WO2016190248A1 - 含フッ素カーボン粒子、その製造方法、およびその使用 - Google Patents

含フッ素カーボン粒子、その製造方法、およびその使用 Download PDF

Info

Publication number
WO2016190248A1
WO2016190248A1 PCT/JP2016/065041 JP2016065041W WO2016190248A1 WO 2016190248 A1 WO2016190248 A1 WO 2016190248A1 JP 2016065041 W JP2016065041 W JP 2016065041W WO 2016190248 A1 WO2016190248 A1 WO 2016190248A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
electrode
carbon particles
catalyst
catalyst layer
Prior art date
Application number
PCT/JP2016/065041
Other languages
English (en)
French (fr)
Inventor
ハルディヤント ウィジャヤ
純 南舘
小林 大介
吉田 直樹
山田 和彦
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016190248A1 publication Critical patent/WO2016190248A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to fluorine-containing carbon particles, a production method thereof, an electrode catalyst for a polymer electrolyte fuel cell, a carbon carrier thereof, a coating liquid used for forming a catalyst layer of the polymer electrolyte fuel cell, and a polymer electrolyte fuel.
  • the present invention relates to a battery electrode and a membrane electrode assembly for a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is formed by stacking a plurality of cells by, for example, forming a cell by sandwiching a membrane electrode assembly between two separators.
  • the membrane electrode assembly includes an anode and a cathode having a catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the cathode.
  • the catalyst layer includes a polymer having an ion exchange group and an electrode catalyst in which catalytic metal particles are supported on a carbon support (see Patent Documents 1 and 2).
  • the present invention provides a fluorine-containing carbon particle, a carbon carrier, an electrode catalyst, and a coating for forming a catalyst layer, which can obtain a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped.
  • the present invention provides a working electrode and an electrode; and a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped.
  • the present invention has the following aspects.
  • (F / C) S is the ratio of the number of fluorine atoms to the number of carbon atoms on the outer surface of the fluorine-containing carbon particles
  • (F / C) W is the carbon in the entire fluorine-containing carbon particles.
  • [5] A method for producing the fluorine-containing carbon particles according to any one of [1] to [4], wherein at least one selected from the group consisting of F 2 , ClF 3 and NF 3 at ⁇ 20 to 340 ° C.
  • a method for producing fluorine-containing carbon particles wherein the gas is contacted with carbon particles.
  • a carbon carrier for an electrode catalyst used in a polymer electrolyte fuel cell comprising the fluorine-containing carbon particles according to any one of [1] to [4].
  • An electrode catalyst for use in a polymer electrolyte fuel cell wherein the catalyst metal particles are supported on the carbon support of [6].
  • a coating solution for forming a catalyst layer comprising a fluorine-containing polymer having an ion exchange group, an electrode catalyst, the fluorine-containing carbon particles of any one of [1] to [4], and a medium.
  • a coating solution for forming a catalyst layer comprising a fluorine-containing polymer having an ion exchange group, the electrode catalyst of [7], and a medium.
  • a membrane electrode assembly for a polymer electrolyte fuel cell comprising an anode having a catalyst layer, a cathode having a catalyst layer, and a polymer electrolyte membrane disposed between the anode and the cathode.
  • the membrane electrode has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped. A joined body can be obtained.
  • the membrane electrode assembly of the present invention has high power generation performance, and even when the fuel cell is repeatedly started and stopped, the power generation performance is unlikely to deteriorate.
  • the structural unit represented by the formula (U1) is referred to as a unit (U1).
  • the structural units represented by other formulas are also described in the same manner.
  • the monomer represented by the formula (M1) is referred to as a monomer (M1). The same applies to monomers represented by other formulas.
  • “Fluorine-containing carbon particles” means particles in which fluorine atoms are chemically adsorbed on carbon particles.
  • “Fluorine-containing polymer” means a polymer in which some or all of hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • “Structural unit” means a unit derived from a monomer formed by polymerization of the monomer. The structural unit may be a unit directly formed by a polymerization reaction of monomers, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • the “ion exchange group” means a group having H + , a monovalent metal cation, an ammonium ion and the like.
  • Examples of the ion exchange group include a sulfonic acid group, a sulfonimide group, and a sulfonemethide group.
  • "Sulfonic acid group” are -SO 3 - H + and -SO 3 - M + (However, M + is a monovalent metal ion or one or more hydrogen atoms may be substituted with a hydrocarbon group An ammonium ion).
  • Average primary particle size is determined by observing primary particles of carbon particles or fluorine-containing carbon particles with a scanning electron microscope (hereinafter referred to as SEM) or a transmission electron microscope (hereinafter referred to as TEM). It is an average value of the diameters of 10 or more primary particles selected for.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the “specific surface area” is a value calculated by the BET (Brunauer, Emmet, Teller) method using nitrogen gas as the adsorption gas.
  • the ratio of the number of fluorine atoms to the number of carbon atoms on the outer surface of the fluorine-containing carbon particles “(F / C) S ” is determined from the analysis result by X-ray photoelectron spectroscopy (XPS) quantitative analysis method and the fluorine atom concentration (atomic%) This is a value obtained by calculating the atomic concentration (atomic%).
  • the ratio “(F / C) W ” of the number of fluorine atoms to the number of carbon atoms in the entire fluorine-containing carbon particle is determined from the analysis result by the oxygen flask combustion / ion electrode method, and the fluorine concentration (mass%) and carbon concentration (mass%). Is a value obtained by calculating.
  • the fluorine-containing carbon particles of the present invention satisfy the relationship of the following formula (1).
  • (F / C) S and (F / C) W are as defined above.
  • the lower limit of the formula (1) is preferably 0.85, more preferably 0.87, and particularly preferably 0.9.
  • the upper limit of formula (1) is preferably 1.15, more preferably 1.13, and particularly preferably 1.1.
  • (F / C) S / (F / C) W is preferably 0.85 or more and 1.15 or less, more preferably 0.87 or more and 1.15 or less, and particularly preferably 0.87 or more and 1.13 or less.
  • fluorine-containing carbon particles satisfying the relationship of the formula (1) fluorine atoms are uniformly present on the entire carbon particles without being unevenly distributed on the outer surface of the carbon particles. That is, fluorine atoms are chemically adsorbed on the outer surface of the carbon particles and the inner surface of the pores. Therefore, when starting and stopping the fuel cell, corrosion is unlikely to occur not only on the surface of the fluorine-containing carbon particles but also inside.
  • fluorine-containing carbon particles in which fluorine atoms are unevenly distributed on the outer surface of the carbon particles for example, Japanese Patent No. 3291803 are likely to corrode inside when the fuel cell is started and stopped.
  • fluorine-containing carbon particles have fluorine atoms on the outer surface and the inner surface of the pores
  • the inclusion of the fluorine-containing carbon particles in the catalyst layer of the cathode of the membrane electrode assembly makes the oxygen catalyst and hydrophobicity in the cathode catalyst layer. This increases the supply of oxygen (O 2 ) to the catalyst metal particles.
  • the fluorine-containing carbon particles have fluorine atoms on the outer surface, the affinity between the electrode catalyst and the fluorine-containing polymer is increased by using it as a carbon support for the electrode catalyst, and the coating used for forming the catalyst layer is used. The dispersibility of the liquid and its stability are improved, and the surface area of the electrochemically effective catalytic metal particles is also increased.
  • (F / C) S is preferably 0.1 to 0.8, more preferably 0.1 to 0.7, further preferably 0.2 to 0.7, and particularly preferably 0.3 to 0.6. 0.4 to 0.6 is particularly preferable.
  • S is not less than the lower limit of the above range, the above-described effects due to the presence of fluorine atoms on the outer surface are sufficiently exhibited.
  • F / C If S is below the upper limit of the said range, the electroconductive fall of the carbon particle by a fluorine atom and the fall of the power generation performance accompanying this will be suppressed.
  • Fluorine-containing carbon particles include fluorine-containing carbon black (fluorine-containing ketjen black, fluorine-containing acetylene black, fluorine-containing thermal black, fluorine-containing furnace black, fluorine-containing channel black, etc.), fluorine-containing activated carbon, fluorine-containing graphite, fluorine-containing Fullerenes (C 60 , C 70 , C 84 etc.), fluorinated diamond and the like can be mentioned.
  • fluorine-containing carbon particles either or both of fluorine-containing carbon black and fluorine-containing activated carbon are preferable, fluorine-containing carbon black is more preferable, and fluorine-containing Ketjen black from the viewpoint of easily satisfying the relationship of formula (1). Is more preferable.
  • the fluorine-containing carbon particles may be used alone or in combination of two or more.
  • the average primary particle size of the fluorinated carbon particles is preferably 1 nm to 10 ⁇ m, more preferably 1 nm to 7.5 ⁇ m, and even more preferably 1 nm to 6 ⁇ m. If the average primary particle diameter is equal to or greater than the lower limit of the above range, fluorine atoms are easily chemisorbed on the outer surface and the inner surface of the pores, and the above-described effects are further exhibited. When the average primary particle diameter is not more than the upper limit of the above range, the decrease in the chemical adsorption rate of fluorine elements on the outer surface and the pore inner surface is suppressed.
  • the specific surface area of the fluorine-containing carbon particles is preferably 100 ⁇ 3000m 2 / g, more preferably 150 ⁇ 3000m 2 / g, more preferably 200 ⁇ 3000m 2 / g. If the specific surface area is not less than the lower limit of the above range, the chemical adsorption rate of fluorine atoms can be increased on the outer surface and the inner surface of the pores, and the above-described effects are further exhibited. If the specific surface area is less than or equal to the upper limit of the above range, the decrease in the conductivity of the carbon particles due to fluorine atoms and the accompanying decrease in power generation performance can be suppressed.
  • the fluorine-containing carbon particles are obtained by, for example, bringing carbon particles into contact with at least one gas selected from the group consisting of F 2 , ClF 3 and NF 3 at ⁇ 20 to 340 ° C. (hereinafter also referred to as fluorination treatment). It can be manufactured by.
  • F 2 gas is preferable because fluorine-containing carbon particles satisfying the relationship of the formula (1) are easily obtained.
  • the carbon particles carbon black (Ketjen black, acetylene black, thermal black, furnace black, channel black), activated carbon, graphite, fullerenes (C 60, C 70, C 84 , etc.), diamonds, and the like.
  • carbon black and activated carbon are preferable, carbon black is more preferable, and ketjen black is more preferable because fluorine-containing carbon particles satisfying the relationship of formula (1) are easily obtained.
  • the carbon particles may be used alone or in combination of two or more.
  • the temperature of the fluorination treatment is preferably ⁇ 20 ° C. to 340 ° C., more preferably 0 to 300 ° C., and further preferably 0 to 250 ° C.
  • the temperature is equal to or higher than the lower limit of the above range, fluorine atoms are easily chemisorbed on the carbon particles.
  • the temperature is not more than the upper limit of the above range, fluorine-containing carbon particles that satisfy the relationship of the formula (1) are easily obtained.
  • the fluorination treatment temperature is set to 350 ° C. or higher in order to obtain fluorine-containing carbon particles in which fluorine atoms are unevenly distributed on the outer surface of the carbon particles.
  • the fluorination treatment time is preferably 0.5 to 10 hours, more preferably 1 to 20 hours.
  • the fluorinated carbon particles of the present invention since fluorine atoms are present on the outer surface and the pore inner surface, the oxygen solubility and hydrophobicity are high, and the affinity with the fluorinated polymer is also high. Therefore, the dispersibility and stability of the coating liquid used for forming the catalyst layer are improved, and oxygen (O 2 ) is supplied to the catalyst metal particles by being included in the catalyst layer of the cathode of the membrane electrode assembly. Further, the surface area of the electrochemically effective catalytic metal particles is increased by using the carbon support of the electrocatalyst. Therefore, a membrane electrode assembly with high power generation performance can be obtained.
  • the fluorine-containing carbon particles of the present invention in order to satisfy the relationship of the formula (1), are included at the time of starting and stopping of the fuel cell by being included in the catalyst layer of the membrane electrode assembly. Corrosion hardly occurs not only on the particle surface but also inside. Further, by using the carbon support for the electrode catalyst, the catalyst metal particles are not easily dropped off due to the corrosion of the fluorine-containing carbon particles. Furthermore, by including it in the catalyst layer of the membrane electrode assembly, it can also serve as a tray for the catalyst metal particles that have fallen off. Therefore, it is possible to obtain a membrane electrode assembly in which the power generation performance is not easily lowered even when the fuel cell is repeatedly started and stopped.
  • the fluorine-containing carbon particles of the present invention can be used as a carbon support for an electrode catalyst used in a polymer electrolyte fuel cell.
  • the carbon support of the present invention since fluorine atoms are present on the outer surface and the inner surface of the pore, the oxygen solubility and hydrophobicity are high, and the affinity with the fluorine-containing polymer is also high. Therefore, the dispersibility and stability of the coating liquid used to form the catalyst layer is improved, and the supply of oxygen (O 2 ) to the catalyst metal particles is facilitated by using an electrode catalyst supporting the catalyst metal particles. In addition, the surface area of the electrochemically effective catalytic metal particles is also increased. Therefore, a membrane electrode assembly with high power generation performance can be obtained.
  • the carbon carrier of the present invention is made of fluorine-containing carbon particles that satisfy the relationship of the formula (1), by using an electrode catalyst carrying catalyst metal particles, the fuel cell can be started and stopped. Corrosion hardly occurs not only on the surface of the carbon support but also on the inside. Further, the catalyst metal particles are not easily dropped off due to the corrosion of the carbon support. Therefore, it is possible to obtain a membrane electrode assembly in which the power generation performance is not easily lowered even when the fuel cell is repeatedly started and stopped.
  • the electrode catalyst of the present invention is an electrode catalyst used for a polymer electrolyte fuel cell, and catalytic metal particles are supported on the carbon support of the present invention.
  • the electrode catalyst of the present invention may be obtained by supporting catalyst metal particles by a known method on the fluorine-containing carbon particles of the present invention obtained by (i) fluorinating carbon particles. (Ii) The catalyst metal particles are supported on carbon particles that have not been fluorinated by a known method, and then the carbon particles supporting the catalyst metal particles are fluorinated to obtain the electrode catalyst of the present invention. It may be.
  • the catalyst metal particles are preferably noble metal particles or noble metal alloy particles.
  • platinum is preferable.
  • the noble metal alloy a platinum alloy is preferable.
  • Platinum alloys include platinum group metals excluding platinum (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc, And an alloy of platinum and one or more metals selected from the group consisting of tin and platinum.
  • the catalyst metal particle loading is preferably 5 to 80% by mass, more preferably 10 to 70% by mass in the electrode catalyst (100% by mass). If the loading ratio of the catalyst metal particles is not less than the lower limit of the above range, the activity of the electrode catalyst is improved. If the supporting rate of the catalyst metal particles is not more than the upper limit of the above range, the catalyst particles are difficult to aggregate and the activity of the electrode catalyst is improved.
  • the electrode catalyst of the present invention since fluorine atoms are present on the outer surface of the carbon support and the inner surface of the pores, the oxygen solubility and hydrophobicity are high, and the affinity with the fluorine-containing polymer is also high. Therefore, the dispersibility and stability of the coating liquid used for forming the catalyst layer are improved, the supply of oxygen (O 2 ) to the catalyst metal particles is promoted, and the electrochemically effective catalyst metal particles The surface area of the also increases. Therefore, a membrane electrode assembly with high power generation performance can be obtained.
  • the carbon support is composed of fluorine-containing carbon particles satisfying the relationship of the formula (1), not only the surface of the carbon support but also the internal structure when starting and stopping the fuel cell. Corrosion is less likely to occur. Further, the catalyst metal particles are not easily dropped off due to the corrosion of the carbon support. Therefore, it is possible to obtain a membrane electrode assembly in which the power generation performance is not easily lowered even when the fuel cell is repeatedly started and stopped.
  • Catalyst layer forming coating solution (I) The first form of the catalyst layer forming coating solution of the present invention (hereinafter also referred to as catalyst layer forming coating solution (I)) is used for forming a catalyst layer of a polymer electrolyte fuel cell.
  • the coating fluid for forming a catalyst layer (I) contains a fluorine-containing polymer having an ion exchange group, an electrode catalyst, the fluorine-containing carbon particles of the present invention, and a medium.
  • fluorine-containing polymer having an ion exchange group As the fluorine-containing polymer having an ion exchange group, a fluorine-containing polymer having a sulfonic acid group is preferable.
  • the fluorine-containing polymer having a sulfonic acid group includes an acid type in which the cation of the sulfonic acid group is H + and a salt type in which the cation of the sulfonic acid group is a metal ion, an ammonium ion, or the like.
  • the fluorine-containing polymer having a sulfonic acid group contained in the catalyst layer is usually an acid type. A part of the cation of the sulfonic acid group may be substituted with a divalent or higher valent metal ion.
  • the fluorine-containing polymer having a sulfonic acid group a perfluoropolymer in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms is preferable from the viewpoint of excellent chemical durability.
  • the perfluoropolymer having a sulfonic acid group is derived from a polymer (H) described later, a polymer (Q) described later, and a perfluoromonomer having a sulfonic acid group and a 5-membered ring described in International Publication No. 2011/013577.
  • Well-known polymers such as a polymer having a constitutional unit are mentioned. Polymer (H) or polymer (Q) is preferred from the viewpoint of availability and ease of production.
  • Polymer (H) The polymer (H) is a polymer having units (U1) (excluding the polymer (Q)).
  • Q 3 is have a single bond, or an etheric oxygen atom is also good perfluoroalkylene group
  • Y 2 is a fluorine atom or a monovalent perfluoro organic group
  • t is 0 or 1 It is.
  • a single bond means that the carbon atom of CFY 2 and the sulfur atom of SO 3 H are directly bonded.
  • An organic group means a group containing one or more carbon atoms.
  • the oxygen atom may be one or two or more.
  • the oxygen atom may be inserted between the carbon atom-carbon atom bonds of the perfluoroalkylene group or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkylene group may be linear or branched.
  • the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Y 2 is preferably a fluorine atom or a trifluoromethyl group.
  • the unit (U1) is preferably the unit (U1-1).
  • the unit (U1-11), the unit (U1-12), the unit (U1-13) or the unit (U1-14) is more preferable because the production of the polymer (H) is easy and the industrial implementation is easy. preferable.
  • Z is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • n is an integer of 1 to 12
  • p is 0 or 1
  • the polymer (H) may further have structural units derived from other monomers (hereinafter referred to as other units). What is necessary is just to adjust suitably the content rate of another unit so that the ion exchange capacity of a polymer (H) may become the preferable range mentioned later.
  • the other unit is preferably a structural unit derived from a perfluoromonomer from the viewpoint of mechanical strength and chemical durability, and more preferably a structural unit derived from tetrafluoroethylene (hereinafter referred to as TFE).
  • the polymer (H) is produced by polymerizing the monomer (M1) and other monomers as necessary to obtain a precursor polymer, and then converting —SO 2 F groups in the precursor polymer into sulfonic acid groups. it can.
  • the conversion of —SO 2 F group to sulfonic acid group is performed by hydrolysis and acidification treatment.
  • CF 2 CF— (CF 2 ) t OCF 2 —CFY 2 —Q 3 —SO 2 F (M1).
  • Polymer (Q) The polymer (Q) is a polymer having units (U2).
  • Q 1 is a etheric good perfluoroalkylene group which may have an oxygen atom
  • Q 2 is a single bond, or which may have an etheric oxygen atom perfluoroalkylene group
  • Y 1 is a fluorine atom or a monovalent perfluoro organic group
  • s is 0 or 1.
  • a single bond means that the carbon atom of CY 1 and the sulfur atom of SO 3 H are directly bonded.
  • An organic group means a group containing one or more carbon atoms.
  • the oxygen atom may be 1 or 2 or more.
  • the oxygen atom may be inserted between the carbon atom-carbon atom bonds of the perfluoroalkylene group or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkylene group may be linear or branched, and is preferably linear.
  • the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. If the number of carbon atoms is 6 or less, the boiling point of the raw fluorine-containing monomer is lowered, and distillation purification becomes easy.
  • Q 2 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom.
  • Q 2 is a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom
  • the polymer electrolyte fuel cell was operated over a longer period than when Q 2 is a single bond.
  • the stability of the power generation performance is excellent.
  • At least one of Q 1 and Q 2 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
  • the fluorine-containing monomer having a C 1-6 perfluoroalkylene group having an etheric oxygen atom can be synthesized without undergoing a fluorination reaction with a fluorine gas, the yield is good and the production is easy.
  • Y 1 is preferably a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom.
  • the unit (U2) As the unit (U2), the unit (U2-1) is preferable, and the unit (U2-11) and the unit (U2-12) are preferable because the production of the polymer (Q) is easy and the industrial implementation is easy. Or the unit (U2-13) is more preferable.
  • R F11 is a linear perfluoroalkylene group having 1 to 6 carbon atoms which may have a single bond or an etheric oxygen atom
  • R F12 is a linear chain having 1 to 6 carbon atoms. Perfluoroalkylene group.
  • the polymer (Q) may further have other units. What is necessary is just to adjust suitably the content rate of another unit so that the ion exchange capacity of polymer (Q) may become the below-mentioned preferable range.
  • the other unit is preferably a structural unit derived from a perfluoromonomer, more preferably a structural unit derived from TFE, from the viewpoint of mechanical strength and chemical durability.
  • Polymer (Q) can be produced, for example, by the method described in International Publication No. 2007/013533.
  • the ion exchange capacity of the fluorinated polymer having a sulfonic acid group is preferably 0.5 to 2.0 meq / g dry resin from the viewpoint of conductivity and gas permeability, and 0.8 to 1.5 meq / g. g Dry resin is more preferred.
  • the electrode catalyst may be an electrode catalyst in which catalytic metal particles are supported on a carbon support that has not been fluorinated, or the electrode catalyst of the present invention.
  • a medium containing water and alcohol is preferable.
  • alcohols include non-fluorine alcohols (methanol, ethanol, 1-propanol, 2-propanol, etc.), fluorine alcohols (2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro- 1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexa Fluoro-2-propanol, 3,3,3-trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4 5, 5, 6, 6, 7, 7, 8, 8, 8-tridecafluoro-1-octanol and the like.
  • the content ratio of the fluorine-containing polymer having an ion exchange group is preferably 1 to 50% by mass, more preferably 3 to 45% by mass in the solid content (100% by mass) of the catalyst layer forming coating solution (I). 3 to 30% by mass is more preferable.
  • the content of the electrode catalyst is preferably 20 to 80% by mass, more preferably 20 to 70% by mass, and more preferably 30 to 70% by mass in the solid content (100% by mass) of the coating liquid for forming a catalyst layer (I). Is more preferable.
  • the content of the fluorinated carbon particles of the present invention is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the solid content (100% by mass) of the catalyst layer forming coating solution (I).
  • the content of water is preferably 10 to 90% by mass and more preferably 30 to 70% by mass in the total of water and alcohol (100% by mass).
  • the content ratio of the alcohol is preferably 10 to 90% by mass and more preferably 30 to 70% by mass in the total of water and alcohol (100% by mass).
  • the fluorine-containing carbon particles of the present invention are included, a catalyst layer including the fluorine-containing carbon particles of the present invention can be formed. Therefore, it is possible to obtain a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped.
  • Catalyst layer forming coating solution (II) The second form of the catalyst layer forming coating solution of the present invention (hereinafter also referred to as catalyst layer forming coating solution (II)) is used for forming a catalyst layer of a polymer electrolyte fuel cell.
  • the coating liquid for forming a catalyst layer (II) includes a fluorine-containing polymer having an ion exchange group, the electrode catalyst of the present invention, and a medium.
  • fluorine-containing polymer having an ion exchange group examples include the same as the fluorine-containing polymer having an ion exchange group used in the catalyst layer forming coating solution (I), and preferred forms thereof are also the same.
  • Examples of the medium include the same medium as that used in the catalyst layer forming coating liquid (I), and preferred forms thereof are also the same.
  • composition of catalyst layer forming coating solution (II) The content of the fluorine-containing polymer having an ion exchange group is preferably 1 to 50% by mass, more preferably 3 to 30% by mass in the solid content (100% by mass) of the coating liquid for forming a catalyst layer (II). .
  • the content of the electrode catalyst of the present invention is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the solid content (100% by mass) of the catalyst layer forming coating solution (II).
  • the content of water is preferably 10 to 90% by mass and more preferably 30 to 70% by mass in the total of water and alcohol (100% by mass).
  • the content ratio of the alcohol is preferably 10 to 90% by mass and more preferably 30 to 70% by mass in the total of water and alcohol (100% by mass).
  • the electrode catalyst of the present invention since the electrode catalyst of the present invention is included, a catalyst layer including the electrode catalyst of the present invention can be formed. Therefore, it is possible to obtain a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped.
  • a first form of an electrode of the present invention (hereinafter also referred to as electrode (I)) is an electrode of a solid polymer fuel cell, and includes a fluorine-containing polymer having an ion exchange group, an electrode catalyst, and the present invention. And a catalyst layer containing the fluorine-containing carbon particles.
  • the electrode (I) may have a gas diffusion layer as necessary. Further, a carbon layer may be provided between the catalyst layer and the gas diffusion layer.
  • the electrode catalyst contained in the catalyst layer preferably contains platinum or a platinum alloy.
  • the content of platinum or a platinum alloy in the catalyst layer is preferably 0.01 ⁇ 0.50mg / cm 2, more preferably 0.05 ⁇ 0.30mg / cm 2. Since the catalyst layer contains the fluorine-containing carbon particles of the present invention, the supply of oxygen (O 2 ) to the catalyst metal particles is promoted, and the surface area of the electrochemically effective catalyst metal particles is also increased. Therefore, the amount of platinum or platinum alloy in the catalyst layer can be relatively reduced.
  • the platinum or platinum alloy content in the catalyst layer can be calculated from the conditions for forming the catalyst layer, or can be determined by measurement by fluorescent X-ray analysis using a calibration curve method.
  • Examples of the method for forming the catalyst layer include the following methods. A method in which the catalyst layer forming coating solution (I) is applied onto a solid polymer electrolyte membrane, a gas diffusion layer, or a carbon layer and dried. A method in which the catalyst layer forming coating solution (I) is applied on a substrate film, dried to form a catalyst layer, and the catalyst layer is transferred onto a solid polymer electrolyte membrane.
  • the gas diffusion layer has a function of uniformly diffusing gas in the catalyst layer and a function as a current collector.
  • Examples of the gas diffusion layer include carbon paper, carbon cloth, carbon felt and the like.
  • the gas diffusion layer is preferably subjected to water repellent treatment with polytetrafluoroethylene or the like.
  • the carbon layer is a layer containing carbon and a fluorine-containing polymer.
  • Examples of carbon include carbon particles and carbon fibers. Carbon nanofibers having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 ⁇ m or less are preferred.
  • the fluoropolymer may or may not have an ion exchange group.
  • the fluorine-containing polymer polytetrafluoroethylene or a perfluorocarbon polymer having an ion exchange group is preferable, and polytetrafluoroethylene, the above-described polymer (H), or polymer (Q) is more preferable.
  • the carbon layer is a perfluorocarbon polymer having an ion exchange group
  • the ion exchange capacity is preferably 0.5 to 2.0 meq / g dry resin from the viewpoint of conductivity and gas diffusibility, 0.8 to A 1.5 meq / g dry resin is particularly preferred.
  • the electrode (I) contains the fluorine-containing carbon particles of the present invention, it is possible to obtain a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped. it can.
  • a second form of the electrode of the present invention (hereinafter also referred to as electrode (II)) is an electrode of a solid polymer fuel cell, comprising a fluorine-containing polymer having an ion exchange group, the electrode catalyst of the present invention, and A catalyst layer containing The electrode (II) may have a gas diffusion layer as necessary. Further, a carbon layer may be provided between the catalyst layer and the gas diffusion layer.
  • the electrode catalyst contained in the catalyst layer preferably contains platinum or a platinum alloy.
  • the preferred amount of platinum or platinum alloy in the catalyst layer is the same as the preferred amount of platinum or platinum alloy in the catalyst layer of electrode (I).
  • the method for forming the catalyst layer is the same as the method for forming the catalyst layer of the electrode (I), except that the catalyst layer forming coating solution (II) is used instead of the catalyst layer forming coating solution (I).
  • the gas diffusion layer is the same as the gas diffusion layer of the electrode (I), and the preferred form is also the same.
  • the carbon layer is the same as the carbon layer of the electrode (I), and the preferred form is also the same.
  • the electrode (II) includes the electrode catalyst of the present invention, it is possible to obtain a membrane electrode assembly that has high power generation performance and is unlikely to deteriorate even when the fuel cell is repeatedly started and stopped.
  • FIG. 1 is a schematic cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell.
  • the membrane electrode assembly 10 is in contact with the catalyst layer 11 between the anode 13 having the catalyst layer 11 and the gas diffusion layer 12, the cathode 14 having the catalyst layer 11 and the gas diffusion layer 12, and the anode 13 and the cathode 14. And a solid polymer electrolyte membrane 15 arranged in the above state.
  • the membrane electrode assembly 10 may have a carbon layer 16 between the catalyst layer 11 and the gas diffusion layer 12, as shown in FIG.
  • either one or both of the anode and the cathode is the electrode of the present invention, and at least the cathode is preferably the electrode of the present invention, and both the anode and the cathode are the electrodes of the present invention. More preferably.
  • the solid polymer electrolyte membrane is a membrane containing a fluorine-containing polymer having an ion exchange group.
  • fluorine-containing polymer having an ion exchange group include those similar to the fluorine-containing polymer having an ion exchange group of the catalyst layer, and preferred forms thereof are also the same.
  • the solid polymer electrolyte membrane may be reinforced with a reinforcing material.
  • the reinforcing material include porous bodies, fibers, woven fabrics, and nonwoven fabrics.
  • the reinforcing material include polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, polyethylene, polypropylene, polyphenylene sulfide, and the like.
  • the solid polymer electrolyte membrane can be formed, for example, by a method (cast method) in which a liquid composition containing a fluorine-containing polymer having an ion exchange group is applied on a substrate film or a catalyst layer and dried.
  • the temperature of the annealing treatment is preferably 130 to 200 ° C., although it depends on the type of fluorine-containing polymer having ion exchange groups.
  • the annealing treatment temperature is 130 ° C. or higher, the fluorine-containing polymer having ion exchange groups does not excessively contain water. If the temperature of annealing treatment is 200 degrees C or less, the thermal decomposition of an ion exchange group will be suppressed.
  • the membrane / electrode assembly is produced, for example, by the following method.
  • the membrane / electrode assembly When the membrane / electrode assembly has a carbon layer, the membrane / electrode assembly is produced, for example, by the following method. -A dispersion containing carbon and a fluoropolymer is applied on the substrate film, dried to form a carbon layer, a catalyst layer is formed on the carbon layer, and the catalyst layer and the solid polymer electrolyte membrane are attached. In addition, the base film is peeled to form a membrane catalyst layer assembly having a carbon layer, and the membrane catalyst layer assembly is sandwiched between gas diffusion layers.
  • either one or both of the anode and the cathode is the electrode of the present invention, so that the power generation performance is high, and the power generation performance decreases even when the fuel cell is repeatedly started and stopped. Hateful.
  • a polymer electrolyte fuel cell can be obtained by disposing separators in which grooves serving as gas flow paths are formed on both surfaces of the membrane electrode assembly.
  • the separator include a separator made of various conductive materials such as a metal separator, a carbon separator, and a separator made of a material in which graphite and a resin are mixed.
  • power is generated by supplying a gas containing oxygen to the cathode and a gas containing hydrogen to the anode.
  • the membrane electrode assembly can also be applied to a methanol fuel cell that generates power by supplying methanol to the anode.
  • Examples 1 to 3, 6, 7, 10, and 12 are examples, and examples 4, 5, 8, 9, and 11 are comparative examples.
  • XPS quantitative analysis method Using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI, ESCA5500), X-ray source: monochromatic AlK ⁇ ray, pass energy: 55.0 eV, step energy: 0.05 eV, detection angle: relative to the sample surface It was performed under the condition of 75 °.
  • the fluorine atom concentration (atomic%) and the carbon atom concentration (atomic%) on the outer surface of the fluorinated carbon particles are the integrated intensity of the peak derived from CF in the C1s photoelectron spectroscopic spectrum and the others (CC, C— O, C—H, C—OH) were calculated from the integrated intensity of peaks derived from the peaks using analysis software.
  • a rotating electrode device (manufactured by Hokuto Denko Corporation, HR301) includes a flask for containing an electrolyte, a rotating ring disk electrode inserted into the flask, a reference electrode and a counter electrode, and a gas introduction tube for introducing gas into the flask. .
  • the rotating ring disk electrode one in which one end face of a cylindrical body was embedded with glassy carbon having a diameter of 5 mm as a disk electrode and platinum having an inner diameter of 5.5 mm and an outer diameter of 8 mm as a concentric ring electrode was used.
  • a silver / silver chloride electrode (Ag / AgCl) was used as the reference electrode.
  • a Pt line was used as the counter electrode.
  • X-ray fluorescence analysis The conditions of X-ray fluorescence analysis (analyzer: Rigaku Corporation, wavelength dispersive compact X-ray fluorescence analyzer Supermini 200) are as follows: X-ray tube acceleration voltage: 50 kV, current: 4 mA, X-ray tube target: Pd, spectroscopy Crystal; LiF (36.5 ° C.), detector: scintillation counter.
  • the amount of platinum in the electrode catalyst was calculated using a 15 mm ⁇ sample holder by applying the strength of platinum obtained by the measurement to a calibration curve of platinum amount and strength prepared in advance.
  • Ketjen Black (registered trademark): (Ketjen EC600JD, Ketjen Black International, average primary particle size: 34 nm, specific surface area: 1390 m 2 / g).
  • AK225 (registered trademark): (Asahi Glass Co., Ltd., fluorinated solvent).
  • Example 2 Fluorine-containing ketjen black (average primary particle size: 34 nm, specific surface area: 770 m 2 / g, oxygen flask combustion / ion electrode, except that the temperature of the fluorination treatment was changed from 20 ° C. to 80 ° C.
  • the specific surface area normalized to the carbon mass based on the carbon concentration calculated from the method was 1360 m 2 / g). The results are shown in Table 1.
  • Example 3 Corrosion resistance evaluation of fluorine-containing ketjen black: A dispersion was prepared by dispersing 10 mg of the fluorine-containing ketjen black of Example 2 in 15 mL of AK225. 10 ⁇ L of the dispersion was dropped onto the disk electrode of the rotating ring disk electrode and allowed to dry naturally, thereby attaching fluorine-containing ketjen black on the disk electrode. According to the start / stop evaluation protocol (FCCJ 2011 edition of the Fuel Cell Practical Use Promotion Council), the rotating ring disk electrode was immersed in a 0.1 M perchloric acid aqueous solution at 25 ° C., and nitrogen gas was blown into it.
  • the potential of the rotating ring disk electrode (hereinafter also referred to as disk potential) is 1.0 to 1.5 V vs. Sweeped 20000 cycles between Ag / AgCl.
  • the number of cycles is 0, 1000, 2000, 5000, 10000, and 20000, once interrupted, and in a 0.1 M perchloric acid aqueous solution with a sweep rate of 50 mV / s while blowing nitrogen gas.
  • the disc potential is -0.2 to 1.0 V vs..
  • a cyclic voltamgram was obtained by sweeping 3 cycles between Ag / AgCl.
  • FIG. 3 shows the second cyclic voltammogram when the number of cycles is 0, 2000, and 10,000.
  • FIG. 5 shows the change in the maximum oxidation current increase rate with respect to the maximum oxidation current with 0 cycles depending on the number of cycles.
  • Example 4 Evaluation of corrosion resistance of ketjen black: Corrosion resistance was evaluated in the same manner as in Example 3 except that fluorinated ketjen black used in Example 2 was used instead of fluorinated ketjen black.
  • FIG. 4 shows cyclic voltammograms when the number of cycles is 0, 2000, and 10,000.
  • FIG. 5 shows the change in the maximum oxidation current increase rate with respect to the maximum oxidation current with 0 cycles depending on the number of cycles.
  • Electrocatalytic activity evaluation A dispersion was prepared by dispersing 10 mg of an electrocatalyst in which platinum particles were supported on an unfluorinated carbon carrier (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E, loading ratio of platinum particles: 46% by mass) in 15 mL of AK225. did. 10 ⁇ L of the dispersion was dropped onto the disk electrode of the rotating ring disk electrode and allowed to dry naturally, thereby depositing an electrode catalyst in which platinum particles were supported on a carbon support that was not fluorinated, on the disk electrode.
  • an unfluorinated carbon carrier manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E, loading ratio of platinum particles: 46% by mass
  • the rotating ring disk electrode was rotated at 800 rpm in a 0.1 M perchloric acid aqueous solution at 25 ° C., and the disk potential was adjusted to 0.8 V vs. After holding at Ag / AgCl for 30 seconds, the disc potential was -0.2 V vs. with a sweep rate of 25 mV / s. ⁇ 0.8V vs. Ag / AgCl. Sweep to Ag / AgCl.
  • a graph of the disk current per gram of platinum versus the disk potential is shown in FIG.
  • Example 6 Electrocatalytic activity evaluation: A dispersion was prepared by dispersing 5 mg of the electrode catalyst of Example 5 and 5 mg of the fluorine-containing ketjen black of Example 2 in 15 mL of AK225. The activity of the electrode catalyst was evaluated in the same manner as in Example 5 except that the dispersion liquid of Example 6 was used instead of the dispersion liquid of Example 5. A graph of the disk current per gram of platinum versus the disk potential is shown in FIG.
  • Example 7 Electrocatalytic activity evaluation: A dispersion was prepared by dispersing 2 mg of the electrode catalyst of Example 5 and 8 mg of the fluorine-containing ketjen black of Example 2 in 15 mL of AK225. The activity of the electrode catalyst was evaluated in the same manner as in Example 5 except that the dispersion liquid of Example 7 was used instead of the dispersion liquid of Example 5. A graph of the disk current per gram of platinum versus the disk potential is shown in FIG.
  • FIG. 6 shows that the higher the disc current per gram of platinum is on the minus side, the higher the activity of the electrode catalyst per gram of platinum. From the results of Examples 5 to 7, it can be seen that the combined use of the fluorine-containing ketjen black of Example 2 significantly increases the activity of the electrode catalyst per 1 g of platinum.
  • Example 8 Electrocatalytic activity evaluation: A test was conducted in the same manner as in Example 5 except that 15 ⁇ L of the dispersion was dropped onto the disk electrode of the rotating ring disk electrode and allowed to dry naturally. A graph of the disk current per gram of platinum against the disk potential is shown in FIG.
  • Electrocatalytic activity evaluation An electrode catalyst (platinum particle support ratio: 20 mass%) in which platinum particles are supported on a carbon support made of ketjen black that has not been fluorinated was prepared as follows. Add 0.2 g of chloroplatinic acid (H 2 PtCl 6 / 6H 2 O) dissolved in ion-exchanged water to ion-exchanged water previously heated to 70 ° C. while bubbling nitrogen (N 2 ). stirring, then stirred until the addition of sodium citrate were dissolved in ion-exchanged water dihydrate (C 6 H 5 Na 3 O 7 ⁇ 2H 2 O) 1.2g, becomes black liquid platinum A colloidal solution was prepared.
  • chloroplatinic acid H 2 PtCl 6 / 6H 2 O
  • Example 10 Electrocatalytic activity evaluation: Instead of the non-fluorinated ketjen black of Example 9, the fluorinated ketjen black of Example 2 was used, and the dispersion of the fluorinated ketjen black was carried out in a mixed solvent of water and ethanol (1/1 vol%).
  • An electrode catalyst platinum particle loading ratio: 20 mass%) in which platinum particles were supported on a carbon support made of fluorine-containing ketjen black was prepared in the same manner as in Example 9 except that the above procedure was performed.
  • the activity of the electrode catalyst was evaluated in the same manner as in Example 8 except that the electrode catalyst of Example 10 was used instead of the electrode catalyst of Example 8.
  • a graph of the disk current per gram of platinum against the disk potential is shown in FIG.
  • FIG. 7 shows that the higher the disc current per gram of platinum is on the minus side, the higher the activity of the electrode catalyst per gram of platinum. From the results of Examples 8 to 10, it can be seen that the activity of the electrode catalyst per 1 g of platinum is remarkably increased by using the fluorine-containing ketjen black of Example 2 as the carbon support of the electrode catalyst.
  • the anode-side catalyst layer forming coating solution is made to have a platinum amount of 0.05 mg / cm 2 on the surface of the film.
  • the catalyst layer on the anode side was formed by coating with a die coater and drying at 80 ° C. under normal pressure. The amount of platinum was determined by fluorescent X-ray analysis.
  • a polymer electrolyte membrane was formed by applying the fluoropolymer dispersion (i) using a die coater until the total film thickness after drying was 17 ⁇ m.
  • the cathode-side catalyst-forming coating solution was applied with a bar coater so that the amount of platinum was 0.1 mg / cm 2 and dried at 80 ° C. under normal pressure to form a cathode-side catalyst layer.
  • the amount of platinum was determined by fluorescent X-ray analysis.
  • a fluoropolymer dispersion (h) was applied on a gas diffusion layer (manufactured by NOK, X0086 T10X13) using a die coater so as to be 3 mg per 1 cm 2 of the gas diffusion layer, and at 160 ° C. under normal pressure. By drying, a gas diffusion layer with a carbon layer having an ion exchange capacity of 1.1 meq / g dry resin was obtained.
  • Example 12 Activity evaluation of polymer electrolyte fuel cells: [Cathode catalyst layer forming coating solution] A cathode catalyst layer-forming coating having a solid content of 9% by mass was carried out in the same manner as in Example 11 except that the fluorinated ketjen black of Example 1 was used in place of the fluorinated ketjen black. A liquid was obtained. A polymer electrolyte fuel cell was obtained in the same manner as in Example 11 except that this cathode catalyst layer forming coating solution was used, and the cell voltage and corrosion resistance of the polymer electrolyte fuel cell were evaluated. The results are shown in Table 2.
  • the cell voltage in Table 2 indicates that the higher the cell voltage at the same current density, the higher the activity, and the higher the performance of the polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell of Example 12 using the fluorine-containing ketjen black of Example 1 as the catalyst layer on the cathode side is the polymer electrolyte fuel cell of Example 11 using ketjen black that has not been fluorinated.
  • the cell voltage was higher than Under the condition of 0.5 A / cm 2 after the corrosion resistance test, in the polymer electrolyte fuel cell of Example 11, the cell voltage falls below the lower limit before the predetermined current is reached, and the cell voltage can be measured. There wasn't. With respect to the corrosion resistance of the polymer electrolyte fuel cell of Example 12, the cell voltage was high, and the rate of change of the thickness of the catalyst layer on the cathode side was small.
  • Example 12 showed superior corrosion resistance compared to Example 11.
  • the fluorine-containing carbon particles of the present invention are useful in a wide range of fields as a carbon support for an electrode catalyst for a polymer electrolyte fuel cell, an air electrode catalyst material for a metal-air battery, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる含フッ素カーボン粒子、カーボン担体、電極触媒、触媒層形成用塗工液および電極、ならびに膜電極接合体の提供。 0.8≦(F/C)/(F/C)≦1.2(ただし、(F/C)は、含フッ素カーボン粒子の外表面における炭素原子の原子数に対するフッ素原子の原子数の比であり、(F/C)は、含フッ素カーボン粒子の全体における炭素原子の原子数に対するフッ素原子の原子数の比である。)の関係を満足する含フッ素カーボン粒子を用いる。

Description

含フッ素カーボン粒子、その製造方法、およびその使用
 本発明は、含フッ素カーボン粒子、その製造方法、固体高分子形燃料電池用電極触媒、そのカーボン担体、固体高分子形燃料電池の触媒層の形成に用いられる塗工液、固体高分子形燃料電池用電極、および固体高分子形燃料電池用膜電極接合体に関する。
 固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックしたものである。膜電極接合体は、触媒層を有するアノードおよびカソードと、アノードとカソードとの間に配置された固体高分子電解質膜とを備える。触媒層は、イオン交換基を有するポリマーと、触媒金属粒子がカーボン担体に担持された電極触媒とを含む(特許文献1、2参照)。
 該電極触媒においては、燃料電池の起動時および停止時に、カーボン担体の腐食および触媒金属粒子の溶出が起こることが知られている(特許文献2参照)。また、カーボン担体の腐食に伴い、触媒金属粒子の脱落も起こる。そのため、触媒金属粒子がカーボン担体に担持された電極触媒を用いた膜電極接合体には、燃料電池の起動および停止を繰り返すうちに発電性能が低下するという問題がある。
特許第4534764号公報 特開2006-179463号公報
 本発明は、発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる含フッ素カーボン粒子、カーボン担体、電極触媒、触媒層形成用塗工液および電極;ならびに、発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を提供する。
 本発明は、下記の態様を有する。
 [1]下式(1)の関係を満足する、含フッ素カーボン粒子。
 0.8≦(F/C)/(F/C)≦1.2 ・・・(1)
 ただし、(F/C)は、含フッ素カーボン粒子の外表面における炭素原子の原子数に対するフッ素原子の原子数の比であり、(F/C)は、含フッ素カーボン粒子の全体における炭素原子の原子数に対するフッ素原子の原子数の比である。
 [2]前記(F/C)が、0.1~0.8である、[1]の含フッ素カーボン粒子。
 [3]前記含フッ素カーボン粒子が、含フッ素カーボンブラックおよび含フッ素活性炭のいずれか一方または両方である、[1]または[2]の含フッ素カーボン粒子。
 [4]平均一次粒子径が1nm~10μmであり、比表面積が100~3000m/gである、[1]~[3]のいずれかの含フッ素カーボン粒子。
 [5]前記[1]~[4]のいずれかの含フッ素カーボン粒子を製造する方法であって、-20~340℃においてF、ClFおよびNFからなる群から選ばれる少なくとも1種のガスと、カーボン粒子とを接触させる、含フッ素カーボン粒子の製造方法。
 [6]固体高分子形燃料電池に用いられる電極触媒のカーボン担体であって、[1]~[4]のいずれかの含フッ素カーボン粒子からなる、カーボン担体。
 [7]固体高分子形燃料電池に用いられる電極触媒であって、触媒金属粒子が[6]のカーボン担体に担持された、電極触媒。
 [8]イオン交換基を有する含フッ素ポリマーと、電極触媒と、[1]~[4]のいずれかの含フッ素カーボン粒子と、媒体とを含む、触媒層形成用塗工液。
 [9]イオン交換基を有する含フッ素ポリマーと、[7]の電極触媒と、媒体とを含む、触媒層形成用塗工液。
 [10]イオン交換基を有する含フッ素ポリマーと、電極触媒と、[1]~[4]のいずれかの含フッ素カーボン粒子とを含む触媒層を有する、電極。
 [11]イオン交換基を有する含フッ素ポリマーと、[7]の電極触媒とを含む触媒層を有する、電極。
 [12]前記電極触媒が、白金または白金合金を含み、前記触媒層における白金または白金合金の量が、0.01~0.50mg/cmである、[10]または[11]の電極。
 [13]触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体であって、前記アノードおよび前記カソードのいずれか一方または両方が、[10]~[12]のいずれかの電極である、膜電極接合体。
 本発明の含フッ素カーボン粒子、カーボン担体、電極触媒、触媒層形成用塗工液および電極によれば、発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
 本発明の膜電極接合体は、発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい。
膜電極接合体の一例を示す模式断面図である。 膜電極接合体の他の例を示す模式断面図である。 例3の耐腐食性評価の際に得られたサイクル数が0回、2000回、10000回におけるサイクリックボルタムグラムである。 例4の耐腐食性評価の際に得られたサイクル数が0回、2000回、10000回におけるサイクリックボルタムグラムである。 例3および例4における最大酸化電流増大率のサイクル数による変化を示すグラフである。 例5~7におけるディスク電極の電位に対する白金1gあたりのディスク電流の変化を示すグラフである。 例8~10におけるディスク電極の電位に対する白金1gあたりのディスク電流の変化を示すグラフである。
 本明細書においては、式(U1)で表される構成単位を、単位(U1)と記す。他の式で表される構成単位も同様に記す。また、式(M1)で表されるモノマーを、モノマー(M1)と記す。他の式で表されるモノマーも同様に記す。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「含フッ素カーボン粒子」とは、カーボン粒子にフッ素原子が化学吸着した粒子を意味する。
 「含フッ素ポリマー」とは、炭素原子に結合する水素原子の一部または全部がフッ素原子に置換されたポリマーを意味する。
 「構成単位」とは、モノマーが重合することによって形成された該モノマーに由来する単位を意味する。構成単位は、モノマーの重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 「イオン交換基」とは、H、一価の金属カチオン、アンモニウムイオン等を有する基を意味する。イオン交換基としては、スルホン酸基、スルホンイミド基、スルホンメチド基等が挙げられる。
 「スルホン酸基」は、-SO および-SO (ただし、Mは、一価の金属イオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。)を包含する。
 「平均一次粒子径」は、走査型電子顕微鏡(以下、SEMと記す。)または透過型電子顕微鏡(以下、TEMと記す。)でカーボン粒子または含フッ素カーボン粒子の一次粒子を観察し、無作為に選んだ10個以上の一次粒子の直径の平均値である。
 「比表面積」は、吸着ガスとして窒素ガスを使用しBET(Brunauer,Emmet,Teller)法により算出した値である。
 含フッ素カーボン粒子の外表面における炭素原子数に対するフッ素原子数の比「(F/C)」は、X線光電子分光(XPS)定量分析法による分析結果からフッ素原子濃度(原子%)および炭素原子濃度(原子%)を算出することによって求めた値である。
 含フッ素カーボン粒子の全体における炭素原子数に対するフッ素原子数の比「(F/C)」は、酸素フラスコ燃焼/イオン電極法による分析結果からフッ素濃度(質量%)および炭素濃度(質量%)を算出することによって求めた値である。
<含フッ素カーボン粒子>
 本発明の含フッ素カーボン粒子は、下式(1)の関係を満足する。
 0.8≦(F/C)/(F/C)≦1.2 ・・・(1)
 ただし、(F/C)および(F/C)は、上記で定義したとおりである。なかでも、式(1)の下限は、0.85が好ましく、0.87がより好ましく、0.9が特に好ましい。式(1)の上限は、1.15が好ましく、1.13がより好ましく、1.1が特に好ましい。
 (F/C)/(F/C)は、0.85以上1.15以下が好ましく、0.87以上1.15以下がより好ましく、0.87以上1.13以下が特に好ましい。
 式(1)の関係を満足する含フッ素カーボン粒子は、フッ素原子がカーボン粒子の外表面に偏在することなく、カーボン粒子全体にまんべんなく存在している。すなわち、カーボン粒子の外表面および細孔の内部表面にフッ素原子が化学吸着している。そのため、燃料電池の起動時および停止時に、含フッ素カーボン粒子の表面だけではなく、内部においても腐食が起こりにくい。一方、フッ素原子がカーボン粒子の外表面に偏在した含フッ素カーボン粒子(たとえば、特許第3291803号公報)は、燃料電池の起動時および停止時に内部において腐食が起こりやすい。
 また、含フッ素カーボン粒子は、外表面と細孔内部表面にフッ素原子が存在するため、膜電極接合体のカソードの触媒層に含ませることによって、カソードの触媒層において酸素溶解性や疎水性が高まり、触媒金属粒子への酸素(O)の供給が促進される。また、含フッ素カーボン粒子は、外表面にフッ素原子が存在するため、電極触媒のカーボン担体とすることによって、電極触媒と含フッ素ポリマーとの親和性が高まり、触媒層の形成に用いられる塗工液の分散性とその安定性が改善し、電気化学的に有効な触媒金属粒子の表面積も増加する。
 (F/C)は、0.1~0.8が好ましく、0.1~0.7がより好ましく、0.2~0.7がさらに好ましく、0.3~0.6が特に好ましく、0.4~0.6がとりわけ好ましい。(F/C)が前記範囲の下限値以上であれば、外表面にフッ素原子が存在することによる上述した効果が充分に発揮される。(F/C)が前記範囲の上限値以下であれば、フッ素原子によるカーボン粒子の導電性の低下、およびこれに伴う発電性能の低下が抑えられる。
 含フッ素カーボン粒子としては、含フッ素カーボンブラック(含フッ素ケッチェンブラック、含フッ素アセチレンブラック、含フッ素サーマルブラック、含フッ素ファーネスブラック、含フッ素チャンネルブラック等)、含フッ素活性炭、含フッ素黒鉛、含フッ素フラーレン類(C60、C70、C84等)、フッ素化ダイヤモンド等が挙げられる。
 含フッ素カーボン粒子としては、式(1)の関係を満足しやすい点から、含フッ素カーボンブラックおよび含フッ素活性炭のいずれか一方または両方が好ましく、含フッ素カーボンブラックがより好ましく、含フッ素ケッチェンブラックがさらに好ましい。
 含フッ素カーボン粒子は、1種、または2種以上を併用してもよい。
 含フッ素カーボン粒子の平均一次粒子径は、1nm~10μmが好ましく、1nm~7.5μmがより好ましく、1nm~6μmがさらに好ましい。平均一次粒子径が前記範囲の下限値以上であれば、外表面と細孔内部表面にフッ素原子が化学吸着されやすくなり、上述した効果がさらに発揮される。平均一次粒子径が前記範囲の上限値以下であれば、外表面と細孔内部表面へのフッ素元素の化学吸着率の低下が抑制される。
 含フッ素カーボン粒子の比表面積は、100~3000m/gが好ましく、150~3000m/gがより好ましく、200~3000m/gがさらに好ましい。比表面積が前記範囲の下限値以上であれば、外表面と細孔内部表面にフッ素原子の化学吸着率が高くでき、上述した効果がより一層発揮される。比表面積が前記範囲の上限値以下であれば、フッ素原子によるカーボン粒子の導電性の低下、およびこれに伴う発電性能の低下が抑えられる。
 (含フッ素カーボン粒子の製造方法)
 含フッ素カーボン粒子は、たとえば、-20~340℃において、F、ClFおよびNFからなる群から選ばれる少なくとも1種のガスと、カーボン粒子とを接触させること(以下、フッ素化処理とも記す。)によって製造できる。
 フッ素化処理のガスとしては、式(1)の関係を満足する含フッ素カーボン粒子が得られやすい点から、Fガスが好ましい。
 カーボン粒子としては、カーボンブラック(ケッチェンブラック、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック等)、活性炭、黒鉛、フラーレン類(C60、C70、C84等)、ダイヤモンド等が挙げられる。
 カーボン粒子としては、式(1)の関係を満足する含フッ素カーボン粒子が得られやすい点から、カーボンブラックおよび活性炭のいずれか一方または両方が好ましく、カーボンブラックがより好ましく、ケッチェンブラックがさらに好ましい。カーボン粒子は、1種、または2種以上を併用してもよい。
 フッ素化処理の温度は、-20℃~340℃が好ましく、0~300℃がより好ましく、0~250℃がさらに好ましい。該温度が前記範囲の下限値以上であれば、フッ素原子がカーボン粒子に化学吸着されやすい。該温度が前記範囲の上限値以下であれば、式(1)の関係を満足する含フッ素カーボン粒子が得られやすい。従来のフッ素化処理(特許第3291803号公報)では、フッ素原子がカーボン粒子の外表面に偏在した含フッ素カーボン粒子を得るために、フッ素化処理の温度を350℃以上としている。
 フッ素化処理の時間は、0.5~10時間が好ましく、1~20時間がより好ましい。
 本発明の含フッ素カーボン粒子にあっては、外表面と細孔内部表面にフッ素原子が存在するため、酸素溶解性や疎水性が高く、かつ含フッ素ポリマーとの親和性も高い。そのため、触媒層の形成に用いられる塗工液の分散性とその安定性が改善し、膜電極接合体のカソードの触媒層に含ませることによって、触媒金属粒子への酸素(O)の供給が促進され、また、電極触媒のカーボン担体とすることによって、電気化学的に有効な触媒金属粒子の表面積も増加する。そのため、発電性能が高い膜電極接合体を得ることができる。
 また、本発明の含フッ素カーボン粒子にあっては、式(1)の関係を満足するため、膜電極接合体の触媒層に含ませることによって、燃料電池の起動時および停止時に、含フッ素カーボン粒子の表面だけではなく、内部においても腐食が起こりにくい。また、電極触媒のカーボン担体とすることによって、含フッ素カーボン粒子の腐食に伴う、触媒金属粒子の脱落も起きにくい。さらには、膜電極接合体の触媒層に含ませることによって、脱落した触媒金属粒子の受け皿ともなり得る。そのため、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<カーボン担体>
 本発明の含フッ素カーボン粒子は、固体高分子形燃料電池に用いられる電極触媒のカーボン担体として用いることができる。
 本発明のカーボン担体にあっては、外表面と細孔内部表面にフッ素原子が存在するため、酸素溶解性や疎水性が高く、かつ含フッ素ポリマーとの親和性も高い。そのため、触媒層の形成に用いられる塗工液の分散性とその安定性が改善し、触媒金属粒子を担持した電極触媒とすることによって、触媒金属粒子への酸素(O)の供給が促進され、また、電気化学的に有効な触媒金属粒子の表面積も増加する。そのため、発電性能が高い膜電極接合体を得ることができる。
 また、本発明のカーボン担体にあっては、式(1)の関係を満足する含フッ素カーボン粒子からなるため、触媒金属粒子を担持した電極触媒とすることによって、燃料電池の起動時および停止時に、カーボン担体の表面だけではなく、内部においても腐食が起こりにくい。また、カーボン担体の腐食に伴う、触媒金属粒子の脱落も起きにくい。そのため、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<電極触媒>
 本発明の電極触媒は、固体高分子形燃料電池に用いられる電極触媒であって、触媒金属粒子が本発明のカーボン担体に担持されたものである。本発明の電極触媒は、(i)カーボン粒子をフッ素化処理して得られた本発明の含フッ素カーボン粒子に、公知の方法によって触媒金属粒子を担持することによって得られたものであってもよいし、(ii)フッ素化処理されていないカーボン粒子に、公知の方法によって触媒金属粒子を担持した後、触媒金属粒子を担持したカーボン粒子をフッ素化処理して本発明の電極触媒としたものであってもよい。
 (触媒金属粒子)
 触媒金属粒子としては、貴金属の粒子、または貴金属合金の粒子が好ましい。貴金属としては、白金が好ましい。貴金属合金としては、白金合金が好ましい。
 白金合金としては、白金を除く白金族の金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、金、銀、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛、およびスズからなる群から選ばれる1種以上の金属と、白金との合金が挙げられる。
 触媒金属粒子の担持率は、電極触媒(100質量%)中、5~80質量%が好ましく、10~70質量%がより好ましい。触媒金属粒子の担持率が前記範囲の下限値以上であれば、電極触媒の活性が向上する。触媒金属粒子の担持率が前記範囲の上限値以下であれば、触媒粒子が凝集しにくく、電極触媒の活性が向上する。
 本発明の電極触媒にあっては、カーボン担体の外表面と細孔内部表面にフッ素原子が存在するため、酸素溶解性や疎水性が高く、かつ含フッ素ポリマーとの親和性も高い。そのため、触媒層の形成に用いられる塗工液の分散性とその安定性が改善し、触媒金属粒子への酸素(O)の供給が促進され、また、電気化学的に有効な触媒金属粒子の表面積も増加する。そのため、発電性能が高い膜電極接合体を得ることができる。
 また、本発明の電極触媒にあっては、カーボン担体が式(1)の関係を満足する含フッ素カーボン粒子からなるため、燃料電池の起動時および停止時に、カーボン担体の表面だけではなく、内部においても腐食が起こりにくい。また、カーボン担体の腐食に伴う、触媒金属粒子の脱落も起きにくい。そのため、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<触媒層形成用塗工液(I)>
 本発明の触媒層形成用塗工液の第1の形態(以下、触媒層形成用塗工液(I)とも記す。)は、固体高分子形燃料電池の触媒層の形成に用いられる。
 触媒層形成用塗工液(I)は、イオン交換基を有する含フッ素ポリマーと、電極触媒と、本発明の含フッ素カーボン粒子と、媒体とを含む。
(イオン交換基を有する含フッ素ポリマー)
 イオン交換基を有する含フッ素ポリマーとしては、スルホン酸基を有する含フッ素ポリマーが好ましい。
 スルホン酸基を有する含フッ素ポリマーとしては、スルホン酸基の陽イオンがHである酸型と、スルホン酸基の陽イオンが金属イオン、アンモニウムイオン等である塩型とがある。触媒層に含まれるスルホン酸基を有する含フッ素ポリマーは、通常、酸型である。スルホン酸基の陽イオンの一部は、2価以上の金属イオンで置換されていてもよい。
 スルホン酸基を有する含フッ素ポリマーとしては、化学的な耐久性に優れる点から、炭素原子に結合する水素原子がすべてフッ素原子に置換されたペルフルオロポリマーが好ましい。
 スルホン酸基を有するペルフルオロポリマーとしては、後述するポリマー(H)、後述するポリマー(Q)、国際公開第2011/013577号等に記載された、スルホン酸基および5員環を有するペルフルオロモノマーに由来する構成単位を有するポリマー等の公知のポリマーが挙げられる。入手のしやすさや製造のしやすさの点から、ポリマー(H)またはポリマー(Q)が好ましい。
 ポリマー(H):
 ポリマー(H)は、単位(U1)を有するポリマーである(ただし、ポリマー(Q)を除く)。
Figure JPOXMLDOC01-appb-C000001
 ただし、Qは、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、tは、0または1である。単結合は、CFYの炭素原子と、SOHのイオウ原子とが直接結合していることを意味する。有機基は、炭素原子を1以上含む基を意味する。
 Qのペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよい。ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。Yとしては、フッ素原子またはトリフルオロメチル基が好ましい。
 単位(U1)としては、単位(U1-1)が好ましい。ポリマー(H)の製造が容易であり、工業的実施が容易である点から、単位(U1-11)、単位(U1-12)、単位(U1-13)または単位(U1-14)がより好ましい。
Figure JPOXMLDOC01-appb-C000002
 ただし、Zは、フッ素原子またはトリフルオロメチル基であり、mは、0~3の整数であり、nは、1~12の整数であり、pは、0または1であり、かつ、m+p>0である。
 ポリマー(H)は、さらに、他のモノマーに由来する構成単位(以下、他の単位と記す。)を有していてもよい。他の単位の含有割合は、ポリマー(H)のイオン交換容量が後述の好ましい範囲となるように、適宜調整すればよい。
 他の単位としては、機械的強度および化学的な耐久性の点から、ペルフルオロモノマーに由来する構成単位が好ましく、テトラフルオロエチレン(以下、TFEと記す。)に由来する構成単位がより好ましい。
 ポリマー(H)は、モノマー(M1)および必要に応じて他のモノマーを重合して前駆体ポリマーを得た後、前駆体ポリマー中の-SOF基をスルホン酸基に変換することによって製造できる。-SOF基のスルホン酸基への変換は、加水分解および酸型化処理により行われる。
 CF=CF-(CFOCF-CFY-Q-SOF ・・・(M1)。
 ポリマー(Q):
 ポリマー(Q)は、単位(U2)を有するポリマーである。
Figure JPOXMLDOC01-appb-C000003
 ただし、Qは、エーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Qは、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、sは、0または1である。単結合は、CYの炭素原子と、SOHのイオウ原子とが直接結合していることを意味する。有機基は、炭素原子を1以上含む基を意味する。
 Q、Qのペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、原料の含フッ素モノマーの沸点が低くなり、蒸留精製が容易となる。
 Qは、エーテル性の酸素原子を有していてもよい炭素数1~6のペルフルオロアルキレン基であることが好ましい。Qがエーテル性の酸素原子を有していてもよい炭素数1~6のペルフルオロアルキレン基であれば、Qが単結合である場合に比べ、長期にわたって固体高分子形燃料電池を運転した際に、発電性能の安定性に優れる。
 Q、Qの少なくとも一方は、エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基であることが好ましい。エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基を有する含フッ素モノマーは、フッ素ガスによるフッ素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
 Yとしては、フッ素原子、またはエーテル性の酸素原子を有していてもよい炭素数1~6の直鎖のペルフルオロアルキル基が好ましい。
 単位(U2)としては、単位(U2-1)が好ましく、ポリマー(Q)の製造が容易であり、工業的実施が容易である点から、単位(U2-11)、単位(U2-12)または単位(U2-13)がより好ましい。
Figure JPOXMLDOC01-appb-C000004
 ただし、RF11は、単結合、またはエーテル性の酸素原子を有していてもよい炭素数1~6の直鎖状のペルフルオロアルキレン基であり、RF12は、炭素数1~6の直鎖状のペルフルオロアルキレン基である。
 ポリマー(Q)は、さらに他の単位を有していてもよい。他の単位の含有割合は、ポリマー(Q)のイオン交換容量が後述の好ましい範囲となるように、適宜調整すればよい。
 他の単位としては、機械的強度および化学的な耐久性の点から、ペルフルオロモノマーに由来する構成単位が好ましく、TFEに由来する構成単位がより好ましい。
 ポリマー(Q)は、たとえば、国際公開第2007/013533号等に記載の方法によって製造できる。
 スルホン酸基を有する含フッ素ポリマーのイオン交換容量は、導電性およびガス透過性の点から、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂がより好ましい。
 (電極触媒)
 電極触媒は、フッ素化処理されていないカーボン担体に触媒金属粒子が担持された電極触媒であってもよく、本発明の電極触媒であってもよい。
 (媒体)
 媒体としては、水とアルコールとを含むものが好ましい。
 アルコールとしては、非フッ素系アルコール(メタノール、エタノール、1-プロパノール、2-プロパノール等)、フッ素系アルコール(2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、4,4,5,5,5-ペンタフルオロ-1-ペンタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール等)等が挙げられる。
 (触媒層形成用塗工液(I)の組成)
 イオン交換基を有する含フッ素ポリマーの含有割合は、触媒層形成用塗工液(I)の固形分(100質量%)のうち、1~50質量%が好ましく、3~45質量%がより好ましく、3~30質量%がさらに好ましい。
 電極触媒の含有割合は、触媒層形成用塗工液(I)の固形分(100質量%)のうち、20~80質量%が好ましく、20~70質%がより好ましく、30~70質量%がさらに好ましい。
 本発明の含フッ素カーボン粒子の含有割合は、触媒層形成用塗工液(I)の固形分(100質量%)のうち、20~80質量%が好ましく、30~70質量%がより好ましい。
 水の含有割合は、水とアルコールとの合計(100質量%)のうち、10~90質量%が好ましく、30~70質量%がより好ましい。アルコールの含有割合は、水とアルコールとの合計(100質量%)のうち、10~90質量%が好ましく、30~70質量%がより好ましい。水の含有割合を増やすことによって、イオン交換基を有する含フッ素ポリマーの分散性を向上できる一方、アルコールの含有割合を増やすことによって、本発明の含フッ素カーボン粒子の分散性を向上できる。
 触媒層形成用塗工液(I)にあっては、本発明の含フッ素カーボン粒子を含むため、本発明の含フッ素カーボン粒子を含む触媒層を形成できる。そのため、発電性能が高く、かつ燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<触媒層形成用塗工液(II)>
 本発明の触媒層形成用塗工液の第2の形態(以下、触媒層形成用塗工液(II)とも記す。)は、固体高分子形燃料電池の触媒層の形成に用いられる。
 触媒層形成用塗工液(II)は、イオン交換基を有する含フッ素ポリマーと、本発明の電極触媒と、媒体とを含む。
 (イオン交換基を有する含フッ素ポリマー)
 イオン交換基を有する含フッ素ポリマーとしては、触媒層形成用塗工液(I)に用いたイオン交換基を有する含フッ素ポリマーと同様のものが挙げられ、好ましい形態も同様である。
 (媒体)
 媒体としては、触媒層形成用塗工液(I)に用いた媒体と同様のものが挙げられ、好ましい形態も同様である。
 (触媒層形成用塗工液(II)の組成)
 イオン交換基を有する含フッ素ポリマーの含有割合は、触媒層形成用塗工液(II)の固形分(100質量%)のうち、1~50質量%が好ましく、3~30質量%がより好ましい。
 本発明の電極触媒の含有割合は、触媒層形成用塗工液(II)の固形分(100質量%)のうち、20~80質量%が好ましく、30~70質量%がより好ましい。
 水の含有割合は、水とアルコールとの合計(100質量%)のうち、10~90質量%が好ましく、30~70質量%がより好ましい。アルコールの含有割合は、水とアルコールとの合計(100質量%)のうち、10~90質量%が好ましく、30~70質量%がより好ましい。水の含有割合を増やすことによって、イオン交換基を有する含フッ素ポリマーの分散性を向上できる一方、アルコールの含有割合を増やすことによって、本発明の電極触媒の分散性を向上できる。
 触媒層形成用塗工液(II)にあっては、本発明の電極触媒を含むため、本発明の電極触媒を含む触媒層を形成できる。そのため、発電性能が高く、かつ燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<電極(I)>
 本発明の電極の第1の形態(以下、電極(I)とも記す。)は、固体高分子形燃料電池の電極であって、イオン交換基を有する含フッ素ポリマーと、電極触媒と、本発明の含フッ素カーボン粒子とを含む触媒層を有する。
 電極(I)は、必要に応じてガス拡散層を有していてもよい。また、触媒層とガス拡散層との間にカーボン層を有していてもよい。
 (触媒層)
 触媒層に含まれる電極触媒は、白金または白金合金を含むことが好ましい。
 触媒層における白金または白金合金の含有量は、0.01~0.50mg/cmが好ましく、0.05~0.30mg/cmがより好ましい。触媒層が本発明の含フッ素カーボン粒子を含むため、触媒金属粒子への酸素(O)の供給が促進され、また、電気化学的に有効な触媒金属粒子の表面積も増加する。そのため、触媒層における白金または白金合金の量を比較的少なくすることができる。
 触媒層における白金または白金合金の含有量は、触媒層を形成させる条件から算出することもできるし、検量線法による蛍光X線分析による測定により求めることもできる。
 触媒層の形成方法としては、下記の方法が挙げられる。
 ・触媒層形成用塗工液(I)を、固体高分子電解質膜、ガス拡散層、またはカーボン層上に塗布し、乾燥させる方法。
 ・触媒層形成用塗工液(I)を基材フィルム上に塗布し、乾燥させ触媒層を形成し、該触媒層を固体高分子電解質膜上に転写する方法。
 (ガス拡散層)
 ガス拡散層は、触媒層に均一にガスを拡散させる機能および集電体としての機能を有する。ガス拡散層としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。ガス拡散層は、ポリテトラフルオロエチレン等によって撥水化処理されていることが好ましい。
 (カーボン層)
 電極(I)がカーボン層を有することによって、触媒層の表面のガス拡散性が向上し、膜電極接合体の発電性能が大きく向上する。カーボン層は、カーボンと含フッ素ポリマーとを含む層である。
 カーボンとしては、カーボン粒子、カーボンファイバー等が挙げられ、繊維径が1~1000nmであり、繊維長が1000μm以下のカーボンナノファイバーが好ましい。
 含フッ素ポリマーとしては、イオン交換基を有するものであっても、有しないものであってもよい。含フッ素ポリマーとしては、ポリテトラフルオロエチレン、またはイオン交換基を有するペルフルオロカーボンポリマーが好ましく、ポリテトラフルオロエチレン、上述のポリマー(H)、またはポリマー(Q)がより好ましい。
 カーボン層がイオン交換基を有するペルフルオロカーボンポリマーである場合、イオン交換容量は、導電性およびガス拡散性の観点から、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂が特に好ましい。
 電極(I)にあっては、本発明の含フッ素カーボン粒子を含むため、発電性能が高く、かつ燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<電極(II)>
 本発明の電極の第2の形態(以下、電極(II)とも記す。)は、固体高分子形燃料電池の電極であって、イオン交換基を有する含フッ素ポリマーと、本発明の電極触媒とを含む触媒層を有する。
 電極(II)は、必要に応じてガス拡散層を有していてもよい。また、触媒層とガス拡散層との間にカーボン層を有していてもよい。
 (触媒層)
 触媒層に含まれる電極触媒は、白金または白金合金を含むことが好ましい。
 触媒層における白金または白金合金の好ましい量は、電極(I)の触媒層における白金または白金合金の好ましい量と同様である。
 触媒層の形成方法は、触媒層形成用塗工液(I)の代わりに触媒層形成用塗工液(II)を用いる以外は、電極(I)の触媒層の形成方法と同様である。
 ガス拡散層は、電極(I)のガス拡散層と同様であり、好ましい形態も同様である。
 カーボン層は、電極(I)のカーボン層と同様であり、好ましい形態も同様である。
 電極(II)にあっては、本発明の電極触媒を含むため、発電性能が高く、かつ燃料電池の起動および停止を繰り返しても発電性能が低下しにくい膜電極接合体を得ることができる。
<膜電極接合体>
 図1は、固体高分子形燃料電池用膜電極接合体の一例を示す模式断面図である。膜電極接合体10は、触媒層11およびガス拡散層12を有するアノード13と、触媒層11およびガス拡散層12を有するカソード14と、アノード13とカソード14との間に、触媒層11に接した状態で配置された固体高分子電解質膜15とを具備する。
 膜電極接合体10は、図2に示すように、触媒層11とガス拡散層12との間にカーボン層16を有してもよい。
 (電極)
 本発明の膜電極接合体は、アノードおよびカソードのいずれか一方または両方が本発明の電極であり、少なくともカソードが本発明の電極であることが好ましく、アノードおよびカソードの両方が本発明の電極であることがより好ましい。
 (固体高分子電解質膜)
 固体高分子電解質膜は、イオン交換基を有する含フッ素ポリマーを含む膜である。
 イオン交換基を有する含フッ素ポリマーとしては、触媒層のイオン交換基を有する含フッ素ポリマーと同様のものが挙げられ、好ましい形態も同様である。
 固体高分子電解質膜は、補強材で補強されていてもよい。補強材としては、多孔体、繊維、織布、不織布等が挙げられる。補強材の材料としては、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド等が挙げられる。
 固体高分子電解質膜は、たとえば、イオン交換基を有する含フッ素ポリマーを含む液状組成物を基材フィルムまたは触媒層上に塗布し、乾燥させる方法(キャスト法)により形成できる。
 固体高分子電解質膜を安定化させるために、アニール処理を行うことが好ましい。アニール処理の温度は、イオン交換基を有する含フッ素ポリマーの種類にもよるが、130~200℃が好ましい。アニール処理の温度が130℃以上であれば、イオン交換基を有する含フッ素ポリマーが過度に含水しなくなる。アニール処理の温度が200℃以下であれば、イオン交換基の熱分解が抑えられる。
 (膜電極接合体の製造方法)
 膜電極接合体がカーボン層を有しない場合、膜電極接合体は、たとえば、下記の方法にて製造される。
 ・固体高分子電解質膜上に触媒層を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
 ・ガス拡散層上に触媒層を形成して電極(アノード、カソード)とし、固体高分子電解質膜を該電極で挟み込む方法。
 膜電極接合体がカーボン層を有する場合、膜電極接合体は、たとえば、下記の方法にて製造される。
 ・基材フィルム上に、カーボンおよび含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層を形成し、カーボン層上に触媒層を形成し、触媒層と固体高分子電解質膜とを貼り合わせ、基材フィルムを剥離して、カーボン層を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
 ・ガス拡散層上に、カーボンおよび含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層を形成し、固体高分子電解質膜上に触媒層を形成した膜触媒層接合体を、カーボン層を有するガス拡散層で挟み込む方法。
 本発明の膜電極接合体にあっては、アノードおよびカソードのいずれか一方または両方が本発明の電極であるため、発電性能が高く、燃料電池の起動および停止を繰り返しても発電性能が低下しにくい。
<固体高分子形燃料電池>
 膜電極接合体の両面に、ガスの流路となる溝が形成されたセパレータを配置することにより、固体高分子形燃料電池が得られる。
 セパレータとしては、金属製セパレータ、カーボン製セパレータ、黒鉛と樹脂を混合した材料からなるセパレータ等、各種導電性材料からなるセパレータが挙げられる。
 該固体高分子形燃料電池においては、カソードに酸素を含むガス、アノードに水素を含むガスを供給することにより、発電が行われる。また、アノードにメタノールを供給して発電を行うメタノール燃料電池にも、膜電極接合体を適用できる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。例1~3、6、7、10、12は実施例であり、例4、5、8、9、11は比較例である。
(XPS定量分析法)
 X線光電子分光装置(アルバック・ファイ社製、ESCA5500)を用い、X線源:単色化されたAlKα線、パスエネルギ:55.0eV、ステップエネルギ:0.05eV、検出角度:試料面に対して75°の条件で行った。
 含フッ素カーボン粒子の外表面におけるフッ素原子濃度(原子%)および炭素原子濃度(原子%)は、C1sの光電子分光スペクトルにおけるC-Fに由来するピークの積分強度およびその他(C-C、C-O、C-H、C-OH)に由来するピークの積分強度から解析ソフトを用いてそれぞれ算出した。
(酸素フラスコ燃焼/イオン電極法)
 試料をポリエチレンフィルムに包み、酸素を充填したフラスコ内で燃焼させ、発生したガスを吸収液に捕集し、定容後得られた供試験液を作製した。
 含フッ素カーボン粒子の全体におけるフッ素濃度(質量%)は、供試験液中のFイオン濃度を、イオン電極測定装置(東亜電波工業社製、ION METER IM-55G)およびイオン選択電極(東亜ディーケーケー社製、F-2021)を用いて測定し、試料の単位質量あたりの含有量に換算して算出した。炭素濃度(質量%)は、100質量%-フッ素濃度から算出した。
(比表面積)
 比表面積測定装置(マウンテック社製、HM model-1208)を用い、窒素吸着BET法によって算出した。脱気は、105℃、20分の条件で行った。 
(回転電極装置)
 回転電極装置(北斗電工社製、HR301)は、電解液を入れるフラスコと、フラスコ内に挿入された回転リングディスク電極、参照電極および対極と、フラスコ内にガスを導入するガス導入管とを備える。
 回転リングディスク電極としては、円柱体の一方の端面に、ディスク電極として直径5mmのグラッシーカーボン、および同心円状のリング電極として内径5.5mm、外径8mmの白金が埋め込まれたものを用いた。参照電極としては、銀・塩化銀電極(Ag/AgCl)を用いた。対極としては、Pt線を用いた。
(蛍光X線分析)
 蛍光X線分析(分析装置:リガク社製、波長分散小型蛍光X線分析装置 Supermini200)の条件は、X線管球の加速電圧:50kV、電流:4mA、X線管球のターゲット:Pd、分光結晶;LiF(36.5℃)、検出器:シンチレーションカウンター、であった。電極触媒の白金の量は、15mmφのサンプルホルダーを用い、測定により得られた白金の強度を、あらかじめ作製した白金量と強度との検量線に当てはめて算出した。
(使用材料)
 ケッチェンブラック(登録商標):(ケッチェン・ブラック・インターナショナル社製、KetjenEC600JD、平均一次粒径:34nm、比表面積:1390m/g)。
 AK225(登録商標):(旭硝子社製、フッ素系溶媒)。
 (例1)
 ケッチェンブラックを、気密性の高いリアクタに導入した。リアクタ内を真空引きした後、20℃において0.005MPaGの圧力までF/N=80/20(体積比)の混合ガスを導入した状態で、4時間保持し、含フッ素ケッチェンブラック(平均一次粒径:34nm、比表面積:900m/g、酸素フラスコ燃焼/イオン電極法から算出した炭素濃度を元にカーボン質量当たりに対して規格化した比表面積が1310m/g)を得た。結果を表1に示す。
 (例2)
 フッ素化処理の温度を20℃から80℃に変更した以外は、例1と同様にして含フッ素ケッチェンブラック(平均一次粒径:34nm、比表面積:770m/g、酸素フラスコ燃焼/イオン電極法から算出した炭素濃度を元にカーボン質量当たりに対して規格化した比表面積が1360m/g)を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 (例3)
 含フッ素ケッチェンブラックの耐腐食性評価:
 例2の含フッ素ケッチェンブラックの10mgをAK225の15mLに分散させた分散液を調製した。分散液の10μLを、回転リングディスク電極のディスク電極上に滴下し、自然乾燥させることによって、含フッ素ケッチェンブラックをディスク電極上に付着させた。
 起動停止評価プロトコル(燃料電池実用化推進協議会FCCJ 2011年版)にしたがい、回転リングディスク電極を25℃の0.1M過塩素酸水溶液に浸漬し、窒素ガスを吹き込んだ。窒素ガスを吹き込みながら、500mV/sの掃引速度で、回転リングディスク電極の電位(以下、ディスク電位とも記す。)を1.0~1.5V vs. Ag/AgClの間で20000サイクル掃引した。
 サイクル数が0回、1000回、2000回、5000回、10000回、20000回の段階で一旦中断し、窒素ガスを吹き込みながら、0.1M過塩素酸水溶液中で、50mV/sの掃引速度で、ディスク電位を-0.2~1.0V vs. Ag/AgClの間で3サイクル掃引し、サイクリックボルタムグラムを得た。
 サイクル数が0回、2000回、10000回における第2回目のサイクリックボルタムグラムを図3に示す。また、各サイクリックボルタムグラムについて、ディスク電位が0.4V以下においてディスク電流が最大となる電流(最大酸化電流)を読み取った。サイクル数が0回の最大酸化電流に対する最大酸化電流増大率のサイクル数による変化を図5に示す。
 (例4)
 ケッチェンブラックの耐腐食性評価:
 例2の含フッ素ケッチェンブラックの代わりに、フッ素化処理されていないケッチェンブラックを用いた以外は、例3と同様にして耐腐食性を評価した。
 サイクル数が0回、2000回、10000回におけるサイクリックボルタムグラムを図4に示す。サイクル数が0回の最大酸化電流に対する最大酸化電流増大率のサイクル数による変化を図5に示す。
 例3および例4の結果から、例2の含フッ素ケッチェンブラックは、フッ素化処理されていないケッチェンブラックに比べ酸化されにくく、耐腐食性に優れることがわかる。
 (例5)
 電極触媒の活性評価:
 フッ素化処理されていないカーボン担体に白金粒子が担持された電極触媒(田中貴金属工業社製、TEC10E50E、白金粒子の担持率:46質量%)の10mgをAK225の15mLに分散させた分散液を調製した。分散液の10μLを、回転リングディスク電極のディスク電極上に滴下し、自然乾燥させることによって、フッ素化処理されていないカーボン担体に白金粒子が担持された電極触媒をディスク電極上に付着させた。
 酸素ガスを吹き込みながら、25℃の0.1M過塩素酸水溶液中で回転リングディスク電極を800rpmで回転させ、ディスク電位を0.8V vs. Ag/AgClで30秒間保持した後、25mV/sの掃引速度で、ディスク電位を-0.2V vs. Ag/AgClから~0.8V vs. Ag/AgClまで掃引した。ディスク電位に対する白金1gあたりのディスク電流のグラフを図6に示す。
 (例6)
 電極触媒の活性評価:
 例5の電極触媒の5mgおよび例2の含フッ素ケッチェンブラックの5mgをAK225の15mLに分散させた分散液を調製した。
 例5の分散液の代わりに例6の分散液を用いた以外は、例5と同様にして電極触媒の活性を評価した。ディスク電位に対する白金1gあたりのディスク電流のグラフを図6に示す。
 (例7)
 電極触媒の活性評価:
 例5の電極触媒の2mgおよび例2の含フッ素ケッチェンブラックの8mgをAK225の15mLに分散させた分散液を調製した。
 例5の分散液の代わりに例7の分散液を用いた以外は、例5と同様にして電極触媒の活性を評価した。ディスク電位に対する白金1gあたりのディスク電流のグラフを図6に示す。
 図6においては、白金1gあたりのディスク電流がマイナス側に大きいほど白金1gあたりの電極触媒の活性が高いことを示す。例5~7の結果から、例2の含フッ素ケッチェンブラックを併用することによって、白金1gあたりの電極触媒の活性が格段に高くなっていることがわかる。
 (例8)
 電極触媒の活性評価:
 分散液の15μLを、回転リングディスク電極のディスク電極上に滴下し、自然乾燥させること以外は、例5と同様に試験を行った。ディスク電位に対する白金1gあたりのディスク電流のグラフを図7に示す。
 (例9)
 電極触媒の活性評価:
 フッ素化処理されていないケッチェンブラックからなるカーボン担体に白金粒子が担持された電極触媒(白金粒子の担持率:20質量%)を下記のように作製した。
 予め、窒素(N)バブリングしながら、70℃に加熱しておいたイオン交換水に、イオン交換水に溶解させた塩化白金酸(HPtCl/6HO)0.2gを添加・撹拌し、その後、イオン交換水に溶解させたクエン酸三ナトリウム二水和物(CNa・2HO)1.2gを添加し、黒色液になるまで撹拌して白金コロイド溶液を調製した。この白金コロイド液に、白金担持率が20質量%になるように、予め、イオン交換水に分散させた、フッ素化処理されていないケッチェンブラック0.2gを加え、約3時間撹拌し、白金担持を行った。その後、遠心分離機で分離させ、得られた沈殿物を洗浄し、100℃で、3時間乾燥してフッ素化処理されていないケッチェンブラックに白金粒子が担持された電極触媒を得た。
 例8の電極触媒の代わりに例9の電極触媒を用いた以外は、例8と同様にして電極触媒の活性を評価した。ディスク電位に対する白金1gあたりのディスク電流のグラフを図7に示す。
 (例10)
 電極触媒の活性評価:
 例9のフッ素化処理されていないケッチェンブラックの代わりに、例2の含フッ素ケッチェンブラックを用い、含フッ素ケッチェンブラックの分散は水とエタノールの混合溶媒(1/1vol%)の中で行った以外は例9と同様にして含フッ素ケッチェンブラックからなるカーボン担体に白金粒子が担持された電極触媒(白金粒子の担持率:20質量%)を作製した。
 例8の電極触媒の代わりに例10の電極触媒を用いた以外は、例8と同様にして電極触媒の活性を評価した。ディスク電位に対する白金1gあたりのディスク電流のグラフを図7に示す。
 図7においては、白金1gあたりのディスク電流がマイナス側に大きいほど白金1gあたりの電極触媒の活性が高いことを示す。例8~10の結果から、例2の含フッ素ケッチェンブラックを電極触媒のカーボン担体とすることによって、白金1gあたりの電極触媒の活性が格段に高くなっていることがわかる。
 (例11)
 固体高分子形燃料電池の活性評価:
[含フッ素ポリマー分散液]
 テトラフルオロエチレン(TFE)に由来する構成単位と単位(U1-11)を有するポリマー(フレミオン(旭硝子社登録商標)、イオン交換容量:1.1ミリ当量/g乾燥樹脂)を固形分濃度が20質量%になるようにエタノール/水=6/4(質量比)に分散させて、含フッ素ポリマー分散液(h)を得た。同様にして固形分濃度が26質量%である含フッ素ポリマー分散液(i)を得た。
[アノード側の触媒層形成用塗工液]
 フッ素化処理されていないカーボン担体に白金が担持された触媒(田中貴金属工業社製、TEC10EA20E、白金担持率:20質量%)の10gに、窒素雰囲気下で、蒸留水の84.1g、エタノールの78.9gおよび含フッ素ポリマー分散液(h)の32.0gを添加し、よく撹拌した。この撹拌液を遊星ボールミルを用いて混合、粉砕し、固形分濃度8質量%のアノード側の触媒層形成用塗工液を得た。
[アノード側の触媒層]
 エチレン―TFE共重合体(ETFE)フィルムを毎分2mの速度で送りながら、該フィルムの表面に、前記アノード側の触媒層形成用塗工液を白金量で0.05mg/cmとなるようにダイコーターで塗布し、80℃で常圧乾燥させ、アノード側の触媒層を形成した。白金量は蛍光X線分析により求めた。
[カソード側の触媒層形成用塗工液]
 フッ素化処理されていないケッチェンブラックカーボンの0.5g、および白金粒子が担持された電極触媒(田中貴金属工業社製、TEC10E50E、白金粒子の担持率:47質量%)の0.5gの混合物に、窒素雰囲気下で、蒸留水の11.8gとエタノールの11.4gの混合溶媒を添加し、よく撹拌した後、超音波分散機を用いて混合した。該混合物液に含フッ素ポリマー分散液(i)の2.2gを添加し、よく撹拌し、固形分濃度6質量%のカソード側の触媒層形成用塗工液を得た。
[カソード側の触媒層]
 ETFEフィルムの表面に、ダイコーターを用いて、乾燥後のトータル膜厚が17μmとなるまで含フッ素ポリマー分散液(i)を塗工することにより、高分子電解質膜を形成させた。次いで、前記カソード側の触媒形成用塗工液を白金量で0.1mg/cmとなるようにバーコーターで塗布し、80℃で常圧乾燥させ、カソード側の触媒層を形成した。白金量は、蛍光X線分析により求めた。
 [カーボン層付きガス拡散層]
 ガス拡散層(NOK社製、X0086 T10X13)の上に、含フッ素ポリマー分散液(h)をガス拡散層1cmあたり3mgとなるようにダイコーターを用いて塗工して、160℃で常圧乾燥させることにより、イオン交換容量が1.1ミリ当量/g乾燥樹脂であるカーボン層付きガス拡散層を得た。
[膜電極接合体]
 前記カソード側の触媒層からETFEフィルムを剥離して得られた高分子電解質膜と、アノード側の触媒層とを接するように配置し、130℃で2分間のホットプレスにより接合した。
 前記アノード側の触媒層側のETFEフィルムを剥離して得られた触媒層と、ガス拡散層(NOK社製、X0086 IX51 CX173)を接するように配置させ、また、カソード側の触媒層と前記カーボン層付きガス拡散層のカーボン層とを接するように配置させて、該ガス拡散層と該カーボン層付きガス拡散層とで挟み込み、130℃で2分間のホットプレスにより接合させて、膜電極接合体(電極面積:25cm)を得た。
[固体高分子形燃料電池(セル)]
 膜電極接合体の両面に、ガスの流路となる溝が形成されたセパレータを配置し、セパレータの間に膜電極接合体を挟んで固体高分子形燃料電池(セル)を得た。
 該固体高分子形燃料電池においては、アノードに水素を含むガス、カソードに酸素を含むガスを供給することにより、発電が行われる。
[セル電圧評価]
 得られた固体高分子形燃料電池に、常圧にてアノード側に露点53℃の水素(利用率70%)を供給し、カソード側に露点53℃の空気を供給することで酸素(利用率10%)を供給した。セル内の相対湿度は30%RHであった。セル温度80℃において、運転時の電流密度が0.2A/cmおよび0.5 A/cmにおける運転初期のセル電圧(初期セル電圧)を測定した。初期セル電圧の測定の結果を表2に示す。
[耐腐食性評価]
 上記の初期セル電圧を測定した後に、アノード側には露点80℃の水素(50cc/min)を供給し、カソード側は露点80℃の窒素(167cc/min)をそれぞれセル内に供給した。セル内の相対湿度は100%RHであった。
 耐腐食性は、セルに外部電源をつなげ、セル電圧が1.2Vになるように制御したまま、70時間保持した後、初期セル電圧の測定と同様にして、セル電圧を測定することで評価した。また、SEM断面観察により、カソード側の触媒層における膜厚を測定し、初期状態からの変化率を調べた。
 (例12)
 固体高分子形燃料電池の活性評価:
[カソード触媒層形成用塗工液]
 フッ素化処理していないケッチェンブラックの代わりに、例1の含フッ素ケッチェンブラックを用いた他は、例11と同様の操作を行い、固形分濃度9質量%のカソード触媒層形成用塗工液を得た。このカソード触媒層形成用塗工液を用いる他は、例11と同様にして固体高分子形燃料電池を得て、該固体高分子形燃料電池のセル電圧評価および耐腐食性評価を行った。結果を表2に示す。
 表2におけるセル電圧は、同じ電流密度でのセル電圧が大きいほど、活性が高いことを示し、固体高分子形燃料電池の性能が高いことを示す。カソード側の触媒層に、例1の含フッ素ケッチェンブラックを用いた例12の固体高分子形燃料電池は、フッ素化処理していないケッチェンブラックを用いた例11の固体高分子形燃料電池に比べて、セル電圧が高かった。耐腐食性試験後の0.5A/cmの条件下において、例11の固体高分子形燃料電池では、所定電流になる前にセル電圧が下限値を下回り、セル電圧を測定することができなかった。例12の固体高分子形燃料電池の耐腐食性においては、セル電圧が高く、カソード側の触媒層の膜厚の変化率が小さかった。例12は例11に比べて優れた耐腐食性を示した。
Figure JPOXMLDOC01-appb-T000006
 本発明の含フッ素カーボン粒子は、固体高分子形燃料電池用電極触媒のカーボン担体や、金属空気電池用空気極触媒材料などとして広範囲の分野で有用である。
 なお、2015年5月25日に出願された日本特許出願2015-105600号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10:膜電極接合体、11:触媒層、12: ガス拡散層、13: アノード、 14: カソード、 15:固体高分子電解質膜、16:カーボン層。

Claims (13)

  1.  下式(1)の関係を満足する、含フッ素カーボン粒子。
     0.8≦(F/C)/(F/C)≦1.2 ・・・(1)
     ただし、(F/C)は、含フッ素カーボン粒子の外表面における炭素原子の原子数に対するフッ素原子の原子数の比であり、(F/C)は、含フッ素カーボン粒子の全体における炭素原子の原子数に対するフッ素原子の原子数の比である。
  2.  前記(F/C)が、0.1~0.8である、請求項1に記載の含フッ素カーボン粒子。
  3.  前記含フッ素カーボン粒子が、含フッ素カーボンブラックおよび含フッ素活性炭のいずれか一方または両方である、請求項1または2に記載の含フッ素カーボン粒子。
  4.  平均一次粒子径が1nm~10μmであり、比表面積が100~3000m/gである、請求項1~3のいずれか一項に記載の含フッ素カーボン粒子。
  5.  請求項1~4のいずれか一項に記載の含フッ素カーボン粒子を製造する方法であって、
     -20~340℃においてF、ClFおよびNFからなる群から選ばれる少なくとも1種のガスと、カーボン粒子とを接触させる、含フッ素カーボン粒子の製造方法。
  6.  固体高分子形燃料電池に用いられる電極触媒のカーボン担体であって、
     請求項1~4のいずれか一項に記載の含フッ素カーボン粒子からなる、カーボン担体。
  7.  固体高分子形燃料電池に用いられる電極触媒であって、
     触媒金属粒子が請求項6に記載のカーボン担体に担持された、電極触媒。
  8.  イオン交換基を有する含フッ素ポリマーと、電極触媒と、請求項1~4のいずれか一項に記載の含フッ素カーボン粒子と、媒体とを含む、触媒層形成用塗工液。
  9.  イオン交換基を有する含フッ素ポリマーと、請求項7に記載の電極触媒と、媒体とを含む、触媒層形成用塗工液。
  10.  イオン交換基を有する含フッ素ポリマーと、電極触媒と、請求項1~4のいずれか一項に記載の含フッ素カーボン粒子とを含む触媒層を有する、電極。
  11.  イオン交換基を有する含フッ素ポリマーと、請求項7に記載の電極触媒とを含む触媒層を有する、電極。
  12.  前記電極触媒が、白金または白金合金を含み、前記触媒層における白金または白金合金の含有量が、0.01~0.50mg/cmである、請求項10または11に記載の電極。
  13.  触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された固体高分子電解質膜と、を備えた固体高分子形燃料電池用膜電極接合体であって、
     前記アノードおよび前記カソードのいずれか一方または両方が、請求項10~12のいずれか一項に記載の電極である、膜電極接合体。
PCT/JP2016/065041 2015-05-25 2016-05-20 含フッ素カーボン粒子、その製造方法、およびその使用 WO2016190248A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105600 2015-05-25
JP2015-105600 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016190248A1 true WO2016190248A1 (ja) 2016-12-01

Family

ID=57392789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065041 WO2016190248A1 (ja) 2015-05-25 2016-05-20 含フッ素カーボン粒子、その製造方法、およびその使用

Country Status (1)

Country Link
WO (1) WO2016190248A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208310A1 (ja) 2018-04-25 2019-10-31 ステラケミファ株式会社 燃料電池用触媒、燃料電池用膜電極接合体及びそれを備えた燃料電池
CN115023833A (zh) * 2020-01-30 2022-09-06 松下知识产权经营株式会社 水系二次电池用负极活性物质、水系二次电池用负极及水系二次电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431567A (en) * 1980-10-31 1984-02-14 Diamond Shamrock Corporation Process for preparing electrodes using precious metal-catalyst containing partially fluorinated active carbon
JPS63210009A (ja) * 1987-02-27 1988-08-31 Central Glass Co Ltd 撥水・撥油性のすぐれた超微粒子フツ化黒鉛
JPH0368664A (ja) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp 表面を改質した炭素系黒色粉末及びその製造方法
JPH06256008A (ja) * 1992-11-06 1994-09-13 Daikin Ind Ltd フッ化カーボン粒子およびその製法ならびに用途
JPH09169917A (ja) * 1995-12-18 1997-06-30 Ricoh Co Ltd 帯電防止性樹脂組成物
WO2001017900A1 (fr) * 1999-09-09 2001-03-15 Sony Corporation Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible
JP2009193860A (ja) * 2008-02-15 2009-08-27 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP2011084444A (ja) * 2009-10-17 2011-04-28 Univ Of Fukui フッ素化炭素微粒子分散液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431567A (en) * 1980-10-31 1984-02-14 Diamond Shamrock Corporation Process for preparing electrodes using precious metal-catalyst containing partially fluorinated active carbon
JPS63210009A (ja) * 1987-02-27 1988-08-31 Central Glass Co Ltd 撥水・撥油性のすぐれた超微粒子フツ化黒鉛
JPH0368664A (ja) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp 表面を改質した炭素系黒色粉末及びその製造方法
JPH06256008A (ja) * 1992-11-06 1994-09-13 Daikin Ind Ltd フッ化カーボン粒子およびその製法ならびに用途
JPH09169917A (ja) * 1995-12-18 1997-06-30 Ricoh Co Ltd 帯電防止性樹脂組成物
WO2001017900A1 (fr) * 1999-09-09 2001-03-15 Sony Corporation Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible
JP2009193860A (ja) * 2008-02-15 2009-08-27 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP2011084444A (ja) * 2009-10-17 2011-04-28 Univ Of Fukui フッ素化炭素微粒子分散液

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208310A1 (ja) 2018-04-25 2019-10-31 ステラケミファ株式会社 燃料電池用触媒、燃料電池用膜電極接合体及びそれを備えた燃料電池
JP2019194977A (ja) * 2018-04-25 2019-11-07 ステラケミファ株式会社 燃料電池用触媒、その製造方法、燃料電池用膜電極接合体及びそれを備えた燃料電池
CN111837272A (zh) * 2018-04-25 2020-10-27 斯泰拉化工公司 燃料电池用催化剂、燃料电池用膜电极接合体及具备该燃料电池用膜电极接合体的燃料电池
KR20210002480A (ko) 2018-04-25 2021-01-08 스텔라 케미파 코포레이션 연료 전지용 촉매, 연료 전지용 막전극 접합체 및 그것을 구비한 연료 전지
US11469424B2 (en) 2018-04-25 2022-10-11 Stella Chemifa Corporation Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell including the same
JP7190171B2 (ja) 2018-04-25 2022-12-15 ステラケミファ株式会社 燃料電池用触媒、その製造方法、燃料電池用膜電極接合体及びそれを備えた燃料電池
CN115023833A (zh) * 2020-01-30 2022-09-06 松下知识产权经营株式会社 水系二次电池用负极活性物质、水系二次电池用负极及水系二次电池
CN115023833B (zh) * 2020-01-30 2024-02-20 松下知识产权经营株式会社 水系二次电池用负极活性物质、水系二次电池用负极及水系二次电池

Similar Documents

Publication Publication Date Title
JP6566331B2 (ja) 電気化学デバイスの電極触媒層、電気化学デバイスの膜/電極接合体、電気化学デバイス、および電気化学デバイスの電極触媒層の製造方法
JP5535339B2 (ja) 燃料電池、再生型燃料電池及び膜電極アセンブリ(mea)
CA2925618C (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
EP2991142B1 (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
Park et al. Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC)
CA2656661A1 (en) Electrochemical catalysts
TW200301582A (en) Gas diffusion backing for fuel cells
CN108232215B (zh) 燃料电池的电极催化剂
Wang et al. Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for formic acid oxidation
CA2910375A1 (en) Catalyst and electrode catalyst layer for fuel cell having the catalyst
EP2631975A1 (en) Electrocatalyst for solid polymer fuel cell
CN111063896A (zh) 电化学器件的电极催化剂、膜电极接合体、它们的制造方法和电化学器件的电极催化剂层
JP6295993B2 (ja) 燃料電池用電極の製造方法
JP5297786B2 (ja) 固体高分子型燃料電池のアノード触媒層
JP2022513631A (ja) 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池
Beydaghi et al. Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent
Kim et al. Preparation and characterization of carbon-related materials supports for catalysts of direct methanol fuel cells
WO2016190248A1 (ja) 含フッ素カーボン粒子、その製造方法、およびその使用
Koponen et al. Characterization of Pt-based catalyst materials by voltammetric techniques
Zou et al. Tuning the wettability of advanced mesoporous FeNC catalysts for optimizing the construction of the gas/liquid/solid three-phase interface in air-cathodes
JP2002015745A (ja) 固体高分子型燃料電池
Sepp et al. Enhanced stability of symmetrical polymer electrolyte membrane fuel cell single cells based on novel hierarchical microporous-mesoporous carbon supports
Shao et al. Influence of anode diffusion layer on the performance of a liquid feed direct methanol fuel cell by AC impedance spectroscopy
JP5396730B2 (ja) 膜電極接合体
JP2017188335A (ja) 膜電極接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP