WO2016201954A1 - 芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置 - Google Patents

芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置 Download PDF

Info

Publication number
WO2016201954A1
WO2016201954A1 PCT/CN2016/000314 CN2016000314W WO2016201954A1 WO 2016201954 A1 WO2016201954 A1 WO 2016201954A1 CN 2016000314 W CN2016000314 W CN 2016000314W WO 2016201954 A1 WO2016201954 A1 WO 2016201954A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oxide
acid
catalyst
deesterification
Prior art date
Application number
PCT/CN2016/000314
Other languages
English (en)
French (fr)
Inventor
孔德金
郑均林
宋奇
祁晓岚
徐旋
姜向东
杨德琴
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to BR112017027358-6A priority Critical patent/BR112017027358B1/pt
Priority to DK16810695.3T priority patent/DK3312285T3/da
Priority to US15/737,976 priority patent/US10435348B2/en
Priority to KR1020187001727A priority patent/KR102454224B1/ko
Priority to EP16810695.3A priority patent/EP3312285B1/en
Priority to JP2017565938A priority patent/JP6976863B2/ja
Priority to ES16810695T priority patent/ES2880284T3/es
Publication of WO2016201954A1 publication Critical patent/WO2016201954A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7046MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/247Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by splitting of cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for producing an aromatic hydrocarbon, and more particularly to a process for producing a xylene-enriched aromatic hydrocarbon product.
  • the present invention further relates to a method for producing p-xylene (hereinafter sometimes abbreviated as PX) and terephthalic acid based on the method for producing the aromatic hydrocarbon, and an apparatus for producing an aromatic hydrocarbon.
  • PX p-xylene
  • Aromatic hydrocarbons are important basic raw materials for the petrochemical industry and are widely used in many fields such as polyester, chemical fiber and rubber. Benzene, toluene and xylene are the most widely used aromatic hydrocarbons in aromatic hydrocarbons, of which PX is the most widely used and used.
  • PX is the most widely used and used.
  • the production of aromatic hydrocarbons at home and abroad mainly depends on non-renewable fossil resources.
  • the production cost of aromatic hydrocarbons is increasing.
  • the continuous development and utilization of fossil resources has led to the massive discharge of greenhouse gases, and a series of environmental problems have become increasingly serious. Therefore, the development of technologies for producing aromatic hydrocarbons (especially xylenes) from renewable resources is of great significance.
  • the inventors of the present invention believe that there is a need to develop a method for producing an aromatic hydrocarbon, for example, in a process from biomass to aromatic hydrocarbon conversion, and prior art. Compared to the aromatics production process, it exhibits improved carbon utilization and, in turn, improved aromatics yield. Further, the inventors of the present invention also considered that there is a need to develop a method for producing an aromatic hydrocarbon, which is produced by increasing the proportion of xylene in the aromatic hydrocarbon product obtained by the prior art aromatic hydrocarbon production method. Xylene-enriched aromatic hydrocarbon product.
  • the inventors of the present invention have found through diligent research that the above problems existing in the prior art can be solved by using a specific compound having a lactone group as a platform compound in combination with a specific sequence of reaction steps, and thus completed. this invention.
  • the present invention relates to the following aspects.
  • a method for producing an aromatic hydrocarbon comprising the following steps a1) and b1) or comprising the following steps a2), b2) and c2):
  • A1 a step of producing a carbon octaolefin by contacting a compound having a lactone group with a deesterification dimerization catalyst under conditions of deesterification and dimerization;
  • A2) a step of contacting a compound having a lactone group with a deesterification catalyst to produce a carbon tetraene under deesterification conditions
  • R 1 is selected from an optionally substituted C 1-20 straight or branched alkylene group, an optionally substituted C 2-20 straight or branched alkenylene group, optionally substituted C 2 a -20 linear or branched alkynylene group, an optionally substituted C 3-20 cycloalkylene group, and an optionally substituted C 6-20 arylene group, preferably selected from the group consisting of an optionally substituted C 2-10 straight chain or a branched alkylene group and an optionally substituted C 2-10 linear or branched alkenylene group, more preferably a C 2-5 linear or branched alkylene group, further preferably a 1,2-ethylene group;
  • R 2 Selected from hydrogen, optionally substituted C 1-20 straight or branched alkyl and carboxy, preferably selected from hydrogen and optionally substituted C 1-10 straight or branched alkyl, more preferably selected from hydrogen and C 1-4 linear or branched alkyl.
  • the deesterification dimerization reaction conditions comprise: a reaction temperature of 160 to 400 ° C, preferably 160 to 300 ° C, a reaction pressure of 0.1 to 8 MPa, preferably 0.1 to 4 MPa,
  • the compound having a lactone group has a weight space velocity of 0.1 to 15 hours -1 , preferably 0.6 to 5 hours -1
  • the deesterification reaction conditions include: a reaction temperature of 100 to 350 ° C, preferably 120 to 250 ° C, The pressure is from 0.1 to 8 MPa, preferably from 0.1 to 4 MPa, and the weight of the compound having a lactone group is from 0.1 to 15 hr -1 , preferably from 0.6 to 5 hr -1
  • the dimerization reaction conditions include: reaction temperature 160 to 400 ° C, preferably 160 to 300 ° C, a reaction pressure of 0.1 to 8 MPa, preferably 0.1 to 4 MPa, and a weight space velocity of the
  • the compound having a lactone group is derived from a biomass material, preferably from xylitol, glucose, cellobiose, cellulose, hemicellulose, and lignin.
  • a biomass material preferably from xylitol, glucose, cellobiose, cellulose, hemicellulose, and lignin.
  • the deesterification dimerization catalyst is selected from the group consisting of an acidic oxide, a cerium oxide, a strongly acidic cation exchange resin, a molecular sieve, a solid super acid, and a composite metal oxide.
  • the deesterification catalyst is selected from one or more of an acidic oxide, a strongly acidic cation exchange resin, a molecular sieve, a solid super acid, and a composite metal oxide, preferably selected from the group consisting of an acidic oxide and a strong acidity.
  • a cation exchange resin and a solid super acid more preferably one or more selected from the group consisting of a strongly acidic cation exchange resin and a solid super acid
  • the dimerization catalyst is selected from the group consisting of an acidic oxide, an oxide of cerium One or more of a strong acid cation exchange resin, a molecular sieve, a solid super acid and a composite metal oxide, preferably a molecular sieve
  • the aromatization catalyst is selected from the group consisting of a molecular sieve, a solid super acid, and a composite metal oxide Or a plurality, preferably molecular sieves, especially ZSM-5 or M/ZSM-5, wherein M is selected from the group consisting of Zn, Ga, Sn or combinations thereof.
  • the acidic oxide is one or more selected from the group consisting of a solid oxide of a Group IIIA element of the periodic table and a solid oxide of a Group IVA element, preferably One or more selected from the group consisting of SiO 2 and Al 2 O 3 , more preferably Al 2 O 3 , Al 2 O 3 -SiO 2 or SiO 2 ,
  • the oxide of cerium is Bi 2 O 3 ,
  • the strongly acidic cation exchange resin is selected from one or more of a macroporous sulfonic acid type cation exchange resin and a halogen modified (preferably perfluorinated) sulfonic acid type cation exchange resin, more preferably selected from the group consisting of Series resin and One or more of a series of resins.
  • the acid strength D11 of the deesterification catalyst, the acid strength D12 of the dimerization catalyst, and the acid strength D2 of the aromatization catalyst conform to the following relationship (II),
  • the molecule is selected from a ZSM type molecular sieve (preferably selected from one of ZSM-5, ZSM-11, ZSM-22, ZSM-23 and ZSM-38 or One or more of a plurality of) Y-type molecular sieves, beta-type molecular sieves, L-type molecular sieves, MCM-type molecular sieves (preferably selected from one or more of MCM-22 and MCM-41), preferably selected from ZSM -5, one or more of a Y-type molecular sieve, a beta-type molecular sieve, and MCM-41, more preferably ZSM-5.
  • a ZSM type molecular sieve preferably selected from one of ZSM-5, ZSM-11, ZSM-22, ZSM-23 and ZSM-38 or One or more of a plurality of
  • Y-type molecular sieves preferably selected from one of ZSM-5, ZSM-11, ZSM-22, ZSM-23 and ZSM-38 or One or more of
  • the molecular sieve is a molecular sieve composition comprising the following components a1), b1) and c1) or comprising the following components a2) and c2):
  • A1 20 to 80 parts by weight (preferably 50 to 80 parts by weight) of the molecular sieve, and
  • B1 20 to 80 parts by weight (preferably 20 to 50 parts by weight) of a binder (preferably selected from the group consisting of silica sol, pseudoboehmite, alumina, acid-treated clay, kaolin, montmorillonite, bentonite)
  • a binder preferably selected from the group consisting of silica sol, pseudoboehmite, alumina, acid-treated clay, kaolin, montmorillonite, bentonite
  • a binder preferably selected from the group consisting of silica sol, pseudoboehmite, alumina, acid-treated clay, kaolin, montmorillonite, bentonite
  • a binder preferably selected from the group consisting of silica sol, pseudoboehmite, alumina, acid-treated clay, kaolin, montmorillonite, bentonite
  • auxiliary agent 0 to 10 parts by weight (preferably 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight) of the auxiliary agent, wherein the auxiliary agent is selected from the group consisting of Na, Ca, K, Be, Mg, Ba, V, Nb, Cr , one or more of Mo, W, Mn, Re, Fe, Co, Ni, Cu, Zn, Ga, Ru, Pd, Pt, Ag, B, Al, Sn, P, Sb, La, and Ce, It is preferably one or more selected from the group consisting of Ca, K, Mg, Cr, Mo, Fe, Ni, Cu, Zn, Ga, Ru, Pd, Pt, Ag, B, Sn, P, La, and Ce, more preferably One or more selected from the group consisting of Zn, Ga, and Sn,
  • auxiliary agent 0.01 to 10 parts by weight, preferably 0.01 to 5 parts by weight, of the auxiliary agent, wherein the auxiliary agent is selected from the group consisting of Na, Ca, K, Be, Mg, Ba, V, Nb, Cr, Mo, W, Mn, Re One or more of Fe, Co, Ni, Cu, Zn, Ga, Ru, Pd, Pt, Ag, B, Al, Sn, P, Sb, La and Ce, preferably selected from the group consisting of Ca, K, Mg One or more of Cr, Mo, Fe, Ni, Cu, Zn, Ga, Ru, Pd, Pt, Ag, B, Sn, P, La and Ce, more preferably selected from the group consisting of Zn, Ga and Sn One or more.
  • step a1) the compound having a lactone group is brought into contact with a catalyst bed comprising the deesterification dimerization catalyst to produce carbon eight.
  • the catalyst bed comprising at least two layers of the deesterification dimerization catalyst, wherein the acid strength of the deesterification dimerization catalyst of any two adjacent layers is different.
  • the solid super acid is selected from the group consisting of a Lewis acid supported solid super acid, an inorganic metal salt/Lewis acid composite solid super acid, and a sulfated metal oxide solid super acid. One or more of them.
  • the support of the Lewis acid-supported solid super acid is selected from the group consisting of a solid oxide of a Group IIIA element of the periodic table and a solid oxide of a Group IVA element.
  • the support of the Lewis acid-supported solid super acid is selected from the group consisting of a solid oxide of a Group IIIA element of the periodic table and a solid oxide of a Group IVA element.
  • the Lewis acid of the Lewis acid-supported solid super acid is selected from the group consisting of a halide of a Group VB element of the periodic table (preferably a fluoride), a halide of a Group IIIA element (preferably a fluoride), and a halide of a Group VA element.
  • the Lewis acid-supported solid super acid is preferably selected from the group consisting of SbF 5 /SiO 2 -Al 2 O 3 , PF 3 /Al 2 O 3 -B 2 O 3 , AsF 3 /Al 2 O 3 -B 2 O 3 , SbF 3 /Al 2 O 3 -B 2 O 3 , BiF 3 /Al 2 O 3 -B 2 O 3 , TaF 3 /Al 2 O 3 -B 2 O 3 , VF 3 /Al 2 O 3 -B 2 O 3 And one or more of NbF 3 /Al 2 O 3 -B 2 O 3 ,
  • the inorganic metal salt of the inorganic metal salt/Lewis acid composite solid super acid is selected from the group consisting of inorganic acid salts of a metal element of Group IB of the periodic table (preferably a hydrohalide salt, more preferably a hydrochloride salt), and a metal element of Group IIB.
  • Inorganic acid salt preferably hydrohalide salt, more preferably hydrochloride
  • mineral acid salt of a metal element of Group VII preferably a hydrohalide salt, more preferably a hydrochloride salt
  • a mineral acid salt of a metal element of Group VIII One or more of (preferably a hydrohalide, more preferably a hydrochloride), preferably CuCl 2 ,
  • the Lewis acid of the inorganic metal salt/Lewis acid composite solid super acid is selected from the group consisting of a halide of a Group VB element of the periodic table (preferably a chloride), a halide of a Group IIIA element (preferably a chloride), and a Group VA
  • a halide of a Group VB element of the periodic table preferably a chloride
  • a halide of a Group IIIA element preferably a chloride
  • a Group VA One or more of the halides (preferably chlorides) of the elements, preferably one or more selected from the group consisting of halides (preferably chlorides) of Group IIIA elements of the Periodic Table of the Elements, preferably AlCl 3 ,
  • the inorganic metal salt/Lewis acid composite solid super acid is preferably AlCl 3 -CuCl 2 ,
  • the metal oxide of the sulfated metal oxide type solid super acid is oxide A of a metal element of Group IVB of the periodic table (preferably selected from one or more of ZrO 2 and TiO 2 ) or the oxidation
  • the substance A is selected from a metal element of the group IIIA of the periodic table (present in the form of an oxide), a metal element of the group VIIB (present in the form of an oxide), a noble metal element of the group VIII (in the form of a simple substance of a metal), a group VIII
  • One or more modifying elements preferably selected from Fe
  • a base metal element present in the form of an oxide
  • a Group VIB metal element present in the form of an oxide
  • a lanthanide metal element present in the form of an oxide
  • Oxide B obtained by modification of one or more of Pt, Re, Al, W, Cr, Mo, and Mn
  • the sulfated metal oxide type solid super acid is preferably selected from the group consisting of SO 4 2- /ZrO 2 , S 2 O 8 2 - /ZrO 2 , SO 4 2- /TiO 2 , SO 4 2- /ZrO 2 -Fe 3 O 4 , Pt/SO 4 2- /TiO 2 , SO 4 2- /TiO 2 -ZrO 2 , SO 4 2- /TiO 2 -Al 2 O 3 , SO 4 2- /TiO 2 -WO 3 , SO 4 2- /ZrO 2 -Fe 2 O 3 -Cr 2 O 3 , SO 4 2- /ZrO 2 -WO 3 , SO 4 2- /TiO 2 -MoO 3 , SO 4 2- /ZrO 2 -Fe 2 O 3 One or more of -MnO 2 , W modified SO 4 2- /Al 2 O 3 -ZrO 2 and Mo modified SO 4 2- /Al
  • the Lewis acid is supported in an amount of from 1 to 30% by weight, preferably from 1 to 1% by weight relative to the weight of the carrier. 15wt%,
  • the weight ratio of the inorganic metal salt to the Lewis acid is from 1 to 30:100, preferably from 1 to 15:100,
  • the metal oxide has a sulfated ratio of 0.5 to 25 wt%, preferably 1 to 8 wt%,
  • the weight ratio of the modifying element (in terms of oxide) to the oxide A in the form of an oxide is from 0.1 to 25:100, preferably from 0.5 to 10:100, in the form of a simple metal
  • the weight ratio of the modifying element (in terms of metal) to the oxide A present in the form is from 0.1 to 15:100, preferably from 0.3 to 6:100.
  • the composite metal oxide is an oxide C of a metal element of Group IVB of the periodic table (preferably selected from one or more of ZrO 2 and TiO 2 , More preferably, ZrO 2 ) and one selected from the group consisting of an oxide of a metal element of Group IIIA of the periodic table, an oxide of a metal of a Group VII, an oxide of a metal of a Group VIB, and an oxide of a lanthanide metal or a plurality of oxides D (preferably selected from one or more of B 2 O 3 , Al 2 O 3 , MnO 2 , Cr 2 O 3 , CrO 3 , MoO 3 , WO 3 , La 2 O 3 and CeO 2 ) More preferably, it is a composite oxide selected from one or more of MnO 2 , MoO 3 , WO 3 , La 2 O 3 and CeO 2 , preferably ZrO 2 and selected from MnO 2 , Mo 2 O 3 , WO
  • the ratio of the oxide C to the oxide D is 60 to 99.9: 0.1 to 40, preferably 60 to 99: 1 to 40 in parts by weight. .
  • a method of making p-xylene comprising the steps of:
  • a method of making terephthalic acid comprising the steps of:
  • a step of converting p-xylene to terephthalic acid is converting p-xylene to terephthalic acid.
  • An apparatus for producing an aromatic hydrocarbon comprising the following units:
  • a deesterification dimerization unit configured to be capable of contacting a compound having a lactone group with a deesterification dimerization catalyst under a deesterification dimerization reaction condition to produce a carbon octaolefin
  • An aromatization unit configured to contact an aromatization catalyst to produce an aromatic hydrocarbon under aromatization reaction conditions
  • the manufacturing apparatus optionally further comprises a catalytic conversion unit, or a combination of a catalytic conversion unit and a catalytic hydrogenation unit:
  • a catalytic conversion unit configured to enable catalytic conversion of a biomass material to produce a product comprising a compound having a lactone group
  • a catalytic hydrogenation unit is configured to increase the proportion of the compound having a lactone group in the product by catalytic hydrogenation of the product.
  • the method for producing an aromatic hydrocarbon of the present invention can be used to effectively increase the carbon utilization rate in the conversion process and reduce the carbon conversion in the biomass material, for example, in the conversion process from biomass to aromatic hydrocarbons.
  • the ratio of gas phase carbon to carbon deposit can increase the yield of aromatic hydrocarbons and ultimately increase the yield of xylene.
  • the xylene carbon yield can be up to 86.5%, preferably at least 60%.
  • the method for producing an aromatic hydrocarbon of the present invention can significantly improve the platform compound by using a specific compound having a lactone group as a platform compound in combination with a specific sequence of reaction steps as compared with the prior art.
  • the conversion rate while significantly increasing the selectivity relative to xylene.
  • the conversion of the platform compound can be up to 99% or more, and the selectivity of xylene can be up to 94% or more.
  • the method for producing an aromatic hydrocarbon of the present invention can significantly increase the service life of the catalyst as compared with the prior art, and in particular, can significantly retard catalyst coking.
  • the method for producing an aromatic hydrocarbon of the present invention can directly obtain a significantly more concentrated aromatic hydrocarbon product of xylene than the prior art, wherein the content of xylene in the aromatic hydrocarbon product is generally greater than 30% by weight, preferably 50% by weight or more, more preferably 70% by weight or more or more.
  • hydrocarbons or hydrocarbon derivative groups of more than 3 carbon atoms such as propyl, propoxy, butyl, unless otherwise explicitly defined, or the meaning is beyond the understanding of those skilled in the art
  • butane, butene, butenyl, hexane, etc. have the same meaning as when the prefix is "positive" when the prefix is "positive”.
  • propyl is generally understood to be n-propyl
  • butyl is generally understood to be n-butyl.
  • conversion, yield and selectivity refer to single pass conversion, one pass yield and one pass selectivity, respectively, unless otherwise explicitly defined.
  • optionally substituted means optionally one or more (such as 1 to 3, 1 to 2 or 1) selected from one or more carboxy or hydroxy groups.
  • C aryl optionally substituted by one or more carboxy or hydroxy
  • halogen refers to fluorine, chlorine, bromine and iodine, preferably chlorine and bromine.
  • a method of producing an aromatic hydrocarbon comprising the following steps a1) and b1):
  • A1 a step of producing a carbon octaolefin by contacting a compound having a lactone group with a deesterification dimerization catalyst under conditions of deesterification and dimerization;
  • B1 a step of producing an aromatic hydrocarbon by contacting the carbon octaolefin with an aromatization catalyst under aromatization reaction conditions.
  • the lactone group-containing compound and the catalyst bed comprising the deesterification dimerization catalyst are subjected to the deesterification dimerization reaction conditions.
  • the catalyst bed preferably comprises at least two layers of the catalyst from the viewpoint of reducing carbon deposition, increasing the yield of the final aromatic hydrocarbon, and the like.
  • the weight ratio of the deesterification dimerization catalyst of any two adjacent layers may be, for example, from 10/1 to 1/10, as needed.
  • the catalyst bed layer comprises, for example, at least a deesterification dimerization catalyst A packed in an upper layer (first contacted with the compound having a lactone group) and a deesterification dimerization catalyst B loaded in the lower layer (post In contact with the compound having a lactone group, wherein the deesterification dimerization catalyst A and the deesterification dimerization catalyst B are different in weight ratio of from 10/1 to 1/10.
  • the compound having a lactone group is separately contacted with each layer of the deesterification dimerization catalyst.
  • the deesterification dimerization catalyst (hereinafter referred to as the first deesterification dimerization catalyst) is compared with a deesterification dimerization catalyst (hereinafter referred to as a second deesterification dimerization catalyst) which is subsequently contacted with the compound having a lactone group. It is different and both have at least different acid strengths.
  • the acid strength of the first deesterification dimerization catalyst is greater than the acid strength of the second deesterification dimerization catalyst.
  • the acid strength of the first deesterification dimerization catalyst may be 5%, 10%, 30%, 50% or more greater than the acid strength of the second deesterification dimerization catalyst.
  • the acid strength can be expressed, for example, by the Hammett function H 0 and can be measured according to any method conventionally known in the art or known from the prior art manual, and will not be described herein.
  • a method of producing an aromatic hydrocarbon wherein the method for producing the aromatic hydrocarbon comprises the following steps a2), b2) and c2):
  • A2) a step of contacting a compound having a lactone group with a deesterification catalyst under a deesterification reaction condition to produce a carbon tetraene
  • C2 a step of producing an aromatic hydrocarbon by contacting the carbon octaolefin with an aromatization catalyst under aromatization reaction conditions.
  • the compound having a lactone group has the structural formula (I):
  • R 1 is selected from an optionally substituted C 1-20 straight or branched alkylene group, an optionally substituted C 2-20 straight or branched alkenylene group, optionally substituted C 2 a linear or branched alkynylene group, an optionally substituted C 3-20 cycloalkylene group, and an optionally substituted C 6-20 arylene group;
  • R 2 is selected from hydrogen, optionally substituted C 1-20 Linear or branched alkyl and carboxyl groups.
  • the R 1 is selected from an optionally substituted C 2-10 linear or branched alkylene group and an optionally substituted C 2-10 linear chain.
  • a branched alkenylene group preferably a C 2-5 linear or branched alkylene group, further preferably a 1,2-ethylene group.
  • the R 2 is selected from the group consisting of hydrogen and optionally substituted C 1-10 straight or branched alkyl groups, preferably selected from the group consisting of hydrogen and C 1-4 Linear or branched alkyl.
  • ⁇ -valerolactone is particularly exemplified.
  • a carbon tetraolefin generally means a mixture (intermediate product) of a plurality of olefins having 4 carbon atoms, and generally includes 1-butene, 2-butene or 2-methyl.
  • Propylene, etc., and carbon octaolefin generally refers to a mixture (intermediate product) of a plurality of olefins having 8 carbon atoms, generally including 2,4,4-trimethylpentene, 2,5-dimethylhexan Alkene, 3,4-dimethyl-2-hexene, 3-methyl-2-heptene, 5-methyl-3-heptene, 3-methyl-3heptene or octene, etc.
  • the invention is not intended to limit the composition of these intermediates.
  • the deesterification dimerization reaction condition of the step a1) comprises: a reaction temperature of 160 to 400 ° C, a reaction pressure of 0.1 to 8 MPa (gauge pressure), and a weight of the compound having a lactone group.
  • the airspeed is 0.1 to 15 hours -1 .
  • the deesterification dimerization reaction conditions of the step a1) include: a reaction temperature of 160 to 300 ° C, a reaction pressure of 0.1 to 4 MPa (gauge pressure), and a compound having a lactone group.
  • the airspeed is 0.6 to 5 hours -1 .
  • the deesterification reaction condition of the step a2) comprises: a reaction temperature of 100 to 350 ° C, a reaction pressure of 0.1 to 8 MPa (gauge pressure), a weight space velocity of the compound having a lactone group 0.1 to 15 hours -1 .
  • the deesterification reaction condition of the step a2) comprises: a reaction temperature of 120 to 250 ° C, a reaction pressure of preferably 0.1 to 4 MPa (gauge pressure), and a weight of the compound having a lactone group. Airspeed 0.6 to 5 hours -1 .
  • the dimerization reaction condition of the step b2) comprises: a reaction temperature of 160 to 400 ° C, a reaction pressure of 0.1 to 8 MPa (gauge pressure), and a weight space velocity of the carbon tetraolefin of 0.1 to 15 hours. -1 .
  • the dimerization reaction conditions of the step b2) include: a reaction temperature of 160 to 300 ° C, a reaction pressure of 0.1 to 4 MPa (gauge pressure), and a weight space velocity of the carbon tetraolefin of 0.6 to 5 Hours -1 .
  • the aromatization reaction conditions of the step b1) or the step c2) include: a reaction temperature of 420 to 800 ° C, a reaction pressure of 0.1 to 8 MPa (gauge pressure), and the carbon octaolefin
  • the weight airspeed is 0.3 to 10 hours -1 .
  • the aromatization reaction conditions of the step b1) or the step c2) include: a reaction temperature of 450 to 550 ° C, a reaction pressure of 0.1 to 4 MPa (gauge pressure), the carbon octaolefin The weight airspeed is 0.3 to 5 hours -1 .
  • the compound having a lactone group is derived from a biomass material.
  • a biomass material for example, those conventionally used for the production of aromatic hydrocarbons in the art can be mentioned, and specific examples thereof include xylitol, glucose, cellobiose, cellulose, hemicellulose, and lignin. These biomass materials may be used singly or in combination of two or more.
  • biomass material examples include paper sludge, waste paper, bagasse, glucose, wood, corn cob, corn stover, and straw straw. These biomass materials may be used singly or in combination of two or more.
  • the biomass content in the biomass material is usually from 30 to 99% by weight
  • the hemicellulose content is usually from 0 to 50%
  • the lignin content is usually from 1 to 40%.
  • a method of deriving the compound having a lactone group from the biomass material as a raw material is not particularly limited, and those conventionally known in the art may be employed.
  • the derivatization method may include, for example, a step of directly converting the biomass material to a compound having a lactone group (particularly ⁇ -valerolactone) by catalytic conversion (such as hydrolysis deoxidation) (for example) See also Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts, Catal. Sci.
  • the derivatization method may, for example, comprise the step of catalytically converting the biomass material and subsequently catalytically hydrogenating to produce the compound having a lactone group.
  • the biomass material is first subjected to catalytic conversion by acid hydrolysis, supercritical hydrolysis, catalytic partial oxidation or metal chloride catalysis to produce levulinic acid (for example, see Effective Production of Levulinic Acid from Biomass through Pretreatment Using Phosphoric Acid, Hydrochloric Acid, or Ionic Liqmd, Ind. Eng. Chem. Res., 2014, 53(29), pp 11611-11621), and then the produced levulinic acid under hydrogenation conditions and hydrogenation
  • the catalyst is contacted to produce the compound having a lactone group, particularly gamma-valerolactone.
  • the hydrogenation catalyst for example, a catalyst containing 0.1 to 80% by weight of at least one active metal selected from the group consisting of Ni, Ru, Zn, Cu, and Pd and 20 may be mentioned. 99.9% of at least one carrier selected from the group consisting of Al 2 O 3 , SiO 2 , ZrO 2 and activated carbon.
  • the hydrogenation conditions include a reaction temperature of 50 to 500 ° C, a reaction pressure of 0.1 to 10.0 MPa (gauge pressure), and a weight space velocity of levulinic acid of 0.1 to 10.0 hr -1 , particularly a reaction temperature of 100 to 300. °C, reaction pressure 0.5-3.0MPa (gauge pressure), levulinic acid weight space velocity 0.5-3.0 hours -1 .
  • examples of the deesterification dimerization catalyst include an acidic oxide, an oxide of cerium, a strongly acidic cation exchange resin, a molecular sieve, a solid super acid, and a composite metal oxide. These deesterification dimerization catalysts may be used singly or in combination of two or more.
  • examples of the deesterification catalyst include an acidic oxide, a strongly acidic cation exchange resin, a molecular sieve, a solid super acid, and a composite metal oxide. These deesterification catalysts may be used singly or in combination of two or more kinds.
  • an acidic oxide, a strongly acidic cation exchange resin, a solid super acid or a combination thereof is preferable from the viewpoint that one or more technical effects of the present invention are more excellent. More preferred are strongly acidic cation exchange resins, solid super acids or combinations thereof.
  • examples of the dimerization catalyst include an acidic oxide, an oxide of cerium, a strongly acidic cation exchange resin, a molecular sieve, a solid super acid, and a composite metal oxide. These dimerization catalysts may be used singly or in combination of two or more.
  • a molecular sieve is preferable from the viewpoint of more excellent effects of one or more of the technical effects of the present invention, and a ZSM-type molecular sieve is more preferable.
  • examples of the aromatization catalyst include molecular sieves, solid super acids, and composite metal oxides. These aromatization catalysts may be used singly or in combination of two or more kinds.
  • a molecular sieve is preferable from the viewpoint of more excellent effects of one or more of the technical effects of the present invention, and a ZSM-type molecular sieve is more preferable.
  • the acid strength D1 of the deesterification dimerization catalyst and the acid strength D2 of the aromatization catalyst are in accordance with one or more technical effects of the present invention.
  • the following relationship (I) is in accordance with one or more technical effects of the present invention.
  • a ZSM type molecular sieve such as ZSM-5 is exemplified, and when it is used as a deesterification dimerization catalyst, the molar ratio of silicon to aluminum is generally from 80.01 to 250, as in the case of SiO 2 /Al 2 O 3 . In the case of aromatizing the catalyst, the molar ratio of silicon to aluminum is generally from 10 to 80 in terms of SiO 2 /Al 2 O 3 .
  • the acid strength D11 of the deesterification catalyst, the acid strength D12 of the dimerization catalyst, and the aromatic agent are more excellent from the viewpoint of one or more technical effects of the present invention.
  • the acid strength D2 of the structuring catalyst conforms to the following relationship (II).
  • a ZSM type molecular sieve such as ZSM-5 is exemplified, and when it is used as a deesterification catalyst, the silica-alumina molar ratio SiO 2 /Al 2 O 3 is generally 80 to 500, as dimerization.
  • the catalyst, a silica to alumina molar ratio SiO 2 / Al 2 O 3 is generally 50 to 150, when used as an aromatization catalyst, a silica to alumina molar ratio SiO 2 / Al 2 O 3 is generally 10 to 50.
  • the acid strength can be represented, for example, by the Hammett function H 0 or, for molecular sieves, by NH 3 -TPD, and will not be described again.
  • the acidic oxide for example, a solid oxide of a Group IIIA element of the periodic table and a solid oxide of a Group IVA element may be mentioned, and more specifically, for example, SiO 2 or Al may be mentioned. 2 O 3 or a combination thereof, in particular Al 2 O 3 -SiO 2 .
  • These acidic oxides may be used singly or in combination of two or more. These acidic oxides can be produced directly using commercially available products or by methods known in the art.
  • the oxide of the cerium for example, various oxides of cerium, particularly Bi 2 O 3 , may be mentioned.
  • the cerium oxide can be produced directly using commercially available products or by methods known in the art.
  • the strongly acidic cation exchange resin for example, a sulfonic acid type cation exchange resin can be mentioned.
  • the sulfonic acid type cation exchange resin include a macroporous sulfonic acid type cation exchange resin (macroporous sulfonic acid type polystyrene-divinylbenzene resin) and a halogen-modified sulfonic acid type cation exchange resin.
  • These strongly acidic cation exchange resins are readily available from the market and can be prepared by the methods described in the classical literature.
  • the method for producing a macroporous sulfonic acid type polystyrene-divinylbenzene resin is usually a method in which a mixture of styrene and divinylbenzene is dropped into a water phase containing a dispersing agent, an initiator, and a porogen under high-speed stirring.
  • the suspension copolymerization is carried out in the system, and the obtained polymer beads (white spheres) are separated from the system, and the porogen therein is extracted with a solvent, and then dichloroethane is used as a solvent and concentrated sulfuric acid is used as a sulfonating agent.
  • the sulfonation reaction is finally carried out by filtration, washing, and the like, and finally the product is obtained.
  • a halogen atom such as fluorine, chlorine, bromine or the like is introduced into the skeleton of the strongly acidic cation exchange resin, and among them, fluorine is preferable, and the temperature resistance and acid strength of the resin can be further improved.
  • the halogen-modified sulfonic acid type cation exchange resin can be obtained by at least two routes, one of which is to introduce a halogen atom, for example, a fluorine atom, on the benzene ring of the sulfonated styrene resin skeleton, due to strong electron absorption of the halogen element.
  • the function not only stabilizes the benzene ring, but also increases the acidity of the sulfonic acid group on the benzene ring.
  • Such resins are commercially available, such as those produced by foreign ROHM & HASS companies. Series resin, D008 resin produced by the domestic chemical plant in Hebei province. Another way is to replace all hydrogen on the resin skeleton with fluorine (perfluorinated), which has superior acidity and super high thermal stability due to the strong electron-withdrawing property of fluorine.
  • a typical example of such a high temperature resistant strong acid resin is manufactured by DuPont. Series resin. These strongly acidic cation exchange resins may be used singly or in combination of two or more.
  • the molecular sieve for example, a ZSM type molecular sieve, a Y type molecular sieve, a beta type molecular sieve, an L type molecular sieve, and an MCM type molecular sieve, particularly a ZSM-5, a Y type molecular sieve, a beta type molecular sieve, may be mentioned. And MCM-41, more specifically ZSM-5. These molecular sieves may be used singly or in combination of two or more. These molecular sieves can be produced directly using commercially available products or by methods known in the art.
  • the ZSM type molecular sieve more specifically, for example, ZSM-5, ZSM-11, ZSM-22, ZSM-23, and ZSM-38, particularly ZSM-5 (or HZSM-) 5).
  • the ZSM type molecular sieve has a silica-alumina molar ratio of SiO 2 /Al 2 O 3 of generally 10 to 500, preferably 15 to 200.
  • ZSM type molecular sieves of different kinds may be used singly or in combination of two or more kinds.
  • the molar ratio of silicon to aluminum is generally 2 to 70, preferably 3 to 50, in terms of SiO 2 /Al 2 O 3 .
  • Y type molecular sieves of different kinds may be used singly or in combination of two or more kinds.
  • the silica-alumina molar ratio SiO 2 /Al 2 O 3 is generally 10 to 150, preferably 15 to 65.
  • the beta-type molecular sieves of different kinds may be used singly or in combination of two or more.
  • the silica-alumina molar ratio SiO 2 /Al 2 O 3 is generally 5 to 100, preferably 6 to 35.
  • the L-type molecular sieves of different kinds may be used singly or in combination of two or more kinds.
  • the MCM type molecular sieve more specifically, for example, MCM-22 and MCM-41 can be mentioned.
  • the MCM type molecular sieve has a silica-alumina molar ratio of SiO 2 /Al 2 O 3 of generally 20 to 250, preferably 40 to 150.
  • MCM type molecular sieves of different kinds may be used singly or in combination of two or more kinds.
  • the molecular sieve is used in the form of a molecular sieve composition A comprising: a1) 20 to 80 parts by weight of said molecular sieve, b1) 20 to 80 parts by weight of a bond And c1) 0 to 10 parts by weight of an auxiliary agent.
  • the molecular sieve composition A comprises: a1) 50 to 80 parts by weight of the molecular sieve, b1) 20 to 50 parts by weight of a binder, and c1) 0.01 to 10 parts by weight (or 0.01 to 5 parts by weight) ) an auxiliary.
  • the molecular sieve is used in the form of a molecular sieve composition B comprising: a2) 90 to 99.99 parts by weight of the molecular sieve, and c2) 0.01 to 10 parts by weight Auxiliary.
  • the molecular sieve composition B comprises: a2) 95 to 99.99 parts by weight of the molecular sieve, and c2) 0.01 to 5 parts by weight of an auxiliary.
  • these molecular sieve compositions can be produced directly using commercially available products or by methods known in the art.
  • a method for producing the molecular sieve composition for example, a method of mixing a molecular sieve, a binder, and a co-extruding agent, a pore-expanding agent, and water, which are used as needed, into a mixture, and extruding a strip, It is then dried at 100-200 ° C for 1-24 hours and then calcined at 400-700 ° C for 1-10 hours.
  • the squeezing agent examples include those conventionally used in the art such as phthalocyanine powder, polyethylene glycol or sodium carboxymethylcellulose, and examples of the pore-expanding agent include citric acid and oxalic acid. Or those conventionally used in the art such as ethylenediaminetetraacetic acid.
  • the total amount of the extrusion aid and the pore-expanding agent added does not exceed 10% by weight of the total weight of the mixture.
  • Acid may also be added during molding as needed.
  • the acid include inorganic acids, acetic acid or an aqueous solution thereof, and particularly an aqueous solution of nitric acid, sulfuric acid or phosphoric acid. In general, the aqueous acid solution is added in an amount of from 50 to 90% by weight based on the total weight of the mixture.
  • the auxiliary agent may be introduced during the manufacture of the molecular sieve composition or after the molecular sieve composition is manufactured, or may be introduced into the molecular sieve first, and then the thus obtained Molecular sieves
  • the molecular sieve composition is not particularly limited.
  • the introduction method of the auxiliary agent for example, those conventionally used in the art, in particular, an ion exchange method or a dipping method can be mentioned.
  • the adjuvant is generally used in the form of a precursor.
  • the precursor of the metal auxiliary agent include a nitrate, a sulfate, an acetate, or a chloride salt of the metal.
  • the precursor of the boron auxiliary agent include boric acid or borax.
  • the precursor of the phosphorus auxiliary agent may, for example, be diammonium hydrogen phosphate or the like.
  • binder for example, those conventionally used in the production of molecular sieve compositions in the art may be mentioned, and more specifically, for example, silica sol, pseudoboehmite, and oxidation may be mentioned.
  • silica sol, pseudoboehmite, and oxidation may be mentioned.
  • These binders may be used singly or in combination of two or more.
  • auxiliary agent for example, Na, Ca, K, Be, Mg, Ba, V, Nb, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Cu are mentioned. , Zn, Ga, Ru, Pd, Pt, Ag, B, Al, Sn, P, Sb, La and Ce, especially Ca, K, Mg, Cr, Mo, Fe, Ni, Cu, Zn, Ga, Ru , Pd, Pt, Ag, B, Sn, P, La, and Ce. These additives may be used singly or in combination of two or more. As the auxiliary agent, Zn, Ga, Sn or a combination thereof is preferable.
  • M/ZSM-5 is particularly exemplified, wherein M is selected from Zn, Ga, Sn or a combination thereof.
  • the molecular sieve or molecular sieve composition containing the molecular sieve is particularly suitable for use as the aromatization catalyst.
  • the molecular sieve can be produced directly using commercially available products or by methods known in the art.
  • solid super acid for example, those conventionally used as a solid acid catalyst in the art may be mentioned, and more specifically, for example, a Lewis acid-supported solid super acid, an inorganic metal salt/Lewis acid may be mentioned.
  • Composite solid super acid and sulfated metal oxide type solid super acid may be mentioned. These solid superacids may be used singly or in combination of two or more. These solid superacids can be produced directly using commercially available products or by methods known in the art.
  • the Lewis acid supported solid super acid comprises a support and a Lewis acid supported on the support.
  • a carrier for example, a solid oxide of a Group IIIA element of the periodic table and a solid oxide of a Group IVA element, particularly SiO 2 , B 2 O 3 and Al 2 O 3 , may be mentioned. These carriers may be used singly or in combination of two or more.
  • the Lewis acid may, for example, be a halide of a Group VB element of the periodic table, a halide of a Group IIIA element, and a halide of a Group VA element, particularly a halide of a Group VB element of the periodic table.
  • a halide of a Group VA element more particularly PF 3 , AsF 3 , SbF 3 , BiF 3 , SbF 5 , TaF 3 , VF 3 and NbF 3 .
  • a fluoride is preferable.
  • These Lewis acids may be used singly or in combination of two or more kinds.
  • examples of the Lewis acid-supported solid super acid include SbF 5 /SiO 2 -Al 2 O 3 , PF 3 /Al 2 O 3 -B 2 O 3 , and AsF 3 /Al 2 O 3 -B 2 O 3 , SbF 3 /Al 2 O 3 -B 2 O 3 , BiF 3 /Al 2 O 3 -B 2 O 3 , TaF 3 /Al 2 O 3 -B 2 O 3 , VF 3 /Al 2 O 3 -B 2 O 3 and NbF 3 /Al 2 O 3 -B 2 O 3 .
  • These Lewis acid-supported solid superacids may be used singly or in combination of two or more.
  • the Lewis acid in the Lewis acid-supported solid super acid, is supported in an amount of from 1 to 30% by weight, preferably from 1 to 15% by weight, based on the weight of the carrier.
  • the inorganic metal salt/Lewis acid composite solid super acid is a composite composed of an inorganic metal salt and a Lewis acid.
  • the inorganic metal salt include inorganic acid salts of Group IB metal elements of the periodic table, inorganic acid salts of Group IIB metal elements, inorganic acid salts of Group VII metal elements, and Group VIII metal elements.
  • Inorganic acid salt As the inorganic acid salt, a hydrohalide salt, particularly a hydrochloride salt, is particularly mentioned. These inorganic metal salts may be used singly or in combination of two or more kinds.
  • the Lewis acid may, for example, be a halide of a Group VB element of the periodic table, a halide of a Group IIIA element, and a halide of a Group VA element, particularly a halide of a Group IIIA element of the periodic table.
  • a chloride is preferred.
  • These Lewis acids may be used singly or in combination of two or more kinds.
  • Specific examples of the inorganic metal salt/Lewis acid composite solid super acid include AlCl 3 -CuCl 2 . These inorganic metal salt/Lewis acid composite solid superacids may be used singly or in combination of two or more kinds.
  • the weight ratio of the inorganic metal salt to the Lewis acid is from 1 to 30:100, preferably from 1 to 15:100. .
  • the metal oxide for example, an oxide of a metal element of Group IVB of the periodic table (hereinafter referred to as an oxide) may be mentioned.
  • A an oxide of a metal element of Group IVB of the periodic table
  • the oxide A is a metal element of Group IIIA, a metal of Group VIIB, a noble metal of Group VIII, a metal element of Group VIII, a metal element of Group VIB or lanthanum of the periodic table.
  • An oxide obtained by modifying a modifying element such as a metal element hereinafter referred to as oxide B).
  • oxide B An oxide obtained by modifying a modifying element such as a metal element.
  • These metal oxides may be used singly or in combination of two or more.
  • These modifying elements may be used singly or in combination of two or more.
  • the oxide A include ZrO 2 , TiO 2 or a combination thereof.
  • Specific examples of the modifying element include Fe, Pt, Re, Al, W, Cr, Mo, Mn, or a combination thereof.
  • the oxide B the Group IIIA metal element of the periodic table is generally present in the form of an oxide, and the Group VIIB metal element is generally present in the form of an oxide, and the Group VIII noble metal element is generally in the form of an elemental metal.
  • the Group VIII base metal element is generally present in the form of an oxide
  • the Group VIB metal element is generally present in the form of an oxide
  • the lanthanide metal element is generally present in the form of an oxide.
  • the sulfated metal oxide type solid super acid include SO 4 2- /ZrO 2 , S 2 O 8 2- /ZrO 2 , SO 4 2- /TiO 2 , and SO 4 2- /ZrO 2 .
  • -Fe 3 O 4 Pt/SO 4 2- /TiO 2 , SO 4 2- /TiO 2 -ZrO 2 , SO 4 2- /TiO 2 -Al 2 O 3 , SO 4 2- /TiO 2 -WO 3 , SO 4 2- /ZrO 2 -Fe 2 O 3 -Cr 2 O 3 , SO 4 2- /ZrO 2 -WO 3 , SO 4 2- /TiO 2 -MoO 3 , SO 4 2- /ZrO 2 -Fe 2 O 3 -MnO 2 , W modified SO 4 2- /Al 2 O 3 -ZrO 2 and Mo modified SO 4 2- /Al 2 O 3 -ZrO 2 .
  • the weight ratio of the modifying element (in terms of oxide) to the oxide A in the form of an oxide is generally from 0.1 to 25:100, Preferably, it is from 0.5 to 10:100, and the weight ratio of the modifying element (calculated as metal) to the oxide A in the form of a simple metal is generally from 0.1 to 15: 100, preferably from 0.3 to 6:100.
  • the metal oxide in the sulfated metal oxide type solid super acid, has a sulfation rate of generally 0.5 to 25 wt%, preferably 1 to 8 wt%.
  • the method for producing the sulfated metal oxide type solid super acid is not particularly limited, and those conventionally known in the art may be used, and specific examples thereof include a precipitation-dipping method (for example, See the literature "Research progress in SO 4 2- /M x O y solid superacid catalysts, Applied Chemicals, 2014, vol 43, 1879-1883").
  • the composite metal oxide for example, an oxide of a metal element of Group IVB of the periodic table (hereinafter referred to as oxide C) and other oxides (hereinafter referred to as oxide D) may be mentioned.
  • oxide C an oxide of a metal element of Group IVB of the periodic table
  • oxide D other oxides
  • a composite oxide a composite oxide.
  • the oxide C include ZrO 2 , TiO 2 or a combination thereof, particularly ZrO 2 .
  • the oxide D include an oxide of a Group IIIA metal element of the periodic table, an oxide of a Group VII metal element, an oxide of a Group VIB metal element, and an oxide of a lanthanoid metal element.
  • B 2 O 3 , Al 2 O 3 , MnO 2 , Cr 2 O 3 , CrO 3 , MoO 3 , WO 3 , La 2 O 3 , and CeO 2 may be mentioned, particularly MnO 2 , MoO 3 , WO 3 , La 2 O 3 and CeO 2 and the like.
  • These oxides D may be used singly or in combination of two or more kinds.
  • the composite metal oxide for example, composite oxidation of ZrO 2 with one or more oxides D selected from the group consisting of MnO 2 , Mo 2 O 3 , WO 3 , La 2 O 3 and CeO 2 Things.
  • the ratio of the oxide C to the oxide D is, in parts by weight, generally 60 to 99.9: 0.1 to 40, preferably 60 to 99. : 1 to 40.
  • the composite metal oxide can be produced directly using commercially available products or according to methods known in the art.
  • the method for producing the composite metal oxide include a dipping method, a precipitation method, and the like. More specifically, according to the dipping method, tungsten, molybdenum, niobium, tantalum or manganese is impregnated into the zirconia as a salt solution, after immersion for 12 to 48 hours, the excess liquid is poured off, and dried at 100 to 200 ° C to remove moisture.
  • the step a2), the step b2), the step c2), the step a1) and the step b1) may each be carried out in one or more reactors, respectively.
  • a bed reactor in particular, a fixed bed reactor, a fluidized bed reactor, an ebullated bed reactor or a combination thereof may be mentioned.
  • the operation mode of the reactor may be either a batch mode or a continuous mode, and is not particularly limited.
  • one or more of the step a2), the step b2), the step c2), the step a1) and the step b1) may each independently be inert It is carried out under an atmosphere or a reducing atmosphere.
  • the inert atmosphere for example, N 2 , CO 2 , He, Ar, or a combination thereof may be mentioned.
  • the reducing atmosphere for example, CO, H 2 or a combination thereof can be mentioned.
  • the present invention also relates to a process for producing p-xylene comprising the steps of producing an aromatic hydrocarbon according to the method for producing an aromatic hydrocarbon of the present invention; and the step of separating para-xylene from the aromatic hydrocarbon.
  • a method of separating para-xylene from the aromatic hydrocarbon is not particularly limited, and those conventionally known in the art can be directly applied. Since the content of xylene in the aromatic hydrocarbon obtained by the present invention is relatively enriched as compared with the aromatic hydrocarbon obtained by the prior art method, the separation method exhibits a feature of reduced operating cost and reduced operational complexity. In general, after separation of the aromatic hydrocarbon, a para-xylene product having a purity of 70 to 99.9% by weight can be directly obtained.
  • terephthalic acid can be produced from the above-prepared paraxylene produced by the present invention.
  • the present invention also relates to a process for producing terephthalic acid, which comprises the steps of producing p-xylene according to the aforementioned method for producing para-xylene according to the present invention; and the step of converting p-xylene to terephthalic acid. .
  • a method of converting p-xylene to terephthalic acid is not particularly limited, and those conventionally known in the art can be directly applied.
  • a device for producing an aromatic hydrocarbon which is configured to be particularly suitable for use in carrying out the aforementioned method for producing an aromatic hydrocarbon of the present invention.
  • the apparatus for producing an aromatic hydrocarbon includes the following units:
  • a deesterification dimerization unit configured to be capable of contacting a compound having a lactone group with a deesterification dimerization catalyst under a deesterification dimerization reaction condition to produce a carbon octaolefin
  • An aromatization unit configured to produce an aromatic hydrocarbon by contacting the carbon octaolefin with an aromatization catalyst under aromatization reaction conditions.
  • the apparatus for producing an aromatic hydrocarbon may optionally further comprise a catalytic conversion unit, or the apparatus for producing the aromatic hydrocarbon may optionally further comprise a combination of a catalytic conversion unit and a catalytic hydrogenation unit.
  • the catalytic conversion unit is configured to enable catalytic conversion of a biomass material to produce a product comprising the compound having a lactone group
  • the catalytic hydrogenation unit is configured to be capable of catalytically hydrogenating the product The ratio of the compound having a lactone group in the product is increased.
  • the xylene carbon yield is calculated according to the following calculation formula.
  • Xylene carbon yield (%) mass (g) of xylene as a reaction product / carbon mass of a compound having a lactone group as a reaction raw material ⁇ 100%.
  • valerolactone 100 g was selected as a compound having a lactone group, and the mass of carbon contained was 68 g. If 50 g of xylene was obtained after the reaction, the xylene carbon yield at this time was 73.5%.
  • Catalyst ZSM-5 35 g of ZSM-5 having a ratio of silicon to aluminum of 38 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Angelica lactone enters the deesterification dimerization reactor R1
  • the upper layer of the catalyst bed is made of Al 2 O 3 -SiO 2 catalyst (manufactured according to Example 1 of CN1393425A), and the lower layer of the catalyst is the deesterification dimerization catalyst ZSM-5 produced above. Both catalysts are loaded at the same height.
  • the deesterification dimerization was carried out at 300 ° C under a weight space of 1.5 h -1 , the conversion rate was 87%, and the carbon octaolefin selectivity was 79%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized ZSM-5 catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product, the selectivity of xylene was 79%, and the yield of xylene carbon was 54.3%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Deesterification Dimerization Catalyst ZSM-5-B Manufacture: 65 g of hydrogen-type ZSM-5 having a ratio of silicon to aluminum of 100 was weighed and 35 g of pseudoboehmite was mixed, and 3.5 g of tianjing powder was added and uniformly mixed. Thereafter, 108 g of an aqueous nitric acid solution having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization ZSM-5 catalyst production Weigh 80 g of ZSM-5 with a ratio of 150 to 250 g and 20 g of pseudoboehmite, add 3.9 g of tianjing powder, and mix well. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. Got The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the depolymerization dimerization catalyst A is used in the upper layer of the catalyst bed, and the deesterification dimerization catalyst ZSM-5-B is used as the lower layer of the catalyst, and the filling heights of the two catalysts are the same.
  • the weight space velocity is 1.5 h -1 for deesterification dimerization
  • the conversion rate is 93%
  • the carbon octaolefin selectivity is 86%.
  • the carbon octaolefin enters the aromatization reactor R2.
  • the aromatized ZSM-5 catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product, the xylene selectivity was 83%, and the xylene carbon yield was 66.4%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Degreasing Dimerization Catalyst A Weigh 50 g of a silica-alumina ratio of 30 and 50 g of pseudo-boehmite, and add 3.9 g of tianjing powder, and mix well. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Deesterification Dimerization Catalyst B 35 g of ZSM-5 having a ratio of silicon to aluminum of 100 was weighed and mixed with 35 g of ⁇ -alumina auxiliary, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatized HZSM-5 catalyst 35 g of ZSM-5 with a ratio of 150 to 250 ⁇ was mixed with 35 g of pseudoboehmite, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the degreased dimerization catalyst A is used in the upper layer of the catalyst bed, and the deesterification dimerization catalyst B is used in the lower layer of the catalyst, and the loading rates of the two catalysts are the same.
  • the deesterification dimerization was carried out at a weight space of 1.5 h -1 at 280 ° C, the conversion rate was 99%, and the carbon octaolefin selectivity was 93%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized HZSM-5 catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product having a xylene selectivity of 86% and a xylene carbon yield of 79.2%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Degreasing Dimerization Catalyst B 35 g of ZSM-5 having a ratio of silicon to aluminum of 150 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatized La-HY catalyst 35 g of HY-type molecular sieve having a ratio of silica to alumina of 6 was weighed and 35 g of ⁇ -alumina auxiliary was mixed, and 2.7 g of sodium carboxymethylcellulose was added thereto, and the mixture was uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours, and calcined at 500 ° C for 2 hours to obtain a catalyst precursor, followed by immersion of 3% of La to prepare a La-Y catalyst.
  • the deesterification dimerization was carried out at 250 ° C under a weight space of 1.5 h -1 , the conversion rate was 99%, and the carbon octaolefin selectivity was 89%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized La-HY catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product, the selectivity of xylene was 88%, and the yield of xylene carbon was 77.5%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Deesterification Dimerization Catalyst B Weigh 60 g of Y-type molecular sieve with a ratio of silica to alumina of 8 and 40 g of ⁇ - The alumina auxiliaries were mixed, and 3.9 g of tianjing powder was added and mixed well. Thereafter, 68.6 g of a phosphoric acid aqueous solution having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization of MCM-22 catalyst 70 g of Y with a ratio of silicon to aluminum of 10 was weighed and 30 g of pseudoboehmite was mixed, and 3.9 g of tianjing powder was added and uniformly mixed. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the propanolactone enters the deesterification dimerization reactor R1, the upper layer of the catalyst bed is Amberlyst catalyst (Amberlyst TM 15WET), and the lower layer of the catalyst is the deesterification dimerization catalyst B produced above, and the two catalysts have the same filling height.
  • the deesterification dimerization was carried out at 180 ° C under a weight space of 1.5 h -1 , the conversion rate was 96%, and the carbon octaolefin selectivity was 81%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized MCM-22 catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product, the selectivity of xylene was 94%, and the yield of xylene carbon was 73.1%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Catalyst B 35 g of ZSM-5 having a ratio of silicon to aluminum of 100 was weighed and 45 g of pseudoboehmite was mixed, and 3.2 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization ZSM-5 Catalyst 35 g of ZSM-5 with a ratio of 150 to 250 ⁇ was mixed with 35 g of pseudoboehmite, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the upper layer of the catalyst bed is Amberlyst catalyst (Amberlyst TM 15WET), and the lower layer of the catalyst is the deesterification dimerization catalyst B produced above, and the two catalysts are loaded at the same height.
  • De-ester dimerization at 180 ° C and a weight space velocity of 1.5 h -1 , the conversion rate is 96%, and the carbon octaolefin selectivity is 91%. After separation, the carbon octaolefin enters the aromatization reactor R2.
  • the aromatized ZSM-5 catalyst was aromatized under the action of a space velocity of 2 h -1 to obtain a material containing a xylene product, the xylene selectivity was 86%, and the xylene carbon yield was 75.1%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Deesterification Dimerization Catalyst Weigh 60 grams of Y with a ratio of 10 to 40 grams of pseudo-boehmite, add 3.9 grams of tianjing powder, and mix well. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours, and calcined at 500 ° C for 2 hours to obtain a catalyst precursor, followed by introduction of 3% La to obtain a La-HY catalyst by impregnation.
  • Aromatization ZSM-5 Catalyst 35 g of ZSM-5 with a ratio of 150 to 250 ⁇ was mixed with 35 g of pseudoboehmite, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • ⁇ -valerolactone enters the deesterification dimerization reactor R1, the catalyst bed deesterification dimerization catalyst, deesterification dimerization at 180 ° C, weight space velocity of 1.5 h -1 , conversion rate of 91%, carbon
  • the octaolefin selectivity is 89%.
  • the carbon octaolefin enters the aromatization reactor R2, and aromatization is carried out at 550 ° C, aromatized ZSM-5 catalyst at a space velocity of 1.5 h -1 to obtain
  • the material of the xylene product had a xylene selectivity of 86% and a xylene carbon yield of 69.7%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained. In addition, some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Catalyst A was produced: 50 g of a silica with a ratio of silica to alumina of 20 was weighed and 50 g of pseudoboehmite was mixed, and 3.9 g of tianjing powder was added and uniformly mixed. Then add the mass percentage of nitric acid A 68.6 g aqueous solution of nitric acid having a content of 5.5% was kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Dimerization of catalyst B 65 g of hydrogen-type ZSM-5 having a ratio of silicon to aluminum of 100 was weighed and 35 g of pseudoboehmite was mixed, and 3.5 g of tianjing powder was added and uniformly mixed. Thereafter, 108 g of an aqueous nitric acid solution having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization ZSM-5 catalyst production Weigh 80 g of ZSM-5 with a ratio of 150 to 250 g and 20 g of pseudoboehmite, add 3.9 g of tianjing powder, and mix well. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the upper layer of the catalyst bed is deesterified A, and the lower layer of the catalyst is deesterified dimerization catalyst B, and the two catalysts have the same filling height.
  • the deesterification dimerization was carried out at 280 ° C under a weight space of 1.5 h -1 , the conversion rate was 96%, and the carbon octaolefin selectivity was 93%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized ZSM-5 catalyst was aromatized under the action of a space velocity of 1.5 h -1 to obtain a material containing a xylene product, the selectivity of xylene was 88%, and the yield of xylene carbon was 78.6%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Catalyst A was produced: 50 g of a silica with a ratio of silica to alumina of 20 was weighed and 50 g of pseudoboehmite was mixed, and 3.9 g of tianjing powder was added and uniformly mixed. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Dimerization of catalyst B 65 g of hydrogen-type ZSM-5 having a ratio of silicon to aluminum of 100 was weighed and 35 g of pseudoboehmite was mixed, and 3.5 g of tianjing powder was added and uniformly mixed. Thereafter, 108 g of an aqueous nitric acid solution having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization ZSM-5 catalyst production Weigh 80 g of ZSM-5 with a ratio of 150 to 250 g and 20 g of pseudoboehmite, add 3.9 g of tianjing powder, and mix well. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the upper layer of the catalyst bed is deesterified A, and the lower layer of the catalyst is deesterified dimerization catalyst B, and the two catalysts have the same filling height.
  • the deesterification dimerization was carried out at 280 ° C under a weight space of 1.5 h -1 , the conversion rate was 97%, and the carbon octaolefin selectivity was 92%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • the aromatized ZSM-5 catalyst was aromatized under the action of a space velocity of 1.5 h -1 to obtain a material containing a xylene product having a xylene selectivity of 90% and a xylene carbon yield of 80.3%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Degreasing Dimerization Catalyst A 60 g of Y with a ratio of silica to alumina of 6 was weighed and 40 g of pseudoboehmite was mixed, and 3.9 g of tianjing powder was added and uniformly mixed. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Degreasing Dimerization Catalyst B 35 g of ZSM-5 having a ratio of silicon to aluminum of 50 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatized Zn-ZSM-5 catalyst 35 g of ZSM-5 type molecular sieve with a ratio of 150 to 250 ⁇ was mixed with 35 g of ⁇ -alumina auxiliary, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a pre-prepared catalyst. The pre-prepared catalyst was impregnated with Zn at a loading of 1.5% of the mass of the pre-prepared catalyst, and dried and calcined to obtain Zn-ZSM-5.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the upper layer of the catalyst bed is the degreased dimerization catalyst A produced above, and the lower layer of the catalyst is the degreased dimerization catalyst B produced above, and the two catalysts are loaded at the same height.
  • the deesterification dimerization was carried out at 250 ° C under a weight space of 1.5 h -1 , the conversion rate was 99%, and the carbon octaolefin selectivity was 96%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • aromatized Zn-ZSM-5 catalyst aromatization under the action of space velocity of 1.5 h -1 to obtain a material containing xylene product, the selectivity of xylene is 91%, and the yield of xylene carbon is 86.5. %.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction. Further, the obtained olefin is separated to obtain a light aromatic hydrocarbon such as benzene toluene, and at the same time, high purity PX is obtained.
  • some are obtained as a heavy component from the column.
  • the hydrogen from the top of the column can be used as a raw material for the hydrogenation of oligomers into gasoline and diesel, and the heavy components of the tower can be used as a raw material for diesel or for combustion.
  • Degreasing Dimerization Catalyst A 60 g of Y with a ratio of silica to alumina of 6 was weighed and 40 g of pseudoboehmite was mixed, and 3.9 g of tianjing powder was added and uniformly mixed. Then, 68.6 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Degreasing Dimerization Catalyst B 35 g of ZSM-5 having a ratio of silicon to aluminum of 50 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatization Ga-ZSM-5 catalyst 35 g of ZSM-5 type molecular sieve with a ratio of 150 to 250 ⁇ was mixed with 35 g of ⁇ -alumina auxiliary, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a pre-prepared catalyst. The pre-prepared catalyst was impregnated with Zn at a loading of 1.5% of the mass of the pre-prepared catalyst, and calcined to obtain Ga-ZSM-5.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the degreased dimerization catalyst A produced above in the upper layer of the catalyst bed, and the degreasing dimerization catalyst B produced as described above is used in the lower layer of the catalyst, and the two catalysts have the same filling height.
  • the deesterification dimerization was carried out at 250 ° C under a weight space of 1.5 h -1 , the conversion rate was 99%, and the carbon octaolefin selectivity was 95%. After separation, the carbon octaolefin entered the aromatization reactor R2.
  • Degreasing Dimerization Catalyst A 35 g of ZSM-5 having a ratio of silicon to aluminum of 150 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Degreasing Dimerization Catalyst B 35 g of ZSM-5 having a ratio of silica to alumina of 25 was weighed and 35 g of pseudoboehmite was mixed, and 2.7 g of tianjing powder was added and uniformly mixed. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • Aromatized ZSM-5 catalyst 35 g of ZSM-5 type molecular sieve with a ratio of 500 to 500 ⁇ was mixed with 35 g of ⁇ -alumina auxiliary, and 2.7 g of tianjing powder was added and mixed uniformly. Then, 48 g of an aqueous solution of nitric acid having a nitric acid content of 5.5% was added, kneaded and extruded. The catalyst precursor was dried at 120 ° C for 8 hours and calcined at 500 ° C for 2 hours to obtain a catalyst.
  • the ⁇ -valerolactone enters the deesterification dimerization reactor R1, the degreased dimerization catalyst A is used as the upper layer of the catalyst bed, and the degreased dimerization catalyst B produced as described above is used for the lower layer of the catalyst, and the two catalysts have the same filling height.
  • the deesterification dimerization was carried out at 250 ° C under a weight space of 1.5 h -1 , and the conversion rate was 83% because the acidity of the degreased dimerization catalyst B was too strong, resulting in rapid coking of intermediates such as carbon tetraolefins.
  • the selectivity to carbon octaolefin was significantly reduced to 26%.
  • the aromatization reactor R2 After separation, it enters the aromatization reactor R2, and aromatizes the aromatized ZSM-5 catalyst at 450 ° C under a space velocity of 1.5 h -1 to obtain a material containing xylene.
  • the selectivity of xylene is 56%.
  • the unreacted olefin can be returned to the dimer reactor to continue the reaction.
  • the performance of the catalyst is rapidly lowered, and high purity PX cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种芳香烃的制造方法、一种对二甲苯和对苯二甲酸的制造方法、以及一种芳香烃的制造装置。所述芳香烃的制造方法至少包括从具有内酯基团的化合物制造碳八烯烃的步骤和从碳八烯烃制造芳香烃的步骤。所述芳香烃的制造方法具有芳香烃收率高并且二甲苯选择性高的特点。

Description

芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置 技术领域
本发明涉及一种芳香烃的制造方法,特别是一种二甲苯富集的芳香烃产物的制造方法。本发明进一步涉及基于所述芳香烃的制造方法来制造对二甲苯(以下有时简称为PX)和对苯二甲酸的方法、以及一种芳香烃的制造装置。
背景技术
芳香烃是石油化工工业的重要基础原料,广泛应用于聚酯、化纤、橡胶等诸多领域。苯、甲苯、二甲苯是芳香烃中应用最广泛的三种芳香烃,其中PX的需求量和使用面最为广泛。目前国内外芳香烃的生产主要依赖于不可再生的化石资源,但是由于化石资源的储量有限性和不可再生性,使得芳香烃的生产成本愈见高涨。另外,化石资源的不断开发利用导致大量排放温室气体,所引起的一系列环境问题日趋严重。因此,发展从可再生资源生产芳香烃(尤其是二甲苯)的技术具有重要意义。
作为可再生资源,以生物质为原料来制造芳香烃(尤其是二甲苯)是目前的技术研究热点之一。现有技术存在将生物质转化为芳香烃的报道,也公开了多种为此目的而使用的平台化合物(比如参见Katherine Bourzac,From biomass to chemicals in one step,MIT Technology Review,2010-03-29;US20090227823和US20110257416A1)。
但是,这些现有技术普遍存在的缺点是,从生物质向芳香烃的转化过程中的碳利用率较低,导致芳香烃收率也较低。另外,这些现有技术普遍存在的另一个缺点是,使用现有技术公开的平台化合物来制造芳香烃时,所获得的芳香烃中二甲苯(比如PX)的比例较低,导致后续为了获得高纯PX产品而进行的分离和纯化步骤的操作成本和操作复杂度增加。
发明内容
鉴于前述情况,本发明的发明人认为,需要开发一种芳香烃的制造方法,在比如应用于从生物质向芳香烃的转化过程中,与现有技术 的芳香烃制造方法相比,其表现出改善的碳利用率并进而实现改善的芳香烃收率。进一步地,本发明的发明人还认为,需要开发一种芳香烃的制造方法,与现有技术的芳香烃制造方法相比,其所获得的芳香烃产物中二甲苯的比例增加,由此制造二甲苯富集的芳香烃产物。
本发明的发明人通过刻苦的研究发现,通过以特定的具有内酯基团的化合物作为平台化合物,并结合特定顺序的反应步骤,就可以解决现有技术存在的前述问题,并由此完成了本发明。
具体而言,本发明涉及以下方面的内容。
1.一种芳香烃的制造方法,包括以下步骤a1)和b1)或者包括以下步骤a2)、b2)和c2):
a1)在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃的步骤;和
b1)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤,
或者
a2)在脱酯反应条件下,使具有内酯基团的化合物与脱酯催化剂接触而制造碳四烯烃的步骤;和
b2)在二聚反应条件下,使所述碳四烯烃与二聚催化剂接触而制造碳八烯烃的步骤;和
c2)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤,
其中,所述具有内酯基团的化合物具有结构式(I):
Figure PCTCN2016000314-appb-000001
式(I)中,R1选自任选取代的C1-20直链或支链亚烷基、任选取代的C2-20直链或支链亚烯基、任选取代的C2-20直链或支链亚炔基、任选取代的C3-20亚环烷基和任选取代的C6-20亚芳基,优选选自任选取代的C2-10直链或支链亚烷基和任选取代的C2-10直链或支链亚烯基,更优选C2-5直链或支链亚烷基,进一步优选1,2-亚乙基;R2选自氢、任选取代的C1-20直链或支链烷基和羧基,优选选自氢和任选取代的C1-10直链或支链烷基,更优选选自氢和C1-4直链或支链烷基。
2.根据前述任一方面所述的制造方法,其中所述脱酯二聚反应条 件包括:反应温度160至400℃,优选160至300℃,反应压力0.1至8MPa,优选0.1至4MPa,所述具有内酯基团的化合物的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述脱酯反应条件包括:反应温度100至350℃,优选120至250℃,反应压力0.1至8MPa,优选0.1至4MPa,所述具有内酯基团的化合物的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述二聚反应条件包括:反应温度160至400℃,优选160至300℃,反应压力0.1至8MPa,优选0.1至4MPa,所述碳四烯烃的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述芳构化反应条件包括:反应温度420至800℃,优选450至550℃,反应压力0.1至8MPa,优选0.1至4MPa,所述碳八烯烃的重量空速0.3至10小时-1,优选0.3至5小时-1
3.根据前述任一方面所述的制造方法,其中所述具有内酯基团的化合物衍生自生物质材料,优选衍生自木糖醇、葡萄糖、纤维二糖、纤维素、半纤维素和木质素中的一种或多种、或者衍生自造纸污泥、废纸、甘蔗渣、葡萄糖、木材、玉米芯、玉米秸和稻草秸秆中的一种或多种。
4.根据前述任一方面所述的制造方法,其中所述脱酯二聚催化剂选自酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种;所述脱酯催化剂选自酸性氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选选自酸性氧化物、强酸性阳离子交换树脂和固体超强酸中的一种或多种,更优选选自强酸性阳离子交换树脂和固体超强酸中的一种或多种;所述二聚催化剂选自酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选分子筛;所述芳构化催化剂选自分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选分子筛,特别是ZSM-5或M/ZSM-5,其中M选自Zn、Ga、Sn或其组合。
5.根据前述任一方面所述的制造方法,其中所述酸性氧化物选自元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物中的一种或多种,优选选自SiO2和Al2O3中的一种或多种,更优选Al2O3、Al2O3-SiO2或SiO2
所述铋的氧化物是Bi2O3
所述强酸性阳离子交换树脂选自大孔磺酸型阳离子交换树脂和卤素改性(优选全氟化)磺酸型阳离子交换树脂中的一种或多种,更优选选自
Figure PCTCN2016000314-appb-000002
系列树脂和
Figure PCTCN2016000314-appb-000003
系列树脂中的一种或多种。
6.根据前述任一方面所述的制造方法,其中所述脱酯二聚催化剂的酸强度D1和所述芳构化催化剂的酸强度D2符合以下关系式(I),
D1>D2     (I)
或者,所述脱酯催化剂的酸强度D11、所述二聚催化剂的酸强度D12和所述芳构化催化剂的酸强度D2符合以下关系式(II),
D11>D2>D12     (II)。
7.根据前述任一方面所述的制造方法,其中所述分子筛选自ZSM型分子筛(优选选自ZSM-5、ZSM-11、ZSM-22、ZSM-23和ZSM-38中的一种或多种)、Y型分子筛、beta型分子筛、L型分子筛、MCM型分子筛(优选选自MCM-22和MCM-41中的一种或多种)中的一种或多种,优选选自ZSM-5、Y型分子筛、beta型分子筛和MCM-41中的一种或多种,更优选ZSM-5。
8.根据前述任一方面所述的制造方法,其中所述分子筛是分子筛组合物,其包含以下组份a1)、b1)和c1)或者包含以下组分a2)和c2):
a1)20至80重量份(优选50至80重量份)所述分子筛,和
b1)20至80重量份(优选20至50重量份)粘结剂(优选选自硅溶胶、拟薄水铝石、氧化铝、经酸处理后粘土、高岭土、蒙脱土、膨润土中的一种或多种,更优选选自氧化铝、拟薄水铝石和蒙脱土中的一种或多种),和
c1)0至10重量份(优选0.01至10重量份,更优选0.01至5重量份)助剂,其中所述助剂选自Na、Ca、K、Be、Mg、Ba、V、Nb、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Al、Sn、P、Sb、La和Ce中的一种或多种,优选选自Ca、K、Mg、Cr、Mo、Fe、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Sn、P、La和Ce中的一种或多种,更优选选自Zn、Ga和Sn中的一种或多种,
或者
a2)90至99.99重量份(优选95至99.99重量份)所述分子筛,和
c2)0.01至10重量份(优选0.01至5重量份)助剂,其中所述助剂选自Na、Ca、K、Be、Mg、Ba、V、Nb、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Al、Sn、P、Sb、La和Ce中的一种或多种,优选选自Ca、K、Mg、Cr、Mo、Fe、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Sn、P、La和Ce中的一种或多种,更优选选自Zn、Ga和Sn中的一种或多种。
9.根据前述任一方面所述的制造方法,其中在所述步骤a1)中,使所述具有内酯基团的化合物与包含所述脱酯二聚催化剂的催化剂床层接触而制造碳八烯烃,所述催化剂床层包含至少两层的所述脱酯二聚催化剂,其中任意相邻两层的所述脱酯二聚催化剂的酸强度不同。
10.根据前述任一方面所述的制造方法,其中所述固体超强酸选自路易斯酸负载型固体超强酸、无机金属盐/路易斯酸复合型固体超强酸和硫酸化金属氧化物型固体超强酸中的一种或多种。
11.根据前述任一方面所述的制造方法,其中所述路易斯酸负载型固体超强酸的载体选自元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物中的一种或多种,优选选自SiO2、B2O3和Al2O3中的一种或多种,
所述路易斯酸负载型固体超强酸的路易斯酸选自元素周期表第VB族元素的卤化物(优选氟化物)、第IIIA族元素的卤化物(优选氟化物)和第VA族元素的卤化物(优选氟化物)中的一种或多种,优选选自元素周期表第VB族元素的卤化物(优选氟化物)和第VA族元素的卤化物(优选氟化物)中的一种或多种,进一步优选选自PF3、AsF3、SbF3、BiF3、SbF5、TaF3、VF3和NbF3中的一种或多种,
所述路易斯酸负载型固体超强酸优选选自SbF5/SiO2-Al2O3、PF3/Al2O3-B2O3、AsF3/Al2O3-B2O3、SbF3/Al2O3-B2O3、BiF3/Al2O3-B2O3、TaF3/Al2O3-B2O3、VF3/Al2O3-B2O3和NbF3/Al2O3-B2O3中的一种或多种,
所述无机金属盐/路易斯酸复合型固体超强酸的无机金属盐选自元素周期表第IB族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)、第IIB族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)、第VII族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)和第VIII族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)中的一种或多种,优选CuCl2
所述无机金属盐/路易斯酸复合型固体超强酸的路易斯酸选自元素周期表第VB族元素的卤化物(优选氯化物)、第IIIA族元素的卤化物(优选氯化物)和第VA族元素的卤化物(优选氯化物)中的一种或多种,优选选自元素周期表第IIIA族元素的卤化物(优选氯化物)中的一种或多种,优选AlCl3
所述无机金属盐/路易斯酸复合型固体超强酸优选AlCl3-CuCl2
所述硫酸化金属氧化物型固体超强酸的金属氧化物是元素周期表第IVB族金属元素的氧化物A(优选选自ZrO2和TiO2中的一种或多种)或者是所述氧化物A被选自元素周期表第IIIA族金属元素(以氧化物形式存在)、第VIIB族金属元素(以氧化物形式存在)、第VIII族贵金属元素(以金属单质形式存在)、第VIII族贱金属元素(以氧化物形式存在)、第VIB族金属元素(以氧化物形式存在)和镧系金属元素(以氧化物形式存在)中的一种或多种改性元素(优选选自Fe、Pt、Re、Al、W、Cr、Mo和Mn中的一种或多种)改性而获得的氧化物B,
所述硫酸化金属氧化物型固体超强酸优选选自SO4 2-/ZrO2、S2O8 2 -/ZrO2、SO4 2-/TiO2、SO4 2-/ZrO2-Fe3O4、Pt/SO4 2-/TiO2、SO4 2-/TiO2-ZrO2、SO4 2-/TiO2-Al2O3、SO4 2-/TiO2-WO3、SO4 2-/ZrO2-Fe2O3-Cr2O3、SO4 2-/ZrO2-WO3、SO4 2-/TiO2-MoO3、SO4 2-/ZrO2-Fe2O3-MnO2、W改性SO4 2-/Al2O3-ZrO2和Mo改性SO4 2-/Al2O3-ZrO2中的一种或多种。
12.根据前述任一方面所述的制造方法,其中在所述路易斯酸负载型固体超强酸中,相对于所述载体的重量,所述路易斯酸的负载量为1至30wt%,优选1至15wt%,
所述无机金属盐/路易斯酸复合型固体超强酸中,所述无机金属盐与所述路易斯酸的重量比例为1至30∶100,优选1至15∶100,
所述硫酸化金属氧化物型固体超强酸中,所述金属氧化物的硫酸化率为0.5至25wt%,优选1至8wt%,
所述氧化物B中,以氧化物形式存在的所述改性元素(以氧化物计)与所述氧化物A的重量比例为0.1至25∶100,优选0.5至10∶100,以金属单质形式存在的所述改性元素(以金属计)与所述氧化物A的重量比例为0.1至15∶100,优选0.3至6∶100。
13.根据前述任一方面所述的制造方法,其中所述复合金属氧化物 是元素周期表第IVB族金属元素的氧化物C(优选选自ZrO2和TiO2中的一种或多种,更优选ZrO2)与选自元素周期表第IIIA族金属元素的氧化物、第VII族金属元素的氧化物、第VIB族金属元素的氧化物和镧系金属元素的氧化物中的一种或多种氧化物D(优选选自B2O3、Al2O3、MnO2、Cr2O3、CrO3、MoO3、WO3、La2O3和CeO2中的一种或多种,更优选选自MnO2、MoO3、WO3、La2O3和CeO2中的一种或多种)的复合氧化物,优选ZrO2与选自MnO2、Mo2O3、WO3、La2O3和CeO2中的一种或多种氧化物D的复合氧化物。
14.根据前述任一方面所述的制造方法,其中所述氧化物C与所述氧化物D比例,以重量份数计,为60至99.9∶0.1至40,优选60至99∶1至40。
15.根据前述任一方面所述的制造方法,还包括使生物质材料进行催化转化,并任选随后催化氢化,以制造所述具有内酯基团的化合物的步骤。
16.一种对二甲苯的制造方法,包括以下步骤:
按照前述任一方面所述的方法制造芳香烃的步骤;和
从所述芳香烃中分离出对二甲苯的步骤。
17.一种对苯二甲酸的制造方法,包括以下步骤:
按照前述任一方面所述的方法制造对二甲苯的步骤;和
将对二甲苯转化为对苯二甲酸的步骤。
18.一种芳香烃的制造装置,包括以下单元:
脱酯二聚单元,被构造为能够在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃;和
芳构化单元,被构造为能够在芳构化反应条件下,使碳八烯烃与芳构化催化剂接触而制造芳香烃,
所述制造装置任选进一步包括催化转化单元、或者催化转化单元与催化氢化单元的组合:
催化转化单元,被构造为能够使生物质材料进行催化转化而生成包含具有内酯基团的化合物的产物;
催化氢化单元,被构造为能够通过催化氢化所述产物而提高所述具有内酯基团的化合物在所述产物中的比例。
技术效果
根据一个实施方式,本发明的芳香烃的制造方法在比如应用于从生物质向芳香烃的转化过程中,可以有效地增加该转化过程中的碳利用率,减少生物质材料中的碳转化为气相碳和积碳的比例,能够提高芳香烃收率,并最终提高二甲苯收率。举例而言,采用本发明的芳香烃的制造方法,二甲苯碳收率最高可达到86.5%,优选在60%以上。
根据一个实施方式,本发明的芳香烃的制造方法通过使用特定的具有内酯基团的化合物作为平台化合物,并结合特定顺序的反应步骤,与现有技术相比,能够显著提高所述平台化合物的转化率,同时显著提高相对于二甲苯选择性。举例而言,采用本发明的芳香烃的制造方法,所述平台化合物的转化率最高可达到99%或更高,而二甲苯选择性最高可达到94%或更高。
根据一个实施方式,与现有技术相比,本发明的芳香烃的制造方法能够显著提高催化剂的使用寿命,特别是可以显著延缓催化剂结焦。
根据一个实施方式,采用本发明的芳香烃的制造方法,与现有技术相比,能够直接获得二甲苯显著更为富集的芳香烃产物,其中二甲苯在该芳香烃产物中的含量一般大于30wt%,优选50wt%以上,更优选70wt%以上或更高。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本发明所属领域内一般技术人员常理解的相同意思。在有冲突的情况下,包括定义在内,以本说明书为准。
当本说明书以“本领域技术人员已知的”或者“本领域常规已知的”或类似用语来描述材料、方法、部件、装置或设备时,该术语表示本说明书包括提出本申请时本领域常规使用的那些,但也包括目前还不常用,但将变成本领域公认为适用于类似目的的那些。
此外,本说明书提到的各种范围均包括它们的端点在内,除非另 有明确说明。此外,当对量、浓度或其它值或参数给出范围、一个或多个优选范围或很多优选上限值与优选下限值时,应把它理解为具体公开了由任意对任意范围上限值或优选值与任意范围下限值或优选值所形成的所有范围,不论是否一一公开了这些数值对。
在本说明书的上下文中,除非另有明确定义,或者该含义超出了本领域技术人员的理解范围,3个碳原子以上的烃或烃衍生物基团(比如丙基、丙氧基、丁基、丁烷、丁烯、丁烯基、己烷等)在未冠以词头“正”时均具有与冠以词头“正”时相同的含义。比如,丙基一般理解为正丙基,而丁基一般理解为正丁基。
在本说明书的上下文中,除非另有明确定义,转化率、收率和选择性分别指的是单程转化率、单程收率和单程选择性。
在本说明书的上下文中,表述“任选取代”指的是任选被一个或多个(比如1至3个、1至2个或者1个)选自任选被一个或多个羧基或羟基取代的C1-6直链或支链烷基、任选被一个或多个羧基或羟基取代的C2-6直链或支链烯基、任选被一个或多个羧基或羟基取代的C2-6直链或支链炔基、任选被一个或多个羧基或羟基取代的C3-10环烷基、任选被一个或多个羧基或羟基取代的C6-10芳基、羧基和羟基的取代基取代。
在本说明书的上下文中,术语“卤素”指的是氟、氯、溴和碘,优选氯和溴。
在本说明书的上下文中,在没有明确指明的情况下,所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
根据本发明的一个实施方式,涉及一种芳香烃的制造方法,其中所述芳香烃的制造方法包括以下步骤a1)和b1):
a1)在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃的步骤;和
b1)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤。
根据本发明的一个实施方式,为了进行所述步骤a1),在所述脱酯二聚反应条件下,使所述具有内酯基团的化合物与包含所述脱酯二聚催化剂的催化剂床层接触而制造碳八烯烃。从降低积碳、提高最终的芳香烃收率等角度出发,所述催化剂床层优选包含至少两层的所述脱 酯二聚催化剂,其中任意相邻两层的所述脱酯二聚催化剂是不同的。根据需要,所述任意相邻两层的所述脱酯二聚催化剂的重量比比如可以是10/1至1/10。具体举例而言,所述催化剂床层比如至少包含装填在上层(先与所述具有内酯基团的化合物接触)的脱酯二聚催化剂A和装填在下层的脱酯二聚催化剂B(后与所述具有内酯基团的化合物接触),其中所述脱酯二聚催化剂A和所述脱酯二聚催化剂B不同,其重量比为10/1至1/10。
根据本发明的该实施方式,所述具有内酯基团的化合物与各层脱酯二聚催化剂先后分别接触。从降低积碳、提高最终的芳香烃收率等角度出发,优选的是,就任意相邻两层的所述脱酯二聚催化剂而言,首先与所述具有内酯基团的化合物接触的脱酯二聚催化剂(以下称为第一脱酯二聚催化剂)与随后与所述具有内酯基团的化合物接触的脱酯二聚催化剂(以下称为第二脱酯二聚催化剂)相比是不同的,并且二者至少具有不同的酸强度。更为优选的是,所述第一脱酯二聚催化剂的酸强度大于所述第二脱酯二聚催化剂的酸强度。举例而言,所述第一脱酯二聚催化剂的酸强度比所述第二脱酯二聚催化剂的酸强度可能大5%、10%、30%、50%或者更高。在此,所述酸强度比如可以用Hammett函数H0表示,并且可以按照本领域常规已知的任何方法进行测量或者从现有技术的技术手册中获知,在此不再赘述。
根据本发明的另一个实施方式,涉及一种芳香烃的制造方法,其中所述芳香烃的制造方法包括以下步骤a2)、b2)和c2):
a2)在脱酯反应条件下,使具有内酯基团的化合物与脱酯催化剂接触而制造碳四烯烃的步骤;
b2)在二聚反应条件下,使所述碳四烯烃与二聚催化剂接触而制造碳八烯烃的步骤;和
c2)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤。
根据本发明的一个实施方式,所述具有内酯基团的化合物具有结构式(I):
Figure PCTCN2016000314-appb-000004
式(I)中,R1选自任选取代的C1-20直链或支链亚烷基、任选取代 的C2-20直链或支链亚烯基、任选取代的C2-20直链或支链亚炔基、任选取代的C3-20亚环烷基和任选取代的C6-20亚芳基;R2选自氢、任选取代的C1-20直链或支链烷基和羧基。
根据本发明的一个实施方式,在所述式(I)中,所述R1选自任选取代的C2-10直链或支链亚烷基和任选取代的C2-10直链或支链亚烯基,优选C2-5直链或支链亚烷基,进一步优选1,2-亚乙基。
根据本发明的一个实施方式,在所述式(I)中,所述R2选自氢和任选取代的C1-10直链或支链烷基,优选选自氢和C1-4直链或支链烷基。
根据本发明的一个实施方式,作为所述具有内酯基团的化合物,特别可以举出γ-戊内酯。
在本发明的芳香烃的制造方法中,碳四烯烃通常指的是多种具有4个碳原子的烯烃的混合物(中间产物),一般包括1-丁烯、2-丁烯或2-甲基丙烯等,而碳八烯烃通常指的是多种具有8个碳原子的烯烃的混合物(中间产物),一般包括2,4,4-三甲基戊烯、2,5-二甲基己二烯、3,4-二甲基-2-己烯、3-甲基-2-庚烯、5-甲基-3-庚烯、3-甲基-3庚烯或辛烯等,但本发明并不拟限定这些中间产物的组成。
根据本发明的一个实施方式,所述步骤a1)的脱酯二聚反应条件包括:反应温度160至400℃,反应压力0.1至8MPa(表压),所述具有内酯基团的化合物的重量空速0.1至15小时-1
根据本发明的另一个实施方式,所述步骤a1)的脱酯二聚反应条件包括:反应温度160至300℃,反应压力0.1至4MPa(表压),所述具有内酯基团的化合物的重量空速0.6至5小时-1
根据本发明的一个实施方式,所述步骤a2)的脱酯反应条件包括:反应温度100至350℃,反应压力0.1至8MPa(表压),所述具有内酯基团的化合物的重量空速0.1至15小时-1
根据本发明的另一个实施方式,所述步骤a2)的脱酯反应条件包括:反应温度120至250℃,反应压力优选0.1至4MPa(表压),所述具有内酯基团的化合物的重量空速0.6至5小时-1
根据本发明的一个实施方式,所述步骤b2)的二聚反应条件包括:反应温度160至400℃,反应压力0.1至8MPa(表压),所述碳四烯烃的重量空速0.1至15小时-1
根据本发明的另一个实施方式,所述步骤b2)的二聚反应条件包 括:反应温度160至300℃,反应压力0.1至4MPa(表压),所述碳四烯烃的重量空速0.6至5小时-1
根据本发明的一个实施方式,所述步骤b1)或所述步骤c2)的芳构化反应条件包括:反应温度420至800℃,反应压力0.1至8MPa(表压),所述碳八烯烃的重量空速0.3至10小时-1
根据本发明的另一个实施方式,所述步骤b1)或所述步骤c2)的芳构化反应条件包括:反应温度450至550℃,反应压力0.1至4MPa(表压),所述碳八烯烃的重量空速0.3至5小时-1
根据本发明的一个实施方式,所述具有内酯基团的化合物衍生自生物质材料。作为所述生物质材料,比如可以举出本领域常规用于芳香烃制造用途的那些,具体比如可以举出木糖醇、葡萄糖、纤维二糖、纤维素、半纤维素和木质素等。这些生物质材料可以单独使用,也可以两种或多种组合使用。
根据本发明的另一个实施方式,作为所述生物质材料,具体比如还可以举出造纸污泥、废纸、甘蔗渣、葡萄糖、木材、玉米芯、玉米秸和稻草秸秆等。这些生物质材料可以单独使用,也可以两种或多种组合使用。在此,以重量百分比计,所述生物质材料中纤维素含量通常为30-99%,半纤维素含量通常为0-50%,木质素含量通常为1-40%。
根据本发明的一个实施方式,对以所述生物质材料为原料衍生所述具有内酯基团的化合物的方法没有特别的限定,可以采用本领域常规已知的那些。举例而言,所述衍生方法比如可以包括使所述生物质材料进行催化转化(比如水解脱氧),直接制造所述具有内酯基团的化合物(特别是γ-戊内酯)的步骤(比如可以参见Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts,Catal.Sci.Technol.,2013,3,927-931;Production of levulinic acid and gamma-valerolactone(GVL)from cellulose using GVL as a solvent in biphasic systems,Energy Environ.Sci.,2012,5,8199-8203)。或者,所述衍生方法比如可以包括使所述生物质材料进行催化转化,并随后催化氢化,以制造所述具有内酯基团的化合物的步骤。更具体而言,所述生物质材料首先经酸解、超临界水解、催化部分氧化或金属氯化物催化法等进行催化转化,以制造乙酰丙酸(比如可以参见Effective Production of Levulinic Acid from Biomass through  Pretreatment Using Phosphoric Acid,Hydrochloric Acid,or Ionic Liqmd,Ind.Eng.Chem.Res.,2014,53(29),pp 11611-11621),然后使所制造的乙酰丙酸在加氢条件下与加氢催化剂接触,以制造所述具有内酯基团的化合物,特别是γ-戊内酯。此时,作为所述加氢催化剂,比如可以举出一种催化剂,其以重量百分比计,包含0.1-80%的选自Ni、Ru、Zn、Cu和Pd中的至少一种活性金属和20-99.9%的选自Al2O3、SiO2、ZrO2和活性炭中的至少一种载体。作为所述加氢条件,比如可以举出反应温度50-500℃,反应压力0.1-10.0MPa(表压),乙酰丙酸的重量空速0.1-10.0小时-1,特别是反应温度100-300℃,反应压力0.5-3.0MPa(表压),乙酰丙酸的重量空速0.5-3.0小时-1
根据本发明的一个实施方式,作为所述脱酯二聚催化剂,比如可以举出酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物等。这些脱酯二聚催化剂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述脱酯催化剂,比如可以举出酸性氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物等。这些脱酯催化剂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述脱酯催化剂,从本发明的一个或多个技术效果更为优异的角度出发,优选酸性氧化物、强酸性阳离子交换树脂、固体超强酸或其组合,更优选强酸性阳离子交换树脂、固体超强酸或其组合。
根据本发明的一个实施方式,作为所述二聚催化剂,比如可以举出酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物等。这些二聚催化剂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述二聚催化剂,从本发明的一个或多个技术效果更为优异的角度出发,优选分子筛,更优选ZSM型分子筛。
根据本发明的一个实施方式,作为所述芳构化催化剂,比如可以举出分子筛、固体超强酸和复合金属氧化物等。这些芳构化催化剂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述芳构化催化剂,从本发明的一个或多个技术效果更为优异的角度出发,优选分子筛,更优选ZSM型分子筛。
根据本发明的一个优选的实施方式,从本发明的一个或多个技术效果更为优异的角度出发,所述脱酯二聚催化剂的酸强度D1和所述芳构化催化剂的酸强度D2符合以下关系式(I)。
D1>D2    (I)
根据本发明的该优选的实施方式,以ZSM型分子筛比如ZSM-5为例,在作为脱酯二聚催化剂时,其硅铝摩尔比SiO2/Al2O3一般为80.01至250,在作为芳构化催化剂时,其硅铝摩尔比SiO2/Al2O3一般为10至80。
根据本发明的一个优选的实施方式,从本发明的一个或多个技术效果更为优异的角度出发,所述脱酯催化剂的酸强度D11、所述二聚催化剂的酸强度D12和所述芳构化催化剂的酸强度D2符合以下关系式(II)。
D11>D2>D12    (II)
根据本发明的该优选的实施方式,以ZSM型分子筛比如ZSM-5为例,在作为脱酯催化剂时,其硅铝摩尔比SiO2/Al2O3一般为80至500,在作为二聚催化剂时,其硅铝摩尔比SiO2/Al2O3一般为50至150,在作为芳构化催化剂时,其硅铝摩尔比SiO2/Al2O3一般为10至50。
根据本发明的这些优选的实施方式,所述酸强度比如可以用Hammett函数H0表示,或者对于分子筛而言,也可以用NH3-TPD的手段进行表征,在此不再赘述。
根据本发明的一个实施方式,作为所述酸性氧化物,比如可以举出元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物,更具体比如可以举出SiO2、Al2O3或其组合,特别是Al2O3-SiO2。这些酸性氧化物可以单独使用,也可以两种或多种组合使用。这些酸性氧化物可以直接使用市售产品或者按照现有技术已知的方法进行制造。
根据本发明的一个实施方式,作为所述铋的氧化物,比如可以举出铋的各种氧化物,特别是Bi2O3。所述铋的氧化物可以直接使用市售产品或者按照现有技术已知的方法进行制造。
根据本发明的一个实施方式,作为所述强酸性阳离子交换树脂,比如可以举出磺酸型阳离子交换树脂。作为所述磺酸型阳离子交换树脂,比如可以举出大孔磺酸型阳离子交换树脂(大孔磺酸型聚苯乙烯-二乙烯基苯树脂)和卤素改性磺酸型阳离子交换树脂。这些强酸性阳离子交换树脂很容易从市场中购得,也可以按经典文献记载的方法制取。大孔磺酸型聚苯乙烯-二乙烯基苯树脂的制造方法通常是将苯乙烯和二乙烯基苯的混合物在高速搅拌的条件下滴入含有分散剂、引发剂、致孔剂的水相体系中进行悬浮共聚,将所得到的聚合物小球(白球)从体系中分离出来,用溶剂抽去其中的致孔剂,再以二氯乙烷为溶剂、浓硫酸为磺化剂,进行磺化反应,最后经过滤、洗涤等工序,最后制得产品。另外,在强酸性阳离子交换树脂的骨架中引入卤素原子比如氟、氯、溴等,其中优选氟,可进一步提高树脂的耐温性能和酸强度。这种卤素改性磺酸型阳离子交换树脂至少可以通过以下两种途径获得,一种途径是在磺化苯乙烯树脂骨架的苯环上引入卤素原子,例如氟原子,由于卤素元素的强吸电子作用不仅可使苯环稳定、而且还可以提高苯环上磺酸基团的酸性,此类树脂可从市场上方便购买到,比如国外ROHM&HASS公司生产的
Figure PCTCN2016000314-appb-000005
系列树脂,国内河北冀中化工厂生产的D008树脂等。另一种途径将树脂骨架上的氢全部用氟取代(全氟化),由于氟的强吸电子性,使其具有超强的酸性和超高的热稳定性。这类耐高温强酸性树脂的典型例子是DuPont公司生产的
Figure PCTCN2016000314-appb-000006
系列树脂。这些强酸性阳离子交换树脂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述分子筛,比如可以举出ZSM型分子筛、Y型分子筛、beta型分子筛、L型分子筛和MCM型分子筛,特别是ZSM-5、Y型分子筛、beta型分子筛和MCM-41,更特别是ZSM-5。这些分子筛可以单独使用,也可以两种或多种组合使用。这些分子筛可以直接使用市售产品或者按照现有技术已知的方法进行制造。
根据本发明的一个实施方式,作为所述ZSM型分子筛,更具体比如可以举出ZSM-5、ZSM-11、ZSM-22、ZSM-23和ZSM-38,特别是ZSM-5(或HZSM-5)。在此,所述ZSM型分子筛的硅铝摩尔比SiO2/Al2O3一般为10至500,优选15至200。不同种类(包括不同硅 铝摩尔比)的ZSM型分子筛可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述Y型分子筛,其硅铝摩尔比SiO2/Al2O3一般为2至70,优选3至50。不同种类(包括不同硅铝摩尔比)的Y型分子筛可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述beta型分子筛,其硅铝摩尔比SiO2/Al2O3一般为10至150,优选15至65。不同种类(包括不同硅铝摩尔比)的beta型分子筛可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述L型分子筛,其硅铝摩尔比SiO2/Al2O3一般为5至100,优选6至35。不同种类(包括不同硅铝摩尔比)的L型分子筛可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述MCM型分子筛,更具体比如可以举出MCM-22和MCM-41。在此,所述MCM型分子筛的硅铝摩尔比SiO2/Al2O3一般为20至250,优选40至150。不同种类(包括不同硅铝摩尔比)的MCM型分子筛可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,所述分子筛以分子筛组合物A的形式使用,所述分子筛组合物A包含:a1)20至80重量份的所述分子筛,b1)20至80重量份的粘结剂,和c1)0至10重量份的助剂。特别是,所述分子筛组合物A包含:a1)50至80重量份的所述分子筛,b1)20至50重量份的粘结剂,和c1)0.01至10重量份(或0.01至5重量份)的助剂。
根据本发明的另一个实施方式,所述分子筛以分子筛组合物B的形式使用,所述分子筛组合物B包含:a2)90至99.99重量份的所述分子筛,和c2)0.01至10重量份的助剂。特别是,所述分子筛组合物B包含:a2)95至99.99重量份的所述分子筛,和c2)0.01至5重量份的助剂。
根据本发明的一个实施方式,这些分子筛组合物可以直接使用市售产品或者按照现有技术已知的方法进行制造。具体而言,作为所述分子筛组合物的制造方法,比如可以举出以下方法:将分子筛、粘结剂和根据需要使用的助挤剂、扩孔剂和水混捏成混合物,挤条成型, 然后在100-200℃干燥1-24小时,再于400-700℃下焙烧1-10小时。作为所述助挤剂,比如可以举出田菁粉、聚乙二醇或羧甲基纤维素钠等本领域常规使用的那些,而作为所述扩孔剂,比如可以举出柠檬酸、草酸或乙二胺四乙酸等本领域常规使用的那些。一般而言,助挤剂和扩孔剂的加入总量不超过所述混合物的总重量的10wt%。根据需要,成型时还可以加入酸。作为所述酸,比如可以举出无机酸、乙酸或其水溶液等,特别是硝酸、硫酸或磷酸的水溶液。一般而言,所述酸的水溶液的加入量占所述混合物的总重量的50-90wt%。
根据本发明的一个实施方式,所述助剂可以在所述分子筛组合物的制造过程中或者在所述分子筛组合物制造之后引入,也可以先向所述分子筛中引入,然后再利用如此获得的分子筛制造所述分子筛组合物,并没有特别的限定。作为所述助剂的引入方法,比如可以举出本领域常规使用的那些方法,特别是离子交换法或浸渍法。在这些方法中,助剂一般是以前驱体的形式使用的。为此,作为金属助剂的前驱体,比如可以举出该金属的硝酸盐、硫酸盐、醋酸盐或氯化盐等,作为硼助剂的前驱体,比如可以举出硼酸或硼砂,作为磷助剂的前驱体,比如可以举出磷酸氢二铵,等等。
根据本发明的一个实施方式,作为所述粘结剂,比如可以举出本领域制造分子筛组合物时常规使用的那些粘结剂,更具体比如可以举出硅溶胶、拟薄水铝石、氧化铝、经酸处理后粘土、高岭土、蒙脱土和膨润土等,特别是氧化铝(特别是γ-氧化铝)、拟薄水铝石和蒙脱土等。这些粘结剂可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,作为所述助剂,比如举出Na、Ca、K、Be、Mg、Ba、V、Nb、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Al、Sn、P、Sb、La和Ce,特别是Ca、K、Mg、Cr、Mo、Fe、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Sn、P、La和Ce等。这些助剂可以单独使用,也可以两种或多种组合使用。作为所述助剂,优选Zn、Ga、Sn或其组合。
根据本发明的一个实施方式,作为所述分子筛,特别可以举出M/ZSM-5,其中M选自Zn、Ga、Sn或其组合。该分子筛或含有该分子筛的分子筛组合物尤其适合作为所述芳构化催化剂使用。该分子筛可以直接使用市售产品或者按照现有技术已知的方法进行制造。
根据本发明的一个实施方式,作为所述固体超强酸,比如可以举出本领域常规用作固体酸催化剂的那些,更具体比如可以举出路易斯酸负载型固体超强酸、无机金属盐/路易斯酸复合型固体超强酸和硫酸化金属氧化物型固体超强酸。这些固体超强酸可以单独使用,也可以两种或多种组合使用。这些固体超强酸可以直接使用市售产品或者按照现有技术已知的方法进行制造。
根据本发明的一个实施方式,所述路易斯酸负载型固体超强酸包含载体和负载在该载体上的路易斯酸。作为所述载体,比如可以举出元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物,特别是SiO2、B2O3和Al2O3。这些载体可以单独使用,也可以两种或多种组合使用。作为所述路易斯酸,比如可以举出元素周期表第VB族元素的卤化物、第IIIA族元素的卤化物和第VA族元素的卤化物,特别是元素周期表第VB族元素的卤化物和第VA族元素的卤化物,更特别是PF3、AsF3、SbF3、BiF3、SbF5、TaF3、VF3和NbF3。在此,作为所述卤化物,优选氟化物。这些路易斯酸可以单独使用,也可以两种或多种组合使用。更具体而言,作为所述路易斯酸负载型固体超强酸,比如可以举出SbF5/SiO2-Al2O3、PF3/Al2O3-B2O3、AsF3/Al2O3-B2O3、SbF3/Al2O3-B2O3、BiF3/Al2O3-B2O3、TaF3/Al2O3-B2O3、VF3/Al2O3-B2O3和NbF3/Al2O3-B2O3。这些路易斯酸负载型固体超强酸可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,在所述路易斯酸负载型固体超强酸中,相对于所述载体的重量,所述路易斯酸的负载量为1至30wt%,优选1至15wt%。
根据本发明的一个实施方式,所述无机金属盐/路易斯酸复合型固体超强酸是由无机金属盐和路易斯酸构成的复合物。作为所述无机金属盐,比如可以举出元素周期表第IB族金属元素的无机酸盐、第IIB族金属元素的无机酸盐、第VII族金属元素的无机酸盐和第VIII族金属元素的无机酸盐。在此,作为所述无机酸盐,特别可以举出氢卤酸盐,尤其是盐酸盐。这些无机金属盐可以单独使用,也可以两种或多种组合使用。作为所述路易斯酸,比如可以举出元素周期表第VB族元素的卤化物、第IIIA族元素的卤化物和第VA族元素的卤化物,特别是元素周期表第IIIA族元素的卤化物。在此,作为所述卤化物,优选 氯化物。这些路易斯酸可以单独使用,也可以两种或多种组合使用。作为所述无机金属盐/路易斯酸复合型固体超强酸,特别可以举出AlCl3-CuCl2。这些无机金属盐/路易斯酸复合型固体超强酸可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,在所述无机金属盐/路易斯酸复合型固体超强酸中,所述无机金属盐与所述路易斯酸的重量比例为1至30∶100,优选1至15∶100。
根据本发明的一个实施方式,在所述硫酸化金属氧化物型固体超强酸中,作为所述金属氧化物,比如可以举出元素周期表第IVB族金属元素的氧化物(以下称为氧化物A),或者比如还可以举出所述氧化物A被元素周期表第IIIA族金属元素、第VIIB族金属元素、第VIII族贵金属元素、第VIII族贱金属元素、第VIB族金属元素或镧系金属元素等改性元素改性而获得的氧化物(以下称为氧化物B)。这些金属氧化物可以单独使用,也可以两种或多种组合使用。这些改性元素可以单独使用,也可以两种或多种组合使用。作为所述氧化物A,具体比如可以举出ZrO2、TiO2或其组合。作为所述改性元素,具体比如可以举出Fe、Pt、Re、Al、W、Cr、Mo、Mn或其组合。在所述氧化物B中,所述元素周期表第IIIA族金属元素一般以氧化物形式存在,所述第VIIB族金属元素一般以氧化物形式存在,所述第VIII族贵金属元素一般以金属单质形式存在,所述第VIII族贱金属元素一般以氧化物形式存在,所述第VIB族金属元素一般以氧化物形式存在,而所述镧系金属元素一般以氧化物形式存在。作为所述硫酸化金属氧化物型固体超强酸,特别可以举出SO4 2-/ZrO2、S2O8 2-/ZrO2、SO4 2-/TiO2、SO4 2-/ZrO2-Fe3O4、Pt/SO4 2-/TiO2、SO4 2-/TiO2-ZrO2、SO4 2-/TiO2-Al2O3、SO4 2-/TiO2-WO3、SO4 2-/ZrO2-Fe2O3-Cr2O3、SO4 2-/ZrO2-WO3、SO4 2-/TiO2-MoO3、SO4 2-/ZrO2-Fe2O3-MnO2、W改性SO4 2-/Al2O3-ZrO2和Mo改性SO4 2-/Al2O3-ZrO2。前述的这些硫酸化金属氧化物型固体超强酸可以单独使用,也可以两种或多种组合使用。
根据本发明的一个实施方式,在所述氧化物B中,以氧化物形式存在的所述改性元素(以氧化物计)与所述氧化物A的重量比例一般为0.1至25∶100,优选0.5至10∶100,而以金属单质形式存在的所述改性元素(以金属计)与所述氧化物A的重量比例一般为0.1至15∶ 100,优选0.3至6∶100。
根据本发明的一个实施方式,在所述硫酸化金属氧化物型固体超强酸中,所述金属氧化物的硫酸化率一般为0.5至25wt%,优选1至8wt%。
根据本发明的一个实施方式,对所述硫酸化金属氧化物型固体超强酸的制造方法没有特别的限定,可以使用本领域常规已知的那些,具体比如可以举出沉淀-浸渍法(比如可以参见文献“SO4 2-/MxOy型固体超强酸催化剂的研究进展,应用化工,2014,vol43,1879-1883”)。
根据本发明的一个实施方式,作为所述复合金属氧化物,比如可以举出元素周期表第IVB族金属元素的氧化物(以下称为氧化物C)与其他氧化物(以下称为氧化物D)的复合氧化物。作为所述氧化物C,具体比如可以举出ZrO2、TiO2或其组合,特别是ZrO2。作为所述氧化物D,比如可以举出元素周期表第IIIA族金属元素的氧化物、第VII族金属元素的氧化物、第VIB族金属元素的氧化物和镧系金属元素的氧化物等,更具体比如可以举出B2O3、Al2O3、MnO2、Cr2O3、CrO3、MoO3、WO3、La2O3和CeO2等,特别是MnO2、MoO3、WO3、La2O3和CeO2等。这些氧化物D可以单独使用,也可以两种或多种组合使用。作为所述复合金属氧化物,更具体比如可以举出ZrO2与选自MnO2、Mo2O3、WO3、La2O3和CeO2中的一种或多种氧化物D的复合氧化物。
根据本发明的一个实施方式,在所述复合金属氧化物中,所述氧化物C与所述氧化物D比例,以重量份数计,一般为60至99.9∶0.1至40,优选60至99∶1至40。
根据本发明的一个实施方式,所述复合金属氧化物可以直接使用市售产品或者按照现有技术已知的方法进行制造。作为所述复合金属氧化物的制造方法,具体比如可以举出浸渍法或沉淀法等。更具体举例而言,根据浸渍法,将钨、钼、铈、镧或锰以盐溶液形式浸渍到氧化锆上,浸渍12至48小时后倒掉多余液体,100至200℃干燥处理,将水分蒸发出来留下活性组分,再经过培烧、活化工序处理后即得所述复合金属氧化物;或者,根据沉淀法,通过将钨、钼、铈、镧或锰的金属盐水溶液、锆的金属盐水溶液和沉淀剂氨水同时加入,生成固体沉淀,然后将生成的沉淀经洗涤、过滤、干燥、在400至600℃下焙烧经后可得到所述复合金属氧化物。
根据本发明的一个实施方式,所述步骤a2)、所述步骤b2)、所述步骤c2)、所述步骤a1)和所述步骤b1)各自可以分别在一个或多个反应器中进行。作为所述反应器,比如可以举出床式反应器,特别是固定床反应器、流化床反应器、沸腾床反应器或其组合。此时,所述反应器的操作方式既可以是间歇的方式,也可以是连续的方式,并没有特别的限定。
根据本发明的一个实施方式,所述步骤a2)、所述步骤b2)、所述步骤c2)、所述步骤a1)和所述步骤b1)中的一个或多个可以分别各自独立地在惰性气氛或还原性气氛下进行。作为所述惰性气氛,比如可以举出N2、CO2、He、Ar或其组合。作为所述还原性气氛,比如可以举出CO、H2或其组合。
在按照本发明前述的芳香烃的制造方法制造出芳香烃(即,二甲苯富集的芳香烃产物)之后,通过分离,即可从该芳香烃产物中分离出对二甲苯。鉴于此,本发明还涉及一种对二甲苯的制造方法,其包括按照本发明的芳香烃的制造方法制造芳香烃的步骤;和从所述芳香烃中分离出对二甲苯的步骤。
根据本发明的一个实施方式,对从所述芳香烃中分离出对二甲苯的方法没有特别的限定,可以直接适用本领域中常规已知的那些。由于与现有技术方法获得的芳香烃相比,本发明获得的芳香烃中二甲苯的含量相对富集,因此所述分离方法表现出操作成本降低和操作复杂度降低的特点。一般而言,所述芳香烃在经过分离后,可以直接获得纯度为70至99.9重量%的对二甲苯产品。
根据本发明的一个实施方式,可以以本发明前述制造的对二甲苯为原料来制造对苯二甲酸。鉴于此,本发明还涉及一种对苯二甲酸的制造方法,其包括按照本发明前述的对二甲苯的制造方法制造对二甲苯的步骤;和将对二甲苯转化为对苯二甲酸的步骤。
根据本发明的一个实施方式,对将对二甲苯转化为对苯二甲酸的方法没有特别的限定,可以直接适用本领域中常规已知的那些。
根据本发明的一个实施方式,还涉及一种芳香烃的制造装置,其被构造为特别适合用于实施本发明前述的芳香烃的制造方法。
根据本发明的一个实施方式,所述芳香烃的制造装置包括以下单元:
脱酯二聚单元,其被构造为能够在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃;和
芳构化单元,其被构造为能够在芳构化反应条件下,使碳八烯烃与芳构化催化剂接触而制造芳香烃。
根据本发明的一个实施方式,所述芳香烃的制造装置任选还可以进一步包括催化转化单元,或者所述芳香烃的制造装置任选还可以进一步包括催化转化单元与催化氢化单元的组合。在此,所述催化转化单元被构造为能够使生物质材料进行催化转化而生成包含所述具有内酯基团的化合物的产物,而所述催化氢化单元被构造为能够通过催化氢化所述产物而提高所述具有内酯基团的化合物在所述产物中的比例。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在本说明书的上下文中,二甲苯碳收率按照以下计算式进行计算。
二甲苯碳收率(%)=作为反应产物的二甲苯的质量(g)/作为反应原料的具有内酯基团的化合物的碳质量×100%.
计算方法示例如下:
选取100克戊内酯作为具有内酯基团的化合物,其含有碳的质量为68克,若反应后得到50克二甲苯,则此时的二甲苯碳收率即为73.5%。
实施例1
脱酯二聚催化剂ZSM-5:称取35克硅铝比为38的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂的制造:称取35克硅铝比为100的氢型的ZSM-5与35克γ-氧化铝助剂进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时, 得到催化剂。
当归内酯进入脱酯二聚反应器R1,催化剂床层上层采用Al2O3-SiO2催化剂(按照CN1393425A的实施例1制造),催化剂下层采用上述制造的脱酯二聚催化剂ZSM-5,两种催化剂装填高度相同。在300℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为87%,碳八烯烃选择性79%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化ZSM-5催化剂,空速为2h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为79%,二甲苯碳收率为54.3%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例2
称取1000克稻草秸,置于压力釜中并加入5000克水,再加入水质量7%的5mol/L的硫酸溶液,升温到210℃下反应30分钟,之后冷却,将冷却后的反应液过滤,得到滤饼和过滤液,过滤液为纤维素的水解液,反应结束后,采用质谱对反应结果进行鉴定主要产物为乙酰丙酸,其产生量为382克。得到的乙酰丙酸在固定床中在2%金属负载量的RuSn/C上加氢得到γ-戊内酯,转化率为99%,产物收率为98%。
脱酯二聚催化剂A制造:Mo改性的SO4 2-/Al2O3-ZrO2催化剂(按照CN200910011627.6的实施例2制造,采用该方法引入活性金属时只引入Mo,不引入Ni)。
脱酯二聚催化剂ZSM-5-B制造:称取65克硅铝比为100的氢型ZSM-5与35克拟薄水铝石进行混合,加入田菁粉3.5克,混合均匀。之后加入硝酸质量百分含量为5.5%的108克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂制造:称取80克硅铝比为150的ZSM-5与20克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得 到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用脱酯二聚催化剂A,催化剂下层采用脱酯二聚催化剂ZSM-5-B,两种催化剂装填高度相同。在280℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为93%,碳八烯烃选择性86%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化ZSM-5催化剂,空速为2h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为83%,二甲苯碳收率为66.4%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例3
脱脂二聚催化剂A:称取50克硅铝比为30的beta与50克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
脱酯二聚催化剂B:称取35克硅铝比为100的ZSM-5与35克γ-氧化铝助剂进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化HZSM-5催化剂:称取35克硅铝比为150的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
δ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用脱脂二聚催化剂A,催化剂下层采用脱酯二聚催化剂B,两种催化剂装填高度相同。在280℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为99%,碳八烯烃选择性93%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化HZSM-5催化剂,空速为2h-1的作用下芳构化,得到 含有二甲苯产物的物料,二甲苯选择性为86%,二甲苯碳收率为79.2%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例4
脱脂二聚催化剂B:称取35克硅铝比为150的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。芳构化La-HY催化剂:称取35克硅铝比为6的HY型分子筛与35克γ-氧化铝助剂进行混合,加入羧甲基纤维素钠2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂前体,之后采用浸渍的方法负载3%的La,制得La-Y催化剂。
丙位己内酯进入脱酯二聚反应器R1,催化剂床层上层采用W改性的SO4 2-/Al2O3-ZrO2催化剂(按照CN200910011627.6的实施例1制造),催化剂下层采用上述制造的脱脂二聚催化剂B,两种催化剂装填高度相同。在250℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为99%,碳八烯烃选择性89%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化La-HY催化剂,空速为2h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为88%,二甲苯碳收率为77.5%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例5
脱酯二聚催化剂B:称取60克硅铝比为8的Y型分子筛与40克γ- 氧化铝助剂进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克磷酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化MCM-22催化剂:称取70克硅铝比为10的Y与30克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
丙位庚内酯进入脱酯二聚反应器R1,催化剂床层上层采用Amberlyst催化剂(AmberlystTM 15WET),催化剂下层采用上述制造的脱酯二聚催化剂B,两种催化剂装填高度相同。在180℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为96%,碳八烯烃选择性81%,经过分离后,碳八烯烃进入芳构化反应器R2,在500℃,芳构化MCM-22催化剂,空速为2h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为94%,二甲苯碳收率为73.1%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例6
脱酯二聚催化剂B:称取35克硅铝比为100的ZSM-5与45克拟薄水铝石进行混合,加入田菁粉3.2克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂:称取35克硅铝比为150的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用Amberlyst催化剂(AmberlystTM 15WET),催化剂下层采用上述制造的脱酯二聚催化剂B,两种催化剂装填高度相同。在180℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为96%,碳八烯烃选择性91%,经过分离 后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化ZSM-5催化剂,空速为2h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为86%,二甲苯碳收率为75.1%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例7
脱酯二聚催化剂:称取60克硅铝比为10的Y与40克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂前体,之后采用浸渍的方法引入3%的La制得La-HY催化剂。
芳构化ZSM-5催化剂:称取35克硅铝比为150的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层脱酯二聚催化剂,在180℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为91%,碳八烯烃选择性89%,经过分离后,碳八烯烃进入芳构化反应器R2,在550℃,芳构化ZSM-5催化剂,空速为1.5h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为86%,二甲苯碳收率为69.7%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例8
脱酯催化剂A制造:称取50克硅铝比为20的beta与50克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分 含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
二聚催化剂B制造:称取65克硅铝比为100的氢型ZSM-5与35克拟薄水铝石进行混合,加入田菁粉3.5克,混合均匀。之后加入硝酸质量百分含量为5.5%的108克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂制造:称取80克硅铝比为150的ZSM-5与20克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用脱酯A,催化剂下层采用脱酯二聚催化剂B,两种催化剂装填高度相同。在280℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为96%,碳八烯烃选择性93%,经过分离后,碳八烯烃进入芳构化反应器R2,在500℃,芳构化ZSM-5催化剂,空速为1.5h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为88%,二甲苯碳收率为78.6%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例9
脱酯催化剂A制造:称取50克硅铝比为20的beta与50克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
二聚催化剂B制造:称取65克硅铝比为100的氢型ZSM-5与35克拟薄水铝石进行混合,加入田菁粉3.5克,混合均匀。之后加入硝酸质量百分含量为5.5%的108克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂制造:称取80克硅铝比为150的ZSM-5与20克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用脱酯A,催化剂下层采用脱酯二聚催化剂B,两种催化剂装填高度相同。在280℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为97%,碳八烯烃选择性92%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化ZSM-5催化剂,空速为1.5h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为90%,二甲苯碳收率为80.3%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例10
脱脂二聚催化剂A:称取60克硅铝比为6的Y与40克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
脱脂二聚催化剂B:称取35克硅铝比为50的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化Zn-ZSM-5催化剂:称取35克硅铝比为150的ZSM-5型分子筛与35克γ-氧化铝助剂进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到预制备催化剂。将该预制备催化剂浸渍上Zn,负载量为预制备催化剂质量的1.5%,干燥焙烧后制得Zn-ZSM-5。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用上述制造的脱脂二聚催化剂A,催化剂下层采用上述制造的脱脂二聚催化剂B,两种催化剂装填高度相同。在250℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为99%,碳八烯烃选择性96%,经过分离后,碳八烯烃进入芳构化反应器R2,在480℃,芳构化Zn-ZSM-5催化剂,空速为1.5h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为91%,二甲苯碳收率为86.5%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
实施例11
脱脂二聚催化剂A:称取60克硅铝比为6的Y与40克拟薄水铝石进行混合,加入田菁粉3.9克,混合均匀。之后加入硝酸质量百分含量为5.5%的68.6克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
脱脂二聚催化剂B:称取35克硅铝比为50的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化Ga-ZSM-5催化剂:称取35克硅铝比为150的ZSM-5型分子筛与35克γ-氧化铝助剂进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到预制备催化剂。将该预制备催化剂浸渍上Zn,负载量为预制备催化剂质量的1.5%,干燥焙烧后制得Ga-ZSM-5。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层上述制造的脱脂二聚催化剂A,催化剂下层采用上述制造的脱脂二聚催化剂B,两种催化剂装填高度相同。在250℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为99%,碳八烯烃选择性95%,经过分离后,碳八烯烃进入芳构化反应器R2,在450℃,芳构化Ga-ZSM-5催化剂,空速为1.5h-1 的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为91%,二甲苯碳收率为85.6%。未反应完全的烯烃可重新返回二聚体反应器继续反应。得到的烯烃进一步进行分离后可以得到苯甲苯等轻芳香烃,同时得到高纯度的PX。另外,还有部分作为重组分从塔釜得到。从塔顶出来的氢气可作为低聚体的加氢为汽柴油的原料,而塔釜重组分可以作为柴油的原料或者燃烧供热。
对比例1
脱脂二聚催化剂A:称取35克硅铝比为150的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
脱脂二聚催化剂B:称取35克硅铝比为25的ZSM-5与35克拟薄水铝石进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
芳构化ZSM-5催化剂:称取35克硅铝比为500的ZSM-5型分子筛与35克γ-氧化铝助剂进行混合,加入田菁粉2.7克,混合均匀。之后加入硝酸质量百分含量为5.5%的48克硝酸水溶液,混捏成型,挤条。得到催化剂前体在120℃下干燥8小时,经过500℃焙烧2小时,得到催化剂。
γ-戊内酯进入脱酯二聚反应器R1,催化剂床层上层采用脱脂二聚催化剂A,催化剂下层采用上述制造的脱脂二聚催化剂B,两种催化剂装填高度相同。在250℃,重量空速为1.5h-1条件下进行脱酯二聚,转化率为83%,因为脱脂二聚催化剂B的酸性过强,导致生成的碳四烯烃等中间产物迅速结焦,所得碳八烯烃选择性大幅降低,为26%。经过分离以后进入芳构化反应器R2,在450℃,芳构化ZSM-5催化剂,空速为1.5h-1的作用下芳构化,得到含有二甲苯产物的物料,二甲苯选择性为56%。未反应完全的烯烃可重新返回二聚体反应器继续反应。但由于催化剂失活,催化剂性能很快下降,不能得到高纯度的PX。
以上虽然已结合实施例对本发明的具体实施方式进行了详细的说 明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。本领域技术人员可在不脱离本发明的技术思想和主旨的范围内对这些实施方式进行适当的变更,而这些变更后的实施方式显然也包括在本发明的保护范围之内。

Claims (18)

  1. 一种芳香烃的制造方法,包括以下步骤a1)和b1)或者包括以下步骤a2)、b2)和c2):
    a1)在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃的步骤;和
    b1)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤,
    或者
    a2)在脱酯反应条件下,使具有内酯基团的化合物与脱酯催化剂接触而制造碳四烯烃的步骤;和
    b2)在二聚反应条件下,使所述碳四烯烃与二聚催化剂接触而制造碳八烯烃的步骤;和
    c2)在芳构化反应条件下,使所述碳八烯烃与芳构化催化剂接触而制造芳香烃的步骤,
    其中,所述具有内酯基团的化合物具有结构式(I):
    Figure PCTCN2016000314-appb-100001
    式(I)中,R1选自任选取代的C1-20直链或支链亚烷基、任选取代的C2-20直链或支链亚烯基、任选取代的C2-20直链或支链亚炔基、任选取代的C3-20亚环烷基和任选取代的C6-20亚芳基,优选选自任选取代的C2-10直链或支链亚烷基和任选取代的C2-10直链或支链亚烯基,更优选C2-5直链或支链亚烷基,进一步优选1,2-亚乙基;R2选自氢、任选取代的C1-20直链或支链烷基和羧基,优选选自氢和任选取代的C1-10直链或支链烷基,更优选选自氢和C1-4直链或支链烷基。
  2. 根据权利要求1所述的制造方法,其中所述脱酯二聚反应条件包括:反应温度160至400℃,优选160至300℃,反应压力0.1至8MPa,优选0.1至4MPa,所述具有内酯基团的化合物的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述脱酯反应条件包括:反应温度100至350℃,优选120至250℃,反应压力0.1至8MPa,优选0.1至4MPa,所述具有内酯基团的化合物的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述二聚反应条件包括:反应温度160至400℃, 优选160至300℃,反应压力0.1至8MPa,优选0.1至4MPa,所述碳四烯烃的重量空速0.1至15小时-1,优选0.6至5小时-1;或者,所述芳构化反应条件包括:反应温度420至800℃,优选450至550℃,反应压力0.1至8MPa,优选0.1至4MPa,所述碳八烯烃的重量空速0.3至10小时-1,优选0.3至5小时-1
  3. 根据权利要求1所述的制造方法,其中所述具有内酯基团的化合物衍生自生物质材料,优选衍生自木糖醇、葡萄糖、纤维二糖、纤维素、半纤维素和木质素中的一种或多种、或者衍生自造纸污泥、废纸、甘蔗渣、葡萄糖、木材、玉米芯、玉米秸和稻草秸秆中的一种或多种。
  4. 根据权利要求1所述的制造方法,其中所述脱酯二聚催化剂选自酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种;所述脱酯催化剂选自酸性氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选选自酸性氧化物、强酸性阳离子交换树脂和固体超强酸中的一种或多种,更优选选自强酸性阳离子交换树脂和固体超强酸中的一种或多种;所述二聚催化剂选自酸性氧化物、铋的氧化物、强酸性阳离子交换树脂、分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选分子筛;所述芳构化催化剂选自分子筛、固体超强酸和复合金属氧化物中的一种或多种,优选分子筛,特别是ZSM-5或M/ZSM-5,其中M选自Zn、Ga、Sn或其组合。
  5. 根据权利要求4所述的制造方法,其中所述酸性氧化物选自元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物中的一种或多种,优选选自SiO2和Al2O3中的一种或多种,更优选Al2O3、Al2O3-SiO2或SiO2
    所述铋的氧化物是Bi2O3
    所述强酸性阳离子交换树脂选自大孔磺酸型阳离子交换树脂和卤素改性(优选全氟化)磺酸型阳离子交换树脂中的一种或多种,更优选选自
    Figure PCTCN2016000314-appb-100002
    系列树脂和
    Figure PCTCN2016000314-appb-100003
    系列树脂中的一种或多种。
  6. 根据权利要求4所述的制造方法,其中所述脱酯二聚催化剂的酸强度D1和所述芳构化催化剂的酸强度D2符合以下关系式(I),
    D1>D2   (I)
    或者,所述脱酯催化剂的酸强度D11、所述二聚催化剂的酸强度D12和所述芳构化催化剂的酸强度D2符合以下关系式(II),
    D11>D2>D12   (II)。
  7. 根据权利要求4所述的制造方法,其中所述分子筛选自ZSM型分子筛(优选选自ZSM-5、ZSM-11、ZSM-22、ZSM-23和ZSM-38中的一种或多种)、Y型分子筛、beta型分子筛、L型分子筛、MCM型分子筛(优选选自MCM-22和MCM-41中的一种或多种)中的一种或多种,优选选自ZSM-5、Y型分子筛、beta型分子筛和MCM-41中的一种或多种,更优选ZSM-5。
  8. 根据权利要求7所述的制造方法,其中所述分子筛是分子筛组合物,其包含以下组份a1)、b1)和c1)或者包含以下组分a2)和c2):
    a1)20至80重量份(优选50至80重量份)所述分子筛,和
    b1)20至80重量份(优选20至50重量份)粘结剂(优选选自硅溶胶、拟薄水铝石、氧化铝、经酸处理后粘土、高岭土、蒙脱土、膨润土中的一种或多种,更优选选自氧化铝、拟薄水铝石和蒙脱土中的一种或多种),和
    c1)0至10重量份(优选0.01至10重量份,更优选0.01至5重量份)助剂,其中所述助剂选自Na、Ca、K、Be、Mg、Ba、V、Nb、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Al、Sn、P、Sb、La和Ce中的一种或多种,优选选自Ca、K、Mg、Cr、Mo、Fe、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Sn、P、La和Ce中的一种或多种,更优选选自Zn、Ga和Sn中的一种或多种,
    或者
    a2)90至99.99重量份(优选95至99.99重量份)所述分子筛,和
    c2)0.01至10重量份(优选0.01至5重量份)助剂,其中所述助剂选自Na、Ca、K、Be、Mg、Ba、V、Nb、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Al、Sn、P、Sb、La和Ce中的一种或多种,优选选自Ca、K、Mg、Cr、Mo、Fe、Ni、Cu、Zn、Ga、Ru、Pd、Pt、Ag、B、Sn、P、La和Ce中的一种或多种,更优选选自Zn、Ga和Sn中的一种或多种。
  9. 根据权利要求1所述的制造方法,其中在所述步骤a1)中,使 所述具有内酯基团的化合物与包含所述脱酯二聚催化剂的催化剂床层接触而制造碳八烯烃,所述催化剂床层包含至少两层的所述脱酯二聚催化剂,其中任意相邻两层的所述脱酯二聚催化剂的酸强度不同。
  10. 根据权利要求4所述的制造方法,其中所述固体超强酸选自路易斯酸负载型固体超强酸、无机金属盐/路易斯酸复合型固体超强酸和硫酸化金属氧化物型固体超强酸中的一种或多种。
  11. 根据权利要求10所述的制造方法,其中所述路易斯酸负载型固体超强酸的载体选自元素周期表第IIIA族元素的固体氧化物和第IVA族元素的固体氧化物中的一种或多种,优选选自SiO2、B2O3和Al2O3中的一种或多种,
    所述路易斯酸负载型固体超强酸的路易斯酸选自元素周期表第VB族元素的卤化物(优选氟化物)、第IIIA族元素的卤化物(优选氟化物)和第VA族元素的卤化物(优选氟化物)中的一种或多种,优选选自元素周期表第VB族元素的卤化物(优选氟化物)和第VA族元素的卤化物(优选氟化物)中的一种或多种,进一步优选选自PF3、AsF3、SbF3、BiF3、SbF5、TaF3、VF3和NbF3中的一种或多种,
    所述路易斯酸负载型固体超强酸优选选自SbF5/SiO2-Al2O3、PF3/Al2O3-B2O3、AsF3/Al2O3-B2O3、SbF3/Al2O3-B2O3、BiF3/Al2O3-B2O3、TaF3/Al2O3-B2O3、VF3/Al2O3-B2O3和NbF3/Al2O3-B2O3中的一种或多种,
    所述无机金属盐/路易斯酸复合型固体超强酸的无机金属盐选自元素周期表第IB族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)、第IIB族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)、第VII族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)和第VIII族金属元素的无机酸盐(优选氢卤酸盐,更优选盐酸盐)中的一种或多种,优选CuCl2
    所述无机金属盐/路易斯酸复合型固体超强酸的路易斯酸选自元素周期表第VB族元素的卤化物(优选氯化物)、第IIIA族元素的卤化物(优选氯化物)和第VA族元素的卤化物(优选氯化物)中的一种或多种,优选选自元素周期表第IIIA族元素的卤化物(优选氯化物)中的一种或多种,优选AlCl3
    所述无机金属盐/路易斯酸复合型固体超强酸优选AlCl3-CuCl2
    所述硫酸化金属氧化物型固体超强酸的金属氧化物是元素周期表 第IVB族金属元素的氧化物A(优选选自ZrO2和TiO2中的一种或多种)或者是所述氧化物A被选自元素周期表第IIIA族金属元素(以氧化物形式存在)、第VIIB族金属元素(以氧化物形式存在)、第VIII族贵金属元素(以金属单质形式存在)、第VIII族贱金属元素(以氧化物形式存在)、第VIB族金属元素(以氧化物形式存在)和镧系金属元素(以氧化物形式存在)中的一种或多种改性元素(优选选自Fe、Pt、Re、Al、W、Cr、Mo和Mn中的一种或多种)改性而获得的氧化物B,
    所述硫酸化金属氧化物型固体超强酸优选选自SO4 2-/ZrO2、S2O8 2 -/ZrO2、SO4 2-/TiO2、SO4 2-/ZrO2-Fe3O4、Pt/SO4 2-/TiO2、SO4 2-/TiO2-ZrO2、SO4 2-/TiO2-Al2O3、SO4 2-/TiO2-WO3、SO4 2-/ZrO2-Fe2O3-Cr2O3、SO4 2-/ZrO2-WO3、SO4 2-/TiO2-MoO3、SO4 2-/ZrO2-Fe2O3-MnO2、W改性SO4 2-/Al2O3-ZrO2和Mo改性SO4 2-/Al2O3-ZrO2中的一种或多种。
  12. 根据权利要求11所述的制造方法,其中在所述路易斯酸负载型固体超强酸中,相对于所述载体的重量,所述路易斯酸的负载量为1至30wt%,优选1至15wt%,
    所述无机金属盐/路易斯酸复合型固体超强酸中,所述无机金属盐与所述路易斯酸的重量比例为1至30∶100,优选1至15∶100,
    所述硫酸化金属氧化物型固体超强酸中,所述金属氧化物的硫酸化率为0.5至25wt%,优选1至8wt%,
    所述氧化物B中,以氧化物形式存在的所述改性元素(以氧化物计)与所述氧化物A的重量比例为0.1至25∶100,优选0.5至10∶100,以金属单质形式存在的所述改性元素(以金属计)与所述氧化物A的重量比例为0.1至15∶100,优选0.3至6∶100。
  13. 根据权利要求4所述的制造方法,其中所述复合金属氧化物是元素周期表第IVB族金属元素的氧化物C(优选选自ZrO2和TiO2中的一种或多种,更优选ZrO2)与选自元素周期表第IIIA族金属元素的氧化物、第VII族金属元素的氧化物、第VIB族金属元素的氧化物和镧系金属元素的氧化物中的一种或多种氧化物D(优选选自B2O3、Al2O3、MnO2、Cr2O3、CrO3、MoO3、WO3、La2O3和CeO2中的一种或多种,更优选选自MnO2、MoO3、WO3、La2O3和CeO2中的一种或多种)的复合氧化物,优选ZrO2与选自MnO2、Mo2O3、WO3、La2O3和CeO2 中的一种或多种氧化物D的复合氧化物。
  14. 根据权利要求13所述的制造方法,其中所述氧化物C与所述氧化物D比例,以重量份数计,为60至99.9∶0.1至40,优选60至99∶1至40。
  15. 根据权利要求1所述的制造方法,还包括使生物质材料进行催化转化,并任选随后催化氢化,以制造所述具有内酯基团的化合物的步骤。
  16. 一种对二甲苯的制造方法,包括以下步骤:
    按照权利要求1所述的方法制造芳香烃的步骤;和
    从所述芳香烃中分离出对二甲苯的步骤。
  17. 一种对苯二甲酸的制造方法,包括以下步骤:
    按照权利要求16所述的方法制造对二甲苯的步骤;和
    将对二甲苯转化为对苯二甲酸的步骤。
  18. 一种芳香烃的制造装置,包括以下单元:
    脱酯二聚单元,被构造为能够在脱酯二聚反应条件下,使具有内酯基团的化合物与脱酯二聚催化剂接触而制造碳八烯烃;和
    芳构化单元,被构造为能够在芳构化反应条件下,使碳八烯烃与芳构化催化剂接触而制造芳香烃,
    所述制造装置任选进一步包括催化转化单元、或者催化转化单元与催化氢化单元的组合:
    催化转化单元,被构造为能够使生物质材料进行催化转化而生成包含具有内酯基团的化合物的产物;
    催化氢化单元,被构造为能够通过催化氢化所述产物而提高所述具有内酯基团的化合物在所述产物中的比例。
PCT/CN2016/000314 2015-06-19 2016-06-17 芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置 WO2016201954A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112017027358-6A BR112017027358B1 (pt) 2015-06-19 2016-06-17 Processos para produção de hidrocarboneto aromático, p-xileno e ácido tereftálico
DK16810695.3T DK3312285T3 (da) 2015-06-19 2016-06-17 Fremgangsmåde til fremstilling af aromatisk carbonhydrid, p-xylen og terephthalsyre, og apparat der fremstiller aromatisk carbonhydrid
US15/737,976 US10435348B2 (en) 2015-06-19 2016-06-17 Process for producing aromatics, p-xylene and terephthalic acid, and device for producing aromatics
KR1020187001727A KR102454224B1 (ko) 2015-06-19 2016-06-17 방향족 탄화수소, p-크실렌과 테레프탈산의 제조 방법 및 방향족 탄화수소 제조 장치
EP16810695.3A EP3312285B1 (en) 2015-06-19 2016-06-17 Method of preparing aromatic hydrocarbon, p-xylene and terephthalic acid, and apparatus producing aromatic hydrocarbon
JP2017565938A JP6976863B2 (ja) 2015-06-19 2016-06-17 芳香族炭化水素、p−キシレンとテレフタル酸の製造方法及び芳香族炭化水素の製造設備
ES16810695T ES2880284T3 (es) 2015-06-19 2016-06-17 Método de preparación de hidrocarburo aromático, p-xileno y ácido tereftálico, y aparato que produce hidrocarburo aromático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510344799.0 2015-06-19
CN201510344799.0A CN106316768B (zh) 2015-06-19 2015-06-19 高选择性制备二甲苯的方法

Publications (1)

Publication Number Publication Date
WO2016201954A1 true WO2016201954A1 (zh) 2016-12-22

Family

ID=57544854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000314 WO2016201954A1 (zh) 2015-06-19 2016-06-17 芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置

Country Status (9)

Country Link
US (1) US10435348B2 (zh)
EP (1) EP3312285B1 (zh)
JP (1) JP6976863B2 (zh)
KR (1) KR102454224B1 (zh)
CN (1) CN106316768B (zh)
BR (1) BR112017027358B1 (zh)
DK (1) DK3312285T3 (zh)
ES (1) ES2880284T3 (zh)
WO (1) WO2016201954A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125810B (zh) * 2020-10-14 2023-08-04 郑州中科新兴产业技术研究院 固体超强酸催化赖氨酸脱羧制备戊二胺的方法
US20240059627A1 (en) * 2022-08-17 2024-02-22 Gevo, Inc. Processes for producing mixtures of different olefins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721375A (zh) * 2004-07-12 2006-01-18 中国石油化工股份有限公司 用于丁烯齐聚制备碳八烯烃的方法
WO2009111026A2 (en) * 2008-03-04 2009-09-11 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
WO2010151346A1 (en) * 2009-06-26 2010-12-29 Uop Llc Carbohydrate route to para-xylene and terephthalic acid
CN104334733A (zh) * 2012-04-20 2015-02-04 可口可乐公司 用于从生物质制备对二甲苯的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2438041A (en) * 1944-08-22 1948-03-16 Phillips Petroleum Co Process of producing styrene from butadiene
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
CN1162371C (zh) 2001-06-28 2004-08-18 山西大学 高比表面SiO2Al2O3复合氧化物的制备方法
RU2472840C2 (ru) 2007-03-08 2013-01-20 Вайрент, Инк. Синтез жидкого топлива и химических реактивов из кислородсодержащих углеводородов
CN101890373B (zh) 2009-05-19 2012-06-27 中国石油化工股份有限公司 一种氧化硅-氧化铝复合载体及其制备方法
CN102596866A (zh) * 2009-10-06 2012-07-18 格沃股份有限公司 将可再生异丁醇选择性转化为对二甲苯的整体工艺
US8410326B2 (en) * 2010-01-14 2013-04-02 Wisconsin Alumni Research Foundation Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols
US20120029257A1 (en) * 2010-07-28 2012-02-02 Chevron U.S.A. Inc. Process for the production of para-xylene
CN104230615B (zh) * 2014-08-25 2016-01-20 南京林业大学 生物质衍生物γ-戊内酯催化转化制芳烃和环戊烯酮的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721375A (zh) * 2004-07-12 2006-01-18 中国石油化工股份有限公司 用于丁烯齐聚制备碳八烯烃的方法
WO2009111026A2 (en) * 2008-03-04 2009-09-11 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
WO2010151346A1 (en) * 2009-06-26 2010-12-29 Uop Llc Carbohydrate route to para-xylene and terephthalic acid
CN104334733A (zh) * 2012-04-20 2015-02-04 可口可乐公司 用于从生物质制备对二甲苯的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312285A4 *
XIA, HAIAN ET AL.: "Catalytic Conversion of Biomass Derivative gamma- Valerolactone to Aromatics over Zn/ZSM-5 Catalyst", JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, vol. 43, no. 5, 31 May 2015 (2015-05-31), pages 575 - 580, XP055337710, ISSN: 0253-2409 *

Also Published As

Publication number Publication date
KR20180019698A (ko) 2018-02-26
CN106316768B (zh) 2019-05-14
DK3312285T3 (da) 2021-07-26
EP3312285A4 (en) 2019-02-06
US20180282256A1 (en) 2018-10-04
KR102454224B1 (ko) 2022-10-12
EP3312285B1 (en) 2021-04-28
BR112017027358B1 (pt) 2021-10-13
CN106316768A (zh) 2017-01-11
ES2880284T3 (es) 2021-11-24
EP3312285A1 (en) 2018-04-25
US10435348B2 (en) 2019-10-08
BR112017027358A2 (zh) 2018-08-21
JP6976863B2 (ja) 2021-12-08
JP2018519287A (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
US20130261365A1 (en) Process for the Production of Xylenes and Light Olefins from Heavy Aromatics
US9221037B2 (en) Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks
US20200010767A1 (en) Conversion of mixtures of c2-c8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
JP2011148720A (ja) ブタジエンの製造方法
JP2009541458A (ja) o−キシレンの製造方法
WO2016201954A1 (zh) 芳香烃、对二甲苯和对苯二甲酸的制造方法以及芳香烃的制造装置
WO2013127044A1 (zh) 一种碳八芳烃中乙苯脱烷基催化剂
WO2001000547A1 (fr) Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur
Zhu et al. Two new on-purpose processes enhancing propene production: catalytic cracking of C 4 alkenes to propene and metathesis of ethene and 2-butene to propene
CA2945115A1 (en) Processes for producing aromatic hydrocarbon, p-xylene and terephthalic acid
WO2007105875A1 (en) Preparing method of light olefin trimers and production of heavy alkylates by using thereof
CN107721794B (zh) 芳构化的方法
KR101665577B1 (ko) 경방향족 탄화수소 제조를 위한 수소화 분해 반응용 촉매, 이의 제조방법 및 이를 이용한 자일렌 함량이 높은 경방향족 탄화수소의 제조방법
CN112441866B (zh) 一种由异丁烯生产正丁烯的方法
CN107586245B (zh) 芳构化的方法
CN106256814B (zh) 增产二甲苯的方法
KR101833797B1 (ko) 톨루엔 제조용 루이스 산 촉매 및 이를 이용한 톨루엔의 제조방법
CN107586243B (zh) 芳香烃的生产方法
CN112441865B (zh) 一种由异丁烯制备丁烯-2的方法
KR101790987B1 (ko) 글리세롤을 이용한 바이오 방향족 화합물의 제조방법
CN107721792B (zh) 芳香烃的生产方法
CN1781598A (zh) 树脂组装杂多酸盐催化剂的制备方法
US20240059627A1 (en) Processes for producing mixtures of different olefins
CN107721788B (zh) 芳构化生产芳香烃的方法
CN107586246B (zh) 芳构化生产芳香烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737976

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001727

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016810695

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027358

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171218