 ° C at a heating rate of 2 ° C / min and kept for 8 hours.
  • the desired solid electrolyte sheet A10 was obtained.
  • the thickness of the outer casing material is 30 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 950 ° C for 4 h, and cooled to obtain Li 1.1 Cr 0.1 Ti 1.9 (PO 4 ) 3 powder. Its average particle diameter was 1.5 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 900 ° C at a heating rate of 2 ° C / min and kept for 24 hours.
  • the desired solid electrolyte sheet A11 was obtained.
  • the thickness of the outer casing material is 20 nm.
  • This embodiment is for explaining a solid electrolyte disclosed in the present disclosure and a method of producing the same, and a lithium ion battery.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 900 ° C for 8 h, and cooled to obtain a Li 1.1 In 0.1 Ti 1.9 (PO 4 ) 3 core material powder. Its average particle diameter was 3 ⁇ m.
  • the precursor material of the obtained core-shell structure is tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1150 ° C at a heating rate of 2 ° C / min and kept for 8 hours.
  • the desired solid electrolyte sheet A12 was obtained.
  • the thickness of the outer casing material is 25 nm.
  • This comparative example is used to compare and explain the solid electrolyte disclosed in the present disclosure and a method for preparing the same, and a lithium ion battery.
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Li 2 CO 3 powder, Al 2 O 3 powder, TiO 2 powder and NH 4 H 2 PO 4 were respectively weighed and uniformly mixed by ball milling.
  • step 2 The powder mixed in step 1 was placed in an alumina crucible, and then calcined in a muffle furnace at 850 ° C for 12 hours, and cooled to obtain Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 powder.
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 powder was tableted, placed in an alumina crucible, placed in a muffle furnace and heated to 1100 ° C at a heating rate of 2 ° C / min and held for 20 hours. After cooling, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 electrolyte sheet CA1 was obtained.
  • This comparative example is used to compare and explain the solid electrolyte disclosed in the present disclosure and a method for preparing the same, and a lithium ion battery.
  • the two sides of the solid electrolytes A1-A12 and CA1-CA2 prepared in Examples 1-12 and Comparative Example 1-2 were respectively sputtered with a gold film as a conductive electrode (blocking electrode), and then the sample was measured on an electrochemical workstation.
  • the room temperature AC impedance, AC impedance test is from high frequency 10 5 Hz to low frequency 1Hz, and then the total impedance value of the electrolyte R (including the body resistance and the grain boundary resistance), the real part corresponding to the right side of the arc in the spectrum ( The value of the X-axis) is the total impedance value of the electrolyte.
  • Electrochemical window (V) A1 1.32 ⁇ 10 -4 >5V A2 8.67 ⁇ 10 -5 >5V A3 7.52 ⁇ 10 -5 >5V A4 1.82 ⁇ 10 -4 >5V A5 1.08 ⁇ 10 -4 >5V A6 7.36 ⁇ 10 -5 >5V A7 1.12 ⁇ 10 -4 >5V A8 1.06 ⁇ 10 -4 >5V A9 8.15 ⁇ 10 -5 >5V A10 6.55 ⁇ 10 -5 >5V A11 3.82 ⁇ 10 -5 >5V A12 4.25 ⁇ 10 -5 >5V CA1 1.65 ⁇ 10 -4 2.5V CA2 2.0 ⁇ 10 -4 2.5V
  • the core-shell structure Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 prepared in Example 4 (the shell is 5 wt% Li 0.15 B 0.95 (PO 4 ) 0.9 F 0.3 )
  • Li 0.15 B 0.95 (PO 4 ) 1-y F 3y electron shielding layer is disposed on the surface of Li 1+x M x Ti 2-x (PO 4 ) 3 , so that external electrons can be shielded by the shell layer without Can not enter the kernel, effectively avoiding the occurrence of redox reaction of the core material, and improving the electrochemical window of the material.
  • Li 0.15 B 0.95 (PO 4 ) 1-y F 3y also has high ionic conductivity and does not affect the conduction of lithium ions in the shell. Therefore, the lithium ion solid electrolyte has a wide electrochemical window (electrochemical window > 5V) and high ionic conductivity, and has a wide range of applications.

Abstract

公开了一种固态电解质,包括内核材料及包覆于所述内核材料外的外壳材料;所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;所述外壳材料的离子电导率为10-6S/cm以上;所述固态电解质的电化学窗口大于5伏。还公开了一种制备上述固态电解质的方法以及采用该固态电解质的锂离子电池。

Description

固态电解质及其制备方法和含有其的锂离子电池
相关申请的交叉引用
本申请主张在2015年6月25日在中国提交的中国专利申请号No.201510359289.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于锂离子电池领域,尤其涉及一种固态电解质及其制备方法,以及采用该固态电解质的锂离子电池。
背景技术
锂离子电池由于能效密度高、再充性能好、使用损耗小等优点,普遍用于消费电子领域和电动汽车。因而,对锂离子固态电解质的研究始终是锂离子电池材料研究领域的热点问题之一。
目前的锂离子固态电解质的电化学窗口窄,并且存在电池短路的可能,安全性能低,大大地限制了其在固态锂电池中的实际应用。因此,固态电解质及将其应用于锂离子电池有待于进一步的提高。
发明内容
本公开的目的在于提供一种固态电解质,从而改善相关技术中固态电解质电化学窗口窄这一问题。
一方面,本公开提供一种固态电解质,包括内核材料及包覆于所述内核材料外的外壳材料;所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;所述外壳材料的离子电导率为10-6S/cm以上;所述固态电解质的电化学窗口大于5伏。
另一方面,本公开还提供了一种制备上述固态电解质的方法,包括:
获取内核材料,所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中,M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;
将外壳锂源、外壳磷酸盐、氟源和硼源溶于水中,形成外壳原料液;所述外壳原料液中,以元素摩尔含量计,元素Li:B:P:F为0.15~0.165:0.95:(1-y):(3y),其中,0.01≤y≤0.5;
将所述内核材料与所述外壳原料液混合,并调节pH值为8~11,经干燥后得到前体材料;
对所述前体材料进行第一煅烧,冷却后得到所述固态电解质,所述固态电解质包括内核材料及包覆于所述内核材料表面的外壳材料。
另一方面,本公开还提供了一种锂离子电池,包括正极、负极和设置于所述正极和负极之间的固态电解质;所述固态电解质为如前所述的固态电解质。
本公开的发明人通过大量实验发现,虽然NASICON结构的Li1.3Al0.3Ti1.7(PO4)3(LATP)的室温离子电导率电导可以达到10-4S/cm,与目前已经商业化的液体电解质的电导率较为接近。但是,由于含有易变价的钛离子,LATP与低电位的负极材料接触时,Ti4+会被还原为Ti3+,产生电子电导,导致其电化学窗口窄。现有技术中对LATP进行离子掺杂,虽然在一定程度上提高了LATP的室温离子电导率,但是并不能改善该类材料在低电位下被还原的问题。若上述材料用作锂离子电池的固态电解质,难以避免由于电子电导的产生而造成电池短路。
本公开提供的固态电解质中,在内核材料Li1+xMxTi2-x(PO4)3表面具有一层致密的外壳材料(例如Li0.15B0.95(PO4)1-yF3y)。该外壳材料能够与内核材料充分的进行面接触,并且具有宽的电化学窗口(电化学窗口>5V),其电子电导率较低,在内核材料表面上形成完整致密的电子屏蔽层,使外部电子被外壳材料屏蔽而无法与内核材料接触,有效的避免了内核材料氧化还原反应的发生。同时该外壳材料也具有高的离子电导率,不会影响锂离子的传导。因此上述固态电解质将具有宽的电化学窗口(电化学窗口>5V)。
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开提供的固态电解质包括内核材料及包覆于所述内核材料外的外壳材料;所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中,M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;所述外壳材料的离子电导率为10-6S/cm以上;宽的电化学窗口(电化学窗口>5V)。
本公开中,内核材料采用常规的NASICON结构的Li1+xMxTi2-x(PO4)3材料。上述化学式中,M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4。符合上述条件的内核材料可采用各种现有的已知材料,可选地,所述内核材料选自Li1.1Y0.1Ti1.9(PO4)3、 Li1.3Y0.3Ti1.7(PO4)3、Li1.4Y0.4Ti1.6(PO4)3、Li1.1Al0.1Ti1.9(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、Li1.05La0.05Ti1.95(PO4)3、Li1.1Cr0.1Ti1.9(PO4)3、Li1.1Ga0.1Ti1.9(PO4)3或Li1.1In0.1Ti1.9(PO4)3中的至少一种。上述内核材料的电导率较高,且化学性质稳定,不与空气及水分发生反应。
对于上述内核材料,其平均粒径可在较大范围内变动,本公开中,可选地,所述内核材料的平均粒径为0.5~10μm。
根据本公开,外壳材料包覆于上述内核材料表面,并且该外壳材料的电子电导率低于10-10S/cm,以此保证可在内核材料表面上形成完整致密的电子屏蔽层,使外部电子被外壳材料屏蔽而无法与内核材料接触,从而避免内核材料氧化还原反应的发生,使得该固态电解质的电化学窗口较高(大于5V)。
众所周知,电化学窗口是指在电化学循环伏安曲线上没有电化学反应的一段,即,在这个电位范围内只处于充电状态,而没有电化学反应发生。电化学窗口可通过常规的电化学工作站测得。
同时,为保证固态电解质的离子电导率,本公开中,外壳材料的离子电导率为10-6S/cm以上,例如为10-6~10-5S/cm。
根据本公开,为了进一步提高外壳材料的降低内核材料晶粒间电阻的能力,可选地,所述外壳材料具有如下化学式:Li0.15B0.95(PO4)1-yF3y,其中,0.01≤y≤0.5。
具体的,符合上述条件的外壳材料可以选自Li0.15B0.95(PO4)0.99F0.03、Li0.15B0.95(PO4)0.95F0.15、Li0.15B0.95(PO4)0.9F0.3、Li0.15B0.95(PO4)0.8F0.6、Li0.15B0.95(PO4)0.7F0.9或Li0.15B0.95(PO4)0.5F1.5中的至少一种。上述各种外壳材料较为柔软、可发生塑性变形、电子电导率低,能够与内核材料充分的进行面接触,在内核材料表面形成完整致密的电子屏蔽层,使外部电子被外壳材料屏蔽掉而不能进入内核,有效的避免了内核材料还原反应的发生。
本公开中,包覆于内核材料表面的外壳材料的厚度例如为10~30nm。
根据本公开所提供的锂离子电池固态电解质,为实现良好的包覆效果,同时避免过度影响固态电解质的电导率,可选地,以所述固态电解质的总重量为基准,所述外壳材料的含量为0.5-10wt%。
同时,本公开还提供了制备上述固态电解质的方法,包括:
获取内核材料,所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中,M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;
将外壳锂源、外壳磷酸盐、氟源和硼源溶于水中,形成外壳原料液;所述外壳原料液中,以元素摩尔含量计,元素Li:B:P:F为0.15~0.165:0.95:(1-y):(3y),其中,0.01≤y≤0.5;
将所述内核材料与所述外壳原料液混合,并调节pH值为8~11,经干燥后得到前体材料;
对所述前体材料进行第一煅烧,冷却后得到所述固态电解质,所述固态电解质包括内核材料及包覆于所述内核材料表面的外壳材料。
作为内核材料的Li1+xMxTi2-x(PO4)3为现有技术中的材料,其制备方法为公知的,例如,将钛源、金属M源、内核锂源、内核磷酸盐混合并进行第二煅烧,得到所述内核材料。
具体的,上述钛源可采用常规的含钛化合物,例如,所述钛源为TiO2
上述化学式中,M选自Al、La、Cr、Ga、Y或In中的至少一种。具体的,金属M源可以选自上述各种金属的相应化合物,例如,所述金属M源可选自Al2O3、Y2O3、Ga2O3、La2O3、Cr2O3、In2O3中的一种或多种。
内核锂源可采用本领域常用的各种含锂化合物,例如,所述内核锂源可选自碳酸锂、氢氧化锂、一水合氢氧化锂、硝酸锂、醋酸锂中的一种或多种。
所述内核磷酸盐可选自NH4H2PO4、(NH4)2HPO4、(NH4)3PO4、H3PO4中的一种或多种。
为制备得到具有Li1+xMxTi2-x(PO4)3化学式的内核材料,添加的钛源、金属M源、内核锂源、内核磷酸盐的相对含量可在较大范围内变动,例如,以元素Li、金属M、Ti、P的摩尔含量计,所述内核锂源、金属M源、钛源、内核磷酸盐的含量之比为(1~1.2)(1+x):x:(2-x):3。
本公开中,通过适度过量的添加内核锂源,可补充在高温加热过程中锂离子的损失,同时不会产生其他副产物。
将上述内核锂源、金属M源、钛源、内核磷酸盐混合的方法可以采用常规的球磨工艺,球磨后,即可进行第二煅烧,以获得化学式为的Li1+xMxTi2-x(PO4)3的内核材料,其中,M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4。
根据本公开,上述第二煅烧的工艺可选地为在温度为750~950℃下煅烧4~16h。
通过上述方法即可获得所需的内核材料,根据添加的原料种类及含量不同,可相应制备得到例如Li1.1Y0.1Ti1.9(PO4)3、Li1.3Y0.3Ti1.7(PO4)3、Li1.4Y0.4Ti1.6(PO4)3、Li1.1Al0.1Ti1.9(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、Li1.05La0.05Ti1.95(PO4)3、Li1.1Cr0.1Ti1.9(PO4)3、Li1.1Ga0.1Ti1.9(PO4)3或Li1.1In0.1Ti1.9(PO4)3中的至少一种材料。
同时,可选地,通过对球磨及第二煅烧工艺的控制,使所述内核材料的平均粒径为0.5~10μm。
根据本公开,根据所需获得的外壳材料的组成,将外壳锂源、外壳磷酸盐、氟源和硼源溶于水中,形成外壳原料液。并且,所述外壳原料液中,以元素摩尔含量计,元素Li:B:P: F为0.15~0.165:0.95:(1-y):(3y),其中,0.01≤y≤0.5。
同样,为避免在后续热处理过程中锂离子的损失,可选地在形成外壳原料液的步骤中,可添加过量至1.1倍所需含量的外壳锂源。
对于上述外壳原料液中的外壳锂源、外壳磷酸盐、氟源和硼源,可采用现有技术中常用的各种物质,例如,所述氟源选自LiF、NH4F、NaF中的一种或多种;
所述硼源选自H3BO3、B2O3、LiBO2、硼酸三乙酯中的一种或多种;
所述外壳锂源选自碳酸锂、氢氧化锂、一水合氢氧化锂、硝酸锂、醋酸锂中的一种或多种;
所述外壳磷酸盐选自NH4H2PO4、(NH4)2HPO4、(NH4)3PO4、H3PO4中的一种或多种。
通过上述方法获得外壳原料液后,将所述内核材料与所述外壳原料液混合,并调节pH值为8~11,使外壳原料液呈凝胶状包覆于内核材料表面,然后经干燥后得到前体材料。
将外壳原料液与内核材料混合时,二者的相对含量可在较大范围内变动,可选地,以保证形成的固态电解质中所述外壳材料的含量为0.5~10wt%为准。可选地,所述外壳材料的厚度为10~30nm。
将所述获得的前体材料进行第一煅烧,冷却后得到所述固态电解质,所述固态电解质包括内核材料及包覆于所述内核材料表面的外壳材料。
可选地,以2~10℃/min的升温速度升温至900~1200℃并保温8~24h来对所述获得的前体材料进行第一煅烧。
通过上述第一煅烧,将前体材料中,包覆于内核材料表面的凝胶转换为化学式为Li0.15B0.95(PO4)1-yF3y的固态外壳材料,其中,0.01≤y≤0.5。
可以理解的,根据采用的外壳锂源、外壳磷酸盐、氟源和硼源具体物质及添加量的不同,获得的外壳材料的具体化学式也不同,具体的,外壳材料可以选自Li0.15B0.95(PO4)0.99F0.03、Li0.15B0.95(PO4)0.95F0.15、Li0.15B0.95(PO4)0.9F0.3、Li0.15B0.95(PO4)0.8F0.6、Li0.15B0.95(PO4)0.7F0.9或Li0.15B0.95(PO4)0.5F1.5中的至少一种。
如现有的,根据最终的具体应用,对前体材料进行第一煅烧前,可对其进行压制成型,形成所需的具体形状,例如可以为薄片、柱体等任意形状和厚度的成型体,具体视固态电解质的设计需求而定,然后再进行第一煅烧。
另外,本公开还提供了一种锂离子电池,包括正极、负极和设置于所述正极和负极之间的固态电解质;所述固态电解质为如前所述的固态电解质。
上述锂离子电池中,正极和负极可以采用本领域所常用的各种材料及结构,例如,所述 正极材料包括钴酸锂、锰酸锂、磷酸铁锂或镍钴锰三元材料中的至少一种;所述负极材料包括金属锂、石墨、中间相碳微球、中间相碳纤维、软碳、硬碳、钛酸锂中的至少一种。
上述锂离子电池也可通过常规的方法制备得到,例如,将固态电解质、正极和负极一起装配成全固态锂离子电池。
以下通过实施例对本公开进行进一步的说明。
实施例1
本实施例用于说明本公开公开的固态电解质及其制备方法以及含有该固态电解质的锂离子电池。
1、按照核壳结构材料的内核成分为Li1.1Al0.1Ti1.9(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在800℃煅烧6h,冷却后得到化学式为Li1.1Al0.1Ti1.9(PO4)3的内核材料粉体。其平均粒径为5μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.9F0.3占固态电解质总质量2wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.1Al0.1Ti1.9(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为11,形成均匀凝胶包覆在Li1.1Al0.1Ti1.9(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1000℃并保温24小时,冷却后便得到所需的固态电解质薄片A1。其中,外壳材料的厚度为30nm。
实施例2
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.1Y0.1Ti1.9(PO4)3的化学计量比,分别称取Li2CO3粉末、Y2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。制备内核材料,其平均粒径为5μm。
2、按实施例1步骤2~4相同的处理方法,得到所需的固态电解质薄片A2。其中,外壳材料的厚度为25nm。
实施例3
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
按照核壳结构材料的内核成分为Li1.1Ga0.1Ti1.9(PO4)3的化学计量比,分别称取Li2CO3粉末、Ga2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。制备内核材料,其平均粒径为2μm。
按实施例1步骤2~4相同的处理方法,得到所需的固态电解质薄片A3。其中,外壳材料的厚度为10nm。
实施例4
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.3Al0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在850℃煅烧12h,冷却后得到Li1.3Al0.3Ti1.7(PO4)3内核材料粉体。其平均粒径为2μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.9F0.3占固态电解质总质量5wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.3Al0.3Ti1.7(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为10,形成均匀凝胶包覆在Li1.3Al0.3Ti1.7(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1100℃并保温20小时,冷却后便得到所需的固态电解质薄片A4。其中,外壳材料的厚度为20nm。
实施例5
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.3Al0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在850℃煅烧12h,冷却后得到Li1.3Al0.3Ti1.7(PO4)3内核材料粉体。其平均粒径为6μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.9F0.3占固态电解质总质量10wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.1Al0.1Ti1.9(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为10,形成均匀凝胶包覆在Li1.3Al0.3Ti1.7(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料;
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃ /min的升温速度升温到1100℃并保温20小时,冷却后便得到所需的固态电解质薄片A5。其中,外壳材料的厚度为25nm。
实施例6
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.3Y0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末、Y2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀;制备内核材料,其平均粒径为8μm。
2、按实施例4步骤2~4相同的处理方法,得到所需的固态电解质薄片A6。其中,外壳材料的厚度为15nm。
实施例7
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.3Al0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在850℃煅烧12h,冷却后得到Li1.3Al0.3Ti1.7(PO4)3内核材料粉体。其平均粒径为10μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.99F0.03占固态电解质总质量5wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.3Al0.3Ti1.7(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为11,形成均匀凝胶包覆在Li1.3Al0.3Ti1.7(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1100℃并保温20小时,冷却后便得到所需的固态电解质薄片A7。其中,外壳材料的厚度为12nm。
实施例8
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.3Al0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在950℃煅烧10h,冷却后得到Li1.3Al0.3Ti1.7(PO4)3内核材料粉体;其平均粒径为0.5μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.95F0.15占固态电解质总质量0.5wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.3Al0.3Ti1.7(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为8,形成均匀凝胶包覆在Li1.3Al0.3Ti1.7(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1050℃并保温12小时,冷却后便得到所需的固态电解质薄片A8。其中,外壳材料的厚度为20nm。
实施例9
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.4Al0.4Ti1.6(PO4)3的化学计量比,分别称取Li2CO3粉末、Al2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在900℃煅烧8h,冷却后得到Li1.4Al0.4Ti1.6(PO4)3内核材料粉体;其平均粒径为0.8μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.8F0.6占固态电解质总质量8wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.4Al0.4Ti1.6(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为9,形成均匀凝胶包覆在Li1.4Al0.4Ti1.6(PO4)3内核材料粉体颗粒上,经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1150℃并保温8小时,冷却后便得到所需的固态电解质薄片A9。其中,外壳材料的厚度为23nm。
实施例10
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.05La0.05Ti1.95(PO4)3的化学计量比,分别称取Li2CO3粉末、La2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在750℃煅烧16h,冷却后得到Li1.05La0.05Ti1.95(PO4)3内核材料粉体;其平均粒径为1μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.7F0.9占固态电解质总质量5wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.05La0.05Ti1.95(PO4)3 内核材料粉体,强力搅拌均匀,并调节体系的pH值为10,形成均匀凝胶包覆在Li1.05La0.05Ti1.95(PO4)3内核材料粉体颗粒上,该混合粉体经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1200℃并保温8小时,冷却后便得到所需的固态电解质薄片A10。其中,外壳材料的厚度为30nm。
实施例11
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.1Cr0.1Ti1.9(PO4)3的化学计量比,分别称取Li2CO3粉末、Cr2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在950℃煅烧4h,冷却后得到Li1.1Cr0.1Ti1.9(PO4)3粉体。其平均粒径为1.5μm。
3、按照外壳材料成分Li0.15B0.95(PO4)0.5F1.5占固态电解质总质量6wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.1Cr0.1Ti1.9(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为11,形成均匀凝胶包覆在Li1.1Cr0.1Ti1.9(PO4)3内核材料粉体颗粒上,该混合粉体经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到900℃并保温24小时,冷却后便得到所需的固态电解质薄片A11。其中,外壳材料的厚度为20nm。
实施例12
本实施例用于说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照核壳结构材料的内核成分为Li1.1In0.1Ti1.9(PO4)3的化学计量比,分别称取Li2CO3粉末、In2O3粉末、TiO2粉末和NH4H2PO4,球磨混合均匀;
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在900℃煅烧8h,冷却后得到Li1.1In0.1Ti1.9(PO4)3内核材料粉体。其平均粒径为3μm。
3、按照外壳成分Li0.15B0.95(PO4)0.8F0.6占固态电解质总质量8wt%,称取所需要的LiOH、H3BO3、NH4H2PO4和LiF溶于去离子水中,加入对应质量的Li1.1In0.1Ti1.9(PO4)3内核材料粉体,强力搅拌均匀,并调节体系的pH值为8,形成均匀凝胶包覆在Li1.1In0.1Ti1.9(PO4)3内核 材料粉体颗粒上,该混合粉体经干燥后得到具有核壳结构的前体材料。
4、将所得的核壳结构的前体材料压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1150℃并保温8小时,冷却后便得到所需的固态电解质薄片A12。其中,外壳材料的厚度为25nm。
对比例1
本对比例用于对比说明本公开公开的固态电解质及其制备方法、锂离子电池。
1、按照Li1.3Al0.3Ti1.7(PO4)3的化学计量比,分别称取Li2CO3粉末,Al2O3粉末,TiO2粉末和NH4H2PO4,球磨混合均匀。
2、将步骤1混合均匀的粉末装入氧化铝坩埚中,再置于马弗炉中在850℃煅烧12小时,冷却后得到Li1.3Al0.3Ti1.7(PO4)3粉体。
3、将Li1.3Al0.3Ti1.7(PO4)3粉体压片成型,装入氧化铝坩埚中,再置于马弗炉中以2℃/min的升温速度升温到1100℃并保温20小时,冷却后便得到Li1.3Al0.3Ti1.7(PO4)3电解质薄片CA1。
对比例2
本对比例用于对比说明本公开公开的固态电解质及其制备方法、锂离子电池。
按照CN101894972A实施例1中的方法制备得到Li3.76Al0.36Zn0.07Ti1.32Si0.25P2.39O11.3S0.7电解质薄片CA2。
性能测试
对上述制备得到的固态电解质进行如下性能测试:
1、离子电导率
将实施例1-12及对比例1-2制备得到的固态电解质A1-A12及CA1-CA2的两面分别溅射上一层金膜作为导电电极(阻塞电极),然后在电化学工作站上测定样品的室温交流阻抗,交流阻抗的测试是从高频105Hz到低频1Hz,然后得出电解质的总阻抗值R(包括本体电阻和晶界电阻),谱图中圆弧右边对应的实部(X轴)的值即为该电解质的总阻抗值。根据固态电解质离子电导率的计算公式:σ=L/A·R(其中L为固态电解质薄片的厚度,A为金膜的面积,R为固态电解质总电阻值,L的值是0.2cm,A的值是1.76cm2。)
计算得到对应的离子电导率。结果见表1。
2、电化学窗口
将实施例1-12及对比例1-2制备得到的固态电解质A1-A12及CA1-CA2两面分别压制上锂片和铂片,在电化学工作站上测定该半电池的循环伏安曲线,从而测定所制备样品的电化学窗口,结果见表1。
表1
  离子电导率(S·cm-1) 电化学窗口(V)
A1 1.32×10-4 >5V
A2 8.67×10-5 >5V
A3 7.52×10-5 >5V
A4 1.82×10-4 >5V
A5 1.08×10-4 >5V
A6 7.36×10-5 >5V
A7 1.12×10-4 >5V
A8 1.06×10-4 >5V
A9 8.15×10-5 >5V
A10 6.55×10-5 >5V
A11 3.82×10-5 >5V
A12 4.25×10-5 >5V
CA1 1.65×10-4 2.5V
CA2 2.0×10-4 2.5V
从表1中可以看出,对比例1制备得到的Li1.3Al0.3Ti1.7(PO4)3电解质的室温总离子电导率为σ=1.65×10-4S·cm-1,电化学窗口为2.5V;实施例4制备得到的核壳结构Li1.3Al0.3Ti1.7(PO4)3(外壳为5wt%的Li0.15B0.95(PO4)0.9F0.3)电解质的室温总离子电导率为σ=1.82×10-4S·cm-1,电化学窗口>5V;实施例5制备得到的核壳结构Li1.3Al0.3Ti1.7(PO4)3(外壳为10wt%的Li0.15B0.95(PO4)0.9F0.3)电解质的室温总离子电导率为σ=1.08×10-4S·cm-1,电化学窗口>5V;实施例6制备得到的核壳结构Li1.3Y0.3Ti1.7(PO4)3(外壳为5wt%的Li0.15B0.95(PO4)0.9F0.3)电解质的室温总离子电导率为σ=7.36×10-5S·cm-1,电化学窗口>5V。可见,在Li1+xMxTi2-x(PO4)3表面设置一层Li0.15B0.95(PO4)1-yF3y电子屏蔽层,能使外部电子被壳层屏蔽掉而不进入不了内核,有效的避免了内核材料氧化还原反应的发生,提高了材料的电化学窗口。同时Li0.15B0.95(PO4)1-yF3y也具有高的离子电导率,不会影响锂离子在壳层的传导。因此所述的锂离子固态电解质具有宽的电化学窗口(电化学窗口>5V)和较高的离子电导率,具有很广泛的应用。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种固态电解质,包括:
    内核材料,具有如下化学式:Li1+xMxTi2-x(PO4)3,其中M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;以及
    外壳材料,所述外壳材料包覆于所述内核材料外并且离子电导率为10-6S/cm以上,
    其中所述固态电解质的电化学窗口大于5伏。
  2. 根据权利要求1所述的固态电解质,其中所述外壳材料的离子电导率为10-6~10-5S/cm。
  3. 根据权利要求1或2所述的固态电解质,其中所述外壳材料具有如下化学式:Li0.15B0.95(PO4)1-yF3y,其中0.01≤y≤0.5。
  4. 根据权利要求1-3中任一项所述的固态电解质,其中所述外壳材料选自Li0.15B0.95(PO4)0.99F0.03、Li0.15B0.95(PO4)0.95F0.15、Li0.15B0.95(PO4)0.9F0.3、Li0.15B0.95(PO4)0.8F0.6、Li0.15B0.95(PO4)0.7F0.9或Li0.15B0.95(PO4)0.5F1.5中的至少一种。
  5. 根据权利要求1-4中任一项所述的固态电解质,其中所述外壳材料的厚度为10~30nm。
  6. 根据权利要求1-5中任一项所述的固态电解质,其中以所述固态电解质的总重量为基准,所述外壳材料的含量为0.5~10wt%。
  7. 根据权利要求1-6中任一项所述的固态电解质,其中所述内核材料选自Li1.1Y0.1Ti1.9(PO4)3、Li1.3Y0.3Ti1.7(PO4)3、Li1.4Y0.4Ti1.6(PO4)3、Li1.1Al0.1Ti1.9(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、Li1.05La0.05Ti1.95(PO4)3、Li1.1Cr0.1Ti1.9(PO4)3、Li1.1Ga0.1Ti1.9(PO4)3或Li1.1In0.1Ti1.9(PO4)3中的至少一种。
  8. 根据权利要求1-7中任一项所述的固态电解质,其中所述内核材料的平均粒径为0.5~10μm。
  9. 一种制备如权利要求1-8中任一项所述的固态电解质的方法,包括:
    获取内核材料,所述内核材料具有如下化学式:Li1+xMxTi2-x(PO4)3,其中M选自Al、La、Cr、Ga、Y或In中的至少一种,0.05≤x≤0.4;
    将外壳锂源、外壳磷酸盐、氟源和硼源溶于水中,形成外壳原料液;所述外壳原料液中,以元素摩尔含量计,元素Li:B:P:F为0.15~0.165:0.95:(1-y):(3y),其中0.01≤y≤0.5;
    将所述内核材料与所述外壳原料液混合,并调节pH值为8~11,得到前体材料;
    对所述前体材料进行第一煅烧,以便得到所述固态电解质,
    其中所述固态电解质包括内核材料及包覆于所述内核材料表面的外壳材料。
  10. 根据权利要求9所述的方法,其中所述获取内核材料进一步包含:将钛源、金属M源、内核锂源、内核磷酸盐混合并进行第二煅烧,得到所述内核材料,
    其中以元素Li、金属M、Ti、P的摩尔含量计,所述内核锂源、金属M源、钛源、内核磷酸盐的含量之比为(1~1.2)(1+x):x:(2-x):3。
  11. 根据权利要求10所述的方法,其中在温度为750~950℃下进行所述第二煅烧4~16h。
  12. 根据权利要求10-11中任一项所述的方法,其中所述钛源为TiO2
  13. 根据权利要求10-12中任一项所述的方法,其中所述金属M源选自Al2O3、Y2O3、Ga2O3、La2O3、Cr2O3、In2O3中的一种或多种。
  14. 根据权利要求10-13中任一项所述的方法,其中所述内核锂源选自碳酸锂、氢氧化锂、一水合氢氧化锂、硝酸锂、醋酸锂中的一种或多种。
  15. 根据权利要求10-14中任一项所述的方法,其中所述内核磷酸盐选自NH4H2PO4、(NH4)2HPO4、(NH4)3PO4、H3PO4中的一种或多种。
  16. 根据权利要求9-15中任一项所述方法,其中所述内核材料选自Li1.1Y0.1Ti1.9(PO4)3、Li1.3Y0.3Ti1.7(PO4)3、Li1.4Y0.4Ti1.6(PO4)3、Li1.1Al0.1Ti1.9(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、Li1.05La0.05Ti1.95(PO4)3、Li1.1Cr0.1Ti1.9(PO4)3、Li1.1Ga0.1Ti1.9(PO4)3或Li1.1In0.1Ti1.9(PO4)3中的至少 一种。
  17. 根据权利要求9-16中任一项所述的方法,其中所述内核材料的平均粒径为0.5~10μm。
  18. 根据权利要求9-17中任一项所述的方法,其中所述氟源选自LiF、NH4F、NaF中的一种或多种。
  19. 根据权利要求9-18中任一项所述的方法,其中所述硼源选自H3BO3、B2O3、LiBO2、硼酸三乙酯中的一种或多种。
  20. 根据权利要求9-19中任一项所述的方法,其中所述外壳锂源选自碳酸锂、氢氧化锂、一水合氢氧化锂、硝酸锂、醋酸锂中的一种或多种。
  21. 根据权利要求9-20中任一项所述的方法,其中所述外壳磷酸盐选自NH4H2PO4、(NH4)2HPO4、(NH4)3PO4、H3PO4中的一种或多种。
  22. 根据权利要求9-21中任一项所述的方法,其中以2~10℃/min的升温速度升温至900~1200℃并保温8~24h来对所述前体材料进行所述第一煅烧。
  23. 根据权利要求9-22中任一项所述的方法,其中所述外壳材料选自Li0.15B0.95(PO4)0.99F0.03、Li0.15B0.95(PO4)0.95F0.15、Li0.15B0.95(PO4)0.9F0.3、Li0.15B0.95(PO4)0.8F0.6、Li0.15B0.95(PO4)0.7F0.9或Li0.15B0.95(PO4)0.5F1.5中的至少一种。
  24. 根据权利要求9-23中任一项所述的方法,其中以所述固态电解质的总重量为基准,所述外壳材料的含量为0.5~10wt%。
  25. 一种锂离子电池,包括正极、负极和设置于所述正极和所述负极之间的固态电解质;
    所述固态电解质为权利要求1-8中任一项所述的固态电解质。
PCT/CN2016/077692 2015-06-25 2016-03-29 固态电解质及其制备方法和含有其的锂离子电池 WO2016206430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16813546.5A EP3316379A4 (en) 2015-06-25 2016-03-29 SOLID ELECTROLYTE AND PROCESS FOR PREPARING THE SAME, AND LITHIUM ION BATTERY CONTAINING SAME
US15/852,336 US20180123167A1 (en) 2015-06-25 2017-12-22 Solid electrolyte and preparation method therefor, and lithium-ion battery containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510359289.0 2015-06-25
CN201510359289.0A CN106299468B (zh) 2015-06-25 2015-06-25 一种固态电解质及其制备方法、锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/852,336 Continuation US20180123167A1 (en) 2015-06-25 2017-12-22 Solid electrolyte and preparation method therefor, and lithium-ion battery containing same

Publications (1)

Publication Number Publication Date
WO2016206430A1 true WO2016206430A1 (zh) 2016-12-29

Family

ID=57584651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077692 WO2016206430A1 (zh) 2015-06-25 2016-03-29 固态电解质及其制备方法和含有其的锂离子电池

Country Status (4)

Country Link
US (1) US20180123167A1 (zh)
EP (1) EP3316379A4 (zh)
CN (1) CN106299468B (zh)
WO (1) WO2016206430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131458A (ja) * 2018-02-02 2019-08-08 ショット アクチエンゲゼルシャフトSchott AG イオン伝導性残留ガラス相を有するガラスセラミックおよびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904290A4 (en) * 2018-12-28 2022-03-02 Panasonic Intellectual Property Management Co., Ltd. HALOGEN MANUFACTURING PROCESS
US11056717B2 (en) * 2019-01-31 2021-07-06 University Of Maryland, College Park Lithium phosphate derivative compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
CN112242555B (zh) * 2019-07-16 2021-10-22 宁德时代新能源科技股份有限公司 一种硫化物固态电解质片及其制备方法
CN112242556B (zh) * 2019-07-16 2021-09-28 宁德时代新能源科技股份有限公司 一种固态电解质的制备方法
JP7415451B2 (ja) * 2019-11-05 2024-01-17 セイコーエプソン株式会社 固体電解質複合粒子、粉末および複合固体電解質成形体の製造方法
JP2023509946A (ja) 2020-01-10 2023-03-10 ソルヴェイ(ソシエテ アノニム) 少なくとも1つのゲル化電極を有する電気化学デバイス
CN111403806A (zh) * 2020-04-17 2020-07-10 中国科学院物理研究所 一种碳包覆固态电解质材料及其制备方法和用途
CN115557483B (zh) * 2022-09-26 2023-08-29 乐清市固态电池研究院 Latp电解质粉末制备方法、电解质片及全固态电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114718A (zh) * 2007-08-31 2008-01-30 中国科学院上海硅酸盐研究所 锂离子无机复合固体电解质材料的设计准则与制备方法
CN104051782A (zh) * 2013-03-12 2014-09-17 华为技术有限公司 一种锂镧钛氧化合物复合固态锂离子电解质材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612782B (zh) * 2009-11-27 2014-12-03 株式会社村田制作所 固体电池
CN101787169B (zh) * 2010-02-08 2011-12-28 中南大学 PVDF/Li1.3Al0.3Ti1.7(PO4)3固态双相电解质薄膜材料及制备方法
WO2012043566A1 (ja) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 電池用焼結体、電池用焼結体の製造方法、及び全固体リチウム電池
CN103943880A (zh) * 2013-01-22 2014-07-23 华为技术有限公司 一种硫基玻璃陶瓷电解质及其制备方法、全固态锂电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114718A (zh) * 2007-08-31 2008-01-30 中国科学院上海硅酸盐研究所 锂离子无机复合固体电解质材料的设计准则与制备方法
CN104051782A (zh) * 2013-03-12 2014-09-17 华为技术有限公司 一种锂镧钛氧化合物复合固态锂离子电解质材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316379A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131458A (ja) * 2018-02-02 2019-08-08 ショット アクチエンゲゼルシャフトSchott AG イオン伝導性残留ガラス相を有するガラスセラミックおよびその製造方法
US11136261B2 (en) 2018-02-02 2021-10-05 Schott Ag Glass ceramic with ion-conducting residual glass phase and process for the production thereof
US11845688B2 (en) 2018-02-02 2023-12-19 Schott Ag Glass ceramic with ion-conducting residual glass phase and process for the production thereof

Also Published As

Publication number Publication date
EP3316379A1 (en) 2018-05-02
EP3316379A4 (en) 2019-03-13
CN106299468B (zh) 2019-07-26
US20180123167A1 (en) 2018-05-03
CN106299468A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016206430A1 (zh) 固态电解质及其制备方法和含有其的锂离子电池
US9893379B2 (en) Lithium ion battery, solid electrolyte and method of preparing the same
CN108598400B (zh) 一种三层核壳结构正极材料,制备方法及锂离子电池
CN109728259B (zh) 一种硅基复合负极材料及其制备方法和储能器件
CN103855380B (zh) 正极活性物质、用于制备其的方法和包含其的锂二次电池
CN107666010B (zh) 一种锂离子电池固态电解质、其制备方法及锂离子电池
WO2020187273A1 (zh) 一种复合材料及其制备方法及锂离子电池
CN110858643B (zh) 一种快离子导体改性锂离子电池正极材料及其制备方法
Xu et al. The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries
WO2015050031A1 (ja) 被覆正極活物質およびリチウム固体電池
EP2736104A1 (en) Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery
CN107681147B (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
CN109950496B (zh) 一种双包覆镍钴铝酸锂三元正极材料及制备方法
CN109428115B (zh) 一种固态电解质及其制备方法和锂离子电池
CN107093739A (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
Guo et al. Modification of LiCoO 2 through rough coating with lithium lanthanum zirconium tantalum oxide for high-voltage performance in lithium ion batteries
Fang et al. Degradation mechanism and performance enhancement strategies of LiNi x Co y Al 1− x− y O 2 (x≥ 0.8) cathodes for rechargeable lithium-ion batteries: A review
CN109698339A (zh) 一种钛酸锂复合材料及其制备方法和用途
CN106532031B (zh) 一种Li4Ti5O12负极材料及其制成的钛酸锂电池
CN111137871B (zh) 一种氧化锡锑包覆的氟磷酸钴锂及其表面沉积原位包覆方法和应用
CN116565302A (zh) 一种改性固态电解质及其制备方法和锂二次电池
CN110627114A (zh) 一种改性钛酸锂负极材料及其制备方法
CN115472902A (zh) 固态电解质材料及制备、锂离子固态电池及应用
KR20160042357A (ko) 환원 분위기에서 형성된 LTO 코팅을 구비하는 Si계 음극재 제조 방법
CN114883641A (zh) 一种latp基固态电解质界面层及latp基固态锂电池的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016813546

Country of ref document: EP