WO2016204174A1 - 熱収縮チューブ及びその製造方法 - Google Patents

熱収縮チューブ及びその製造方法 Download PDF

Info

Publication number
WO2016204174A1
WO2016204174A1 PCT/JP2016/067776 JP2016067776W WO2016204174A1 WO 2016204174 A1 WO2016204174 A1 WO 2016204174A1 JP 2016067776 W JP2016067776 W JP 2016067776W WO 2016204174 A1 WO2016204174 A1 WO 2016204174A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
ptfe
shrinkable tube
melting point
tube
Prior art date
Application number
PCT/JP2016/067776
Other languages
English (en)
French (fr)
Inventor
英樹 菊池
徹人 中島
田中 大介
孝夫 西尾
絵津也 滝
ホアイ ナム ファム
Original Assignee
日星電気株式会社
三井・デュポンフロロケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日星電気株式会社, 三井・デュポンフロロケミカル株式会社 filed Critical 日星電気株式会社
Priority to CN201680035243.6A priority Critical patent/CN107683200B/zh
Priority to US15/736,180 priority patent/US10661497B2/en
Priority to JP2016566836A priority patent/JP6140376B2/ja
Priority to EP16811648.1A priority patent/EP3311982B1/en
Priority to SG11201710382UA priority patent/SG11201710382UA/en
Priority to KR1020187001322A priority patent/KR20180039620A/ko
Priority to AU2016279465A priority patent/AU2016279465A1/en
Publication of WO2016204174A1 publication Critical patent/WO2016204174A1/ja
Priority to IL256319A priority patent/IL256319A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/049Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • B29C61/025Thermal shrinking for the production of hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/02Condition, form or state of moulded material or of the material to be shaped heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2427/00Use of polyvinylhalogenides or derivatives thereof as filler
    • B29K2427/12Use of polyvinylhalogenides or derivatives thereof as filler containing fluorine
    • B29K2427/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a heat shrinkable tube made of a fluororesin, excellent in tearability, having a high heat shrinkage rate and transparency, and a method for producing the same.
  • Fluororesin is superior in chemical stability, heat resistance, and releasability compared to other plastics, so heat-shrinkable tubes made of fluororesin can be used in food, medical, pharmaceutical, chemical, analytical equipment, etc. First, it is used as a heat-shrinkable tube for protection and insulation in various fields.
  • a heat-shrinkable tube Used as a general heat-shrinkable tube for protection and insulation. If necessary, it is used for product processing such as removing the heat-shrinkable tube after removing the heat-shrinkable tube after coating.
  • product processing such as removing the heat-shrinkable tube after removing the heat-shrinkable tube after coating.
  • a heat-shrinkable tube is coated on a multilayer structure including a protective layer such as a blade, or an electric wire / tube having a deformed structure, and after the inner member is molded or heat-sealed, the heat-shrinkable tube is removed. It is.
  • the tube in addition to the excellent characteristics peculiar to the fluororesin, it is required that the tube can be easily torn and peeled by hand, that is, it has excellent tearability.
  • Patent Document 1 describes a tearable tube in which a fluororesin is a mixture of a plurality of different types of thermoplastic fluororesins.
  • Patent Document 2 and Patent Document 3 show a heat-shrinkable tube having tearability.
  • the fluororesin used is composed of a mixture of a plurality of different types of fluororesins, satisfying a specially defined amount of loss energy change, and a fluororesin that occupies a major proportion of the mixture (main fluororesin)
  • the (resin) is a polymer made of at least three types of monomers, and is a copolymer containing at least tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) as constituent monomer units.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • the heat-shrinkable tube in Patent Document 2 and Patent Document 3 is used because the shrinkage rate is decreased while the tendency to be excellent in tearing property is seen when the addition amount of other fluororesin other than the main fluororesin is increased.
  • the amount of heat shrinkage is insufficient, and the role as a heat shrinkable tube cannot be fulfilled, and further improvement is required.
  • An object of the present invention is to provide a heat-shrinkable tube that improves the heat shrinkage rate in addition to the tearability of a conventionally known heat-shrinkable tube and is also excellent in transparency.
  • the present invention relates to a composition
  • a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less as measured in accordance with ASTM D4894.
  • a heat shrinkable tube having tearability comprising a composition of 0.05 wt% to 3.0 wt% based on the total weight.
  • the present invention relates to a composition
  • a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less as measured in accordance with ASTM D4894.
  • a heat shrinkable tube having tearability obtained by molding a composition of 0.05 wt% to 3.0 wt% with respect to the total weight at a temperature below the melting point of the PTFE.
  • the above-mentioned heat shrinkable tube in which the heat shrinkage rate of the heat shrinkable tube is 40% or more, is a preferred embodiment of the present invention.
  • the heat-shrinkable tube is transparent, that is, the above-described heat-shrinkable tube having a transmittance measured by using a transparency measuring instrument in accordance with ASTM D1746 is 80% or more is a preferred embodiment of the present invention.
  • the present invention also relates to a composition
  • a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less measured according to ASTM D4894, wherein the PTFE content is hot.
  • a method for producing a heat-shrinkable tube having tearability in which a composition that is 0.05 wt% to 3.0 wt% based on the total weight of a meltable fluororesin and PTFE is melt-extruded at a temperature lower than the melting point of the PTFE. provide.
  • DDR (D D 2 -D T 2 ) / (D O 2 -D r 2 ) (Wherein, D D represents the internal diameter of the die, D T represents the outer diameter of the mandrel, D O represents the outer diameter of the tube, D r denotes the inner diameter of the tube.)
  • the heat-meltable fluororesin and PTFE are mixed in advance, and then melt-mixed at a temperature lower than the melting point of PTFE to obtain a pellet-shaped material containing the heat-meltable fluororesin and PTFE.
  • the above-described method for producing a heat-shrinkable tube having a tearability that is melt-extruded at a temperature lower than the melting point is a preferred embodiment of the present invention.
  • the heat shrinkable tube and the manufacturing method thereof of the present invention the following excellent effects can be expected.
  • Example 3 of this invention It is a photograph which compares the transparency of the heat contraction tube obtained in Example 3 of this invention. It is the photograph which compares the transparency of the heat contraction tube obtained by the prior art (Example 1 of patent document 1). It is a figure which shows a typical tube extrusion die.
  • the tearable heat-shrinkable tube of the present invention comprises a PTFE having a heat-meltable fluororesin and a PTFE having a specific gravity of 2.20 or less, measured according to ASTM D4894, having no thermal history higher than the melting point after polymerization. It is obtained by melt molding at a temperature below the melting point. Melt molding is a molding method using a conventionally known melt molding apparatus. By flowing in a molten state, sufficient strength and durability according to each predetermined purpose such as film, fiber, tube, etc. from the melt is obtained. It means that a molded product showing can be molded.
  • Thermo-meltable fluororesin is a copolymer that melts at a temperature above its melting point and exhibits fluidity, and is an unsaturated fluorinated hydrocarbon, unsaturated fluorinated chlorinated hydrocarbon, or ether group-containing unsaturated fluorination.
  • examples thereof include polymers or copolymers such as hydrocarbons, copolymers of these unsaturated fluorinated hydrocarbons and ethylene, and the like.
  • PAVE perfluoroalkyl vinyl ether
  • a tetrafluoroethylene / hexafluoropropylene copolymer hereinafter referred to as FEP
  • a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer hereinafter referred to as PFA
  • PFA tetrafluoroethylene / ethylene copolymer
  • ETFE tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer
  • PVDF polyvinylidene fluoride / polyvinylidene difluoride
  • FEP composed of two types of monomers (copolymer of TFE and HFP) can be given as a suitable example from the viewpoint of transparency.
  • the heat-meltable fluororesin may be used alone or a mixture of two or more of these.
  • the melt flow rate (MFR) of the heat-meltable fluororesin is preferably 1 to 100 g / 10 minutes, more preferably 1 to 80 g / 10 minutes, and still more preferably 1 to 50 g / 10 minutes. Is desirable. MFR is measured according to ASTM D1238-95 at a temperature of 372 ° C. and a load of 5 kg. MFR affects the degree of orientation by PTFE fiberization, which will be described later, and the lower the MFR, the higher the degree of orientation and the tendency to obtain a tube having excellent tearability.
  • the melting point of the heat-meltable fluororesin is not limited as long as the tube can be formed, but is 150 ° C. or higher, preferably 150 ° C. to 320 ° C.
  • the melting point of the heat-meltable fluororesin is preferably less than the melting point of PTFE and is separated from the melting point of PTFE for the purpose of preventing compatibility.
  • PTFE is a tetrafluoroethylene homopolymer, a tetrafluoroethylene (TFE) homopolymer (PTFE) called a homopolymer, or a tetrafluoroethylene copolymer containing 1% or less comonomer (modified) PTFE).
  • TFE tetrafluoroethylene
  • PTFE tetrafluoroethylene
  • the melting point of PTFE immediately after polymerization is 336 ° C. to 343 ° C., although it varies depending on the polymerization method.
  • a method for polymerizing PTFE known methods such as solution polymerization, emulsion polymerization, suspension polymerization and the like can be used, but an average particle size of 300 to 600 ⁇ m obtained by coagulating and drying a polymer latex obtained by emulsion polymerization.
  • the fine powder is preferable.
  • Such PTFE does not have melt moldability, and is present in the composition (or in the pellet) in the state of polymer particles in which orientation is caused by fiberization by shearing force and / or stretching force at the time of melt extrusion molding of the tube.
  • the PTFE of the present invention is preferably PTFE obtained as described above, which has no thermal history higher than the melting point after polymerization and has a specific gravity of 2.20 or less measured according to ASTM D4894.
  • PTFE which does not have a thermal history higher than the melting point after polymerization and has a specific gravity of 2.20 or less, has a high molecular weight and is therefore easily fiberized. Therefore, by using such PTFE, when the tube is melt-extruded, PTFE is fiberized by shearing force and / or stretching force and oriented in the tube extrusion direction, so that the obtained tube has tearability. It becomes possible.
  • the content of PTFE in the composition containing the heat-meltable fluororesin and PTFE of the present invention is 0.05 wt% to 3.0 wt% with respect to the total weight of the heat-meltable fluororesin and PTFE. If the PTFE content is in the range of 0.05 wt% to 3.0 wt%, no breakage, cracking, rupture, etc. occur during diameter expansion, excellent tearability, and easy tearing by hand. High workability with thermal shrinkage of 40% or more. From the viewpoint of excellent tearability and high workability with a heat shrinkage rate of 40% or higher, preferably 50% or higher, that is, from the viewpoint of excellent both tearing properties and heat shrinkage properties, 0.2 wt% to 1 is more preferable. 0.0 wt%.
  • the mixing method of these materials can be appropriately selected from conventionally known methods.
  • An example is shown below.
  • a mixing method a method of obtaining a composition containing a heat-meltable fluororesin and PTFE by mixing in advance, a composition obtained by mixing in advance is further melt-mixed at a temperature lower than the melting point of PTFE to form a pellet. Examples include a method for obtaining a material.
  • a conventionally known method such as dry mixing or wet mixing can be used as a method of previously mixing the composition containing the heat-meltable fluororesin and PTFE.
  • a known dispersion / mixing machine such as a co-aggregation method, planetary mixer, high-speed impeller disperser, rotary drum mixer, screw mixer, belt conveyor mixing, ball mill, pebble mill, sand mill, roll mill, attritor, bead mill, etc. It is more preferable to use an apparatus that can be carried out and can be uniformly dispersed.
  • the form of the heat-meltable fluororesin and PTFE used for mixing there is no limitation on the form of the heat-meltable fluororesin and PTFE used for mixing, but in consideration of workability, a dispersion of fine particles having an average particle size of 0.05 ⁇ m to 1 ⁇ m, a powdery material of several ⁇ m to several tens of ⁇ m, or A granulated product of a powdery product of several hundred ⁇ m can be raised.
  • the form of the composition of the present invention include powders, granulated products of powders, granules, flakes, pellets and the like.
  • the average particle size of the obtained composition is preferably 0.1 ⁇ m or more and is in a range where handling properties are not impaired.
  • the pellet-shaped material is obtained by, for example, melt-extruding the composition using a single-screw or twin-screw extruder to form a strand (string-like material), cooling, and cutting to a predetermined length.
  • a conventionally known method such as a method of forming into a pellet can be used.
  • the melt extrusion temperature is preferably a temperature not lower than the melting point of the heat-meltable fluororesin and lower than the melting point of PTFE. By setting the temperature below the melting point of PTFE, it becomes possible to prevent a decrease in the melting point of PTFE and maintain a highly crystalline state (a state of being easily fiberized) immediately after polymerization.
  • a method of cutting to a predetermined length a conventionally known method such as strand cutting, hot cutting, or underwater cutting can be used.
  • the average particle size of the pellet-shaped material is 0.1 mm or more, and handling properties It is preferable that it is the range which is not impaired.
  • the mixing method is not limited to the above, but a preferable method is used for obtaining a more stable tearability over a long length.
  • melt extrusion molding of the heat contraction tube of the present invention uses the prepared composition or the pellet-shaped composition prepared in advance, it is melt-extruded into a tube shape at a temperature lower than the melting point of PTFE. Since kneading in the cylinder of the melt extruder tends to cause fiber formation of PTFE, the temperature of the cylinder (screw) of the melt extruder is lower than the melting point of PTFE.
  • PTFE is fiberized and oriented by the shearing force and / or stretching force in the subsequent molding (cooling step), and the state where the hot-melt fluororesin and PTFE are not compatible with each other in the solidified tube, that is, the molecular orientation of PTFE. Therefore, the tube becomes easy to tear.
  • PTFE reaches a temperature equal to or higher than the melting point during melt extrusion molding, the molecular chain of PTFE is likely to be entangled with the molecular chain of the heat-meltable fluororesin due to molecular relaxation, and the molecular chain of PTFE becomes difficult to fiber or does not fiberize. For this reason, the molecular orientation effect of PTFE cannot be obtained, and the tearability is deteriorated.
  • melt tension ratio melt tension at 340 ° C./melt tension at 320 ° C.
  • Melt tension was measured using the capillary rheometer described above, and 30 g of a measurement sample was placed in a cylinder stabilized at a measurement temperature of 320 ° C. or 340 ° C. and allowed to stay for 10 minutes, and then from an orifice with a diameter of 2 mm and a length of 20 mm, a piston speed of 3 mm The strand is extruded at / min, and the strand is taken out by a melt tension measuring roll with a take-up speed of 5 m / min (min) and measured. The measurement at each measurement temperature was repeated 5 times, and the average value was defined as the melt tension at 320 ° C. or 340 ° C.
  • melt tension indicates the presence or absence of PTFE thermal history.
  • melt tension tends to be reduced by heating.
  • PTFE is heated to a temperature higher than the melting point after polymerization, the molecular chains of PTFE crystals arranged in an orderly manner are released by molecular relaxation, resulting in random entanglement.
  • Tension is increased. Therefore, a large melt tension measured at or below the melting point of PTFE (320 ° C.) means that PTFE having a thermal history equal to or higher than the melting point after polymerization is contained, and that value has no thermal history equal to or higher than the melting point after polymerization.
  • the melt tension ratio becomes smaller than when PTFE is contained.
  • the melt tension ratio in the present invention is 0.8 or more, preferably 1.0 or more, more preferably 1.5 or more.
  • the melt tension ratio is desirably 30 or less.
  • the melt tension ratio is 0.8 or more and 30 or less, the tearability of the tube obtained by PTFE being appropriately oriented without having a thermal history is improved.
  • the tube can be greatly expanded without breaking, and at the same time, the tube can be expanded at a higher speed and the tube can be extruded to improve productivity.
  • the melt tension ratio is less than 0.7, PTFE has a thermal history, and molecular chains are entangled between PTFE and the heat-meltable fluororesin, which makes it difficult or impossible to align PTFE. , Tearability deteriorates.
  • the melt tension ratio exceeds 30, the degree of PTFE orientation is too large, so that it is difficult to uniformly expand the tube when expanding the tube, and the dimensional accuracy of the tube is lowered.
  • a molding material comprising a composition containing a heat-meltable fluororesin and PTFE and having a melt tension ratio of 0.8 to 30 is suitable for obtaining the heat-shrinkable tube of the present invention.
  • the heat-shrinkable tube of the present invention can be obtained by melt extrusion molding such a molding material.
  • the formed tube is expanded in diameter by heating and internal pressurization, so that the heat-shrinkable tube according to the present invention is obtained.
  • the diameter expansion rate E is represented by the following formula.
  • the diameter expansion rate E is not particularly limited, but is preferably 200% or less.
  • E (%) (Y ⁇ X) / X ⁇ 100 (X: dimension of tube formed by melt extrusion Y: dimension of tube after diameter expansion processing)
  • the expansion ratio correlates with the heat shrinkage ratio, and increasing the expansion ratio contributes to improved workability.On the other hand, if the expansion ratio is too large, it tends to be difficult to return to the outer diameter of the tube before expansion. Sex worsens. Therefore, it can be said that the diameter expansion rate is more preferably 50 to 150%.
  • the thermal shrinkage rate S is represented by the following formula.
  • the heat shrinkage S is preferably 40% or more, and more preferably 50% or more.
  • S (%) (PQ) / P ⁇ 100 (P: Tube dimensions after diameter expansion processing
  • Q Tube dimensions after shrinkage)
  • the heat-shrinkable tube of the present invention is characterized by being excellent in tearability, which is a contradictory property, while maintaining a high heat shrinkage rate, that is, workability.
  • the draw ratio (DDR) calculated based on the following formula is 10 to 500, preferably 20 to 300, more preferably 20 to 200.
  • DDR (D D 2 -D T 2 ) / (D O 2 -D r 2 ) (Wherein, D D represents the internal diameter of the die, D T represents the outer diameter of the mandrel, D O represents the outer diameter of the tube, D r denotes the inner diameter of the tube.)
  • D D represents the internal diameter of the die
  • D T represents the outer diameter of the mandrel
  • D O represents the outer diameter of the tube
  • D r denotes the inner diameter of the tube.
  • the tear strength in the longitudinal direction of the heat shrinkable tube of the present invention is preferably 6.0 N or less. If it is 6.0 N or less, it can be easily torn by hand with a notch of about several mm as a starting point.
  • the tearability is expressed starting from a PTFE fiberized and oriented portion, so that the tearability can also be evaluated in measuring the degree of orientation.
  • the degree of orientation is measured based on the following method.
  • the degree of orientation (degree of fiberization) due to fiber formation of PTFE in the heat-shrinkable tube was measured using an X-ray diffractometer (RINT 2550 type WAXD, manufactured by Rigaku Corporation).
  • the instrument used a CuK ⁇ X-ray source and a scintillation counter detector and measured at 40 kV and 370 mA output.
  • the sample tube was opened and used as a measurement sample.
  • the transparency of the heat-shrinkable tube of the present invention is a transmittance of 80% or more, particularly preferably a transmittance of 90% or more.
  • the transmittance is measured based on a method based on ASTM D1746 using a commercially available transparency measuring device.
  • the heat shrinkable tube of the present invention is excellent in both tearability and heat shrinkage characteristics, and is also excellent in transparency. Therefore, the heat shrinkable tube is useful in food, medical, pharmaceutical, chemical, analytical equipment, and other technical fields.
  • the heat shrinkable tube is coated on a multilayered structure including a protective layer such as a blade, or an electric wire / tube having a deformed structure, and after the inner member is molded or heat-sealed, the heat shrinkable tube is removed. It is useful in.
  • Example 1 The heat-meltable fluororesin is polymerized using FEP (Teflon (registered trademark) FEP100J, MFR 7 g / 10 min, melting point 260 ° C., made by Mitsui DuPont Fluoro Chemical Co., Ltd.) consisting of two types of monomers (copolymer of TFE and HFP). Later, PTFE powder (melting point 336 ° C.) having no heat history higher than the melting point and mixed with 0.05 wt% was pelletized at a molding temperature of 320 ° C.
  • FEP Teflon (registered trademark) FEP100J, MFR 7 g / 10 min, melting point 260 ° C., made by Mitsui DuPont Fluoro Chemical Co., Ltd.
  • PTFE powder melting point 336 ° C.
  • 0.05 wt% was pelletized at a molding temperature of 320 ° C.
  • the tube to be produced has an inner diameter of ⁇ 1.2 mm ⁇ an outer diameter of ⁇ 1.6 mm.
  • the molding temperature indicates the temperature of the molten resin in the melt extruder. This is subjected to diameter expansion processing by heating and internal pressure to obtain a heat-shrinkable tube.
  • Example 2 In Example 1, a heat-shrinkable tube was obtained in the same manner except that the PTFE content was 0.2 wt%.
  • Example 3 A heat shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 0.4 wt%.
  • Example 4 A heat-shrinkable tube was obtained in the same manner as in Example 1, except that the PTFE content was 0.6 wt%.
  • Example 5 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 1.0 wt%.
  • Example 6 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 2.0 wt%.
  • Example 7 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 3.0 wt%.
  • Example 8 the heat-meltable fluororesin is FEP (Mitsui-Dupont Fluoro Chemical Co., Ltd. Teflon (registered trademark) FEP140J, MFR 3 g / 10 min, melting point 260 ° C.) composed of two types of monomers (copolymer of TFE and HFP). ), And a heat shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • FEP Mitsubishi Fluoro Chemical Co., Ltd. Teflon (registered trademark) FEP140J, MFR 3 g / 10 min, melting point 260 ° C.
  • a heat shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • Example 9 the heat-meltable fluororesin is FEP (Teflon (registered trademark) FEP 9494-J, MFR 30 g / 10 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) composed of three types of monomers (terpolymer of TFE / HFP / PAVE).
  • a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (lower than the melting point of PTFE).
  • Example 10 the heat-meltable fluororesin is PFA (Mitsui DuPont Fluoro Chemical Co., Ltd. Teflon (registered trademark) PFA920HP Plus, MFR 30 g / 10 min, melting point 280) composed of two types of monomers (copolymer of TFE and PAVE). ) And a pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE) to obtain a heat-shrinkable tube.
  • PFA Mitsubishi DuPont Fluoro Chemical Co., Ltd. Teflon (registered trademark) PFA920HP Plus, MFR 30 g / 10 min, melting point 280
  • a pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE) to obtain a heat-shrinkable tube.
  • Example 11 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE).
  • Example 12 In Example 2, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • Example 13 In Example 3, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • Example 14 A heat-shrinkable tube was obtained in the same manner as in Example 4 except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • Example 15 In Example 5, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
  • Example 1 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 0.03 wt%.
  • Example 2 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 3.5 wt%.
  • Example 3 a heat shrinkable tube was obtained in the same manner except that the content of PTFE was 0.0 wt%.
  • the tear strength was measured by the method described above, and the measurement results were evaluated based on the following criteria.
  • the heat shrinkable tubes of Examples 1 to 15 of the present invention are all excellent in tearability and have a high heat shrinkage rate.
  • the tearability is excellent and the heat shrinkage rate is 50% or more. It has both characteristics.
  • Example 1 and Example 11 that is, when the PTFE content is in the vicinity of the lower limit, the tearability tends to be slightly inferior, but the thermal shrinkage tends to be high.
  • Example 7 that is, when the PTFE content is in the vicinity of the upper limit, the tearability tends to be reduced while the thermal shrinkage tends to be reduced.
  • the heat-shrinkable tube of Comparative Example 1 has a PTFE content lower than 0.05% and cannot be used from the viewpoint of tearability.
  • the heat-shrinkable tube of Comparative Example 2 has a PTFE content higher than 3.0% and occasionally breaks, breaks, bursts, etc. during the diameter expansion process, so the heat shrinkage rate must be lowered. Absent. As a result, sufficient tightening with the heat shrinkable tube cannot be obtained, and the usage is limited and workability is deteriorated.
  • the degree of orientation is less than 0.5.
  • the degree of orientation due to the improvement in tearing and the formation of PTFE fiber is 0.50 or more.
  • the heat-shrinkable tube in the present invention is superior in both tearability and heat-shrinkage characteristics, ensuring sufficient heat-shrinkage while maintaining tearability as compared with the prior art, and transparent. It can be seen that the heat-shrinkable tube is excellent.
  • the heat-shrinkable tube of the present invention is excellent in both tearability and heat-shrinkage characteristics, and is also excellent in transparency. Therefore, the heat-shrinkable tube is useful in food, medical, pharmaceutical, chemical, analytical equipment, and other technical fields. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、引裂き性に優れ、かつ透明性にも優れる熱収縮チューブ、及びその製造方法を提供することにある。本発明は、熱溶融性フッ素樹脂と、重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物からなる引裂き性を有する熱収縮チューブを提供する。該PTFEの含有量は、熱溶融性フッ素樹脂とPTFEの合計重量に対して0.05wt%~3.0wt%である。本発明はまた、該組成物を該PTFEの融点未満の温度で溶融押出成形する該チューブの製造方法を提供する。

Description

熱収縮チューブ及びその製造方法
 本発明はフッ素樹脂製からなり、引裂き性に優れ、かつ、高い熱収縮率及び透明性を有する熱収縮チューブ及びその製造方法に関するものである。
 フッ素樹脂は他のプラスチックと比較し、化学的安定性、耐熱性、及び、離型性等において優れることから、フッ素樹脂製の熱収縮チューブは、食品、医療、製薬、化学、分析機器等をはじめ、様々な分野における保護用、絶縁用等の熱収縮チューブとして使用されている。
 一般的な保護用及び絶縁用の熱収縮チューブとして用いられる中で、必要に応じて、熱収縮チューブを一旦被覆加工した後、熱収縮チューブのみを剥がして除去するといった製品加工用に使用される用途がある。
 例えば、ブレード等の保護層を含む多層構造、あるいは、異形構造を有する電線・チューブ等へ、熱収縮チューブを被覆し、内部の部材をモールドあるいは熱融着加工した後、熱収縮チューブを取り除く用途である。
 この用途では、フッ素樹脂特有の優れた特性に加え、容易に手でチューブを引裂いて剥がすことができる性質、すなわち、引裂き性に優れることが求められる。
 特許文献1では、フッ素樹脂が種類の異なる複数の熱可塑性フッ素樹脂の混合物からなる、引裂き性を有するチューブが記載されている。
 特許文献2及び特許文献3では、引裂き性を有する熱収縮チューブが示されている。使用するフッ素樹脂の特徴として、特別に定義した損失エネルギーの変化量を満たしていると共に、種類の異なる複数のフッ素樹脂の混合物からなることと、当該混合物で主たる割合を占めるフッ素樹脂(主のフッ素樹脂)が少なくとも3種類のモノマーからつくられるポリマーであって、構成モノマーの単位として、少なくともテトラフルオロエチレン(TFE)及びヘキサフルオロプロピレン(HFP)を含む共重合体であることが記載されている。
 しかし、特許文献2及び特許文献3における熱収縮チューブは、主のフッ素樹脂以外のその他のフッ素樹脂の添加量が増加すると引裂き性に優れる傾向が見られる一方、収縮率が小さくなることから、使用用途によっては、熱収縮の量が不十分であり、熱収縮チューブとしての役割が果たせず、更なる改善が求められている。
 また、本発明者らは、特許文献1乃至3に記載された熱収縮チューブでは、その他のふっ素樹脂の添加量が増加すると引裂き性に優れる傾向が見られる一方、白濁するため、被熱収縮チューブ体を通して下地の状態を確認しづらい等、透明性悪化の問題が生じることを見出した。
特許第4968823号公報 特許第5518268号公報 特開2014-129883号公報
 本発明の課題は、従前公知の熱収縮チューブの引裂き性に加え熱収縮率を改良し、さらには透明性にも優れる熱収縮チューブを提供することにある。
 本発明は、熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、PTFEの含有量が組成物の総重量に対して0.05wt%~3.0wt%である組成物からなる引裂き性を有する熱収縮チューブを提供する。
 本発明は、熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、PTFEの含有量が組成物の総重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で成形して得られる、引裂き性を有する熱収縮チューブを提供する。
 前記熱収縮チューブの熱収縮率が、40%以上である前記した熱収縮チューブは本発明の好ましい態様である。
 前記熱収縮チューブが、透明性を有し、すなわち、ASTM D1746に準拠し透明度測定器を用いて測定した透過率が、80%以上である前記した熱収縮チューブは本発明の好ましい態様である。
 本発明はまた、熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、該PTFEの含有量が熱溶融性フッ素樹脂とPTFEの合計重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で溶融押出成形する引裂き性を有する熱収縮チューブの製造方法を提供する。
 前記溶融押出成形を、下記式に基づき算出される引き落とし率(DDR)が20-300である条件で行う引裂き性を有する前記した熱収縮チューブの製造方法は本発明の好ましい態様である。
DDR=(D -D )/(D -D
(式中、Dはダイの内径を表し、Dはマンドレルの外径を表し、Dはチューブの外径を表し、Dはチューブの内径を表す。)
 前記熱溶融性フッ素樹脂とPTFEを予め混合した後、PTFEの融点未満の温度にて溶融混合することにより、熱溶融性フッ素樹脂及びPTFEを含むペレット状の材料を得て、さらに該材料をPTFEの融点未満の温度にて溶融押出成形する引裂き性を有する前記した熱収縮チューブの製造方法は本発明の好ましい態様である。
 本発明の熱収縮チューブ及びその製造方法にあっては、以下の優れた効果が期待できる。
(1)チューブの長手方向における引裂き強度が小さくできるため、数mm程度の切り込みを起点に容易に手で引き裂くことが可能である。
(2)熱収縮率が40%以上であるため、熱収縮チューブによる締め付けが十分得られ、高い作業性が得られるとともに、あらゆる用途で使用可能となる。
(3)PTFEと少割合の低分子量フッ素樹脂からなる引裂きチューブは知られている(例えば実用新案登録第2528627号)が、このような従来公知のチューブと比べてPTFEの含有量が格段に少ないため、チューブ拡径時の破断、割れ、破裂等が発生せず、その結果、引裂き性を維持しつつ、十分な熱収縮率を確保できる。すなわち、引裂き性及び熱収縮率の両特性に優れる熱収縮チューブが得られる。
(4)また、PTFEの含有量が、従来技術と比べて格段に少ないため、熱溶融性樹脂の透明性が保たれ、被熱収縮チューブ体にある下地の状態が確認し易くなる。
(5)本発明の製造方法によれば、PTFEが均等に分散され、これを起点に引裂き性が発現するため、長尺に渡り、安定した引裂き性を有するチューブが得られる。
本発明の実施例3で得られた熱収縮チューブの透明性を比較する写真である。 従来技術(特許文献1の実施例1)で得られた熱収縮チューブの透明性を比較する写真である。 代表的なチューブ押出しダイを示す図である。
 本発明の引裂き性を有する熱収縮チューブは、熱溶融性フッ素樹脂、及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重2.20以下のPTFEを含む組成物を、PTFEの融点未満の温度で溶融成形して得られるものである。
 溶融成形とは従来公知の溶融成形装置を用いる成形方法で、溶融状態で流動することにより、溶融物から例えば、フィルム、繊維、チューブなど、それぞれの所定の目的に応じた十分な強度及び耐久性を示す成形品を成形することができることを意味する。
 熱溶融性フッ素樹脂としては、融点以上の温度で溶融して流動性を示す共重合体であって、不飽和フッ素化炭化水素、不飽和フッ素化塩素化炭化水素、エーテル基含有不飽和フッ素化炭化水素などの重合体又は共重合体、或はこれら不飽和フッ素化炭化水素類とエチレンの共重合体等が挙げられる。例えば具体的には、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルコキシトリフルオロエチレン(好ましくはパーフルオロアルキルビニルエーテル(以下、PAVEという))、クロロトリフルオロエチレン、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体、あるいはこれらモノマーとエチレンの共重合体などを挙げられる。より具体的には、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(以下、FEPという)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(以下、PFAという)、テトラフルオロエチレン・エチレン共重合体(以下、ETFEという)、テトラフルオロエチレン・ヘキサフルオロプロピレン・ビニリデンフロライド共重合体(以下、THVという)、ポリフッ化ビニリデン・ポリビニリデンジフルオライド(以下、PVDFという)等を挙げることができる。
 熱溶融性フッ素樹脂は、透明性の観点から好適な例として、2種類のモノマー(TFEとHFPのコポリマー)から成るFEPを挙げることができ、他にも融点の異なるFEPの混合物、FEPとFEPとは異なる熱溶融性フッ素樹脂との混合物が挙げられる。
 熱溶融性フッ素樹脂は単独で使用してもよく、これらの2種以上の混合物であってもよい。また、コモノマー種類、コモノマー含有量、分子量(重量平均分子量または数平均分子量)、分子量分布、融点及びメルトフローレート(MFR)等が異なる、あるいは機械的物性等が異なる少なくとも2種類以上の同一種類の共重合体同士の混合物も挙げられ、例えばPFA同士あるいはFEP同士の混合物が挙げられる。この様な熱溶融性フッ素樹脂は、溶液重合、乳化重合、懸濁重合等公知の方法によって製造することができる。
 また、熱溶融性フッ素樹脂のメルトフローレート(MFR)は、1~100g/10分であることが好ましく、より好ましくは1~80g/10分、さらに好ましくは1~50g/10分であることが望ましい。MFRは、ASTM D1238―95に従い、温度372℃、荷重5kg重で測定する。
 MFRは、後述するPTFEの繊維化による配向度に影響し、MFRが低いほど配向度は高くなり、引裂き性に優れるチューブが得られる傾向にある。
 また、熱溶融性フッ素樹脂の融点はチューブ成形が可能な範囲であれば限定されないが、150℃以上、好ましくは150℃~320℃の範囲である。
 熱溶融性フッ素樹脂の融点は、PTFEの融点未満であり、かつ相溶を防ぐ目的で、PTFEの融点と離れていることが好ましい。
 PTFEとしては、テトラフルオロエチレンの単独重合体であって、ホモポリマーと呼ばれるテトラフルオロエチレン(TFE)の単独重合体(PTFE)、あるいは1%以下のコモノマーを含むテトラフルオロエチレンの共重合体(変性PTFE)が挙げられる。重合直後のPTFEの融点は、その重合方法により異なるが336℃~343℃である。
 PTFEの重合方法としては、溶液重合、乳化重合、懸濁重合等公知の方法を用いることができるが、乳化重合で得られたポリマーラテックスを凝析・乾燥して得られる平均粒径300~600μmのファインパウダーであることが好ましい。
 このようなPTFEは溶融成形性を有さず、チューブの溶融押出成形時のせん断力及び/又は延伸力で繊維化による配向が生じるポリマー粒子の状態で組成物中(あるいはペレット中)に存在する。
 本発明のPTFEは、上記により得られるPTFEであって、重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重2.20以下のPTFEであることが好ましい。
 PTFEは重合後に融点以上に加熱されると、分子緩和により整然と並んだPTFEの結晶の分子鎖が解れて、分子同士がランダムに絡み易くなり、その結果として繊維化し難くなるため好ましくない。また、PTFEの融点の低下を招き、熱溶融性フッ素樹脂との融点の差が小さくなる傾向があるため好ましくない。
 重合後に融点以上の熱履歴が無く且つ比重2.20以下であるPTFEは高分子量であるため繊維化し易い。したがって、このようなPTFEを用いることにより、チューブを溶融押出成形した際にせん断力及び/又は延伸力でPTFEが繊維化し、チューブ押出方向に配向するため、得られるチューブが引裂き性を有することが可能となる。
 本発明の熱溶融性フッ素樹脂及びPTFEを含む組成物におけるPTFEの含有量は、熱溶融性フッ素樹脂及びPTFEの総重量に対し、0.05wt%~3.0wt%である。PTFEの含有量が0.05wt%~3.0wt%の範囲にあれば、拡径時に破断、割れ、破裂などが発生せず、引裂き性に優れ、容易に手で引き裂くことが可能であり、熱収縮率が40%以上で高い作業性を有する。引裂き性に優れ、熱収縮率が40%以上、好ましくは50%以上と高い作業性を有する、すなわち、引裂き性及び熱収縮の両特性に優れるという観点で、さらに好ましくは0.2wt%~1.0wt%である。
 熱溶融性フッ素樹脂及びPTFEを含む組成物を、チューブ状に成形する前の準備として、これらの材料の混合方法については、従前公知の方法から適宜選択して行うことができる。以下にその例を示す。
 混合方法としては、予め混合して熱溶融性フッ素樹脂及びPTFEを含む組成物を得る方法、予め混合して得た組成物をPTFEの融点未満の温度にて更に溶融混合することによりペレット状の材料を得る方法などが挙げられる。
 熱溶融性フッ素樹脂及びPTFEを含む組成物を予め混合する方法は、乾式混合又は湿式混合等のような従来公知の方法を用いることができる。例えば、共凝集法、プラネタリーミキサー、高速インペラー分散機、ロータリードラム型ミキサー、スクリュー型ミキサー、ベルトコンベヤ混合、ボールミル、ペブルミル、サンドミル、ロールミル、アトライター、ビードミルなどの公知の分散・混合機を用いて行うことができ、均一に分散できる装置がより好ましい。
 混合に用いられる熱溶融性フッ素樹脂及びPTFEの形態に制限は無いが、作業性を考慮して平均粒径0.05μm~1μmの微粒子の分散液や数μm~数10μmの粉末状物、あるいは数100μmの粉末状物の造粒物を上げることができる。
 本発明の組成物の形態は、粉末状物、粉末状物の造粒品、粒状物、フレーク、ペレット等の形態を挙げることができる。得られる組成物の平均粒径は、0.1μm以上であって、ハンドリング性が損なわれない範囲であることが好ましい。
 ペレット状の材料を得る方法は、例えば、単軸あるいは二軸の押出機等を用いて前記組成物を溶融押出してストランド(紐状物)とした後冷却し、所定の長さに切断してペレット状に成形する方法等、従来公知の方法を用いることができる。溶融押出温度は、熱溶融性フッ素樹脂の融点以上PTFEの融点未満の温度であることが好ましい。PTFEの融点未満の温度とすることにより、PTFEの融点の低下を防ぎ且つ重合直後の高結晶状態(繊維化しやすい状態)を維持することが可能となり、次工程のチューブ状に溶融押出成形する際にせん断力及び/又は延伸力によりPTFEを繊維化して配向させることが可能となる。
 所定の長さに切断する方法としては、ストランドカット、ホットカット、水中カットなどの従来公知の方法を用いることができるペレット状の材料の平均粒径は、0.1mm以上であって、ハンドリング性が損なわれない範囲であることが好ましい。
 混合方法については上記に限定されないが、長尺に渡り、より安定した引裂き性を得るために好ましい方法が用いられる。
 次に、本発明の熱収縮チューブの溶融押出成形の方法について、一例を示す。
 事前に準備された、前記組成物あるいはペレット状の前記組成物を用いて、PTFEの融点未満の温度にて、チューブ状に溶融押出成形する。溶融押出機のシリンダー内における混練によりPTFEの繊維化が起こり易いため、溶融押出機のシリンダー(スクリュー)の温度はPTFEの融点以下である。一方、成形性・生産性の観点からは、混練の影響が少ない(PTFEの繊維化が起こり難い)溶融押出機のダイ部の温度に限り、PTFE分子鎖の絡まりによる引裂き性の阻害が起きない程度の短時間、PTFEの融点以上にすることもできる。
 本発明における成形温度はPTFEの融点未満であるため、PTFE分子鎖の絡まりが無い状態が、押出機のダイからチューブ状に押し出されるまで維持される。そして、その後の成形(冷却工程)におけるせん断力及び/又は延伸力によりPTFEが繊維化して配向し、固化したチューブ内に、熱溶融フッ素樹脂とPTFEが相溶しない状態、すなわち、PTFEの分子配向が大きい状態、が存在するため、これらが起点となってチューブの引裂きが容易となる。
 溶融押出成形時にPTFEが融点以上の温度になる場合には、分子緩和によりPTFEの分子鎖が熱溶融性フッ素樹脂の分子鎖と絡まり易くなり、PTFEの分子鎖が繊維化し難くなるあるいは繊維化しないため、PTFEの分子配向効果が得られず引裂き性が悪くなり好ましくない。
 チューブ内のPTFEの熱履歴の有無については、メルトテンション比を算出することにより確認できる。メルトテンション比は、キャピラリーレオメーター(Capilograph 型式1D, 東洋精機株式会社製)を用いて測定したメルトテンション(単位:g)から下記の式により算出される。
メルトテンション比=340℃におけるメルトテンション/320℃におけるメルトテンション
 メルトテンションは上記キャピラリーレオメーターを用い、測定温度320℃または340℃に安定させたシリンダーに、測定サンプル30gを投入し10分間滞留させた後、径Φ2mm×長さ20mmのオリフィスから、ピストンスピード3mm/minにてストランドを押し出し、該ストランドを引取速度5m/分(min)のメルトテンション測定ロールにて引取り、測定される。各々の測定温度における測定を5回繰り返し、その平均値を320℃または340℃におけるメルトテンションとした。
 メルトテンションは、PTFEの熱履歴の有無を示すものである。
 一般的にメルトテンションは加熱により小さくなる傾向が有るが、PTFEは重合後に融点以上に加熱されると、分子緩和により整然と並んだPTFEの結晶の分子鎖が解れランダムな絡み合いが生じるため、そのメルトテンションが大きくなる。
 そのため、PTFEの融点以下(320℃)で測定したメルトテンションが大きいことは、重合後に融点以上の熱履歴があるPTFEを含有することを意味し、その値が重合後に融点以上の熱履歴が無いPTFEを含有する場合よりも大きくなる結果、メルトテンション比は小さくなる。
 すなわち、重合後に融点以上の熱履歴があるPTFEを含有する熱溶融性フッ素樹脂組成物をPTFEの融点未満の温度で成形した場合、またはPTFEの融点(340℃)以上で成形した場合に、メルトテンション比が小さくなることにより、PTFEの熱履歴の有無を確認することができる。
Figure JPOXMLDOC01-appb-I000001
 本発明におけるメルトテンション比は0.8以上、好ましくは1.0以上、より好ましくは1.5以上であることが望ましい。またメルトテンション比は30以下であることが望ましい。メルトテンション比が0.8以上30以下である場合には、PTFEが熱履歴を有さず適度に配向していることにより得られるチューブの引裂き性が向上する。更に、チューブ拡径時においてチューブが破断することなく大きく拡径できることに加え、より高速での拡径及びチューブ押出成形が可能となり生産性が向上する。
 一方、メルトテンション比が0.7未満の場合には、PTFEが熱履歴を有しておりPTFEと熱溶融性フッ素樹脂との分子鎖の絡まり合いが生じPTFEが配向し難くなるあるいは配向しないため、引裂き性が悪くなる。また、メルトテンション比が30を超える場合は、PTFEの配向の度合いが大きすぎるため、チューブ拡径時に均一な拡径が困難になりチューブの寸法精度が低下するため好ましくない。
 したがって、熱溶融性フッ素樹脂及びPTFEを含む組成物であって、そのメルトテンション比が0.8以上30以下である組成物からなる成形用材料は、本発明の熱収縮チューブを得るための好適の成形材料である。
 このような成形材料を溶融押出成形することにより、本発明の熱収縮チューブを得ることができる。
 成形されたチューブは、加熱及び内部加圧により拡径されることで、本発明にかかる熱収縮チューブとなる。
 拡径率Eは、下記式で表される。拡径率Eは、特に限定されないが、200%以下が好ましい。
E(%)=(Y-X)/X×100
(X:溶融押出成形されたチューブ寸法 Y:拡径加工後のチューブ寸法)
 拡径率は熱収縮率と相関し、拡径率を大きくすることで作業性の向上に寄与する一方、大きすぎると拡径前のチューブ外径に戻り難くなる傾向が見られ、逆に作業性は悪化する。そのため、拡径率は50~150%がさらに好ましい範囲と言える。
 熱収縮率Sは、下記式で表される。熱収縮率Sは、好ましくは40%以上であり、さらに好ましくは50%以上である。
S(%)=(P-Q)/P×100
(P:拡径加工後のチューブ寸法 Q:収縮後のチューブ寸法)
 熱収縮率が大きいほど、熱収縮チューブによる締め付けが十分得られることから、作業性に優れ、その結果、あらゆる用途で使用可能となる。チューブを高温で収縮させるほど収縮率は大きくなるので、より大きな収縮率を得る方法として、高温・短時間で収縮させる方法も挙げられる。その場合、被覆される材料の耐熱性を考慮して収縮温度を決定する必要がある。
 本発明の熱収縮チューブは、高い熱収縮率、すなわち作業性を保持しつつ、相反する特性である引裂き性にも優れることが特徴である。
 本発明の熱収縮チューブの溶融押出成形方法としては、下記式に基づき算出される引落率(DDR)が10~500、好ましくは20~300、より好ましくは20~200である。
DDR=(D -D )/(D -D
(式中、Dはダイの内径を表し、Dはマンドレルの外径を表し、Dはチューブの外径を表し、Dはチューブの内径を表す。)
 引落率が高いほど、PTFEの繊維化による配向度が高く、引裂き性に優れるチューブが得られる。
 また、本発明の熱収縮チューブの長手方向における引裂き強度は6.0N以下であることが好ましい。6.0N以下では、数mm程度の切り込みを起点にし、容易に手で引き裂くことが可能である。
 引裂き強度は、以下の方法に基づき測定する。
 測定サンプル100mmの片端の径中心付近に20mmの切り込みを設け、2股に分かれた切込み部を、引張試験機のチャック(固定治具)にて、それぞれ保持する。
 引張速度100mm/分にて、測定サンプルの切り込み部を更に引き裂き、その際の最大強度を測定する。n=5の測定による平均値を、引裂き強度として用いる。
 引裂き性は、PTFEの繊維化して配向した箇所を起点として発現するため、引裂き性は配向度の測定においても評価できる。
 配向度は、以下の方法に基づき測定する。
 熱収縮チューブ中のPTFEの繊維化による配向度(繊維化の度合い)は、X線回折装置(RINT2550型WAXD、リガク社製)を用いて測定した。装置は、CuKαのX線源とシンチレーションカウンタの検出器を使用し、40kVと370mAの出力で測定した。試料チューブを切り開き、測定サンプルとした。試料長手方向を基準軸として測定サンプルを試料ホルダーに固定し、2θ=18°付近のフッ素樹脂由来ピークについて方位角分布強度を測定した。
 配向度は、下記の式で計算した。配向度は、数値が大きいほど微結晶の配向が強い。
配向度=(180-β)/180(βは配向由来ピークの半値幅である。)
 本発明の熱収縮チューブの透明性については、透過率80%以上であり、特に好ましくは透過率90%以上である。透過率は、市販の透明度測定機を用い、ASTM D1746に準拠された方法に基づき測定する。
 本発明の熱収縮チューブは、引裂き性及び熱収縮率の両特性に優れ、かつ、透明性にも優れるため、食品、医療、製薬、化学、分析機器等の他、あらゆる技術分野において有用であり、特にブレード等の保護層を含む多層構造、あるいは、異形構造を有する電線・チューブ等へ、熱収縮チューブを被覆し、内部の部材をモールドあるいは熱融着加工した後、熱収縮チューブを取り除く用途で有用である。
 以下に具体例によって本発明をより詳細に説明するが、本発明はこれらの例によって、何ら制限されるものではない。
[実施例1]
 熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP100J、MFR 7g/10分、融点260℃)を用い、重合後に融点以上の熱履歴が無く且つ比重2.20のPTFE粉末(融点336℃)を0.05wt%混合して成形温度320℃(PTFEの融点未満)でペレット状とし、溶融押出機を用い、成形温度320℃(PTFEの融点未満)にてチューブ状に溶融押出成形(DDR=110)する。作製するチューブは内径φ1.2mm×外径φ1.6mmである。
 ここで成形温度は、溶融押出機内の溶融樹脂の温度を示す。
 これを、加熱及び内部加圧により、拡径加工し、熱収縮チューブを得る。
[実施例2]
 実施例1において、PTFEの含有量を0.2wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例3]
 実施例1において、PTFEの含有量を0.4wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例4]
 実施例1において、PTFEの含有量を0.6wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例5]
 実施例1において、PTFEの含有量を1.0wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例6]
 実施例1において、PTFEの含有量を2.0wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例7]
 実施例1において、PTFEの含有量を3.0wt%とするほかは同様にして、熱収縮チューブを得た。
[実施例8]
 実施例3において、熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP140J、MFR 3g/10分、融点260℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例9]
 実施例3において、熱溶融性フッ素樹脂は3種類のモノマー(TFE/HFP/PAVEのターポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP9494-J、MFR 30g/10分、融点260℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例10]
 実施例3において、熱溶融性フッ素樹脂は2種類のモノマー(TFEとPAVEのコポリマー)から成るPFA(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)PFA920HP Plus、MFR 30g/10分、融点280℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例11]
 実施例1において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例12]
 実施例2において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例13]
 実施例3において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例14]
 実施例4において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
[実施例15]
 実施例5において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
[比較例1]
 実施例1において、PTFEの含有量を0.03wt%とするほかは同様にして、熱収縮チューブを得た
[比較例2]
 実施例1において、PTFEの含有量を3.5wt%とするほかは同様にして、熱収縮チューブを得た。
[比較例3]
 実施例1において、PTFEの含有量を0.0wt%とするほかは同様にして、熱収縮チューブを得た。
[比較例4]
 熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP100J、MFR 7g/10分、融点260℃)を用い、重合後に融点以上の熱履歴が無く且つ比重2.20のPTFE粉末(融点336℃)を0.4wt%混合して成形温度340℃(PTFEの融点以上)にてペレット状としたペレットを用いた。
 前記実施例及び比較例の熱収縮チューブについて、引裂き強度、熱収縮率、透明性、及び配向度を評価した。評価結果を表1に示す。
 また、実施例8~15、及び比較例3及び4のペレットを用いて、メルトテンションを測定し、メルトテンション比を算出した。結果を表2に示す。
(引裂き性の評価基準)
 引裂き強度は、前記した方法で測定したが、測定結果を以下の基準に基づいて評価した。
◎:1500mm以上を容易に引裂くことができた。
〇:1000mm以上を容易に引裂くことができた。
△:やや引裂き難くなるが800mm以上は手で引裂くことができた。
  良品としての限界である。
×:手で引裂けるものの、場合によっては途中で樹脂がちぎれる等、引裂き距離が短くなった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本願発明の実施例1乃至15の熱収縮チューブは、いずれも引裂き性に優れ、高い熱収縮率を有する。
 特に、実施例2乃至5及び実施例12乃至15の熱収縮チューブ、すなわちPTFEの含有量が0.2wt%~1.0wt%では、引裂き性に優れ、かつ、熱収縮率が50%以上と優れ、両特性を兼ね備えている。
 実施例1及び実施例11、すなわちPTFEの含有量が下限付近では、引裂き性がやや劣る一方で、熱収縮率は高い傾向が見られる。
 実施例7、すなわちPTFEの含有量が上限付近では、引裂き性に優れる一方で、熱収縮率は小さくなる傾向が見られる。
 比較例1の熱収縮チューブは、PTFEの含有量が0.05%より低く、引裂き性の観点で使用不可である。
 比較例2の熱収縮チューブは、PTFEの含有量が3.0%を超え高く、時折、拡径加工の過程で破断、割れ、破裂等が発生するため、熱収縮率を低くせざるを得ない。その結果、熱収縮チューブによる締め付けが十分得られず、使用用途が限定され作業性が悪化するため、使用不可である。
 比較例3の熱収縮チューブ、すなわち、PTFEの含有量0.0%においては、配向度が0.5を下回る。実施例との比較からも明らかなように、PTFEの繊維化が発現し引裂き性の向上に起因する配向度は、0.50以上である。
 以上より、本発明における熱収縮チューブは、従来技術と比較して、引裂き性を維持しつつ、十分な熱収縮率を確保した、引裂き性及び熱収縮率の両特性に優れ、かつ、透明性にも優れる熱収縮チューブであることがわかる。
 本発明の熱収縮チューブは、引裂き性及び熱収縮率の両特性に優れ、かつ、透明性にも優れるため、食品、医療、製薬、化学、分析機器等の他、あらゆる技術分野において有用である。

Claims (9)

  1.  熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、PTFEの含有量が組成物の総重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で成形して得られる、引裂き性を有する熱収縮チューブ。
  2.  該熱収縮チューブの熱収縮率が、40%以上であることを特徴とする、請求項1に記載の引裂き性を有する熱収縮チューブ。
  3.  該熱収縮チューブのASTM D1746に準拠し透明度測定器を用いて測定した透過率が、80%以上であることを特徴とする、請求項1または2に記載の引裂き性を有する熱収縮チューブ。
  4.  前記熱溶融性フッ素樹脂が、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン・ビニリデンフロライド共重合体(THV)およびポリフッ化ビニリデン・ポリビニリデンジフルオライド(PVDF)から選ばれた少なくとも1種であることを特徴とする請求項1~3のいずれかに記載の引裂き性を有する熱収縮チューブ。
  5.  熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、該PTFEの含有量が熱溶融性フッ素樹脂とPTFEの合計重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で溶融押出成形する引裂き性を有する熱収縮チューブの製造方法。
  6.  前記溶融押出成形を、下記式に基づき算出される引き落とし率(DDR)が20-300である条件で行うことを特徴とする請求項5に記載の引裂き性を有する熱収縮チューブの製造方法。
    DDR=(D -D )/(D -D
    (式中、Dはダイの内径を表し、Dはマンドレルの外径を表し、Dはチューブの外径を表し、Dはチューブの内径を表す。)
  7.  前記熱溶融性フッ素樹脂とPTFEを予め混合した後、PTFEの融点未満の温度にて溶融混合することにより、熱溶融性フッ素樹脂及びPTFEを含むペレット状の材料を得て、さらに該材料をPTFEの融点未満の温度にて溶融押出成形することを特徴とする請求項5または6に記載の引裂き性を有する熱収縮チューブの製造方法。
  8.  熱溶融性フッ素樹脂及びPTFEを含む組成物であって、そのメルトテンション比が0.8以上30以下である組成物からなる成形用材料。
  9.  請求項8に記載の成形用材料を溶融押出成形して得られることを特徴とする熱収縮チューブ。
PCT/JP2016/067776 2015-06-16 2016-06-15 熱収縮チューブ及びその製造方法 WO2016204174A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201680035243.6A CN107683200B (zh) 2015-06-16 2016-06-15 热收缩管及其制造方法
US15/736,180 US10661497B2 (en) 2015-06-16 2016-06-15 Heat shrink tube and method for producing the same
JP2016566836A JP6140376B2 (ja) 2015-06-16 2016-06-15 熱収縮チューブ及びその製造方法
EP16811648.1A EP3311982B1 (en) 2015-06-16 2016-06-15 Heat-shrinkable tube and method for producing same
SG11201710382UA SG11201710382UA (en) 2015-06-16 2016-06-15 Heat shrink tube and Method for Producing Same
KR1020187001322A KR20180039620A (ko) 2015-06-16 2016-06-15 열수축 튜브 및 그 제조 방법
AU2016279465A AU2016279465A1 (en) 2015-06-16 2016-06-15 Heat-shrinkable tube and method for producing same
IL256319A IL256319A (en) 2015-06-16 2017-12-14 Heat-shrinkable tube and method for its preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-121181 2015-06-16
JP2015121181 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016204174A1 true WO2016204174A1 (ja) 2016-12-22

Family

ID=57545260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067776 WO2016204174A1 (ja) 2015-06-16 2016-06-15 熱収縮チューブ及びその製造方法

Country Status (9)

Country Link
US (1) US10661497B2 (ja)
EP (1) EP3311982B1 (ja)
JP (2) JP6140376B2 (ja)
KR (1) KR20180039620A (ja)
CN (1) CN107683200B (ja)
AU (1) AU2016279465A1 (ja)
IL (1) IL256319A (ja)
SG (1) SG11201710382UA (ja)
WO (1) WO2016204174A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379315B1 (ja) * 2018-03-30 2018-08-22 グンゼ株式会社 チューブ及び該チューブの製造方法
JP2019112563A (ja) * 2017-12-25 2019-07-11 三井・ケマーズ フロロプロダクツ株式会社 溶融成形用材料及びその製造方法
WO2019135295A1 (ja) 2018-01-04 2019-07-11 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
JP2019184048A (ja) * 2018-07-30 2019-10-24 グンゼ株式会社 チューブ及び該チューブの製造方法
JP2021002458A (ja) * 2019-06-21 2021-01-07 ダイキン工業株式会社 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル
WO2021039837A1 (ja) * 2019-08-30 2021-03-04 日星電気株式会社 熱収縮チューブ及びその成形方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118344690A (zh) * 2019-01-31 2024-07-16 株式会社润工社 具有撕裂性的热缩管
US20220170575A1 (en) * 2020-12-02 2022-06-02 Saint-Gobain Performance Plastics Corporation Tube and method for making same
CN115845635B (zh) * 2023-02-02 2023-07-18 山东东岳高分子材料有限公司 一种聚四氟乙烯中空纤维膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219027A (ja) * 1984-04-16 1985-11-01 Kureha Chem Ind Co Ltd 弗化ビニリデン系樹脂マツト成形物及びその製造方法
JP2006159524A (ja) * 2004-12-03 2006-06-22 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形方法及びフッ素樹脂成形品
JP2012081590A (ja) * 2010-10-06 2012-04-26 Daikin Industries Ltd 成形品の製造方法、及び、被覆電線の製造方法
JP2015039843A (ja) * 2013-08-22 2015-03-02 住友電工ファインポリマー株式会社 フッ素樹脂製熱収縮チューブ、及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834956A (ja) 1971-09-10 1973-05-23
JP4968823B2 (ja) 2006-07-14 2012-07-04 株式会社潤工社 フッ素樹脂製の引き裂き性のチューブ
EP2126358A2 (en) 2007-03-07 2009-12-02 Saint-Gobain Performance Plastics Corporation Multi-layer tubes
US20110223427A1 (en) * 2008-11-12 2011-09-15 Nitto Denko Corporation Method of producing electrically insulating thermally conductive sheet, electrically insulating thermally conductive sheet, and heat dissipating member
JP5541176B2 (ja) 2011-01-24 2014-07-09 ダイキン工業株式会社 フッ素樹脂組成物及び該フッ素樹脂組成物の製造方法
JP2013071341A (ja) 2011-09-28 2013-04-22 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形品
JP5518268B2 (ja) 2011-11-21 2014-06-11 株式会社潤工社 引き裂き性を有する熱収縮チューブ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219027A (ja) * 1984-04-16 1985-11-01 Kureha Chem Ind Co Ltd 弗化ビニリデン系樹脂マツト成形物及びその製造方法
JP2006159524A (ja) * 2004-12-03 2006-06-22 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形方法及びフッ素樹脂成形品
JP2012081590A (ja) * 2010-10-06 2012-04-26 Daikin Industries Ltd 成形品の製造方法、及び、被覆電線の製造方法
JP2015039843A (ja) * 2013-08-22 2015-03-02 住友電工ファインポリマー株式会社 フッ素樹脂製熱収縮チューブ、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3311982A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990579B2 (ja) 2017-12-25 2022-01-12 三井・ケマーズ フロロプロダクツ株式会社 溶融成形用材料及びその製造方法
JP2019112563A (ja) * 2017-12-25 2019-07-11 三井・ケマーズ フロロプロダクツ株式会社 溶融成形用材料及びその製造方法
WO2019135295A1 (ja) 2018-01-04 2019-07-11 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
CN111556942A (zh) * 2018-01-04 2020-08-18 郡是株式会社 热塑性含氟树脂制管
JPWO2019135295A1 (ja) * 2018-01-04 2021-01-07 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
US11802199B2 (en) 2018-01-04 2023-10-31 Gunze Limited Thermoplastic fluororesin tube
JP7181897B2 (ja) 2018-01-04 2022-12-01 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
CN114953398A (zh) * 2018-01-04 2022-08-30 郡是株式会社 热塑性含氟树脂制管
JP2019178717A (ja) * 2018-03-30 2019-10-17 グンゼ株式会社 チューブ及び該チューブの製造方法
JP6379315B1 (ja) * 2018-03-30 2018-08-22 グンゼ株式会社 チューブ及び該チューブの製造方法
JP2019184048A (ja) * 2018-07-30 2019-10-24 グンゼ株式会社 チューブ及び該チューブの製造方法
JP7215842B2 (ja) 2018-07-30 2023-01-31 グンゼ株式会社 チューブ及び該チューブの製造方法
JP2021002458A (ja) * 2019-06-21 2021-01-07 ダイキン工業株式会社 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル
JP7421058B2 (ja) 2019-06-21 2024-01-24 ダイキン工業株式会社 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル
JPWO2021039837A1 (ja) * 2019-08-30 2021-09-27 日星電気株式会社 熱収縮チューブ及びその成形方法
WO2021039837A1 (ja) * 2019-08-30 2021-03-04 日星電気株式会社 熱収縮チューブ及びその成形方法

Also Published As

Publication number Publication date
JP2017119883A (ja) 2017-07-06
JP6369961B2 (ja) 2018-08-08
EP3311982A1 (en) 2018-04-25
KR20180039620A (ko) 2018-04-18
US10661497B2 (en) 2020-05-26
AU2016279465A1 (en) 2017-12-14
SG11201710382UA (en) 2018-02-27
JP6140376B2 (ja) 2017-05-31
JPWO2016204174A1 (ja) 2017-06-29
IL256319A (en) 2018-02-28
EP3311982B1 (en) 2021-09-01
US20180186062A1 (en) 2018-07-05
CN107683200A (zh) 2018-02-09
CN107683200B (zh) 2020-01-17
EP3311982A4 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6369961B2 (ja) 成形用材料及びこの成形用材料から成る熱収縮チューブ
JP5518268B2 (ja) 引き裂き性を有する熱収縮チューブ
JP2017524491A (ja) 可剥性の熱収縮チュービング
WO2008007680A1 (fr) Tube déchirable de fluororésine
JP4827372B2 (ja) ポリテトラフルオロエチレン系樹脂製チューブ及びその製造方法
JP2017044335A (ja) 引き裂き性を有する熱収縮チューブ
US20170058115A1 (en) Heat-Shrinkable Tube Having Tearability
EP3269544A1 (en) Organic-inorganic composite film, and multi-layer heat resistant separator material using same
WO2021039837A1 (ja) 熱収縮チューブ及びその成形方法
US11541573B2 (en) Thermoplastic resin pellet and method for manufacturing electric cable
WO2010137718A1 (ja) 押出成形時のメヤニ発生を抑制するポリマー微粒子
JP2018090737A (ja) 離型シート
WO2020158854A1 (ja) 引き裂き性を有する熱収縮チューブ
JP6990579B2 (ja) 溶融成形用材料及びその製造方法
JP7492724B2 (ja) 引き裂き性を有する熱収縮チューブ
JP6446882B2 (ja) 二軸延伸ポリプロピレンフィルム
JP2018089913A (ja) 離型シート
JPH11210942A (ja) チューブ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016566836

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016279465

Country of ref document: AU

Date of ref document: 20160615

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016811648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201710382U

Country of ref document: SG