CN102260092A - 一种多孔碳化硅陶瓷材料的制备方法 - Google Patents

一种多孔碳化硅陶瓷材料的制备方法 Download PDF

Info

Publication number
CN102260092A
CN102260092A CN2011101593458A CN201110159345A CN102260092A CN 102260092 A CN102260092 A CN 102260092A CN 2011101593458 A CN2011101593458 A CN 2011101593458A CN 201110159345 A CN201110159345 A CN 201110159345A CN 102260092 A CN102260092 A CN 102260092A
Authority
CN
China
Prior art keywords
silicon carbide
porous silicon
carbide ceramic
preparation methods
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101593458A
Other languages
English (en)
Inventor
左开慧
曾宇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN2011101593458A priority Critical patent/CN102260092A/zh
Publication of CN102260092A publication Critical patent/CN102260092A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明公开了一种多孔碳化硅陶瓷材料的制备方法,其包括:a)将SiC粉体、烧结助剂和分散剂加入到水中,制备固含量为10~60wt%的陶瓷水基浆料;b)将浆料浇注到模具中,在-200~0℃冷冻成素坯;c)将冷冻的素坯于-60~80℃及5~600Pa的环境下干燥4~48小时,得到多孔素坯;d)将得到的多孔素坯进行高温固相烧结。本发明利用冷冻干燥和高温固相烧结技术的结合,制备出了一种能够使用于高于1500℃的高温环境中的多孔碳化硅陶瓷材料,并且,通过调节浆料的固含量、浆料中添加的有机聚合物的含量及固相烧结温度,可得到不同气孔率和强度的多孔SiC陶瓷材料,可满足SiC陶瓷在不同领域的应用要求。

Description

一种多孔碳化硅陶瓷材料的制备方法
技术领域
本发明涉及一种多孔碳化硅陶瓷材料的制备方法,具体说,是涉及一种能够使用于高于1500℃的环境中的多孔碳化硅陶瓷材料的制备方法,属于陶瓷材料技术领域。
背景技术
一些高性能结构陶瓷材料由于具有很好的高温力学性能及耐腐蚀性,因此能在高温环境中使用,例如,作为过滤元件以及火箭喷管和高温燃气叶片等。作为高温环境中使用的陶瓷部件,通常在氧化或腐蚀性气氛中使用,而且还要承受频繁的机械冲击和热冲击,因此高温环境中使用的元器件需要具有很高的稳定性和可靠性。多孔碳化硅陶瓷具有化学稳定性高、耐酸碱以及较高的高温强度和抗热冲击能力,因此被认为是在强腐蚀性介质、高温等一些苛刻领域应用的最佳候选材料之一。
目前,制备多孔碳化硅的方法有很多种。例如:中国专利(申请号为200410067101.7)公开了一种低温烧结制备高耐火度网眼碳化硅陶瓷的制备方法,该专利利用MgO-Al2O3-SiO2为烧结助剂,在1200℃~1400℃条件下烧结,得到了耐火度在1580℃~1730℃的网眼碳化硅陶瓷;中国专利(申请号为201010152549.0)公开了一种利用包混工艺,经过压力成形、炭化处理及1200~1800℃烧结,得到一种孔隙率大于80%的耐热震多孔碳化硅陶瓷,800℃热震30次强度损失6.5~30%。公开的制备多孔SiC陶瓷的方法均为液相烧结法,即引入一定数量的多元低共熔氧化物为烧结助剂,使其与碳化硅颗粒表面的SiO2起反应,产生多元低共熔物,这些低共熔物分布在晶界,起连接作用。但在SiC晶界存在的低熔点成分是影响其高温力学性能的主要因素,因此,由液相烧结法制备的多孔碳化硅陶瓷材料的高温力学性能一般不佳,且使用温度低于1200℃。
要获得在较高的温度下使用的SiC材料,最常用的方法为固相烧结。固相烧结是指通过颗粒间的原子或者空位沿着晶粒间界或穿过晶格位错在颗粒内部完成体积扩散,实现颗粒致密化的过程。SiC的强共价键性决定其无法通过体积扩散来实现致密化,必须使用合适的能够提高颗粒表面能,降低晶界能的烧结助剂。B和C元素是常用的SiC固相烧结助剂,B以B4C、BN或BP的形式加入,B固溶到SiC的晶格中破坏SiC晶格,增加晶格缺陷,减少晶界能。而C则以碳黑或者高聚物的方式引入,C与SiC表面的SiO2生成SiC可除去SiO2来增加表面能。固相烧结(申请号为200910048846.1)虽然能够得到在高于1600℃使用而性能基本不变的SiC,但是其得到的材料的孔隙率很小,常用于致密碳化硅陶瓷的制备。但现有技术中还没有利用固相烧结法制备多孔SiC陶瓷的相关报道。
发明内容
为了解决现有技术制备的多孔碳化硅陶瓷材料存在的高温力学性能不佳等问题,本发明提供一种能够使用于高于1500℃的环境中的多孔碳化硅陶瓷材料的制备方法,以满足多孔碳化硅陶瓷材料在高温环境中的使用要求。
为解决上述技术问题,本发明采用的技术方案如下:
一种多孔碳化硅陶瓷材料的制备方法,包括如下步骤:
a)将SiC粉体、烧结助剂和分散剂加入到水中,以SiC为球磨介质进行球磨使分散均匀,得到固含量为10~60wt%(优选为20~50wt%)的陶瓷水基浆料;
b)将步骤a)得到的浆料浇注到模具中,在-200~0℃(优选为-30~-10℃)冷冻成素坯;
c)将冷冻的素坯于-60~80℃(优选为-20~60℃)及5~600Pa(优选为5~50Pa)的环境下干燥4~48小时(优选为4~12小时),得到多孔素坯;
d)将步骤c)得到的多孔素坯进行高温固相烧结,即得多孔碳化硅陶瓷材料。
作为优选方案,在步骤a)的陶瓷水基浆料中再加入为SiC粉体的0.001~20wt%(优选为1~10wt%)的有机聚合物,再继续球磨得到混合均匀的浆料。
所述的有机聚合物是一种在降温过程中能发生相分离的高分子聚合物,该聚合物在室温下是固态或液态,不溶于水,当温度升高时能与水形成均相溶液,但混合温度必须小于水的沸点,如:聚乙烯醇、聚甲基纤维素等。
SiC粉体的平均粒径推荐为0.5~20μm。
所述的烧结助剂推荐为B和C的混合物;其中,B与C的质量比推荐为0.1∶1~0.3∶1。
所述的分散剂推荐为聚乙烯亚胺。
SiC粉体与烧结助剂和分散剂的质量比推荐为1∶0.02∶0.01~1∶0.05∶0.03。
步骤d)中的高温固相烧结条件推荐为:在惰性气氛中,在1800~2400℃下保温0.5~2小时。
所述的惰性气氛优选为氮气气氛。
与现有技术相比,本发明具有如下有益效果:
本发明利用冷冻干燥和高温固相烧结技术的结合,制备出了一种能够使用于高于1500℃的高温环境中的多孔碳化硅陶瓷材料,并且,通过调节浆料的固含量、浆料中添加的有机聚合物的含量及固相烧结温度,可得到气孔率为10~80%,室温强度为5~100MPa,1500℃高温强度损失小于5%的多孔SiC陶瓷材料,可满足SiC陶瓷在不同领域的应用要求。另外,本发明的制备方法简单,无需特殊设备,适合规模化生产,有望获得工业化应用。
附图说明
图1为实施例1所制备的碳化硅陶瓷材料的扫描电镜图。
图2为实施例1所制备的碳化硅陶瓷材料的XRD图,图中:a代表SiC粉体原料,b代表本实施例所制备的碳化硅陶瓷材料。
图3为实施例1所制备的碳化硅陶瓷材料在承受1200℃的热冲击后,其抗弯强度随淬火温度的变化关系图。
图4为不同有机聚合物的添加量下所制备的碳化硅陶瓷材料的扫描电镜图,图中:a为未添加聚乙烯醇所制得的碳化硅陶瓷材料,b为添加2.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料,c为添加7.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料;d为添加12.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料。
图5为有机聚合物的添加量与所制备的碳化硅陶瓷材料的气孔率的关系图。
图6为有机聚合物的添加量与所制备的碳化硅陶瓷材料的抗弯强度的关系图。
图7为不同浆料固含量与所制备的碳化硅陶瓷材料的气孔率的关系图。
图8为在2150℃烧结温度下所制备的碳化硅陶瓷材料的气孔率和抗弯强度与有机聚合物的添加量的关系图。
具体实施方式
下面结合实施例对本发明做进一步详细、完整地说明,但并不限制本发明的内容。
实施例1
称量15g SiC(SiC粉体的平均粒径为0.5μm),0.09g B,0.47g C,0.3g聚乙烯亚胺和11.42g去离子水,加入到250mL的聚乙烯磨瓶中,并加入15g的SiC球,球磨24小时,得到分散均匀的固含量为55wt%(固含量%=SiC/(SiC+烧结助剂+分散剂+水))的陶瓷水基浆料。向陶瓷水基浆料中加入7.5g浓度为12wt%的聚乙烯醇(PVA)水溶液,继续球磨24小时,得到分散均匀的浆料。将分散好的浆料倒入准备好的模具中,放入冰箱的冷冻室于-18℃~-20℃下冷冻约12小时,得到冷冻的素坯。将冷冻的素坯从模具中取出,立即放入冷冻干燥机的干燥箱中,首先在10℃及真空度为9Pa下保持4小时,然后升温至60℃,保温约5小时,得到多孔素坯。将得到的多孔素坯在N2气氛中于2200℃下烧结2小时,即得碳化硅陶瓷材料。
图1为本实施例所制备的碳化硅陶瓷材料的扫描电镜图,由图1可见:所制备的碳化硅陶瓷材料具有多孔结构。
图2为本实施例所制备的碳化硅陶瓷材料的XRD图,图中:a代表SiC粉体原料,b代表本实施例所制备的碳化硅陶瓷材料。由图2可见:所制备的碳化硅陶瓷材料与SiC粉体原料的晶型相同,且相分析结果表明SiC晶粒中无低熔点氧化物存在,说明本发明所制备的碳化硅陶瓷材料能在大于1500℃的环境中长期使用,性能稳定。
图3为本实施例所制备的碳化硅陶瓷材料在承受1200℃的热冲击后,其抗弯强度随淬火温度的变化关系图;由图3可见:本实施例所制备的碳化硅陶瓷材料本身的强度大于热冲击温度梯度产生的应力,具有优异的抗热冲击断裂性能。
实施例2
本实施例与实施例1的不同之处仅在于:向陶瓷水基浆料中分别加入0g、2.5g、12.5g浓度为12wt%的聚乙烯醇(PVA)水溶液,其余内容均同实施例1中所述。
图4为不同有机聚合物的添加量下所制备的碳化硅陶瓷材料的扫描电镜图,图中:a为未添加聚乙烯醇所制得的碳化硅陶瓷材料,b为添加2.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料,c为添加7.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料;d为添加12.5g浓度为12wt%的聚乙烯醇(PVA)水溶液所制得的碳化硅陶瓷材料;由图4可见:所制备的碳化硅陶瓷材料均具有多孔结构,有机聚合物的添加有利于制备多孔碳化硅陶瓷材料,且有机聚合物的添加量对所制备的碳化硅陶瓷材料的气孔率有影响。
图5为有机聚合物的添加量与所制备的碳化硅陶瓷材料的气孔率的关系图,由图5可见:随着PVA含量的增加,气孔率增加,并在含量为6wt%时达到最大,以后气孔率减小。PVA水溶液的加入及PVA的脱出会增加气孔率,但是PVA会限制大气孔的生长,从而减少气孔率。当PVA含量小于10wt%时,PVA增加气孔率的影响大于减小气孔率的影响,当PVA含量为10wt%时,层状气孔尺寸的减少量大于有机物增加的气孔率量,因而气孔率又逐步减小。
图6为有机聚合物的添加量与所制备的碳化硅陶瓷材料的抗弯强度的关系图,由图6可见:抗弯强度随着PVA含量的增加逐渐增大。这是由于PVA增加极大的减小了气孔尺寸造成的。
实施例3
本实施例与实施例1的不同之处仅在于:向15g SiC(SiC粉体的平均粒径为0.5μm),0.09g B,0.47g C,0.3g聚乙烯亚胺中依次加入14.44g去离子水,制得固含量为50wt%的陶瓷水基浆料,其余内容均同实施例1中所述。
图7为不同浆料固含量与所制备的碳化硅陶瓷材料的气孔率的关系图,由图7可见:随着固含量的增加气孔率逐渐减小。
实施例4
本实施例与实施例2的不同之处仅在于:多孔素坯进行固相烧结的温度为2150℃,其余内容均同实施例2中所述。
图8为在2150℃烧结温度下所制备的碳化硅陶瓷材料的气孔率和抗弯强度与有机聚合物的添加量的关系图,由图8可见:在2150℃烧结温度下,所制备的碳化硅陶瓷材料的气孔率和抗弯强度都随着PVA含量的增加逐渐增大。
综上所述,本发明利用冷冻干燥和高温固相烧结技术的结合,制备出了一种能够使用于高于1500℃的高温环境中的多孔碳化硅陶瓷材料,并且,通过调节浆料的固含量、浆料中添加的有机聚合物的含量及固相烧结温度,可得到气孔率为10~80%,室温强度为5~100MPa,1500℃高温强度损失小于5%的多孔SiC陶瓷材料。
有必要在此指出的是:以上实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

1.一种多孔碳化硅陶瓷材料的制备方法,其特征在于,包括如下步骤:
a)将SiC粉体、烧结助剂和分散剂加入到水中,以SiC为球磨介质进行球磨使分散均匀,得到固含量为10~60wt%的陶瓷水基浆料;
b)将步骤a)得到的浆料浇注到模具中,在-200~0℃冷冻成素坯;
c)将冷冻的素坯于-60~80℃及5~600Pa的环境下干燥4~48小时,得到多孔素坯;
d)将步骤c)得到的多孔素坯进行高温固相烧结,即得多孔碳化硅陶瓷材料。
2.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:在步骤a)的陶瓷水基浆料中再加入为SiC粉体的0.001~20wt%的有机聚合物,再继续球磨得到混合均匀的浆料。
3.根据权利要求2所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的有机聚合物是一种在降温过程中能发生相分离的高分子聚合物,该聚合物在室温下是固态或液态,不溶于水,当温度升高时能与水形成均相溶液,但混合温度必须小于水的沸点。
4.根据权利要求3所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的有机聚合物是聚乙烯醇或聚甲基纤维素。
5.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的SiC粉体的平均粒径为0.5~20μm。
6.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的烧结助剂为B和C的混合物;其中,B与C的质量比为0.1∶1~0.3∶1。
7.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的分散剂为聚乙烯亚胺。
8.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:SiC粉体与烧结助剂和分散剂的质量比为1∶0.02∶0.01~1∶0.05∶0.03。
9.根据权利要求1所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:步骤d)中的高温固相烧结条件为:在惰性气氛中,在1800~2400℃下保温0.5~2小时。
10.根据权利要求9所述的多孔碳化硅陶瓷材料的制备方法,其特征在于:所述的惰性气氛为氮气气氛。
CN2011101593458A 2011-06-14 2011-06-14 一种多孔碳化硅陶瓷材料的制备方法 Pending CN102260092A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101593458A CN102260092A (zh) 2011-06-14 2011-06-14 一种多孔碳化硅陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101593458A CN102260092A (zh) 2011-06-14 2011-06-14 一种多孔碳化硅陶瓷材料的制备方法

Publications (1)

Publication Number Publication Date
CN102260092A true CN102260092A (zh) 2011-11-30

Family

ID=45006963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101593458A Pending CN102260092A (zh) 2011-06-14 2011-06-14 一种多孔碳化硅陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN102260092A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951924A (zh) * 2012-11-12 2013-03-06 西安交通大学 一种利用热致相分离技术制备多孔陶瓷的方法
CN103939509A (zh) * 2014-04-22 2014-07-23 浙江天乐新材料科技有限公司 一种用于轨道车辆的Al/Sic和Cu/Sic复合材料摩擦副及其制备方法
CN104163654A (zh) * 2014-07-04 2014-11-26 北京大学深圳研究生院 一种多孔陶瓷的制备方法及多孔陶瓷
CN107324809A (zh) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
CN108101544A (zh) * 2017-12-14 2018-06-01 西安交通大学 一种层片状梯度多孔碳化硅陶瓷及其制备方法
CN108585886A (zh) * 2018-06-11 2018-09-28 哈尔滨工业大学 一种孔隙率变化可控的多孔陶瓷材料及其制备方法
CN108863394A (zh) * 2017-05-10 2018-11-23 中国科学院上海硅酸盐研究所 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN112407936A (zh) * 2020-10-30 2021-02-26 郑州磨料磨具磨削研究所有限公司 一种多孔真空吸盘及其制备方法
CN112851396A (zh) * 2021-03-31 2021-05-28 哈尔滨化兴软控科技有限公司 一种多孔碳化硅陶瓷片及其制备方法
CN116589299A (zh) * 2023-05-05 2023-08-15 哈尔滨工业大学 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962546A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 凝胶包裹-冷冻干燥工艺制备碳化硅多孔陶瓷的方法
CN101050128A (zh) * 2007-04-13 2007-10-10 中国科学院上海硅酸盐研究所 冷冻干燥法制备多孔材料的改进
CN102010226A (zh) * 2010-12-09 2011-04-13 东北大学 一种大孔SiC陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962546A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 凝胶包裹-冷冻干燥工艺制备碳化硅多孔陶瓷的方法
CN101050128A (zh) * 2007-04-13 2007-10-10 中国科学院上海硅酸盐研究所 冷冻干燥法制备多孔材料的改进
CN102010226A (zh) * 2010-12-09 2011-04-13 东北大学 一种大孔SiC陶瓷的制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951924B (zh) * 2012-11-12 2013-12-04 西安交通大学 一种利用热致相分离技术制备多孔陶瓷的方法
CN102951924A (zh) * 2012-11-12 2013-03-06 西安交通大学 一种利用热致相分离技术制备多孔陶瓷的方法
CN103939509A (zh) * 2014-04-22 2014-07-23 浙江天乐新材料科技有限公司 一种用于轨道车辆的Al/Sic和Cu/Sic复合材料摩擦副及其制备方法
CN104163654A (zh) * 2014-07-04 2014-11-26 北京大学深圳研究生院 一种多孔陶瓷的制备方法及多孔陶瓷
CN108863394A (zh) * 2017-05-10 2018-11-23 中国科学院上海硅酸盐研究所 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN108863394B (zh) * 2017-05-10 2020-11-10 中国科学院上海硅酸盐研究所 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN107324809A (zh) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
CN108101544B (zh) * 2017-12-14 2020-07-28 西安交通大学 一种层片状梯度多孔碳化硅陶瓷及其制备方法
CN108101544A (zh) * 2017-12-14 2018-06-01 西安交通大学 一种层片状梯度多孔碳化硅陶瓷及其制备方法
CN108585886B (zh) * 2018-06-11 2020-07-21 哈尔滨工业大学 一种孔隙率变化可控的多孔陶瓷材料及其制备方法
CN108585886A (zh) * 2018-06-11 2018-09-28 哈尔滨工业大学 一种孔隙率变化可控的多孔陶瓷材料及其制备方法
CN112407936A (zh) * 2020-10-30 2021-02-26 郑州磨料磨具磨削研究所有限公司 一种多孔真空吸盘及其制备方法
CN112851396A (zh) * 2021-03-31 2021-05-28 哈尔滨化兴软控科技有限公司 一种多孔碳化硅陶瓷片及其制备方法
CN116589299A (zh) * 2023-05-05 2023-08-15 哈尔滨工业大学 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用
CN116589299B (zh) * 2023-05-05 2023-11-24 哈尔滨工业大学 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用

Similar Documents

Publication Publication Date Title
CN102260092A (zh) 一种多孔碳化硅陶瓷材料的制备方法
CN107324809B (zh) 多孔碳化硅陶瓷及其制备方法和应用
CN100422114C (zh) 用于航天航空的高强度氮化硅多孔陶瓷透波材料及其制备方法
CN106007758A (zh) 增韧的氮化硅结合碳化硅陶瓷复合材料及其制备方法
CN110937920A (zh) 一种超轻高强钙长石多孔陶瓷及其制备方法
CN108203300B (zh) 一种高韧性、高电阻率碳化硅陶瓷的制备方法
CN111004034B (zh) 碳化硅陶瓷及其制备方法和半导体零件
CN105198478A (zh) 一种莫来石晶须增强钙长石多孔陶瓷及其制备方法
CN105272229A (zh) 含烧绿石相锆酸钆粉体的陶瓷及其制备方法
CN105753507A (zh) 一种碳化硅-六铝酸钙复相多孔陶瓷的制备方法
CN105237001A (zh) 原位生成氮化铝的干熄焦炉用浇注料及其制备方法
CN115043624B (zh) 一种耐侵蚀大体积混凝土及其制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN105859297B (zh) 一种碳化硅复合耐火材料及其制备方法
CN104671792A (zh) 一种高韧性碳化硅陶瓷及其制备方法
CN107935576B (zh) 氮化硅结合莫来石-碳化硅陶瓷复合材料及其制备方法
CN104326752A (zh) 一种SiC陶瓷的低温常压液相烧结制备方法
KR101620510B1 (ko) 고인성 고경도 상압소결 탄화규소 소재 제조용 조성물, 탄화규소 소재 및 소재의 제조방법
CN104446459B (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
CN104003751A (zh) 表面多孔碳化硅材料及其制备方法
CN109320254A (zh) 一种碳化硅增强氮化铝陶瓷及其制备方法
CN104609864B (zh) 一种利用氮化硅铁粉末制备块体陶瓷材料的方法
CN107417287B (zh) 一种微波冶金窑车用刚玉-氧氮化硅复合耐火材料
CN109053161B (zh) 一种直接发泡Al2O3-AlN多孔复合材料及其制备方法
JP2000016872A (ja) 多孔質炭化珪素焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111130