WO2016204113A1 - 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法 - Google Patents

治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法 Download PDF

Info

Publication number
WO2016204113A1
WO2016204113A1 PCT/JP2016/067513 JP2016067513W WO2016204113A1 WO 2016204113 A1 WO2016204113 A1 WO 2016204113A1 JP 2016067513 W JP2016067513 W JP 2016067513W WO 2016204113 A1 WO2016204113 A1 WO 2016204113A1
Authority
WO
WIPO (PCT)
Prior art keywords
healing
ceramic composition
crack
oxidation
agent
Prior art date
Application number
PCT/JP2016/067513
Other languages
English (en)
French (fr)
Inventor
俊郎 長田
紀一 鴨田
原 徹
正則 三留
太一 阿部
孝仁 大村
中尾 航
Original Assignee
国立研究開発法人物質・材料研究機構
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 国立大学法人横浜国立大学 filed Critical 国立研究開発法人物質・材料研究機構
Priority to EP16811587.1A priority Critical patent/EP3312151B1/en
Priority to JP2017525216A priority patent/JP6436513B2/ja
Priority to US15/736,456 priority patent/US10822277B2/en
Publication of WO2016204113A1 publication Critical patent/WO2016204113A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines

Definitions

  • the present invention relates to an oxidation-induced high-functional self-healing ceramic composition, specifically, an oxidation-induced self-healing ceramic composition containing a healing activator, its production method and its use, and oxidation-induction.
  • the present invention relates to a method for enhancing the functionality of a self-healing ceramic composition.
  • the present invention relates to a high-temperature structural member such as a turbine blade of an aircraft engine.
  • Oxidation-induced self-healing ceramics are dispersed in a ceramic matrix, and non-oxides (also referred to as “healing agents” in this application) that are highly active against oxidation in high-temperature air are cracked during use. Oxygen in the atmosphere existing outside is triggered at high temperature by the generation, and the oxide that is generated thereby fills and joins the cracks autonomously and restores the strength completely, so-called ⁇ self-healing function '' Have. Therefore, oxidation-induced self-healing ceramics are highly expected to be applied to next-generation high-temperature structural members that require high performance and high safety.
  • oxidation-induced self-healing ceramics examples include a composite material of Al 2 O 3 (alumina) and SiC (also referred to as “Al 2 O 3 / SiC composite material” in the present application), a composite material of mullite and SiC. (Also referred to as “mullite / SiC composite” in this application), zirconia and SiC composite (also referred to as “zirconia / SiC composite” in this application), silicon nitride and SiC composite (in this application “silicon nitride / The SiC composite material "is also specifically proposed (Patent Documents 1 to 3).
  • Non-Patent Documents 1 and 2). a composite material of mullite and TiSi 2 (also referred to as “mullite / TiSi 2 composite material” in this application) and Ti 3 SiC 2 ceramics are specifically proposed. Further, in a ceramic composite material including an alumina ceramic base material and having an alumina long fiber member in the base material, an oxidation induction type in which a healing agent such as SiC is disposed at the interface between the base material and the long fiber.
  • the conventional oxidation-induced self-healing ceramics using a healing agent such as a MAX phase compound or an intermetallic compound has a problem that its strength is extremely low. Therefore, in the present invention, in order to solve these problems, an oxidation-induced high-functionality self-healing ceramic composition, its production method and its use, and a method for achieving its high functionality are newly provided. For the purpose.
  • the generation mechanism has a dense bone constituting the human body.
  • a stage in which a healing agent causes an oxidative reaction by comparing with a self-healing mechanism a self-healing mechanism by three stages of “inflammatory stage”, “repair stage”, and “modification stage” (also referred to as “inflammatory stage” in this application)). Then, the oxide generated from the healing agent reacts with the parent phase etc.
  • the present inventors do not pay attention to the inflammatory phase as in the conventional method, but focus on the repair phase and the alteration phase, and perform an element and tissue design that speeds up these steps, thereby providing an oxidation-induced type.
  • the self-healing function of the self-healing ceramics can be enhanced, and the present invention has been completed.
  • the inventors first analyzed the crack healing mechanism of oxidation-induced self-healing ceramics as follows, and revealed the mechanism for the first time.
  • crack healing temperature (T H) For the example 1200 ° C., the strength of the crack-healing material rises with increasing cure time (t H), healing time (t H) is 5 Over time, it was confirmed that it completely recovered to the same level as the smooth healing material. It was also confirmed that when the healing time (t H ) was 5 hours or longer, the fracture starting point that was in the pre-crack transitioned outside the crack healing area. From these results, the present inventors have found that at a crack healing temperature (T H ) of 1200 ° C., the crack is completely cured in a minimum of 5 hours. Further, as shown in FIG.
  • the present inventors have found that the shortest crack completion time (t H Min ) significantly increases as the crack healing temperature (T H ) decreases.
  • the smooth healing material shown in FIG. 1 is produced by performing a crack healing treatment on a smooth material that has not been pre-cracked at 1300 ° C. for 1 hour, and even on the surface of the smoothing material. This sample completely healed the crack. Therefore, the strength of the smooth healing material is slightly improved compared to the smoothing material, and the fracture starting point is an internal defect.
  • Other methods for producing the pre-cracked material and the smoothing material used in FIG. 1 will be described in detail in Reference Example 1 of the present embodiment.
  • FIG. 2A shows a three-dimensional SEM image showing the state of the crack healing part in the healing process when the crack healing temperature ( TH ) is 1200 ° C.
  • the three-dimensional SEM image of the unhealed material in FIG. 2A shows a case where the healing time (t H ) is 1 hour shorter than the shortest crack healing time (t H Min ) of 5 hours, and
  • the three-dimensional SEM image of the completely cured material of (a) shows a case where the healing time (t H ) is 50 hours longer than 5 hours of the shortest crack healing time (t H Min ).
  • FIG. 2B shows a TEM image of the crack healing part when the strength recovery is completely achieved when the crack healing temperature (T H ) is 1200 ° C.
  • the used apparatus etc. are explained in full detail in the reference example 1 of an Example of this application.
  • the crack healing material was composed of crystallized cristobalite and a small amount of mullite. This is because a small amount of Al 2 O 3 (specifically, Al element) acts on SiO 2 generated by the oxidation of SiC in the crack healing process to produce an oxide of a supercooled melt having a low viscosity, I understand that it was due to two-phase separation. The decrease in the viscosity due to the formation of such a supercooled melt cannot be lifted if the viscosity of the generated oxide SiO 2 generated on the surface by the oxidation of SiC is not sufficiently decreased even at about 1700 ° C.
  • Al 2 O 3 specifically, Al element
  • bubble formation that would not be observed (herein referred to as "bubble formation”.) is, from the surface of the Al 2 O 3 /30vol.%SiC composite is the eutectic temperature below the temperature of SiO 2 and Al 2 O 3 It was also confirmed from the fact that it was observed by an in-situ observation apparatus at 1400 ° C. In addition, as a cause of the bubble formation, the inventors of the present invention locally generate SiO 2 supercooled melt containing a small amount of Al 2 O 3 and heat of reaction at 1400 ° C. (specifically, heat of oxidation). The temperature rise is considered. Further, as shown in FIG.
  • each stage is as follows.
  • the inflammatory phase triggered by the occurrence of cracks, the oxidation of unreacted SiC initiates an oxidation reaction that forms SiO 2 by contact with oxygen in the atmosphere. It is a stage to rise.
  • SiO 2 produced by the oxidation of SiC reacts with adjacent Al 2 O 3 (base material) to produce an oxide having a low viscosity, and this oxide is melted and melted.
  • the cracks are completely filled and the crack surfaces are joined.
  • Fracture mechanics is a stage where the space between the crack surfaces is filled and the crack is degenerated to a size that can be regarded as defect-free.
  • the low-viscosity oxide melt that completely fills the crack surfaces in the repair phase and joins the crack surfaces to solidify and crystallize (specifically, SiC that can be a nucleation site of crystals).
  • the cristobalite which is a crystal of SiO 2 , is formed from the interface with the Al 2 O 3, and the intermediate compound mullite is precipitated at the boundary with the Al 2 O 3 ). It is a stage to achieve.
  • the present inventors have confirmed that the space between crack faces is completely filled at least for complete recovery of room temperature strength (that is, the supercooled melt is between the crack faces). It is necessary condition to completely fill the voids of the cracks and bond between the crack surfaces.
  • the repair period corresponding to this condition is the rate-determining step that determines the strength recovery rate in the crack healing process.
  • completely filled means that voids that exist independently between crack surfaces are smaller than internal defect sizes that are potentially present in the base material (that is, acceptable defect sizes). Means that.
  • the present inventors have determined that the rate of strength recovery during the crack healing process is limited by the diffusion rate of oxygen molecules, ions, or CO gas in the low-viscosity oxide produced during the repair phase. Assuming that, the room temperature strength of the crack healing material was predicted. The result is shown as a solid line in FIG. 1 as the predicted bending strength ( ⁇ B ). As shown in this figure, since the predicted values of the strength of the crack healing material and the shortest crack completion time (t H Min ) are in good agreement with the actual measurement values, it was confirmed that this assumption is correct.
  • the present inventors have revealed for the first time the crack healing mechanism of oxidation-induced self-healing ceramics. Based on the revealed crack healing mechanism, the present inventors improve the crack filling rate in the repair phase, which is the rate-determining step that determines the strength recovery rate in the crack healing process (specifically, Can speed up the diffusion rate of the material that controls the oxidation reaction of the healing agent), the rate required for strength recovery can be increased. As a result, the oxidation-induced self-healing ceramic composition that could not be achieved in the past We found for the first time that high functionality can be realized.
  • the inventors next focused on a novel oxidation-induced type high-intensity type, focusing on a repair period in which the rate of strength recovery in the crack-healing process in the oxidation-induced self-healing ceramic composition is limited and a subsequent modification period.
  • the creation of functional self-healing ceramic compositions and the provision of new high-performance methods for oxidation-induced self-healing ceramic compositions were performed. Therefore, the present invention focuses on only the inflammatory phase in which the healing agent is oxidized at a high temperature, and the conventional oxidation-induced self-healing ceramic composition and the conventional oxidation-inducing ceramic composition that are intended to achieve high functionality by oxidative activation of the healing agent. This method is essentially different from the method for enhancing the function of the self-healing ceramic composition.
  • the present invention has the following configuration.
  • a ceramic base material an oxidatively active non-oxide healing agent dispersed in the base material, and a healing activator, the healing agent comprising a ceramic composition Oxidation-induced type, which is a substance that generates an oxide upon contact with external oxygen due to the occurrence of cracks in the substance, and wherein the healing active agent is a substance that speeds up the diffusion rate of the substance that determines the oxidation reaction of the healing agent
  • the healing active agent may be disposed at the crystal grain boundary of the base material and the interface between the base material and the healing agent.
  • the base material may be composed of an oxide-based ceramic.
  • the oxide ceramics constituting the base material may be alumina or mullite.
  • the healing activator is a substance that lowers the viscosity of the oxide generated from the healing agent and the base material by its addition. But you can.
  • the healing active agent has the following conditional expression: Multi-component glass transition temperature (T g ) of oxide, base material and healing activator generated from healing agent ⁇ Metal oxidation satisfying lower limit of operating temperature of high temperature member applying oxidation-induced self-healing ceramics It may contain at least one or more things.
  • T g Multi-component glass transition temperature
  • healing agent may be SiC or TiSi 2.
  • the healing activator may include at least one of MgO and MnO.
  • the addition amount of the healing activator may be more than 0 and 10% by volume or less.
  • the base material is composed of the same ceramic as the healing agent dispersed in the base material, so that the base material and the healing agent are single. It may be integrated as one material.
  • the healing active agent may be disposed at a crystal grain boundary of a single material.
  • the healing activator is generated from a single material by contact with external oxygen due to cracking of the self-healing ceramic composition.
  • the healing active agent has the following conditional expression: Multi-component glass transition temperature (T g ) of oxide and healing activator generated from a single material ⁇ a metal oxide satisfying the lower limit of the operating temperature of a high-temperature member to which oxidation-induced self-healing ceramics are applied It may contain at least one or more.
  • healing agent may be SiC or TiSi 2.
  • the healing activator may include at least one of MgO and MnO.
  • the addition amount of the healing activator may be more than 0 and 10% by volume or less.
  • a substance containing a base material, an oxide generated from a healing agent, and a healing activator is a ceramic composition.
  • the addition increases the mechanical strength of the material used for crack healing It may further contain a substance.
  • a substance containing an oxide generated from a single material and a healing activator is generated in the ceramic composition.
  • the substance when the crack is healed by filling the cracks autonomously, joining between the crack surfaces, and further solidifying and crystallizing, the substance further increases the mechanical strength of the substance used for the crack healing by addition. It may be a thing.
  • a substance that is enhanced by adding mechanical strength of a substance to be used for crack healing is Y 2 O 3 or a lanthanoid series La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho It may contain at least one metal oxide represented by 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , or Lu 2 O 3 .
  • the oxidation-induced self-healing ceramic composition according to any one of (1) to (19) is oxidized in the atmosphere in which the base material and the base material are dispersed.
  • An inert non-oxide healing agent or a mixture in which the healing agent is added to a single material in which both the base material and the healing agent are composed of the same ceramics, and both are integrated in an inert atmosphere A method of manufacturing by hot press sintering is provided.
  • a structural member comprising the oxidation-induced self-healing ceramic composition according to any one of (1) to (19).
  • healing activity against a ceramic base material constituting an oxidation-induced self-healing ceramic composition and an oxidizing active non-oxide healing agent dispersed in the base material A substance that generates an oxide by contact with external oxygen due to cracking of a self-healing ceramic composition is added as a healing agent, and a substance that controls the oxidation reaction of the healing agent as a healing activator.
  • the method for improving the strength recovery rate and the crack healing temperature in this self-healing function is that a substance containing a ceramic base material, an oxide, and a healing activator is generated in the ceramic composition.
  • a crack is healed by filling the cracks autonomously, joining the crack surfaces, and further solidifying and crystallizing, a substance that increases the mechanical strength of the substance to be used for the crack healing by addition is used. This may be further included.
  • the present invention it is possible to design elements and tissues that speed up these stages by focusing on the repair stage and the modification stage without focusing on the inflammatory stage in the self-healing process as in the prior art. Therefore, an oxidation-induced self-healing ceramic composition with a higher strength recovery rate than the conventional oxidation-induced self-healing ceramic composition, which was limited only by improving the oxidative hyperactivation of the healing agent in the inflammatory phase, was achieved. Can be provided. Further, according to the present invention, the crack healing temperature can be lowered as compared with the crack healing temperature of conventional oxidation-induced self-healing ceramics.
  • the sintering temperature required for conventional oxidation-induced self-healing ceramics can be lowered.
  • the temperature (1750 ° C.) required to densified by hot press sintering the Al 2 O 3 /30vol.%SiC composite, according to the present invention it is possible to lower temperature to 1550 ° C.. Therefore, the ceramic production can be performed more easily.
  • the addition of a healing activator can suppress abnormal grain growth during sintering. Therefore, not only can the self-healing function be enhanced, but also the strength of the sintered material can be improved.
  • the healing agent and the healing active agent can be used separately, both can be individually designed optimally according to the purpose.
  • the healing active agent focused on the crystallization by reducing the viscosity and improving the diffusion rate focusing on the repair phase and the modification phase, focusing only on the modification phase.
  • a substance that enhances the mechanical properties of the crack healing substance can also be added. Therefore, according to the present invention, the maximum functional improvement can be achieved even with a small amount of the healing active agent.
  • Figure 1 relates to Al 2 O 3 /30vol.%SiC composite, various test materials (pre-out ⁇ , smooth material, smooth healing material) at room temperature flexural strength (sigma B) and healing time (t H) and it is a diagram showing the relationship between the predicted flexural strength (sigma B) and healing time (t H).
  • 2 (a) is in the Al 2 O 3 /30vol.%SiC composite, three-dimensional SEM image showing the state of crack-healing part in the healing process in the case of crack healing temperature (T H) is 1200 ° C.
  • FIG. 3A is a diagram showing a crack healing mechanism when the oxidation-induced self-healing ceramic composition is a conventional composite material of Al 2 O 3 and SiC.
  • FIG. 3 (b) shows a matrix containing a healing activator in which an oxidation-induced self-healing ceramic composition is an embodiment of the present invention (where a composite of mullite and TiSi 2 or Al 2 O 3 and SiC Is a diagram showing a crack healing mechanism in a case where the composite material is called a matrix.
  • the composition of the supercooled melt that is predicted to be generated may be expressed by a general formula “lSiO 2 —mAl 2 O 3 —nMxOy”.
  • T g glass transition temperature at which the viscosity becomes 10 11.3 Pa ⁇ s
  • shortest crack completion time shortest crack completion time (t H Min ) of the supercooled melt produced with 2 vol.% MnO composite
  • 6 is the shortest at 800 ° C., 1000 ° C., and 1200 ° C. calculated from the prediction formula of crack healing separately constructed by theoretical analysis of crack healing by the present inventors. it can ⁇ Osamu time (t H Min) those appended as the shortest-out ⁇ Osamu time predicted (t H Min).
  • 7 (a) is an embodiment of the present invention, Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite and mullite /30vol.%TiSi 2 /1.0vol.%MnO complex the relationship between the flexural strength at 800 ° C.
  • Figure 9 is an embodiment of the present invention, the Yb 2 O 3 as an example of an oxide having a function of enhancing the high temperature strength of the healing material filled with crack was slightly added, Al 2 O 3 /30vol.% bending strength about SiC / 1vol.% MnO / 1vol .% Yb 2 O 3 curing material of the composite material and the Al 2 O 3 /30vol.%SiC/1vol.%MnO/9vol.%Yb 2 O 3 curing material of the composite the relationship between (sigma B) and test temperature (T B), is a diagram illustrating by comparison with healing materials Al 2 O 3 /30vol.%SiC/1vol.%MnO composites without the addition of Yb 2 O 3 .
  • the non-oxidation is effected by contact with external oxygen triggered by cracking in the ceramic base material and the self-healing ceramic composition.
  • the oxide healing agent it further includes a healing active agent that speeds up the diffusion rate of the substance that controls the oxidation reaction of the healing agent.
  • the ceramic base material used in the present invention examples include oxide-based, nitride-based, and carbide-based ceramics. Specifically, alumina (Al 2 O 3 ), mullite, silicon nitride (Si 3 N 4). ), Silicon carbide (SiC), sialon and the like. In view of application to a general-purpose high-temperature structural member used in a high-temperature oxidizing atmosphere, an oxide ceramic having excellent oxidation resistance is preferable as the ceramic base material. Among these, alumina and mullite are more preferable. However, the ceramic base material used in the present invention is not particularly limited as long as the object of the present invention can be achieved.
  • the healing agent used in the present invention is in contact with oxygen existing outside, triggered by the occurrence of cracks in the oxidation-induced self-healing ceramic composition, and is capable of forming an oxide by causing an oxidation reaction with the oxygen. Is a non-oxide. Therefore, the healing agent is usually in a so-called composite material state dispersed in the ceramic base material.
  • the ceramic base material is composed of the same ceramic material as that of the healing agent, a state in which the ceramic base material is integrated as a so-called single material is also included. Examples of such a state include a case where the healing agent and the ceramic base material are made of the same SiC ceramic material, and a case where the healing agent and the base material are made of the same TiSi 2 material.
  • the healing agent and ceramic base material are the same SiC, the long fiber reinforced composite material etc. which are comprised from the SiC long fiber and SiC base phase from which a shape differs are mentioned.
  • the healing agent is in contact with oxygen existing outside, and is a non-oxide having an ability to form an oxide by causing an oxidation reaction with the oxygen.
  • Non-oxides that are active and easily oxidize are preferred.
  • oxygen contained in the high-temperature atmosphere and non-oxides that are highly active and easily oxidize are preferred.
  • the healing agent specifically, SiC, TiC, VC, NbC, B 4 C, TaC, WC, HfC, Cr 3 C 2 , ZrC which are carbides, TiAl, Nb—Al series which are intermetallic compounds Materials such as alloys (eg, Nb 2 Al, NbAl 3 ) or Si-based intermetallic compounds such as CrSi 2 , FeSi, MnSi, ZrSi, VSi 2 , TiSi 2 , and MAX phase are preferable. In view of application to general-purpose high-temperature structural members, SiC and TiSi 2 are preferable. However, the healing agent used in the present invention is not particularly limited as long as the object of the present invention can be achieved.
  • the healing active agent used in the present invention is an oxidation reaction of the healing agent in the repair phase (specifically, the healing agent dispersed in the base material triggered by the occurrence of cracks in the oxidation-induced self-healing ceramic composition) It is a substance that speeds up the diffusion rate of a substance that controls the oxidation reaction caused by contact with oxygen existing outside.
  • the healing activator has a diffusion rate of oxygen molecules, ions, or CO gas in SiO 2 , which is a substance that determines the oxidation reaction of SiC as a healing agent. It is a substance that significantly speeds up (that is, speeds up) as the viscosity of SiO 2 decreases due to addition as compared with the case where there is no addition.
  • Equation 1 the Stokes-Einstein relationship (Equation 1) known as an equation representing the qualitative relationship between the viscosity of the oxide and the diffusion rate of the diffusion species in the oxide is used. And a substance that, when added, greatly reduces the viscosity ( ⁇ ) of the formula.
  • the healing active agent preferably contains at least one metal oxide that satisfies (Formula 2) of the following conditional expression.
  • (Equation 2) Multi-component glass transition temperature (T g ) of oxide, base material and healing activator generated from healing agent ⁇ lower limit of operating temperature of high temperature member applying oxidation-induced self-healing ceramics
  • T g glass transition temperature
  • the composition contains at least one metal oxide that satisfies (Formula 3) of the following conditional expression as a healing activator.
  • the ceramic base material is composed of the same ceramic material as the healing agent and is integrated as a so-called single material, it contains at least one metal oxide that satisfies (Formula 5) of the following conditional expression: Are preferable as the healing active agent, and more preferably satisfying (Formula 6) of the following conditional expression.
  • the single material that satisfies the above condition satisfies (Expression 7) of the following conditional expression.
  • T E melting point
  • T m melting point
  • the terms “upper limit value of operating temperature” and “lower limit value of operating temperature” in (Expression 5) to (Expression 7) of the above conditional expressions are respectively the upper limit values in the temperature distribution generated under the operating conditions of the member.
  • the lower limit This is because even in the same member, the temperature is distributed under operating conditions (for example, even in the same member, the temperature is high in a portion where the distance from the heating unit is short and low in a far portion).
  • the metal oxide healing activator having a glass transition temperature that satisfies the above-described conditional expressions (Expression 2) and (Expression 5) is, for example, a thermodynamic calculation software (for example, FactSage) or a prediction expression proposed by Hui et al. H. Hui and Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007) 403-416; G. Zhong K. Chou, Measuring and modeling viscosity of CaO-Al 2 O 3 -SiO 2 (-K 2 O) melt, Metallugical and Materials Transaction B, 43 (2012) 841-848).
  • a thermodynamic calculation software for example, FactSage
  • Hui et al. H. Hui and Y. Zhang “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007)
  • the viscosity of the oxide containing the healing activator using the software or the prediction formula is used.
  • the temperature at which the viscosity ( ⁇ ) is 10 11.3 Pa ⁇ s is selected as the glass transition temperature (T g ).
  • the eutectic temperature is calculated by using, for example, thermodynamic calculation software (FactSage). To be selected.
  • the glass transition temperature eutectic temperature of (Formula 2) of the above conditional formula and (Formula 3 of the above conditional formula) The healing active agent (MxOy) satisfying both eutectic temperatures of the thermodynamic calculation software FactSage Ver. 6.4, State diagram software Acera-NIST Phase Equilibria Diagrams Version 3.4, and the prediction formula proposed by Hui et al. (H. Hui and Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007) 403-416; G.
  • T g glass transition temperature
  • T E eutectic temperature
  • T H crack healing temperature
  • T g glass transition temperature
  • the upper limit value and the lower limit value of the operating temperature of the high-temperature member to which the oxidation-induced self-healing ceramics in the above-described conditional expressions (Expression 2) to (Expression 7) are applied are the crack healing temperature (T H ).
  • T H the crack healing temperature
  • the upper and lower limits of the operating temperature during takeoff and cruise are in the range of about 1200 ° C and 1050 ° C, respectively.
  • the upper and lower limits of the operating temperature during takeoff and cruise are effective in the range of about 1050 ° C and 600 ° C, respectively.
  • the upper limit value and the lower limit value of the operating temperature of the high temperature member to which the oxidation-induced self-healing ceramics are applied can be arbitrarily selected depending on the application target, and are not particularly limited as long as the object of the present invention can be achieved.
  • the healing activator examples include MgO and MnO, and it is particularly preferable when added to a ceramic composition such as an Al 2 O 3 / SiC composite or a mullite / TiSi 2 composite.
  • a ceramic composition such as an Al 2 O 3 / SiC composite or a mullite / TiSi 2 composite.
  • MnO is more preferable. This is because the addition of the oxide from the healing agent that contributes to completely filling the generated crack and joining the crack surfaces and the complex oxide with the base material can be reduced more effectively. .
  • Figure 6 is a variety of composite materials (Al 2 O 3 /30vol.%SiC composite, Al 2 O 3 /30vol.%SiC/0.2vol.%MgO composites and Al 2 O 3 /30vol.%SiC/
  • T g glass transition temperature
  • t H Min shortest crack completion time
  • the shortest crack completion time (t H Min ) obtained in the temperature range of 600 ° C. to 1000 ° C. as the operating temperature of the Al 2 O 3 / SiC composite is healing.
  • T H crack healing temperature
  • the healing agent in the Al 2 O 3 / SiC composite material In the case of the generated oxide (SiO 2 ), a healing activator that satisfies both the glass transition temperature eutectic temperature of (Formula 2) of the above conditional expression and the eutectic temperature of (Formula 3) of the above conditional expression ( As MxOy), as shown in Table 1 and FIG. 5, MgO, TiO 2 , ZnO, Fe 2 O 3 , NiO and the like are included, and MgO is included therein.
  • the Al 2 O 3 / SiC composite material is cured.
  • an oxide (SiO 2 ) generated from an agent the healing activity satisfying both the glass transition temperature eutectic temperature of (Formula 2) of the above conditional expression and the eutectic temperature of (Formula 3) of the above conditional expression.
  • the agent (MxOy) include ZnO, MnO, Fe 2 O 3 , and NiO as shown in Table 1 and FIG. 5, and MnO is included therein.
  • each When there are a plurality of metal oxides selected as healing active agents, each may be used alone, or two or more of them may be used in combination (ie, mixed).
  • the reason why two or more types may be combined is that, by taking (Formula 2) and (Formula 3) of the above conditional expressions as examples, the above formula (Formula 2) or (Formula 2) This is because (Formula 3) only needs to be satisfied.
  • MgO and MnO may be used alone as a metal oxide as a healing activator, or both may be used in combination. Even if MgO and MnO alone do not satisfy (Formula 2) or (Formula 2) and (Formula 3) of the above conditional expression, they may be satisfied by combining them or by combining with other metal oxides. It is possible.
  • the upper and lower limits of operating temperatures of low-pressure first stage turbine vanes and blades (blade) blades of aircraft engines are around 1200 ° C and 1050 ° C, and upper and lower limits of operating temperatures of second to fifth stage blades.
  • the lower limit values are about 1050 ° C. and 600 ° C.
  • MgO and MnO are applied to high-temperature structural members such as the first stage low pressure blade and the second to third stage low pressure blades, respectively.
  • the operating temperature of high-temperature structural members such as the second stage low-pressure turbine vane and the third blade turbine blade of the CF6 engine is further limited to a temperature range of about 890 ° C. to 1030 ° C.
  • MnO is a particularly preferred healing activator, as shown in FIG.
  • the healing active agent used in the present invention (also referred to as “MxOy” in the present application) is a path for crack propagation in that it effectively lowers the viscosity of the composite oxide from the healing agent from a structural point of view. It is preferable to dispose at the crystal grain boundary of the obtained base material and the interface between the base material and the healing agent. In this case, since the ceramic base material is composed of the same ceramic material as the healing agent, if both are integrated as a so-called single material, the healing activator is disposed at the grain boundary of the single material. Is preferred. Moreover, when M element which comprises MxOy which is a healing active agent mixes unavoidably at the time of healing agent raw material powder manufacture, you may use the mixed M element as a healing active agent raw material as it is.
  • the addition amount of the healing active agent used in the present invention can achieve the maximum improvement in healing speed even in a small amount, and specifically, it is preferably more than 0 and 10% by volume or less, more preferably more than 0 and 9% by volume or less. More preferably, it is more than 0.01 and 3.0% by volume or less, more preferably 0.2 or more and 1.0% by volume or less.
  • a healing activator for example, MgO or MnO
  • a ceramic composition for example, an Al 2 O 3 / SiC composite
  • the addition amount of the healing activator is in the range of more than 0 and 0.2% by volume or less.
  • the healing active agent is easily disposed at the grain boundary, and is easily disposed even at the macro level.
  • the addition amount of the healing active agent is not particularly limited as long as the object of the present invention can be achieved.
  • the diffusion rate of the substance that determines the oxidation reaction of the healing agent in the repairing phase is increased, whereby the autonomous filling and cracking surface of the crack generated in the ceramic composition Bonding between them is promoted.
  • the complete recovery of strength is caused by the fact that the oxide of the melt having a low viscosity filling the space between the crack faces and joining in the modification period after the repair period is further reduced. This is accomplished by solidification and crystallization. Therefore, from the viewpoint of further promoting the strength recovery rate, a substance that facilitates crystallization in the modification period may be further added. In other words, a material that fills the space between the crack surfaces formed during the repair period and promotes crystallization of the melted oxide having a low viscosity (that is, a crack healing material) can be added. Good.
  • Crystallization of the amorphous or supercooled melt is promoted in the temperature range between the melting point (T m ) and the glass transition temperature (T g ). Further, it is known that the amorphous is more thermodynamically unstable as the transition temperature (T g ) is lower, so that the crystallization speed is higher as the glass transition temperature (T g ) is lower.
  • T m melting point
  • T g glass transition temperature
  • the amorphous is more thermodynamically unstable as the transition temperature (T g ) is lower, so that the crystallization speed is higher as the glass transition temperature (T g ) is lower.
  • SiO 2 is generated by oxidation from a healing agent such as SiC, as shown in Table 1
  • crystallization in the modification phase following the repair phase is accelerated by the addition of all the healing active agents compared to the conventional material as shown in Table 1. Will be.
  • the substance that facilitates crystallization in the modification period include MgO and MnO that can be used as the healing active agent used in the present invention.
  • the substance that facilitates crystallization in the modification period is not particularly limited as long as the object of the present invention can be achieved.
  • the crack healing substance (crystal phase) finally generated between the crack surfaces after the inflammatory phase, repair phase, and modification phase, which are elementary processes of the crack healing reaction, is considered in view of its use as a high-temperature structural member Those that enhance the mechanical properties are preferred.
  • the healing active agent focused on the above-mentioned sophistication of the repair period (specifically, it means that the crystallization is promoted by decreasing the viscosity and increasing the diffusion rate).
  • it is preferable to separately add a substance that focuses on increasing the strength of the crack healing substance in the modification period specifically, it means increasing the mechanical properties of the crack healing substance).
  • Substances focused on increasing the strength of the crack healing substance in the modification period include those having simultaneously the effects exhibited by the above-described healing active agent (MxOy) focused on the enhancement of the repair period.
  • MxOy healing active agent
  • MxOy Simultaneously with the above-mentioned healing active agent (MxOy) that focuses on the advancement of the repair phase, Y 2 O 3 and the lanthanoid series La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , It is preferable to add at least one metal oxide represented by Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , or Lu 2 O 3 . In the case of adding these Y or La series oxides, for example, MnO is preferable as the healing activator (MxOy) focusing on the enhancement of the repair period.
  • MnO is preferable as the healing activator (MxOy) focusing on the enhancement of the repair period.
  • the method of adding a substance that achieves an improvement in the mechanical properties of a crack healing substance generated during the modification period is an object of the present invention.
  • a substance that achieves an improvement in the mechanical properties of a crack healing substance generated during the modification period that is, the above-described substance focused on increasing the strength of the crack healing substance during the modification period
  • the ceramic base material is composed of the same ceramic material as the healing agent, if both are integrated as a so-called single material, the healing activator is disposed at the grain boundary of the single material.
  • the addition amount of the healing active agent that achieves the improvement of the mechanical properties of the crack healing material generated at the modification stage can achieve the maximum improvement in the healing rate even in a small amount, specifically, more than 0 and 10% by volume
  • the following is preferable, more than 0 and 9% by volume or less is more preferable, more than 0.01 and 3.0% by volume or less are more preferable, and 0.2 or more and 1.0% by volume or less are more preferable.
  • the mixed powder is dried in the air for 6 hours, and then is subjected to predetermined conditions (that is, atmosphere: Ar gas, holding temperature: 1750 ° C., load pressure: 40 MPa, holding time: 1 hour, rate of temperature increase: 10 ° C./min, temperature drop) (Pressure: 5 ° C./min) was subjected to hot press sintering to produce a 50 ⁇ 50 ⁇ 6 mm sintered body. Bending test pieces of 3 ⁇ 4 ⁇ 44 mm and 3 ⁇ 4 ⁇ 22 mm were produced from the obtained sintered body. The surface of the test piece was mirror polished according to JIS R 1601. These test pieces were used as smooth materials.
  • a semi-elliptical crack (pre-crack) having a surface length of about 110 ⁇ m was introduced into the smooth material using a Vickers hardness tester, and the conditions were satisfied (that is, crack healing temperature ( TH ): 1000 ° C. to Heat treatment was performed at 1300 ° C., healing time (t H ): 0.1 to 1000 hours, atmosphere: air.
  • the strength of the test piece was evaluated by a room temperature three-point bending test method.
  • the strength evaluation of the pre-cracking material and the crack healing material was performed with span lengths of 30 mm and 16 mm, respectively.
  • An RTF-1310 made by AND was used for the bending tester.
  • the high-temperature oxidation behavior of SiC, the three-dimensional microstructure around the healing part, and the composition and crystal structure of the crack-healing material are respectively shown in situ observation equipment, direct scanning electron microscope-focused ion beam processing equipment (FIB-SEM) ( Analysis was performed using SMF-1000 (manufactured by Hitachi High-Technologies Corporation) and a transmission electron microscope (TEM) (JEM-3100FEF: manufactured by JEOL Ltd.).
  • FIB-SEM direct scanning electron microscope-focused ion beam processing equipment
  • Example 1 [Preparation of Al 2 O 3 /30vol.%SiC/0.2vol.%MgO composites and Al 2 O 3 /30vol.%SiC/0.2vol.%MnO Composite] Composite of 30 vol.% SiC in Al 2 O 3 according to the method of Reference Example 1 and 0.2 vol.% Of MgO powder in combination with, Al 2 O 3 and 30 vol.% SiC and 0.2 vol.% MgO were prepared (., also referred to as "Al 2 O 3 /30vol.%SiC/0.2vol.%MgO composite" in this application) of the composite.
  • the Al 2 O 3 /30vol.%SiC/0.2vol.%MgO composites the Al 2 O 3 /30vol.%SiC and 0.2 vol.% Of MgO powder were mixed as a raw material powder Te
  • a mixture of Al 2 O 3 /30vol.%SiC and 0.2 vol.% of MnO powder as raw material powder It was produced by hot press sintering.
  • the holding temperatures in sintering in the production of both composite materials were 1700 ° C. and 1550 ° C., respectively, for the purpose of segregating the healing activator to the grain boundaries of the base material.
  • the sintering conditions other than the holding temperature are the predetermined conditions (that is, atmosphere: Ar gas, load pressure: 40 MPa, holding time: 1 hour, heating rate: 10 ° C./min, cooling rate: 5 ° C./min. ).
  • the sintering conditions described above were selected to be suitable as conditions for segregating the healing activator to the base material grain boundary.
  • MgO powder and MnO powder those manufactured by Akira Shinshiro Material Co., Ltd. and those manufactured by High Purity Chemical Laboratory, respectively were used.
  • MgO powder has an average particle size of 0.25 ⁇ m, purity of 99.9%, density of 3.585 g / cm 3 , Ca as impurities: 200 ppm, K: 30 ppm, Fe: 30 ppm, Na: 80 ppm, Cu: 10 ppm,
  • the MnO powder has an average particle diameter of 5 ⁇ m to 10 ⁇ m, a purity of 99.9%, a density of 5.36 g / cm 3 , impurities as Ca 100 ppm, Co 60 ppm, Mg 100 ppm, It contained 100 ppm Na and 10 ppm Si.
  • a powder as fine as possible was selected from among commercially available powders so that the inter-particle distance was made as small as possible and further dispersed uniformly.
  • Bending test pieces of 3 ⁇ 4 ⁇ 44 mm and 3 ⁇ 4 ⁇ 22 mm were produced from the obtained sintered body.
  • the surface of the test piece was mirror polished according to JIS R 1601. These test pieces were used as smooth materials.
  • a semi-elliptical crack having a surface length of about 100 ⁇ m was introduced into the smooth material using a Vickers hardness tester, and this was used as a pre-crack material.
  • Heating was performed by a lamp condensing method, and observation was performed by an optical microscope.
  • a healing process was performed around the pre-crack by a lamp condensing superheating method at a heating rate of 50 ° C./min up to 1000 ° C., and further 20 ° C./min. The results of in situ observation are shown in FIG.
  • Al 2 O 3 in both /30vol.%SiC/0.2vol.%MgO composites and Al 2 O 3 /30vol.%SiC/0.2vol.%MnO composite Al 2 O 3 / 30vol conventional materials Compared to the.% SiC composite material, it was confirmed that the oxide generation rate on the sample surface was increased and the temperature was lowered. As shown in FIG. 4, in the conventional material, oxide production amount even when heated to 1350 ° C. is very small, but pre crack was sufficient identifiable by an optical microscope, Al 2 O 3 / 30vol In the.% SiC / 0.2 vol.% MgO composite material, a large amount of oxide was confirmed even at 1350 ° C., and the crack disappeared.
  • the overall bubble formation temperature Al 2 O 3 about 1350 ° C. in /30vol.%SiC/0.2vol.%MgO composite (specifically, 1330 °C), Al 2 O 3 /30vol.%SiC
  • the temperature was 1000 ° C. Therefore, the increase in the oxide generation rate and the decrease in the temperature improve the diffusion rate of the gas phase species in the oxide by the function of reducing the viscosity of the oxide of MnO or MgO as the healing active agent. As a result, it was found that the oxidation rate of SiC was increased and decreased.
  • examples of the healing active agent for increasing the diffusion rate include, for example, the above-mentioned Stokes-Einstein known as a formula representing a qualitative relationship between the viscosity of an oxide and the diffusion rate of a diffusion species in the oxide.
  • a substance that greatly reduces the viscosity ( ⁇ ) of the relational expression (formula 1) is preferred.
  • the eutectic temperature (T E ) (or melting point (T m )) and the glass transition temperature (T g ) that determine the upper limit of the operating temperature.
  • the healing activator preferably includes at least one metal oxide that satisfies (Formula 2) of the above conditional formula, and further satisfies (Formula 3) of the above conditional formula. It is more preferable that Therefore, taking as an example the case where the oxide generated from the healing agent in the Al 2 O 3 / SiC composite is SiO 2 , the glass transition temperature eutectic temperature of (Formula 2) of the above conditional formula and ( A healing activator (MxOy) satisfying both eutectic temperatures of the formula 3) is obtained from a thermodynamic calculation software FactSage Ver. 6.4, State diagram software Acera-NIST Phase Equilibria Diagrams Version 3.4, and the prediction formula proposed by Hui et al. (H.
  • the various composite materials (lSiO 2 -mAl 2 O 3 -nMxOy) in Table 1 are estimated by the compositions when the eutectic temperature (T E ) and the melting point (T m ) coincide.
  • the glass transition temperature (T g ) and the eutectic temperature (T E ) ( melting point (T m )).
  • the glass transition temperature of SiO 2 —Al 2 O 3 that was 943 ° C. could be lowered to 167 ° C. at the maximum depending on the type of the healing activator.
  • the addition of the oxide and base material mixture from the healing agent that contributes to completely filling the generated cracks and joining the crack surfaces effectively reduces the viscosity of the mixture.
  • Particularly preferred are those that can be made.
  • Al 2 O 3 - healing active agent and SiO 2 -Al 2 O 3 - those eutectic temperature cure activator is above the upper limit of the operating temperature of the member to be assumed, without reducing the high temperature strength of the member It is preferable in that the healing function is enhanced.
  • the right frame in FIG. 6 shows the shortest peak at 800 ° C., 1000 ° C., and 1200 ° C. calculated from a prediction formula for crack healing separately constructed by the present inventors theoretically analyzing crack healing.
  • the crack completion time (t H Min ) is added for reference as the predicted minimum crack completion time (t H Min ).
  • the shortest crack healing time (t H Min ) obtained in the temperature range of 800 ° C. to 1200 ° C. as the operating temperature of the oxidation-induced self-healing ceramic composition (that is, crack healing temperature (T H )) is It was found that as the eutectic temperature (T E ) decreases due to the addition of MgO or MnO, which are healing activators, it is significantly shortened. In particular, when MnO is added as a healing activator, the shortest crack healing time (t H Min ) is less than 10 minutes at 1000 ° C. and 30 hours at 800 ° C.
  • the oxidation-induced self-healing ceramic composition containing MgO or MnO as a healing activator the speed required for strength recovery in the self-healing process is increased, and the temperature required for crack healing is increased. It has been clarified that high functionality can be realized.
  • Example 2 [Preparation of Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite and mullite /30vol.%TiSi 2 /1.0vol.%MnO composite] Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composites, 1.0 vol.% Of the raw material that MnO powder mixed with a curative activity material Al 2 O 3 /30vol.%SiC composite The powder was produced by hot press sintering in an Ar atmosphere at 40 MPa, 1550 ° C. for 1 hour.
  • Mullite /30vol.%TiSi 2 /1.0vol.%MnO composites a mixture of 1.0 vol.% Of MnO powder as healing activity material mullite / 30 vol% TiSi 2 composite as a raw material powder, it It was produced by hot press sintering under conditions of 40 MPa, 1300 ° C., and 4 hours in an Ar atmosphere. Since TiSi 2 powder has a large particle size, it was pre-ground before use. From fabricated Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite and mullite /30vol.%TiSi 2 /1.0vol.%MnO composite, blunt-situ observation and strength evaluation A material was prepared.
  • a Vickers hardness tester was used as the smooth material, and a semi-elliptical precrack having a surface length of about 100 ⁇ m or 150 ⁇ m was introduced at a load of 2 kgf.
  • the pre-crack material was subjected to heat treatment in a high-temperature in-situ observation apparatus, and qualitative evaluation of the amount of surface oxide, local melting behavior, and oxide viscosity was performed.
  • a high-temperature observation stage for microscopes manufactured by Yonekura Seisakusho was used as the in-situ observation apparatus. Heating was performed by a lamp condensing method, and observation was performed by an optical microscope.
  • Healing treatment was performed around the precrack by the lamp condensing superheating method and the state was observed.
  • the crack healing treatment was performed at a temperature of 600 ° C. to 1000 ° C. for 0.017 hours to 300 hours under atmospheric conditions.
  • the strength of the crack healing material was evaluated by a three-point bending method at room temperature.
  • Al 2 O 3 /30vol.%SiC/1.0vol.%MnO situ observation of the composite The Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite and in situ observation of mullite /30vol.%TiSi 2 /1.0vol.%MnO composite produced in this Example was carried out. Among them, described in detail below results of Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite. The apparatus used for in-situ observation is the same as in Example 1. In Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composites, occurrence of a low oxide viscosity was observed at about 1000 ° C..
  • FIG. 7A shows the relationship between the bending strength ( ⁇ B ) and the healing time (t H ) at an operating temperature of 800 ° C. for these composite materials
  • FIG. 7B shows the operating temperature for these composite materials.
  • the relationship between bending strength ( ⁇ B ) at 1000 ° C. and healing time (t H ) is shown.
  • the test pieces indicated by * in these drawings are test pieces that were broken from other than the crack healing part, and that the fracture starting point has transitioned to an internal defect outside the healing part, that is, the crack has been completely cured. It shows that.
  • the shortest crack completion time (t H Min ) at 800 ° C. was 100 hours as shown in FIG. It was found that the shortest crack healing time (t H Min ) at 1000 ° C. was significantly improved to 10 minutes as shown in FIG. Further, FIG.
  • FIG. 8 shows the relationship between the shortest crack healing time (t H Min ) and the healing temperature (T H ) for these composites, the operating temperatures of the turbine engine vanes (blades) and blades (blades) for aircraft engines. It shows the cruise time of the aircraft. Incidentally, Al 2 O 3 /30vol.%SiC composites are those listed as a comparative material, are also shown with the predicted value of the shortest-out ⁇ Osamu time its experimental value (t H Min).
  • the operating temperatures of the turbine engine vanes (blades) and blades (robots) in FIG. 8 are assumed to be an uncooled jet engine for which oxidation-induced self-healing ceramics are expected to be used.
  • crack-healing temperature of the conventional Al 2 O 3 /30vol.%SiC composites without the addition of curative activator (T H) is, 1200 ° C., 1000 ° C., 800 ° C., and at 600 ° C., They were about 5 hours (experimental value), 1000 hours (experimental value), 16400 hours (predicted value), and 686100 hours (approximately 78 years) (predicted value).
  • Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite shortest-out ⁇ Osamu time (t H Min) is, 1000 ° C., 800 ° C., and at 600 ° C., respectively, less than 1 minute, It was 10 hours and 300 hours. Therefore, the addition of MnO is healing activity material 1.0 vol.%, 60000-fold the rate of healing compared to the Al 2 O 3 /30vol.%SiC composites without the addition of conventional materials, 1640, And 2287 times (in other words, the shortest crack healing time (t H Min ) can be reduced to less than 1/60000 times, 1/1640 times, and 1/2287 times, respectively). I understood it.
  • the shortest crack completion time (t H Min ) of the mullite / 30 vol.% TiSi 2 /1.0 vol.% MnO composite was less than 10 minutes and 100 hours at 1000 ° C.
  • Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite, Al 2 O 3 /30vol.%SiC/0.2vol.%MnO composite, Al 2 O 3 /30vol.%SiC/ 0.2 vol.% MgO composite and mullite / 30 vol.% TiSi 2 /1.0 vol.% MnO composite are used for the first stage low-pressure turbine vane and blade (blade) of the aircraft engine and the second to In view of the operating temperatures of the three-stage low-pressure turbine stationary blades (vanes) and the moving blades (blades), it has been confirmed that the present invention is extremely effective when applied to a high-temperature structural member used in such an operating temperature region.
  • Al 2 O 3 /30vol.%SiC/1.0vol.%MnO composite, Al 2 O 3 /30vol.%SiC/0.2vol.%MnO composite and mullite / 30 vol.% TiSi 2 /1.0 vol.% MnO composite has an operating temperature range of 890 ° C. to 1030 ° C. assuming that the cruising time is 1 hour and the surface cracks generated during that time must be completely cured. It has been confirmed that it is extremely effective for application to high-temperature structural members such as second stage low-pressure turbine vanes and blades (blades) of a CF6 engine, which is limited to a temperature range of about.
  • the oxidation-induced self-healing ceramic according to the present embodiment is applied to a high-temperature member, in which it has been difficult to effectively exert the self-healing function of a crack generated by the conventional oxidation-induced self-healing ceramics. It has become clear that it can be applied to low-pressure turbine blades of aircraft.
  • the oxidation-induced self-healing ceramic according to the present embodiment can simultaneously improve the strength of the sintered material in addition to the healing function by adding a small amount of a healing activator.
  • the strength as a pre-cracked material in which a pre-crack having a length of 110 ⁇ m was introduced into each of these composite materials was about 200 to 250 MPa in all cases.
  • the introduced pre-crack was completely cured at a temperature of 1000 ° C. to obtain a healing material, and the bending strength of each healing material was measured.
  • the result is shown in FIG. Therefore, the bending strength of each healing material in the figure corresponds to the strength of the crack healing material filled with the crack.
  • the measuring method, evaluation method, etc. it carried out by the method similar to Example 2.
  • FIG. As shown in FIG. 9, the bending strength at high temperature of the healing material is significantly improved by adding Yb 2 O 3 . Moreover, even if the addition amount is a very small amount of 1 vol.%, The bending strength at high temperature is greatly improved. Therefore, the addition of a small amount of Yb 2 O 3 is extremely effective for improving the high temperature strength of the crack healing material.

Abstract

自己治癒過程における炎症期に注目した従来の酸化誘起型自己治癒セラミックス組成物とは異なり、修復期及び改変期に注目してこれらの段階を高速化する元素および組織設計を行うことにより、酸化誘起型の高機能性自己治癒セラミックス組成物、その製法、その用途、並びにその高機能化を達成するための方法を新たに提供することを目的とする。 本発明によれば、セラミックス母材と、前記母材中に分散している酸化活性な非酸化物の治癒エージェントと、治癒活性剤を含む、酸化誘起型自己治癒セラミックス組成物であって、前記治癒エージェントは、前記セラミックス組成物のき裂発生による外部酸素との接触で酸化物を生成する物質であり、前記治癒活性剤は、前記治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する物質である、前記セラミックス組成物が与えられる。

Description

治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法
 本発明は、酸化誘起型の高機能性自己治癒セラミックス組成物に関するものであって、具体的には、治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法に関する。特に、航空機エンジンのタービン翼をはじめとする高温構造部材として用いるものに関する。
 酸化誘起型自己治癒セラミックスは、セラミックス母相に分散していて、高温大気中での酸化に対して高活性な非酸化物(本願では「治癒エージェント」とも称する。)が、使用中のき裂発生を引き金としてその外部に存在する大気中の酸素と高温酸化し、それにより生成した酸化物がき裂を自律的に充填及び接合して強度を完全に回復する機能、いわゆる「自己治癒機能」を有している。そのため、酸化誘起型自己治癒セラミックスは、高い性能と高度な安全性が要求される次世代の高温構造部材への適用が大いに期待されている。
 このような酸化誘起型自己治癒セラミックスとしては、例えば、Al(アルミナ)とSiCの複合材(本願では「Al/SiC複合材」とも称する。)、ムライトとSiCの複合材(本願では「ムライト/SiC複合材」とも称する。)、ジルコニアとSiCの複合材(本願では「ジルコニア/SiC複合材」とも称する。)、窒化ケイ素とSiCの複合材(本願では「窒化ケイ素/SiC複合材」とも称する。)が具体的に提案されている(特許文献1~3)。
 また、自己治癒を誘発する高温での酸化を低温化させるために、低温での酸化に高活性なMAX相化合物や金属間化合物のような治癒エージェントが提案されている(非特許文献1~2)。このような治癒エージェントとしては、例えば、ムライトとTiSiの複合材(本願では「ムライト/TiSi複合材」とも称する。)やTiSiCセラミックスが具体的に提案されている。
 また、アルミナのセラミックス母材を含み、その母材中にアルミナの長繊維部材を備えるセラミック複合材料において、その母材とその長繊維との界面にSiCのような治癒エージェントを配置する酸化誘起型自己治癒セラミックス(本願では「アルミナ母材/治癒エージェント界面層/アルミナ長繊維複合材」とも称する。)が、酸化物セラミックスの高靭化および自己治癒機能の両立に成功しているという報告がある(特許文献4)。
特開平7-138067号 特開平11-147769号 特開平11-147774号 特開2012-148963号
Farle et al., "A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage", J. Eur. Cer. Soc., 2014 (in press) Yoshioka et al., "Methodology for evaluating self-healing agent of structural ceramics", J. Intelligent Mater. Struct. pp-1045389X14544137, 2014
 しかしながら、従来の酸化誘起型自己治癒セラミックスには、高温大気中での治癒エージェントと酸素との酸化反応のみに注目して、その自己治癒機能の高機能化を図るものしかなかった。ここで、高機能化とは、具体的には、自己治癒過程において、強度回復に必要な速度を高速化し、また、き裂治癒に必要な温度を低温化することである。この高機能化は、高温構造用部材としての様々な仕様用途(例えば、様々な酸素分圧や稼働温度での高温構造用部材の使用)において、高速でき裂を完治するために必要不可欠である。
 そのため、治癒エージェントの酸化高活性化のみを改良することによって高機能化を図る従来の酸化誘起型自己治癒セラミックスを用いて、き裂を自律的に充填及び接合して強度を回復する自己治癒機能を高機能化するには限界があり、自己治癒機能の更なる高機能化が難しいという課題があった。特に、航空機エンジンの低圧タービン翼のような高温構造部材に使用する場合、自己治癒機能の更なる高機能化は大きな課題となっていた。何故なら、その稼動条件は600℃~1200℃の温度範囲と想定されるが、従来の酸化誘起型自己治癒セラミックスでは、その自己治癒機能が有効に発現する温度がそれよりも高い約1200℃~1300℃の極めて限定的な温度範囲になってしまうためである。そして、航空機分野においては、600℃~1200℃の温度範囲でも発生した表面き裂を高速で完治可能な酸化誘起型自己治癒セラミックスの開発は急務の課題であった。何故なら、エンジンの軽量化や冷却空気の低減化により燃費を改善するためにエンジンの低圧タービン翼を従来のNi基超合金に比べて比重の低い酸化誘起型自己治癒セラミックスに置き換えることが切望されているという現状がある一方で、タービン部において従来の酸化誘起型自己治癒セラミックスを使用した場合、燃焼器において生成される微細な異物(例えば、硫化物)等が高速でセラミックスに衝突する、異物衝突損傷(本願では「FOD」とも称する。)により表面き裂が発生し、最悪破断する可能性があるためである。因みに、タービン静翼材として期待されている現行の長繊維強化SiC/SiC複合材は、自己治癒機能に着目した設計が行われたものではないため、FOD損傷による破断を一時的に回避することは可能でも、衝突の蓄積により部材の強度は徐々に低下するため、安定した信頼性を本来的に担保することは困難である。
 また、従来のMAX相化合物や金属間化合物のような治癒エージェントを用いた酸化誘起型自己治癒セラミックスでは、その強度が極めて低いという課題もあった。
 そこで、本発明においては、これらの課題を解決すべく、酸化誘起型の高機能性自己治癒セラミックス組成物、その製法及びその用途、並びにその高機能化を達成するための方法を新たに提供することを目的とする。
 本発明者らは、酸化誘起型自己治癒セラミックスの自己治癒機能の発生機構(本願では「自己治癒機構」とも称する。)を鋭意検討した結果、その発生機構が、人体を構成する緻密骨が有する自己治癒機構(「炎症期」、「修復期」、「改変期」の三段階による自己治癒機構)になぞらえることで、治癒エージェントが酸化反応を起こす段階(本願では「炎症期」とも称する。)、治癒エージェントから生成した酸化物が母相等と反応して粘度の低い過冷却融体を一時的に生成し、この過冷却融体がき裂の空隙(即ち、母相粒界や母相と治癒エージェントとの界面に進展したき裂面間の空隙)を完全に充填してき裂面間を接合する段階(本願では「修復期」とも称する。)、そして過冷却融体が凝固または結晶化することによってき裂面間に充填されたき裂治癒物質(即ち、強度回復を完全に達成したき裂治癒試料において、そのき裂治癒に供した物質)またはき裂治癒物質と母相の界面が高強度化する段階(本願では「改変期」とも称する。)の三段階に分類可能であり、また、自己治癒における強度回復速度が修復期を律速段階としていることを初めて見出した。
 更に、本発明者らは、従来法のように炎症期に注目するのではなく、修復期及び改変期に注目してこれらの段階を高速化する元素および組織設計を行うことにより、酸化誘起型自己治癒セラミックスが有する自己治癒機能の高機能化が実現できることを初めて見出し、本発明を完成させるに至った。
 この点について、以下に詳述する。
 本発明者らは、本発明を完成させるにあたり、まず、以下の通り、酸化誘起型自己治癒セラミックスのき裂治癒機構の解析を行い、その機構を初めて明らかにした。
 <き裂治癒機構の解析>
 (1) き裂治癒による強度回復挙動
 酸化誘起型自己治癒セラミックスとして従来から知られているAl/SiC複合材の一例として、Alと30体積%のSiCの複合材(本願では「Al/30vol.%SiC複合材」とも称する。)を用いてき裂治癒材の室温強度回復に及ぼす治癒時間(t)の影響を調査した結果を図1に示す。なお、本願では「体積%」を「vol.%」とも称する。
 図1に示す通り、き裂治癒温度(T)が例えば1200℃の場合、き裂治癒材の強度は治癒時間(t)の増加に伴って上昇し、治癒時間(t)が5時間以上では、平滑治癒材と同等にまで完全に回復することを確認した。また、治癒時間(t)が5時間以上になると、予き裂にあった破壊起点はき裂治癒部外に遷移することも確認した。これらの結果から、本発明者らは、1200℃のき裂治癒温度(T)では、最短5時間でき裂が完治することを見出した。
 また、図1に示す通り、本発明者らは、最短き裂完治時間(t Min)は、き裂治癒温度(T)の低下に伴って大幅に増加することを見出した。
 因みに、図1に示す平滑治癒材は、予き裂を施していない平滑材を1300℃、1時間の条件でき裂治癒処理を行って作製したもので、平滑材表面でさえ残存している微小なき裂を完全に治癒した試料である。そのため、平滑治癒材の強度は平滑材に比べて若干向上し、破壊起点は内部欠陥となっている。その他の図1で使用した予き裂材や平滑材の供試材の製法については、本願実施例の参考例1で詳述する。
 (2) マルチスケール構造解析
 図2(a)には、き裂治癒温度(T)が1200℃の場合の治癒過程におけるき裂治癒部の状態を示す三次元SEM像を示す。なお、図2(a)の未治癒材の三次元SEM像は、治癒時間(t)が最短き裂完治時間(t Min)の5時間よりも短い1時間の場合を示し、図2(a)の完治材の三次元SEM像は、治癒時間(t)が最短き裂完治時間(t Min)の5時間よりも長い50時間の場合を示す。
 図2(b)には、き裂治癒温度(T)が1200℃の場合の強度回復を完全に達成したときのき裂治癒部のTEM像を示す。
 なお、使用した装置等ついては、本願実施例の参考例1で詳述する。
 図2(a)中の未治癒材の三次元SEM像に示す通り、強度回復が未達成の場合(即ち、治癒時間(t)<最短き裂完治時間(t Min)の場合)のき裂治癒材のき裂の最大開口部には、未充填な三次元に連結した欠陥(本願では「未修復欠陥」とも称する。)が存在する。一方で、図2(a)中の完治材の三次元SEM像に示す通り、完全な強度回復を果たした場合(即ち、治癒時間(t)≧最短き裂完治時間(t Min)の場合)のき裂治癒部では、SiCからSiOへの体積膨張により未修復欠陥は更に縮退し、母材に潜在的に存在する内部欠陥サイズよりも小さい1μm程度の極めて微小な欠陥になる。これらの結果から、本発明者らは、室温強度にまで回復させるのに必要な速度、いわゆる回復速度を決定する要因として、き裂を完全に充填してき裂面間を接合する速度(本願では「き裂充填速度」又は「未修復欠陥の縮退速度」とも称する。)が重要であることを見出した。
 更に、図2(b)に示す通り、き裂治癒物質が、結晶化したクリストバライトと微量のムライトで構成されていることを確認した。これは、き裂治癒過程でSiCの酸化によって生成したSiOに微量のAl(具体的には、Al元素)が作用して粘度の低い過冷却融体の酸化物を生成し、その後二相分離したことによるものと理解している。このような過冷却融体の生成に起因する粘度の低下は、SiCの酸化によってその表面に生成した生成酸化物のSiOにおいては1700℃程度でもその粘度が十分に低下しなければ浮上できず観察できないはずの気泡形成(本願では「バブル形成」とも称する。)が、Al/30vol.%SiC複合材の表面から、SiOとAlの共晶温度以下の温度である1400℃においてその場観察装置によって観察されたという事実からも確認された。なお、本発明者らは、このバブル形成の一因として、Alを微量に含むSiO過冷却融体の生成や1400℃での反応熱(具体的には、酸化発熱)による局所的な温度上昇等を考えている。
 また、図2(b)に示す通り、SiC及びSiOの結晶方位は極めて小さく、SiCとSiOの境界は整合性の高い界面になっていること、また、AlとSiOの境界にはそれらの中間化合物であるムライトの微結晶が形成されていることを確認した。
 これらの結果から、本発明者らは、Al/SiC複合材のような酸化誘起型自己治癒セラミックスにおけるき裂治癒過程で強度回復を完全に達成すると、このような結晶相や整合性の高い界面の存在によって高強度の治癒部及び治癒部と母相の界面が形成されることを見出した。
 (3) き裂治癒機構のモデル化
 以上の結果を踏まえ、本発明者らは、Al/SiC複合材のき裂治癒機構が、人体を構成する緻密骨が有する自己治癒機構になぞらえると、SiCが酸化反応を起こす段階(「炎症期」)、SiCから生成した酸化物のSiOがAlと反応して粘度の低い過冷却融体を一時的に生成し、この過冷却融体がき裂の空隙(即ち、母相粒界や母相と治癒エージェントとの界面に進展したき裂面間の空隙)を完全に充填してき裂面間を接合する段階(「修復期」)、そして過冷却融体が凝固して結晶化することによってき裂面間に充填されたき裂治癒物質またはき裂治癒物質と母相の界面が高強度化する段階(「改変期」)の三段階に分類することができ、図3(a)に示すようなモデル化が可能であることを見出した。
 各段階は、具体的には、以下の通りである。
 炎症期は、き裂の発生を引き金として、未反応のSiCの酸化が大気中の酸素との接触によってSiOを形成する酸化反応を開始し、その反応熱によりき裂面間の温度が局所的に上昇する段階である。
 修復期は、組織的には、SiCの酸化により生成したSiOが隣接するAl(母材)と反応して粘度の低い酸化物を生成し、この酸化物が融解し、融体としてき裂を完全に充填してき裂面間を接合する段階である。破壊力学的には、き裂面間が充填されて、そのき裂が無欠陥とみなせるサイズにまで縮退する段階である。
 改変期は、修復期においてき裂面を完全に充填してき裂面間を接合した粘度の低い酸化物融体が、凝固して結晶化する(具体的には、結晶の核生成サイトとなりうるSiCとの界面からSiOの結晶であるクリストバライトが形成されるとともに、Alとの境界に中間化合物のムライトが析出する)ことによって、き裂治癒物質が高強度化し、強度回復を完全に達成する段階である。
 そして、本発明者らは、組織的及び破壊力学的な観点から、少なくとも室温強度の完全回復にはき裂面間の空隙が完全に充填されること(即ち、過冷却融体がき裂面間の空隙を完全に充填してき裂面間を接合すること)が必要条件であり、そのため、この条件に相当する修復期がき裂治癒過程での強度回復速度を決定する律速段階であることを見出した。ここで、「完全に充填される」とは、き裂面間に独立して存在する空隙が母材に潜在的に存在する内部欠陥サイズよりも小さくなる(即ち、許容欠陥寸法になる)ということを意味する。
 本発明者らは、これらの知見をもとに、き裂治癒過程での強度回復速度が、修復期で生成する低粘度な酸化物中の酸素分子やイオン又はCOガスの拡散速度に律速されると仮定し、き裂治癒材の室温強度を予測した。その結果を予測曲げ強度(σ)として、先述した図1中に実線で示した。この図に示す通り、き裂治癒材の強度と最短き裂完治時間(t Min)の予測値は実測値とよく一致していることから、この仮定が正しいことを確認した。これにより、Al/SiC複合材におけるき裂治癒過程では、その強度回復速度を決定する律速段階となる修復期において、母材からの微量のAl(具体的には、Al元素)が、治癒エージェントであるSiCの酸化によって生成したSiOに作用して粘度を低下させることで、治癒エージェントのSiCの酸化反応を律速するSiOとAlで構成される過冷却融体中の拡散種(具体的には、酸素分子やイオン又はCOガス)の拡散速度を高めることが明らかになった。
 <新規酸化誘起型自己治癒セラミックス組成物の創製等>
 このようにして、本発明者らは、酸化誘起型自己治癒セラミックスのき裂治癒機構を初めて明らかにした。そして、明らかにしたき裂治癒機構に基づいて、本発明者らは、き裂治癒過程での強度回復速度を決定する律速段階である修復期でのき裂充填速度を向上させる(具体的には、治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する)ことができれば、強度回復に必要な速度を高められ、その結果、従来では達成し得なかった酸化誘起型自己治癒セラミックス組成物の高機能化が実現できることを初めて見出した。
 そこで、本発明者らは次に、酸化誘起型自己治癒セラミックス組成物におけるき裂治癒過程での強度回復速度を律速する修復期及びそれに続く改変期に注目して、新規な酸化誘起型の高機能性自己治癒セラミックス組成物の創製や酸化誘起型自己治癒セラミックス組成物の新規な高機能化方法の提供等を行った。そのため、本発明は、治癒エージェントを高温酸化する炎症期にのみ注目して、治癒エージェントの酸化高活性化により高機能化を図ろうとする従来の酸化誘起型自己治癒セラミックス組成物や従来の酸化誘起型自己治癒セラミックス組成物の高機能化方法等とは本質的に異なる。
 本発明は、具体的には以下の構成を有する。
(1) 本発明の一側面によれば、セラミックス母材と、その母材中に分散している酸化活性な非酸化物の治癒エージェントと、治癒活性剤を含み、前記治癒エージェントは、セラミックス組成物のき裂発生による外部酸素との接触で酸化物を生成する物質であり、前記治癒活性剤は、治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する物質である、酸化誘起型自己治癒セラミックス組成物が与えられる。
(2) ここで、治癒活性剤は、母材の結晶粒界及び母材と治癒エージェントの界面に配置されていてもよい。
(3) また、(1)又は(2)の酸化誘起型自己治癒セラミックス組成物において、母材は酸化物系セラミックスで構成されていてもよい。
(4) ここで、母材を構成する酸化物系セラミックスはアルミナ又はムライトでもよい。
(5) また、(1)乃至(4)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤は、治癒エージェントから生成される酸化物と母材の粘度をその添加によって下げる物質でもよい。
(6) また、(1)乃至(5)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤は、以下の条件式、即ち、
治癒エージェントから生成される酸化物と母材と治癒活性剤の多成分系のガラス転移温度(T)<酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
を満足する金属酸化物を少なくとも一種以上含むものでもよい。
(7) (1)乃至(6)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒エージェントはSiC又はTiSiでもよい。
(8) (1)乃至(7)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤がMgO及びMnOの少なくとも1種を含むものでもよい。
(9) (1)乃至(8)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤の添加量は0超10体積%以下であってもよい。
(10) (1)の酸化誘起型自己治癒セラミックス組成物において、母材が、その母材中に分散している治癒エージェントと同じセラミックスで構成され、そのため、前記母材と前記治癒エージェントが単一材料として一体化していてもよい。
(11) ここで、治癒活性剤は単一材料の結晶粒界に配置されていてもよい。
(12) (10)又は(11)の酸化誘起型自己治癒セラミックス組成物において、治癒活性剤は、その自己治癒セラミックス組成物のき裂発生による外部酸素との接触で単一材料から生成される酸化物の粘度をその添加によって下げる物質でもよい。
(13) (10)乃至(12)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤は、以下の条件式、即ち、
単一材料から生成される酸化物と治癒活性剤の多成分系のガラス転移温度(T)<酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
を満足する金属酸化物を少なくとも一種以上含むものでもよい。
(14) (10)乃至(13)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒エージェントはSiC又はTiSiでもよい。
(15) (10)乃至(14)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤がMgO及びMnOの少なくとも1種を含むものでもよい。
(16) (10)乃至(15)のいずれかの酸化誘起型自己治癒セラミックス組成物において、治癒活性剤の添加量は0超10体積%以下であってもよい。
(17) また、(1)乃至(9)のいずれかの酸化誘起型自己治癒セラミックス組成物において、母材、治癒エージェントから生成される酸化物、及び治癒活性剤を含む物質が、セラミックス組成物で発生したき裂を自律的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を更に含むものでもよい。
(18) また、(10)乃至(16)のいずれかの酸化誘起型自己治癒セラミックス組成物において、単一材料から生成される酸化物と治癒活性剤を含む物質がセラミックス組成物で発生したき裂を自律的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を更に含むものでもよい。
(19) (17)又は(18)の酸化誘起型自己治癒セラミックス組成物において、き裂治癒に供する物質の機械的強度を添加することによって高める物質が、Yやランタノイド系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luで表される金属酸化物を少なくとも一種以上含むものであってもよい。
(20) 本発明の他の側面によれば、(1)乃至(19)のいずれかの酸化誘起型自己治癒セラミックス組成物を、母材とその母材中に分散している大気中で酸化活性な非酸化物の治癒エージェント又は前記母材と前記治癒エージェントが同じセラミックスで構成されているために両者が一体化している単一材料に対して治癒活性剤を添加した混合物を不活性雰囲気下でホットプレス焼結することによって製造する方法が与えられる。
(21) 本発明の他の側面によれば、(1)乃至(19)のいずれかの酸化誘起型自己治癒セラミックス組成物を含む、構造部材が与えられる。
(22) 本発明の他の側面によれば、酸化誘起型自己治癒セラミックス組成物を構成するセラミックス母材と母材中に分散している酸化活性な非酸化物の治癒エージェントに対して治癒活性剤を添加し、治癒エージェントとして、自己治癒セラミックス組成物のき裂発生による外部酸素との接触で酸化物を生成する物質を使用し、治癒活性剤として、前記治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する物質を使用することによって、酸化誘起型自己治癒セラミックス組成物の自己治癒機能における強度回復速度及びき裂治癒温度の低温化を向上させる方法が与えられる。
(23) ここで、この自己治癒機能における強度回復速度及びき裂治癒温度の低温化を向上させる方法は、セラミックス母材、酸化物、及び治癒活性剤を含む物質がセラミックス組成物で発生したき裂を自律的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を使用することを更に含むものであってもよい。
 本発明によれば、従来のように自己治癒過程における炎症期に注目することなく、修復期及び改変期に注目してこれらの段階を高速化する元素および組織設計を行うことができる。そのため、炎症期での治癒エージェントの酸化高活性化を向上させるだけでは限界があった従来の酸化誘起型自己治癒セラミックス組成物よりも強度回復速度が高速化した酸化誘起型自己治癒セラミックス組成物を提供することができる。
 また、本発明によれば、従来の酸化誘起型自己治癒セラミックスのき裂治癒温度に比べて、き裂治癒温度を低温化させることができる。
 そのため、本発明によれば、酸化誘起型自己治癒セラミックスに関して、自己治癒機能における強度回復速度及びき裂治癒温度の低温化を向上させる、いわゆる自己治癒機能の高機能化を達成することができる。
 また、本発明によれば、従来の酸化誘起型自己治癒セラミックスで必要とされる焼結温度を低温化することができる。例えば、Al/30vol.%SiC複合材をホットプレス焼結により緻密化するのに必要な温度(1750℃)を、本発明によれば、1550℃に低温化することができる。そのため、そのセラミックス製造をより容易に行うことができる。
 また、本発明によれば、治癒活性剤の添加により、焼結中の異常粒成長を抑制できる。そのため、自己治癒機能の高機能化だけでなく、焼結材強度も向上させることができる。
 また、本発明によれば、治癒エージェントと治癒活性剤を分離して使用できるので、双方に対して目的に応じて個別に最適な設計を施すことができる。また、本発明によれば、修復期及び改変期に注目した、粘度を低下させて拡散速度を向上させることによる結晶化の促進に着目した治癒活性剤に加えて、改変期にのみ注目して、き裂治癒物質の機械的特性を高める物質を別に加えることもできる。そのため、本発明によれば、微量な量の治癒活性剤でも最大限の機能向上を図ることができる。
 また、本発明によれば、従来の酸化誘起型自己治癒セラミックスでは発生したき裂の自己治癒機能を有効に発揮させることが困難であった高温用部材への適用、特に、航空機の低圧タービン翼への適用が可能である。
図1は、Al/30vol.%SiC複合材に関する、各種供試材(予き裂材、平滑材、平滑治癒材)の室温曲げ強度(σ)と治癒時間(t)並びに予測曲げ強度(σ)と治癒時間(t)との関係を示す図である。 図2(a)は、Al/30vol.%SiC複合材における、き裂治癒温度(T)が1200℃の場合の治癒過程におけるき裂治癒部の状態を示す三次元SEM像を示す図である。図2(b)は、Al/30vol.%SiC複合材における、き裂治癒温度(T)が1200℃の場合の強度回復を完全に達成したときのき裂治癒部のTEM像を示す図である。 図3(a)は、酸化誘起型自己治癒セラミックス組成物が従来のAlとSiCとの複合材である場合のき裂治癒機構を示す図である。図3(b)は、酸化誘起型自己治癒セラミックス組成物が本発明の一実施形態である、治癒活性剤を含むマトリックス(ここで、ムライトとTiSiとの複合材又はAlとSiCとの複合材をマトリックスと称する)である場合のき裂治癒機構を示す図である。 図4は、各種複合材(Al/30vol.%SiC複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材)のその場観察結果を示す図である。 図5は、表1中の種々の複合材に関して、共晶温度(T)と融点(T)が一致するときの組成で推定されるガラス転移温度(T)と、その共晶温度(T)(=融点(T))の関係を示す図である。なお、本願では、生成が予測される過冷却融体の組成を「lSiO-mAl-nMxOy」という一般式で表記することもある。 図6は、各種複合材(Al/30vol.%SiC複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材)で生成する過冷却融体のガラス転移温度(T)(=粘度が1011.3Pa・sとなる温度)と最短き裂完治時間(t Min)との関係を示す図である。なお、図6中の右枠は、本発明者らによってき裂治癒を理論的に解析することによって別途構築されたき裂治癒の予測式から算出した、800℃、1000℃、1200℃での最短き裂完治時間(t Min)を予測される最短き裂完治時間(t Min)として付記したものである。 図7(a)は、本発明の一実施形態である、Al/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材の800℃での曲げ強度(σ)と治癒時間(t)との関係を、治癒活性剤を添加しない従来のAl/30vol.%SiC複合材との比較によって示す図である。図7(b)は、本発明の一実施形態である、Al/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材の1000℃での曲げ強度(σ)と治癒時間(t)との関係を、治癒活性剤を添加しない従来のAl/30vol.%SiCとの比較によって示す図である。 図8は、本発明の一実施形態である治癒活性剤を添加した各種複合材(Al/30vol.%SiC/0.1vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MgO複合材、及びムライト/30vol.%TiSi/1.0vol.%MnO複合材)の最短き裂完治時間(t Min)と治癒温度(T)の関係を、治癒活性剤を添加しない従来のAl/30vol.%SiCとの比較によって示す図であって、航空機エンジン用のタービンのベーン(静翼)とブレード(動翼)の稼動温度との比較を伴う図である。 図9は、本発明の一実施形態である、き裂を充填した治癒物質の高温強度を高める働きを有する酸化物の一例としてYbを微量添加した、Al/30vol.%SiC/1vol.%MnO/1vol.%Yb複合材の治癒材とAl/30vol.%SiC/1vol.%MnO/9vol.%Yb複合材の治癒材に関する曲げ強度(σ)と試験温度(T)との関係を、Ybを添加しないAl/30vol.%SiC/1vol.%MnO複合材の治癒材との比較によって示す図である。
 以下、本発明を実施するための形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができることに留意すべきである。
 本発明における、酸化誘起型自己治癒セラミックス組成物やその自己治癒機能の高機能化では、セラミックス母材と、自己治癒セラミックス組成物でのき裂発生を引き金として外部酸素との接触によって酸化する非酸化物の治癒エージェントに加え、この治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する治癒活性剤を更に含む。これは、本発明が、「炎症期」に着目した従来法とは異なり、酸化誘起型自己治癒セラミックス組成物におけるき裂治癒過程での強度回復速度を律速する「修復期」とそれに続く「改変期」に注目して、従来に無かった酸化誘起型の高機能性自己治癒セラミックス組成物や酸化誘起型自己治癒セラミックス組成物の高機能化方法等を提供することを目的としているからである。
 そのため、本発明の一実施形態である酸化誘起型自己治癒セラミックス組成物の自己治癒機構をモデル化した図3(b)にも示されている通り、従来の酸化誘起型自己治癒セラミックス組成物の自己治癒機構をモデル化した図3(a)と比べ、「修復期」とそれに続く「改変期」に大きな相違がある。
 本発明で用いるセラミックス母材としては、例えば、酸化物系、窒化物系、炭化物系等のセラミックスがあり、具体的には、アルミナ(Al)、ムライト、窒化ケイ素(Si)、炭化ケイ素(SiC)、サイアロン等が挙げられる。高温酸化雰囲気下で使用される汎用高温構造部材への適用に鑑みると、セラミックス母材としては、耐酸化性に優れた酸化物系セラミックスが好ましい。その中でも、アルミナやムライトがより好ましい。但し、本発明で使用されるセラミックス母材は、本発明の目的を達成できるものであれば特に制限はない。
 本発明で用いる治癒エージェントは、上記酸化誘起型自己治癒セラミックス組成物のき裂発生を引き金として外部に存在する酸素と接触することになり、その酸素と酸化反応を生じて酸化物を形成する能力を有する非酸化物である。
 そのため、治癒エージェントは、通常、セラミックス母材に分散している、いわゆる複合材料の状態である。但し、セラミックス母材が治癒エージェントと同一のセラミックス材料で構成されているために、いわゆる単一材料として一体化している状態も含まれる。このような状態として、例えば、治癒エージェントとセラミックス母材が同一のSiCのセラミックス材料で構成されている場合や治癒エージェントと母材が同一のTiSi材料で構成されている場合等が挙げられる。また、治癒エージェントとセラミックス母材が同一のSiCであるが、形状の異なるSiC長繊維とSiC母相で構成される長繊維強化複合材等が挙げられる。
 治癒エージェントは、上述の通り、外部に存在する酸素と接触することになり、その酸素と酸化反応を生じて酸化物を形成する能力を有する非酸化物なので、外部に存在する酸素に対して高活性で酸化し易い非酸化物が好ましく、例えば、高温大気中で利用する場合には、高温大気中に含まれる酸素と高活性で酸化し易い非酸化物が好ましい。
 治癒エージェントとしては、具体的には、炭化物であるSiC、TiC、VC、NbC、BC、TaC、WC、HfC、Cr、ZrCや、金属間化合物であるTiAl、Nb-Al系合金(例えば、NbAl、NbAl)またはSi系金属間化合物であるCrSi、FeSi、MnSi、ZrSi、VSi、TiSi、およびMAX相等の物質が好ましい。汎用高温構造部材への適用に鑑みると、SiCやTiSiが好ましい。但し、本発明で使用される治癒エージェントは、本発明の目的を達成できるものであれば特に制限はない。
 本発明で用いる治癒活性剤は、修復期における治癒エージェントの酸化反応(具体的には、酸化誘起型自己治癒セラミックス組成物のき裂発生を引き金としてその母材中に分散している治癒エージェントが外部に存在する酸素との接触によって生じる酸化反応)を律速する物質の拡散速度を高速化する物質である。Al/SiC複合材を例に挙げれば、治癒活性剤は、治癒エージェントであるSiCの酸化反応を律速する物質であるSiO中の酸素分子やイオン又はCOガスの拡散速度を、その添加によるSiOの粘度低下に伴って、その添加が無かった場合に比べて、著しく速める(即ち、高速化する)物質である。
 拡散速度を高速化するには、例えば、酸化物の粘度とその酸化物中の拡散種の拡散速度の定性的な関係を表す式として知られているストークス・アインシュタインの関係(式1)を用いると、添加することによってその式の粘度(η)を大幅に低下させる物質が好ましい。
 
(式1) D=kT/6πηr
D:拡散係数、k:ボルツマン係数、T:温度、η:粘度、r:拡散種である球体の半径。
 
 この粘度(η)を低下させる粘度物質を選定するための指標として、稼働温度の上限を決定する共晶温度(T)およびガラス転移温度(T)に着目すると、治癒活性剤としては、具体的には、以下の条件式の(式2)を満足する金属酸化物を少なくとも一種以上含むものが好ましく、更に、以下の条件式の(式3)を満たすものであることがより好ましい。この共晶温度(T)は、共晶温度(T)と融点(T)が一致するときの組成での共晶温度(T)を意味するので、本願では、共晶温度(T)(=融点(T))とも称する。
 き裂治癒機能の高機能化の観点から、治癒活性剤としては、以下の条件式の(式2)を満たす金属酸化物を少なくとも一種以上含むものが好ましい。
 
(式2) 治癒エージェントから生成される酸化物と母材と治癒活性剤の多成分系のガラス転移温度(T)<酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
 
 また、稼動温度における強度特性の観点からは、更に、以下の条件式の(式3)を満たす金属酸化物を少なくとも一種以上含むものが、治癒活性剤としてより好ましい。
 
(式3) 治癒エージェントから生成される酸化物と母材と治癒活性剤の多成分系の共晶温度(T)(=融点(T))>酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値
 
 また、治癒活性剤として上記条件式の(式2)又は(式2)と(式3)を満たす金属酸化物を少なくとも一種以上含む治癒活性剤を使用する場合、治癒エージェントは、稼動温度における強度特性の観点から、以下の条件式、即ち(式4)を満たすものが好ましい。
 
(式4) 治癒エージェントから生成される酸化物と母材の多成分系の共晶温度(T)(=融点(T))>酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値
 
 ここで、上記条件式の(式2)~(式4)における「稼動温度の上限値」及び「稼動温度の下限値」という用語はそれぞれ、その部材の稼働条件下で生じる温度分布における上限値及び下限値を意味する。同一部材であっても、稼動条件において温度に分布が生じる(例えば、同じ部材でも、加熱部からの距離が近い部分では高く、遠い部分では低くなる)からである。
 
 セラミックス母材が治癒エージェントと同一のセラミックス材料で構成されているためにいわゆる単一材料として一体化している状態では、以下の条件式の(式5)を満足する金属酸化物を少なくとも一種以上含むものが治癒活性剤として好ましく、更に、以下の条件式の(式6)を満たすものであることがより好ましい。
 
(式5) 単一材料から生成される酸化物と治癒活性剤の多成分系のガラス転移温度(T)<酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
 
(式6) 単一材料から生成される酸化物と治癒活性剤の多成分系の共晶温度(T)(=融点(T))>酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値
 
 また、治癒活性剤として上記条件式の(式5)又は(式5)と(式6)を満たす金属酸化物を少なくとも一種以上含む治癒活性剤を使用する場合、セラミックス母材と治癒エージェントが一体化している上記単一材料は、以下の条件式の(式7)を満たすものが好ましい。
 
(式7) 単一材料から生成される酸化物の共晶温度(T)(=融点(T))>酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値
 
 ここで、上記条件式の(式5)~(式7)における「稼動温度の上限値」及び「稼動温度の下限値」という用語はそれぞれ、その部材の稼働条件下で生じる温度分布における上限値及び下限値を意味する。同じ部材であっても、稼動条件において温度に分布が生じる(例えば、同一部材でも、加熱部からの距離が近い部分では高く、遠い部分では低くなる)からである。
 上記条件式の(式2)及び(式5)を満足するガラス転移温度を有する金属酸化物の治癒活性剤は、例えば、熱力学計算ソフト(例えば、FactSage)やHuiらの提案する予測式(H.Hui and Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007) 403-416; G. Zhong K. Chou, Measuring and modeling viscosity of CaO-Al2O3-SiO2(-K2O)melt, Metallugical and Materials Transaction B, 43 (2012)841-848)に基づいて選定する。具体的には、粘度(η)が1011.3Pa・sとなる温度がガラス転移温度と考えられていることから、上記ソフトや上記予測式を用いて治癒活性剤を含む酸化物の粘度を計算して粘度(η)が1011.3Pa・sとなる温度をガラス転移温度(T)とすることによって選定する。
 上記条件式の(式3)及び(式6)を満足する、金属酸化物を少なくとも一種以上含む治癒活性剤は、例えば、熱力学計算ソフト(FactSage)を用いることによって共晶温度を計算で算出することによって選定される。
 例えば、Al/SiC複合材において治癒エージェントから生成される酸化物(SiO)である場合、上記条件式の(式2)のガラス転移温度共晶温度及び上記条件式の(式3)の共晶温度の双方を満足する治癒活性剤(MxOy)を、熱力学計算ソフトFactSage Ver.6.4、状態図ソフトAcera-NIST Phase Equilibria Diagrams Version 3.4、およびHuiらの提案する予測式(H.Hui and Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007) 403-416;G. Zhong K. Chou, Measuring and modeling viscosity of CaO-Al2O3-SiO2(-K2O)melt, Metallugical and Materials Transaction B, 43 (2012)841-848)を使用して選定した結果が本実施例の表1に示されている。この表の結果をガラス転位温度(T)と共晶温度(T)(=融点(T))の関係で表記したものが図5である。
 有効な自己治癒機能が発現する温度域は、共晶温度(T)(=融点(T))>き裂治癒温度(T)>ガラス転移温度(T)の範囲であると考えられるため、部材の稼働温度の下限および上限値が共晶温度(T)(=融点(T))およびガラス転移温度(T)の範囲内になるように設定するのが好ましい。
 図5に示す通り、治癒活性剤について、T[K]=2/3T[K:ケルビン]~1/2T[K](又はT[K]=2/3T[K]~1/2T[K])の関係が一般に成り立つので、治癒活性剤のガラス転移温度(T)は、T[K]=2/3T[K]~1/2T[K](又はT[K]=2/3T[K]~1/2T[K])の範囲程度であると推定できる。そのため、共晶温度のみが既知で、熱力学計算や文献からガラス転位温度(T)が取得できなかった治癒活性剤についても、この関係を用いてTを推定することが可能である。治癒活性剤として選定された金属酸化物が複数存在する場合、部材の高温強度を低下させずに治癒機能を高機能化させられると予想されるものがより好ましい。
 上記条件式の(式2)~(式7)における酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値および下限値は、き裂治癒温度(T)のことであり、航空機エンジンの低圧タービン第1段翼のような高温構造部材への適用に鑑みると、その離陸及び巡航中の稼働温度の上限値および下限値は、それぞれ1200℃および1050℃程度の範囲で、航空機エンジンの低圧タービン第2~5段翼のような高温構造部材への適用に鑑みると、その離陸及び巡航中の稼動温度の上限値および下限値は、それぞれ1050℃および600℃程度の範囲で有効な自己治癒機能が発現するように治癒活性剤を選定するのが好ましい。但し、この酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の上限値および下限値は、その適用対象によって任意に選択可能であり、本発明の目的を達成できる限り特に制限はない。
 治癒活性剤としては、例えば、MgOやMnOが挙げられ、Al/SiC複合材やムライト/TiSi複合材のようなセラミックス組成物に添加する場合、特に好ましい。中でもAl/SiC複合材の場合はMnOがより好ましい。発生したき裂を完全に充填してき裂面間を接合するのに寄与する治癒エージェントからの酸化物や母材との複合酸化物の粘度を、その添加によってより効果的に低下させられるからである。
 図6には、各種複合材(Al/30vol.%SiC複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材)で生成する過冷却融体のガラス転移温度(T)(=粘度が1011.3Pa・sとなる温度)と最短き裂完治時間(t Min)との関係が示されており、図8には、治癒活性剤を加えた各種複合材(Al/30vol.%SiC/0.1vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MgO複合材、及びムライト/30vol.%TiSi/1.0vol.%MnO複合材)の最短き裂完治時間(t Min)と治癒温度(T)の関係を、治癒活性剤を加えない従来のAl/30vol.%SiCを用いて比較した図が、タービンのベーン(静翼)とブレード(動翼)の稼動温度との比較を伴って示されている。
 図6や図8によれば、Al/SiC複合材の稼働温度(即ち、き裂治癒温度(T))として600~1200℃の温度領域で得られる最短き裂完治時間(t Min)は、治癒活性剤のMgO及びMnO添加によるガラス転移温度(T)の低下に伴い、大幅に短縮している。特に、治癒活性剤のMnOを0.2体積%添加した場合には、最短き裂完治時間(t Min)は、1000℃で10分未満、800℃では30時間であり、その添加を行わなかった場合に予測される最短き裂完治時間(t Min)に比べて、それぞれ1/6000倍未満、1/547倍にまで短縮されている。また、Al/SiC複合材の稼働温度(即ち、き裂治癒温度(T))として600℃~1000℃の温度領域で得られる最短き裂完治時間(t Min)は、治癒活性剤のMnOを1.0体積%添加した場合には、1000℃、800℃、及び600℃において、それぞれ、1分未満、10時間、及び300時間であり、その添加を行わなかった場合に予測される最短き裂完治時間(t Min)に比べて、1/60000倍未満、1/1640倍、及び1/2287倍にまで短縮されている。
 因みに、例えば低圧タービン第1段翼において、その離陸及び巡航中の稼動温度の上限値および下限値が1200℃および1050℃程度であると想定すると、Al/SiC複合材において治癒エージェントから生成される酸化物(SiO)である場合、上記条件式の(式2)のガラス転移温度共晶温度と上記条件式の(式3)の共晶温度の双方を満足する治癒活性剤(MxOy)としては、表1や図5に示す通り、MgO、TiO、ZnO、Fe、NiO等が挙げられ、MgOはその中に含まれる。
 さらに、例えば低圧タービン第2~5段翼において、その離陸及び巡航中の稼動温度の上限値および下限値は1050℃および600℃程度であると想定すると、Al/SiC複合材において治癒エージェントから生成される酸化物(SiO)である場合、上記条件式の(式2)のガラス転移温度共晶温度と上記条件式の(式3)の共晶温度の双方を満足する治癒活性剤(MxOy)としては、表1や図5に示す通り、ZnO、MnO、Fe、NiOが挙げられ、MnOはその中に含まれる。
 治癒活性剤として選定される金属酸化物が複数ある場合は、それぞれ単独で用いてもよいし、それらを二種以上組み合わせて(即ち、混合して)使用してもよい。二種以上組み合わせてもよい理由は、上記条件式の(式2)と(式3)を例にあげると、二種以上を組み合わせて、上記条件式の(式2)又は(式2)と(式3)を満たしていればよいからである。
 例えば、治癒活性剤として金属酸化物としてMgOとMnOを、それぞれ単独で用いても、両者を組み合わせて用いてもよい。MgOとMnOが単独では上記条件式の(式2)又は(式2)と(式3)を満たさなくても、両者を組み合わせたり、他の金属酸化物と組み合わせたりすることにより、満たす場合もあり得るからである。
 航空機エンジンの低圧第1段タービン静翼(ベーン)や動翼(ブレード)翼の稼動温度の上限値および下限値は1200℃および1050℃程度、第2~5段翼の稼動温度の上限値および下限値は1050℃および600℃程度であることに鑑みると、図8に示す通り、MgOとMnOはそれぞれ、第1段低圧翼と第2~3段低圧翼のような高温構造部材への適用において、特に好ましい治癒活性剤である。
 また、CF6エンジンの第2段低圧タービン静翼(ベーン)、動翼(ブレード)第3段タービン静翼のような高温構造部材の稼働温度が更に限定された890℃~1030℃程度の温度範囲における適用では、MnOは、図8に示す通り、特に好ましい治癒活性剤である。
 本発明で用いる治癒活性剤(本願では、「MxOy」とも称する。)は、組織的な観点から治癒エージェントからの複合酸化物の粘度を効果的に低下させるという点で、き裂進展の経路となり得る母材の結晶粒界及び母材と治癒エージェントの界面に配置するのが好ましい。この場合、セラミックス母材が治癒エージェントと同一のセラミックス材料で構成されているために、両者がいわゆる単一材料として一体化していれば、治癒活性剤は、単一材料の結晶粒界に配置するのが好ましいことになる。
 また、治癒活性剤であるMxOyを構成するM元素が治癒エージェント原料粉末製造時に不回避的に混入する場合には、その混入しているM元素をそのまま治癒活性剤原料として使用してもよい。
 本発明で用いる治癒活性剤の添加量は微量でも最大限の治癒速度向上を達成することができ、具体的には、0超10体積%以下が好ましく、より好ましくは、0超9体積%以下、更に好ましくは0.01超3.0体積%以下、より更に好ましくは、0.2以上1.0体積%以下である。
 治癒活性剤(例えば、MgOやMnO)をセラミックス組成物(例えば、Al/SiCの複合材)に添加する場合、治癒活性剤の添加量が0超0.2体積%以下の範囲では、治癒活性剤が粒界に配置され易く、マクロレベルでも均一に配置し易い。
 但し、治癒活性剤の添加量は、本発明の目的を達成できる限り特に制限はない。
 本発明で用いる治癒活性剤によれば、修復期における治癒エージェントの酸化反応を律速する物質の拡散速度が高速化され、それによってセラミックス組成物で発生したき裂の自律的な充填及びき裂面間の接合が促進されることになる。しかしながら、強度の完全回復は、図3(b)にも示す通り、その修復期後の改変期において、き裂面間を充填し、接合している粘度の低い融体の酸化物が、更に凝固して結晶化することによって達成される。
 そのため、強度回復速度をより促進させる観点から、改変期におけるその結晶化を容易にする物質を更に添加してもよい。換言すれば、修復期で形成されるき裂面間を充填し、接合している粘度の低い融体の酸化物(即ち、き裂治癒物質)の結晶化を促進させる物質を添加してもよい。
 アモルファスまたは過冷却融体の結晶化は、融点(T)とガラス転移温度(T)間の温度域において促進される。更に、アモルファスは転移温度(T)が低いほど熱力学的に不安定であるため、その結晶化速度はガラス転移温度(T)が低いほど高速化することが知られている。例えば、SiCのように治癒エージェントから酸化によりSiOが生成する場合、表1に示すように、全ての治癒活性剤においてその添加により従来材に比べ、修復期に続く改変期における結晶化が促進されることになる。
 改変期における結晶化を容易にする具体的な物質としては、例えば、本発明で用いる治癒活性剤として使用可能なMgOやMnOが挙げられる。
 但し、改変期における結晶化を容易にする物質は、本発明の目的を達成できる限り特に制限はない。
 き裂治癒反応の素過程である炎症期、修復期、そして改変期を経て、最終的にき裂面間に生成したき裂治癒物質(結晶相)は、高温構造用部材としての用途に鑑みると、その機械的特性を高めるものが好ましい。その場合、上記の修復期の高度化(具体的には、粘度を低下させて拡散速度を高速化させることによって結晶化を促進させることを意味する。)に着目した治癒活性剤(MxOy)に加え、更に、改変期におけるき裂治癒物質の高強度化(具体的には、き裂治癒物質の機械的特性を高めることを意味する。)に着目した物質を別途添加することが好ましい。この改変期におけるき裂治癒物質の高強度化に着目した物質には、上記の修復期の高度化に着目した治癒活性剤(MxOy)によって奏せられる効果を同時に有するものも含まれる。改変期のみに着目した物質(即ち、改変期におけるき裂治癒物質の高強度化に着目した物質)の選定では、上記の修復期の高度化に着目した治癒活性剤の役割を阻害しない物質が望ましい。
 上記の修復期の高度化に着目した治癒活性剤(MxOy)と同時に、改変期におけるき裂治癒物質の高強度化に着目した物質として、Yやランタノイド系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luで表される金属酸化物を少なくとも一種以上を添加することが好ましい。これらのYやLa系列の酸化物を添加する場合において、上記の修復期の高度化に着目した治癒活性剤(MxOy)としては、例えば、MnOが好ましいものとして挙げられる。
 改変期に生成するき裂治癒物質の機械的特性改善を達成する物質(即ち、上記した、改変期におけるき裂治癒物質の高強度化に着目した物質)の添加方法は、本発明の目的を達成できる限り特に制限はないが,修復期に着目した治癒活性剤(MxOy)と同様に組織的な観点からき裂進展の経路となり得る母材の結晶粒界及び母材と治癒エージェントの界面に配置するように添加するのが好ましい。この場合、セラミックス母材が治癒エージェントと同一のセラミックス材料で構成されているために、両者がいわゆる単一材料として一体化していれば、治癒活性剤は、単一材料の結晶粒界に配置するのが好ましいことになる。
 改変期に生成するき裂治癒物質の機械的特性改善を達成する治癒活性剤の添加量も、微量でも最大限の治癒速度向上を達成することができ、具体的には、0超10体積%以下が好ましく、0超9体積%以下がより好ましく、0.01超3.0体積%以下が更に好ましく、0.2以上1.0体積%以下がより更に好ましい。但し、本発明の目的を達成できる限り特に制限はない。
 本願において定めのない条件については、本発明の目的を達成できる限り、特に制限はない。
 次に、実施例を挙げて本発明の実施の形態をより具体的に説明するが、本発明の実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。
 まず、上述した「き裂治癒機構の解析」における実施条件を以下に詳述する。
 (参考例1)
 [き裂治癒機構の解析における実施条件]
 供試材には、Al/30vol.%SiC複合材を用いた。この供試材を作製するにあたって、アルミナ粉末は住友化学工業製のAKP-50、炭化ケイ素粉末はイビデン製のUltrafineを使用した。これらの粉末を、アルミナ製ボールとミルポッドを用いて、2-プロパノール中で24時間湿式混合した。混合粉末は大気中で6時間乾燥後、所定の条件下(即ち、雰囲気:Arガス、保持温度:1750℃、負荷圧力:40MPa、保持時間:1時間、昇温速度:10℃/min、降温速度:5℃/min)でホットプレス焼結し、50×50×6 mmの焼結体を作製した。得られた焼結体から3×4×44 mmおよび3×4×22 mmの曲げ試験片を作製した。試験片表面はJIS R 1601に従って鏡面研磨仕上げを施した。これら試験片を平滑材とした。
 平滑材に対して、ビッカース硬度計を用いて表面長さ約110μmの半楕円き裂(予き裂)を導入し、所定の条件下(即ち、き裂治癒温度(T):1000℃~1300℃、治癒時間(t):0.1時間~1000時間、雰囲気:大気中)で熱処理を施した。
 試験片の強度は、室温三点曲げ試験法により評価した。ここで、予き裂材およびき裂治癒材の強度評価は、それぞれスパン長さを30mm および16mmで実施した。曲げ試験機には、AND製RTF-1310を使用した。
 SiCの高温酸化挙動、治癒部周辺の三次元ミクロ構造並びにき裂治癒物質の組成や結晶構造は、それぞれその場観察装置、直行型走査型電子顕微鏡-集束イオンビーム加工装置(FIB-SEM)(SMF-1000:日立ハイテクノロジーズ社製)および透過型電子顕微鏡(TEM)(JEM-3100FEF:日本電子社製)を用いて解析した。
 次に、本実施形態の一例を示す。
 (実施例1)
 [Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材の作製]
 参考例1の方法にしたがってAlに30vol.%SiCを複合し、そして0.2vol.%のMgO粉末を複合して、Alと30vol.%SiCと0.2vol.%MgOの複合材(本願では「Al/30vol.%SiC/0.2vol.%MgO複合材」とも称する。)を作製した。
 また、参考例1の方法にしたがってAlに30vol.%SiCを複合し、そして0.2vol.%のMnO粉末を複合して、Alと30vol.%SiCと0.2vol.%MnOの複合材(本願では「Al/30vol.%SiC/0.2vol.%MnO複合材」とも称する。)を作製した。
 具体的には、Al/30vol.%SiC/0.2vol.%MgO複合材においては、Al/30vol.%SiCと0.2vol.%のMgO粉末を原料粉末として混合して、また、Al/30vol.%SiC/0.2vol.%MnO複合材においては、Al/30vol.%SiCと0.2vol.%のMnO粉末を原料粉末として混合してホットプレス焼結により作製した。両者の複合材作製での焼結における保持温度は、治癒活性剤を母材の粒界に偏析させることを目的として、それぞれ1700℃と1550℃とした。また、保持温度以外の焼結条件は、所定の条件下(即ち、雰囲気:Arガス、負荷圧力:40MPa、保持時間:1時間、昇温速度:10℃/min、降温速度:5℃/min)で統一した。なお、上述した焼結条件は治癒活性剤を母材粒界に偏析させる条件として適するように選択した。
 使用したMgO粉末とMnO粉末として、それぞれ宣城晶瑞新材料有限公司製と高純度化学研究所製のものを用いた。MgO粉末は、平均粒径が0.25μm、純度が99.9%、密度が3.585g/cm、不純物としてCaを200ppm、Kを30ppm、Feを30ppm、Naを80ppm、Cuを10ppm、Pbを10ppm含むものであり、MnO粉末は、平均粒径が5μm~10μm、純度が99.9%、密度が5.36g/cm、不純物としてCaを100ppm、Coを60ppm、Mgを100ppm、Naを100ppm、Siを10ppm含むものであった。なお、混合粉末として可能な限り粒子間距離を小さくし更に均一に分散するように、市販の粉末の中でも出来るだけ微細な粉末を選定した。
 得られた焼結体から3×4×44mmおよび3×4×22mmの曲げ試験片を作製した。試験片表面はJIS R 1601に従って鏡面研磨仕上げを施した。これら試験片を平滑材とした。
 平滑材に対して、ビッカース硬度計を用いて表面長さ約100μmの半楕円き裂を導入し、これを予き裂材とした。
 [Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材のその場観察]
 上記[Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材の作製]において得られた予き裂材に関して、800℃~1350℃の高温でその場観察装置中で熱処理を施した。なお、その場観察装置には、米倉製作所製の顕微鏡用高温観察ステージを用いた。加熱はランプ集光法により実施し、観察は光学顕微鏡により実施した。予き裂周辺にランプ集光過熱法により、昇温速度を1000℃まで50℃/分、それ以上では20℃/分として治癒処理を施し、上記高温でその様子を観察した。
その場観察の結果を図4に示す。
 Al/30vol.%SiC/0.2vol.%MgO複合材とAl/30vol.%SiC/0.2vol.%MnO複合材の両方で、従来材のAl/30vol.%SiC複合材と比較して、試料表面の酸化物生成速度の高速化および低温化が確認された。図4に示すように、従来材においては、1350℃まで昇温したとしても酸化物生成量は微小であり、予き裂は光学顕微鏡で十分確認可能であったが、Al/30vol.%SiC/0.2vol.%MgO複合材は1350℃でも多量の酸化物生成が確認され、き裂は消失していた。更に、Al/30vol.%SiC/0.2vol.%MnO複合材においては、1000℃でも十分な量の酸化物が生成し、き裂は完全に消失していた。これらの結果は、治癒活性剤が治癒の高速化及び低温化に極めて有用であることを示唆している。
 また、Al/30vol.%SiC/0.2vol.%MgO複合材およびAl/30vol.%SiC/0.2vol.%MnO複合材の両方の表面酸化物から、1250℃および800℃において局所的なバブル形成が確認された。このバブル形成温度は、Al/30vol.%SiC複合材における1400℃というバブル形成温度よりも極めて低い温度であった。さらに、温度を上昇させると、局所的であったバブルの形成が試験片の表面全域において確認されるようになった。この全面的なバブル形成温度は、Al/30vol.%SiC/0.2vol.%MgO複合材では約1350℃(具体的には、1330℃)、Al/30vol.%SiC/0.2vol.%MnO複合材では1000℃であった。
 したがって、このような酸化物生成速度の高速化および低温化は、治癒活性剤であるMnOやMgOが有する酸化物の粘度を低下させる機能により、酸化物中における気相種の拡散速度が向上し、その結果としてSiCの酸化速度が高速化および低温化したことによることがわかった。
 [熱力学的計算による治癒活性剤の選定]
 上述の通り、拡散速度を高速化する治癒活性剤としては、例えば、酸化物の粘度とその酸化物中の拡散種の拡散速度の定性的な関係を表す式として知られている上記ストークス・アインシュタインの関係式(式1)の粘度(η)を大幅に低下させる物質が好ましい。そして、この粘度(η)を低下させる粘度物質を選定するための指標として、稼働温度の上限を決定する共晶温度(T)(又は融点(T))およびガラス転移温度(T)に着目すると、治癒活性剤としては、具体的には、上記条件式の(式2)を満足する金属酸化物を少なくとも一種以上含むものが好ましく、更に上記条件式の(式3)を満たすものであることがより好ましい。そこで、Al/SiC複合材において治癒エージェントから生成される酸化物がSiOである場合を一例として、上記条件式の(式2)のガラス転移温度共晶温度及び上記条件式の(式3)の共晶温度の双方を満足する治癒活性剤(MxOy)を、熱力学計算ソフトFactSage Ver.6.4、状態図ソフトAcera-NIST Phase Equilibria Diagrams Version 3.4、およびHuiらの提案する予測式(H.Hui and Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochimica et cosmochimica Acta 71 (2007) 403-416;G. Zhong K. Chou, Measuring and modeling viscosity of CaO-Al2O3-SiO2(-K2O)melt, Metallugical and Materials Transaction B, 43 (2012)841-848)を使用して選定した結果を以下の表1に示す。ここで、粘度(η)が1011.3Pa・sとなる温度をガラス転移温度(T)とした。
 そして、図5において、表1中の種々の複合材(lSiO-mAl-nMxOy)に関して、共晶温度(T)と融点(T)とが一致するときの組成で推定されるガラス転移温度(T)と、共晶温度(T)(=融点(T))の関係で示した。なお、図5では、図中で傾きとして表記されているT=2/3TとT=1/2Tの温度の単位を便宜上、K(ケルビン温度)で示し、それ以外は℃(摂氏)で示した。
 因みに、図5に示すように、治癒活性剤について、T[K]=2/3T[K:ケルビン]~1/2T[K](又はT[K]=2/3T[K]~1/2T[K])の関係が一般に成り立つので、治癒活性剤のガラス転移温度(T)は、T[K]=2/3T[K]~1/2T[K](又はT[K]=2/3T[K]~1/2T[K])の範囲程度であると推定できる。そのため、共晶温度のみが既知で、熱力学計算や文献からガラス転位温度(T)が取得できなかった治癒活性剤についても、この関係を用いてTを推定し、表1に列挙した。
Figure JPOXMLDOC01-appb-T000001

1) R. Roy, and E. F. Osborn, “The system lithium metasilicate spodumene silica”, J. Am. Chem. Soc.Vol.71, No.6, pp. 2086-2095 (1949).
2) L. P. Cook and E. R. Plante, “Phase diagram of the system Li2O-Al2O3”, J. Am. Ceram. Soc., Vol. 27, No.3, pp. 193-222 (1992).
3) M. S. Cilla and M. R. Morelli, “Effect of addition of inorganic components on the mechanical strength of sand molds for casting”, Vol.58, No.345, pp. 71-76 (2012).
4) N. A. Toropov, F. Y. Galakhov and I. A. Bondar, “The diagram of state of the ternary system BaO-Al2O3-SiO2”, Institute of Chemistry of Silicates Academy of Sciences, pp. 647-655 (1954).
5) 小池,大友,田口“SnO-SiO系状態図に関する基礎研究”資源と素材,Vol.113,p.39-44(1997)
6) M.Rahman,P.Hudon,I.Jung, “A Coupled Experimental Study and Thermodynamic Modeling of The SiO2-P2O3 System”, Metallurgical and Materials Transaction B,Vol.44,(2013)p.837-852
7) C.Wang,G. Hu, Z.Zhang, B. Liu, L. Zhu, H.Wang, H. Chen, K. Yang., J. Zhao, “Preparation and Charactarization of Bi2O3-SiO2-Al2O3based glasses of good transparency with high Bi2O3content”, Journal of Non-crystakkine Solids 363(2013)84-88
8) H.Hui, Y. Zhang, “Toward a general viscosity equation for natural anhydrous and hydrous silicate melts”, Geochemica et Cosmochimica Acta 71 (2007) 403-416
9) G. Zhong K. Chou, “Measuring and modeling viscosity of CaO-Al2O3-SiO2(-K2O) melt”, Metallugical and Materials Transaction B, 43 (2012)841-848
 表1に示す通り、治癒活性剤の種類によって、943℃であったSiO‐Alのガラス転移温度を最大で167℃に降下できることを確認した。
 治癒活性剤としては、発生したき裂を完全に充填してき裂面間を接合するのに寄与する治癒エージェントからの生成する酸化物と母材の混合物の粘度を、その添加によってより効果的に低下させられるものが特に好ましい。
 また、Al‐治癒活性剤とSiO‐Al‐治癒活性剤の共晶温度が想定される部材の稼動温度の上限以上であるものが、部材の高温強度を低下させずに治癒機能を高機能化させる点で好ましい。
 これらの点や汎用性等の観点から、本願の実施例においては、ガラス転移温度(T)が855℃のMgOと、ガラス転移温度(T)が479℃のMnOを選定し、これを治癒活性剤として用いた。
 [Al/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材における強度回復に与える治癒活性剤の効果の検証]
 本実施例で作製したAl/30vol.%SiC/0.2vol.%MgO複合材とAl/30vol.%SiC/0.2vol.%MnO複合材を用いて、治癒活性剤として添加されたMgO及びMnOの効果を、これら複合材と治癒活性剤を添加しない従来のAl/30vol.%SiC複合材において生成する過冷却融体のガラス転移温度(T)(=粘度が1011.3Pa・sとなる温度)と最短き裂完治時間(t Min)との関係を比較することにより検証した。その結果を図6に示す。なお、図6中の右枠は、本発明者らがき裂治癒を理論的に解析することによって別途構築したき裂治癒の予測式から算出した、800℃、1000℃、1200℃での最短き裂完治時間(t Min)を予測される最短き裂完治時間(t Min)として参考までに付記したものである。
 図6から、酸化誘起型自己治癒セラミックス組成物の稼働温度(即ち、き裂治癒温度(T))として800℃~1200℃の温度範囲で得られる最短き裂完治時間(t Min)は、治癒活性剤であるMgOやMnOの添加による共晶温度(T)の低下に伴い、大幅に短縮することがわかった。特に、MnOを治癒活性剤として添加した場合には、最短き裂完治時間(t Min)は、1000℃で10分未満、そして800℃で30時間であり、その添加を行わなかった場合に予測される最短き裂完治時間(t Min)に比べると、それぞれ1/6000倍未満と1/547倍にまで短縮されることがわかった。
 また、き裂治癒温度(T)の低下に伴って最短き裂完治時間(t Min)は増加し、従来のAl/30vol.%SiC複合材では、800℃のき裂治癒温度(T)で予測される最短き裂完治時間(t Min)が16400時間と非常に長い。そのため、この場合、治癒は事実上困難であると考えられる。しかしながら、図6に示す通り、MnOを治癒活性剤として添加した場合には、同温度でのき裂治癒を30時間の最短き裂完治時間(t Min)で達成できるため、き裂治癒温度の低減に成功していることがわかった。
 したがって、MgOやMnOを治癒活性剤として含む酸化誘起型自己治癒セラミックス組成物によれば、その自己治癒過程での強度回復に必要な速度を高速化させ、また、き裂治癒に必要な温度を低下させ、高機能化が実現できることが明らかになった。
 (実施例2)
 [Al/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材の作製]
 Al/30vol.%SiC/1.0vol.%MnO複合材が、Al/30vol.%SiC複合材に治癒活性材として1.0vol.%のMnO粉末を混合したものを原料粉末とし、これをAr雰囲気中、40MPa、1550℃、1時間の条件下でホットプレス焼結することによって作製された。
 ムライト/30vol.%TiSi/1.0vol.%MnO複合材が、ムライト/30vol%TiSi複合材に治癒活性材として1.0vol.%のMnO粉末を混合したものを原料粉末とし、これをAr雰囲気中、40MPa、1300℃、4時間の条件下でホットプレス焼結することによって作製された。なお、TiSi粉末は粒子径が大きいため、混合前に予備粉砕して使用した。
 作製されたAl/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材から、その場観察用及び強度評価用の平滑材を作製した。平滑材にはビッカース硬度計を用い、荷重2kgfで表面長さ約100μm又は150μmの半楕円予き裂を導入した。予き裂材は、高温その場観察装置中で熱処理を行うことで、表面酸化物量、局所的融解挙動および酸化物の粘度の定性的評価を行った。なお、その場観察装置には、米倉製作所製の顕微鏡用高温観察ステージを用いた。加熱はランプ集光法により実施し、観察は光学顕微鏡により実施した。予き裂周辺にランプ集光過熱法により治癒処理を施し、その様子を観察した。
 また、600℃~1000℃の温度、0.017時間~300時間、大気中の条件下で、き裂治癒処理を施した。き裂治癒材の強度は、室温にて3点曲げ法により評価した。
 [Al/30vol.%SiC/1.0vol.%MnO複合材のその場観察]
 本実施例で作成したAl/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材のその場観察を行った。そのうち、Al/30vol.%SiC/1.0vol.%MnO複合材の結果について以下に詳述する。なお、その場観察に使用したされた装置等は、実施例1と同様である。
 Al/30vol.%SiC/1.0vol.%MnO複合材において、約1000℃で粘度の低い酸化物の発生が観察された。これは、MnO粉末が添加されていない従来のAl/30vol.%SiC複合材に比べて、440℃も低い温度であった。この結果は、治癒活性材であるMnOの添加により、過冷却融体である酸化物の粘度が大幅に低下したことによる。
 さらに、1000℃において、MnO粉末が添加されていない従来のAl/30vol.%SiC複合材の表面が平滑であるのに対し、Al/30vol.%SiC/1.0vol.%MnO複合材は表面が凸凹していて、SiOと考えられる酸化物が極めて多量に生成することが確認された。この結果は、粘度の低下により、酸化反応による酸化物の体積増加速度が上昇したためと考えられる。
 [Al/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材における強度回復に与える治癒活性剤の効果の検証]
 本実施例で作製したAl/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材並びに治癒活性剤を添加しない従来のAl/30vol.%SiC複合材に関する強度回復における治癒時間(t)の影響を検証した。その結果を図7(a)と(b)に示す。図7(a)は、これらの複合材に関する稼動温度800℃での曲げ強度(σ)と治癒時間(t)との関係を、図7(b)は、これらの複合材に関する稼動温度1000℃での曲げ強度(σ)と治癒時間(t)との関係を示す。なお、これらの図中で*印で表記された試験片は、き裂治癒部以外から破談した試験片であり、破壊起点が治癒部外の内部欠陥に遷移したこと、即ちき裂が完治したことを示す。
 図7(a)に示す通り、800℃の稼動温度でのAl/30vol.%SiC/1.0vol.%MnO複合材の予き裂材の強度は、き裂治癒に至るまで治癒時間とともに大幅に向上することがわかった。また、従来材のAl/30vol.%SiC複合材では、治癒が確認できなかった800℃の稼働温度でも、き裂を完治させることが可能であり、10時間で平滑材と同等の強度を示すことがわかった。また、図7(a)と(b)に示す通り、稼働温度が増加すると最短き裂完治時間(t Min)が向上することもわかった。
 また、ムライト/30vol.%TiSi/1.0vol.%MnO複合材では、800℃の最短き裂完治時間(t Min)は、図7(a)に示す通り、100時間であったが、1000℃の最短き裂完治時間(t Min)は、図7(b)に示す通り、10分と大幅に向上することがわかった。
 また、図7(a)と(b)に示す通り、同じ稼働温度では、酸化高活性なTiSiを複合したムライト/30vol.%TiSi/1.0vol.%MnO複合材よりもAl/30vol.%SiC/1.0vol.%MnO複合材の方が、高速でき裂を完治させることが可能であることがわかった。TiSiは、炎症期において、SiCよりも遥かに高活性で酸化する治癒エージェントであることから、この結果は、治癒活性剤を添加した上記複合材では、炎症期速度ではなく修復期速度が全体の治癒速度を律速しているために、このような治癒速度の逆転が生じた(即ち、SiCを治癒エージェントとして用いる複合材の方が、TiSiを治癒エージェントとして用いる複合材よりも高速でき裂を完治させた)と理解できる。したがって、上記治癒速度の逆転を示す図7(a)と(b)の結果は、き裂治癒の高速化では、治癒エージェントの酸化高活性化よりもむしろ、酸化生成物の粘度低下およびそれによる酸化物中の酸素拡散の促進が極めて重要であることを示唆していることがわかった。なお、上記治癒速度の逆転に関して、TiSiから生成するSiOとTiOの酸化物のうち、TiOの存在が酸化物の粘度低下を妨げていることも要因の一つとして推定している。
 [Al/30vol.%SiC/1.0vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材の低圧タービン翼への適用の検証]
 実施例1で作製したAl/30vol.%SiC/0.2vol.%MgO複合材及びAl/30vol.%SiC/0.2vol.%MnO複合材と、実施例2で作成したAl/30vol.%SiC/1.0vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材、並びに治癒活性剤を添加しない従来のAl/30vol.%SiC複合材に関して、低圧タービン翼への適用を検証した。その結果を図8に示す。図8は、これら複合材に関する最短き裂完治時間(t Min)と治癒温度(T)の関係を、航空機エンジン用のタービンのベーン(静翼)とブレード(動翼)の稼動温度および航空機の巡航時間を併記して示したものである。なお、Al/30vol.%SiC複合材は比較材として列挙したものであり、その実験値である最短き裂完治時間(t Min)を予測値とともに併記した。なお、図8における、航空機エンジン用のタービンのベーン(静翼)とブレード(動翼)の稼動温度は、稼動温度は酸化誘起型自己治癒セラミックスの適用が期待される無冷却ジェットエンジンを想定し、燃焼シミュレーションソフトウェア(NASA-Chemical Equilibrium with application)および汎用ジェットエンジンであるCF6の構造から類推した操作温度(T. Osada, Kinetic Model for Self-Crack-Healing in Ceramics and Possibility of Turbine Blade Applications, Proceedings of International Conference on Self-Healing Materials, ICSHM2013, (2013)573)の一例である。また、図8には、航空機の巡航時間の一例として、巡航時間のとても短い、日本における国内線の巡航時間である1時間を参考までに併記した。
 図8に示す通り、治癒活性剤を添加しない従来のAl/30vol.%SiC複合材のき裂治癒温度(T)は、1200℃、1000℃、800℃、および600℃において、それぞれ、5時間(実験値)、1000時間(実験値)、16400時間(予測値)、および686100時間(約78年)(予測値)程度であった。
 他方、Al/30vol.%SiC/1.0vol.%MnO複合材の最短き裂完治時間(t Min)は、1000℃、800℃、及び600℃において、それぞれ、1分未満、10時間、及び300時間だった。そのため、治癒活性材であるMnOを1.0vol.%添加することにより、その添加のない従来材のAl/30vol.%SiC複合材に比べて治癒速度を60000倍超、1640倍、及び2287倍にまで大幅に向上させられる(換言すれば、最短き裂完治時間(t Min)をそれぞれ、1/60000倍未満、1/1640倍、及び1/2287倍にまで短縮させられる)ことがわかった。
 Al/30vol.%SiC/0.2vol.%MnO複合材の最短き裂完治時間(t Min)は、1000℃および800℃において、それぞれ、10分未満および30時間であった。そのため、治癒活性材であるMnOを0.2vol.%添加することにより、1000℃および800℃において、その添加のない従来材のAl/30vol.%SiC複合材に比べて治癒速度をそれぞれ、6000倍超および547倍向上させられることがわかった。
 ムライト/30vol.%TiSi/1.0vol.%MnO複合材の最短き裂完治時間(t Min)は、1000℃及び800℃において、それぞれ、10分未満及び100時間であった。そのため、従来材のAl/30vol.%SiC複合材に比べて治癒速度を、6000倍超および164倍向上させられることがわかった。
 また、Al/30vol.%SiC/0.2vol.%MgO複合材でも、その最短き裂完治時間(t Min)は、1200℃において、10分であった。そのため、治癒活性材であるMgOを0.2vol.%添加することにより、その添加のない従来材のAl/30vol.%SiC複合材に比べて治癒速度を60倍向上させられることがわかった。
 したがって、図8において本発明の一実施形態として示された、治癒活性材を添加した全ての複合材(Al/30vol.%SiC/1.0vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材)に関して、600℃~1200℃の稼動温度領域における、それらの治癒速度は、治癒活性材の添加の無い従来材のAl/30vol.%SiC複合材に比べて著しく高速化することが確認された。
 特に、Al/30vol.%SiC/1.0vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MgO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材は、航空機エンジンの第1段低圧タービン静翼(ベーン)や動翼(ブレード)と第2~3段低圧タービン静翼(ベーン)や動翼(ブレード)の稼動温度に鑑みて、このような稼動温度領域で使用される高温構造部材に適用すると極めて有効であることが確認された。
 また、治癒活性材としてMnOを用いた、Al/30vol.%SiC/1.0vol.%MnO複合材、Al/30vol.%SiC/0.2vol.%MnO複合材及びムライト/30vol.%TiSi/1.0vol.%MnO複合材は、巡航時間を1時間とし、その間に発生した表面き裂を完治しなければならないと仮定すると、稼動温度領域が890℃~1030℃程度の温度範囲に限定される、CF6エンジンの第2段低圧タービン静翼(ベーン)及び動翼(ブレード)のような高温構造部材への適用に極めて有効であることが確認された。
 したがって、本実施形態による酸化誘起型自己治癒セラミックスは、従来の酸化誘起型自己治癒セラミックスでは発生したき裂の自己治癒機能を有効に発揮させることが困難であった高温用部材への適用、特に、航空機の低圧タービン翼への適用が可能であることが明らかになった。
 [治癒活性剤の焼結材強度へ与える影響の検証]
 癒活性剤の焼結材強度へ与える影響を調べるために、アルミナ(Al)単体の平滑材、アルミナ(Al)単体に治癒エージェントとして30vol.%SiCを添加した平滑材、並びに、Al/30vol.%SiC複合材に対して治癒活性剤としてMnOを0.2vol%および0.5vol%添加した場合の平滑材について、各強度を同一条件下で測定した。その結果、それぞれ、400MPa、748MPa、844MPaおよび958MPaとなり、MnOの添加によって平滑材強度が増加することを確認した。これは、治癒エージェントの添加によって焼結中の粒成長が抑制され、更に、治癒活性剤の添加によって、焼結中の異常粒成長が抑制されるためであると理解される。
 一方で、MnOを上記添加量以上の1vol%及び3vol%で添加すると、平滑材強度は766MPaおよび575MPaまで低下した。これは、結晶粒界以外にもMnOが配置されてそれ自体が破壊起点となったためであると理解される。
 このように、例えば、Al/30vol.%SiC複合材の場合、治癒活性剤としてMnOを0.2vol%の微量な添加だけでも、治癒機能に加え、焼結材強度も同時に向上させることを確認した。
 したがって、本実施形態による酸化誘起型自己治癒セラミックスでは、治癒活性剤を微量添加するだけで、治癒機能に加え、焼結材強度も同時に向上させることが可能であることがわかった。
 [Ybの添加によるき裂治癒物質の高温強度向上の検証]
 検証に使用したAl/30vol.%SiC/1vol.%MnO/1vol.%Yb複合材及びAl/30vol.%SiC/1vol.%MnO/9vol.%Yb複合材は、原料粉末として各種体積%でYbを添加したこと以外、実施例2のAl/30vol.%SiC/1.0vol.%MnO複合材と同じ方法で作製した。比較のために使用した、Ybが添加されていないAl/30vol.%SiC/1vol.%MnO複合材には、実施例2で作製したものを使用した。これらの各複合材に長さ110μmの予き裂を導入した予き裂材としての強度は、いずれも200~250MPa程度であった。これらの各予き裂材について、導入した予き裂を1000℃の温度で完治させて治癒材とし、各治癒材の曲げ強度を測定した。その結果が図9である。したがって、図中の各治癒材の曲げ強度は、き裂を充填したき裂治癒物質の強度に対応している。なお、測定方法や評価法等については、実施例2と同様な方法で行った。
 図9に示す通り、Ybを添加することにより治癒材の高温での曲げ強度は優位に向上する。また、添加量が1vol.%の微量であっても高温での曲げ強度が大幅に向上する。よって、Ybの微量添加はき裂治癒物質の高温強度向上に極めて有効である。
 本発明によれば、脆性材料であるセラミックスの高温構造用部材への利用、例えば航空機エンジンタービンで使用されるタービン静動翼への利用が大いに期待できる。
 航空機分野以外にも、従来の酸化誘起型自己治癒セラミックスでは、自己治癒過程における、強度回復に必要な速度を高速化し、また、き裂治癒に必要な温度を低温化することが困難であって、その向上が求められている多種多様な分野(例えば、自動車分野、ガスタービンなどを利用する発電分野等)への利用が可能である。
 

Claims (23)

  1.  セラミックス母材と、前記母材中に分散している酸化活性な非酸化物の治癒エージェントと、治癒活性剤を含む、酸化誘起型自己治癒セラミックス組成物であって、
     前記治癒エージェントは、前記セラミックス組成物のき裂発生による外部酸素との接触で酸化物を生成する物質であり、
     前記治癒活性剤は、前記治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する物質である、
    前記セラミックス組成物。
  2.  前記治癒活性剤が、前記母材の結晶粒界及び前記母材と前記治癒エージェントの界面に配置されている、請求項1に記載のセラミックス組成物。
  3.  前記母材が酸化物系セラミックスで構成されている、請求項1又は2に記載のセラミックス組成物。
  4.  前記酸化物系セラミックスがアルミナ又はムライトである、請求項3に記載のセラミックス組成物。
  5.  前記治癒活性剤は、前記治癒エージェントから生成される前記酸化物と前記母材の粘性をその添加によって下げる物質である、請求項1から4のいずれか一項に記載のセラミックス組成物。
  6.  前記治癒活性剤は、以下の条件式
    前記治癒エージェントから生成される酸化物と前記母材と前記治癒活性剤の多成分系のガラス転移温度(T)<前記酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
    を満足する金属酸化物を少なくとも一種以上含む、請求項1から5のいずれか一項に記載のセラミックス組成物。
  7.  前記治癒エージェントがSiC又はTiSiである、請求項1から6のいずれか一項に記載のセラミックス組成物。
  8.  前記治癒活性剤がMgO及びMnOの少なくとも1種を含む、請求項1から7のいずれか一項に記載のセラミックス組成物。
  9.  前記治癒活性剤の添加量が0超10体積%以下である、請求項1から8のいずれか一項に記載のセラミックス組成物。
  10.  前記母材が、前記母材中に分散している前記治癒エージェントと同じセラミックスで構成され、そのため、前記母材と前記治癒エージェントが単一材料として一体化している、請求項1に記載のセラミックス組成物。
  11.  前記治癒活性剤が、前記単一材料の結晶粒界に配置されている、請求項10に記載のセラミックス組成物。
  12.  前記治癒活性剤は、前記セラミックス組成物のき裂発生による外部酸素との接触で前記単一材料から生成される酸化物の粘性をその添加によって下げる物質である、請求項10又は11に記載のセラミックス組成物。
  13.  前記治癒活性剤は、以下の条件式
    前記単一材料から生成される酸化物と前記治癒活性剤の多成分系のガラス転移温度(T)<前記酸化誘起型自己治癒セラミックスを適用する高温部材の稼動温度の下限値
    を満足する金属酸化物を少なくとも一種以上含む、請求項10から12のいずれか一項に記載のセラミックス組成物。
  14.  前記治癒エージェントがSiC又はTiSiである、請求項10から13のいずれか一項に記載のセラミックス組成物。
  15.  前記治癒活性剤がMgO及びMnOの少なくとも1種を含む、請求項10から14のいずれか一項に記載のセラミックス組成物。
  16.  前記治癒活性剤の添加量が0超9体積%以下である、請求項10から15のいずれか一項に記載のセラミックス組成物。
  17.  前記母材、前記治癒エージェントから生成される酸化物、及び前記治癒活性剤を含む物質が前記セラミックス組成物で発生したき裂を自立的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を更に含む、請求項1から9のいずれか一項に記載のセラミックス組成物。
  18.  前記単一材料から生成される酸化物と前記治癒活性剤を含む物質が前記セラミックス組成物で発生したき裂を自立的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を更に含む、請求項10から16のいずれか一項に記載のセラミックス組成物。
  19.  前記き裂治癒に供する物質の機械的強度を添加することによって高める物質が、Yやランタノイド系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luで表される金属酸化物を少なくとも一種以上含む、請求項17又は18に記載のセラミックス組成物。
  20.  前記母材と前記母材中に分散している大気中で酸化活性な非酸化物の治癒エージェント又は前記母材と前記治癒エージェントが同じセラミックスで構成されているために両者が一体化している単一材料に対して前記治癒活性剤を添加した混合物を不活性雰囲気下でホットプレス焼結することによって請求項1から19のいずれか一項に記載のセラミックス組成物を製造する方法。
  21.  請求項1から19のいずれか一項に記載のセラミックス組成物を含む、構造部材。
  22.  酸化誘起型自己治癒セラミックス組成物を構成するセラミックス母材と前記母材中に分散している酸化活性な非酸化物の治癒エージェントに対して治癒活性剤を添加し、
     前記治癒エージェントとして、前記セラミックス組成物のき裂発生による外部酸素との接触で酸化物を生成する物質を使用し、
     前記治癒活性剤として、前記治癒エージェントの酸化反応を律速する物質の拡散速度を高速化する物質を使用することによって、
    前記セラミックス組成物の自己治癒機能における強度回復速度及びき裂治癒温度の低温化を向上させる方法。
  23.  前記セラミックス母材、前記酸化物、及び前記治癒活性剤を含む物質が前記セラミックス組成物で発生したき裂を自立的に充填してき裂面間を接合し、更に凝固して結晶化することによってき裂を治癒する際に、添加によってそのき裂治癒に供する物質の機械的強度を高める物質を使用することを更に含むことにより、前記セラミックス組成物の自己治癒機能における強度回復速度及びき裂治癒温度の低温化を向上させる請求項22に記載の方法。
     
     
PCT/JP2016/067513 2015-06-17 2016-06-13 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法 WO2016204113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16811587.1A EP3312151B1 (en) 2015-06-17 2016-06-13 Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
JP2017525216A JP6436513B2 (ja) 2015-06-17 2016-06-13 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法
US15/736,456 US10822277B2 (en) 2015-06-17 2016-06-13 Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122293 2015-06-17
JP2015122293 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204113A1 true WO2016204113A1 (ja) 2016-12-22

Family

ID=57545357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067513 WO2016204113A1 (ja) 2015-06-17 2016-06-13 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法

Country Status (4)

Country Link
US (1) US10822277B2 (ja)
EP (1) EP3312151B1 (ja)
JP (1) JP6436513B2 (ja)
WO (1) WO2016204113A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11668198B2 (en) 2018-08-03 2023-06-06 Raytheon Technologies Corporation Fiber-reinforced self-healing environmental barrier coating
US11535571B2 (en) 2018-08-16 2022-12-27 Raytheon Technologies Corporation Environmental barrier coating for enhanced resistance to attack by molten silicate deposits
US11505506B2 (en) * 2018-08-16 2022-11-22 Raytheon Technologies Corporation Self-healing environmental barrier coating
JP2020100141A (ja) * 2018-12-21 2020-07-02 キヤノン株式会社 無機材料粉末、および構造体の製造方法
CN115611649B (zh) * 2022-08-11 2023-05-23 北京航空航天大学 一种碳化硅陶瓷基复合材料及其制备方法和应用
CN115490535B (zh) * 2022-10-26 2024-03-26 中国国检测试控股集团股份有限公司 Max相陶瓷表面修复方法和装置
CN116789440B (zh) * 2023-06-29 2024-04-05 齐鲁工业大学(山东省科学院) 一种降低气孔率的自修复陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291853A (ja) * 1997-04-17 1998-11-04 Toshiba Corp 自己修復型高温用部材及びその製造方法
JP2003176178A (ja) * 2001-12-07 2003-06-24 Nhk Spring Co Ltd ウエハ支持体およびその周辺部品
JP2012148963A (ja) * 2010-12-27 2012-08-09 Yokohama National Univ 自己治癒能力を有する長繊維強化セラミックス複合材料
JP2015052501A (ja) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 排気系部品、及びそれを備えた内燃機関

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580708A (en) * 1969-03-06 1971-05-25 Nippon Tungsten Method of forming cutting tool materials consisting of alumina and titanium carbide
JPS58172262A (ja) * 1982-04-01 1983-10-11 日本特殊陶業株式会社 切削用セラミツク工具の製造方法
JPS59102863A (ja) * 1982-12-01 1984-06-14 日本特殊陶業株式会社 セラミツク焼結体組成物
JPS59102864A (ja) * 1982-12-01 1984-06-14 日本特殊陶業株式会社 切削用セラミツク工具の製造方法
JPS59102865A (ja) * 1982-12-03 1984-06-14 日本特殊陶業株式会社 切削用セラミツク工具の製造方法
JPS59199579A (ja) * 1983-04-25 1984-11-12 三菱マテリアル株式会社 耐摩耗性のすぐれたサイアロン基セラミツクス
JPS60210571A (ja) * 1984-03-31 1985-10-23 イビデン株式会社 炭化珪素含有のアルミナ質焼結体の製造方法
DE3529265A1 (de) * 1984-08-22 1986-02-27 Ngk Spark Plug Co., Ltd., Nagoya, Aichi Keramik mit sehr hoher zaehigkeit und verfahren zur herstellung derselben
US4797238A (en) * 1985-11-27 1989-01-10 Gte Laboratories Incorporated Rapid-sintering of alumina
JPH0622053B2 (ja) * 1986-04-23 1994-03-23 住友特殊金属株式会社 基板材料
US4925458A (en) * 1987-05-28 1990-05-15 Kennametal Inc. Cutting tool
US4852999A (en) * 1987-05-28 1989-08-01 Kennametal Inc. Cutting tool
US4960735A (en) * 1988-11-03 1990-10-02 Kennametal Inc. Alumina-zirconia-silicon carbide-magnesia ceramics
JP2586151B2 (ja) * 1989-11-09 1997-02-26 三菱マテリアル株式会社 アルミナ・シリカ系焼結体及びその製造方法
US5188908A (en) * 1990-02-23 1993-02-23 Mitsubishi Materials Corporation Al2 O3 Based ceramics
DE4028217A1 (de) * 1990-06-01 1991-12-05 Krupp Widia Gmbh Keramikverbundkoerper, verfahren zur herstellung eines keramikverbundkoerpers und dessen verwendung
US5360772A (en) * 1990-07-25 1994-11-01 Kyocera Corporation Ceramic material reinforced by the incorporation of TiC, TiCN and TiN whiskers and processes for production thereof
JPH052730A (ja) * 1990-07-27 1993-01-08 Hitachi Ltd 磁気デイスク装置および磁気ヘツドおよびウエハ
JPH05319910A (ja) * 1992-05-20 1993-12-03 Mitsubishi Materials Corp セラミックス複合材料及びその製造方法
JP2813132B2 (ja) 1993-09-27 1998-10-22 日本発条株式会社 セラミックばね
JPH07232959A (ja) * 1993-12-21 1995-09-05 Kobe Steel Ltd アルミナ基セラミックス及びその製造方法
SE508255C2 (sv) * 1994-07-15 1998-09-21 Sandvik Ab Whiskerförstärkt keramiskt material samt metod för dess framställning
US5500394A (en) * 1994-12-22 1996-03-19 Composite Materials, Inc. Fire-resistant and thermal shock-resistant composite ceramic material and method of making same
FR2732338B1 (fr) * 1995-03-28 1997-06-13 Europ Propulsion Materiau composite protege contre l'oxydation par matrice auto-cicatrisante et son procede de fabrication
JPH11147769A (ja) 1997-11-14 1999-06-02 Nhk Spring Co Ltd 窒化珪素セラミック材及びその製造方法
JPH11147774A (ja) 1997-11-14 1999-06-02 Nhk Spring Co Ltd セラミック材及びその製造方法
US6331496B2 (en) * 1998-09-16 2001-12-18 Research Institute Of Advanced Material Gas-Generator, Ltd. High performance ceramic matrix composite
CN1317224C (zh) * 2004-05-11 2007-05-23 山东轻工业学院 氧化铝系多相复合结构陶瓷材料及其生产方法
CN101265079B (zh) * 2008-04-29 2011-11-16 山东大学 一种复合陶瓷刀具材料及其制备方法
CN101407411A (zh) 2008-11-11 2009-04-15 中国铝业股份有限公司 一种自愈合氧化铝基陶瓷复合材料及其制备方法
RU2498957C1 (ru) * 2012-03-23 2013-11-20 Открытое акционерное общество "Композит" (ОАО "Композит") КОМПОЗИЦИОННЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ В СИСТЕМЕ SiC-Al2O3 ДЛЯ ВЫСОКОТЕМПЕРАТУРНОГО ПРИМЕНЕНИЯ В ОКИСЛИТЕЛЬНЫХ СРЕДАХ
ES2775235T3 (es) * 2013-08-08 2020-07-24 Ngk Spark Plug Co Composición cerámica y herramienta de corte
CN104446395A (zh) * 2014-12-05 2015-03-25 池州学院 一种复合陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291853A (ja) * 1997-04-17 1998-11-04 Toshiba Corp 自己修復型高温用部材及びその製造方法
JP2003176178A (ja) * 2001-12-07 2003-06-24 Nhk Spring Co Ltd ウエハ支持体およびその周辺部品
JP2012148963A (ja) * 2010-12-27 2012-08-09 Yokohama National Univ 自己治癒能力を有する長繊維強化セラミックス複合材料
JP2015052501A (ja) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 排気系部品、及びそれを備えた内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312151A4 *

Also Published As

Publication number Publication date
EP3312151A1 (en) 2018-04-25
US10822277B2 (en) 2020-11-03
EP3312151A4 (en) 2018-11-21
JP6436513B2 (ja) 2018-12-12
US20180170811A1 (en) 2018-06-21
JPWO2016204113A1 (ja) 2018-04-12
EP3312151B1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6436513B2 (ja) 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法
JP6788669B2 (ja) アルミニウム及びアルミニウム合金の粉末成形方法
Feng et al. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering
JP5654195B2 (ja) チタン合金溶融用強化耐火物るつぼ
JP6299859B2 (ja) 鋳型及びその製造方法、並びにTiAl合金鋳造品の鋳造方法
JP6681923B2 (ja) モリブデン−ケイ素−ホウ素合金及びその製造方法、並びに構成要素
Nakagawa et al. High temperature strength and thermal stability for melt growth composite
JP5475961B2 (ja) チタン合金融解用るつぼ
CN106007758A (zh) 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法
WO2013018393A1 (ja) セラミック中子およびその製造方法
Feng et al. Effects of Cu on properties of vitrified bond and vitrified CBN composites
Wang et al. Microstructural evolution and growth kinetics of interfacial compounds in TiAl/Ti3SiC2 diffusion bonding joints
Guo et al. Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composites
Wang et al. Partial transient liquid phase bonding of carbon/carbon composites using Ti–Ni–Al2O3–Si compound as interlayer
US20080292804A1 (en) Methods for making refractory crucibles for melting titanium alloys
Xiong et al. Fabrication of SiC particulate reinforced AZ91D composite by vacuum-assisted pressure infiltration technology
US10612382B2 (en) Method for manufacturing gas turbine part
US20090221416A1 (en) Molding Compound for Producing a Refractory Lining
Liu et al. Preparation of Al2O3–ZrO2–SiO2 ceramic composites by high-gravity combustion synthesis
JP2006241484A (ja) 新規ニオブ基複合体及びその利用
JPH0624726A (ja) ジルコニア−二ケイ化モリブデン組成物およびその製造法
Kgoete et al. Advancement in the application of alloys and composites in the manufacture of aircraft component: A review
JP5279187B2 (ja) 発電ガスタービン用軽量耐熱材料
Efimochkin et al. High-Temperature Cermet Material Based on Intermetallic Nickel Matrix
JP4381760B2 (ja) 可撓性セラミックス製品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525216

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811587

Country of ref document: EP