WO2013018393A1 - セラミック中子およびその製造方法 - Google Patents

セラミック中子およびその製造方法 Download PDF

Info

Publication number
WO2013018393A1
WO2013018393A1 PCT/JP2012/054884 JP2012054884W WO2013018393A1 WO 2013018393 A1 WO2013018393 A1 WO 2013018393A1 JP 2012054884 W JP2012054884 W JP 2012054884W WO 2013018393 A1 WO2013018393 A1 WO 2013018393A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic core
mass
silica
bending strength
mixture
Prior art date
Application number
PCT/JP2012/054884
Other languages
English (en)
French (fr)
Inventor
英子 福島
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/236,671 priority Critical patent/US9539639B2/en
Priority to EP12819690.4A priority patent/EP2740550B1/en
Priority to JP2013513468A priority patent/JP5360633B2/ja
Publication of WO2013018393A1 publication Critical patent/WO2013018393A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a ceramic core used when casting a casting having a hollow structure, and a manufacturing method thereof.
  • Castings having a hollow structure for example, gas turbine blades (turbine blades) made of a Ni-based heat-resistant alloy or the like, have hollow cooling holes formed in the blades with complex and high precision to enhance the cooling effect There is.
  • Such a blade can be manufactured by using a ceramic core having a shape corresponding to a hollow cooling hole to be formed by a lost wax precision casting method or the like.
  • the ceramic core is exposed to a molten metal at around 1500 ° C. for several hours. Therefore, the ceramic core may be deformed due to thermal deformation or buoyancy due to the molten metal, or may be damaged due to the flow of the molten metal. is there. For this reason, the ceramic core is required to have mechanical strength in a high temperature range around 1500 ° C. and dimensional stability that does not cause dimensional shrinkage or deformation under such casting temperature.
  • the ceramic core is eluted and removed using a sodium hydroxide aqueous solution after the completion of casting, elution with respect to an alkaline aqueous solution is also required.
  • Patent Document 1 proposes a ceramic core composed of 60 to 85% by mass of fused silica, 15 to 35% by mass of zircon, and 1 to 5% by mass of cristobalite. Yes.
  • This ceramic core has sufficient mechanical strength even at a casting temperature of about 1500 ° C., suppresses significant dimensional changes during casting, has excellent dimensional stability, and is likely to elute the ceramic core after casting. ing.
  • Patent Document 2 proposes a product manufactured using 60 to 80% by mass of fused silica powder, up to 15% by mass of yttria, and up to 0.2% by mass of alkali metal. .
  • This ceramic core has been proposed as having a room temperature strength of a maximum of 12 MPa and a property that hardly deforms even at a high temperature of 1675 ° C., which is considerably higher than 1500 ° C.
  • Patent Document 3 proposes a ceramic core manufactured using colloidal silica stabilized with fused silica and sodium. This ceramic core has been proposed as having a room temperature strength of about 7 MPa.
  • the ceramic core manufactured using fused silica, zircon, and cristobalite, which is crystalline silica, disclosed in Patent Document 1 described above is an injection molding process in handling at room temperature or in lost wax precision casting. However, there is a problem that it is easy to break when forming a vanishing model. Therefore, it is desirable for this ceramic core to further improve the bending strength at room temperature (25 ° C.).
  • the ceramic core manufactured using fused silica, yttria, and alkali metal disclosed in Patent Document 2 described above is hardly deformed even at a considerably high temperature of 1675 ° C.
  • this ceramic core has a problem that brittle fracture damage is likely to occur due to the molten metal injected during casting depending on the casting shape. Therefore, it is desirable for this ceramic core to further improve the bending strength in the temperature range around 1500 ° C. during casting. From the viewpoint of shrinkage that occurs when exposed to casting temperature, it is desirable that this ceramic core further improve the dimensional stability during casting.
  • the ceramic core manufactured using fused silica which is amorphous silica and colloidal silica stabilized with sodium, which is disclosed in Patent Document 3 described above, has a room temperature strength of about 7 MPa.
  • this ceramic core has a problem in bending strength at room temperature, and it is desirable to further improve this.
  • this ceramic core has a problem in bending strength in a temperature range around 1500 ° C. at the time of casting as with the ceramic core proposed in Patent Document 1, and further improves this. It is desirable. Furthermore, it is desirable for this ceramic core to further improve dimensional stability during casting.
  • the present invention has sufficient bending strength for handling at room temperature after firing, has bending strength and dimensional stability that are difficult to deform and break even when exposed to high temperatures during casting, Furthermore, the ceramic core excellent in the elution property with respect to alkaline aqueous solution is provided. And the manufacturing method is provided.
  • the present inventor has studied in detail the bending strength and dimensional stability of the ceramic core at high temperatures, and further the elution of the ceramic core in an aqueous alkaline solution.
  • the inventors have found that it is effective to contain an appropriate amount of alumina, and that the optimization of the content of potassium and / or sodium is extremely effective for improving the high-temperature bending strength, and have reached the present invention.
  • the ceramic core according to the present invention comprises 0.1 to 15.0% by mass of alumina and at least one of potassium or sodium in an amount of 0.005 to 0.1% by mass, with the balance being silica and inevitable impurities.
  • a mixture containing 90% by mass or more of amorphous silica is baked.
  • the total amount of the silica is preferably amorphous silica. Further, it is desirable to contain 0.5 to 35.0% by mass of zircon. A ceramic core that is fired to a relative density of 60 to 80% is desirable. Further, it is desirable that the ceramic core is formed such that the bending strength at room temperature (25 ° C.) is 10 MPa or more and the bending strength at 1550 ° C. is 5 MPa or more.
  • the total amount of the silica is amorphous silica containing 5 to 30% by mass of coarse particles having a particle size of at least 50 ⁇ m or more, and having an average particle size of 5 to 35 ⁇ m, and 0.1 to 15.0% by mass of alumina. And a mixture comprising 0.5 to 35.0% by mass of zircon is fired to a relative density of 60 to 80%, a bending strength at 25 ° C. of 10 MPa or more, and a bending strength at 1550 ° C. of 5 MPa or more.
  • a ceramic core is preferable.
  • the above-described ceramic core according to the present invention comprises 0.1 to 15.0% by mass of alumina, 0.005 to 0.1% by mass of at least one of potassium or sodium, the balance being silica and unavoidable
  • a mixture containing 90% by mass or more of amorphous silica in 100% by mass of silica is 55 to 75% by volume, and further 25 to 45% by volume of a binder is mixed to form a mixture. Then, the mixture is injected into a mold to form a molded body, and the obtained molded body is degreased at 500 to 600 ° C. and 1 to 10 hours, and then fired at 1200 to 1400 ° C. and 1 to 10 hours. Can be manufactured.
  • the total amount of silica contained in the mixture is amorphous silica. Further, it is desirable that 0.5 to 35.0% by mass of zircon is further included in the mixture. Further, it is desirable to bake the relative density to 60 to 80%. Further, it is desirable to bake the bending strength at room temperature (25 ° C.) to 10 MPa or more and the bending strength at 1550 ° C. to 5 MPa or more.
  • the total amount of the silica is amorphous silica containing 5 to 30% by mass of coarse particles having a particle size of at least 50 ⁇ m or more, and having an average particle size of 5 to 35 ⁇ m, and 0.1 to 15.0% by mass of alumina. And a mixture containing 0.5 to 35.0% by mass of zircon is made 55 to 75% by volume, and further 25 to 45% by volume of a binder is mixed to make a mixture.
  • a production method is preferred in which the resulting molded product is degreased at 500 to 600 ° C. for 1 to 10 hours and then fired at 1200 to 1400 ° C. for 1 to 10 hours. Desirable injection pressure of the mixture into the mold is 1 to 200 MPa. More preferably, the injection pressure of the mixture into the mold is 1 to 80 MPa.
  • the present invention after firing, it has a sufficient bending strength for handling at room temperature, and a high temperature range during casting, for example, a temperature of 1400 ° C. to 1600 ° C. of a molten metal made of a heat-resistant alloy such as Fe group or Ni group.
  • a temperature of 1400 ° C. to 1600 ° C. of a molten metal made of a heat-resistant alloy such as Fe group or Ni group can provide a ceramic core having excellent bending strength and dimensional stability, and further having excellent dissolution properties with respect to an aqueous alkali solution. Therefore, the present invention can contribute to the development of the industry because it can produce an excellent casting blade when applied to the production of a casting having a hollow structure, for example, the production of a blade for a gas turbine made of a Ni-base heat-resistant alloy or the like.
  • An important feature of the present invention is that in a mixture for obtaining a ceramic core mainly composed of a silica component, an appropriate amount of alumina is added to the main silica, and at the same time, potassium, sodium, or both are added.
  • the purpose is to optimize the content. Specifically, at least one of potassium and sodium is added to the silica containing 90% by mass or more of amorphous silica in 100% by mass and 0.1 to 15.0% by mass of alumina. It is to contain 0.005 to 0.1% by mass.
  • the ceramic core has a high bending strength because a large amount of amorphous silica exists at room temperature after firing, and a large amount of crystalline silica exists at a high temperature during casting, and Since the formation of a liquid phase is suppressed by optimizing the content of potassium and sodium, the composition has high bending strength.
  • the ceramic core according to the present invention includes, as a basic composition, silica containing 90% by mass or more of amorphous silica in 100% by mass and 0.1 to 15.0% by mass of alumina.
  • silica and alumina as the basic composition, not only becomes a ceramic core having excellent heat resistance, but also a Ni-based heat-resistant alloy-based molten metal that is often applied to blades for gas turbines, etc. It becomes a ceramic core excellent in dimensional stability during casting.
  • the silica includes 90% by mass or more of amorphous silica in 100% by mass as described above.
  • silica containing 90% by mass or more of amorphous silica it is possible to improve the sinterability when the molded body is sintered to form a ceramic core.
  • the ceramic core cooled to room temperature after firing can increase the bending strength at room temperature by adding a large amount of amorphous silica among the silica components, it is desirable that the ceramic core contains a large amount of amorphous silica.
  • the bending strength at room temperature (25 ° C) of the ceramic core can be obtained by adding an appropriate amount of non-crystalline silica to the amount of other alumina added separately, potassium, sodium, or both. Of 10 MPa or more.
  • alumina is contained in an amount of 0.1 to 15.0% by mass as described above. If the alumina content is controlled within this range, the fire resistance of the alumina can contribute to the improvement of the bending strength at the casting of the ceramic core, that is, in the high temperature range, and the dimensional stability can be enhanced.
  • the ceramic core may deviate from the target size by shrinking when exposed to a high temperature during casting. For this reason, the present inventor evaluated the dimensional stability of the ceramic core by the shrinkage rate at the casting temperature of the ceramic core. Ideally, the shrinkage rate is 0%. It was confirmed that 2% which is close to the elongation of is desirable.
  • an alumina is about 7 times larger than a zircon as a reduction effect of the shrinkage rate per content. Since the ceramic core containing a large amount of alumina or zircon is difficult to elute into the alkaline aqueous solution, it is essential in the present invention to contain alumina, which has a higher shrinkage reduction effect in the high temperature range.
  • the alumina added to the silica is 0.1% by mass or more, the strength related to brittleness and the dimensional stability during casting can be improved, and when the alumina is 15.0% by mass or less, the ceramic
  • the alumina was 0.5% by mass
  • the shrinkage during casting was 1.0%
  • 1.5% by mass was 0.4%.
  • it is desirable that the alumina is 0.5% by mass or more and the shrinkage ratio of the ceramic core is 1.0% or less. More desirably, the shrinkage rate of the ceramic core is 0.5% or less by making alumina 1.0% by mass or more.
  • the inclusion of 0.005 to 0.1% by mass of at least one of potassium or sodium in the above-described silica and alumina containing material improves the mechanical properties of the ceramic core in the high temperature range. Is especially important for.
  • the obtained ceramic core can have a bending strength of 5 MPa or more even at a temperature of 1300 ° C. Further, the bending strength of 5 MPa or more can be maintained even when the ceramic core is in a high temperature range of 1400 ° C. to 1600 ° C., which is a casting temperature of a Ni-base heat-resistant alloy or the like.
  • potassium and sodium are not contained in excess of an appropriate amount from the viewpoint of improving the bending strength of the ceramic core at a high temperature.
  • the composite oxide promotes densification of the sintered body, it improves the bending strength of the ceramic core at room temperature. Therefore, in the present invention, adding at least 0.005% by mass or more of potassium or sodium is effective because it produces the composite oxide and has an effect as a sintering aid.
  • a sintered body that is too dense deteriorates elution, it is desirable that potassium and sodium be suppressed to 0.1% by mass or less.
  • the ceramic core of the present invention can contain only potassium, only sodium, or both at the same time, that is, at least one of potassium or sodium is 0.005 to 0.1 mass. % Is important.
  • the ceramic core of the present invention has 0.1 to 15.0% by mass of alumina, 0.005 to 0.1% by mass of at least one of potassium or sodium, and the balance is silica.
  • a mixture containing 90% by mass or more of amorphous silica in 100% by mass of the silica is calcined.
  • the relative density of the ceramic core is preferably adjusted to 60 to 80% in order to have a bending strength at room temperature that is easy to handle and to have a dissolution property with respect to an alkaline aqueous solution.
  • the relative density of the ceramic core is higher if it is limited to improvement of mechanical strength, and is lower if it is limited to improvement of elution, and can be adjusted as necessary. As described above, improvement of the mechanical strength and elution of the ceramic core are conflicting demands.
  • the relative density of the ceramic core is 75 to 80%, the bending strength at room temperature is further increased.
  • the relative density is 60 to 65%, the dissolution property in an alkaline aqueous solution is further increased.
  • the relative density is 65% to 75%, the bending strength is increased. It is easy to satisfy both elution properties.
  • the relative density of the ceramic core can be adjusted by the amount of binder contained in the molded body, the firing temperature of the molded body, the holding time thereof, and the like.
  • the relative density as used in the present invention is synonymous with the relative density defined in JIS-Z2500, and the actual density obtained by dividing the actual mass of the ceramic core by the volume obtained from its dimensions, and the firing of the ceramic core. It is assumed that silica (SiO 2 ) and alumina (Al 2 O 3 ) exist independently in the knot, and the theoretical density obtained from the composition of the raw materials used using these theoretical densities. In other words, the value obtained by dividing the actual density by the theoretical density is expressed as a percentage. Further, when zircon (ZrSiO 4 ) is further included, it is assumed that this also exists independently. In determining the theoretical density, potassium and sodium, which have a lower content than others, are not considered because the influence on the relative density is assumed to be negligible.
  • the ceramic core of the present invention comprises 0.1 to 15.0% by mass of alumina, 0.005 to 0.1% by mass of at least one of potassium or sodium, and the balance is silica and inevitable.
  • a mixture containing 90% by mass or more of amorphous silica in 100% by mass of silica is calcined.
  • the ceramic core of the present invention is basically composed of a mixture of at least one of silica, alumina, potassium or sodium. With respect to this configuration, 0.5 to 35.0% by mass of zircon, which is not as high as alumina as described above but has an effect of reducing the shrinkage rate in the high temperature range of the ceramic core, may be contained.
  • zircon coexists with alumina in an appropriate balance, the effect of reducing the shrinkage ratio of the ceramic core in a high temperature range caused by both elements is synergistically improved. Therefore, preferably when the ceramic core contains zircon in an amount of 0.5% by mass or more, the shrinkage rate in the high temperature region of the ceramic core is easily reduced to 1% or less, and further to 0.5% or less.
  • the ceramic core it is preferable to contain zircon in the ceramic core according to the present invention.
  • the zircon contained in the ceramic core is 35.0% by mass. The following is desirable.
  • alumina whose insolubility is inferior to zircon is suppressed to 5.0 mass% or less, and It is preferable to contain 0.0 mass% or more.
  • powdered silica powdered alumina, powdered zircon and the like can be used.
  • powdered silica powder such as fused silica that is amorphous silica, powder such as cristobalite that is crystalline silica, silica powder in which an amorphous silica component and a crystalline silica component coexist can be used.
  • potassium or sodium can be used as a single metal, but is preferably used as a hydroxide such as potassium hydroxide or sodium hydroxide.
  • hydroxides can be adjusted in consideration of their contents when they are contained in the powder material described above.
  • a composite oxide composed of potassium and / or sodium and silica and / or alumina may also be used.
  • the powdered silica preferably has an average particle size of 5 to 35 ⁇ m.
  • the thickness is less than 5 ⁇ m, there is a concern about deterioration of dimensional stability during casting due to excessive crystallization and a decrease in bending strength at room temperature. Further, if it exceeds 35 ⁇ m, there is a concern that the bending strength during casting is lowered.
  • amorphous silica such as fused silica containing 5-30% by mass of coarse particles having a particle size of at least 50 ⁇ m or more and an average particle size of 5-35 ⁇ m is used. It is preferable to use it.
  • the ceramic core is less likely to have an excessive relative density and is likely to have good elution properties with respect to the alkaline aqueous solution.
  • the ceramic core tends to have a relative density that tends to decrease the bending strength at room temperature.
  • the average particle size of the powdery alumina is preferably 1 to 5 ⁇ m. If the average particle size of the powdered alumina is 1 ⁇ m or more, it contributes to improvement of dimensional stability at the time of casting, but if it exceeds 5 ⁇ m, the relative density of the ceramic core tends to be too small, and the bending strength at room temperature is increased. It tends to decline.
  • the average particle size is preferably 5 to 15 ⁇ m. If the average particle size of the powdered zircon is 5 ⁇ m or more, it contributes to improvement of dimensional stability at the time of casting. However, if it exceeds 15 ⁇ m, the relative density of the ceramic core tends to be too small, and the bending strength at room temperature is increased. It tends to decline.
  • the average particle diameter referred to in the present invention is a value obtained using a laser diffraction / scattering particle size distribution measuring device (particle size distribution measuring device Microtrac MT3000 manufactured by Nikkiso Co., Ltd.). Specifically, using the light scattering phenomenon obtained by applying laser light to a powdered sample suspended in a dispersion medium, the intensity distribution of scattered light is measured and collected by multiple optical detectors. The obtained scattered light information is A / D converted and then obtained by computer analysis and calculation processing. The particle size distribution is based on volume, and the horizontal axis is the particle size and the vertical axis is the frequency or cumulative output, and the cumulative particle size at 50% is the average particle size. Moreover, the particle size as used in the field of this invention means the diameter of the powder-form individual particle
  • the ceramic core according to the present invention can be manufactured by a manufacturing method including a mixture manufacturing process (1), an injection molded body manufacturing process (2), and a degreasing firing process (3). Specifically, in the mixture production step (1), 0.1 to 15.0% by mass of alumina (Al 2 O 3 ) and at least one of potassium (K) or sodium (Na) is added in an amount of 0.001.
  • alumina Al 2 O 3
  • K potassium
  • Na sodium
  • the balance being silica (SiO 2 ), and a mixture containing 90% by mass or more of amorphous silica in 100% by mass of silica is 55 to 75% by volume, Further, the main process is to mix 25 to 45% by volume of a binder into a mixture.
  • the injection molded body manufacturing step (2) is a step mainly including injecting the mixture obtained in the mixture manufacturing step (1) into a mold to form a molded body, and a degreasing firing step.
  • (3) is a step of degreasing the molded body obtained in the injection molded body production step (2) at 500 to 600 ° C. and 1 to 10 hours, and then removing the degreased molded body from 1200 to 1400 ° C. and 1 to 10 hours. It is a process mainly consisting of firing.
  • the whole quantity of a silica can be made into an amorphous silica.
  • 0.5 to 35.0% by mass of zircon (ZrSiO 4 ) may be further included in the mixture.
  • a mixture suitable for setting the relative density of the ceramic core in an appropriate range is such that the mixture is 55 to 75% by volume, and further 25 to 45% by volume of the binder. Is obtained by mixing. Considering the fluidity for injection molding, a mixture composed of a combination of 60 to 70% by volume of the mixture and 30 to 40% by volume of a binder is more preferable. Such a mixture is uniform by, for example, using a mixing stirrer, melting a binder in a container, and then charging various materials related to silica, alumina, potassium and / or sodium, and rotating a stirring blade. It can be obtained by means of stirring until it becomes, or by means of ball mill mixing, kneading or the like.
  • raw materials such as the above-mentioned powder can be used for silica, alumina and zircon, and the above-mentioned hydroxides can be used for potassium and sodium.
  • the binder for example, one or more of paraffin, styrene thermoplastic elastomer, polyethylene glycol, cetyl alcohol, polypropylene, polystyrene, polybutyl methacrylate, and ethylene vinyl acetate copolymer resin are used. Is good. Furthermore, it is also desirable to mix cellulose fibers, dibutyl phthalate, and the like that contribute to improving the plasticity of the molded body.
  • the injection pressure of the softened mixture is preferably 1 to 200 MPa.
  • the injection pressure is 1 MPa or more, a necessary amount of the mixture can be filled in the mold, so that a phenomenon called non-rotation hardly occurs.
  • the injection pressure exceeds 200 MPa, insertion of the injected mixture into the split part of the mold is likely to occur, so that it becomes difficult to form a molded body without burrs. If the injection pressure is 1 to 150 MPa, it is considered that a generally available injection molding machine can be used without any special modification.
  • the degreasing temperature when the molded body is degreased is preferably 500 to 600 ° C.
  • degreasing temperature 500 ° C. or higher
  • degreasing that is, removal of the binder properly proceeds, and the binder can be sufficiently removed from the molded body.
  • defects such as a swelling and a crack in a molded object, can be suppressed as the degreasing temperature is 600 degrees C or less.
  • it is preferable to set the degreasing time to 1 to 10 hours. When the degreasing time is 1 hour or more, the removal of the binder is sufficiently advanced, and the degreasing process is performed to sinter the molded body. There is no need.
  • the temperature increase rate when degreasing the molded body is from 0.1 ° C. to 100 ° C./h in the temperature range of room temperature to 300 ° C. in consideration of the above-mentioned binder softening and melting temperature range. Is preferably 1 to 10 ° C./h. In the temperature range of more than 300 ° C. and 600 ° C., decomposition proceeds due to the combustion of the binder.
  • the firing conditions for forming the degreased molded body into a sintered body are such that the relative density of the ceramic core is suitable, the bending strength in the room temperature region and the high temperature region exceeding 1500 ° C. It is important to improve both the bending strength at the same time.
  • a ceramic core having a large amount of amorphous silica in the sintered structure has a high bending strength in a room temperature environment after firing.
  • a ceramic core having a large amount of crystalline silica in the sintered structure has a low bending strength under a room temperature environment, but can have a high bending strength under a high temperature environment.
  • increasing the bending strength at room temperature and increasing the bending strength at high temperature are in a reciprocal relationship from the viewpoint of the sintered structure. It is important to control the structure and the firing temperature and its holding time.
  • the present inventor has promoted the crystallization of amorphous silica in a high temperature environment during casting so that a sintered structure having a large amount of amorphous silica exists in a room temperature environment after firing.
  • the firing conditions were examined so as to obtain a structure having a large amount of crystalline silica.
  • the firing temperature of the molded body after degreasing is preferably 1200 to 1400 ° C. at which it is considered that the amorphous silica component starts to crystallize. 1 to 10 h is preferable because the core is easily fired to a suitable relative density of 60 to 80%. If the firing temperature is less than 1200 ° C, the structure is likely to be insufficiently sintered, and if it exceeds 1400 ° C, the generation of crystalline silica components such as cristobalite in the sintered structure is promoted, and the ceramic core at room temperature is promoted. Bending strength may decrease. In order to further homogenize the sintered structure of the ceramic core and increase the bending strength, the firing temperature is preferably 1250 ° C. to 1350 ° C.
  • the firing time is less than 1 h, sintering of the entire structure of the ceramic core tends to be insufficient, and if it exceeds 10 h, crystallization is promoted and crystal grains grow. Bending strength may decrease.
  • the heating rate when firing the molded article is preferably 1 to 300 ° C./h, and if it is 1 ° C./h or more, the productivity is not hindered regardless of the heating time, and 300 ° C. / If it is less than or equal to h, defects such as cracks due to rapid progress of sintering are unlikely to occur.
  • the firing atmosphere when firing the molded body is preferably a non-reducing atmosphere that can suppress the decomposition of the constituent oxide, and in the case of a non-reducing atmosphere, nitrogen gas or argon gas in addition to air An inert gas such as can be used.
  • the powdered cristobalite used was adjusted to an average particle size of 19.0 ⁇ m.
  • As the alumina powdery alumina having an average particle diameter of 2.8 ⁇ m was used.
  • potassium or sodium the content in the powdery material described above was taken into account, and the deficiency was supplemented with potassium hydroxide or sodium hydroxide.
  • what adjusted the average particle diameter of powdery zircon to 9.5 micrometers was used.
  • Each mixture having the composition shown in Table 1 and Table 2 using the above-mentioned materials and a binder made of paraffin and a styrenic thermoplastic elastomer are prepared, and 32% by volume of the binder is mixed with 68% by volume of the mixture.
  • the mixture was sufficiently mixed using a stirrer to prepare each mixture.
  • each mixture obtained in the above-mentioned mixture production process is injected by applying a pressure of 7 MPa into a mold including a cavity having a volume of 220 cm 3 corresponding to the shape of the ceramic core to be produced, A molded body of was obtained.
  • the same handling was applied to both the example and the comparative example.
  • each molded body obtained in the injection molded body manufacturing process was held at a temperature of 580 ° C. for 5 hours, thereby substantially degreasing the molded body.
  • the temperature rising rate from room temperature to 300 ° C. was 3 ° C./h, and the temperature rising rate from reaching 300 ° C. until reaching 580 ° C. was controlled to 50 ° C./h.
  • the molded body was completely degreased in the process of raising the temperature to the firing temperature, and further maintained at the firing temperature shown in Tables 1 and 2 for 2 hours.
  • ceramics and the like were fired to obtain ceramic cores shown as Examples 1 to 13 and Comparative Examples 1 to 4.
  • the same handling was applied to both the example and the comparative example.
  • Each ceramic core was formed so as to have an external shape shown in FIG. 1 corresponding to a hollow rotor blade for a gas turbine.
  • the bending strength of the ceramic core was evaluated by producing a test piece of the ceramic core, performing a bending test in accordance with JIS-R1601 for the test in the room temperature range, and in accordance with JIS-R1604 for the test in the high temperature range.
  • the test piece shape was set to 3 ⁇ 4 ⁇ 36 mm, the distance between fulcrums: 30 mm, and the test speed was set to a crosshead speed: 0.5 mm / min, at room temperature (25 ° C.) and 1550. It carried out about ° C.
  • the dimensional stability of the ceramic core was evaluated by measuring the dimensional value of a predetermined portion of the ceramic core before and after the heat treatment, and evaluating the change rate of the dimension in terms of percentage of shrinkage during casting.
  • the heat treatment applied to the ceramic core was a treatment method of holding at a temperature of 1550 ° C. for 2 hours.
  • the evaluation of the elution property of the ceramic core with respect to the alkaline aqueous solution is to actually manufacture a mold using the ceramic core, inject a molten metal into the mold and cool it down, and obtain a mold that contains the ceramic core. , Using the template. First, the mold after cooling was immersed in a 30% potassium hydroxide aqueous solution at 160 ° C. for a fixed time (20 h) at 0.3 MPa, and the presence or absence of a ceramic core remaining in the mold after the immersion was examined. And this immersion test was implemented 4 times and evaluated by the possibility of complete dissolution of a ceramic core.
  • the ceramic cores (Examples 1 to 7) according to the present invention shown in Table 1 have an alumina content of 0.1 to 15.0 mass% and at least one of potassium or sodium in an amount of 0.005 to 0.1 mass. %, And the balance is composed of silica containing 90% by mass or more of amorphous silica in 100% by mass of silica, and unavoidable impurities, and the bending strength at room temperature (25 ° C.) is 10 MPa or more. The bending strength at high temperature (1550 ° C.) was 5 MPa or more.
  • the ceramic core according to the present invention having the composition shown in Table 1 has sufficient bending strength for handling at room temperature after firing, and has high bending strength that can withstand long-time casting. It was confirmed that Further, the ceramic core according to the present invention was not damaged during handling, injection molding, and casting in the evaluation process described above. In addition, all of the ceramic cores according to the present invention had good dissolution properties with respect to the alkaline aqueous solution after casting. In addition, the ceramic core according to the present invention had a casting shrinkage rate of 1.0% or less, and could have dimensional stability in a high temperature range.
  • Comparative Example 1 in which the total amount of potassium and sodium was large at 0.870% by mass, the bending strength at high temperature (1550 ° C.) was as low as 1 MPa, and bending strength that could withstand long-time casting could be obtained. There wasn't. Further, Comparative Example 1 had a large shrinkage during casting of 5.5% and could not have dimensional stability in a high temperature range. Further, Comparative Example 2 containing no alumina had a bending strength as low as 3 MPa at a high temperature (1550 ° C.), and could not obtain a bending strength that could withstand long-time casting. Further, Comparative Example 2 had a large shrinkage during casting of 5.0%, and could not have dimensional stability in a high temperature range.
  • Comparative Example 3 in which the amorphous silica content in the total silica was small at 78.0% by mass, the bending strength at a high temperature (1550 ° C.) is as low as 3 MPa, and the bending strength that can withstand long-time casting is obtained. Cann't get.
  • the ceramic cores according to the present invention shown in Table 2 have an alumina content of 0.1 to 15.0 mass% and at least one of potassium or sodium in an amount of 0.005 to 0.1 mass. %, The balance is 5 to 30% by mass of coarse particles having a particle size of 50 ⁇ m or more, the average particle size is adjusted to 5 to 35 ⁇ m, and unavoidable impurities, and room temperature ( The bending strength at 25 ° C. was 10 MPa or more, and the bending strength at high temperature (1550 ° C.) was 5 MPa or more.
  • the ceramic core according to the present invention having the composition shown in Table 2 has sufficient bending strength for handling at room temperature after firing, and high bending strength that can withstand long-time casting. It was confirmed that Further, the ceramic core according to the present invention was not damaged during handling, injection molding, and casting in the evaluation process described above. In addition, all of the ceramic cores according to the present invention had good dissolution properties with respect to the alkaline aqueous solution after casting. In addition, the ceramic core according to the present invention had a casting shrinkage rate of 1.0% or less, and could have dimensional stability in a high temperature range.
  • the bending strength at high temperature (1550 ° C.) is as low as 3 MPa in Comparative Example 4 where the powder (coarse particles) with a particle size of 50 to 100 ⁇ m was large at 35% by mass. The bending strength that can withstand long-time casting could not be obtained.

Abstract

 室温で容易に取扱えて鋳造時も変形や破損し難い曲げ強度と寸法安定性、更にアルカリ水溶液に対する溶出性に優れたセラミック中子、およびその製造方法を提供する。 0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物が焼成されてなるセラミック中子にする。また、アルミナと、カリウムまたはナトリウムのうち少なくとも1種と、シリカとを上述した組成にした混合物55~75体積%に対してバインダ25~45体積%を混合して混合体とし、該混合体を金型内へ射出して成形体とし、該成形体を500~600℃かつ1~10hで脱脂した後に1200~1400℃かつ1~10hで焼成するセラミック中子の製造方法にする。

Description

セラミック中子およびその製造方法
 本発明は、中空構造を有する鋳物を鋳造する際に用いられるセラミック中子、およびその製造方法に関する。
 中空構造を有する鋳物、例えばNi基耐熱合金などからなるガスタービン用ブレード(タービン翼)には、そのブレード内部に、冷却効果を高めるための複雑かつ高精度に形成された中空冷却孔を有するものがある。このようなブレードは、ロストワックス精密鋳造法などにより、形成したい中空冷却孔に対応する形状のセラミック中子を用いて製造することができる。
 鋳造時、セラミック中子は、1500℃前後の溶湯中に数時間さらされることになるため、溶融金属による熱変形や浮力による変形をしたり、溶融金属の流動に伴って破損したりすることがある。このためセラミック中子には、1500℃前後の高温域の機械的強度や、このような鋳造温度下での寸法収縮あるいは変形を生じないだけの寸法安定性が必要とされる。また、セラミック中子は、鋳造終了後、水酸化ナトリウム水溶液などを用いて溶出除去されるため、アルカリ性水溶液に対する溶出性も求められる。
 このようなセラミック中子として、例えば特許文献1には、60~85質量%の溶融シリカと、15~35質量%のジルコンと、1~5質量%のクリストバライトからなるセラミック中子が提案されている。このセラミック中子は、1500℃程度の鋳造温度でも十分な機械的強度を有し、鋳造時の顕著な寸法変化が抑制されて寸法安定性に優れ、鋳造後にセラミック中子を溶出しやすいとされている。
 また、例えば特許文献2には、60~80質量%の溶融シリカ粉末と、15質量%までのイットリアと、0.2質量%までのアルカリ金属とを用いて製造されたものが提案されている。このセラミック中子は、最大12MPaの室温強度と、1500℃よりもかなり高い1675℃の高温であっても、ほとんど変形しない特性を有するものとして提案されている。
 また、例えば特許文献3には、溶融シリカとナトリウムで安定化されたコロイダルシリカを用いて製造されたセラミック中子が提案されている。このセラミック中子は、7MPa程度の室温強度を有するものとして提案されている。
特開平01-245941号公報 欧州特許第0179649号明細書 米国特許第4093017号明細書
 上述した特許文献1に開示される、溶融シリカと、ジルコンと、結晶性シリカであるクリストバライトとを用いて製造されたセラミック中子は、室温でのハンドリング時や、ロストワックス精密鋳造における射出成形工程で消失性模型を形成する時に、破損しやすいという課題がある。よって、このセラミック中子は、室温(25℃)での曲げ強度をさらに向上させることが望ましい。
 また、上述した特許文献2に開示される、溶融シリカと、イットリアと、アルカリ金属と、を用いて製造されたセラミック中子は、1675℃というかなりの高温でも変形し難いものとされている。しかし、変形だけでなく脆性破壊の観点からいえば、このセラミック中子は、鋳物形状によっては鋳造時に注入した溶融金属により脆性破壊的な損壊が発生しやすいという課題がある。よって、このセラミック中子は、鋳造時の1500℃前後の温度域における曲げ強度をさらに向上させることが望ましい。また、鋳造温度に晒されたときに生じる収縮の観点からいえば、このセラミック中子は、鋳造時の寸法安定性をさらに向上させることが望ましい。
 また、上述した特許文献3に開示される、非結晶性シリカである溶融シリカとナトリウムで安定化されたコロイダルシリカを用いて製造されたセラミック中子は、7MPa程度の室温強度を有する。しかし、ハンドリング時や射出成形時の破損の観点からいえば、このセラミック中子は、室温での曲げ強度に課題があり、これをさらに向上させることが望ましい。また、脆性破壊の観点からいえば、このセラミック中子は、特許文献1が提案するセラミック中子と同様に鋳造時の1500℃前後の温度域における曲げ強度に課題があり、これをさらに向上させることが望ましい。さらには、このセラミック中子は、鋳造時の寸法安定性をさらに向上させることが望ましい。
 本発明は、上記問題に鑑み、焼成後には室温で取扱うための十分な曲げ強度を有し、鋳造時には高温に曝されても変形や破損をし難い曲げ強度と寸法安定性とを有し、さらにはアルカリ水溶液に対する溶出性に優れたセラミック中子を提供する。および、その製造方法を提供する。
 本発明者は、高温域でのセラミック中子の曲げ強度や寸法安定性、さらにはアルカリ水溶液に対する溶出性について詳細に研究し、シリカ成分を主体とするセラミック中子において、上述した諸特性の改善には適量のアルミナの含有が有効であること、そして、高温曲げ強度の改善にはカリウムおよび/またはナトリウムの含有量の適正化が極めて有効であることを見出し、本発明に到達した。
 すなわち本発明に係るセラミック中子は、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物が焼成されてなる。
 本発明に係るセラミック中子は、前記シリカの全量が非結晶性シリカであることが望ましい。
 また、0.5~35.0質量%のジルコンを含むことが望ましい。
 また、相対密度が60~80%に焼成されてなるセラミック中子が望ましい。
 また、室温(25℃)における曲げ強度が10MPa以上、1550℃における曲げ強度が5MPa以上に形成されてなる、セラミック中子であることが望ましい。
 また、前記シリカの全量が、少なくとも粒度50μm以上の粗粒を5~30%質量含み、平均粒径が5~35μmの非結晶性シリカであって、0.1~15.0質量%のアルミナと、0.5~35.0質量%のジルコンとを含んでなる混合物が、相対密度が60~80%、25℃における曲げ強度が10MPa以上、1550℃における曲げ強度が5MPa以上に焼成されてなる、セラミック中子が好適である。
 上述した本発明に係るセラミック中子は、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物を55~75体積%とし、さらに25~45体積%のバインダを混合して混合体とし、次いで該混合体を金型内へ射出して成形体とし、得られた該成形体を500~600℃かつ1~10hで脱脂した後に1200~1400℃かつ1~10hで焼成する、製造方法により製造することができる。
 本発明に係るセラミック中子の製造方法においては、前記混合物に含むシリカの全量を非結晶性シリカとすることが望ましい。
 また、前記混合物にさらに0.5~35.0質量%のジルコンを含ませることが望ましい。
 また、相対密度を60~80%に焼成することが望ましい。
 また、室温(25℃)における曲げ強度を10MPa以上、1550℃における曲げ強度を5MPa以上に焼成することが望ましい。
 また、前記シリカの全量が、少なくとも粒度50μm以上の粗粒を5~30%質量含み、平均粒径が5~35μmの非結晶性シリカであって、0.1~15.0質量%のアルミナと、0.5~35.0質量%のジルコンを含んでなる混合物を55~75体積%とし、さらに25~45体積%のバインダを混合して混合体とし、次いで該混合体を金型内へ射出して成形体とし、得られた該成形体を500~600℃かつ1~10hで脱脂した後に1200~1400℃かつ1~10hで焼成する、製造方法が好適である。
 また、望ましい前記混合体の金型内への射出圧力は1~200MPaである。
 より望ましい前記混合体の金型内への射出圧力は1~80MPaである。
 本発明によれば、焼成後には室温で取扱うための十分な曲げ強度を有し、鋳造時の高温域、例えばFe基やNi基などの耐熱合金からなる溶融金属の1400℃~1600℃といった温度においても優れた曲げ強度と寸法安定性を有し、さらにはアルカリ水溶液に対して優れた溶出性を有する、セラミック中子を得ることができる。よって、本発明は、中空構造を有する鋳物の製造、例えばNi基耐熱合金などからなるガスタービン用ブレードなどの製造に適用すると優れた鋳造ブレードを製造することができるため、産業の発展に貢献できる技術である。
本発明に係るセラミック中子の一例についての外観を示す図である。
 本発明における重要な特徴は、シリカ成分を主体とするセラミック中子を得るための混合物において、主体となるシリカに、適量のアルミナを加え、同時に、カリウム、ナトリウム、またはその両方を加え、これらの含有量を適正化することにある。具体的には、100質量%中に90質量%以上の非結晶性シリカを含むシリカと、0.1~15.0質量%のアルミナとを含むものに、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%含ませることにある。この構成により、セラミック中子は、焼成後の室温にあっては非結晶性シリカが多く存在するため高い曲げ強度を有し、鋳造時の高温にあっては結晶性シリカが多く存在し、かつカリウムやナトリウムの含有の適正化により液相の生成が抑制されるため高い曲げ強度を有するものとなる。
 以下、本発明に係るセラミック中子について、詳細に説明する。
 本発明に係るセラミック中子は、基本的な組成として、100質量%中に90質量%以上の非結晶性シリカを含むシリカと、0.1~15.0質量%のアルミナとを含む。基本的な組成を上述のシリカとアルミナとを含むものとすることで、優れた耐熱性を有するセラミック中子となるだけでなく、ガスタービン用ブレードなどに多く適用されるNi基耐熱合金系の溶融金属と反応し難く、鋳造時の寸法安定性に優れたセラミック中子となる。
 本発明においてシリカは、上述したように100質量%中に90質量%以上の非結晶性シリカを含むものとする。非結晶性シリカを90質量%以上含むシリカを用いることで、成形体を焼結してセラミック中子に形成するときの焼結性を良好にできる。また、焼成後に室温まで冷却されたセラミック中子は、シリカ成分のうち非結晶性シリカを多く存在させることによって室温での曲げ強度を高くできるため、非結晶性シリカを多く含むことが望ましい。よって、より望ましくはシリカの全量を非結晶性シリカにすることであり、上述した焼結性や室温での曲げ強度の向上に寄与できるなどの利点がある。さらに、別途添加する他のアルミナや、カリウム、ナトリウム、またはその両方の添加量に対して、非結晶性シリカを適正量を存在させることで、セラミック中子の室温(25℃)での曲げ強度を10MPa以上にしやすくなる。
 本発明においてアルミナは、上述したように0.1~15.0質量%含むものとする。この範囲にアルミナの含有量を制御すると、アルミナのもつ耐火性により、セラミック中子の鋳造時すなわち高温域における曲げ強度の向上に寄与でき、また寸法安定性を高めることができる。セラミック中子は、鋳造時の高温に曝されて収縮することによって狙い寸法を外れてしまう場合がある。このため、本発明者は、セラミック中子の寸法安定性をセラミック中子の鋳造温度における収縮率で評価し、理想的には収縮率0%であるが、実用的な収縮率の上限として鋳物の伸びに近い2%が望ましいことを確認した。また、その検討過程において、含有量当たりの収縮率の低減効果としては、アルミナがジルコンよりも7倍程度大きいことがわかった。アルミナやジルコンを多く含むセラミック中子はアルカリ水溶液に対して溶出し難くなることから、本発明においては高温域における収縮率の低減効果がより高いアルミナの含有を必須とする。
 なお、本発明者の研究において、シリカに加えるアルミナが0.1質量%以上である場合は脆性に係る強度や鋳造時の寸法安定性が向上でき、15.0質量%以下である場合はセラミック中子のアルカリ水溶液に対する溶出性が向上できるといった結果を得ている。また、実施例として後述するように、アルミナが0.5質量%で鋳造時収縮率が1.0%、1.5質量%で0.4%になった。このことからして、アルミナを0.5質量%以上としてセラミック中子の収縮率を1.0%以下にすることが望ましい。より望ましくは、アルミナを1.0質量%以上としてセラミック中子の収縮率を0.5%以下にすることである。
 本発明においては、上述したシリカとアルミナを含むものに、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%含ませることが、セラミック中子の高温域の機械的特性の向上のためには特に重要である。セラミック中子に含まれるカリウムやナトリウムの含有量を適正化することによって、得られるセラミック中子が1300℃の温度でも5MPa以上の曲げ強度を有することができる。そして、セラミック中子が、Ni基耐熱合金などの鋳造温度である1400℃~1600℃の高温域であっても、5MPa以上の曲げ強度を維持できるようになる。
 カリウムまたはナトリウムのうち少なくとも1種の含有量が0.1質量%を超えると、カリウムおよび/またはナトリウムとシリカおよび/またはアルミナからなる複合酸化物が粒界に形成されやすく、1000℃を超える温度域になるとそれら複合酸化物が液相を生成するようになる。このため、セラミック中子に有する曲げ強度は、温度の上昇に伴って液相が増していくと次第に低下し、1500℃前後の温度域になると限りなく零に近い値になってしまう。
 上述のようにカリウムやナトリウムは、セラミック中子の高温での曲げ強度の向上の観点から見れば適量を超えて含有しないことが望ましい。しかしながら、前記複合酸化物は焼結体の緻密化を促進するため、セラミック中子の室温における曲げ強度を向上させる。よって、本発明では、カリウムまたはナトリウムのうち少なくとも1種を0.005質量%以上添加すると、前記複合酸化物を生成して焼結助剤としての効果があるため有効である。一方、緻密過ぎる焼結体は溶出性を劣化させるため、カリウムやナトリウムは上述した0.1質量%以下に抑えることが望ましい。
 また、カリウムとナトリウムは、本発明者の研究において、上述した作用効果をほぼ同等に発揮できる元素であることが認められた。よって、本発明のセラミック中子は、カリウムだけを含むことも、ナトリウムだけを含むことも、両方を同時に含むこともでき、すなわちカリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%を含むことが重要になる。
 上述したように本発明のセラミック中子は、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカであって、該シリカ100質量%中に90質量%以上の非結晶性シリカを含んでなる混合物が焼成されたものである。セラミック中子の相対密度は、ハンドリングしやすい室温での曲げ強度をもたせ、かつアルカリ水溶液に対する溶出性をもたせるために、60~80%に調整することが望ましい。
 セラミック中子の相対密度は、機械的強度の向上に限ればより高く、溶出性の向上に限ればより低く、必要に応じて調整することができる。このようにセラミック中子の機械的強度の向上と溶出性の向上は相反する要望事項である。セラミック中子の相対密度は、75~80%であると室温における曲げ強度がより高まり、60~65%であるとアルカリ水溶液に対する溶出性がより高まり、65%~75%であると曲げ強度と溶出性の両方を満足させやすい。なお、セラミック中子の相対密度は、成形体に含むバインダ量、成形体の焼成温度やその保持時間などで調整できる。
 本発明でいう相対密度は、JIS-Z2500で定義される相対密度と同義であって、実態となるセラミック中子の質量をその寸法から求めた体積で除した実態密度と、セラミック中子の焼結組織中においてシリカ(SiO)とアルミナ(Al)がそれぞれ独立して存在しているものと仮定し、これらの理論上の密度を用いて使用原料の配合組成から求めた理論密度との比であり、すなわち実態密度を理論密度で除した値を百分率で表した値である。また、さらにジルコン(ZrSiO)が含まれる場合はこれも独立して存在しているものと仮定する。なお、前記理論密度を求めるにおいて、他に比べると含有量の少ないカリウムやナトリウムは、相対密度に及ぼす影響が無視できると推測されるので考慮していない。
 本発明のセラミック中子は、上述した通り、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物が焼成されてなる。この構成により、室温(25℃)において10MPa以上の曲げ強度を有し、同時に、高温(1550℃)において5MPa以上の曲げ強度を有する、セラミック中子にできる。なお、セラミック中子は、室温で10MPa以上の曲げ強度を有するとハンドリング時やワックス模型を製造する射出成形時に破損し難くなり、高温で5MPa以上の曲げ強度を有すると鋳造での溶湯注入時や溶湯凝固時に変形や破損し難くなる。
 本発明のセラミック中子は、上述したように組成的にシリカ、アルミナ、カリウムまたはナトリウムのうち少なくとも1種からなる混合物からなる構成が基本になる。この構成に対して、上述したようにアルミナほどではないが、セラミック中子の高温域における収縮率の低減効果を有するジルコンを0.5~35.0質量%含有させてもよい。本発明者の研究では、ジルコンをアルミナと適正なバランスで共存させると、両元素がもたらす高温域におけるセラミック中子の収縮率の低減効果が相乗的に向上することがわかった。よって、好ましくはセラミック中子にジルコンを0.5質量%以上含有させると、セラミック中子の高温域における収縮率を1%以下や、さらに0.5%以下に低減しやすくなる。
 このように、本発明に係るセラミック中子にジルコンを含有させることは好ましい。ただし、ジルコンとアルミナの総含有量が50.0質量%を超えると、セラミック中子のアルカリ水溶液に対する溶出性が著しく劣化することがあるため、セラミック中子に含有させるジルコンは35.0質量%以下であることが望ましい。また、セラミック中子に対して、高温域における収縮率を抑えながらもアルカリ水溶液に対する溶出性を高めたい場合は、ジルコンよりも溶出性の劣るアルミナを5.0質量%以下に抑え、ジルコンを10.0質量%以上含ませることが好ましい。
 以下、本発明に係るセラミック中子について、より好適と考える事項を説明する。
 本発明に係るセラミック中子の原料としては、粉末状シリカや粉末状アルミナ、さらに粉末状ジルコンなどが使用できる。なお、粉末状シリカとしては、非結晶性シリカである溶融シリカなどの粉末、結晶性シリカであるクリストバライトなどの粉末、非結晶性シリカ分と結晶性シリカ分が共存するシリカ粉末などが使用できる。また、カリウムやナトリウムとしては、金属単体での使用も可能と考えられるが、水酸化カリウムや水酸化ナトリウムなどの水酸化物での使用が好適である。水酸化物は、安全性や取扱い性が良いことに加え、これらが上述した粉末素材に含まれる場合には、その含有量を考慮して調整できる。また、カリウムおよび/またはナトリウムとシリカおよび/またはアルミナからなる複合酸化物を使用してもよい。
 上述した粉末の平均粒径や粒度のばらつきなどは、セラミック中子に対して所望される諸特性を考慮して選定すればよい。
 例えば、粉末状シリカは、その平均粒径を小さくすると、加熱による結晶化により結晶性シリカ分が生成されやすくなり、セラミック中子の高温での曲げ強度が高まる。一方、セラミック中子に非結晶性シリカ分を多く存在させて室温での曲げ強度を高めるには、平均粒径を大きくする方がよい。よって、このような相反関係を考慮し、粉末状シリカは、平均粒径5~35μmが好ましい。なお、5μm未満では、過剰な結晶化による鋳造時の寸法安定性の劣化や、室温での曲げ強度の低下が懸念される。また、35μmを超えると鋳造時の曲げ強度の低下が懸念される。
 また、シリカ分の全量を非結晶性シリカ分にする場合、少なくとも粒度50μm以上の粗粒を5~30%質量含み、平均粒径が5~35μmである、溶融シリカなどの非結晶性シリカを使用することが好ましい。非結晶性シリカ粉末に対して、粗粒を5質量%以上含ませることにより、セラミック中子は相対密度が過大になり難くなってアルカリ水溶液に対する良好な溶出性を有しやすい。なお、粗粒が30質量%を超えて含まれると、セラミック中子は相対密度が過小になりやすくなって室温での曲げ強度が低下しやすい。
 また、粉末状アルミナの平均粒径は1~5μmが好ましい。粉末状アルミナの平均粒径は、1μm以上であると鋳造時の寸法安定性の向上に寄与するものの、5μmを超えるとセラミック中子の相対密度が過小になりやすくなって室温での曲げ強度が低下しやすい。
 また、粉末状ジルコンを使用する場合、その平均粒径は5~15μmが好ましい。粉末状ジルコンの平均粒径は、5μm以上であると鋳造時の寸法安定性の向上に寄与するものの、15μmを超えるとセラミック中子の相対密度が過小になりやすくなって室温での曲げ強度が低下しやすい。
 なお、本発明でいう平均粒径は、レーザ回折・散乱法粒度分布測定装置(日機装株式会社製粒度分布測定装置マイクロトラックMT3000)を使用して得た値である。具体的には、分散媒中に懸濁された粉末状の試料にレーザ光を当てて得られた光の散乱現象を利用し、散乱光の強度分布を複数の光学検出器で測定して収集された散乱光情報をA/D変換した後、コンピュータによる解析・演算処理によって得られる。粒度分布は、体積基準であって、横軸を粒径、縦軸を頻度あるいは累積として出力され、累積で50%の時の粒径を平均粒径としている。
 また、本発明でいう粒度は、上述の方法で測定された粉末状の個々の粒子の径を意味し、粒径と特段の区別もなく使用される。
 次に、上述した構成を有する本発明に係るセラミック中子の製造方法について、具体例を挙げて詳細に説明する。
 本発明に係るセラミック中子は、混合体製造工程(1)、射出成形体製造工程(2)、脱脂焼成工程(3)を含む製造方法によって製造が可能である。具体的には、混合体製造工程(1)は、0.1~15.0質量%のアルミナ(Al)と、カリウム(K)またはナトリウム(Na)のうち少なくとも1種を0.005~0.1質量%と、残部はシリカ(SiO)であって、該シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物を55~75体積%とし、さらに25~45体積%のバインダを混合して混合体とすることを主とする工程である。
 また、射出成形体製造工程(2)は前記混合体製造工程(1)で得られた前記混合体を金型内へ射出して成形体とすることを主とする工程であり、脱脂焼成工程(3)は、前記射出成形体製造工程(2)で得られた前記成形体を500~600℃かつ1~10hで脱脂した後に、脱脂された当該成形体を1200~1400℃かつ1~10hで焼成することを主とする工程である。
 なお、前記混合体製造工程(1)において、上述したシリカ、アルミナ、カリウムまたはナトリウムのうち少なくとも1種を含んでなる混合物においては、シリカの全量を非結晶性シリカにすることができる。また、前記混合物に対し、さらに0.5~35.0質量%のジルコン(ZrSiO)を含ませることもできる。
 また、前記混合体製造工程(1)において、セラミック中子の相対密度を適正な範囲にするために好適な混合体は、前記混合物を55~75体積%とし、さらに25~45体積%のバインダを混合することで得られる。射出成形にするための流動性を考慮すれば、60~70体積%の前記混合物と30~40体積%のバインダとの組合せによってなる混合体がより好適といえる。このような混合体は、例えば、混合攪拌機を用い、容器内でバインダを溶融させた後にシリカやアルミナやカリウムおよび/またはナトリウムに係る各種の素材を投入し、攪拌羽根を回転することで一様になるまで攪拌する手段や、ボールミル混合、混練等による手段によって得ることができる。
 この場合、シリカ、アルミナ、ジルコンは上述した粉末などの原料を、カリウムやナトリウムは上述した水酸化物などを使用できる。
 また、前記バインダとしては、例えば、パラフィン、スチレン系熱可塑性エラストマー、ポリエチレングリコール、セチルアルコール、ポリプロピレン、ポリスチレン、ポリブチルメタクリレート、エチレン酢酸ビニル共重合体樹脂のうち、いずれか1種以上を使用するのがよい。さらに、成形体の可塑性の向上に寄与するセルロース繊維、ジブチルフタレートなどを混合することも望ましい。
 前記射出成形体製造工程(2)において、混合体をバインダの軟化温度域に保持すると射出が容易となる。この場合、軟化させた混合体の射出圧力としては1~200MPaが好適である。射出圧力が1MPa以上であると、必要量の混合体を金型内に充填できるため不回りといわれる現象が起こり難くなる。しかし、射出圧力が200MPaを超えるようになると、金型の型割部に対する射出された混合体の差し込みが発生しやすくなるためバリのない成形体を形成し難くなる。また、射出圧力1~150MPaであれば、一般に入手しやすい射出成形機を特別の改造を行うことなく使用できると考えられる。
 前記脱脂焼成工程(3)において、成形体を脱脂する際の脱脂温度は、500~600℃が好適である。脱脂温度が500℃以上であると、脱脂すなわちバインダの除去が適正に進行し、成形体中からバインダを十分に除去できる。また、脱脂温度が600℃以下であると、成形体における膨れやクラックなどの欠陥を抑制できる。この場合、脱脂時間を1~10hとすると好適であって、1h以上であるとバインダの除去が十分に進み、また成形体を焼結するための脱脂処理であることから10hを超えて脱脂する必要はない。
 また、成形体を脱脂する際の昇温速度は、0.1℃/h以上であると昇温時間に係って生産性が阻害されず、300℃/h以下であるとバインダの急激な分解による成形体の膨れやクラックなどの欠陥が発生し難い。この点を踏まえ、さらに上述したバインダの軟化や溶融の温度域を考慮し、成形体を脱脂する際の昇温速度は、室温~300℃の温度域では0.1℃~100℃/hからの選定が望ましく、好適は1~10℃/hである。また、300℃を超えて600℃の温度域ではバインダの燃焼によって分解が進むため1~300℃/hからの選定が望ましく、好適は10~200℃/hである。
 前記脱脂焼成工程(3)において、脱脂後の成形体を焼結体に形成する焼成条件は、セラミック中子の相対密度を好適にし、室温域での曲げ強度と1500℃を超える高温域での曲げ強度の両方を同時に向上させるために、重要である。
 焼結組織中に非結晶性シリカ分が多く存在するセラミック中子は、焼成後の室温環境下での曲げ強度は高くなる。一方、焼結組織中に結晶性シリカ分が多く存在するセラミック中子は、室温環境下での曲げ強度は低くなるものの、高温環境下では高い曲げ強度を有することができる。このように、セラミック中子について、室温での曲げ強度を高めることと、高温での曲げ強度を高めることとは、焼結組織の観点からは相反的な関係にあるため、使用するシリカ分の組織や、焼成温度とその保持時間の制御が重要になる。
 そこで、本発明者は、焼成後の室温環境下では非結晶性シリカ分が多く存在する焼結組織になるように、かつ、鋳造時の高温環境下では非結晶性シリカの結晶化が促進されて結晶性シリカ分が多く存在する組織になるように、焼成条件を検討した。具体的には、本発明に係るセラミック中子の焼成温度は、非結晶性シリカが結晶化し始める温度域において制御を適正に行うことが重要になることがわかった。
 上述したことから、本発明に係る製造方法において、脱脂後の成形体の焼成温度は非結晶性シリカ分が結晶化し始めると考えられる1200~1400℃が好適であり、このときの焼成時間はセラミック中子を好適な相対密度60~80%に焼成しやすい1~10hが好適である。焼成温度が1200℃未満であると組織の焼結が不十分になりやすく、1400℃を超えると焼結組織中のクリストバライトなどの結晶性シリカ分の生成が促進されてセラミック中子の室温での曲げ強度が低下することがある。なお、セラミック中子の焼結組織をさらに均一化して曲げ強度を高めるためには、焼成温度は1250℃~1350℃であることが好ましい。
 また、焼成時間については、1h未満であるとセラミック中子全体の組織の焼結が不十分になりやすく、10hを超えると結晶化が促進されるとともに結晶粒が成長してしまい、室温での曲げ強度が低下することがある。また、成形体を焼成する際の昇温速度は1~300℃/hが好適であって、1℃/h以上であると昇温時間に係って生産性が阻害されず、300℃/h以下であると焼結の急激な進行によるクラックなどの欠陥が発生し難い。
 また、成形体を焼成する際の焼成雰囲気は、構成する酸化物の分解を押さえることができる非還元性雰囲気が好適であって、非還元性雰囲気とする場合は空気以外に窒素ガスやアルゴンガスなどの不活性ガスを使用することができる。
 以下、本発明に係るセラミック中子およびその製造方法について、具体的な事例を挙げて説明する。なお、本発明の範囲を以下に述べる実施例に限定するものではない。
(混合体製造工程)
 混合体製造工程では、実施例および比較例ともに同じ素材を使用した。具体的には、シリカとしては、非結晶性シリカ分として粉末状溶融シリカを、結晶性シリカ分として粉末状クリストバライトを使用した。表1に示す粉末状溶融シリカは、粒度50μm以上の粉末(粗粒)を意図的に加えずに平均粒径を19.0μmに調整したものを使用した。また、粉末状クリストバライトは、平均粒径19.0μmに調整したものを使用した。アルミナとしては、粉末状アルミナの平均粒径2.8μmに調整したものを使用した。カリウムまたはナトリウムとしては、上述した粉末状素材における含有量を考慮した上で、不足分を水酸化カリウムまたは水酸化ナトリウムで補填するようにした。また、ジルコンを加える場合は、粉末状ジルコンの平均粒径9.5μmに調整したものを使用した。
 上述した素材を使用した表1および表2に示す組成を有するそれぞれの混合物と、パラフィンおよびスチレン系熱可塑性エラストマーからなるバインダを準備し、前記混合物68体積%に対して前記バインダ32体積%を混合攪拌機を用いて十分に混合し、それぞれの混合体を製造した。
(射出成形体製造工程)
 次いで、前記混合体製造工程で得られたそれぞれの混合体を、製造しようとするセラミック中子の形状に対応する体積220cmのキャビティを含む金型内へ7MPaの圧力を加えて射出し、それぞれの成形体を得た。この工程では、実施例および比較例ともに同様の取扱いとした。
(脱脂焼成工程)
 次いで、前記射出成形体製造工程で得られたそれぞれの成形体を580℃の温度で5h保持し、これにより成形体から概ね脱脂した。このとき、室温~300℃までの昇温速度を3℃/hとし、300℃に達してから580℃に達するまでの昇温速度を50℃/hに制御した。そして、焼成温度まで温度を上げる過程で成形体から完全に脱脂し、さらに表1および表2に示す焼成温度で2h保持した。これによりセラミックスなどを焼成し、実施例1~13および比較例1~4として示すセラミック中子を得た。この工程でも、実施例および比較例ともに同様の取扱いとした。なお、いずれのセラミック中子も、ガスタービン用の中空動翼に対応する図1に示す外観形状を有するように形成した。
 上述した本発明のセラミック中子の製造方法によって製造した、実施例1~13および比較例1~4のセラミック中子を用いて、以下に説明する評価方法により、表1、表2に示す諸特性などを評価した。
(曲げ強度)
 セラミック中子の曲げ強度は、セラミック中子の試験片を製造し、室温域における試験はJIS-R1601に準じ、高温域における試験はJIS-R1604に準じて曲げ試験を行って評価した。曲げ試験では、試験片については、試験片形状:3×4×36mm、支点間距離:30mm、試験速度については、クロスヘッドスピード:0.5mm/分に設定し、室温(25℃)および1550℃について行った。
(寸法安定性)
 セラミック中子の寸法安定性は、セラミック中子の所定箇所の寸法値を熱処理の前後で測定し、その寸法の変化率を百分率で表した鋳造時収縮率で評価した。この場合、セラミック中子に対して施す熱処理は、1550℃の温度で2h保持する処理方法にした。
(アルカリ水溶液に対する溶出性)
 セラミック中子のアルカリ水溶液に対する溶出性の評価は、実際にセラミック中子を用いて鋳型を製造し、該鋳型に金属溶湯を注入して冷却し、セラミック中子を内包したままの鋳型を得て、該鋳型を用いて行った。まず、冷却後の前記鋳型を、0.3MPaとした中で160℃の30%水酸化カリウム水溶液に一定時間(20h)浸漬し、該浸漬後に鋳型内に残るセラミック中子の有無を調べた。そして、この浸漬試験を4回実施し、セラミック中子の完全溶解の可否で評価した。
(破損の有無)
 また、上述した室温域および高温域での曲げ強度、寸法安定性、溶出性の評価過程において、セラミック中子のハンドリング時、射出成型時、鋳造時における破損の有無を、同時に確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す本発明に係るセラミック中子(実施例1~7)は、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部を、シリカ100質量%中に90質量%以上の非結晶性シリカを含むシリカと、および不可避的不純物とで構成されており、室温(25℃)における曲げ強度はいずれも10MPa以上であり、かつ、高温(1550℃)における曲げ強度はいずれも5MPa以上であった。
 よって、表1に示す混合物の構成による本発明に係るセラミック中子は、焼成後に室温で取扱うための十分な曲げ強度を有し、かつ、長時間の鋳造にも耐え得る高い曲げ強度を有していることが確認できた。また、上述した評価過程におけるハンドリング時、射出成型時、鋳造時において、本発明に係るセラミック中子が破損するようなことはなかった。加えて、本発明に係るセラミック中子は、いずれも鋳造後のアルカリ水溶液に対する溶出性が良好であった。また、本発明に係るセラミック中子は、鋳造時収縮率がいずれも1.0%以下であり、高温域の寸法安定性を有することができた。
 一方、カリウムとナトリウムの総量が0.870質量%で多かった比較例1は、高温(1550℃)における曲げ強度が1MPaと低くなり、長時間の鋳造にも耐え得る曲げ強度を得ることができなかった。さらに、比較例1は、鋳造時収縮率が5.5%と大きくなり、高温域での寸法安定性を有することができなかった。また、アルミナを含有しなかった比較例2は、高温(1550℃)における曲げ強度が3MPaと低くなり、長時間の鋳造にも耐え得る曲げ強度を得ることができなかった。さらに、比較例2は、鋳造時収縮率が5.0%と大きくなり、高温域での寸法安定性を有することができなかった。また、全シリカ中の非結晶性シリカ分が78.0質量%で少なかった比較例3は、高温(1550℃)における曲げ強度が3MPaと低くなり、長時間の鋳造にも耐え得る曲げ強度を得ることができなかった。
Figure JPOXMLDOC01-appb-T000002
 表2に示す本発明に係るセラミック中子(実施例8~13)は、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部を、粒度50μm以上の粗粒を5~30%質量含み、平均粒径を5~35μmに調整された非結晶性シリカと、および不可避的不純物とで構成されており、室温(25℃)における曲げ強度はいずれも10MPa以上であり、かつ、高温(1550℃)における曲げ強度はいずれも5MPa以上であった。
 よって、表2に示す混合物の構成による本発明に係るセラミック中子は、焼成後に室温で取扱うための十分な曲げ強度を有し、かつ、長時間の鋳造にも耐え得る高い曲げ強度を有していることが確認できた。また、上述した評価過程におけるハンドリング時、射出成型時、鋳造時において、本発明に係るセラミック中子が破損するようなことはなかった。加えて、本発明に係るセラミック中子は、いずれも鋳造後のアルカリ水溶液に対する溶出性が良好であった。また、本発明に係るセラミック中子は、鋳造時収縮率がいずれも1.0%以下であり、高温域の寸法安定性を有することができた。
 一方、シリカ分が全て非結晶性シリカであっても、粒度50~100μmの粉末(粗粒)が35質量%で多かった比較例4は、高温(1550℃)における曲げ強度が3MPaと低くなり、長時間の鋳造にも耐え得る曲げ強度を得ることができなかった。

Claims (14)

  1.  0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物が焼成されてなることを特徴とするセラミック中子。
  2.  前記シリカの全量が非結晶性シリカであることを特徴とする請求項1に記載のセラミック中子。
  3.  0.5~35.0質量%のジルコンを含むことを特徴とする請求項1または2に記載のセラミック中子。
  4.  相対密度が60~80%に焼成されてなることを特徴とする請求項1乃至3のいずれかに記載のセラミック中子。
  5.  室温(25℃)における曲げ強度が10MPa以上、1550℃における曲げ強度が5MPa以上に焼成されてなる、ことを特徴とする請求項1乃至4のいずれかに記載のセラミック中子。
  6.  前記シリカの全量が、少なくとも粒度50μm以上の粗粒を5~30%質量含み、平均粒径が5~35μmの非結晶性シリカであって、0.1~15.0質量%のアルミナと、0.5~35.0質量%のジルコンとを含んでなる混合物が、相対密度が60~80%、25℃における曲げ強度が10MPa以上、1550℃における曲げ強度が5MPa以上に焼成されてなる、ことを特徴とする請求項1乃至5のいずれかに記載のセラミック中子。
  7.  請求項1乃至6のいずれか1項に記載のセラミック中子の製造方法であって、0.1~15.0質量%のアルミナと、カリウムまたはナトリウムのうち少なくとも1種を0.005~0.1質量%と、残部はシリカおよび不可避的不純物であって、前記シリカ100質量%中には90質量%以上の非結晶性シリカを含んでなる混合物を55~75体積%とし、さらに25~45体積%のバインダを混合して混合体とし、次いで該混合体を金型内へ射出して成形体とし、得られた該成形体を500~600℃かつ1~10hで脱脂した後に1200~1400℃かつ1~10hで焼成することを特徴とするセラミック中子の製造方法。
  8.  前記混合物に含むシリカの全量を非結晶性シリカとすることを特徴とする請求項7に記載のセラミック中子の製造方法。
  9.  前記混合物に0.5~35.0質量%のジルコンを含ませることを特徴とする請求項7または8に記載のセラミック中子の製造方法。
  10.  相対密度を60~80%に焼成することを特徴とする請求項7乃至9のいずれか1項に記載のセラミック中子の製造方法。
  11.  室温(25℃)における曲げ強度を10MPa以上、1550℃における曲げ強度を5MPa以上に焼成する、ことを特徴とする請求項7乃至10のいずれかに記載のセラミック中子の製造方法。
  12.  前記シリカの全量が、少なくとも粒度50μm以上の粗粒を5~30%質量含み、平均粒径が5~35μmの非結晶性シリカであって、0.1~15.0質量%のアルミナと、0.5~35.0質量%のジルコンを含んでなる混合物を55~75体積%とし、さらに25~45体積%のバインダを混合して混合体とし、次いで該混合体を金型内へ射出して成形体とし、得られた該成形体を500~600℃かつ1~10hで脱脂した後に1200~1400℃かつ1~10hで焼成する、ことを特徴とする請求項7乃至11のいずれかに記載のセラミック中子の製造方法。
  13.  前記混合体の金型内への射出圧力は1~200MPaであることを特徴とする請求項7乃至12のいずれかに記載のセラミック中子の製造方法。
  14.  前記混合体の金型内への射出圧力は1~30MPaであることを特徴とする請求項13に記載のセラミック中子の製造方法。
PCT/JP2012/054884 2011-08-03 2012-02-28 セラミック中子およびその製造方法 WO2013018393A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/236,671 US9539639B2 (en) 2011-08-03 2012-02-28 Ceramic core and method for producing same
EP12819690.4A EP2740550B1 (en) 2011-08-03 2012-02-28 Ceramic core and method for producing same
JP2013513468A JP5360633B2 (ja) 2011-08-03 2012-02-28 セラミック中子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011169919 2011-08-03
JP2011-169919 2011-08-03

Publications (1)

Publication Number Publication Date
WO2013018393A1 true WO2013018393A1 (ja) 2013-02-07

Family

ID=47628935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054884 WO2013018393A1 (ja) 2011-08-03 2012-02-28 セラミック中子およびその製造方法

Country Status (4)

Country Link
US (1) US9539639B2 (ja)
EP (1) EP2740550B1 (ja)
JP (1) JP5360633B2 (ja)
WO (1) WO2013018393A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054327A (ja) * 2013-09-10 2015-03-23 日立金属株式会社 セラミック中子およびその製造方法、そのセラミック中子を用いた鋳物の製造方法および鋳物
WO2015122445A1 (ja) * 2014-02-13 2015-08-20 日立金属株式会社 セラミック焼結体の製造方法およびセラミック焼結体
JP2015150574A (ja) * 2014-02-13 2015-08-24 日立金属株式会社 セラミック焼結体の製造方法およびセラミック焼結体
JP2016074571A (ja) * 2014-10-08 2016-05-12 株式会社ノリタケカンパニーリミテド 耐火物とその製造方法
CN113666763A (zh) * 2021-08-23 2021-11-19 深圳市安芯精密组件有限公司 雾化芯结构件及其制备方法
CN116253575A (zh) * 2023-03-21 2023-06-13 东北大学 一种镁铬砂镁基陶瓷型芯及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104086161B (zh) * 2014-04-29 2016-06-01 中国科学院金属研究所 一种可调节热膨胀系数的硅基陶瓷型芯的制备方法
FR3057187B1 (fr) * 2016-10-12 2018-10-19 Safran Aircraft Engines Procede de determination du retrait d'un noyau de fonderie lors d'un traitement thermique du noyau
RU2691435C1 (ru) * 2018-07-23 2019-06-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Смесь для изготовления литейных керамических стержней полых лопаток из жаропрочных сплавов литьем по выплавляемым моделям
CN113354422A (zh) * 2020-03-04 2021-09-07 中国科学院金属研究所 一种用于单晶高温合金叶片的陶瓷型芯及其制备方法
KR102411137B1 (ko) * 2020-12-11 2022-06-20 한국로스트왁스 주식회사 강도 및 리칭성이 우수한 세라믹 코어 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093017A (en) 1975-12-29 1978-06-06 Sherwood Refractories, Inc. Cores for investment casting process
EP0179649A2 (en) 1984-10-24 1986-04-30 Fairey Industrial Ceramics Limited Ceramic materials
JPS63268536A (ja) * 1987-02-24 1988-11-07 ユナイテッド・テクノロジーズ・コーポレイション 中子成型組成物
JPH01245941A (ja) 1988-02-10 1989-10-02 Soc Natl Etud Constr Mot Aviat <Snecma> 鋳造中子の製造方法
JPH05200479A (ja) * 1992-01-23 1993-08-10 Kawasaki Refract Co Ltd 精密鋳造用セラミック中子
JPH07232967A (ja) * 1993-12-28 1995-09-05 Kiyadeitsuku Technol Service:Kk 耐火物成形品の製造方法および耐火物成形品用バインダ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236568A (en) 1978-12-04 1980-12-02 Sherwood Refractories, Inc. Method of casting steel and iron alloys with precision cristobalite cores
US4583581A (en) * 1984-05-17 1986-04-22 Trw Inc. Core material and method of forming cores
US5389582A (en) 1985-11-06 1995-02-14 Loxley; Ted A. Cristobalite reinforcement of quartz glass
GB8723582D0 (en) 1987-10-07 1987-11-11 Ae Turbine Components Foundry core material
US4989664A (en) 1988-07-07 1991-02-05 United Technologies Corporation Core molding composition
DE102006049379A1 (de) 2006-10-19 2008-04-24 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093017A (en) 1975-12-29 1978-06-06 Sherwood Refractories, Inc. Cores for investment casting process
EP0179649A2 (en) 1984-10-24 1986-04-30 Fairey Industrial Ceramics Limited Ceramic materials
JPS63268536A (ja) * 1987-02-24 1988-11-07 ユナイテッド・テクノロジーズ・コーポレイション 中子成型組成物
JPH01245941A (ja) 1988-02-10 1989-10-02 Soc Natl Etud Constr Mot Aviat <Snecma> 鋳造中子の製造方法
JPH05200479A (ja) * 1992-01-23 1993-08-10 Kawasaki Refract Co Ltd 精密鋳造用セラミック中子
JPH07232967A (ja) * 1993-12-28 1995-09-05 Kiyadeitsuku Technol Service:Kk 耐火物成形品の製造方法および耐火物成形品用バインダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740550A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054327A (ja) * 2013-09-10 2015-03-23 日立金属株式会社 セラミック中子およびその製造方法、そのセラミック中子を用いた鋳物の製造方法および鋳物
US9839957B2 (en) 2013-09-10 2017-12-12 Hitachi Metals, Ltd. Ceramic core, manufacturing method for the same, manufacturing method for casting using the ceramic core, and casting manufactured by the method
WO2015122445A1 (ja) * 2014-02-13 2015-08-20 日立金属株式会社 セラミック焼結体の製造方法およびセラミック焼結体
JP2015150574A (ja) * 2014-02-13 2015-08-24 日立金属株式会社 セラミック焼結体の製造方法およびセラミック焼結体
US10040116B2 (en) 2014-02-13 2018-08-07 Hitachi Metals, Ltd. Method of manufacturing ceramic sintered body and ceramic sintered body
JP2016074571A (ja) * 2014-10-08 2016-05-12 株式会社ノリタケカンパニーリミテド 耐火物とその製造方法
CN113666763A (zh) * 2021-08-23 2021-11-19 深圳市安芯精密组件有限公司 雾化芯结构件及其制备方法
CN113666763B (zh) * 2021-08-23 2023-06-23 深圳市安芯精密组件有限公司 雾化芯结构件及其制备方法
CN116253575A (zh) * 2023-03-21 2023-06-13 东北大学 一种镁铬砂镁基陶瓷型芯及其制备方法

Also Published As

Publication number Publication date
EP2740550A4 (en) 2015-05-27
JPWO2013018393A1 (ja) 2015-03-05
EP2740550A1 (en) 2014-06-11
EP2740550B1 (en) 2016-07-20
JP5360633B2 (ja) 2013-12-04
US9539639B2 (en) 2017-01-10
US20150321247A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5360633B2 (ja) セラミック中子およびその製造方法
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
KR102249919B1 (ko) 열팽창 계수 조절이 가능한 실리카계 세라믹 코어의 제조방법
CN105563616B (zh) 氧化锆陶瓷制品的成型方法
Gromada et al. Ceramic cores for turbine blades via injection moulding
KR20160010865A (ko) 블랭크의 제조방법 및 블랭크
CN105732014A (zh) 一种硅基陶瓷型芯制备方法
JP5696933B2 (ja) セラミック中子およびその製造方法
TW201529524A (zh) 耐火物件及使用耐火物件形成玻璃板之方法
JP5774135B2 (ja) ドープされた酸化クロムに基づく焼結物質
CN104043770B (zh) 一种烧结陶瓷型芯用填料粉
CN104308155A (zh) 一种粉末微注射成形制造微阵列的方法
CN105803255A (zh) 一种高铌钛铝基增压器涡轮及其制造方法
JP5925411B2 (ja) 鋳造プロセス及びそのためのイットリア含有フェースコート材料
US9839957B2 (en) Ceramic core, manufacturing method for the same, manufacturing method for casting using the ceramic core, and casting manufactured by the method
JP2013071169A (ja) 精密鋳造用セラミック中子と、その製造方法
KR101763122B1 (ko) 세라믹 코어의 제조방법, 이에 의해 제조된 세라믹 코어, 정밀주조 방법 및 이에 따라 제조된 정밀주조 제품
JP2013094841A (ja) ガスタービン翼の冷却通路形成用セラミック中子
KR102411137B1 (ko) 강도 및 리칭성이 우수한 세라믹 코어 및 이의 제조 방법
CN107824741B (zh) 一种陶瓷型芯烧结用组合填料及其应用方法
CN112191802A (zh) 一种Nb-Si基超高温合金定向凝固叶片模拟件的制备方法
RU2691435C1 (ru) Смесь для изготовления литейных керамических стержней полых лопаток из жаропрочных сплавов литьем по выплавляемым моделям
JP6374752B2 (ja) 耐火物とその製造方法
CN104649685B (zh) 一种陶瓷型芯注射成型用增塑剂及其制备方法
CN115108818B (zh) 一种低收缩低挠度硅基陶瓷型芯的原料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513468

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819690

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012819690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012819690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236671

Country of ref document: US