WO2016190050A1 - 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法 - Google Patents

熱可塑性フッ素樹脂組成物、及び架橋体の製造方法 Download PDF

Info

Publication number
WO2016190050A1
WO2016190050A1 PCT/JP2016/063380 JP2016063380W WO2016190050A1 WO 2016190050 A1 WO2016190050 A1 WO 2016190050A1 JP 2016063380 W JP2016063380 W JP 2016063380W WO 2016190050 A1 WO2016190050 A1 WO 2016190050A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic fluororesin
thermoplastic
compound
fluororesin composition
crosslinking
Prior art date
Application number
PCT/JP2016/063380
Other languages
English (en)
French (fr)
Inventor
直樹 大住
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to KR1020177036247A priority Critical patent/KR102414274B1/ko
Priority to EP16799758.4A priority patent/EP3305845B1/en
Priority to US15/572,228 priority patent/US20180112045A1/en
Priority to CN201680029801.8A priority patent/CN107614601A/zh
Publication of WO2016190050A1 publication Critical patent/WO2016190050A1/ja
Priority to US16/662,541 priority patent/US20200055999A1/en
Priority to US17/731,438 priority patent/US20220251310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0892Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0872Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks

Definitions

  • the present invention relates to a thermoplastic fluororesin composition. Moreover, this invention relates to the manufacturing method of the crosslinked body using the said thermoplastic fluororesin composition.
  • the cross-linked rubber is an elastomer having a cross-linked structure by causing a cross-linking reaction between molecular chains of the cross-linkable rubber component (elastomer forming component) using a reagent called a cross-linking agent.
  • Cross-linked rubbers are often used for sealing materials such as gaskets and packings, hoses, tubes, and the like, taking advantage of their excellent heat resistance and chemical resistance.
  • fluoro-based cross-linked rubber hereinafter referred to as fluoro rubber
  • fluoro rubber is excellent in compression set characteristics showing strain due to thermal deterioration, and is suitable for use in a high temperature environment [for example, Japanese Patent Application Laid-Open No. 2005-2005]. No. 113035 (Patent Document 1)].
  • JP 2005-113035 A International Publication No. 2006/057331 JP 2009-138158 A JP 2002-167454 A JP 2002-173543 A
  • a cross-linking reaction is essential for molding into a predetermined shape, it is not suitable for extrusion molding or injection molding, and it is difficult to continuously produce molded bodies by continuously molding.
  • the cross-linking reaction is irreversible, and even when heated, the shape is irreversible, so even if there is any defect in the shape after molding, The molding process cannot be performed again by reusing the molded material. It has been recognized that it is difficult to improve production efficiency.
  • thermoplastic elastomers include 1) a composition obtained by blending a thermoplastic resin component and a rubber component, 2) a composition obtained by dynamically crosslinking a composition containing a thermoplastic resin component and a rubber component, and 3) heat. Examples thereof include a block copolymer of a plastic resin component and a rubber component.
  • Dynamic crosslinking refers to a method of crosslinking a crosslinkable rubber component while melt-kneading a thermoplastic resin component and an uncrosslinked crosslinkable rubber component together with a crosslinking agent.
  • Patent Document 2 International Publication No. 2006/057331
  • Patent Document 3 describes a thermoplastic elastomer composition obtained by dynamically crosslinking a composition containing a fluororesin, a crosslinkable fluororubber component, and a crosslinking agent.
  • JP-A-2009-138158 Patent Document 3
  • Patent Document 3 prepares a thermoplastic elastomer composition obtained by dynamically crosslinking a composition containing a fluororesin, uncrosslinked fluororubber particles, and a crosslinking agent, and molding the composition. After that, it is described that a molded article is obtained by irradiation with gamma rays.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-167454 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2002-173543 (Patent Document 5) describe a fluorine-based thermoplastic elastomer containing an elastomeric polymer chain segment and a non-elastomeric polymer chain segment. It is described that a molded product is obtained by irradiating gamma rays after molding.
  • Fluorine-based thermoplastic elastomers are suitable for extrusion molding and injection molding because the components melt above the melting point of the thermoplastic resin component constituting the fluoroelastomer, and the shape is fixed below the melting point. Since the shape can be changed, the material after molding can be reused and reshaped.
  • a fluorinated thermoplastic elastomer containing a thermoplastic resin component that is hot-melted is inferior in heat resistance compared to fluororubber, and in particular, in compression set characteristics that show strain due to thermal degradation.
  • thermoplastic fluororesin composition having a Shore D hardness of 50 or less at 23 ° C. measured in accordance with ASTM D2240, Selected from the group consisting of a polyfunctional unsaturated compound (b-1), a polyamine compound (b-2) and a polyhydroxy compound (b-3), and has a crosslinked structure by reaction with the thermoplastic fluororesin (A).
  • a thermoplastic fluororesin composition substantially free of at least one of an acid acceptor and an onium compound when the hydroxy compound (b-3) is contained.
  • thermoplastic fluororesin composition according to [1] further including a crosslinkable rubber component (C).
  • thermoplastic fluororesin composition according to [2], wherein the crosslinkable rubber component (C) is fluororubber.
  • thermoplastic fluororesin composition according to [2] or [3], wherein the content of the crosslinkable rubber component (C) is 100 parts by weight or less per 100 parts by weight of the thermoplastic fluororesin (A). object.
  • thermoplastic fluororesin composition A step of preparing the thermoplastic fluororesin composition according to any one of [1] to [4]; Cross-linking the thermoplastic fluororesin composition with ionizing radiation; The manufacturing method of a crosslinked body containing this.
  • thermoplastic fluororesin composition between the step of preparing the thermoplastic fluororesin composition and the step of crosslinking.
  • the material after molding can be reused, and a crosslinked body exhibiting excellent compression set characteristics even in a high temperature environment.
  • a production method and a thermoplastic fluororesin composition used in the production method can be provided.
  • the resulting cross-linked product should be suitably used as a sealing material such as a packing or gasket, particularly a sealing material that is required to have heat resistance deterioration under a high temperature environment (for example, 130 to 230 ° C., particularly 150 to 200 ° C.). Can do.
  • thermoplastic fluororesin composition includes a thermoplastic fluororesin (A) and a crosslinked structure forming agent (B).
  • the thermoplastic fluororesin refers to a thermoplastic resin containing a fluorine atom.
  • thermoplastic fluororesin (A) contained in the thermoplastic fluororesin composition according to the present invention is a heat having a Shore D hardness of 50 or less at 23 ° C. measured in accordance with ASTM D2240. It is a plastic fluororesin. This is based on the new knowledge acquired by the present inventor, and by using a thermoplastic fluororesin (A) having a Shore D hardness of 50 or less, a crosslinked body excellent in compression set characteristics in a high temperature environment can be obtained. Obtainable.
  • the Shore D hardness is preferably 45 or less.
  • the thermoplastic fluororesin composition may contain one or more thermoplastic fluororesins (A). When two or more thermoplastic fluororesins (A) are contained, the Shore D hardness of all the thermoplastic fluororesins (A) is 50. The following is preferable.
  • thermoplastic fluororesin (A) examples include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer ( ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene copolymer (VDF-HFP copolymer), vinylidene fluoride-hexafluoro Including propylene-tetrafluoroethylene copolymer (VDF-HFP-TFE copolymer). Of these, VDF-HFP copolymer, VDF-HFP-TFE copolymer and the like are preferably used.
  • thermoplastic fluororesin includes a fluoroplastic elastomer.
  • the fluorine-based thermoplastic elastomer refers to a thermoplastic elastomer containing a fluorine atom.
  • the thermoplastic elastomer includes 1) a composition obtained by blending a thermoplastic resin component and a rubber component, and 2) a composition obtained by dynamically crosslinking a composition containing a thermoplastic resin component and a rubber component, 3) There is a block copolymer of a thermoplastic resin component and a rubber component.
  • thermoplastic elastomer that can be used in the present invention is a block copolymer of a thermoplastic resin component (thermoplastic polymer chain segment) and a rubber component (elastomeric polymer chain segment) belonging to 3) above. It is a coalescence.
  • thermoplastic fluororesin (A) A commercially available product may be used as the thermoplastic fluororesin (A).
  • Specific examples of the thermoplastic fluororesin (A) having a Shore D hardness of 50 or less are trade names, “Kynar UltraFlex B”, “Kynar UltraFlex C” (both manufactured by Arkema, VDF-HFP copolymer) Thermoplastic resin consisting of VDF-HFP-TFE copolymer), “Dai-L Thermoplastic” (manufactured by Daikin Industries, Ltd., ETFE copolymer) and “THV 220G” (manufactured by 3M) Thermoplastic elastomer composed of a block copolymer of a VDF copolymer).
  • the thermoplastic fluororesin (A) is a thermoplastic resin that can be crosslinked by irradiation with ionizing radiation in the presence of a crosslinking structure-forming agent (B) described later.
  • the thermoplastic fluororesin (A) may or may not have a crosslinkable site such as an unsaturated group, hydroxyl group, amino group, carbonyl group, or halogen group. In the crosslinking by irradiation with ionizing radiation, the thermoplastic fluororesin (A) can be crosslinked even if it does not have a crosslinking site.
  • thermoplastic fluororesin composition contains a crosslinked structure forming agent (B) as an essential component.
  • the “crosslinked structure forming agent” is an agent that can form a crosslinked structure together with the thermoplastic fluororesin (A) by reaction with the thermoplastic fluororesin (A) by irradiation with ionizing radiation.
  • the crosslinked structure forming agent (B) is a reagent selected from the group consisting of, for example, a polyfunctional unsaturated compound (b-1), a polyamine compound (b-2) and a polyhydroxy compound (b-3).
  • the crosslinked structure forming agent (B) may contain two or more kinds of crosslinked structure forming agents selected from (b-1), (b-2) and (b-3). Includes only one selected.
  • the crosslinked structure forming agent (B) can be selected according to the crosslinking system of the thermoplastic fluororesin (A).
  • the thermoplastic fluororesin composition preferably contains a polyfunctional unsaturated compound (b-1).
  • the polyfunctional unsaturated compound (b-1) is a polyfunctional compound generally used as a “co-crosslinking agent” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a peroxide crosslinking system. It can be an unsaturated compound.
  • the crosslinked structure forming agent (B) can contain one or more polyfunctional unsaturated compounds (b-1).
  • polyfunctional unsaturated compound (b-1) examples include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, Dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate ⁇ (1,3,3-trifluoro-2-propenyl ) -1,3,5- ⁇ riadine-2,4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane Hexaallylphosphoramide, N, N, N ′, N′-tetraallylphthal Amides, N, N, N ′, N′-tetraallylphthal Am
  • the polyfunctional unsaturated compound (b-1) is triallyl isocyanurate (TAIC) is preferred.
  • the content of the polyfunctional unsaturated compound (b-1) in the thermoplastic fluororesin composition is the thermoplastic fluorine
  • the thermoplastic fluorine For example, 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, and more preferably 1 to 8 parts by weight per 100 parts by weight of the resin (A).
  • the content of the polyfunctional unsaturated compound (b-1) is excessively small, crosslinking of the thermoplastic fluororesin (A) by irradiation with ionizing radiation does not proceed sufficiently, and the compression set of the resulting crosslinked product Properties can be degraded. If the content of the polyfunctional unsaturated compound (b-1) is excessively large, the moldability of the thermoplastic fluororesin composition may be lowered.
  • thermoplastic fluororesin composition contains a polyfunctional unsaturated compound (b-1), it is important that the thermoplastic fluororesin composition does not substantially contain a peroxide compound (organic peroxide).
  • a peroxide compound organic peroxide
  • This peroxide compound is generally used as a “crosslinking agent” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a peroxide crosslinking system. It is a reagent necessary for initiating or initiating the crosslinking reaction, which is contained as an essential component when the rubber component is crosslinked by heat.
  • peroxide compounds include 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di- -T-butyl peroxide, t-butyltamyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t -Butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3, benzoyl peroxide, t-butylperoxybenzene, t-butylperoxymaleic acid , T-butyl peroxyisopropyl carbonate.
  • substantially free of a peroxide compound means that the content is 0.1 parts by weight or less per 100 parts by weight of the thermoplastic fluororesin (A).
  • thermoplastic fluororesin composition of the present invention substantially free of a peroxide compound, it is possible to obtain a crosslinked product exhibiting excellent compression set characteristics even in a high temperature environment by crosslinking by irradiation with ionizing radiation. it can.
  • thermoplastic fluororesin composition according to the present invention can be melted by heating, and since it does not substantially contain a peroxide compound, crosslinking does not proceed even when heated and melted during molding. Accordingly, the thermoplastic fluororesin composition according to the present invention is easy to continuously form using melt molding such as extrusion molding or injection molding.
  • the molded material can be reused by, for example, melting the molded body by heat and performing the molding process again when there is some defect in the shape after molding. Such reuse of materials is advantageous in reducing manufacturing costs.
  • thermoplastic fluororesin composition according to the present invention can be obtained even when the composition further contains a crosslinkable rubber component (C) described later such as fluororubber.
  • a composition containing a fluororesin, uncrosslinked fluororubber, and a crosslinking agent as described in Patent Documents 2 and 3 is dynamically crosslinked (the fluororesin, uncrosslinked fluororubber, and the crosslinking agent are melted).
  • a thermoplastic elastomer composition obtained by thermally cross-linking uncrosslinked fluororubber using a crosslinking agent while kneading it is possible to improve the heat melting property and moldability by increasing the content of the fluororesin.
  • thermoplastic elastomer composition Even if this thermoplastic elastomer composition is further crosslinked by heat or ionizing radiation, it is difficult to obtain excellent compression set characteristics. Even in a method of crosslinking a fluorine-based thermoplastic elastomer containing an elastomeric polymer chain segment and a non-elastomeric polymer chain segment with ionizing radiation as described in Patent Documents 4 and 5, excellent compression set characteristics are exhibited. Difficult to get.
  • the polyamine compound (b-2) can be a polyamine compound generally used as a “crosslinking agent” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a polyamine crosslinking system.
  • the crosslinking structure forming agent (B) can contain one or more polyamine compounds (b-2).
  • the polyamine compound (b-2) examples include hexamethylenediamine carbamate, N, N′-dicinnamylidene-1,6-hexamethylenediamine, and 4,4′-bis (aminocyclohexyl) methanecarbamate.
  • the polyamine compound (b-2) is N, N′-dicinenamilidene-1, It preferably contains 6-hexamethylenediamine.
  • the content of the polyamine compound (b-2) in the thermoplastic fluororesin composition (the total amount when two or more polyamine compounds (b-2) are used) per 100 parts by weight of the thermoplastic fluororesin (A) For example, 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, and more preferably 1 to 8 parts by weight. If the content of the polyamine compound (b-2) is excessively small, crosslinking of the thermoplastic fluororesin (A) by irradiation with ionizing radiation does not proceed sufficiently, and the compression set characteristics of the resulting crosslinked product deteriorate. obtain. If the content of the polyamine compound (b-2) is excessively large, the moldability of the thermoplastic fluororesin composition may be lowered.
  • thermoplastic fluororesin composition contains a polyamine compound (b-2), it is important that the thermoplastic fluororesin composition does not substantially contain an acid acceptor.
  • This acid acceptor is the same as that generally used as an “acid acceptor” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a polyamine crosslinking system. It is a reagent necessary for initiating or initiating a crosslinking reaction, which is contained as an essential component when the heat-resistant rubber component is crosslinked by heat.
  • the acid acceptor include a divalent metal oxide, a divalent metal hydroxide, a mixture of a divalent metal oxide and a weak acid metal salt, a divalent metal hydroxide and a weak acid metal salt, A mixture of Examples of the divalent metal include magnesium, calcium, zinc, lead and the like.
  • Examples of weak acid metal salts include metal salts of weak acids such as stearic acid, benzoic acid, carbonic acid, oxalic acid, phosphorous acid, and the like.
  • substantially free of an acid acceptor means that the content is 0.1 parts by weight or less per 100 parts by weight of the thermoplastic fluororesin (A).
  • thermoplastic fluororesin composition according to the present invention substantially free of an acid acceptor can also exhibit the same effects as the thermoplastic fluororesin composition substantially free of the above-described peroxide compound. This effect can also be achieved when the composition further contains a crosslinkable rubber component (C) described later.
  • the polyhydroxy compound (b-3) can be a polyhydroxy compound generally used as a “crosslinking agent” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a polyol crosslinking system.
  • the crosslinking structure forming agent (B) can contain one or more polyhydroxy compounds (b-3). From the viewpoint of compression set characteristics of the obtained crosslinked product, the polyhydroxy compound (b-3) preferably contains a polyhydroxy aromatic compound.
  • polyhydroxy aromatic compound examples include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxyphenyl) perfluoropropane (bisphenol AF), resorcin, 1, 3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone Catechol, 2,2-bis (4-hydroxyphenyl) butane (bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, 2,2-bis (4-hydroxyphenyl) tetrafluorodichloropropane, 4,4-dihydroxydipheny Sulfone, 4,4′-dihydroxydiphenyl ketone, tri (4-hydroxyphenyl) methane, 3,3 ′, 5,5′-tetrachlor
  • the content of the polyhydroxy compound (b-3) in the thermoplastic fluororesin composition (the total amount when two or more polyhydroxy compounds (b-3) are used) is 100 wt% of the thermoplastic fluororesin (A).
  • the amount is 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, and more preferably 1 to 8 parts by weight.
  • the content of the polyhydroxy compound (b-3) is excessively small, the crosslinking of the thermoplastic fluororesin (A) by irradiation with ionizing radiation does not proceed sufficiently, and the compression set characteristic of the resulting crosslinked product is lowered. Can do. If the content of the polyhydroxy compound (b-3) is excessively large, the moldability of the thermoplastic fluororesin composition may be lowered.
  • thermoplastic fluororesin composition contains a polyhydroxy compound (b-3), it is important that the thermoplastic fluororesin composition does not substantially contain at least one of an acid acceptor and an onium compound.
  • the acid acceptor and the onium compound are generally used as “acid acceptor” and “onium compound” in the case of producing a fluororubber by crosslinking a crosslinkable rubber component with a polyol crosslinking system, respectively. It is the same and is an agent necessary for initiating or initiating the crosslinking reaction, which is contained as an essential component when the crosslinkable rubber component is crosslinked by heat in a polyol crosslinking system.
  • Specific examples of the acid acceptor are the same as those described above.
  • Specific examples of the onium compound include quaternary ammonium salts, quaternary phosphonium salts, oxonium compounds, and sulfonium compounds.
  • substantially free of at least one of an acid acceptor and an onium compound means that the content of at least one of them is 0.1 parts by weight or less per 100 parts by weight of the thermoplastic fluororesin (A). Say something.
  • thermoplastic fluororesin composition according to the present invention substantially free of an acid acceptor and an onium compound can also exhibit the same effects as the thermoplastic fluororesin composition substantially free of the above-described peroxide compound. it can. This effect can also be achieved when the composition further contains a crosslinkable rubber component (C) described later.
  • thermoplastic fluororesin composition according to the present invention may further contain a crosslinkable rubber component (C). Even in the thermoplastic fluororesin composition further containing the crosslinkable rubber component (C), it is possible to obtain a crosslinked product exhibiting excellent compression set characteristics even in a high temperature environment. Continuous molding using such melt molding, and the material after molding can be reused. Further inclusion of the crosslinkable rubber component (C) is advantageous in applications that require flexibility, for example.
  • the crosslinkable rubber component (C) can form an elastomer having the above-mentioned crosslinked structure (crosslinked rubber) by a crosslinking reaction.
  • Specific examples thereof include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), nitrile rubber (NBR; acrylonitrile butadiene rubber), hydrogenated nitrile rubber (HNBR; hydrogenated acrylonitrile butadiene rubber), butyl rubber (IIR), fluoro rubber (FKM), perfluoroelastomer (FFKM), acrylic rubber, silicone rubber including.
  • fluororubber (FKM) and perfluoroelastomer (FFKM) are preferably used.
  • the crosslinkable rubber component (C) only one type may be used, or two or more types may be used in combination.
  • fluororubber examples include vinylidene fluoride (VDF) -hexafluoropropylene (HFP) polymer; vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer Tetrafluoroethylene (TFE) -propylene (Pr) polymer; vinylidene fluoride (VDF) -propylene (Pr) -tetrafluoroethylene (TFE) polymer; ethylene (E) -tetrafluoroethylene (TFE)- Perfluoromethyl vinyl ether (PMVE) polymer; vinylidene fluoride (VDF) -tetrafluoroethylene (TFE) -perfluoromethyl vinyl ether (PMVE) polymer, vinylidene fluoride (VDF) -perfluoromethyl vinyl Containing ether (PMVE) polymer.
  • VDF vinylidene fluoride
  • FFKM perfluoroelastomer
  • TFE tetrafluoroethylene
  • PMVE perfluoromethyl vinyl ether
  • the crosslinkable rubber component (C) may or may not have a crosslinkable site such as a carbon-carbon unsaturated group, nitrile group, hydroxyl group, amino group, carbonyl group, or halogen group. Good. In crosslinking by irradiation with ionizing radiation, the crosslinkable rubber component (C) can be crosslinked even if it does not have a crosslinkable site.
  • the content of the crosslinkable rubber component (C) in the thermoplastic fluororesin composition (the total amount when two or more crosslinkable rubber components (C) are used) is per 100 parts by weight of the thermoplastic fluororesin (A).
  • the amount is preferably 100 parts by weight or less, more preferably 80 parts by weight or less (for example, 70 parts by weight or less).
  • content of a crosslinkable rubber component (C) is too large, the moldability of a thermoplastic fluororesin composition may fall.
  • the thermoplastic fluororesin composition contains the crosslinkable rubber component (C)
  • the content thereof is, for example, 5 parts by weight or more, 10 parts by weight or more, or 20 parts by weight per 100 parts by weight of the thermoplastic fluororesin (A). More than a part.
  • thermoplastic fluororesin composition comprises a filler (reinforcing agent), a processing aid, an antioxidant, an antioxidant, a vulcanization accelerator, a stabilizer, if necessary.
  • Additives such as silane coupling agents, flame retardants, mold release agents, waxes and lubricants can be included.
  • Specific examples of fillers include carbon black, silica, alumina, zinc oxide, titanium dioxide, clay, talc, diatomaceous earth, barium sulfate, silicate compounds (silicates, etc.), calcium carbonate, magnesium carbonate, calcium oxide, mica, Includes graphite, aluminum hydroxide, and resin fine particles.
  • thermoplastic resins other than the thermoplastic fluororesin (A) include thermoplastic resins other than the thermoplastic fluororesin (A), liquid rubber, oil (such as paraffinic oil), plasticizers, softeners, and tackifiers. Only 1 type may be used for an additive and it may use 2 or more types together.
  • thermoplastic fluororesin composition according to the present invention comprises a thermoplastic fluororesin (A), a crosslinked structure-forming agent (B), and optionally a crosslinkable rubber component ( C) and can be prepared by kneading other additives uniformly.
  • a kneading machine for example, a mixing roll such as an open roll; a mixer such as a kneader or a Banbury mixer; an extruder such as a twin-screw extruder can be used.
  • These compounding agents may be mixed and kneaded at one time, or after kneading a part of the compounding agents, kneading all the compounding agents in multiple stages such as kneading the remaining compounding agents. You may do it.
  • the temperature at the time of kneading may be room temperature or under heating, but from the viewpoint of uniformity of kneading, the melting temperature of the thermoplastic fluororesin (A) or its vicinity, or below the melting temperature It is preferable to knead at a temperature.
  • the crosslinked product using the thermoplastic fluororesin composition described above as a raw material has the following steps: (1) Step of preparing the above-mentioned thermoplastic fluororesin composition according to the present invention [hereinafter referred to as step (1). And (2) a step of crosslinking the thermoplastic fluororesin composition with ionizing radiation [hereinafter referred to as step (2). ] It can manufacture suitably by the method containing these. Preferably, between step (1) and step (2), (3) A step of molding the thermoplastic fluororesin composition into a desired shape [hereinafter referred to as step (3). ] Further included.
  • Step (1) may be a step of obtaining the thermoplastic fluororesin composition according to the present invention in some form or a step of preparing the composition.
  • the preparation method is as described above.
  • the step (3) of molding the thermoplastic fluororesin composition can be performed by a usual method.
  • the thermoplastic fluororesin composition according to the present invention can be melted by heating and does not substantially contain a reagent that initiates or initiates a crosslinking reaction by heat. Does not progress. Therefore, according to the thermoplastic fluororesin composition of the present invention, continuous molding using melt molding such as extrusion molding or injection molding is possible. As a result, continuous production of the cross-linked molded product, and hence reduction in manufacturing cost, can be achieved.
  • the thermoplastic fluororesin composition may be molded by other molding methods such as press molding.
  • the molding temperature of the thermoplastic fluororesin composition is, for example, 150 to 320 ° C.
  • thermoplastic fluororesin composition according to the present invention which can be melted by heating and does not proceed with crosslinking even when heated and melted at the time of molding, when the molded product has some trouble, the molded product
  • the material after molding can be reused, for example, by thermally melting and performing the molding process again.
  • step (2) the thermoplastic fluororesin composition or the molded product thereof is crosslinked with ionizing radiation to obtain a crosslinked product (or a crosslinked molded product).
  • ionizing radiation is not particularly limited, electron beams and ⁇ rays can be preferably used.
  • the dose of ionizing radiation is preferably 10 to 500 kGy, more preferably 30 to 200 kGy.
  • the irradiation amount is less than 10 kGy, a sufficient degree of crosslinking cannot be obtained, and desired compression set characteristics, and in some cases, further mechanical strength tends to be not obtained.
  • setting the irradiation dose to 500 kGy or less is advantageous in order not to impair flexibility.
  • the irradiation amount exceeds 500 kGy there is a possibility that the crosslinked body may be deteriorated by ionizing radiation.
  • the method for producing a crosslinked product according to the present invention does not substantially include a step of crosslinking a thermoplastic fluororesin composition or a molded product thereof with heat. This is because the thermoplastic fluororesin composition does not substantially contain an agent for initiating or initiating a crosslinking reaction by heat. If the reagent is included, if the thermoplastic fluororesin composition further contains a crosslinkable rubber component (C), the thermoplastic fluororesin composition is dynamically cross-linked during heating and melting at the time of molding. As a result, the compression set characteristic of the resulting crosslinked product is degraded.
  • a crosslinkable rubber component C
  • the crosslinked body may be subjected to heat treatment using an oven (electric furnace, vacuum electric furnace) or the like, if necessary.
  • the crosslinked body is, for example, a sealing material for vacuum sealing
  • the released gas component can be reduced by heat treatment, so that the sealing performance may be improved.
  • the temperature of the heat treatment is usually 100 to 320 ° C. (for example, about 170 to 230 ° C. or about 170 to 200 ° C.).
  • thermoplastic fluororesin composition does not contain a crosslinkable rubber component (C)
  • the crosslinked product and the crosslinked molded product obtained by the present invention are crosslinked thermoplastic fluororesin (A) (and optionally added).
  • Agent Moreover, the crosslinked body obtained by this invention, when the thermoplastic fluororesin composition further contains a crosslinkable rubber component (C), the crosslinked thermoplastic fluororesin (A) and the crosslinkable rubber component (C) crosslinked. It can take a sea-island structure with (that is, crosslinked rubber). Which of the cross-linked thermoplastic fluororesin (A) and cross-linked rubber is a matrix depends on the blending ratio of the thermoplastic fluororesin (A) and cross-linkable rubber component (C).
  • the crosslinked body and crosslinked molded body obtained by the present invention may have a structural form such as a co-continuous structure, a cylinder structure, and a lamellar structure in addition to the sea-island structure.
  • the cross-linked body and cross-linked molded body obtained by the present invention can be applied to various members that are required to have heat resistance, and in particular, under a high temperature environment of 200 ° C. or higher, such as a sealing material such as a packing or a gasket. It can be suitably used as a sealing material or the like that is required to have heat resistance degradation.
  • the shape of the sealing material is appropriately selected according to the application, and a typical example is an O-ring having a cross-sectional shape of O-type.
  • Example 1 According to the blending composition shown in Table 1 (the unit of blending amount in Table 1 is parts by weight), a predetermined amount of each blending component was kneaded with an open roll. The kneading temperature was 140 ° C. Next, the obtained thermoplastic fluororesin composition was extruded at 230 ° C. to obtain a molded body having a sealing material (O-ring) shape. Extrusion molding (melt molding) into a sealing material shape was easy. Thereafter, radiation ( ⁇ rays) was irradiated at an irradiation amount of 80 kGy to obtain a sealing material (O-ring) as a crosslinked molded body. The molded body before irradiation showed heat melting property, and it was easy to melt the molded body and melt it again.
  • Examples 2 to 5 and Comparative Examples 1 to 3 A sealing material, which is a crosslinked molded body, was prepared in the same manner as in Example 1 except that the blending components and the blending amount of the thermoplastic fluororesin composition were as shown in Table 1. In any of Examples 2 to 5 and Comparative Examples 1 to 3, extrusion molding (melt molding) into a sealing material shape was easy. Moreover, the molded body before radiation irradiation showed heat melting property, and it was easy to heat-melt the molded body and perform molding again.
  • thermoplastic fluororesin composition was extruded at 230 ° C. to obtain a molded body having a sealing material (O-ring) shape.
  • Extrusion molding (melt molding) into a sealing material shape was easy. Thereafter, radiation ( ⁇ rays) was irradiated at an irradiation amount of 80 kGy to obtain a sealing material (O-ring) as a crosslinked molded body.
  • Thermoplastic fluororesin a-1 A thermoplastic resin comprising a VDF-HFP copolymer (“Kynar UltraFlex B” manufactured by Arkema, Shore D hardness at 23 ° C. measured in accordance with ASTM D2240: 40 ),
  • Thermoplastic fluororesin a-2 Fluorine thermoplastic elastomer which is a block polymer of vinylidene fluoride (VDF) polymer and tetrafluoroethylene-ethylene polymer (ETFE) [Daikin Industries, Ltd. “DAIEL THERMO PLASTIC T-530”, Shore D hardness at 23 ° C.
  • thermoplastic fluororesin a-3 A thermoplastic resin comprising a VDF-HFP copolymer (“Kynar 2850-00” manufactured by Arkema, Shore D hardness at 23 ° C.
  • Crosslinking structure forming agent b-1 triallyl isocyanurate (“TAIC” manufactured by Nippon Kasei Co., Ltd.)
  • Crosslinkable rubber component c-1 vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer [“Daiel G902” manufactured by Daikin Industries, Ltd.]
  • Crosslinkable rubber component c-2 vinylidene fluoride (VDF) -hexafluoropropylene (HFP) polymer
  • Peroxide d-1 5-dimethyl-2,5-di (tert-butylperoxy) hexane [“Perhexa 25B” manufactured by NOF Corporation].

Abstract

ASTM D2240に準拠する23℃でのショアD硬度が50以下である熱可塑性フッ素樹脂(A)と、多官能性不飽和化合物(b-1)、ポリアミン化合物(b-2)及びポリヒドロキシ化合物(b-3)からなる群から選択され、熱可塑性フッ素樹脂(A)との反応によって架橋構造を形成し得る架橋構造形成剤(B)とを含み、(b-1)を含む場合にはパーオキサイド化合物を実質的に含まず、(b-2)を含む場合には受酸剤を実質的に含まず、(b-3)を含む場合には受酸剤及びオニウム化合物の少なくとも一方を実質的に含まない熱可塑性フッ素樹脂組成物、並びにこれを電離性放射線により架橋させる工程を含む架橋体の製造方法が提供される。

Description

熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
 本発明は、熱可塑性フッ素樹脂組成物に関する。また本発明は、当該熱可塑性フッ素樹脂組成物を用いた架橋体の製造方法に関する。
 架橋ゴムは、架橋剤などと呼ばれている試剤を用いて架橋性ゴム成分(エラストマー形成成分)の分子鎖間に架橋反応を起こさせることによって架橋構造を持たせたエラストマーである。架橋ゴムは、耐熱性や耐薬品性に優れるという特徴を生かして、ガスケット、パッキン等のシール材、ホース、チューブなどによく用いられている。架橋ゴムの中でもフッ素系の架橋ゴム(以下、フッ素ゴムという。)は、熱劣化による歪を示す圧縮永久歪特性に優れており、高温環境での使用に適している〔例えば、特開2005-113035号公報(特許文献1)〕。
特開2005-113035号公報 国際公開第2006/057331号 特開2009-138158号公報 特開2002-167454号公報 特開2002-173543号公報
 架橋ゴムからなる成形体の製造には、
 a)所定の形状に成形するためには架橋反応が必須であるため、押出成形や射出成形に適しておらず、連続的に成形を行って成形体を連続生産することが困難である、
 b)一度架橋構造を形成して形状を固定すると、架橋反応は不可逆的であり、加熱しても溶融せず形状も不可逆的であるため、成形後の形状に何らかの不具合があった場合でも、成形後の材料を再利用して再度成形工程を実施することができない、
といった課題があり、生産効率の向上は困難であると認識されてきた。
 一方、エラストマーには、架橋ゴムのほかに「熱可塑性エラストマー」と呼ばれるものがある。一般に熱可塑性エラストマーには、1)熱可塑性樹脂成分とゴム成分とをブレンドした組成物、2)熱可塑性樹脂成分とゴム成分とを含む組成物を動的架橋してなる組成物、3)熱可塑性樹脂成分とゴム成分とのブロック共重合体等がある。熱可塑性エラストマーは、その熱可塑性樹脂成分の融点未満ではこれが疑似架橋部位的に働いて、形状が固定されるとともにゴム弾性を発現する一方、熱可塑性樹脂成分の融点以上ではこれが溶融するので形状変化が可能となる。動的架橋とは、熱可塑性樹脂成分と未架橋の架橋性ゴム成分とを架橋剤とともに溶融混練させながら架橋性ゴム成分の架橋を行う方法をいう。
 例えば、国際公開第2006/057331号(特許文献2)には、フッ素樹脂と架橋性のフッ素ゴム成分と架橋剤とを含む組成物を動的架橋してなる熱可塑性エラストマー組成物が記載されている。特開2009-138158号公報(特許文献3)には、フッ素樹脂と未架橋フッ素ゴム粒子と架橋剤とを含む組成物を動的架橋してなる熱可塑性エラストマー組成物を調製し、これを成形した後にガンマ線を照射して成形品を得ることが記載されている。
 また特開2002-167454号公報(特許文献4)及び特開2002-173543号公報(特許文献5)には、エラストマー性ポリマー鎖セグメントと非エラストマー性ポリマー鎖セグメントとを含むフッ素系熱可塑性エラストマーを成形した後、ガンマ線を照射して成形品を得ることが記載されている。
 フッ素系熱可塑性エラストマーは、これを構成する熱可塑性樹脂成分の融点以上では当該成分が溶融し、融点未満では形状が固定されるため、押出成形や射出成形に適しており、また、可逆的に形状を変えることができるので、成形後の材料を再利用して再成形することもできる。しかし、熱溶融する熱可塑性樹脂成分を含むフッ素系熱可塑性エラストマーは、フッ素ゴムに比べて耐熱性に劣り、とりわけ熱劣化による歪を示す圧縮永久歪特性に劣る。
 本発明の目的は、溶融成形による連続成形、及び成形工程を実施する場合には成形後の材料の再利用が可能であって、高温環境下においても優れた圧縮永久歪特性を示す架橋体を製造することができる方法、並びに当該製造方法に用いられる熱可塑性フッ素樹脂組成物を提供することにある。
 本発明は、以下に示す熱可塑性フッ素樹脂組成物、及び架橋体の製造方法を提供する。
 [1] ASTM D2240に準拠して測定される23℃におけるショアD硬度が50以下である熱可塑性フッ素樹脂(A)と、
 多官能性不飽和化合物(b-1)、ポリアミン化合物(b-2)及びポリヒドロキシ化合物(b-3)からなる群から選択され、前記熱可塑性フッ素樹脂(A)との反応によって架橋構造を形成し得る架橋構造形成剤(B)と、
を含み、
 前記多官能性不飽和化合物(b-1)を含む場合にはパーオキサイド化合物を実質的に含まず、ポリアミン化合物(b-2)を含む場合には受酸剤を実質的に含まず、ポリヒドロキシ化合物(b-3)を含む場合には受酸剤及びオニウム化合物の少なくとも一方を実質的に含まない、熱可塑性フッ素樹脂組成物。
 [2] 架橋性ゴム成分(C)をさらに含む、[1]に記載の熱可塑性フッ素樹脂組成物。
 [3] 前記架橋性ゴム成分(C)がフッ素ゴムである、[2]に記載の熱可塑性フッ素樹脂組成物。
 [4] 前記架橋性ゴム成分(C)の含有量が、前記熱可塑性フッ素樹脂(A)100重量部あたり100重量部以下である、[2]又は[3]に記載の熱可塑性フッ素樹脂組成物。
 [5] [1]~[4]のいずれかに記載の熱可塑性フッ素樹脂組成物を用意する工程と、
 前記熱可塑性フッ素樹脂組成物を電離性放射線により架橋させる工程と、
を含む、架橋体の製造方法。
 [6] 前記熱可塑性フッ素樹脂組成物を用意する工程と前記架橋させる工程との間に、前記熱可塑性フッ素樹脂組成物を成形する工程をさらに含む、[5]に記載の製造方法。
 本発明によれば、溶融成形による連続成形、及び成形工程を実施する場合には成形後の材料の再利用が可能であって、高温環境下においても優れた圧縮永久歪特性を示す架橋体の製造方法、並びに当該製造方法に用いられる熱可塑性フッ素樹脂組成物を提供することができる。得られる架橋体は、パッキンやガスケットのようなシール材など、とりわけ高温環境下(例えば130~230℃、特には150~200℃)での耐熱劣化性が求められるシール材などとして好適に用いることができる。
 <熱可塑性フッ素樹脂組成物>
 本発明に係る熱可塑性フッ素樹脂組成物は、熱可塑性フッ素樹脂(A)と架橋構造形成剤(B)とを含む。熱可塑性フッ素樹脂とは、フッ素原子を含有する熱可塑性樹脂をいう。
 (A)熱可塑性フッ素樹脂
 本発明に係る熱可塑性フッ素樹脂組成物に含有される熱可塑性フッ素樹脂(A)は、ASTM D2240に準拠して測定される23℃におけるショアD硬度が50以下の熱可塑性フッ素樹脂である。これは、本発明者が取得した新たな知見に基づいており、ショアD硬度が50以下の熱可塑性フッ素樹脂(A)を用いることにより、高温環境下における圧縮永久歪特性に優れた架橋体を得ることができる。ショアD硬度は、好ましくは45以下である。熱可塑性フッ素樹脂組成物は、熱可塑性フッ素樹脂(A)を1種又は2種以上含んでいてもよいが、2種以上含む場合、すべての熱可塑性フッ素樹脂(A)についてショアD硬度が50以下であることが好ましい。
 熱可塑性フッ素樹脂(A)の具体例は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体(VDF-HFP共重合体)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(VDF-HFP-TFE共重合体)を含む。中でも、VDF-HFP共重合体、VDF-HFP-TFE共重合体等が好ましく用いられる。
 本明細書において用語「熱可塑性フッ素樹脂」は、フッ素系熱可塑性エラストマーを含む。フッ素系熱可塑性エラストマーとは、フッ素原子を含有する熱可塑性エラストマーをいう。上述のように熱可塑性エラストマーには、1)熱可塑性樹脂成分とゴム成分とをブレンドした組成物、2)熱可塑性樹脂成分とゴム成分とを含む組成物を動的架橋してなる組成物、3)熱可塑性樹脂成分とゴム成分とのブロック共重合体等がある。本発明に用いることができる好適なフッ素系熱可塑性エラストマーは、上記3)に属する、熱可塑性樹脂成分(熱可塑性のポリマー鎖セグメント)とゴム成分(エラストマー性のポリマー鎖セグメント)とのブロック共重合体である。
 熱可塑性フッ素樹脂(A)として市販品を用いてもよい。ショアD硬度が50以下である熱可塑性フッ素樹脂(A)の具体例は、いずれも商品名で、「Kynar UltraFlex B」、「Kynar UltraFlex C」(いずれもアルケマ社製、VDF-HFP共重合体からなる熱可塑性樹脂)、「THV 220G」(スリーエム社製、VDF-HFP-TFE共重合体からなる熱可塑性樹脂)、「ダイエルサーモプラスチック」(ダイキン工業(株)製、ETFE共重合体とVDF系共重合体のブロック共重合体からなる熱可塑性エラストマー)を含む。
 熱可塑性フッ素樹脂(A)は、後述する架橋構造形成剤(B)の存在下、電離性放射線の照射により架橋し得る熱可塑性樹脂である。熱可塑性フッ素樹脂(A)は、不飽和基、ヒドロキシル基、アミノ基、カルボニル基、ハロゲン基等の架橋性部位を有していてもよいし、有していなくてもよい。電離性放射線の照射による架橋においては、架橋性部位を有していなくても熱可塑性フッ素樹脂(A)は架橋し得る。
 (B)架橋構造形成剤
 本発明に係る熱可塑性フッ素樹脂組成物は、架橋構造形成剤(B)を必須成分として含有する。本明細書において「架橋構造形成剤」とは、電離性放射線の照射による熱可塑性フッ素樹脂(A)との反応によって、熱可塑性フッ素樹脂(A)と一緒になって架橋構造を形成し得る試剤をいう。
 架橋構造形成剤(B)は、例えば多官能性不飽和化合物(b-1)、ポリアミン化合物(b-2)及びポリヒドロキシ化合物(b-3)からなる群から選択される試剤である。架橋構造形成剤(B)は、(b-1)、(b-2)及び(b-3)から選択される2種以上の架橋構造形成剤を含んでいてもよいが、通常はこれらから選択される1種のみを含む。架橋構造形成剤(B)は、熱可塑性フッ素樹脂(A)の架橋系に応じて選択することができる。熱可塑性フッ素樹脂組成物は、好ましくは多官能性不飽和化合物(b-1)を含む。
 多官能性不飽和化合物(b-1)は、架橋性ゴム成分をパーオキサイド架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「共架橋剤」として一般的に用いられている多官能性不飽和化合物であることができる。架橋構造形成剤(B)は、多官能性不飽和化合物(b-1)を1種又は2種以上含むことができる。
 多官能性不飽和化合物(b-1)の具体例は、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレー卜(1,3,5-卜リス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-卜リアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロへキサン、へキサアリルホスホルアミド、N,N,N’,N’-テトラアリルフタルアミド、N,N,N’,N’-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトを含む。これらの中でも、熱可塑性フッ素樹脂(A)の架橋性、及び得られる架橋体の物性、とりわけ圧縮永久歪特性の点から、多官能性不飽和化合物(b-1)は、トリアリルイソシアヌレート(TAIC)を含むことが好ましい。
 熱可塑性フッ素樹脂組成物における多官能性不飽和化合物(b-1)の含有量(2種以上の多官能性不飽和化合物(b-1)を用いる場合はその合計量)は、熱可塑性フッ素樹脂(A)100重量部あたり、例えば0.1~20重量部であり、好ましくは0.2~10重量部であり、より好ましくは1~8重量部である。多官能性不飽和化合物(b-1)の含有量が過度に小さいと、電離性放射線の照射による熱可塑性フッ素樹脂(A)の架橋が十分に進行せず、得られる架橋体の圧縮永久歪特性が低下し得る。多官能性不飽和化合物(b-1)の含有量が過度に大きいと、熱可塑性フッ素樹脂組成物の成形性が低下し得る。
 熱可塑性フッ素樹脂組成物が多官能性不飽和化合物(b-1)を含む場合、熱可塑性フッ素樹脂組成物は、パーオキサイド化合物(有機過酸化物)を実質的に含まないことが肝要である。このパーオキサイド化合物は、架橋性ゴム成分をパーオキサイド架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「架橋剤」として一般的に用いられているものであり、パーオキサイド架橋系で架橋性ゴム成分を熱により架橋させる場合に必須成分として含有される、架橋反応を開始させる又は開始に必要な試剤である。かかるパーオキサイド化合物の具体例は、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルタミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネートを含む。
 本明細書において「パーオキサイド化合物を実質的に含まない」とは、その含有量が熱可塑性フッ素樹脂(A)100重量部あたり0.1重量部以下であることをいう。
 パーオキサイド化合物を実質的に含まない本発明に係る熱可塑性フッ素樹脂組成物によれば、電離性放射線の照射による架橋によって高温環境下においても優れた圧縮永久歪特性を示す架橋体を得ることができる。また、本発明に係る熱可塑性フッ素樹脂組成物は、加熱溶融が可能であり、かつパーオキサイド化合物を実質的に含まないことにより成形時に加熱溶融しても架橋が進行しない。従って、本発明に係る熱可塑性フッ素樹脂組成物は、例えば押出成形や射出成形のような溶融成形を用いた連続成形が容易である。また、成形後の形状に何らかの不具合があったときに当該成形体を熱溶融し、再度成形工程を実施するなど、成形後の材料を再利用することもできる。このような材料の再利用は製造コストの削減に有利である。
 以上のような本発明に係る熱可塑性フッ素樹脂組成物の利点は、該組成物がフッ素ゴム等の後述する架橋性ゴム成分(C)をさらに含む場合においても得られる。これに対して、特許文献2及び3に記載されるような、フッ素樹脂と未架橋フッ素ゴムと架橋剤とを含む組成物を動的架橋(フッ素樹脂と未架橋フッ素ゴムと架橋剤とを溶融混練させながら架橋剤を利用して未架橋フッ素ゴムを熱架橋)してなる熱可塑性エラストマー組成物の場合、フッ素樹脂の含有率を高めることによって熱溶融性や成形性を向上させることはできるが、この熱可塑性エラストマー組成物を熱により、又は電離性放射線によりさらに架橋させても、優れた圧縮永久歪特性を得ることは難しい。特許文献4及び5に記載されるような、エラストマー性ポリマー鎖セグメントと非エラストマー性ポリマー鎖セグメントとを含むフッ素系熱可塑性エラストマーを電離性放射線により架橋させる方法においても、優れた圧縮永久歪特性を得ることは難しい。
 ポリアミン化合物(b-2)は、架橋性ゴム成分をポリアミン架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「架橋剤」として一般的に用いられているポリアミン化合物であることができる。架橋構造形成剤(B)は、ポリアミン化合物(b-2)を1種又は2種以上含むことができる。
 ポリアミン化合物(b-2)の具体例は、ヘキサメチレンジアミンカーバメート、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン、4,4’-ビス(アミノシクロヘキシル)メタンカルバメートを含む。これらの中でも、熱可塑性フッ素樹脂(A)の架橋性、及び得られる架橋体の物性、とりわけ圧縮永久歪特性の点から、ポリアミン化合物(b-2)は、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミンを含むことが好ましい。
 熱可塑性フッ素樹脂組成物におけるポリアミン化合物(b-2)の含有量(2種以上のポリアミン化合物(b-2)を用いる場合はその合計量)は、熱可塑性フッ素樹脂(A)100重量部あたり、例えば0.1~20重量部であり、好ましくは0.2~10重量部であり、より好ましくは1~8重量部である。ポリアミン化合物(b-2)の含有量が過度に小さいと、電離性放射線の照射による熱可塑性フッ素樹脂(A)の架橋が十分に進行せず、得られる架橋体の圧縮永久歪特性が低下し得る。ポリアミン化合物(b-2)の含有量が過度に大きいと、熱可塑性フッ素樹脂組成物の成形性が低下し得る。
 熱可塑性フッ素樹脂組成物がポリアミン化合物(b-2)を含む場合、熱可塑性フッ素樹脂組成物は、受酸剤を実質的に含まないことが肝要である。この受酸剤は、架橋性ゴム成分をポリアミン架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「受酸剤」として一般的に用いられているものと同じであり、ポリアミン架橋系で架橋性ゴム成分を熱により架橋させる場合に必須成分として含有される、架橋反応を開始させる又は開始に必要な試剤である。かかる受酸剤の具体例は、2価金属の酸化物、2価金属の水酸化物、2価金属の酸化物と弱酸金属塩との混合物、2価金属の水酸化物と弱酸金属塩との混合物を含む。2価金属としては、マグネシウム、カルシウム、亜鉛、鉛等が挙げられる。弱酸金属塩としては、ステアリン酸、安息香酸、炭酸、シュウ酸、亜リン酸等のような弱酸の金属塩が挙げられる。
 本明細書において「受酸剤を実質的に含まない」とは、その含有量が熱可塑性フッ素樹脂(A)100重量部あたり0.1重量部以下であることをいう。
 受酸剤を実質的に含まない本発明に係る熱可塑性フッ素樹脂組成物もまた、上述のパーオキサイド化合物を実質的に含まない熱可塑性フッ素樹脂組成物と同様の効果を奏することができる。この効果は、該組成物が後述する架橋性ゴム成分(C)をさらに含む場合においても奏され得る。
 ポリヒドロキシ化合物(b-3)は、架橋性ゴム成分をポリオール架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「架橋剤」として一般的に用いられているポリヒドロキシ化合物であることができる。架橋構造形成剤(B)は、ポリヒドロキシ化合物(b-3)を1種又は2種以上含むことができる。得られる架橋体の圧縮永久歪特性の観点から、ポリヒドロキシ化合物(b-3)は、好ましくはポリヒドロキシ芳香族化合物を含む。
 ポリヒドロキシ芳香族化合物の具体例は、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン(ビスフェノールAF)、レゾルシン、1,3-ジヒドロキシベンゼン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシスチルベン、2,6-ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2-ビス(4-ヒドロキシフェニル)ブタン(ビスフェノールB)、4,4-ビス(4-ヒドロキシフェニル)吉草酸、2,2-ビス(4-ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルケトン、トリ(4-ヒドロキシフェニル)メタン、3,3’,5,5’-テトラクロロビスフェノールA、3,3’,5,5’-テトラブロモビスフェノールAを含む。これらのポリヒドロキシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよい。
 熱可塑性フッ素樹脂組成物におけるポリヒドロキシ化合物(b-3)の含有量(2種以上のポリヒドロキシ化合物(b-3)を用いる場合はその合計量)は、熱可塑性フッ素樹脂(A)100重量部あたり、例えば0.1~20重量部であり、好ましくは0.2~10重量部であり、より好ましくは1~8重量部である。ポリヒドロキシ化合物(b-3)の含有量が過度に小さいと、電離性放射線の照射による熱可塑性フッ素樹脂(A)の架橋が十分に進行せず、得られる架橋体の圧縮永久歪特性が低下し得る。ポリヒドロキシ化合物(b-3)の含有量が過度に大きいと、熱可塑性フッ素樹脂組成物の成形性が低下し得る。
 熱可塑性フッ素樹脂組成物がポリヒドロキシ化合物(b-3)を含む場合、熱可塑性フッ素樹脂組成物は、受酸剤及びオニウム化合物の少なくとも一方を実質的に含まないことが肝要である。この受酸剤及びオニウム化合物はそれぞれ、架橋性ゴム成分をポリオール架橋系で架橋させてフッ素ゴムを製造する場合などにおいて「受酸剤」、「オニウム化合物」として一般的に用いられているものと同じであり、ポリオール架橋系で架橋性ゴム成分を熱により架橋させる場合に必須成分として含有される、架橋反応を開始させる又は開始に必要な試剤である。受酸剤の具体例は上述のものと同様である。オニウム化合物の具体例は、第4級アンモニウム塩、第4級ホスホニウム塩、オキソニウム化合物、スルホニウム化合物を含む。
 本明細書において「受酸剤及びオニウム化合物の少なくとも一方を実質的に含まない」とは、それらの少なくとも一方の含有量が熱可塑性フッ素樹脂(A)100重量部あたり0.1重量部以下であることをいう。
 受酸剤及びオニウム化合物を実質的に含まない本発明に係る熱可塑性フッ素樹脂組成物もまた、上述のパーオキサイド化合物を実質的に含まない熱可塑性フッ素樹脂組成物と同様の効果を奏することができる。この効果は、該組成物が後述する架橋性ゴム成分(C)をさらに含む場合においても奏され得る。
 (C)架橋性ゴム成分
 本発明に係る熱可塑性フッ素樹脂組成物は、架橋性ゴム成分(C)をさらに含有することができる。架橋性ゴム成分(C)をさらに含有する熱可塑性フッ素樹脂組成物においても、高温環境下においても優れた圧縮永久歪特性を示す架橋体を得ることができ、また、例えば押出成形や射出成形のような溶融成形を用いた連続成形や、成形後の材料を再利用が可能である。架橋性ゴム成分(C)をさらに含有させることは、例えば柔軟性を要求される用途において有利である。
 架橋性ゴム成分(C)は、架橋反応によって上述の架橋構造を有するエラストマー(架橋ゴム)を形成可能なものであり、その具体例は、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、ニトリルゴム(NBR;アクリロニトリルブタジエンゴム)、水素添加ニトリルゴム(HNBR;水素添加アクリロニトリルブタジエンゴム)、ブチルゴム(IIR)、フッ素ゴム(FKM)、パーフルオロエラストマー(FFKM)、アクリルゴム、シリコーンゴムを含む。中でも、フッ素ゴム(FKM)、パーフルオロエラストマー(FFKM)が好適に用いられる。架橋性ゴム成分(C)は1種のみを用いてもよいし、2種以上を併用してもよい。
 フッ素ゴム(FKM)の具体例は、ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)系重合体;ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体;テトラフルオロエチレン(TFE)-プロピレン(Pr)系重合体;ビニリデンフルオライド(VDF)-プロピレン(Pr)-テトラフルオロエチレン(TFE)系重合体;エチレン(E)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体;ビニリデンフルオライド(VDF)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体、ビニリデンフルオライド(VDF)-パーフルオロメチルビニルエーテル(PMVE)系重合体を含む。
 パーフルオロエラストマー(FFKM)の具体例は、テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体を含む。
 架橋性ゴム成分(C)は、炭素-炭素不飽和基、ニトリル基、ヒドロキシル基、アミノ基、カルボニル基、ハロゲン基等の架橋性部位を有していてもよいし、有していなくてもよい。電離性放射線の照射による架橋においては、架橋性部位を有していなくても架橋性ゴム成分(C)は架橋し得る。
 熱可塑性フッ素樹脂組成物における架橋性ゴム成分(C)の含有量(2種以上の架橋性ゴム成分(C)を用いる場合はその合計量)は、熱可塑性フッ素樹脂(A)100重量部あたり、好ましくは100重量部以下であり、より好ましくは80重量部以下(例えば70重量部以下)である。架橋性ゴム成分(C)の含有量が過度に大きいと、熱可塑性フッ素樹脂組成物の成形性が低下し得る。熱可塑性フッ素樹脂組成物が架橋性ゴム成分(C)を含有する場合においてその含有量は、熱可塑性フッ素樹脂(A)100重量部あたり、例えば5重量部以上、10重量部以上、又は20重量部以上である。
 (D)その他の成分
 本発明に係る熱可塑性フッ素樹脂組成物は、必要に応じて、充填剤(補強剤)、加工助剤、老化防止剤、酸化防止剤、加硫促進剤、安定剤、シランカップリング剤、難燃剤、離型剤、ワックス類、滑剤等の添加剤を含むことができる。充填剤の具体例は、カーボンブラック、シリカ、アルミナ、酸化亜鉛、二酸化チタン、クレー、タルク、珪藻土、硫酸バリウム、ケイ酸化合物(ケイ酸塩等)、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、マイカ、グラファイト、水酸化アルミニウム、樹脂微粒子を含む。加工助剤の具体例は、熱可塑性フッ素樹脂(A)以外の熱可塑性樹脂、液状ゴム、オイル(パラフィン系オイル等)、可塑剤、軟化剤、粘着付与剤を含む。添加剤は、1種のみを用いてもよいし、2種以上を併用してもよい。
 (E)熱可塑性フッ素樹脂組成物の調製
 本発明に係る熱可塑性フッ素樹脂組成物は、熱可塑性フッ素樹脂(A)、架橋構造形成剤(B)、及び任意で添加される架橋性ゴム成分(C)、その他の添加剤を均一に混練することにより調製できる。混練機としては、例えば、オープンロールのようなミキシングロール;ニーダー、バンバリーミキサーのようなミキサー;二軸押出機のような押出機等を用いることができる。これらの配合剤は、一度に混合して混練されてもよいし、一部の配合剤を混練した後、残りの配合剤を混練するといったように複数段に分けてすべての配合剤を混練するようにしてもよい。混練時の温度は、常温であってもよいし、加熱下であってもよいが、混練の均一性の観点から、熱可塑性フッ素樹脂(A)の溶融温度若しくはその近傍、又は溶融温度以下の温度で混練することが好ましい。
 <架橋体の製造方法>
 上述の熱可塑性フッ素樹脂組成物を原料とする架橋体は、次の工程:
 (1)上述の本発明に係る熱可塑性フッ素樹脂組成物を用意する工程〔以下、工程(1)という。〕、及び
 (2)熱可塑性フッ素樹脂組成物を電離性放射線により架橋させる工程〔以下、工程(2)という。〕
を含む方法によって好適に製造することができる。好ましくは、工程(1)と工程(2)との間に、
 (3)熱可塑性フッ素樹脂組成物を所望の形状に成形する工程〔以下、工程(3)という。〕
 をさらに含む。
 工程(1)は、本発明に係る熱可塑性フッ素樹脂組成物を何らかの形で入手する工程であってもよいし、該組成物を調製する工程であってもよい。調製方法は上述のとおりである。
 熱可塑性フッ素樹脂組成物の成形を行う工程(3)は、通常の方法で行うことができる。本発明に係る熱可塑性フッ素樹脂組成物は、加熱溶融が可能であり、かつ熱による架橋反応を開始させる又は開始に必要な試剤を実質的に含まないため、成形時に加熱溶融しても架橋が進行しない。従って、本発明に係る熱可塑性フッ素樹脂組成物によれば、例えば押出成形や射出成形のような溶融成形を用いた連続成形が可能である。これにより、架橋成形体の連続生産、ひいては製造コストの削減が可能となる。プレス成形などの他の成形法によって熱可塑性フッ素樹脂組成物の成形を行ってもよい。熱可塑性フッ素樹脂組成物の成形温度は、例えば150~320℃である。
 また、加熱溶融が可能であり、かつ成形時に加熱溶融しても架橋が進行しない本発明に係る熱可塑性フッ素樹脂組成物によれば、成形後の形状に何らかの不具合があったときに当該成形体を熱溶融し、再度成形工程を実施するなど、成形後の材料を再利用することもできる。
 工程(2)において熱可塑性フッ素樹脂組成物又はその成形体は、電離性放射線により架橋されて、架橋体(又は架橋成形体)が得られる。電離性放射線は特に制限されないが、電子線やγ線を好ましく用いることができる。電離性放射線の照射量は、好ましくは10~500kGyであり、より好ましくは30~200kGyである。照射量が10kGy未満であると、十分な架橋度が得られず、所望する圧縮永久歪特性、場合によってはさらに機械的強度が得られない傾向にある。一方、照射量を500kGy以下とすることは、柔軟性を損なわないようにするうえで有利である。また、照射量が500kGyを超えると、架橋体に電離性放射線による劣化が生じるおそれがある。
 本発明に係る架橋体の製造方法は、熱可塑性フッ素樹脂組成物又はその成形体を熱により架橋する工程を実質的に含まない。これは、熱可塑性フッ素樹脂組成物が熱による架橋反応を開始させる又は開始に必要な試剤を実質的に含まないことによる。仮に当該試剤を含有させると、熱可塑性フッ素樹脂組成物が架橋性ゴム成分(C)をさらに含有する場合、成形時の加熱溶融時などに熱可塑性フッ素樹脂組成物が動的架橋処理されることとなり、その結果、得られる架橋体の圧縮永久歪特性が低下してしまう。
 電離性放射線による架橋処理の後、必要に応じて、オーブン(電気炉、真空電気炉)等を用いて架橋体に対して熱処理を加えてもよい。架橋体が例えば真空シール用途のシール材である場合、熱処理により放出ガス成分を低減できるのでシール性を向上できることがある。熱処理の温度は、通常100~320℃(例えば170~230℃程度、又は170~200℃程度)である。
 本発明により得られる架橋体及び架橋成形体は、熱可塑性フッ素樹脂組成物が架橋性ゴム成分(C)を含まない場合、架橋された熱可塑性フッ素樹脂(A)(及び任意で含有される添加剤)で構成されたものである。また本発明により得られる架橋体は、熱可塑性フッ素樹脂組成物が架橋性ゴム成分(C)をさらに含む場合、架橋された熱可塑性フッ素樹脂(A)と架橋された架橋性ゴム成分(C)(すなわち架橋ゴム)との海島構造を採り得る。架橋された熱可塑性フッ素樹脂(A)及び架橋ゴムのうちのいずれがマトリクスとなるかは、熱可塑性フッ素樹脂(A)及び架橋性ゴム成分(C)の配合比率等に依存する。配合比率のより高い成分がマトリクスになる傾向がある。本発明により得られる架橋体及び架橋成形体は、海島構造のほか、共連続構造、シリンダー構造、ラメラ構造などの構造形態を有していてもよい。
 本発明により得られる架橋体及び架橋成形体は、耐熱性の求められる各種部材に適用することができ、中でも、パッキンやガスケットのようなシール材など、とりわけ200℃又はそれ以上の高温環境下での耐熱劣化性が求められるシール材などとして好適に用いることができる。シール材の形状はその用途に応じて適宜選択され、その代表例は、断面形状がO型であるOリングである。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例及び比較例において、圧縮永久歪は次の方法に従って測定した。
 (圧縮永久歪の測定)
 JIS K 6262に準拠して、試料(A568-214 Oリング)を圧縮率25%で鉄板に挟み込み、200℃×72時間の条件で電気炉で加温後、圧縮解放し、30分間放冷後の試料の圧縮永久歪を下記式:
 圧縮永久歪(%)={(T0-T1)/(T0-T2)}×100%
に基づいて算出した。T0は試験前の試料の高さ、T1は30分間放冷後の試料の高さ、T2はスペーサ-の厚み(高さ)である。結果を表1に示す。
 <実施例1>
 表1に示される配合組成に従って(表1における配合量の単位は重量部である。)、各配合成分の所定量をオープンロールにより混練した。混練温度は140℃とした。次に、得られた熱可塑性フッ素樹脂組成物を230℃で押出成形して、シール材(Oリング)形状の成形体を得た。シール材形状への押出成形(溶融成形)は容易であった。その後、80kGyの照射量で放射線(γ線)を照射して、架橋成形体であるシール材(Oリング)を得た。放射線照射前の成形体は熱溶融性を示し、その成形体を熱溶融させ再度成形を行うことも容易であった。
 <実施例2~5、比較例1~3>
 熱可塑性フッ素樹脂組成物の配合成分及びその配合量を表1に示されるとおりとしたこと以外は実施例1と同様にして架橋成形体であるシール材を作製した。実施例2~5、比較例1~3のいずれにおいても、シール材形状への押出成形(溶融成形)は容易であった。また、放射線照射前の成形体は熱溶融性を示し、その成形体を熱溶融させ再度成形を行うことも容易であった。
 <比較例4>
 表1に示される配合組成に従って架橋構造形成剤(B)と架橋性ゴム成分(C)をオープンロールにて混練して混練物を得た。この混練物と熱可塑性フッ素樹脂(A)とパーオキサイドとをラボプラストミル〔(株)東洋精機製作所製〕にて表1に示される配合組成に従って混練した。このときの混練温度は200℃とし、回転数は50rpmとした。次に、得られた熱可塑性フッ素樹脂組成物を230℃で押出成形して、シール材(Oリング)形状の成形体を得た。シール材形状への押出成形(溶融成形)は容易であった。その後、80kGyの照射量で放射線(γ線)を照射して、架橋成形体であるシール材(Oリング)を得た。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例で用いた各配合成分の詳細は次のとおりである。
 〔1〕熱可塑性フッ素樹脂a-1:VDF-HFP共重合体からなる熱可塑性樹脂(アルケマ社製の「Kynar UltraFlex B」、ASTM D2240に準拠して測定される23℃におけるショアD硬度:40)、
 〔2〕熱可塑性フッ素樹脂a-2:ビニリデンフルオライド(VDF)系重合体とテトラフルオロエチレン-エチレン系重合体(ETFE)とのブロック重合体であるフッ素系熱可塑性エラストマー〔ダイキン工業(株)製「ダイエルサーモプラスチックT-530」、ASTM D2240に準拠して測定される23℃におけるショアD硬度:18〕、
 〔3〕熱可塑性フッ素樹脂a-3:VDF-HFP共重合体からなる熱可塑性樹脂(アルケマ社製の「Kynar 2850-00」、ASTM D2240に準拠して測定される23℃におけるショアD硬度:73)、
 〔4〕架橋構造形成剤b-1:トリアリルイソシアヌレート〔日本化成社製「TAIC」〕、
 〔5〕架橋性ゴム成分c-1:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体〔ダイキン工業(株)製「ダイエルG902」〕、
 〔6〕架橋性ゴム成分c-2:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)系重合体、
 〔7〕パーオキサイドd-1:5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン〔日油(株)製「パーヘキサ25B」〕。

Claims (6)

  1.  ASTM D2240に準拠して測定される23℃におけるショアD硬度が50以下である熱可塑性フッ素樹脂(A)と、
     多官能性不飽和化合物(b-1)、ポリアミン化合物(b-2)及びポリヒドロキシ化合物(b-3)からなる群から選択され、前記熱可塑性フッ素樹脂(A)との反応によって架橋構造を形成し得る架橋構造形成剤(B)と、
    を含み、
     前記多官能性不飽和化合物(b-1)を含む場合にはパーオキサイド化合物を実質的に含まず、ポリアミン化合物(b-2)を含む場合には受酸剤を実質的に含まず、ポリヒドロキシ化合物(b-3)を含む場合には受酸剤及びオニウム化合物の少なくとも一方を実質的に含まない、熱可塑性フッ素樹脂組成物。
  2.  架橋性ゴム成分(C)をさらに含む、請求項1に記載の熱可塑性フッ素樹脂組成物。
  3.  前記架橋性ゴム成分(C)がフッ素ゴムである、請求項2に記載の熱可塑性フッ素樹脂組成物。
  4.  前記架橋性ゴム成分(C)の含有量が、前記熱可塑性フッ素樹脂(A)100重量部あたり100重量部以下である、請求項2又は3に記載の熱可塑性フッ素樹脂組成物。
  5.  請求項1~4のいずれか1項に記載の熱可塑性フッ素樹脂組成物を用意する工程と、
     前記熱可塑性フッ素樹脂組成物を電離性放射線により架橋させる工程と、
    を含む、架橋体の製造方法。
  6.  前記熱可塑性フッ素樹脂組成物を用意する工程と前記架橋させる工程との間に、前記熱可塑性フッ素樹脂組成物を成形する工程をさらに含む、請求項5に記載の製造方法。
PCT/JP2016/063380 2015-05-27 2016-04-28 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法 WO2016190050A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177036247A KR102414274B1 (ko) 2015-05-27 2016-04-28 열가소성 불소 수지 조성물, 및 가교체의 제조 방법
EP16799758.4A EP3305845B1 (en) 2015-05-27 2016-04-28 Thermoplastic fluorine resin composition and method for producing cross-linked body
US15/572,228 US20180112045A1 (en) 2015-05-27 2016-04-28 Thermoplastic fluororesin composition and method for producing cross-linked body
CN201680029801.8A CN107614601A (zh) 2015-05-27 2016-04-28 热塑性氟树脂组合物、以及交联体的制造方法
US16/662,541 US20200055999A1 (en) 2015-05-27 2019-10-24 Method for producing cross-linked body
US17/731,438 US20220251310A1 (en) 2015-05-27 2022-04-28 Sealing Member including Thermoplastic Fluororesin Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107292A JP6712445B2 (ja) 2015-05-27 2015-05-27 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
JP2015-107292 2015-05-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/572,228 A-371-Of-International US20180112045A1 (en) 2015-05-27 2016-04-28 Thermoplastic fluororesin composition and method for producing cross-linked body
US16/662,541 Division US20200055999A1 (en) 2015-05-27 2019-10-24 Method for producing cross-linked body
US17/731,438 Division US20220251310A1 (en) 2015-05-27 2022-04-28 Sealing Member including Thermoplastic Fluororesin Composition

Publications (1)

Publication Number Publication Date
WO2016190050A1 true WO2016190050A1 (ja) 2016-12-01

Family

ID=57394115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063380 WO2016190050A1 (ja) 2015-05-27 2016-04-28 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法

Country Status (7)

Country Link
US (3) US20180112045A1 (ja)
EP (1) EP3305845B1 (ja)
JP (1) JP6712445B2 (ja)
KR (1) KR102414274B1 (ja)
CN (1) CN107614601A (ja)
TW (1) TWI718147B (ja)
WO (1) WO2016190050A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067032B1 (fr) * 2017-06-06 2021-10-01 Arkema France Elastomere de fluoropolymere thermoplastique
WO2020013314A1 (ja) * 2018-07-13 2020-01-16 ダイキン工業株式会社 熱可塑性樹脂組成物およびその製造方法
CN112368330B (zh) * 2018-07-13 2023-03-21 大金工业株式会社 热塑性树脂组合物及其制造方法
CN109749315A (zh) * 2019-01-25 2019-05-14 上海杜实新材料科技有限公司 一种辐照交联氟橡胶组合物及其制备方法和应用
CN110157124A (zh) * 2019-05-10 2019-08-23 上海杜实新材料科技有限公司 一种耐硫化氢腐蚀的四丙氟橡胶组合物及其应用
CN112409731B (zh) * 2020-10-21 2023-02-24 浙江巨化技术中心有限公司 一种3d打印用含氟树脂组合物及其制备方法
WO2022210044A1 (ja) * 2021-04-02 2022-10-06 ダイキン工業株式会社 フッ素ゴム架橋用組成物および成形品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205285A (ja) * 1994-01-07 1995-08-08 Hitachi Cable Ltd 熱収縮性チューブ及びその製造方法
JPH0912818A (ja) * 1995-06-23 1997-01-14 Nissei Denki Kk 含フッ素樹脂組成物および熱収縮性チューブ
JP2004263038A (ja) * 2003-02-28 2004-09-24 Nichias Corp フッ素ゴム成形体及びその製造方法
JP2006342241A (ja) * 2005-06-08 2006-12-21 Nippon Valqua Ind Ltd フッ素ゴムシール材
JP2008505205A (ja) * 2004-06-30 2008-02-21 ダウ・コーニング・コーポレイション フッ化炭素シリコーンエラストマー含有フッ化プラスチック
JP2008231330A (ja) * 2007-03-23 2008-10-02 Japan Atomic Energy Agency 放射線架橋含フッ素共重合体
JP2013056979A (ja) * 2011-09-07 2013-03-28 Daikin Industries Ltd 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品
WO2015098338A1 (ja) * 2013-12-27 2015-07-02 日本バルカー工業株式会社 フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275887A (en) * 1986-04-22 1994-01-04 Raychem Corporation Fluoropolymer compositions
WO1995027988A2 (en) * 1994-04-07 1995-10-19 Raychem Corporation Insulated wire and cable
JP3528360B2 (ja) * 1995-01-12 2004-05-17 住友電気工業株式会社 ふっ素樹脂組成物とそれを用いた熱収縮チューブおよび絶縁電線
JPH0973237A (ja) * 1995-09-04 1997-03-18 Toray Ind Inc 中間転写体およびこれを用いた画像形成方法
US6054028A (en) * 1996-06-07 2000-04-25 Raychem Corporation Ignition cables
IT1292391B1 (it) * 1997-06-20 1999-02-08 Ausimont Spa Elastomeri termoplastici
IT1296968B1 (it) * 1997-12-15 1999-08-03 Ausimont Spa Elastomeri termoplastici fluorurati
JP2002167454A (ja) 2000-11-29 2002-06-11 Nichias Corp 耐オゾン性ふっ素系エラストマー成形体
JP2002173543A (ja) 2000-12-05 2002-06-21 Nichias Corp 耐プラズマ性ふっ素系エラストマー成形体
US7291369B2 (en) * 2001-10-03 2007-11-06 3M Innovative Properties Company Multi-layer articles including a fluoroelastomer layer and a barrier layer and method of making the same
JP4703967B2 (ja) * 2003-07-14 2011-06-15 住友電工ファインポリマー株式会社 ホットメルト接着剤、その製造方法、成形物、及び熱収縮性チューブの製造方法
JP4381087B2 (ja) 2003-10-08 2009-12-09 日本バルカー工業株式会社 フッ素ゴムシール材の製造方法
US20070249772A1 (en) * 2004-06-30 2007-10-25 Igor Chorvath Elastomer Silicone Vulcanizates
EP1816161A4 (en) * 2004-11-26 2009-05-27 Daikin Ind Ltd Thermoplastic Polyethylene Composition
WO2006057333A1 (ja) 2004-11-26 2006-06-01 Daikin Industries, Ltd. 熱可塑性重合体組成物および熱可塑性重合体組成物の製造方法
JP5298517B2 (ja) 2007-12-10 2013-09-25 ダイキン工業株式会社 含フッ素成形品およびその製造方法
JP5527204B2 (ja) * 2008-05-20 2014-06-18 旭硝子株式会社 含フッ素弾性共重合体組成物およびその架橋ゴム部材
EP2404373B1 (en) * 2009-03-03 2017-12-20 Arkema France Acrylic photovoltaic module backsheet
CN107501816A (zh) * 2012-02-24 2017-12-22 大金工业株式会社 氟橡胶组合物
WO2013125736A1 (en) * 2012-02-24 2013-08-29 Daikin Industries, Ltd. Fluororubber composition
FR3004714B1 (fr) * 2013-04-23 2015-12-18 Arkema France Film fluore
FR3010082A1 (fr) * 2013-09-02 2015-03-06 Arkema France Procede de preparation d'une composition de polymeres fluores reticules
FR3014878B1 (fr) * 2013-12-18 2015-12-18 Arkema France Film pvdf resistant a la dechirure a basse temperature et ininflammable
JP6678954B2 (ja) * 2014-03-07 2020-04-15 ダイキン工業株式会社 多官能ニトリルオキシド化合物
US10562846B2 (en) * 2015-03-10 2020-02-18 Daikin Industries, Ltd. Nitrileoxide compound
JP6755484B2 (ja) * 2015-03-10 2020-09-16 ダイキン工業株式会社 ニトリルオキシド化合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205285A (ja) * 1994-01-07 1995-08-08 Hitachi Cable Ltd 熱収縮性チューブ及びその製造方法
JPH0912818A (ja) * 1995-06-23 1997-01-14 Nissei Denki Kk 含フッ素樹脂組成物および熱収縮性チューブ
JP2004263038A (ja) * 2003-02-28 2004-09-24 Nichias Corp フッ素ゴム成形体及びその製造方法
JP2008505205A (ja) * 2004-06-30 2008-02-21 ダウ・コーニング・コーポレイション フッ化炭素シリコーンエラストマー含有フッ化プラスチック
JP2006342241A (ja) * 2005-06-08 2006-12-21 Nippon Valqua Ind Ltd フッ素ゴムシール材
JP2008231330A (ja) * 2007-03-23 2008-10-02 Japan Atomic Energy Agency 放射線架橋含フッ素共重合体
JP2013056979A (ja) * 2011-09-07 2013-03-28 Daikin Industries Ltd 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品
WO2015098338A1 (ja) * 2013-12-27 2015-07-02 日本バルカー工業株式会社 フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305845A4 *

Also Published As

Publication number Publication date
CN107614601A (zh) 2018-01-19
TW201704325A (zh) 2017-02-01
US20220251310A1 (en) 2022-08-11
EP3305845A4 (en) 2018-12-05
EP3305845A1 (en) 2018-04-11
JP2016222752A (ja) 2016-12-28
KR102414274B1 (ko) 2022-06-28
JP6712445B2 (ja) 2020-06-24
KR20180012782A (ko) 2018-02-06
TWI718147B (zh) 2021-02-11
EP3305845B1 (en) 2021-08-04
US20180112045A1 (en) 2018-04-26
US20200055999A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP6134391B2 (ja) シール材及びその製造方法
JP6712445B2 (ja) 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
JP6230415B2 (ja) パーフルオロエラストマー組成物、並びにシール材及びその製造方法
JP6403246B2 (ja) 架橋ゴム成形体の製造方法
JP6618507B2 (ja) パーフルオロエラストマー組成物及びシール材
JP6955384B2 (ja) パーフルオロエラストマー組成物及びシール材
JP2021105179A (ja) 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2009203276A (ja) フッ素ゴムパッキンの製造方法
WO2020116394A1 (ja) エラストマー組成物及びシール材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036247

Country of ref document: KR

Kind code of ref document: A