CN106007758A - 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法 - Google Patents

增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN106007758A
CN106007758A CN201610261757.5A CN201610261757A CN106007758A CN 106007758 A CN106007758 A CN 106007758A CN 201610261757 A CN201610261757 A CN 201610261757A CN 106007758 A CN106007758 A CN 106007758A
Authority
CN
China
Prior art keywords
powder
fiber
silicon carbide
silicon nitride
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610261757.5A
Other languages
English (en)
Inventor
冯万春
马俊
沈中新
张野
赵世新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HULUDAO HUANENG INDUSTRIAL CERAMIC CO LTD
Original Assignee
HULUDAO HUANENG INDUSTRIAL CERAMIC CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HULUDAO HUANENG INDUSTRIAL CERAMIC CO LTD filed Critical HULUDAO HUANENG INDUSTRIAL CERAMIC CO LTD
Priority to CN201610261757.5A priority Critical patent/CN106007758A/zh
Publication of CN106007758A publication Critical patent/CN106007758A/zh
Pending legal-status Critical Current

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Abstract

增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法,本发明属于复合材料技术领域,它为了解决氮化硅/碳化硅陶瓷复合材料的机械强度较低的问题。此陶瓷复合材料由硅粉、10~20目的碳化硅粗粉、80~100目的碳化硅细粉、有机短纤维、耐热金属纤维、结合剂和催化剂粉制成。制备方法:一、配置原料;二、将硅粉、催化剂粉和碳化硅细粉混合球磨;三、将结合剂、耐热金属纤维、有机短纤维和碳化硅粗粉混合球磨;四、混炼成型;五、对成型坯体进行干燥;六、分段升温烧结。本发明通过催化剂粉加快硅粉的氮化反应,并加入耐热金属纤维和有机纤维,起到增强增韧的作用,提高了碳化硅陶瓷复合材料的机械强度。

Description

增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种氮化硅结合碳化硅陶瓷复合材料及其制备方法。
背景技术
氮化硅结合碳化硅陶瓷材料是离子键和共价键晶粒构成的多晶材料,反应烧结的氮化硅/碳化硅陶瓷复合材料由于其是通过硅粉和氮气反应生成氮化硅来结合碳化硅颗粒,因此它难于致密化,气孔率约为10%~25%,抗弯强度低,抵抗裂纹孪生和发展的能力小,导致了其脆性本性,碳化硅陶瓷材料脆性大,对内部缺陷敏感,裂纹一经产生往往会迅速扩展,使该复合材料呈现无预兆的灾难性突然断裂,因此作为工程材料在应用中受到很大限制。
氮化硅结合碳化硅陶瓷主要应用于火力发电燃烧器过流部件,其耐磨性能、耐氧化性能、耐热震稳定性都能满足工况要求,但缺点是强度低,容易产生断裂。
发明内容
本发明的目的是为了解决氮化硅/碳化硅陶瓷复合材料的机械强度较低的问题,而提供增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法。
本发明增韧的氮化硅结合碳化硅陶瓷复合材料按重量份数由13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉制成;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维(UHMWPE纤维)、聚对苯撑苯并双噁唑纤维(PBO纤维)、聚对苯并咪唑纤维(PBI纤维)、聚苯撑吡啶并二咪唑纤维(M5纤维)、聚酰亚胺纤维(PI纤维)中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
本发明增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法按下列步骤实现:
一、按重量份数称取13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉作为原料;
二、采用干法球磨将原料中的硅粉和催化剂粉球磨0.5~2小时,再加入碳化硅细粉继续球磨处理,得到混合细粉料;
三、将原料中的结合剂、耐热金属纤维和有机短纤维加入到碳化硅粗粉中,搅拌混合均匀,得到润湿后的碳化硅颗粒料;
四、将步骤二得到的混合细粉料加入到润湿后的碳化硅颗粒料中进行混炼,混炼后的物料装入成型模具中成型得到坯体,坯体进行冷等静压处理后拆除模具,得到成型坯体;
五、在50~60℃的温度下对成型坯体干燥1~3小时,然后在90~100℃的条件下干燥2~4小时,得到烧结前坯体;
六、将烧结前坯体置于管式电烧结炉内,抽真空后充入氮气,在氮气气氛下,先以2~10℃/min的升温速率升至1150~1200℃,保温0.5~2小时,再以2~5℃/min的升温速率升至1280~1300℃,保温0.5~2小时,最后以2~5℃/min的升温速率升至1320~1380℃,保温2~15小时,在氮气气氛下随炉自然冷却至室温,得到增韧的氮化硅结合碳化硅陶瓷复合材料;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维(UHMWPE纤维)、聚对苯撑苯并双噁唑纤维(PBO纤维)、聚对苯并咪唑纤维(PBI纤维)、聚苯撑吡啶并二咪唑纤维(M5纤维)、聚酰亚胺纤维(PI纤维)中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
本发明增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法与现有技术相比具有以下积极效果:
1、本发明由于加入了0.5%~0.8%固态金属氧化物Fe2O3粉、BaF2粉和CaF2粉,催化剂粉能使硅粉表面的氧化膜破裂,在1300~1380℃时转化为氮化硅的速度提高5~10倍,促进硅粉的氮化反应。
2、本发明采用分段升温工艺,即在某一温度阶段保温一段时间。因为氮化反应为放热反应,采用分段升温工艺目的是控制反应温度,防止温度过高导致坯体中的硅熔化,出现流硅现象,同时有利于纤维状α相氮化硅的形成,纤维状α相氮化硅有利于提高材料的强度和断裂韧性。
3、本发明加入了耐热金属纤维和有机纤维,在氮气保护气氛下,烧结后有机纤维转变为碳纤维,耐热金属纤维、碳纤维与氮化硅结合碳化硅复相耐高温耐磨材料充分结合,起到增强增韧的作用。
附图说明
图1为实施例一得到的增韧的氮化硅结合碳化硅陶瓷复合材料断面的SEM图,其中1代表氮化硅相,2代表碳化硅相;
图2是图1所述增韧的氮化硅结合碳化硅陶瓷复合材料中纤维的SEM图,其中3代表金属短纤维,4代表纤维状氮化硅;
图3是实施例硅的氮化率-氮化温度的曲线图;
图4是实施例氮化硅结合碳化硅烧结温度-时间曲线图。
具体实施方式
具体实施方式一:本实施方式增韧的氮化硅结合碳化硅陶瓷复合材料按重量份数由13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉制成;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维(UHMWPE纤维)、聚对苯撑苯并双噁唑纤维(PBO纤维)、聚对苯并咪唑纤维(PBI纤维)、聚苯撑吡啶并二咪唑纤维(M5纤维)、聚酰亚胺纤维(PI纤维)中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
本实施方式通过在陶瓷材料中加入纤维增韧,提高陶瓷材料的韧性,避免使用过程中断裂的发生。同时该氮化硅/碳化硅陶瓷复合材料的耐磨性良好、耐化学腐蚀性强、机械强度高,使用温度达1000℃以上,有利于制备复杂形状的陶瓷构件,可应用于火力发电燃烧器过流部件及设备表面耐磨材料。
具体实施方式二:本实施方式与具体实施方式一不同的是所述的耐热金属纤维为310s、446、304纤维的一种或几种混合纤维。
具体实施方式三:本实施方式与具体实施方式一或二不同的是所述催化剂粉的粒径小于10μm。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是所述结合剂为质量百分含量为35%的工业糊精水溶液、质量百分含量为35%的木质素磺酸钙水溶液或质量百分含量为10%的聚乙烯醇水溶液。
具体实施方式五:本实施方式增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法按下列步骤实施:
一、按重量份数称取13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉作为原料;
二、采用干法球磨将原料中的硅粉和催化剂粉球磨0.5~2小时,再加入碳化硅细粉继续球磨处理,得到混合细粉料;
三、将原料中的结合剂、耐热金属纤维和有机短纤维加入到碳化硅粗粉中,搅拌混合均匀,得到润湿后的碳化硅颗粒料;
四、将步骤二得到的混合细粉料加入到润湿后的碳化硅颗粒料中进行混炼,混炼后的物料装入成型模具中成型得到坯体,坯体进行冷等静压处理后拆除模具,得到成型坯体;
五、在50~60℃的温度下对成型坯体干燥1~3小时,然后在90~100℃的条件下干燥2~4小时,得到烧结前坯体;
六、将烧结前坯体置于管式电烧结炉内,抽真空后充入氮气,在氮气气氛下,先以2~10℃/min的升温速率升至1150~1200℃,保温0.5~2小时,再以2~5℃/min的升温速率升至1280~1300℃,保温0.5~2小时,最后以2~5℃/min的升温速率升至1320~1380℃,保温2~15小时,在氮气气氛下随炉自然冷却至室温,得到增韧的氮化硅结合碳化硅陶瓷复合材料;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维(UHMWPE纤维)、聚对苯撑苯并双噁唑纤维(PBO纤维)、聚对苯并咪唑纤维(PBI纤维)、聚苯撑吡啶并二咪唑纤维(M5纤维)、聚酰亚胺纤维(PI纤维)中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
本实施方式当有机短纤维和催化剂为混合物时,可按任意比混合。
具体实施方式六:本实施方式与具体实施方式五不同的是步骤一中硅粉的粒度为100~120目。其它步骤及参数与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式五或六不同的是步骤一中有机短纤维的长度为1~3mm。其它步骤及参数与具体实施方式五或六相同。
具体实施方式八:本实施方式与具体实施方式五至七之一不同的是步骤四混炼后的物料装入成型模具中通过捣打或机压成型。其它步骤及参数与具体实施方式五至七之一相同。
具体实施方式九:本实施方式与具体实施方式五至八之一不同的是步骤四坯体在压力为100~300MPa的条件下进行冷等静压处理。其它步骤及参数与具体实施方式五至八之一相同。
具体实施方式十:本实施方式与具体实施方式五至九之一不同的是步骤六抽真空至真空度≤133Pa。其它步骤及参数与具体实施方式五至九之一相同。
实施例一:本实施例增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法按下列步骤实施:
一、按重量份数称取20份的硅粉、40份粒度为10~20目的碳化硅粗粉、15份粒度为80~100目的碳化硅细粉、1.0份的由涤纶、腈纶和聚乙烯纤维组成的混合有机短纤维、1份由310s和304组成的耐热金属纤维、5份的质量百分含量为35%的木质素磺酸钙水溶液结合剂和0.6份的催化剂粉作为原料;
二、采用干法球磨将原料中的硅粉和催化剂粉球磨1小时,再加入碳化硅细粉继续球磨1小时,得到混合细粉料;
三、将原料中的结合剂、耐热金属纤维和有机短纤维加入到碳化硅粗粉中,搅拌混合均匀,得到润湿后的碳化硅颗粒料;
四、将步骤二得到的混合细粉料加入到润湿后的碳化硅颗粒料中进行混炼1小时,混炼后的物料装入成型模具中成型得到坯体,坯体以200MPa的压力冷等静压处理后拆除模具,得到成型坯体(成型坯体的尺寸为500×300×25);
五、在50℃的温度下对成型坯体干燥2小时,然后在100℃的条件下干燥3小时,得到烧结前坯体;
六、将烧结前坯体置于管式电烧结炉内,抽真空后充入氮气,在氮气气氛下,先以5℃/min的升温速率升至1200℃,保温1小时,再以5℃/min的升温速率升至1280℃,保温1小时,最后以5℃/min的升温速率升至1350℃,保温5小时,在氮气气氛下随炉自然冷却至室温,得到增韧的氮化硅结合碳化硅陶瓷复合材料。
本实施例中的催化剂粉由Fe2O3粉、BaF2粉和CaF2粉混合而成。
图1为本实施例氮化硅结合碳化硅复相耐高温材料断面的SEM图,图2是图1所述氮化硅结合碳化硅复相耐高温材料中纤维的SEM图。从图1和图2可知,在Si3N4结合SiC复相耐高温材料的显微结构中,存在着大量的纤维组织,SiC颗粒被Si3N4基质包裹,烧结后的纤维状氮化硅及金属纤维形成网状编织结构,穿插于SiC颗粒之间,从而使复合材料的力学性能大大提高。图3是硅的氮化率-氮化温度的曲线图;图4是实施例氮化硅结合碳化硅烧结温度-时间的曲线图。
本实施例制得的氮化硅结合碳化硅复相耐高温材料的显气孔率为16.5%~17.5%,体积密度为2.70~2.80g/cm3,常温抗折强度为65~75MPa,耐压强度为230~250MPa。本发明提高了所制备的氮化硅结合碳化硅复相耐高温材料的纯度、抗热震性和抗侵蚀性,延长了制品的使用寿命。

Claims (10)

1.增韧的氮化硅结合碳化硅陶瓷复合材料,其特征在于该增韧的氮化硅结合碳化硅陶瓷复合材料按重量份数由13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉制成;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维、聚对苯撑苯并双噁唑纤维、聚对苯并咪唑纤维、聚苯撑吡啶并二咪唑纤维、聚酰亚胺纤维中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
2.根据权利要求1所述的增韧的氮化硅结合碳化硅陶瓷复合材料,其特征在于所述的耐热金属纤维为310s、446、304纤维的一种或多种混合纤维。
3.根据权利要求1所述的增韧的氮化硅结合碳化硅陶瓷复合材料,其特征在于所述催化剂粉的粒径小于10μm。
4.根据权利要求1所述的增韧的氮化硅结合碳化硅陶瓷复合材料,其特征在于所述结合剂为质量百分含量为35%的工业糊精水溶液、质量百分含量为35%的木质素磺酸钙水溶液或质量百分含量为10%的聚乙烯醇水溶液。
5.增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于是按下列步骤实现:
一、按重量份数称取13~22份的硅粉、35~50份粒度为10~20目的碳化硅粗粉、10~20份粒度为80~100目的碳化硅细粉、0.5~1.0份的有机短纤维、0.8~1.2份耐热金属纤维、3~8份的结合剂和0.5~0.8份的催化剂粉作为原料;
二、采用干法球磨将原料中的硅粉和催化剂粉球磨0.5~2小时,再加入碳化硅细粉继续球磨处理,得到混合细粉料;
三、将原料中的结合剂、耐热金属纤维和有机短纤维加入到碳化硅粗粉中,搅拌混合均匀,得到润湿后的碳化硅颗粒料;
四、将步骤二得到的混合细粉料加入到润湿后的碳化硅颗粒料中进行混炼,混炼后的物料装入成型模具中成型得到坯体,坯体进行冷等静压处理后拆除模具,得到成型坯体;
五、在50~60℃的温度下对成型坯体干燥1~3小时,然后在90~100℃的条件下干燥2~4小时,得到烧结前坯体;
六、将烧结前坯体置于管式电烧结炉内,抽真空后充入氮气,在氮气气氛下,先以2~10℃/min的升温速率升至1150~1200℃,保温0.5~2小时,再以2~5℃/min的升温速率升至1280~1300℃,保温0.5~2小时,最后以2~5℃/min的升温速率升至1320~1380℃,保温2~15小时,在氮气气氛下随炉自然冷却至室温,得到增韧的氮化硅结合碳化硅陶瓷复合材料;
其中所述的有机短纤维为涤纶、腈纶、锦纶、丙纶、芳纶、聚乙烯纤维、聚对苯撑苯并双噁唑纤维、聚对苯并咪唑纤维、聚苯撑吡啶并二咪唑纤维、聚酰亚胺纤维中的一种或多种混合纤维;
所述的催化剂为Fe2O3粉、BaF2粉、CaF2粉中的一种或多种混合粉末。
6.根据权利要求5所述的增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于步骤一中硅粉的粒度为100~120目。
7.根据权利要求5所述的增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于步骤一中有机短纤维的长度为1~3mm。
8.根据权利要求5所述的增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于步骤四混炼后的物料装入成型模具中通过捣打或机压成型。
9.根据权利要求5所述的增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于步骤四坯体在压力为100~300MPa的条件下进行冷等静压处理。
10.根据权利要求5所述的增韧的氮化硅结合碳化硅陶瓷复合材料的制备方法,其特征在于步骤六抽真空至真空度≤133Pa。
CN201610261757.5A 2016-04-22 2016-04-22 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法 Pending CN106007758A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610261757.5A CN106007758A (zh) 2016-04-22 2016-04-22 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610261757.5A CN106007758A (zh) 2016-04-22 2016-04-22 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106007758A true CN106007758A (zh) 2016-10-12

Family

ID=57081051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610261757.5A Pending CN106007758A (zh) 2016-04-22 2016-04-22 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106007758A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747546A (zh) * 2016-12-04 2017-05-31 淄博精诚专利信息咨询有限公司 一种高强高韧陶瓷复合材料及其应用
CN108546088A (zh) * 2018-07-03 2018-09-18 合肥连森裕腾新材料科技开发有限公司 一种耐磨损陶瓷基复合材料及其制备方法
CN108774717A (zh) * 2018-07-03 2018-11-09 合肥连森裕腾新材料科技开发有限公司 一种耐腐蚀陶瓷基复合材料及其制备方法
CN108796401A (zh) * 2018-07-03 2018-11-13 合肥连森裕腾新材料科技开发有限公司 一种耐高温陶瓷基复合材料及其制备方法
CN109133958A (zh) * 2018-08-27 2019-01-04 河南海格尔高温材料有限公司 一种原位定向非氧化物增强碳化硅砖及其制备方法
CN111925219A (zh) * 2020-05-29 2020-11-13 朝阳燕山湖发电有限公司 用于旋流燃烧器的无机纤维补强氮化硅陶瓷的制备方法
CN113117716A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 用于生物焦油裂解催化剂载体、催化剂及制法
CN113117710A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 生物质热解用催化剂载体、催化剂及其制法
CN113117715A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种焦油裂解用催化剂载体、催化剂及其制法
CN113117711A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种生物焦油裂解催化剂载体、催化剂及其制法
CN113956607A (zh) * 2021-10-07 2022-01-21 惠州市纵胜电子材料有限公司 一种基于玻璃纤维布增强的透明模压板及其加工工艺
CN114853500A (zh) * 2022-04-29 2022-08-05 中国科学院上海硅酸盐研究所 一种氮化硅结合碳化硅复相陶瓷及其制备方法与应用
CN115594511A (zh) * 2022-11-03 2023-01-13 江苏省陶瓷研究所有限公司(Cn) 一种反应烧结制备氮化硅陶瓷的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131134A (zh) * 1995-03-10 1996-09-18 薛天瑞 一种生产高强度氮化硅结合碳化硅制品的方法
CN1849276A (zh) * 2003-09-09 2006-10-18 日本碍子株式会社 氮化硅结合SiC耐火材料及其制造方法
US20080008894A1 (en) * 2006-07-06 2008-01-10 Siemens Power Generation, Inc. Rapid prototyping of ceramic articles
CN102131748A (zh) * 2008-08-27 2011-07-20 三井金属矿业株式会社 氮化硅结合SiC耐火材料的制造方法
CN103896593A (zh) * 2014-03-05 2014-07-02 武汉科技大学 一种氮化硅结合碳化硅复相耐高温材料及其制备方法
CN104630664A (zh) * 2015-02-25 2015-05-20 中国地质大学(北京) 一种新型碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
CN104987097A (zh) * 2015-07-30 2015-10-21 武汉科技大学 一种氮化硅结合碳化硅耐火材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131134A (zh) * 1995-03-10 1996-09-18 薛天瑞 一种生产高强度氮化硅结合碳化硅制品的方法
CN1849276A (zh) * 2003-09-09 2006-10-18 日本碍子株式会社 氮化硅结合SiC耐火材料及其制造方法
US20080008894A1 (en) * 2006-07-06 2008-01-10 Siemens Power Generation, Inc. Rapid prototyping of ceramic articles
CN102131748A (zh) * 2008-08-27 2011-07-20 三井金属矿业株式会社 氮化硅结合SiC耐火材料的制造方法
CN103896593A (zh) * 2014-03-05 2014-07-02 武汉科技大学 一种氮化硅结合碳化硅复相耐高温材料及其制备方法
CN104630664A (zh) * 2015-02-25 2015-05-20 中国地质大学(北京) 一种新型碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
CN104987097A (zh) * 2015-07-30 2015-10-21 武汉科技大学 一种氮化硅结合碳化硅耐火材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
穆柏春等: "钢纤维及化学镀镍增强Al2O3-SiO2基陶瓷的研究", 《中国陶瓷》 *
郑昌琼等: "《简明材料词典》", 30 April 2002, 科学出版社 *
郭瑞松等: "《工程结构陶瓷》", 30 September 2002, 天津大学出版社 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747546A (zh) * 2016-12-04 2017-05-31 淄博精诚专利信息咨询有限公司 一种高强高韧陶瓷复合材料及其应用
CN108546088A (zh) * 2018-07-03 2018-09-18 合肥连森裕腾新材料科技开发有限公司 一种耐磨损陶瓷基复合材料及其制备方法
CN108774717A (zh) * 2018-07-03 2018-11-09 合肥连森裕腾新材料科技开发有限公司 一种耐腐蚀陶瓷基复合材料及其制备方法
CN108796401A (zh) * 2018-07-03 2018-11-13 合肥连森裕腾新材料科技开发有限公司 一种耐高温陶瓷基复合材料及其制备方法
CN109133958B (zh) * 2018-08-27 2021-01-01 河南海格尔高温材料有限公司 一种原位定向非氧化物增强碳化硅砖及其制备方法
CN109133958A (zh) * 2018-08-27 2019-01-04 河南海格尔高温材料有限公司 一种原位定向非氧化物增强碳化硅砖及其制备方法
CN113117710A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 生物质热解用催化剂载体、催化剂及其制法
CN113117716A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 用于生物焦油裂解催化剂载体、催化剂及制法
CN113117715A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种焦油裂解用催化剂载体、催化剂及其制法
CN113117711A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种生物焦油裂解催化剂载体、催化剂及其制法
CN113117711B (zh) * 2019-12-31 2023-05-05 中国石油化工股份有限公司 一种生物焦油裂解催化剂载体、催化剂及其制法
CN113117710B (zh) * 2019-12-31 2023-05-05 中国石油化工股份有限公司 生物质热解用催化剂载体、催化剂及其制法
CN113117716B (zh) * 2019-12-31 2023-05-05 中国石油化工股份有限公司 用于生物焦油裂解催化剂载体、催化剂及制法
CN113117715B (zh) * 2019-12-31 2023-05-05 中国石油化工股份有限公司 一种焦油裂解用催化剂载体、催化剂及其制法
CN111925219A (zh) * 2020-05-29 2020-11-13 朝阳燕山湖发电有限公司 用于旋流燃烧器的无机纤维补强氮化硅陶瓷的制备方法
CN113956607A (zh) * 2021-10-07 2022-01-21 惠州市纵胜电子材料有限公司 一种基于玻璃纤维布增强的透明模压板及其加工工艺
CN113956607B (zh) * 2021-10-07 2022-07-08 惠州市纵胜电子材料有限公司 一种基于玻璃纤维布增强的透明模压板及其加工工艺
CN114853500A (zh) * 2022-04-29 2022-08-05 中国科学院上海硅酸盐研究所 一种氮化硅结合碳化硅复相陶瓷及其制备方法与应用
CN115594511A (zh) * 2022-11-03 2023-01-13 江苏省陶瓷研究所有限公司(Cn) 一种反应烧结制备氮化硅陶瓷的方法

Similar Documents

Publication Publication Date Title
CN106007758A (zh) 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN105541334B (zh) 多层孔筋结构的碳化硅基复合泡沫陶瓷及其制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN103724034B (zh) 一种碳化硅晶须增强氮化硅陶瓷复合材料及其制备方法
CN105503227B (zh) 一种立体织物增强碳化硅‑金刚石复合材料的制备方法
CN104371648B (zh) 一种石墨烯改性的摩擦材料的制备方法
RU2744543C1 (ru) Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния
CN102184873B (zh) 一种快速制备金刚石-碳化硅电子封装材料的方法
Chen et al. Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration
CN106966741B (zh) 碳纤维增强碳-碳化硅双基体复合材料的制备方法
Chen et al. Preparation of AlN ceramic bonded carbon by gelcasting and spark plasma sintering
CN106800420A (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN102260092A (zh) 一种多孔碳化硅陶瓷材料的制备方法
CN107311634A (zh) 一种氮化物结合三明治承烧板及其制备方法
CN106882976B (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
CN105084900B (zh) 碳化硅陶瓷材料的制备方法
CN101423412B (zh) 低温烧成制备高性能氧化硅结合碳化硅耐火材料的方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN103820691A (zh) 一种FeAl/TiC复合材料的常压烧结制备方法
CN104326752A (zh) 一种SiC陶瓷的低温常压液相烧结制备方法
CN104446459B (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
JP2008247716A (ja) 反応焼結窒化ケイ素基焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012

RJ01 Rejection of invention patent application after publication