WO2016204174A1 - 熱収縮チューブ及びその製造方法 - Google Patents
熱収縮チューブ及びその製造方法 Download PDFInfo
- Publication number
- WO2016204174A1 WO2016204174A1 PCT/JP2016/067776 JP2016067776W WO2016204174A1 WO 2016204174 A1 WO2016204174 A1 WO 2016204174A1 JP 2016067776 W JP2016067776 W JP 2016067776W WO 2016204174 A1 WO2016204174 A1 WO 2016204174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- ptfe
- shrinkable tube
- melting point
- tube
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/041—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/003—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/049—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/02—Thermal shrinking
- B29C61/025—Thermal shrinking for the production of hollow or tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/08—Making preforms having internal stresses, e.g. plastic memory by stretching tubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/16—Homopolymers or copolymers or vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/04—Particle-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/02—Condition, form or state of moulded material or of the material to be shaped heat shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2427/00—Use of polyvinylhalogenides or derivatives thereof as filler
- B29K2427/12—Use of polyvinylhalogenides or derivatives thereof as filler containing fluorine
- B29K2427/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0049—Heat shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention relates to a heat shrinkable tube made of a fluororesin, excellent in tearability, having a high heat shrinkage rate and transparency, and a method for producing the same.
- Fluororesin is superior in chemical stability, heat resistance, and releasability compared to other plastics, so heat-shrinkable tubes made of fluororesin can be used in food, medical, pharmaceutical, chemical, analytical equipment, etc. First, it is used as a heat-shrinkable tube for protection and insulation in various fields.
- a heat-shrinkable tube Used as a general heat-shrinkable tube for protection and insulation. If necessary, it is used for product processing such as removing the heat-shrinkable tube after removing the heat-shrinkable tube after coating.
- product processing such as removing the heat-shrinkable tube after removing the heat-shrinkable tube after coating.
- a heat-shrinkable tube is coated on a multilayer structure including a protective layer such as a blade, or an electric wire / tube having a deformed structure, and after the inner member is molded or heat-sealed, the heat-shrinkable tube is removed. It is.
- the tube in addition to the excellent characteristics peculiar to the fluororesin, it is required that the tube can be easily torn and peeled by hand, that is, it has excellent tearability.
- Patent Document 1 describes a tearable tube in which a fluororesin is a mixture of a plurality of different types of thermoplastic fluororesins.
- Patent Document 2 and Patent Document 3 show a heat-shrinkable tube having tearability.
- the fluororesin used is composed of a mixture of a plurality of different types of fluororesins, satisfying a specially defined amount of loss energy change, and a fluororesin that occupies a major proportion of the mixture (main fluororesin)
- the (resin) is a polymer made of at least three types of monomers, and is a copolymer containing at least tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) as constituent monomer units.
- TFE tetrafluoroethylene
- HFP hexafluoropropylene
- the heat-shrinkable tube in Patent Document 2 and Patent Document 3 is used because the shrinkage rate is decreased while the tendency to be excellent in tearing property is seen when the addition amount of other fluororesin other than the main fluororesin is increased.
- the amount of heat shrinkage is insufficient, and the role as a heat shrinkable tube cannot be fulfilled, and further improvement is required.
- An object of the present invention is to provide a heat-shrinkable tube that improves the heat shrinkage rate in addition to the tearability of a conventionally known heat-shrinkable tube and is also excellent in transparency.
- the present invention relates to a composition
- a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less as measured in accordance with ASTM D4894.
- a heat shrinkable tube having tearability comprising a composition of 0.05 wt% to 3.0 wt% based on the total weight.
- the present invention relates to a composition
- a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less as measured in accordance with ASTM D4894.
- a heat shrinkable tube having tearability obtained by molding a composition of 0.05 wt% to 3.0 wt% with respect to the total weight at a temperature below the melting point of the PTFE.
- the above-mentioned heat shrinkable tube in which the heat shrinkage rate of the heat shrinkable tube is 40% or more, is a preferred embodiment of the present invention.
- the heat-shrinkable tube is transparent, that is, the above-described heat-shrinkable tube having a transmittance measured by using a transparency measuring instrument in accordance with ASTM D1746 is 80% or more is a preferred embodiment of the present invention.
- the present invention also relates to a composition
- a composition comprising a heat-meltable fluororesin and PTFE having no thermal history higher than the melting point after polymerization and having a specific gravity of 2.20 or less measured according to ASTM D4894, wherein the PTFE content is hot.
- a method for producing a heat-shrinkable tube having tearability in which a composition that is 0.05 wt% to 3.0 wt% based on the total weight of a meltable fluororesin and PTFE is melt-extruded at a temperature lower than the melting point of the PTFE. provide.
- DDR (D D 2 -D T 2 ) / (D O 2 -D r 2 ) (Wherein, D D represents the internal diameter of the die, D T represents the outer diameter of the mandrel, D O represents the outer diameter of the tube, D r denotes the inner diameter of the tube.)
- the heat-meltable fluororesin and PTFE are mixed in advance, and then melt-mixed at a temperature lower than the melting point of PTFE to obtain a pellet-shaped material containing the heat-meltable fluororesin and PTFE.
- the above-described method for producing a heat-shrinkable tube having a tearability that is melt-extruded at a temperature lower than the melting point is a preferred embodiment of the present invention.
- the heat shrinkable tube and the manufacturing method thereof of the present invention the following excellent effects can be expected.
- Example 3 of this invention It is a photograph which compares the transparency of the heat contraction tube obtained in Example 3 of this invention. It is the photograph which compares the transparency of the heat contraction tube obtained by the prior art (Example 1 of patent document 1). It is a figure which shows a typical tube extrusion die.
- the tearable heat-shrinkable tube of the present invention comprises a PTFE having a heat-meltable fluororesin and a PTFE having a specific gravity of 2.20 or less, measured according to ASTM D4894, having no thermal history higher than the melting point after polymerization. It is obtained by melt molding at a temperature below the melting point. Melt molding is a molding method using a conventionally known melt molding apparatus. By flowing in a molten state, sufficient strength and durability according to each predetermined purpose such as film, fiber, tube, etc. from the melt is obtained. It means that a molded product showing can be molded.
- Thermo-meltable fluororesin is a copolymer that melts at a temperature above its melting point and exhibits fluidity, and is an unsaturated fluorinated hydrocarbon, unsaturated fluorinated chlorinated hydrocarbon, or ether group-containing unsaturated fluorination.
- examples thereof include polymers or copolymers such as hydrocarbons, copolymers of these unsaturated fluorinated hydrocarbons and ethylene, and the like.
- PAVE perfluoroalkyl vinyl ether
- a tetrafluoroethylene / hexafluoropropylene copolymer hereinafter referred to as FEP
- a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer hereinafter referred to as PFA
- PFA tetrafluoroethylene / ethylene copolymer
- ETFE tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer
- PVDF polyvinylidene fluoride / polyvinylidene difluoride
- FEP composed of two types of monomers (copolymer of TFE and HFP) can be given as a suitable example from the viewpoint of transparency.
- the heat-meltable fluororesin may be used alone or a mixture of two or more of these.
- the melt flow rate (MFR) of the heat-meltable fluororesin is preferably 1 to 100 g / 10 minutes, more preferably 1 to 80 g / 10 minutes, and still more preferably 1 to 50 g / 10 minutes. Is desirable. MFR is measured according to ASTM D1238-95 at a temperature of 372 ° C. and a load of 5 kg. MFR affects the degree of orientation by PTFE fiberization, which will be described later, and the lower the MFR, the higher the degree of orientation and the tendency to obtain a tube having excellent tearability.
- the melting point of the heat-meltable fluororesin is not limited as long as the tube can be formed, but is 150 ° C. or higher, preferably 150 ° C. to 320 ° C.
- the melting point of the heat-meltable fluororesin is preferably less than the melting point of PTFE and is separated from the melting point of PTFE for the purpose of preventing compatibility.
- PTFE is a tetrafluoroethylene homopolymer, a tetrafluoroethylene (TFE) homopolymer (PTFE) called a homopolymer, or a tetrafluoroethylene copolymer containing 1% or less comonomer (modified) PTFE).
- TFE tetrafluoroethylene
- PTFE tetrafluoroethylene
- the melting point of PTFE immediately after polymerization is 336 ° C. to 343 ° C., although it varies depending on the polymerization method.
- a method for polymerizing PTFE known methods such as solution polymerization, emulsion polymerization, suspension polymerization and the like can be used, but an average particle size of 300 to 600 ⁇ m obtained by coagulating and drying a polymer latex obtained by emulsion polymerization.
- the fine powder is preferable.
- Such PTFE does not have melt moldability, and is present in the composition (or in the pellet) in the state of polymer particles in which orientation is caused by fiberization by shearing force and / or stretching force at the time of melt extrusion molding of the tube.
- the PTFE of the present invention is preferably PTFE obtained as described above, which has no thermal history higher than the melting point after polymerization and has a specific gravity of 2.20 or less measured according to ASTM D4894.
- PTFE which does not have a thermal history higher than the melting point after polymerization and has a specific gravity of 2.20 or less, has a high molecular weight and is therefore easily fiberized. Therefore, by using such PTFE, when the tube is melt-extruded, PTFE is fiberized by shearing force and / or stretching force and oriented in the tube extrusion direction, so that the obtained tube has tearability. It becomes possible.
- the content of PTFE in the composition containing the heat-meltable fluororesin and PTFE of the present invention is 0.05 wt% to 3.0 wt% with respect to the total weight of the heat-meltable fluororesin and PTFE. If the PTFE content is in the range of 0.05 wt% to 3.0 wt%, no breakage, cracking, rupture, etc. occur during diameter expansion, excellent tearability, and easy tearing by hand. High workability with thermal shrinkage of 40% or more. From the viewpoint of excellent tearability and high workability with a heat shrinkage rate of 40% or higher, preferably 50% or higher, that is, from the viewpoint of excellent both tearing properties and heat shrinkage properties, 0.2 wt% to 1 is more preferable. 0.0 wt%.
- the mixing method of these materials can be appropriately selected from conventionally known methods.
- An example is shown below.
- a mixing method a method of obtaining a composition containing a heat-meltable fluororesin and PTFE by mixing in advance, a composition obtained by mixing in advance is further melt-mixed at a temperature lower than the melting point of PTFE to form a pellet. Examples include a method for obtaining a material.
- a conventionally known method such as dry mixing or wet mixing can be used as a method of previously mixing the composition containing the heat-meltable fluororesin and PTFE.
- a known dispersion / mixing machine such as a co-aggregation method, planetary mixer, high-speed impeller disperser, rotary drum mixer, screw mixer, belt conveyor mixing, ball mill, pebble mill, sand mill, roll mill, attritor, bead mill, etc. It is more preferable to use an apparatus that can be carried out and can be uniformly dispersed.
- the form of the heat-meltable fluororesin and PTFE used for mixing there is no limitation on the form of the heat-meltable fluororesin and PTFE used for mixing, but in consideration of workability, a dispersion of fine particles having an average particle size of 0.05 ⁇ m to 1 ⁇ m, a powdery material of several ⁇ m to several tens of ⁇ m, or A granulated product of a powdery product of several hundred ⁇ m can be raised.
- the form of the composition of the present invention include powders, granulated products of powders, granules, flakes, pellets and the like.
- the average particle size of the obtained composition is preferably 0.1 ⁇ m or more and is in a range where handling properties are not impaired.
- the pellet-shaped material is obtained by, for example, melt-extruding the composition using a single-screw or twin-screw extruder to form a strand (string-like material), cooling, and cutting to a predetermined length.
- a conventionally known method such as a method of forming into a pellet can be used.
- the melt extrusion temperature is preferably a temperature not lower than the melting point of the heat-meltable fluororesin and lower than the melting point of PTFE. By setting the temperature below the melting point of PTFE, it becomes possible to prevent a decrease in the melting point of PTFE and maintain a highly crystalline state (a state of being easily fiberized) immediately after polymerization.
- a method of cutting to a predetermined length a conventionally known method such as strand cutting, hot cutting, or underwater cutting can be used.
- the average particle size of the pellet-shaped material is 0.1 mm or more, and handling properties It is preferable that it is the range which is not impaired.
- the mixing method is not limited to the above, but a preferable method is used for obtaining a more stable tearability over a long length.
- melt extrusion molding of the heat contraction tube of the present invention uses the prepared composition or the pellet-shaped composition prepared in advance, it is melt-extruded into a tube shape at a temperature lower than the melting point of PTFE. Since kneading in the cylinder of the melt extruder tends to cause fiber formation of PTFE, the temperature of the cylinder (screw) of the melt extruder is lower than the melting point of PTFE.
- PTFE is fiberized and oriented by the shearing force and / or stretching force in the subsequent molding (cooling step), and the state where the hot-melt fluororesin and PTFE are not compatible with each other in the solidified tube, that is, the molecular orientation of PTFE. Therefore, the tube becomes easy to tear.
- PTFE reaches a temperature equal to or higher than the melting point during melt extrusion molding, the molecular chain of PTFE is likely to be entangled with the molecular chain of the heat-meltable fluororesin due to molecular relaxation, and the molecular chain of PTFE becomes difficult to fiber or does not fiberize. For this reason, the molecular orientation effect of PTFE cannot be obtained, and the tearability is deteriorated.
- melt tension ratio melt tension at 340 ° C./melt tension at 320 ° C.
- Melt tension was measured using the capillary rheometer described above, and 30 g of a measurement sample was placed in a cylinder stabilized at a measurement temperature of 320 ° C. or 340 ° C. and allowed to stay for 10 minutes, and then from an orifice with a diameter of 2 mm and a length of 20 mm, a piston speed of 3 mm The strand is extruded at / min, and the strand is taken out by a melt tension measuring roll with a take-up speed of 5 m / min (min) and measured. The measurement at each measurement temperature was repeated 5 times, and the average value was defined as the melt tension at 320 ° C. or 340 ° C.
- melt tension indicates the presence or absence of PTFE thermal history.
- melt tension tends to be reduced by heating.
- PTFE is heated to a temperature higher than the melting point after polymerization, the molecular chains of PTFE crystals arranged in an orderly manner are released by molecular relaxation, resulting in random entanglement.
- Tension is increased. Therefore, a large melt tension measured at or below the melting point of PTFE (320 ° C.) means that PTFE having a thermal history equal to or higher than the melting point after polymerization is contained, and that value has no thermal history equal to or higher than the melting point after polymerization.
- the melt tension ratio becomes smaller than when PTFE is contained.
- the melt tension ratio in the present invention is 0.8 or more, preferably 1.0 or more, more preferably 1.5 or more.
- the melt tension ratio is desirably 30 or less.
- the melt tension ratio is 0.8 or more and 30 or less, the tearability of the tube obtained by PTFE being appropriately oriented without having a thermal history is improved.
- the tube can be greatly expanded without breaking, and at the same time, the tube can be expanded at a higher speed and the tube can be extruded to improve productivity.
- the melt tension ratio is less than 0.7, PTFE has a thermal history, and molecular chains are entangled between PTFE and the heat-meltable fluororesin, which makes it difficult or impossible to align PTFE. , Tearability deteriorates.
- the melt tension ratio exceeds 30, the degree of PTFE orientation is too large, so that it is difficult to uniformly expand the tube when expanding the tube, and the dimensional accuracy of the tube is lowered.
- a molding material comprising a composition containing a heat-meltable fluororesin and PTFE and having a melt tension ratio of 0.8 to 30 is suitable for obtaining the heat-shrinkable tube of the present invention.
- the heat-shrinkable tube of the present invention can be obtained by melt extrusion molding such a molding material.
- the formed tube is expanded in diameter by heating and internal pressurization, so that the heat-shrinkable tube according to the present invention is obtained.
- the diameter expansion rate E is represented by the following formula.
- the diameter expansion rate E is not particularly limited, but is preferably 200% or less.
- E (%) (Y ⁇ X) / X ⁇ 100 (X: dimension of tube formed by melt extrusion Y: dimension of tube after diameter expansion processing)
- the expansion ratio correlates with the heat shrinkage ratio, and increasing the expansion ratio contributes to improved workability.On the other hand, if the expansion ratio is too large, it tends to be difficult to return to the outer diameter of the tube before expansion. Sex worsens. Therefore, it can be said that the diameter expansion rate is more preferably 50 to 150%.
- the thermal shrinkage rate S is represented by the following formula.
- the heat shrinkage S is preferably 40% or more, and more preferably 50% or more.
- S (%) (PQ) / P ⁇ 100 (P: Tube dimensions after diameter expansion processing
- Q Tube dimensions after shrinkage)
- the heat-shrinkable tube of the present invention is characterized by being excellent in tearability, which is a contradictory property, while maintaining a high heat shrinkage rate, that is, workability.
- the draw ratio (DDR) calculated based on the following formula is 10 to 500, preferably 20 to 300, more preferably 20 to 200.
- DDR (D D 2 -D T 2 ) / (D O 2 -D r 2 ) (Wherein, D D represents the internal diameter of the die, D T represents the outer diameter of the mandrel, D O represents the outer diameter of the tube, D r denotes the inner diameter of the tube.)
- D D represents the internal diameter of the die
- D T represents the outer diameter of the mandrel
- D O represents the outer diameter of the tube
- D r denotes the inner diameter of the tube.
- the tear strength in the longitudinal direction of the heat shrinkable tube of the present invention is preferably 6.0 N or less. If it is 6.0 N or less, it can be easily torn by hand with a notch of about several mm as a starting point.
- the tearability is expressed starting from a PTFE fiberized and oriented portion, so that the tearability can also be evaluated in measuring the degree of orientation.
- the degree of orientation is measured based on the following method.
- the degree of orientation (degree of fiberization) due to fiber formation of PTFE in the heat-shrinkable tube was measured using an X-ray diffractometer (RINT 2550 type WAXD, manufactured by Rigaku Corporation).
- the instrument used a CuK ⁇ X-ray source and a scintillation counter detector and measured at 40 kV and 370 mA output.
- the sample tube was opened and used as a measurement sample.
- the transparency of the heat-shrinkable tube of the present invention is a transmittance of 80% or more, particularly preferably a transmittance of 90% or more.
- the transmittance is measured based on a method based on ASTM D1746 using a commercially available transparency measuring device.
- the heat shrinkable tube of the present invention is excellent in both tearability and heat shrinkage characteristics, and is also excellent in transparency. Therefore, the heat shrinkable tube is useful in food, medical, pharmaceutical, chemical, analytical equipment, and other technical fields.
- the heat shrinkable tube is coated on a multilayered structure including a protective layer such as a blade, or an electric wire / tube having a deformed structure, and after the inner member is molded or heat-sealed, the heat shrinkable tube is removed. It is useful in.
- Example 1 The heat-meltable fluororesin is polymerized using FEP (Teflon (registered trademark) FEP100J, MFR 7 g / 10 min, melting point 260 ° C., made by Mitsui DuPont Fluoro Chemical Co., Ltd.) consisting of two types of monomers (copolymer of TFE and HFP). Later, PTFE powder (melting point 336 ° C.) having no heat history higher than the melting point and mixed with 0.05 wt% was pelletized at a molding temperature of 320 ° C.
- FEP Teflon (registered trademark) FEP100J, MFR 7 g / 10 min, melting point 260 ° C., made by Mitsui DuPont Fluoro Chemical Co., Ltd.
- PTFE powder melting point 336 ° C.
- 0.05 wt% was pelletized at a molding temperature of 320 ° C.
- the tube to be produced has an inner diameter of ⁇ 1.2 mm ⁇ an outer diameter of ⁇ 1.6 mm.
- the molding temperature indicates the temperature of the molten resin in the melt extruder. This is subjected to diameter expansion processing by heating and internal pressure to obtain a heat-shrinkable tube.
- Example 2 In Example 1, a heat-shrinkable tube was obtained in the same manner except that the PTFE content was 0.2 wt%.
- Example 3 A heat shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 0.4 wt%.
- Example 4 A heat-shrinkable tube was obtained in the same manner as in Example 1, except that the PTFE content was 0.6 wt%.
- Example 5 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 1.0 wt%.
- Example 6 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 2.0 wt%.
- Example 7 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 3.0 wt%.
- Example 8 the heat-meltable fluororesin is FEP (Mitsui-Dupont Fluoro Chemical Co., Ltd. Teflon (registered trademark) FEP140J, MFR 3 g / 10 min, melting point 260 ° C.) composed of two types of monomers (copolymer of TFE and HFP). ), And a heat shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- FEP Mitsubishi Fluoro Chemical Co., Ltd. Teflon (registered trademark) FEP140J, MFR 3 g / 10 min, melting point 260 ° C.
- a heat shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- Example 9 the heat-meltable fluororesin is FEP (Teflon (registered trademark) FEP 9494-J, MFR 30 g / 10 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) composed of three types of monomers (terpolymer of TFE / HFP / PAVE).
- a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (lower than the melting point of PTFE).
- Example 10 the heat-meltable fluororesin is PFA (Mitsui DuPont Fluoro Chemical Co., Ltd. Teflon (registered trademark) PFA920HP Plus, MFR 30 g / 10 min, melting point 280) composed of two types of monomers (copolymer of TFE and PAVE). ) And a pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE) to obtain a heat-shrinkable tube.
- PFA Mitsubishi DuPont Fluoro Chemical Co., Ltd. Teflon (registered trademark) PFA920HP Plus, MFR 30 g / 10 min, melting point 280
- a pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE) to obtain a heat-shrinkable tube.
- Example 11 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the pellet was formed at a molding temperature of 300 ° C. (less than the melting point of PTFE).
- Example 12 In Example 2, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- Example 13 In Example 3, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- Example 14 A heat-shrinkable tube was obtained in the same manner as in Example 4 except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- Example 15 In Example 5, a heat-shrinkable tube was obtained in the same manner except that the pellet was formed at a molding temperature of 300 ° C. (below the melting point of PTFE).
- Example 1 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 0.03 wt%.
- Example 2 A heat-shrinkable tube was obtained in the same manner as in Example 1 except that the PTFE content was 3.5 wt%.
- Example 3 a heat shrinkable tube was obtained in the same manner except that the content of PTFE was 0.0 wt%.
- the tear strength was measured by the method described above, and the measurement results were evaluated based on the following criteria.
- the heat shrinkable tubes of Examples 1 to 15 of the present invention are all excellent in tearability and have a high heat shrinkage rate.
- the tearability is excellent and the heat shrinkage rate is 50% or more. It has both characteristics.
- Example 1 and Example 11 that is, when the PTFE content is in the vicinity of the lower limit, the tearability tends to be slightly inferior, but the thermal shrinkage tends to be high.
- Example 7 that is, when the PTFE content is in the vicinity of the upper limit, the tearability tends to be reduced while the thermal shrinkage tends to be reduced.
- the heat-shrinkable tube of Comparative Example 1 has a PTFE content lower than 0.05% and cannot be used from the viewpoint of tearability.
- the heat-shrinkable tube of Comparative Example 2 has a PTFE content higher than 3.0% and occasionally breaks, breaks, bursts, etc. during the diameter expansion process, so the heat shrinkage rate must be lowered. Absent. As a result, sufficient tightening with the heat shrinkable tube cannot be obtained, and the usage is limited and workability is deteriorated.
- the degree of orientation is less than 0.5.
- the degree of orientation due to the improvement in tearing and the formation of PTFE fiber is 0.50 or more.
- the heat-shrinkable tube in the present invention is superior in both tearability and heat-shrinkage characteristics, ensuring sufficient heat-shrinkage while maintaining tearability as compared with the prior art, and transparent. It can be seen that the heat-shrinkable tube is excellent.
- the heat-shrinkable tube of the present invention is excellent in both tearability and heat-shrinkage characteristics, and is also excellent in transparency. Therefore, the heat-shrinkable tube is useful in food, medical, pharmaceutical, chemical, analytical equipment, and other technical fields. .
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Laminated Bodies (AREA)
Abstract
Description
例えば、ブレード等の保護層を含む多層構造、あるいは、異形構造を有する電線・チューブ等へ、熱収縮チューブを被覆し、内部の部材をモールドあるいは熱融着加工した後、熱収縮チューブを取り除く用途である。
この用途では、フッ素樹脂特有の優れた特性に加え、容易に手でチューブを引裂いて剥がすことができる性質、すなわち、引裂き性に優れることが求められる。
DDR=(DD 2-DT 2)/(DO 2-Dr 2)
(式中、DDはダイの内径を表し、DTはマンドレルの外径を表し、DOはチューブの外径を表し、Drはチューブの内径を表す。)
(1)チューブの長手方向における引裂き強度が小さくできるため、数mm程度の切り込みを起点に容易に手で引き裂くことが可能である。
(2)熱収縮率が40%以上であるため、熱収縮チューブによる締め付けが十分得られ、高い作業性が得られるとともに、あらゆる用途で使用可能となる。
(3)PTFEと少割合の低分子量フッ素樹脂からなる引裂きチューブは知られている(例えば実用新案登録第2528627号)が、このような従来公知のチューブと比べてPTFEの含有量が格段に少ないため、チューブ拡径時の破断、割れ、破裂等が発生せず、その結果、引裂き性を維持しつつ、十分な熱収縮率を確保できる。すなわち、引裂き性及び熱収縮率の両特性に優れる熱収縮チューブが得られる。
(4)また、PTFEの含有量が、従来技術と比べて格段に少ないため、熱溶融性樹脂の透明性が保たれ、被熱収縮チューブ体にある下地の状態が確認し易くなる。
(5)本発明の製造方法によれば、PTFEが均等に分散され、これを起点に引裂き性が発現するため、長尺に渡り、安定した引裂き性を有するチューブが得られる。
溶融成形とは従来公知の溶融成形装置を用いる成形方法で、溶融状態で流動することにより、溶融物から例えば、フィルム、繊維、チューブなど、それぞれの所定の目的に応じた十分な強度及び耐久性を示す成形品を成形することができることを意味する。
熱溶融性フッ素樹脂は、透明性の観点から好適な例として、2種類のモノマー(TFEとHFPのコポリマー)から成るFEPを挙げることができ、他にも融点の異なるFEPの混合物、FEPとFEPとは異なる熱溶融性フッ素樹脂との混合物が挙げられる。
熱溶融性フッ素樹脂は単独で使用してもよく、これらの2種以上の混合物であってもよい。また、コモノマー種類、コモノマー含有量、分子量(重量平均分子量または数平均分子量)、分子量分布、融点及びメルトフローレート(MFR)等が異なる、あるいは機械的物性等が異なる少なくとも2種類以上の同一種類の共重合体同士の混合物も挙げられ、例えばPFA同士あるいはFEP同士の混合物が挙げられる。この様な熱溶融性フッ素樹脂は、溶液重合、乳化重合、懸濁重合等公知の方法によって製造することができる。
MFRは、後述するPTFEの繊維化による配向度に影響し、MFRが低いほど配向度は高くなり、引裂き性に優れるチューブが得られる傾向にある。
また、熱溶融性フッ素樹脂の融点はチューブ成形が可能な範囲であれば限定されないが、150℃以上、好ましくは150℃~320℃の範囲である。
熱溶融性フッ素樹脂の融点は、PTFEの融点未満であり、かつ相溶を防ぐ目的で、PTFEの融点と離れていることが好ましい。
PTFEの重合方法としては、溶液重合、乳化重合、懸濁重合等公知の方法を用いることができるが、乳化重合で得られたポリマーラテックスを凝析・乾燥して得られる平均粒径300~600μmのファインパウダーであることが好ましい。
このようなPTFEは溶融成形性を有さず、チューブの溶融押出成形時のせん断力及び/又は延伸力で繊維化による配向が生じるポリマー粒子の状態で組成物中(あるいはペレット中)に存在する。
本発明のPTFEは、上記により得られるPTFEであって、重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重2.20以下のPTFEであることが好ましい。
混合方法としては、予め混合して熱溶融性フッ素樹脂及びPTFEを含む組成物を得る方法、予め混合して得た組成物をPTFEの融点未満の温度にて更に溶融混合することによりペレット状の材料を得る方法などが挙げられる。
本発明の組成物の形態は、粉末状物、粉末状物の造粒品、粒状物、フレーク、ペレット等の形態を挙げることができる。得られる組成物の平均粒径は、0.1μm以上であって、ハンドリング性が損なわれない範囲であることが好ましい。
所定の長さに切断する方法としては、ストランドカット、ホットカット、水中カットなどの従来公知の方法を用いることができるペレット状の材料の平均粒径は、0.1mm以上であって、ハンドリング性が損なわれない範囲であることが好ましい。
混合方法については上記に限定されないが、長尺に渡り、より安定した引裂き性を得るために好ましい方法が用いられる。
事前に準備された、前記組成物あるいはペレット状の前記組成物を用いて、PTFEの融点未満の温度にて、チューブ状に溶融押出成形する。溶融押出機のシリンダー内における混練によりPTFEの繊維化が起こり易いため、溶融押出機のシリンダー(スクリュー)の温度はPTFEの融点以下である。一方、成形性・生産性の観点からは、混練の影響が少ない(PTFEの繊維化が起こり難い)溶融押出機のダイ部の温度に限り、PTFE分子鎖の絡まりによる引裂き性の阻害が起きない程度の短時間、PTFEの融点以上にすることもできる。
本発明における成形温度はPTFEの融点未満であるため、PTFE分子鎖の絡まりが無い状態が、押出機のダイからチューブ状に押し出されるまで維持される。そして、その後の成形(冷却工程)におけるせん断力及び/又は延伸力によりPTFEが繊維化して配向し、固化したチューブ内に、熱溶融フッ素樹脂とPTFEが相溶しない状態、すなわち、PTFEの分子配向が大きい状態、が存在するため、これらが起点となってチューブの引裂きが容易となる。
溶融押出成形時にPTFEが融点以上の温度になる場合には、分子緩和によりPTFEの分子鎖が熱溶融性フッ素樹脂の分子鎖と絡まり易くなり、PTFEの分子鎖が繊維化し難くなるあるいは繊維化しないため、PTFEの分子配向効果が得られず引裂き性が悪くなり好ましくない。
メルトテンション比=340℃におけるメルトテンション/320℃におけるメルトテンション
一般的にメルトテンションは加熱により小さくなる傾向が有るが、PTFEは重合後に融点以上に加熱されると、分子緩和により整然と並んだPTFEの結晶の分子鎖が解れランダムな絡み合いが生じるため、そのメルトテンションが大きくなる。
そのため、PTFEの融点以下(320℃)で測定したメルトテンションが大きいことは、重合後に融点以上の熱履歴があるPTFEを含有することを意味し、その値が重合後に融点以上の熱履歴が無いPTFEを含有する場合よりも大きくなる結果、メルトテンション比は小さくなる。
すなわち、重合後に融点以上の熱履歴があるPTFEを含有する熱溶融性フッ素樹脂組成物をPTFEの融点未満の温度で成形した場合、またはPTFEの融点(340℃)以上で成形した場合に、メルトテンション比が小さくなることにより、PTFEの熱履歴の有無を確認することができる。
一方、メルトテンション比が0.7未満の場合には、PTFEが熱履歴を有しておりPTFEと熱溶融性フッ素樹脂との分子鎖の絡まり合いが生じPTFEが配向し難くなるあるいは配向しないため、引裂き性が悪くなる。また、メルトテンション比が30を超える場合は、PTFEの配向の度合いが大きすぎるため、チューブ拡径時に均一な拡径が困難になりチューブの寸法精度が低下するため好ましくない。
このような成形材料を溶融押出成形することにより、本発明の熱収縮チューブを得ることができる。
拡径率Eは、下記式で表される。拡径率Eは、特に限定されないが、200%以下が好ましい。
E(%)=(Y-X)/X×100
(X:溶融押出成形されたチューブ寸法 Y:拡径加工後のチューブ寸法)
拡径率は熱収縮率と相関し、拡径率を大きくすることで作業性の向上に寄与する一方、大きすぎると拡径前のチューブ外径に戻り難くなる傾向が見られ、逆に作業性は悪化する。そのため、拡径率は50~150%がさらに好ましい範囲と言える。
S(%)=(P-Q)/P×100
(P:拡径加工後のチューブ寸法 Q:収縮後のチューブ寸法)
熱収縮率が大きいほど、熱収縮チューブによる締め付けが十分得られることから、作業性に優れ、その結果、あらゆる用途で使用可能となる。チューブを高温で収縮させるほど収縮率は大きくなるので、より大きな収縮率を得る方法として、高温・短時間で収縮させる方法も挙げられる。その場合、被覆される材料の耐熱性を考慮して収縮温度を決定する必要がある。
本発明の熱収縮チューブは、高い熱収縮率、すなわち作業性を保持しつつ、相反する特性である引裂き性にも優れることが特徴である。
DDR=(DD 2-DT 2)/(DO 2-Dr 2)
(式中、DDはダイの内径を表し、DTはマンドレルの外径を表し、DOはチューブの外径を表し、Drはチューブの内径を表す。)
引落率が高いほど、PTFEの繊維化による配向度が高く、引裂き性に優れるチューブが得られる。
引裂き強度は、以下の方法に基づき測定する。
測定サンプル100mmの片端の径中心付近に20mmの切り込みを設け、2股に分かれた切込み部を、引張試験機のチャック(固定治具)にて、それぞれ保持する。
引張速度100mm/分にて、測定サンプルの切り込み部を更に引き裂き、その際の最大強度を測定する。n=5の測定による平均値を、引裂き強度として用いる。
配向度は、以下の方法に基づき測定する。
熱収縮チューブ中のPTFEの繊維化による配向度(繊維化の度合い)は、X線回折装置(RINT2550型WAXD、リガク社製)を用いて測定した。装置は、CuKαのX線源とシンチレーションカウンタの検出器を使用し、40kVと370mAの出力で測定した。試料チューブを切り開き、測定サンプルとした。試料長手方向を基準軸として測定サンプルを試料ホルダーに固定し、2θ=18°付近のフッ素樹脂由来ピークについて方位角分布強度を測定した。
配向度は、下記の式で計算した。配向度は、数値が大きいほど微結晶の配向が強い。
配向度=(180-β)/180(βは配向由来ピークの半値幅である。)
熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP100J、MFR 7g/10分、融点260℃)を用い、重合後に融点以上の熱履歴が無く且つ比重2.20のPTFE粉末(融点336℃)を0.05wt%混合して成形温度320℃(PTFEの融点未満)でペレット状とし、溶融押出機を用い、成形温度320℃(PTFEの融点未満)にてチューブ状に溶融押出成形(DDR=110)する。作製するチューブは内径φ1.2mm×外径φ1.6mmである。
ここで成形温度は、溶融押出機内の溶融樹脂の温度を示す。
これを、加熱及び内部加圧により、拡径加工し、熱収縮チューブを得る。
実施例1において、PTFEの含有量を0.2wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を0.4wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を0.6wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を1.0wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を2.0wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を3.0wt%とするほかは同様にして、熱収縮チューブを得た。
実施例3において、熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP140J、MFR 3g/10分、融点260℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
実施例3において、熱溶融性フッ素樹脂は3種類のモノマー(TFE/HFP/PAVEのターポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP9494-J、MFR 30g/10分、融点260℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
実施例3において、熱溶融性フッ素樹脂は2種類のモノマー(TFEとPAVEのコポリマー)から成るPFA(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)PFA920HP Plus、MFR 30g/10分、融点280℃)を用い、成形温度300℃(PTFEの融点未満)でペレット状とする他は同様にして、熱収縮チューブを得た。
実施例1において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
実施例2において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
実施例3において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
実施例4において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
実施例5において、成形温度300℃(PTFEの融点未満)にてペレット状とする他は同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を0.03wt%とするほかは同様にして、熱収縮チューブを得た
実施例1において、PTFEの含有量を3.5wt%とするほかは同様にして、熱収縮チューブを得た。
実施例1において、PTFEの含有量を0.0wt%とするほかは同様にして、熱収縮チューブを得た。
熱溶融性フッ素樹脂は2種類のモノマー(TFEとHFPのコポリマー)から成るFEP(三井・デュポンフロロケミカル株式会社製 テフロン(登録商標)FEP100J、MFR 7g/10分、融点260℃)を用い、重合後に融点以上の熱履歴が無く且つ比重2.20のPTFE粉末(融点336℃)を0.4wt%混合して成形温度340℃(PTFEの融点以上)にてペレット状としたペレットを用いた。
また、実施例8~15、及び比較例3及び4のペレットを用いて、メルトテンションを測定し、メルトテンション比を算出した。結果を表2に示す。
引裂き強度は、前記した方法で測定したが、測定結果を以下の基準に基づいて評価した。
◎:1500mm以上を容易に引裂くことができた。
〇:1000mm以上を容易に引裂くことができた。
△:やや引裂き難くなるが800mm以上は手で引裂くことができた。
良品としての限界である。
×:手で引裂けるものの、場合によっては途中で樹脂がちぎれる等、引裂き距離が短くなった。
Claims (9)
- 熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、PTFEの含有量が組成物の総重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で成形して得られる、引裂き性を有する熱収縮チューブ。
- 該熱収縮チューブの熱収縮率が、40%以上であることを特徴とする、請求項1に記載の引裂き性を有する熱収縮チューブ。
- 該熱収縮チューブのASTM D1746に準拠し透明度測定器を用いて測定した透過率が、80%以上であることを特徴とする、請求項1または2に記載の引裂き性を有する熱収縮チューブ。
- 前記熱溶融性フッ素樹脂が、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン・ビニリデンフロライド共重合体(THV)およびポリフッ化ビニリデン・ポリビニリデンジフルオライド(PVDF)から選ばれた少なくとも1種であることを特徴とする請求項1~3のいずれかに記載の引裂き性を有する熱収縮チューブ。
- 熱溶融性フッ素樹脂及び重合後に融点以上の熱履歴が無く且つASTM D4894に従い測定される比重が2.20以下のPTFEを含む組成物であって、該PTFEの含有量が熱溶融性フッ素樹脂とPTFEの合計重量に対して0.05wt%~3.0wt%である組成物を、該PTFEの融点未満の温度で溶融押出成形する引裂き性を有する熱収縮チューブの製造方法。
- 前記溶融押出成形を、下記式に基づき算出される引き落とし率(DDR)が20-300である条件で行うことを特徴とする請求項5に記載の引裂き性を有する熱収縮チューブの製造方法。
DDR=(DD 2-DT 2)/(DO 2-Dr 2)
(式中、DDはダイの内径を表し、DTはマンドレルの外径を表し、DOはチューブの外径を表し、Drはチューブの内径を表す。) - 前記熱溶融性フッ素樹脂とPTFEを予め混合した後、PTFEの融点未満の温度にて溶融混合することにより、熱溶融性フッ素樹脂及びPTFEを含むペレット状の材料を得て、さらに該材料をPTFEの融点未満の温度にて溶融押出成形することを特徴とする請求項5または6に記載の引裂き性を有する熱収縮チューブの製造方法。
- 熱溶融性フッ素樹脂及びPTFEを含む組成物であって、そのメルトテンション比が0.8以上30以下である組成物からなる成形用材料。
- 請求項8に記載の成形用材料を溶融押出成形して得られることを特徴とする熱収縮チューブ。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680035243.6A CN107683200B (zh) | 2015-06-16 | 2016-06-15 | 热收缩管及其制造方法 |
US15/736,180 US10661497B2 (en) | 2015-06-16 | 2016-06-15 | Heat shrink tube and method for producing the same |
JP2016566836A JP6140376B2 (ja) | 2015-06-16 | 2016-06-15 | 熱収縮チューブ及びその製造方法 |
EP16811648.1A EP3311982B1 (en) | 2015-06-16 | 2016-06-15 | Heat-shrinkable tube and method for producing same |
SG11201710382UA SG11201710382UA (en) | 2015-06-16 | 2016-06-15 | Heat shrink tube and Method for Producing Same |
KR1020187001322A KR20180039620A (ko) | 2015-06-16 | 2016-06-15 | 열수축 튜브 및 그 제조 방법 |
AU2016279465A AU2016279465A1 (en) | 2015-06-16 | 2016-06-15 | Heat-shrinkable tube and method for producing same |
IL256319A IL256319A (en) | 2015-06-16 | 2017-12-14 | Heat-shrinkable tube and method for its preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-121181 | 2015-06-16 | ||
JP2015121181 | 2015-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016204174A1 true WO2016204174A1 (ja) | 2016-12-22 |
Family
ID=57545260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067776 WO2016204174A1 (ja) | 2015-06-16 | 2016-06-15 | 熱収縮チューブ及びその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10661497B2 (ja) |
EP (1) | EP3311982B1 (ja) |
JP (2) | JP6140376B2 (ja) |
KR (1) | KR20180039620A (ja) |
CN (1) | CN107683200B (ja) |
AU (1) | AU2016279465A1 (ja) |
IL (1) | IL256319A (ja) |
SG (1) | SG11201710382UA (ja) |
WO (1) | WO2016204174A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6379315B1 (ja) * | 2018-03-30 | 2018-08-22 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP2019112563A (ja) * | 2017-12-25 | 2019-07-11 | 三井・ケマーズ フロロプロダクツ株式会社 | 溶融成形用材料及びその製造方法 |
WO2019135295A1 (ja) | 2018-01-04 | 2019-07-11 | グンゼ株式会社 | 熱可塑性フッ素樹脂製チューブ |
JP2019184048A (ja) * | 2018-07-30 | 2019-10-24 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP2021002458A (ja) * | 2019-06-21 | 2021-01-07 | ダイキン工業株式会社 | 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル |
WO2021039837A1 (ja) * | 2019-08-30 | 2021-03-04 | 日星電気株式会社 | 熱収縮チューブ及びその成形方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118344690A (zh) * | 2019-01-31 | 2024-07-16 | 株式会社润工社 | 具有撕裂性的热缩管 |
US20220170575A1 (en) * | 2020-12-02 | 2022-06-02 | Saint-Gobain Performance Plastics Corporation | Tube and method for making same |
CN115845635B (zh) * | 2023-02-02 | 2023-07-18 | 山东东岳高分子材料有限公司 | 一种聚四氟乙烯中空纤维膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60219027A (ja) * | 1984-04-16 | 1985-11-01 | Kureha Chem Ind Co Ltd | 弗化ビニリデン系樹脂マツト成形物及びその製造方法 |
JP2006159524A (ja) * | 2004-12-03 | 2006-06-22 | Du Pont Mitsui Fluorochem Co Ltd | フッ素樹脂成形方法及びフッ素樹脂成形品 |
JP2012081590A (ja) * | 2010-10-06 | 2012-04-26 | Daikin Industries Ltd | 成形品の製造方法、及び、被覆電線の製造方法 |
JP2015039843A (ja) * | 2013-08-22 | 2015-03-02 | 住友電工ファインポリマー株式会社 | フッ素樹脂製熱収縮チューブ、及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4834956A (ja) | 1971-09-10 | 1973-05-23 | ||
JP4968823B2 (ja) | 2006-07-14 | 2012-07-04 | 株式会社潤工社 | フッ素樹脂製の引き裂き性のチューブ |
EP2126358A2 (en) | 2007-03-07 | 2009-12-02 | Saint-Gobain Performance Plastics Corporation | Multi-layer tubes |
US20110223427A1 (en) * | 2008-11-12 | 2011-09-15 | Nitto Denko Corporation | Method of producing electrically insulating thermally conductive sheet, electrically insulating thermally conductive sheet, and heat dissipating member |
JP5541176B2 (ja) | 2011-01-24 | 2014-07-09 | ダイキン工業株式会社 | フッ素樹脂組成物及び該フッ素樹脂組成物の製造方法 |
JP2013071341A (ja) | 2011-09-28 | 2013-04-22 | Du Pont Mitsui Fluorochem Co Ltd | フッ素樹脂成形品 |
JP5518268B2 (ja) | 2011-11-21 | 2014-06-11 | 株式会社潤工社 | 引き裂き性を有する熱収縮チューブ |
-
2016
- 2016-06-15 AU AU2016279465A patent/AU2016279465A1/en not_active Abandoned
- 2016-06-15 KR KR1020187001322A patent/KR20180039620A/ko unknown
- 2016-06-15 US US15/736,180 patent/US10661497B2/en active Active
- 2016-06-15 JP JP2016566836A patent/JP6140376B2/ja active Active
- 2016-06-15 CN CN201680035243.6A patent/CN107683200B/zh active Active
- 2016-06-15 EP EP16811648.1A patent/EP3311982B1/en active Active
- 2016-06-15 SG SG11201710382UA patent/SG11201710382UA/en unknown
- 2016-06-15 WO PCT/JP2016/067776 patent/WO2016204174A1/ja active Application Filing
-
2017
- 2017-03-28 JP JP2017062210A patent/JP6369961B2/ja active Active
- 2017-12-14 IL IL256319A patent/IL256319A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60219027A (ja) * | 1984-04-16 | 1985-11-01 | Kureha Chem Ind Co Ltd | 弗化ビニリデン系樹脂マツト成形物及びその製造方法 |
JP2006159524A (ja) * | 2004-12-03 | 2006-06-22 | Du Pont Mitsui Fluorochem Co Ltd | フッ素樹脂成形方法及びフッ素樹脂成形品 |
JP2012081590A (ja) * | 2010-10-06 | 2012-04-26 | Daikin Industries Ltd | 成形品の製造方法、及び、被覆電線の製造方法 |
JP2015039843A (ja) * | 2013-08-22 | 2015-03-02 | 住友電工ファインポリマー株式会社 | フッ素樹脂製熱収縮チューブ、及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3311982A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6990579B2 (ja) | 2017-12-25 | 2022-01-12 | 三井・ケマーズ フロロプロダクツ株式会社 | 溶融成形用材料及びその製造方法 |
JP2019112563A (ja) * | 2017-12-25 | 2019-07-11 | 三井・ケマーズ フロロプロダクツ株式会社 | 溶融成形用材料及びその製造方法 |
WO2019135295A1 (ja) | 2018-01-04 | 2019-07-11 | グンゼ株式会社 | 熱可塑性フッ素樹脂製チューブ |
CN111556942A (zh) * | 2018-01-04 | 2020-08-18 | 郡是株式会社 | 热塑性含氟树脂制管 |
JPWO2019135295A1 (ja) * | 2018-01-04 | 2021-01-07 | グンゼ株式会社 | 熱可塑性フッ素樹脂製チューブ |
US11802199B2 (en) | 2018-01-04 | 2023-10-31 | Gunze Limited | Thermoplastic fluororesin tube |
JP7181897B2 (ja) | 2018-01-04 | 2022-12-01 | グンゼ株式会社 | 熱可塑性フッ素樹脂製チューブ |
CN114953398A (zh) * | 2018-01-04 | 2022-08-30 | 郡是株式会社 | 热塑性含氟树脂制管 |
JP2019178717A (ja) * | 2018-03-30 | 2019-10-17 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP6379315B1 (ja) * | 2018-03-30 | 2018-08-22 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP2019184048A (ja) * | 2018-07-30 | 2019-10-24 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP7215842B2 (ja) | 2018-07-30 | 2023-01-31 | グンゼ株式会社 | チューブ及び該チューブの製造方法 |
JP2021002458A (ja) * | 2019-06-21 | 2021-01-07 | ダイキン工業株式会社 | 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル |
JP7421058B2 (ja) | 2019-06-21 | 2024-01-24 | ダイキン工業株式会社 | 平角マグネット線被覆層形成用熱収縮チューブ、平角マグネット線およびその製造方法、コイル |
JPWO2021039837A1 (ja) * | 2019-08-30 | 2021-09-27 | 日星電気株式会社 | 熱収縮チューブ及びその成形方法 |
WO2021039837A1 (ja) * | 2019-08-30 | 2021-03-04 | 日星電気株式会社 | 熱収縮チューブ及びその成形方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017119883A (ja) | 2017-07-06 |
JP6369961B2 (ja) | 2018-08-08 |
EP3311982A1 (en) | 2018-04-25 |
KR20180039620A (ko) | 2018-04-18 |
US10661497B2 (en) | 2020-05-26 |
AU2016279465A1 (en) | 2017-12-14 |
SG11201710382UA (en) | 2018-02-27 |
JP6140376B2 (ja) | 2017-05-31 |
JPWO2016204174A1 (ja) | 2017-06-29 |
IL256319A (en) | 2018-02-28 |
EP3311982B1 (en) | 2021-09-01 |
US20180186062A1 (en) | 2018-07-05 |
CN107683200A (zh) | 2018-02-09 |
CN107683200B (zh) | 2020-01-17 |
EP3311982A4 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6369961B2 (ja) | 成形用材料及びこの成形用材料から成る熱収縮チューブ | |
JP5518268B2 (ja) | 引き裂き性を有する熱収縮チューブ | |
JP2017524491A (ja) | 可剥性の熱収縮チュービング | |
WO2008007680A1 (fr) | Tube déchirable de fluororésine | |
JP4827372B2 (ja) | ポリテトラフルオロエチレン系樹脂製チューブ及びその製造方法 | |
JP2017044335A (ja) | 引き裂き性を有する熱収縮チューブ | |
US20170058115A1 (en) | Heat-Shrinkable Tube Having Tearability | |
EP3269544A1 (en) | Organic-inorganic composite film, and multi-layer heat resistant separator material using same | |
WO2021039837A1 (ja) | 熱収縮チューブ及びその成形方法 | |
US11541573B2 (en) | Thermoplastic resin pellet and method for manufacturing electric cable | |
WO2010137718A1 (ja) | 押出成形時のメヤニ発生を抑制するポリマー微粒子 | |
JP2018090737A (ja) | 離型シート | |
WO2020158854A1 (ja) | 引き裂き性を有する熱収縮チューブ | |
JP6990579B2 (ja) | 溶融成形用材料及びその製造方法 | |
JP7492724B2 (ja) | 引き裂き性を有する熱収縮チューブ | |
JP6446882B2 (ja) | 二軸延伸ポリプロピレンフィルム | |
JP2018089913A (ja) | 離型シート | |
JPH11210942A (ja) | チューブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016566836 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811648 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016279465 Country of ref document: AU Date of ref document: 20160615 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187001322 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016811648 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201710382U Country of ref document: SG |