WO2016194474A1 - タッチセンサの製造方法 - Google Patents

タッチセンサの製造方法 Download PDF

Info

Publication number
WO2016194474A1
WO2016194474A1 PCT/JP2016/061527 JP2016061527W WO2016194474A1 WO 2016194474 A1 WO2016194474 A1 WO 2016194474A1 JP 2016061527 W JP2016061527 W JP 2016061527W WO 2016194474 A1 WO2016194474 A1 WO 2016194474A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin layer
light
layer
film
Prior art date
Application number
PCT/JP2016/061527
Other languages
English (en)
French (fr)
Inventor
面 了明
橋本 孝夫
西村 剛
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Priority to EP16802911.4A priority Critical patent/EP3264237B1/en
Priority to CN201680030858.XA priority patent/CN107636580B/zh
Priority to KR1020177030027A priority patent/KR102230695B1/ko
Priority to US15/550,854 priority patent/US10303316B2/en
Publication of WO2016194474A1 publication Critical patent/WO2016194474A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • This invention relates to the manufacturing method of a touch sensor provided with a base film, an electrode, and routing wiring.
  • Capacitive touch on the display screen of multi-function mobile phones (smartphones), multi-function mobile terminals (tablets), car navigation, portable game machines, small electronic devices such as electronic dictionaries, and display devices such as OA / FA devices
  • a sensor equipped with a sensor that can be input on a screen is widely used.
  • a transparent conductive film is used for electrodes that are required to be transparent.
  • ITO Indium-Tin-Oxide
  • indium oxide Indium oxide
  • tin oxide Indium oxide
  • the like which exhibit high transmittance with respect to visible light
  • the electrodes of the touch sensor a pattern obtained by patterning a transparent conductive film made of the above-mentioned material has become the mainstream.
  • a method for patterning a transparent conductive film As a method for patterning a transparent conductive film, a method is generally used in which after forming a transparent conductive film, a resist pattern is formed by photolithography, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern.
  • a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is generally used as an etching liquid.
  • the ITO film and the tin oxide film are generally formed by a sputtering method.
  • the properties of the transparent conductive film are easily changed depending on the difference in sputtering method, sputtering power, gas pressure, substrate film temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to variations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects.
  • the conductive pattern forming method described above has undergone a sputtering process, a resist forming process, and an etching process, the process is long and a great burden is imposed on the cost.
  • Patent Document 1 After forming a conductive layer containing conductive fibers such as silver fibers on a base film, a photosensitive resin layer is formed on the conductive layer, and a pattern mask is formed thereon. A method of forming a conductive pattern that is exposed to light and developed is disclosed.
  • Patent Document 2 uses a transfer type photosensitive conductive film in which a conductive layer containing a conductive fiber such as silver fiber and a light-sensitive resin layer are laminated on a support film.
  • a method of forming a conductive pattern is also disclosed in which the photosensitive resin layer is laminated on a film so that the photosensitive resin layer is in close contact, exposed through a pattern mask, and developed after the support film is peeled off.
  • the present inventors have considered that conductive layers containing conductive fibers such as silver fibers are provided on both sides of the base film, and patterning the conductive layers in different patterns on both sides at the same time, the active area It was a problem how to form a circuit around the outer periphery of the base film on both sides. That is, although the method of printing by ink jet printing or silk screen printing using conductive ink containing conductive fibers such as silver fibers can be considered, these methods cannot be processed simultaneously on both sides of the base film, Also, the alignment accuracy of the front and back surfaces is not good.
  • the first aspect of the present invention includes a light-shielding metal layer on both surfaces of a base film having UV-cut performance, and a first photosensitive resin layer on each of the light-shielding metal layers.
  • the second aspect of the present invention provides the touch sensor forming method according to the first aspect, wherein the thickness of the second photosensitive resin layer is 1 ⁇ m to 2 ⁇ m.
  • the third aspect of the present invention is a step of forming a light-shielding metal layer on both surfaces of a base film having UV cut performance, and forming a first photosensitive resin layer on each of the light-shielding metal layers, An exposure step of irradiating the first photosensitive resin layer on the light-shielding metal layer with UV light through different pattern masks on both sides; Forming a resist pattern by developing the exposed first photosensitive resin layer; An etching step of forming a routing circuit pattern by removing the light-shielding metal layer in a portion not covered with the resist pattern; Removing the first photosensitive resin layer covering the routing circuit pattern at least at a connection portion; and A photosensitive conductive film comprising: a support film; a second photosensitive resin layer provided on the support film; and a conductive layer containing conductive fibers provided on the second photosensitive resin layer.
  • the fourth aspect of the present invention provides the touch sensor forming method according to any one of the first to third aspects, wherein the total thickness of the second photosensitive resin layer and the conductive layer is 1 to 3 ⁇ m.
  • the step of peeling and removing the first photosensitive resin layer removes the first photosensitive resin layer. Furthermore, before the step of laminating the photosensitive conductive film, the method further comprises a step of covering the light-shielding metal layer of the routing circuit pattern with a PAS layer excluding the connection portion. A method for forming a touch sensor is provided.
  • the overlapping portion with the electrode pattern is roughened.
  • the seventh aspect of the present invention is the touch sensor according to the sixth aspect, wherein the rough surface in the roughening step has an arithmetic average roughness (Ra) measured in accordance with JIS B 0601: 2001 of 1 nm to 50 nm.
  • Ra arithmetic average roughness
  • the manufacturing method of the touch sensor of the present invention is configured as described above, it is possible to process the drawing circuit pattern on both surfaces of the base film at the same time, and it is excellent in the alignment accuracy of the front and back surfaces.
  • Schematic diagram of a touch sensor according to the present invention Partial enlarged plan view of a touch sensor according to the present invention
  • the schematic diagram which shows the process of forming a light-shielding metal layer and a 1st photosensitive resin layer The schematic diagram which shows the exposure process of a 1st photosensitive resin layer Schematic diagram showing the development process of the first photosensitive resin layer Schematic diagram showing the etching process of the light-shielding metal layer
  • the schematic diagram which shows the process of peeling and removing the 1st photosensitive resin layer Schematic diagram showing the process of forming the PAS layer in the routing circuit pattern
  • Schematic diagram showing the process of laminating a photosensitive conductive film The schematic diagram which shows the exposure process of a 2nd photosensitive resin layer Schematic diagram showing the development process of the second photosensitive resin layer Schematic diagram showing another process of laminating a photosensitive conductive film
  • the schematic diagram which shows another exposure process of a 2nd photosensitive resin layer The schematic diagram which shows another image development process of a 2nd photo
  • the touch sensor 30 is of the electrostatic capacity type that is bonded to the back surface of the cover glass of the electronic device display window. Specifically, as shown in FIG. 1, a transparent base film 1, a transparent conductive film formed on both surfaces of the base film 1 so as to have an electrode pattern 25 in the center portion 1 a, and an outer frame A light-shielding conductive film formed so as to have a routing circuit pattern 5 of the portion 1b.
  • the electrode pattern 25 formed on the central window 1a of the touch sensor 30 will be supplementarily described.
  • the electrode pattern 25 has different patterns on the front and back sides.
  • a rhombus electrode 251 a having a rhombus shape in plan view, and a connection wiring 251 b penetrating the plurality of rhombus electrodes 251 a in the vertical direction (Y direction) in the drawing. are provided in the central portion 1a.
  • the plurality of rhombus electrodes 251a and the connection wiring 251b are electrically connected to each other.
  • connection wiring 251b and a plurality of rhombus electrodes 251a penetrating therethrough are taken as a set, and the set is repeatedly arranged in the horizontal direction (X direction) in the figure.
  • a plurality of rhombus electrodes 252a and connection wirings 252b penetrating them are provided in the central portion 1a on the surface of the base film 1.
  • the extending direction of the connection wiring 252b is different from that of the connection wiring 251b and is the horizontal direction (X direction) in the drawing.
  • the direction in which a set of the connection wiring 252b and the plurality of rhombus electrodes 252a penetrating the connection wiring 252b is repeatedly arranged is the vertical direction (Y direction) in the figure.
  • the rhombus electrode 251a is disposed so as to fill the gaps between the plurality of connection wirings 252b, while the rhombus electrode 252a is disposed so as to fill the gaps between the plurality of connection wirings 251b. Is done.
  • the positional relationship between the rhombus electrode 251a and the rhombus electrode 252a is complementary. That is, the plurality of rhombus electrodes 252a are arranged so as to fill the gaps in the rhombus shape that occur when the rhombus electrodes 251a are arranged in a matrix.
  • the X direction electrode and the Y direction electrode are arranged so as to form a lattice in plan view, so if a user's finger or the like touches any position on the lattice through the cover glass, A capacitor is formed between the finger or the like and the X-direction electrode touched by the finger or the like, and a capacitor is formed between the finger or the like and the Y-direction electrode touched by the finger or the like. By forming this capacitor, the capacitance of the X direction electrode and the Y direction electrode increases.
  • the position detector of the external circuit detects the amount of change in capacitance that occurs in such a case, or even the X-direction electrode and Y-direction electrode having the maximum capacitance, and gives a specific value where it touched. It can be acquired as a set of X coordinate values and Y coordinate values.
  • the light-shielding metal layer 2 is formed on both surfaces of the base film 1 having UV cut performance, and the first photosensitive resin layer 3 is formed on the light-shielding metal layer 2 respectively.
  • a step of forming the resist pattern 4 by developing the exposed first photosensitive resin layer 3 see FIG. 5
  • a portion of the light-shielding metal layer not covered with the resist pattern 4 An etching process (see FIG.
  • the base film 1 is preferably configured using a material excellent in transparency, flexibility, insulation, and the like.
  • materials that satisfy such requirements include general-purpose resins such as polyethylene terephthalate and acrylic resins, general-purpose engineering resins such as polyacetal resins and polycarbonate resins, and super engineering resins such as polysulfone resins and polyphenylene sulfide resins.
  • the resin film which consists of is illustrated.
  • the thickness of the base film 1 can be set to 25 ⁇ m to 100 ⁇ m, for example.
  • the base film 1 may be comprised using film glass etc.
  • the second photosensitive resin layer is formed by photolithography in the method of forming the electrode pattern 25 described later.
  • the UV light 15 that is not absorbed by the second photosensitive resin layer 23 among the UV light 15 irradiated from one surface side of the base film 1 is the base film. 1 reaches the second photosensitive resin layer 23 on the other surface side, and therefore, it is problematic that electrodes having different patterns cannot be simultaneously formed on both surfaces of the base film 1.
  • a layer having a UV cut function is used as the base film 1.
  • a layer having a UV cut function as the base film 1
  • the light absorbing material used for cutting the UV light 15 include a UV absorber and a resin having a UV absorbing function, and a UV absorber is added to the base film 1 or the base film 1 is configured.
  • a resin having a UV absorption function can be copolymerized.
  • UV absorber contained in the base film 1 examples include benzophenone series, benzotriazole series, benzoate series, salicylate series, triazine series, and cyanoacrylate series.
  • benzotriazole-based UV absorbers include 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazole -Yl) -4,6-di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol and mixtures thereof, Examples include modified products, polymers, and derivatives.
  • UV absorbers 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- [4- [ (2-Hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4-[(2 -Hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4dimethylphenyl) -1,3,5-triazine, 2,4-bis (2,4- Examples thereof include dimethylphenyl) -6- (2-hydroxy-4-iso-octyloxyphenyl) -s-triazine, and mixtures, modified products, polymers, and derivatives thereof. These may be used alone or in combination.
  • the resin having a UV absorption function includes a non-reactive UV absorber such as benzophenone, benzotriazole, benzoate, salicylate, triazine, cyanoacrylate, and the like, vinyl group, acryloyl group, A functional group having a polymerizable double bond such as a methacryloyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, an epoxy group, or an isocyanate group is introduced.
  • a non-reactive UV absorber such as benzophenone, benzotriazole, benzoate, salicylate, triazine, cyanoacrylate, and the like
  • vinyl group acryloyl group
  • a functional group having a polymerizable double bond such as a methacryloyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, an epoxy group, or an isocyanate group is introduced.
  • the content of the light-absorbing material is not particularly limited as long as light that has not been absorbed by the second photosensitive resin layer 23 on one surface of the base film 1 can be prevented from reaching the second photosensitive resin layer 23 on the other surface. It is not limited.
  • Examples of the light-shielding metal layer 2 include a single metal film having high conductivity and good light-shielding property, and a layer made of an alloy or a compound thereof, such as a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. It is good to form with.
  • Examples of the preferable metal include aluminum, nickel, copper, silver, and tin.
  • a metal film made of copper foil and having a thickness of 20 to 1000 nm is very preferable because of its excellent conductivity and light shielding properties. More preferably, the thickness is 30 nm or more. More preferably, the thickness is 100 to 500 nm.
  • a highly conductive light-shielding metal layer 2 can be obtained by setting the thickness to 100 nm or more, and a light-shielding metal layer 2 that is easy to handle and excellent in workability can be obtained by setting the thickness to 500 nm or less.
  • the first photosensitive resin layer 3 is an acrylic resin having a thickness of 10 to 20 ⁇ m that can be exposed to a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, etc. and developed with an alkaline aqueous solution described later. It consists of a photoresist material.
  • the first photosensitive resin layer 3 was formed on the entire surface by a general printing method such as gravure, screen, and offset, as well as various coater methods, coating and dipping methods, and a dry film resist method. The patterning may be performed after exposure and development, but the dry film resist method is more preferable.
  • a dry film resist (DFR) used in the dry film resist method is a film in which the photosensitive layer to be the first photosensitive resin layer 3 is sandwiched between a base film and a cover film.
  • the above printing method, coating method, painting method, etc. have problems such as only one side coating and poor efficiency, whereas the dry film resist method bonds the photosensitive layer with a heating roll after peeling the cover film.
  • This method is mainstream because it is highly productive and can meet various requirements. Note that exposure is usually performed by placing a pattern mask on the base film (not shown), and development is performed after the base film is peeled off.
  • the base film of the dry film resist a film made of polyethylene terephthalate or the like can be used. Moreover, what consists of polyethylene etc. can be used as a cover film of a dry film resist.
  • Examples of the exposure method in the exposure step include a method of irradiating the UV light 15 in an image form through a pattern mask (mask exposure method).
  • a known light source such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, or a xenon lamp is used.
  • what emits ultraviolet rays effectively, such as Ar ion laser and semiconductor laser is also used.
  • a method of irradiating the UV light 15 in an image shape by a direct drawing method using a laser exposure method or the like may be employed.
  • the base film 1 made of a resin film has a problem of elongation. Therefore, the patterning of the first photosensitive resin layer 3 of the laminate is suitably performed by double-sided simultaneous exposure as in the present invention. This is because, when the patterning of the first photosensitive resin layer 3 is performed by exposing one side at a time, the patterning on one side is completed, and the base film 1 is stretched when the front and back of the laminate are replaced in the exposure apparatus and attached again. This is because the cured pattern 3a on the front surface and the cured pattern 3a on the back surface are displaced. In the case of the example shown in FIG.
  • the accuracy of the electrode pattern 25 is important, and the cured pattern 3a on the surface (finally the inversion pattern of the routing circuit) And the cured pattern 3a on the back surface (finally the reversed pattern of the routing circuit) are misaligned, the connection with these electrode patterns 25 becomes uncertain.
  • the light-shielding conductive film blocks the UV light 15 on the opposite side, so that even if it is exposed with a different mask pattern at the same time, it affects the patterning of the first photosensitive resin layer 3 on the opposite side.
  • both surfaces can be exposed simultaneously, it is easy to align the cured pattern 3a on the front surface and the cured pattern 3a on the back surface, and the double-sided pattern can be formed in a single process, resulting in excellent productivity.
  • a well-known mask alignment method of a double-sided exposure apparatus can be used for alignment of the front and back masks.
  • a mask alignment mark is formed on each of the front mask and the back mask, and an optical reading sensor such as a camera reads the overlapping state of the pair of mask alignment marks, thereby relative to the front mask and the back mask. Get location information. Then, based on the obtained position information, the mask position adjusting mechanism relatively moves the front mask and the back mask so that the pair of mask alignment marks overlap with each other. For example, a method of aligning the back mask.
  • the wet development is performed by a known method such as spraying, rocking immersion, brushing, or scraping, using a developer corresponding to a photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer. .
  • a safe and stable aqueous solution such as an alkaline aqueous solution
  • the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide, alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate, potassium phosphate, and phosphoric acid.
  • Alkali metal phosphates such as sodium and alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate are used.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • an aqueous developer composed of water or an aqueous alkaline solution and one or more organic solvents
  • the base contained in the alkaline aqueous solution in addition to the above-mentioned bases, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1 , 3-propanediol, 1,3-diaminopropanol-2, morpholine.
  • organic solvent examples include 3 acetone alcohol, acetone, ethyl acetate, alkoxy ethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. Is mentioned. These are used individually by 1 type or in combination of 2 or more types. In addition, a small amount of a surfactant, an antifoaming agent, or the like can be added to the aqueous developer.
  • Examples of the developing method include a dip method, a battle method, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving resolution.
  • the etching process In the etching process, the light-shielding metal layer 2 is simultaneously etched with an etchant such as ferric chloride, and the light-shielding metal layer 2 in a portion where the resist pattern 4 is not formed is removed.
  • an etchant such as ferric chloride
  • the first photosensitive resin layer 3 remaining on the patterned light-shielding metal layer 2 is completely stripped with a resist stripping solution, and the entire surface of the light-shielding metal layer 2 is once temporarily removed. Expose (see FIG. 7).
  • an acidic stripping solution or an alkaline stripping solution is used as the resist stripping solution.
  • a typical acidic stripping solution a stripping solution in which a phenol compound, a chlorinated solvent, an aromatic hydrocarbon, or the like is blended with alkylbenzene sulfonic acid is commercially available.
  • alkaline stripping solution a stripping solution comprising a water-soluble organic amine and an organic solvent such as dimethyl sulfoxide is commercially available.
  • the PAS (passivation) layer covers the portion other than the connection portion 5a of the routing circuit pattern 5 and functions as an insulating rust prevention layer that protects the routing circuit pattern 5 (see FIG. 8).
  • the PAS layer 6 can use the same material and method as the resist pattern 4.
  • the formation method of the electrode pattern 25 of the invention according to the present embodiment is performed through the following steps after each forming step of the routing circuit pattern 5 described above. That is, the photosensitive conductive film 20 provided with the support film 21, the conductive layer 22 provided on the support film 21 and containing conductive fibers, and the second photosensitive resin layer 23 provided on the conductive layer 22. Are laminated so that the second photosensitive resin layer 23 is in close contact with both surfaces of the base film 1 on which the routing circuit pattern 5 is formed (see FIG. 9), and on both surfaces of the base film 1 An exposure step (step in FIG.
  • the laminating step shown in FIG. 9 is performed, for example, by a method of laminating the photosensitive conductive film 20 by pressing the photosensitive resin layer side to the base film 1 while heating. In addition, it is preferable to laminate
  • the support film 21 examples include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film.
  • polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film.
  • these polymer films must be removable from the photosensitive resin layer later, they must not be subjected to a surface treatment or material that makes removal impossible.
  • the thickness of the support film 21 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • the support film 21 tends to be easily torn in the step of coating or the step of peeling the support film 21 before developing the exposed photosensitive resin layer 3.
  • the thickness of the support film 21 exceeds 300 ⁇ m, the pattern resolution tends to decrease when the UV light 15 is irradiated onto the second photosensitive resin layer 23 through the support film 21, and the price increases. There is a tendency.
  • the haze value of the support film 21 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is particularly preferably from 2.0 to 2.0%, and extremely preferably from 0.01 to 1.0%.
  • the haze value can be measured according to JIS K-7105. For example, it can be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.). .
  • Examples of the conductive fibers contained in the conductive layer 22 include metal fibers such as gold, silver, and platinum, and carbon fibers such as carbon nanotubes. These can be used alone or in combination of two or more. From the viewpoint of conductivity, it is preferable to use gold fiber or silver fiber. Gold fiber and silver fiber can be used individually by 1 type or in combination of 2 or more types. Furthermore, silver fiber is more preferable from the viewpoint of easily adjusting the conductivity of the formed conductive film.
  • the metal fiber can be prepared by, for example, a method of reducing metal ions with a reducing agent such as NaBH4 or a polyol method.
  • the fiber diameter of the conductive fibers is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and particularly preferably 3 nm to 10 nm.
  • the fiber length of the conductive fiber is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 3 ⁇ m to 10 ⁇ m.
  • the conductive layer 22 preferably has a network structure in which conductive fibers are in contact with each other.
  • the conductive layer 22 having such a network structure is formed on the surface of the second photosensitive resin layer 23 on the support film 21 side, and is conductive in the surface direction on the surface exposed when the support film 21 is peeled off. It is sufficient if the sex is obtained. Therefore, in the definition of “the second photosensitive resin layer 23 provided on the conductive layer 22” in this specification, the conductive layer 22 having a network structure is the support film 21 side of the second photosensitive resin layer 23. The case where it is formed in the form included in the surface layer is also included.
  • the thickness of the conductive layer 22 varies depending on the use of the conductive film or conductive pattern formed using the photosensitive conductive film 20 and the required conductivity, but is preferably 1 ⁇ m or less, preferably 1 nm to 0.5 ⁇ m. More preferably, it is 5 nm to 0.1 ⁇ m.
  • the thickness of the conductive layer 22 is 1 ⁇ m or less, the light transmittance in the wavelength region of 450 to 650 nm is high, the pattern forming property is excellent, and it is particularly suitable for the production of a transparent electrode.
  • the conductive layer 22 containing conductive fibers is, for example, conductive obtained by adding the above-described conductive fibers to the support film 21 with water and / or an organic solvent and, if necessary, a dispersion stabilizer such as a surfactant. It can be formed by coating and then drying the fiber dispersion. After drying, the conductive layer 22 formed on the support film 21 may be laminated as necessary.
  • the coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. The drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like.
  • the conductive fibers may coexist with a surfactant or a dispersion stabilizer.
  • the second photosensitive resin layer 23 is formed from a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator. Things.
  • (A) As a binder polymer for example, obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid
  • acrylic resin styrene resin
  • epoxy resin amide resin
  • amide epoxy resin alkyd resin
  • phenol resin ester resin
  • urethane resin epoxy resin
  • epoxy resin and (meth) acrylic acid examples thereof include epoxy acrylate resins, acid-modified epoxy acrylate resins obtained by reaction of epoxy acrylate resins and acid anhydrides, and the like. These resins can be used singly or in combination of two or more.
  • the photopolymerizable compound having an ethylenically unsaturated bond is preferably a photopolymerizable compound having an ethylenically unsaturated bond.
  • Examples of the photopolymerizable compound having an ethylenically unsaturated bond include a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, 2,2-bis (4-((meth) acryloxy).
  • Examples of the photopolymerization initiator include benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, 4- Methoxy-4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino- Aromatic ketones such as propanone-1, 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3 -Diphenylanthra
  • the second photosensitive resin layer 23 is formed by applying and drying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass, dissolved in a solvent, on the support film 21 on which the conductive layer 22 is formed. It can. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
  • Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
  • the thickness of the second photosensitive resin layer 23 is generally preferably 1 ⁇ m to 15 ⁇ m, and more preferably 1 to 10 ⁇ m, after drying. If the thickness is less than 1 ⁇ m, coating tends to be difficult, and if it exceeds 15 ⁇ m, the sensitivity due to a decrease in light transmission is insufficient, and the photocurability of the photosensitive resin layer to be transferred tends to be reduced.
  • the second photosensitive resin layer 23 when the photosensitive conductive film 20 is in the order of the conductive layer 22 containing conductive fibers and the second photosensitive resin layer 23 from the support film 21 side, the second photosensitive resin layer 23.
  • the thickness of is particularly preferably 2 ⁇ m or less. When the thickness exceeds 2 ⁇ m, the conductivity with the routing circuit tends to be lowered.
  • the laminate of the conductive layer 22 and the second photosensitive resin layer 23 has a wavelength range of 450 to 650 nm when the total thickness of both layers is 1 to 10 ⁇ m.
  • the minimum light transmittance is preferably 80% or more, and more preferably 85% or more.
  • the total thickness of the conductive layer 22 and the second photosensitive resin layer 23 is more preferably 3 ⁇ m or less. If the thickness exceeds 3 ⁇ m, the step between the portion where the electrode pattern 25 is formed and the portion where the electrode pattern 25 is not formed becomes large, so that the pattern appears.
  • the photosensitive conductive film 20 may further have a layer such as an adhesive layer.
  • the base film 1 of this embodiment is provided with a UV cut function as described above, and when performing double-sided simultaneous exposure, a layer having a UV cut function is used as the base film 1.
  • a layer having a UV cut function as the base film 1, among the UV light 15 irradiated from one surface side of the base film 1, light that has not been absorbed by the second photosensitive resin layer 23 is Reaching the second photosensitive resin layer 23 on the other surface side of the base film 1 can be prevented.
  • the second photosensitive resin layer 23 By passing through the above-mentioned steps, those provided with the second photosensitive resin layer 23 having the cured pattern 24 on both surfaces of the base film 1 where the drawing circuit pattern 5 is formed are obtained (see FIG. 10).
  • the second photosensitive resin layer 23 is heated at about 60 to 250 ° C. or exposed at about 0.2 to 10 J / cm 2 as necessary. May be further cured.
  • portions other than the cured portion of the second photosensitive resin layer 23 are removed. Specifically, when the transparent support film 21 exists on the conductive layer 22, the support film 21 is first removed, and then a portion other than the cured portion of the second photosensitive resin layer 23 by wet development. Remove. Thereby, the conductive layer 22 containing conductive fibers remains on the cured resin layer having a predetermined pattern, and the electrode pattern 25 is formed (see FIG. 11).
  • the conductive pattern is further cured by heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development. May be.
  • the drawing circuit pattern can be processed on both surfaces of the base film at the same time, and a touch panel with excellent front and back alignment accuracy can be obtained.
  • the method for forming the electrode pattern 25 of the invention according to this embodiment includes the support film 21, the second photosensitive resin layer 23 provided on the support film 21, and the second photosensitive resin layer 23. Laminating the photosensitive conductive film 20 including the conductive layer 22 containing the conductive fibers so that the conductive layer 22 is in close contact with both surfaces of the base film 1 on which the routing circuit pattern 5 is formed. (See FIG.
  • a touch sensor including a conductive film (electrode pattern 25) patterned on the film is obtained.
  • the first embodiment is a photosensitive conductive film 20 (so-called face-up type) in which the conductive layer 22 and the second photosensitive resin layer 23 are laminated in this order from the support film 21 side, whereas this embodiment is a support
  • the two are different in that it is a photosensitive conductive film 20 (so-called face-down type) in which the second photosensitive resin layer 23 and the conductive layer 22 are laminated in this order from the film 21 side.
  • the conductive layer 22 containing conductive fibers provided on the second photosensitive resin layer 23” in this specification the conductive layer 22 having a network structure is the second photosensitive resin layer.
  • the case where it forms with the form contained in the surface layer on the opposite side to 23 support films 21 is also contained.
  • the light-shielding metal layer 2 having the routing circuit pattern 5 and the conductive layer 22 having the electrode pattern 25 can come into direct contact with each other. Therefore, even if the thickness of the second photosensitive resin layer 23 is not reduced, conduction between the routing circuit and the electrode can be ensured.
  • the following configuration may be further added. That is, before the step of laminating the photosensitive conductive film 20, a roughening step of roughening an overlapping portion with the electrode pattern 25 on the exposed surface of the light shielding metal layer 2 of the routing circuit pattern 5 is provided. May be.
  • the rough surface in the roughening step is preferably 1 nm to 50 nm in arithmetic average roughness (Ra) measured according to JIS B 0601: 2001.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Position Input By Displaying (AREA)

Abstract

【課題】 引き回し回路パターンを基材フィルムの両面に同時に加工することが出来、表裏面の引き回し回路パターンの位置合わせ精度に優れた、タッチセンサの製造方法を提供する。 【解決手段】 支持フィルムと、該支持フィルム上に設けられ導電性繊維を含有する導電層と、該導電層上に設けられた第2感光性樹脂層とを備える感光性導電フィルムを用い、両面同時露光及び現像して、基材フィルムの両面に電極パターンを形成するタッチセンサの製造方法において、 あらかじめ基材フィルムの両面に、遮光性金属層をパターン化してなる引き回し回路パターンを形成しておくことを特徴とする。

Description

タッチセンサの製造方法
 本発明は、基材フィルムと電極と引き回し配線とを備えるタッチセンサの製造方法に関する。
 多機能携帯電話(スマートフォン)、多機能携帯端末(タブレット)、カーナビゲーション、携帯ゲーム機、電子辞書等の小型電子機器、OA・FA機器等の表示機器では、表示画面に静電容量方式のタッチセンサを備え、画面上で入力可能なものが普及している。このようなタッチセンサでは、透明であることが要求される電極に、透明導電膜が使用されている。
 透明導電膜の材料としては、可視光に対して高い透過率を示すITO(Indium-Tin-Oxide)、酸化インジュウム及び酸化スズなどが従来より用いられている。タッチセンサの電極では、上記の材料からなる透明導電膜をパターニングしたものが主流になっている。
 透明導電膜のパターニング方法としては、透明導電膜を形成後、フォトリソグラフィ法によりレジストパターンを形成し、ウエットエッチングにより導電膜の所定部分を除去して導電パターンを形成する方法が一般的である。ITO及び酸化インジュウム膜の場合、エッチング液は塩酸と塩化第二鉄の2液よりなる混合液が一般に用いられている。
 ITO膜や酸化スズ膜は一般にスパッタ法により形成される。しかし、この方法は、スパッタ方式の違い、スパッタパワーやガス圧、基材フィルム温度、雰囲気ガスの種類等によって透明導電膜の性質が変わりやすい。スパッタ条件の変動による透明導電膜の膜質の違いは、透明導電膜をウエットエッチングする際のエッチング速度のばらつきの原因となり、パターンニング不良による製品の歩留り低下を招きやすい。また、上記の導電パターンの形成方法は、スパッタ工程、レジスト形成工程及びエッチング工程を経ていることから、工程が長く、コスト面でも大きな負担となっている。
 最近、上記の問題を解消するために、ITO、酸化インジュウム及び酸化スズなどに替わる材料を用いて透明な導電パターンを形成する試みがなされている。例えば、下記特許文献1には、基材フィルム上に、銀繊維などの導電性繊維を含有する導電層を形成した後、導電層上に感光性樹脂層を形成し、その上からパターンマスクを介して露光し、現像する導電パターンの形成方法が開示されている。
 また、下記特許文献2には、支持フィルム上に、銀繊維などの導電性繊維を含有する導電層及び光性樹脂層とが積層された転写型の感光性導電フィルムを用い、これを基材フィルム上に前記感光性樹脂層が密着するようにラミネートし、その上からパターンマスクを介して露光し、支持フィルムの剥離後に現像する導電パターンの形成方法も開示されている。
米国特許公開第2007/0074316号公報 国際公開第2010/021224号のパンフレット
 ところで、本発明者らは、銀繊維などの導電性繊維を含有する導電層を基材フィルムの両面に設け、両面同時に別々のパターンで導電層をパターニングすることを検討していたが、アクティブエリアの外周の引き回し回路をどうやって基材フィルムの両面に形成するかが問題であった。すなわち、銀繊維などの導電性繊維を含有する導電インクを用いインクジェット印刷やシルクスクリーン印刷にて印刷する手法は考えられるが、これらの手法では基材フィルムの両面に同時に加工することが出来ず、また表裏面の位置合わせ精度も良くない。
 上記の課題を解決するための手段として、本発明の第1態様は、UVカット性能を有する基材フィルムの両面に遮光性金属層、該遮光性金属層上に各々第1感光性樹脂層を形成する工程と、
 前記遮光性金属層上の前記第1感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
 露光した前記第1感光性樹脂層を現像することによりレジストパターンを形成する工程と、
 前記レジストパターンで被覆されていない部分の前記遮光性金属層を除去することにより引き回し回路パターンを形成するエッチング工程と、
 前記引き回し回路パターンを覆う前記第1感光性樹脂層を少なくとも接続部で剥離除去する工程と、
 前記基材フィルムの両面にラミネートされた前記感光性導電フィルムの前記第2感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
 露光した前記第2感光性樹脂層を現像することにより、前記第2感光性樹脂層の除去される部分に積層された前記導電層も一緒に除去し、前記引き回し回路パターンと電気的に接続された電極パターンを形成する現像工程と、を備える、タッチセンサの形成方法を提供する。
 また、本発明の第2態様は、前記第2感光性樹脂層の厚みが1μm~2μmである、第1態様のタッチセンサの形成方法を提供する。
 また、本発明の第3態様は、UVカット性能を有する基材フィルムの両面に遮光性金属層、該遮光性金属層上に各々第1感光性樹脂層を形成する工程と、
 前記遮光性金属層上の前記第1感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
 露光した前記第1感光性樹脂層を現像することによりレジストパターンを形成する工程と、
 前記レジストパターンで被覆されていない部分の前記遮光性金属層を除去することにより引き回し回路パターンを形成するエッチング工程と、
 前記引き回し回路パターンを覆う前記第1感光性樹脂層を少なくとも接続部で剥離除去する工程と、
 支持フィルムと、該支持フィルム上に設けられ第2感光性樹脂層と、該第2感光性樹脂層上に設けられた導電性繊維を含有する導電層とを備える感光性導電フィルムを、前記基材フィルムの前記引き回し回路パターンが形成された両面に前記導電層が密着するようにラミネートする工程と、
 前記基材フィルムの両面にラミネートされた前記感光性導電フィルムの前記第2感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
 露光した前記第2感光性樹脂層を現像することにより、前記第2感光性樹脂層の除去される部分に積層された前記導電層も一緒に除去し、前記引き回し回路パターンと電気的に接続された電極パターンを形成する現像工程と、を備える、タッチセンサの形成方法を提供する。
 また、本発明の第4態様は、前記第2感光性樹脂層及び前記導電層の合計厚みが1~3μmである、第1~3態様のいずれかのタッチセンサの形成方法を提供する。
 また、本発明の第5態様は、前記第1感光性樹脂層を剥離除去する工程が前記第1感光性樹脂層を全て除去するものであり、
 さらに、前記感光性導電フィルムをラミネートする工程の前に、前記引き回し回路パターンの前記遮光性金属層をPAS層を前記接続部を除いて被覆する工程を備える、第1~4態様のいずれかのタッチセンサの形成方法を提供する。
 また、本発明の第6態様は、さらに、前記感光性導電フィルムをラミネートする工程の前に、前記引き回し回路パターンの前記遮光性金属層の露出表面のうち、電極パターンとの重複部分を粗す粗化工程を備える、第1~5態様のいずれかのタッチセンサの形成方法を提供する。
 また、本発明の第7態様は、前記粗化工程における粗面がJIS B 0601:2001に準拠して測定する算術平均粗さ(Ra)で1nm~50nmである、第6態様のタッチセンサの形成方法を提供する。
 本発明のタッチセンサの製造方法は、上記のように構成したので、引き回し回路パターンを基材フィルムの両面に同時に加工することが出来、表裏面の位置合わせ精度に優れている。
本発明に係るタッチセンサの模式図 本発明に係るタッチセンサの部分拡大平面図 遮光性金属層、第1感光性樹脂層を形成する工程を示す模式図 第1感光性樹脂層の露光工程を示す模式図 第1感光性樹脂層の現像工程を示す模式図 遮光性金属層のエッチング工程を示す模式図 第1感光性樹脂層の剥離除去する工程を示す模式図 引き回し回路パターンにPAS層を形成する工程を示す模式図 感光性導電フィルムをラミネートする工程を示す模式図 第2感光性樹脂層の露光工程を示す模式図 第2感光性樹脂層の現像工程を示す模式図 感光性導電フィルムをラミネートする別の工程を示す模式図 第2感光性樹脂層の別の露光工程を示す模式図 第2感光性樹脂層の別の現像工程を示す模式図
 下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。
〔第一実施形態〕
<タッチセンサ>
 タッチセンサ30は、電子機器表示窓のカバーガラスの裏面に貼り合わせられた、静電容量方式のものである。具体的には、図1に示すように、透明な基材フィルム1と、基材フィルム1の両面に各々、中央部1aの電極パターン25を有するように形成された透明導電膜と、外枠部1bの引き回し回路パターン5を有するように形成された遮光性導電膜とを備えている。
 ここでタッチセンサ30の中央窓部1aに形成される電極パターン25について補足説明する。当該電極パターン25は表裏でパターンが異なる。例えば、図2に示すように、基材フィルム1の裏面には、平面視して菱形形状を持つ菱形電極251aと、この菱形電極251a複数を図中縦方向(Y方向)に貫く接続配線251bとを中央部1aに備えている。複数の菱形電極251aと接続配線251bとは、相互に電気的に接続されている。また、このような、接続配線251b及びそれに貫かれた複数の菱形電極251aを一組として、当該一組が図中横方向(X方向)に繰り返し配列される。一方、これと同じようにして、基材フィルム1の表面には、複数の菱形電極252aと、それらを貫く接続配線252bとを中央部1aに備えている。ただし、この場合、接続配線252bの延在方向は、接続配線251bのそれとは異なり、図中横方向(X方向)である。また、それに伴い、接続配線252b及びそれに貫かれた複数の菱形電極252aからなる一組が、繰り返し配列される方向は、図中縦方向(Y方向)である。そして、図2から明らかなように、菱形電極251aは、複数の接続配線252b間の隙間を埋めるように配置される一方、菱形電極252aは、複数の接続配線251b間の隙間を埋めるように配置される。図2では更に、菱形電極251aと菱形電極252aとの配置関係は相補的である。つまり、菱形電極251aをマトリクス状に配列する場合に生じる菱形形状の隙間を埋めるように、複数の菱形電極252aは配列されているのである。
 このようにX方向電極及びY方向電極が平面視して格子を形作るように配置されているので、この格子上のいずれかの位置にユーザの指等がカバーガラスを介して触れれば、当該指等とそれが触れるX方向電極との間にコンデンサが形成され、また、当該指等とそれが触れるY方向電極との間にコンデンサが形成される。このコンデンサの形成によって、当該のX方向電極及びY方向電極の静電容量は増大する。外部回路の位置検出部は、このような場合において生じる静電容量の変化量、あるいは更には最大の静電容量をもつX方向電極及びY方向電極を検出し、どこに触れたかを、特定値たるX座標値及びY座標値の組として取得することが可能となる。
  前記構成を有するタッチセンサを得る方法を、以下に詳しく説明する。
<引き回し回路の形成方法>
 第一実施形態に係る発明の引き回し回路の形成方法は、UVカット性能を有する基材フィルム1の両面に遮光性金属層2、該遮光性金属層2上に各々第1感光性樹脂層3を形成する工程(図3参照)と、前記遮光性金属層2上の前記第1感光性樹脂層3に、両面で異なるパターンマスク10,11を介して、UV光15を照射する露光工程(図4参照)と、露光した前記第1感光性樹脂層3を現像することによりレジストパターン4を形成する工程(図5参照)と、前記レジストパターン4で被覆されていない部分の前記遮光性金属層2を除去することにより引き回し回路パターン5を形成するエッチング工程(図6参照)と、前記引き回し回路パターン5を覆う前記第1感光性樹脂層3を全て剥離除去する工程(図7参照)と、前記引き回し回路パターン5の前記遮光性金属層2をPAS層6を前記接続部5aを除いて被覆する工程(図8参照)とを備える。
(1.遮光性金属層、第1感光性樹脂層の積層工程)
 基材フィルム1としては、透明性、柔軟性、及び絶縁性等に優れた材料を用いて構成されていることが好ましい。このような要求を満足する材料としては、例えばポリエチレンテレフタレートやアクリル系樹脂等の汎用樹脂、ポリアセタール系樹脂やポリカーボネート系樹脂等の汎用エンジニアリング樹脂、ポリスルホン系樹脂やポリフェニレンサルファイド系樹脂等のスーパーエンジニアリング樹脂等からなる樹脂フィルムが例示される。基材フィルム1の厚みは、例えば、25μm~100μmとすることができる。なお、基材フィルム1は、フィルムガラス等を用いて構成されても良い。
 ところで、本実施形態のような透明な基材フィルム1を中心として、その両面に電極及び引き回し回路を設ける構成では、後述する電極パターン25の形成方法においてフォトリソグラフィ法にて第2感光性樹脂層23の硬化パターン24を形成する際に、基材フィルム1の一方の面側から照射されたUV光15のうち、第2感光性樹脂層23に吸収されなかったUV光15が、基材フィルム1の他方の面側の第2感光性樹脂層23に到達するため、基材フィルム1の両面に異なるパターンの電極を同時に形成することはできないことが問題となる。
 そこで、両面同時露光を行なう場合には、基材フィルム1としてUVカット機能を有する層を用いる。基材フィルム1としてUVカット機能を有する層を用いることにより、基材フィルム1の一方の面側から照射されたUV光15のうち、第2感光性樹脂層23に吸収されなかった光が、基材フィルム1の他方の面側の第2感光性樹脂層23に到達することを防止することができる。UV光15をカットするために用いられる光吸収材料としては、UV吸収剤やUV吸収機能を有する樹脂などが挙げられ、基材フィルム1にUV吸収剤を添加させたり、基材フィルム1を構成する樹脂とUV吸収機能を有する樹脂とを共重合させたりすることができる。
 基材フィルム1に含有されるUV吸収剤は、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、サリシレート系、トリアジン系、シアノアクリルレート系などが挙げられる。具体的には、例えばベンゾトリアゾール系UV吸収剤としては、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノールなどやこれらの混合物、変性物、重合物、誘導体などが挙げられる。また、例えばトリアジン系UV吸収剤としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソ-オクチルオキシフェニル)-s-トリアジンなどやこれらの混合物、変性物、重合物、誘導体などが挙げられる。これらは単独で使用してもよく、また、複数を混合して使用してもよい。
 また、UV吸収機能を有する樹脂は、上記で挙げたベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、サリシレート系、トリアジン系、シアノアクリルレート系などの非反応性UV吸収剤に、ビニル基やアクリロイル基、メタアクリロイル基などの重合性二重結合を有する官能基や、アルコール性水酸基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基などを導入したものである。これらの樹脂と、基材フィルム1層20、40に含有される樹脂を共重合させてUV吸収機能を有する基材フィルム1として用いることができる。
 光吸収材料の含有量は、基材フィルム1の一方の面の第2感光性樹脂層23に吸収されなかった光が他方の面の第2感光性樹脂層23に到達することを防止できれば特に限定されない。
 遮光性金属層2は、導電率が高くかつ遮光性の良い単一の金属膜やそれらの合金または化合物などからなる層が挙げられ、真空蒸着法、スパッタリング法、イオンプレーティング法、鍍金法などで形成するとよい。その好ましい金属の例としては、アルミニウム、ニッケル、銅、銀、錫などが挙げられる。とくに銅箔からなる厚み20~1000nmの金属膜は、導電性、遮光性に優れるため非常に好ましい。より好ましくは、厚み30nm以上である。さらに好ましくは、100~500nmにするとよい。100nm以上の厚みに設定することで高い導電性の遮光性金属層2が得られ、500nm以下にすることで取り扱いやすく加工性に優れた遮光性金属層2が得られるからである。
 第1感光性樹脂層3は、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等で露光し、後述するアルカリ性水溶液等で現像が可能な厚さ10~20μmのアクリル系フォトレジスト材料などで構成する。第1感光性樹脂層3の形成方法は、グラビア、スクリーン、オフセットなどの汎用の印刷法のほか、各種コーターによる方法、塗装、ディッピングなどの方法、ドライフィルムレジスト法などの各種方法により全面形成した後に露光・現像してパターニングするとよいが、中でもドライフィルムレジスト法がより好ましい。
  ドライフィルムレジスト法に用いるドライフィルムレジスト(DFR)は、前記した各第1感光性樹脂層3となる感光層がベースフィルムとカバーフィルムによってサンドウィッチされているフィルムである。上記した印刷法、コート法、塗装法などは、片面コーティングしかできず効率が悪いなどの問題があるのに対し、ドライフィルムレジスト法は、カバーフィルムを剥離した後に感光層を加熱ロールで接着する方法であるため、生産性が高く、多様な要求に応じられることから主流になっている。なお、露光は、通常、ベースフィルムの上からパターンマスクを配置して行ない(図示せず)、ベースフィルムを剥離した後に現像を行なう。ドライフィルムレジストのベースフィルムとしては、ポリエチレンテレフタレートなどからなるものを用いることができる。また、ドライフィルムレジストのカバーフィルムとしては、ポリエチレンなどからなるものを用いることができる。
(2.露光工程)
 露光工程での露光方法としては、パターンマスクを通してUV光15を画像状に照射する方法(マスク露光法)が挙げられる。UV光15の光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射するものが用いられる。また、Arイオンレーザ、半導体レーザ等の紫外線を有効に放射するものも用いられる。また、レーザ露光法などを用いた直接描画法によりUV光15を画像状に照射する方法を採用してもよい。
 ところで、樹脂フィルムからなる基材フィルム1には伸びの問題がある。それゆえに前記積層体の第1感光性樹脂層3のパターニングは、本発明のように両面同時露光によるのが適している。何故なら、第1感光性樹脂層3のパターニングを片面ずつ露光して行う場合、片面のパターニングが終了し、露光装置に積層体の表裏を入れ替えて再び取り付け際に基材フィルム1に伸びが生ずると、表面の硬化パターン3aと裏面の硬化パターン3aとが位置ずれを起こすことになるからである。図2に示す例の場合、菱形電極251aと菱形電極252aとの配置関係は相補的であるので電極パターン25の精度は重要であり、表面の硬化パターン3a(最終的に引き回し回路の反転パターン)と裏面の硬化パターン3a(最終的に引き回し回路の反転パターン)とが位置ずれを起こすと、これら電極パターン25との接続が不確実になる。
  両面同時露光の際、遮光性導電膜が反対側の面のUV光15を遮断するので、同時に違うマスクパターンで露光しても反対側の第1感光性樹脂層3のパターニングに影響を及ぼすこともない。したがって、両面同時に露光することが可能なため、表面の硬化パターン3aと裏面の硬化パターン3aとの位置あわせがしやすく、一回の工程で両面パターン化でき、生産性も優れる。
  なお、表マスク及び裏マスクのアライメントは、両面露光装置の公知のマスクアライメント方法を用いることができる。たとえば、表マスク及び裏マスクにそれぞれマスク用アライメントマークを形成し、カメラ等の光学的に読み込むセンサが、一対のマスク用アライメントマーク同士の重畳状態を読み取ることで表マスク及び裏マスクの相対的な位置情報を得る。そして、得られた位置情報に基づいて、マスク位置調整機構が、一対のマスク用アライメントマーク同士が中心を合わせて重合するように表マスク及び裏マスクを相対的に移動させることで、表マスク及び裏マスクのアライメントを行う方法などである。
 上記の工程を経ることにより、基材フィルム1両面の遮光性金属層2上に、硬化パターン3aを有する第1感光性樹脂層3を各々備えたものが得られる(図4参照)。
(3.現像工程)
現像工程では、ウェット現像により第1感光性樹脂層3の硬化部以外の部分が完全に除去される。これにより、所定のパターンを有するレジストパターン4が形成される。
 ウェット現像は、例えば、アルカリ性水溶液、水系現像液、有機溶剤系現像液等の感光性樹脂に対応した現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により行われる。
 現像液としては、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが用いられる。上記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。
 また、水又はアルカリ水溶液と一種以上の有機溶剤とからなる水系現像液を用いることができる。ここで、アルカリ水溶液に含まれる塩基としては、上述の塩基以外に、例えば、ホウ砂やメタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1、3-ジアミノプロパノール-2、モルホリンが挙げられる。有機溶剤としては、例えば、3アセトンアルコール、アセトン、酢酸エチル、炭素数1~4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルが挙げられる。これらは、1種を単独で又は2種類以上を組み合わせて使用される。また、水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。
 現像の方式としては、例えば、ディップ方式、バトル方式、スプレー方式、ブラッシング、スラッピング等が挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の観点から好ましい。
 上記の工程を経ることにより、基材フィルム1両面の遮光性金属層2上に、レジストパターン4として機能する第1感光性樹脂層3を各々備えたものが得られる(図5参照)。
(4.エッチング工程)
 エッチング工程では、塩化第二鉄などのエッチング液で遮光性金属層2を同時にエッチングし、レジストパターン4が形成されていない部分の遮光性金属層2を除去する。
 上記の工程を経ることにより、基材フィルム1の両面に、引き回し回路パターン5を各々備えたものが得られる(図6参照)。
(5.レジスト剥離工程)
 本実施形態のレジスト剥離工程では、パターン化された遮光性金属層2上に残存する第1感光性樹脂層3をレジスト剥離液でもって全て剥離し、遮光性金属層2の表面全体を一旦、露出させる(図7参照)。
 レジスト剥離液としては、酸性剥離液またはアルカリ性剥離液が使用されている。酸性剥離液の代表的なものとしては、アルキルベンゼンスルホン酸に、フェノール化合物、塩素系溶剤、芳香族炭化水素等を配合した剥離液が市販されている。また、アルカリ性剥離液としては、水溶性有機アミンと、ジメチルスルホキシドのような有機溶剤とからなる剥離液が市販されている。
(6.PAS層形成工程)
 PAS(パッシベーション)層は、前記引き回し回路パターン5の接続部5a以外を被覆し、前記引き回し回路パターン5を保護する絶縁性の防錆層として機能している(図8参照)。PAS層6は、前記レジストパターン4と同様の材料、方法を用いることができる。
<電極パターンの形成方法>
 本実施形態に係る発明の電極パターン25の形成方法は、前記した引き回し回路パターン5の各形成工程の後、以下の工程を経て行われる。
 すなわち、支持フィルム21と、該支持フィルム21上に設けられ導電性繊維を含有する導電層22と、該導電層22上に設けられた第2感光性樹脂層23とを備える感光性導電フィルム20を、前記基材フィルム1の前記引き回し回路パターン5が形成された両面に前記第2感光性樹脂層23が密着するようにラミネートする工程(図9参照)と、前記基材フィルム1の両面にラミネートされた前記感光性導電フィルム20の前記第2感光性樹脂層23に、両面で異なるパターンマスク12,13を介して、UV光15を照射する露光工程(図10工程)と、露光した前記第2感光性樹脂層23を現像することにより、前記第2感光性樹脂層23の除去される部分に積層された前記導電層22も一緒に除去し、前記引き回し回路パターン5と電気的に接続された電極パターン25を形成する現像工程(図11参照)と、を備える。これらの工程を経ることにより、基材フィルム1上にパターニングされた導電膜(電極パターン25)を備えるタッチセンサが得られる。
(7.ラミネート工程)
 図9に示すラミネート工程は、例えば、感光性導電フィルム20を、加熱しながら感光性樹脂層側を基材フィルム1に圧着することにより積層する方法により行なわれる。なお、この作業は、密着性及び追従性の見地から減圧下で積層することが好ましい。
 支持フィルム21としては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムが挙げられる。なお、これらの重合体フィルムは、後に感光性樹脂層から除去可能でなくてはならないため、除去が不可能となるような表面処理が施されたもの或いは材質であったりしてはならない。
 また、支持フィルム21の厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることが特に好ましい。支持フィルム21の厚みが5μm未満であると、機械的強度が低下し、導電層22を形成するために導電性繊維分散液若しくは第2感光性樹脂層23を形成するために感光性樹脂組成物を塗工する工程、又は露光した感光性樹脂層3を現像する前に支持フィルム21を剥離する工程において、支持フィルム21が破れやすくなる傾向がある。一方、支持フィルム21の厚みが300μmを超えると、支持フィルム21を介してUV光15を第2感光性樹脂層23に照射する場合にパターンの解像度が低下する傾向があり、また価格が高くなる傾向にある。
 支持フィルム21のヘーズ値は、感度及び解像度を良好にできる観点から、0.01~5.0%であることが好ましく、0.01~3.0%であることがより好ましく、0.01~2.0%であることが特に好ましく、0.01~1.0%であることが極めて好ましい。なお、ヘーズ値はJIS  K  7105に準拠して測定することができ、例えば、NDH-1001DP(日本電色工業(株)製、商品名)等の市販の濁度計などで測定が可能である。
  導電層22に含有される導電性繊維としては、例えば、金、銀、白金などの金属繊維、及びカーボンナノチューブなどの炭素繊維が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。導電性の観点からは、金繊維又は銀繊維を用いることが好ましい。金繊維及び銀繊維は、1種を単独で又は2種以上を組み合わせて用いることができる。更に、形成される導電膜の導電性を容易に調整できる観点からは、銀繊維がより好ましい。
  上記の金属繊維は、例えば、金属イオンをNaBH4等の還元剤で還元する方法、又は、ポリオール法により調製することができる。
  導電性繊維の繊維径は、1nm~50nmであることが好ましく、2nm~20nmであることがより好ましく、3nm~10nmであることが特に好ましい。また、導電性繊維の繊維長は、1μm~100μmであることが好ましく、2μm~50μmであることがより好ましく、3μm~10μmであることが特に好ましい。
 導電層22は、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電層22は、本実施形態では第2感光性樹脂層23の支持フィルム21側表面に形成され、支持フィルム21を剥離したときに露出する表面においてその面方向に導電性が得られるのであればよい。したがって、本明細書中の「導電層22上に設けられた第2感光性樹脂層23」との定義においては、網目構造を有する導電層22が第2感光性樹脂層23の支持フィルム21側表層に含まれる形態で形成されている場合も入っている。
  導電層22の厚みは、本感光性導電フィルム20を用いて形成される導電膜若しくは導電パターンの用途や求められる導電性によっても異なるが、1μm以下であることが好ましく、1nm~0.5μmであることがより好ましく、5nm~0.1μmであることが特に好ましい。導電層22の厚みが1μm以下であると、450~650nmの波長域での光透過率が高く、パターン形成性にも優れ、特に透明電極の作製に好適なものとなる。
 導電性繊維を含有する導電層22は、例えば、支持フィルム21上に、上述した導電性繊維を水及び/又は有機溶剤、必要に応じて界面活性剤などの分散安定剤などを加えた導電性繊維分散液を塗工した後、乾燥することにより形成することができる。乾燥後、支持フィルム21上に形成した導電層22は、必要に応じてラミネートされてもよい。塗工は、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。また、乾燥は、30~150℃で1~30分間程度、熱風対流式乾燥機等で行うことができる。導電層22において、導電性繊維は界面活性剤や分散安定剤と共存していてもかまわない。
 第2感光性樹脂層23としては、(a)バインダーポリマー、(b)エチレン性不飽和結合を有する光重合性化合物及び(c)光重合開始剤を含有する感光性樹脂組成物から形成されるものが挙げられる。
 (a)バインダーポリマーとしては、例えば、アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸の反応で得られるエポキシアクリレート樹脂、エポキシアクリレート樹脂と酸無水物の反応で得られる酸変性エポキシアクリレート樹脂等が挙げられる。これらの樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (b)エチレン性不飽和結合を有する光重合性化合物としては、エチレン性不飽和結合を有する光重合性化合物が好ましい。エチレン性不飽和結合を有する光重合性化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させで得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、(メタ)アクリル酸アルキルエステル等が挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。
 (c)光重合開始剤としては、例えば、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン、2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物、ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)等のオキシムエステル化合物、ベンジルジメチルケタール等のベンジル誘導体、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体、9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。
 第2感光性樹脂層23は、導電層22を形成した支持フィルム21上に、溶剤に溶解した、固形分10~60質量%程度の感光性樹脂組成物の溶液を塗布、乾燥することにより形成できる。但し、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。
 塗工は、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶剤等を除去するための乾燥は、70~150℃で5~30分間程度、熱風対流式乾燥機等で行うことができる。
 第2感光性樹脂層23の厚みは、一般に、乾燥後の厚みで1μm~15μmであることが好ましく、1~10μmであることがより好ましい。この厚みが1μm未満では塗工が困難となる傾向があり、15μmを超えると光透過の低下による感度が不十分となり転写する感光性樹脂層の光硬化性が低下する傾向がある。
 さらに、本実施形態のように、感光性導電フィルム20が支持フィルム21側から、導電性繊維を含有する導電層22、第2感光性樹脂層23の順になる場合、第2感光性樹脂層23の厚みは2μm以下であることが特に好ましい。厚みが2μmを超えると引き回し回路との導通性が低下する傾向がある。
 本実施形態の感光性導電フィルム20において、上記導電層22及び上記第2感光性樹脂層23の積層体は、両層の合計膜厚を1~10μmとしたときに450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。導電層22及び第2感光性樹脂層23がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
 また、上記導電層22及び上記第2感光性樹脂層23の合計厚みは、3μm以下であることがより好ましい。厚みが3μmを超えると、電極パターン25の形成された箇所と形成されていない箇所との段差が大きくなるため、パターン見えが生ずる。
 感光性導電フィルム20は、接着層等の層を更に有していてもよい。
(8.露光工程)
 本実施形態の露光工程では、導電層22上の支持フィルム21がUV光15に対して透明である場合には、支持フィルム21を通してUV光15を照射することができ、支持フィルム21が遮光性である場合には、支持フィルム21を除去した後に第2感光性樹脂層23にUV光15を照射する。
 露光方法の詳細については、引き回し回路パターン5の形成方法における露光工程で説明した内容と共通するので、共通する内容についてはここでの説明を省略する。
 なお、本実施形態の基材フィルム1は、前述の通り、UVカット機能を備えたものであり、両面同時露光を行なう場合には、基材フィルム1としてUVカット機能を有する層を用いる。基材フィルム1としてUVカット機能を有する層を用いることにより、基材フィルム1の一方の面側から照射されたUV光15のうち、第2感光性樹脂層23に吸収されなかった光が、基材フィルム1の他方の面側の第2感光性樹脂層23に到達することを防止することができる。
 上記の工程を経ることにより、基材フィルム1の引き回し回路パターン5が形成された両面に、硬化パターン24を有する第2感光性樹脂層23を各々備えたものが得られる(図10参照)。なお、本実施形態においては、第2感光性樹脂層23を、支持フィルム21の剥離後、必要に応じて、60~250℃程度の加熱又は0.2~10J/cm2程度の露光を行うことにより更に硬化してもよい。
(9.現像工程)
 本実施形態の現像工程では、第2感光性樹脂層23の硬化部以外の部分が除去される。具体的には、導電層22上に透明な支持フィルム21が存在している場合には、まず支持フィルム21を除去し、その後、ウェット現像により第2感光性樹脂層23の硬化部以外の部分を除去する。これにより、所定のパターンを有する樹脂硬化層上に導電性繊維を含有する導電層22が残り、電極パターン25が形成される(図11参照)。
 ウェット現像の詳細については、引き回し回路パターン5の形成方法における現像工程で説明した内容と共通するので、共通する内容についてはここでの説明を省略する。
 なお、本実施形態の電極パターン25の形成方法においては、現像後に必要に応じて、60~250℃程度の加熱又は0.2~10J/cm2程度の露光を行うことにより導電パターンを更に硬化してもよい。
 このように、本発明のタッチセンサの製造方法によれば、引き回し回路パターンを基材フィルムの両面に同時に加工することが出来、表裏面の位置合わせ精度に優れたタッチパネルが得られる。
〔第二実施形態〕
<別の電極パターンの形成方法>
 本実施形態は、第一実施形態に係るタッチセンサの製造方法と、電極パターン25の形成方法が一部異なる。
 すなわち、本実施形態に係る発明の電極パターン25の形成方法は、支持フィルム21と、該支持フィルム21上に設けられ第2感光性樹脂層23と、該第2感光性樹脂層23上に設けられた導電性繊維を含有する導電層22とを備える感光性導電フィルム20を、前記基材フィルム1の前記引き回し回路パターン5が形成された両面に前記導電層22が密着するようにラミネートする工程(図12参照)と、前記基材フィルム1の両面にラミネートされた前記感光性導電フィルム20の前記第2感光性樹脂層23に、両面で異なるパターンマスク12,13を介して、UV光15を照射する露光工程(図13参照)と、 露光した前記第2感光性樹脂層23を現像することにより、前記第2感光性樹脂層23の除去される部分に積層された前記導電層22も一緒に除去し、前記引き回し回路パターン5と電気的に接続された電極パターン25を形成する現像工程(図14参照)と、を備える、これらの工程を経ることにより、基材フィルム上にパターニングされた導電膜(電極パターン25)を備えるタッチセンサが得られる。
 第一実施形態が支持フィルム21側から導電層22、第2感光性樹脂層23の順で積層された感光性導電フィルム20(いわゆるフェースアップタイプ)であるのに対し、本実施形態は、支持フィルム21側から第2感光性樹脂層23、導電層22の順で積層された感光性導電フィルム20(いわゆるフェースダウンタイプ)である点で、両者は相違する。なお、本明細書中の「第2感光性樹脂層23上に設けられた導電性繊維を含有する導電層22」との定義においては、網目構造を有する導電層22が第2感光性樹脂層23の支持フィルム21とは反対側表層に含まれる形態で形成されている場合も入っている。
 フェースダウンとすることにより、引き回し回路パターン5を有する遮光性金属層2と電極パターン25を有する導電層22とが直接接触できるようになる。よって、第2感光性樹脂層23の厚みを薄くしなくても、引き回し回路と電極との導通が確実にとれる。
 その他の第一実施形態と共通する構成については、省略する。
〔第三実施形態〕
 第一実施形態及び第二実施形態において、さらに下記構成を追加してもよい。
 すなわち、前記感光性導電フィルム20をラミネートする工程の前に、前記引き回し回路パターン5の前記遮光性金属層2の露出表面のうち、電極パターン25との重複部分を粗す粗化工程を備えていてもよい。
 このような工程を加えることにより、前記引き回し回路パターン5の電極パターン25との密着性が向上する。前記粗化工程における粗面がJIS B 0601:2001に準拠して測定する算術平均粗さ(Ra)で1nm~50nmであるのが好ましい。
〔変化例〕
 また、上記各実施形態の引き回し回路の形成方法においては、遮光性金属層2上に残存する第1感光性樹脂層3をレジスト剥離液でもって全て剥離し、その後に当該引き回し回路パターン5の接続部5a以外をPAS層6で被覆しているが、これに限定されない。例えば、遮光性金属層2上に残存する第1感光性樹脂層3を接続部5aのみ剥離してもよい。この場合、残存する第1感光性樹脂層3がPAS層6として機能する。
1    基材フィルム
1a   中央部
1b   外枠部
2    遮光性金属層
3    第1感光性樹脂層
3a   硬化パターン
4    レジストパターン
5    引き回し回路パターン
5a   接続部
6    PAS層
10,11,12,13   パターンマスク
15   UV光
20   感光性導電フィルム
21   支持フィルム
22   導電性繊維を含有する導電層
23   第2感光性樹脂層
24   硬化パターン
25   電極パターン
30   タッチセンサ

Claims (7)

  1.  UVカット性能を有する基材フィルムの両面に遮光性金属層、該遮光性金属層上に各々第1感光性樹脂層を形成する工程と、
     前記遮光性金属層上の前記第1感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
     露光した前記第1感光性樹脂層を現像することによりレジストパターンを形成する工程と、
     前記レジストパターンで被覆されていない部分の前記遮光性金属層を除去することにより引き回し回路パターンを形成するエッチング工程と、
     前記引き回し回路パターンを覆う前記第1感光性樹脂層を少なくとも接続部で剥離除去する工程と、
     支持フィルムと、該支持フィルム上に設けられ導電性繊維を含有する導電層と、該導電層上に設けられた第2感光性樹脂層とを備える感光性導電フィルムを、前記基材フィルムの前記引き回し回路パターンが形成された両面に前記第2感光性樹脂層が密着するようにラミネートする工程と、
     前記基材フィルムの両面にラミネートされた前記感光性導電フィルムの前記第2感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
     露光した前記第2感光性樹脂層を現像することにより、前記第2感光性樹脂層の除去される部分に積層された前記導電層も一緒に除去し、前記引き回し回路パターンと電気的に接続された電極パターンを形成する現像工程と、
    を備える、タッチセンサの形成方法。
  2.  前記第2感光性樹脂層の厚みが1μm~2μmである、請求項1記載のタッチセンサの形成方法。
  3.  UVカット性能を有する基材フィルムの両面に遮光性金属層、該遮光性金属層上に各々第1感光性樹脂層を形成する工程と、
     前記遮光性金属層上の前記第1感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
     露光した前記第1感光性樹脂層を現像することによりレジストパターンを形成する工程と、
     前記レジストパターンで被覆されていない部分の前記遮光性金属層を除去することにより引き回し回路パターンを形成するエッチング工程と、
     前記引き回し回路パターンを覆う前記第1感光性樹脂層を少なくとも接続部で剥離除去する工程と、
     支持フィルムと、該支持フィルム上に設けられ第2感光性樹脂層と、該第2感光性樹脂層上に設けられた導電性繊維を含有する導電層とを備える感光性導電フィルムを、前記基材フィルムの前記引き回し回路パターンが形成された両面に前記導電層が密着するようにラミネートする工程と、
     前記基材フィルムの両面にラミネートされた前記感光性導電フィルムの前記第2感光性樹脂層に、両面で異なるパターンマスクを介して、UV光を照射する露光工程と、
     露光した前記第2感光性樹脂層を現像することにより、前記第2感光性樹脂層の除去される部分に積層された前記導電層も一緒に除去し、前記引き回し回路パターンと電気的に接続された電極パターンを形成する現像工程と、
    を備える、タッチセンサの形成方法。
  4.  前記第2感光性樹脂層及び前記導電層の合計厚みが1~3μmである、請求項1~3のいずれかに記載のタッチセンサの形成方法。
  5.  前記第1感光性樹脂層を剥離除去する工程が前記第1感光性樹脂層を全て除去するものであり、
     さらに、前記感光性導電フィルムをラミネートする工程の前に、前記引き回し回路パターンの前記遮光性金属層をPAS層を前記接続部を除いて被覆する工程を備える、請求項1~4のいずれかに記載のタッチセンサの形成方法。
  6.  さらに、前記感光性導電フィルムをラミネートする工程の前に、前記引き回し回路パターンの前記遮光性金属層の露出表面のうち、電極パターンとの重複部分を粗す粗化工程を備える、請求項1~5のいずれかに記載のタッチセンサの形成方法。
  7.  前記粗化工程における粗面がJIS B 0601:2001に準拠して測定する算術平均粗さ(Ra)で1nm~50nmである、請求項6記載のタッチセンサの形成方法。
PCT/JP2016/061527 2015-05-29 2016-04-08 タッチセンサの製造方法 WO2016194474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16802911.4A EP3264237B1 (en) 2015-05-29 2016-04-08 Method for manufacturing touch sensor
CN201680030858.XA CN107636580B (zh) 2015-05-29 2016-04-08 触摸传感器的制造方法
KR1020177030027A KR102230695B1 (ko) 2015-05-29 2016-04-08 터치 센서의 제조 방법
US15/550,854 US10303316B2 (en) 2015-05-29 2016-04-08 Method for manufacturing touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110824A JP6042486B1 (ja) 2015-05-29 2015-05-29 タッチセンサの製造方法及びタッチセンサ
JP2015-110824 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194474A1 true WO2016194474A1 (ja) 2016-12-08

Family

ID=57442320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061527 WO2016194474A1 (ja) 2015-05-29 2016-04-08 タッチセンサの製造方法

Country Status (7)

Country Link
US (1) US10303316B2 (ja)
EP (1) EP3264237B1 (ja)
JP (1) JP6042486B1 (ja)
KR (1) KR102230695B1 (ja)
CN (1) CN107636580B (ja)
TW (1) TWI690828B (ja)
WO (1) WO2016194474A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017110038A1 (ja) * 2015-12-25 2018-10-18 パナソニックIpマネジメント株式会社 タッチパネルと、これを用いた表示装置
WO2018221189A1 (ja) 2017-05-31 2018-12-06 日本ゼオン株式会社 タッチセンサ基材及びその製造方法、タッチセンサ部材及びその製造方法、並びに、表示装置
WO2019022090A1 (ja) 2017-07-28 2019-01-31 富士フイルム株式会社 パターン形成方法、積層体、及び、タッチパネル製造方法
CN110118611A (zh) * 2018-02-05 2019-08-13 美的集团股份有限公司 接触式测温传感器及其制备方法以及烹饪设备
CN110221731B (zh) * 2018-03-02 2023-03-28 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板
CN108762592B (zh) * 2018-05-31 2021-08-27 信利光电股份有限公司 一种触控感应器的制备方法及触控感应器
US10926523B2 (en) * 2018-06-19 2021-02-23 Sensel, Inc. Performance enhancement of sensors through surface processing
CN108920021A (zh) * 2018-09-18 2018-11-30 信利光电股份有限公司 一种触摸屏及其制作方法
CN109614008B (zh) * 2018-12-28 2022-04-12 业成科技(成都)有限公司 双面图案化的方法及触控面板的制造方法
US11261529B2 (en) * 2020-03-31 2022-03-01 Futuretech Capital, Inc. Reduced visibility conductive micro mesh touch sensor
CN113296361B (zh) * 2021-05-31 2024-04-12 汕头超声显示器技术有限公司 图形化光敏树脂涂层及其制作方法、电路结构和电容触摸屏
CN117250783A (zh) * 2023-10-26 2023-12-19 湖北欧雷登显示科技有限公司 液晶显示模组的一体成型生产工艺及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132623A1 (ja) * 2013-02-27 2014-09-04 凸版印刷株式会社 タッチパネル、及び、タッチパネルの製造方法
JP2014210372A (ja) * 2013-04-18 2014-11-13 凸版印刷株式会社 ハードコートフィルム及びそれを備えた透明導電性フィルム、タッチパネル、並びにハードコート塗液
JP2015011633A (ja) * 2013-07-01 2015-01-19 日本写真印刷株式会社 相互静電容量方式タッチパネル

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG183720A1 (en) 2005-08-12 2012-09-27 Cambrios Technologies Corp Nanowires-based transparent conductors
KR20070074316A (ko) 2006-01-09 2007-07-12 주식회사 팬택 이동통신단말기에서의 brew 실행시 ui 이벤트 처리방법
JP2010021224A (ja) 2008-07-09 2010-01-28 Shimadzu Corp レーザ装置
CN104282360B (zh) 2008-08-22 2017-11-03 日立化成株式会社 感光性导电膜、导电膜的形成方法、导电图形的形成方法以及导电膜基板
JP4601710B1 (ja) * 2009-09-11 2010-12-22 日本写真印刷株式会社 狭額縁タッチ入力シートとその製造方法
KR101307296B1 (ko) 2010-06-22 2013-09-11 니폰샤신인사츠가부시키가이샤 방청성이 우수한 협소 프레임 터치 입력 시트와 그 제조 방법
KR20120032734A (ko) * 2010-09-29 2012-04-06 삼성모바일디스플레이주식회사 터치스크린패널 및 그 제조방법
TWI567802B (zh) * 2010-11-19 2017-01-21 富士軟片股份有限公司 觸控面板、觸控面板的製造方法以及導電膜
CN103210350B (zh) * 2011-10-03 2019-06-18 日立化成株式会社 导电图案的形成方法、导电图案基板和触摸面板传感器
KR20130071720A (ko) * 2011-12-21 2013-07-01 삼성전기주식회사 터치패널 및 그 제조방법
KR20130071863A (ko) * 2011-12-21 2013-07-01 삼성전기주식회사 터치패널
JP5234868B1 (ja) * 2011-12-28 2013-07-10 日本写真印刷株式会社 光学機能付き静電容量方式タッチセンサー
KR20170072956A (ko) * 2012-04-04 2017-06-27 히타치가세이가부시끼가이샤 도전 패턴의 형성 방법 및 도전 패턴 기판
CN103279250A (zh) * 2013-06-18 2013-09-04 格林精密部件(惠州)有限公司 一种采用镀铜导电基材的电容触控屏
JP2015018098A (ja) * 2013-07-11 2015-01-29 富士フイルム株式会社 感光材料、導電シート及び導電シートの製造方法
CN103399664B (zh) * 2013-07-22 2017-06-06 南昌欧菲光显示技术有限公司 触摸输入薄片及其制作方法
JP2015069351A (ja) * 2013-09-27 2015-04-13 大日本印刷株式会社 画像表示装置、円偏光板付きタッチパネルセンサ及び光学変換層付きタッチパネルセンサ
CN203909751U (zh) * 2014-05-30 2014-10-29 南昌欧菲光科技有限公司 触摸屏

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132623A1 (ja) * 2013-02-27 2014-09-04 凸版印刷株式会社 タッチパネル、及び、タッチパネルの製造方法
JP2014210372A (ja) * 2013-04-18 2014-11-13 凸版印刷株式会社 ハードコートフィルム及びそれを備えた透明導電性フィルム、タッチパネル、並びにハードコート塗液
JP2015011633A (ja) * 2013-07-01 2015-01-19 日本写真印刷株式会社 相互静電容量方式タッチパネル

Also Published As

Publication number Publication date
TWI690828B (zh) 2020-04-11
JP2016224735A (ja) 2016-12-28
CN107636580B (zh) 2020-07-07
KR102230695B1 (ko) 2021-03-22
TW201702833A (zh) 2017-01-16
EP3264237A4 (en) 2018-04-18
JP6042486B1 (ja) 2016-12-14
CN107636580A (zh) 2018-01-26
KR20180013856A (ko) 2018-02-07
US20180018041A1 (en) 2018-01-18
EP3264237B1 (en) 2019-01-02
US10303316B2 (en) 2019-05-28
EP3264237A1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6042486B1 (ja) タッチセンサの製造方法及びタッチセンサ
KR101348546B1 (ko) 도전 패턴의 형성 방법, 도전 패턴 기판 및 터치 패널 센서
TWI550349B (zh) 樹脂硬化膜圖案的形成方法、感光性樹脂組成物、感光性元件、觸控式面板的製造方法及樹脂硬化膜
JP6645185B2 (ja) 硬化膜付き透明基材の製造方法
WO2013084873A1 (ja) タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物及び感光性エレメント、並びに、タッチパネルの製造方法
KR20160058745A (ko) 도전성 섬유를 포함하는 적층체, 감광성 도전 필름, 도전 패턴의 제조 방법, 도전 패턴 기판, 및 터치 패널
WO2013151052A1 (ja) 導電パターンの形成方法及び導電パターン基板
JP7144509B2 (ja) 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP2015014783A (ja) 硬化膜付き透明基材の製造方法、感光性樹脂組成物、感光性エレメント、及び電子部品
JP6205925B2 (ja) 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板
US20220382396A1 (en) Sensor film, touch sensor, and image display device
US20220137513A1 (en) Photosensitive transfer film, manufacturing method of antistatic pattern, manufacturing method of photosensitive transfer film, laminate, touch panel, manufacturing method of touch panel, and display device with touch panel
JP2015049797A (ja) 透明導電性積層体、タッチパネル、および、透明導電性積層体の製造方法
WO2018122958A1 (ja) 導電性基板の製造方法及び導電性基板
WO2021065288A1 (ja) 転写フィルム、積層体の製造方法、積層体、タッチパネルセンサー、タッチパネル
JP5790783B2 (ja) 樹脂硬化膜パターンの形成方法、感光性樹脂組成物、感光性エレメント、タッチパネルの製造方法及び樹脂硬化膜
WO2018138879A1 (ja) 感光性導電フィルム、導電パターンの形成方法、導電パターン基材の製造方法、導電パターン基材、タッチパネルセンサ
JP2017228312A (ja) 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板
JP2017201349A (ja) 感光性導電フィルム、導電パターンの形成方法及び導電パターン基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550854

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016802911

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177030027

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE