WO2016189866A1 - 金属ナノインクおよびそれを用いた金属膜の製造方法 - Google Patents

金属ナノインクおよびそれを用いた金属膜の製造方法 Download PDF

Info

Publication number
WO2016189866A1
WO2016189866A1 PCT/JP2016/002534 JP2016002534W WO2016189866A1 WO 2016189866 A1 WO2016189866 A1 WO 2016189866A1 JP 2016002534 W JP2016002534 W JP 2016002534W WO 2016189866 A1 WO2016189866 A1 WO 2016189866A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
polymerization
metal nano
reactive compound
ink according
Prior art date
Application number
PCT/JP2016/002534
Other languages
English (en)
French (fr)
Inventor
渡部 功治
弘章 尾添
豊 辻村
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to CN201680027147.7A priority Critical patent/CN107636087B/zh
Priority to KR1020177034211A priority patent/KR20180012765A/ko
Priority to US15/576,534 priority patent/US10626280B2/en
Priority to EP16799579.4A priority patent/EP3305862B1/en
Priority to JP2017520241A priority patent/JP6732199B2/ja
Publication of WO2016189866A1 publication Critical patent/WO2016189866A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a fired ink in which metal nanoparticles are dispersed in a liquid medium (that is, a fired metal nanoink) and a method for producing a metal film using the ink.
  • Patent Document 1 proposes that an electrode for a solar cell is produced by applying a composition containing metal nanoparticles, an organic polymer, and a dispersion medium on a base material and baking the composition. .
  • Patent Documents 2 and 3 propose conductive inks containing a polymer compound and metal nanoparticles.
  • volume resistivity is evaluated using a fired product of an ink coating.
  • a conductive path is formed by contact between the metal nanoparticles, so to ensure high conductivity, the metal nanoparticles are sintered together. It is important to increase physical contact.
  • an organic polymer is used to adhere a conductive paste or ink onto a substrate. However, when an organic polymer is used, it tends to agglomerate in a paste or ink, and is present between metal nanoparticles and inhibits formation of a conductive path.
  • An object of the present invention is to provide a metal nano ink that can form a metal film having high adhesion to a substrate and having a low resistance, and a method for producing a metal film using the metal nano ink.
  • One aspect of the present invention is a metal nanoparticle, A polymerization reactive compound; A polymerization initiator; A volatile liquid medium; A dispersant,
  • the polymerization reaction initiator is activated by the action of heat and / or light to advance polymerization of the polymerization reactive compound,
  • the dispersant relates to a fired-type metal nanoink containing a C 6-14 alkylamine.
  • Another aspect of the present invention is a process of forming a coating film by applying the metal nanoink to the substrate, And a method for producing a metal film by firing the coating film.
  • the metal nano ink according to an embodiment of the present invention includes metal nanoparticles, a polymerization reactive compound, a polymerization reaction initiator, and a volatile liquid medium.
  • the polymerization reaction initiator is activated by the action of heat and / or light to advance the polymerization of the polymerization reactive compound.
  • the metal nano ink according to the present embodiment is a fired metal nano ink. Firing type metal nano ink is an ink for forming a metal film by firing a coating film formed by coating on the surface of a substrate or the like.
  • a binder is included in the ink in order to attach the metal nanoparticles contained in the ink to the base material or to form a metal film with good film quality.
  • an organic polymer is used as a binder.
  • organic polymers have long molecular chains, they tend to aggregate in ink.
  • a conductive path is formed by contact between metal nanoparticles. Therefore, when organic polymer aggregates are present, formation of a conductive path is hindered, and it is difficult to reduce the resistance of the metal film.
  • a polymerizable reactive compound that can be polymerized by the action of heat and / or light is used.
  • a polymerization-reactive compound corresponds to a polymer raw material and has a shorter molecular chain than a polymer. Therefore, the polymerization reactive compound is easily dispersed in the metal nano-ink, unlike the case of the conventionally used organic polymer.
  • the polymerization reactive compound dispersed with high dispersibility is polymerized by the action of the polymerization reaction initiator after the coating film is formed, it is converted into a polymer and becomes a binder. The binding property of the binder can be ensured and the aggregation of the binder is suppressed. Therefore, the formation of the conductive path between the metal nanoparticles is not hindered, so that a low resistance metal film can be obtained.
  • Metal nanoparticles examples of the metal material forming the metal nanoparticles include simple metals and alloys.
  • Examples of the metal element contained in the simple metal or alloy include typical metal elements and transition metal elements. Examples of typical metals include Zn, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, and the like.
  • Examples of the transition metal include Ti, Zr, V, Cr, Mn, Fe, Ru, Co, Ni, Pd, Pt, Cu, Ag, and Au.
  • the alloy preferably contains two or more of these metal elements.
  • Al, Sn, Ti, Ni, Pt, Cu, Ag, Au and the like are preferable.
  • metal materials Cu simple substance, Ag simple substance, Cu alloy, Ag alloy and the like are preferable, and Ag or its alloy is particularly preferable.
  • the metal nano ink may include a plurality of types of metal nanoparticles with different materials.
  • the metal nano ink may include a combination of the first metal nanoparticles formed of Ag or an alloy thereof and the second metal nanoparticles formed of a simple substance or an alloy of a metal other than Ag among the exemplified metals. Good.
  • the ratio of the first metal nanoparticles to the whole metal nanoparticles is preferably 80% by mass or more, and may be 80 to 99% by mass or 85 to 99% by mass.
  • the average particle diameter of the metal nanoparticles can be selected from a range of 5 nm or more and less than 1000 nm.
  • the average particle size is preferably 5 to 500 nm, more preferably 5 to 200 nm or 5 to 100 nm.
  • an average particle diameter is a particle size (D50) in 50% of cumulative volume of volume particle size distribution.
  • the average particle diameter (D50) can be measured by a laser diffraction scattering method using a laser diffraction particle size distribution measuring apparatus.
  • the average particle diameter of the metal nanoparticles is a region surrounded by the outer edges of a plurality of (for example, 10) arbitrarily selected metal nanoparticles in a scanning electron microscope (SEM) photograph of the coating film of the metal nano ink. You may calculate by calculating
  • the shape of the metal nanoparticles is not particularly limited, and may be any shape such as a spherical shape, an elliptical spherical shape, a polygonal column shape, a polygonal pyramid shape, a flat shape (flaky shape, scale shape, flake shape, etc.), or a similar shape thereof. There may be. From the viewpoint of easily increasing the contact between the metal nanoparticles, a spherical shape, an elliptical spherical shape, a flat shape, or a shape similar to these is preferable.
  • metal nanoparticles commercially available ones may be used, or those formed by evaporating a metal material may be used. Moreover, you may use the metal nanoparticle produced using the chemical reaction in a liquid phase or a gaseous phase.
  • the metal nano ink may contain a dispersant. By using the dispersant, the aggregation of the metal nanoparticles in the ink is suppressed, and the metal nanoparticles can be stabilized.
  • the dispersant may be added when preparing the metal nano ink, but is preferably used in a state of being coordinated to the metal nanoparticles.
  • the dispersant may be mixed with the metal nanoparticles, and may be coordinated to the metal nanoparticles by heating if necessary, or may be coordinated to the metal nanoparticles by using a dispersant in the process of producing the metal nanoparticles. Good.
  • the dispersant for example, an organic compound having a polar functional group coordinated to the metal nanoparticles and a hydrophobic organic group is used. Since the dispersant is preferably removed at an appropriate stage in the formation process of the metal film, it is preferably a low molecular compound (for example, a compound having a molecular weight of 500 or less).
  • polar functional groups include amino groups, oxygen-containing groups such as mercapto groups, hydroxyl groups (including phenolic hydroxyl groups), carbonyl groups, ester groups, and carboxyl groups.
  • the dispersant may contain one type of polar functional group, or may contain two or more types.
  • the organic amine may be any of primary amine, secondary amine, and tertiary amine, and may be any of cyclic amine and chain amine. From the viewpoint of easy coordination to metal nanoparticles, primary amines (in particular, primary chain amines) are preferred.
  • primary amines in particular, primary chain amines
  • alkylamines such as hexylamine, octylamine, decylamine, dodecylamine, and myristylamine are preferable. From the viewpoint of high dispersion stability and easy removal during the process of producing the metal film, C 6-14 alkylamine or C 8-12 alkylamine is preferred.
  • An amine having a small number of carbon atoms (for example, a C 6-10 alkylamine) has high reactivity, and thus the storage stability of the metal nano ink may be lowered.
  • a cycloalkene oxide type alicyclic epoxy resin is used as the polymerization reactive compound, high storage stability can be ensured even when such an amine having a small number of carbon atoms is used.
  • the polymerization reaction can be carried out under mild conditions such as by low-temperature firing.
  • C 8-10 alkylamine is preferable.
  • the amount of the dispersant (preferably the dispersant coordinated to the metal nanoparticles) contained in the metal nano ink is, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the metal nanoparticles, and The amount is preferably 5 to 5 parts by mass. When the amount of the dispersant is within such a range, the metal nanoparticles are easily stabilized in the ink, and the dispersant can be easily removed.
  • Polymerization reactive compound Any polymerization-reactive compound may be used as long as it can polymerize (including crosslinking and curing) by the action of an activated polymerization reaction initiator to form a polymer.
  • the polymerization reactive compound preferably has a plurality of polymerizable groups involved in polymerization. In this respect, it is distinguished from general reactive diluents.
  • the number of polymerizable groups possessed by the polymerization reactive compound is, for example, 2 to 6, preferably 2 to 4.
  • the polymer obtained by polymerization of the polymerization reactive compound functions as a binder in the metal film. Therefore, from the viewpoint of ensuring the binding property of the polymer, the polymerization reactive compound preferably has a polar functional group.
  • such functional groups include oxy group (—O—), carbonyl group, carbonyloxy group (—C ( ⁇ O) —O—), carbonyldioxy group ( One containing an oxygen-containing group such as —O—C ( ⁇ O) —O—) or an epoxy group may be used.
  • an ether group so as not to prevent the coordination of the dispersant used for the metal dispersion stability of the nanoparticles to the metal.
  • said functional group or oxygen-containing group remains also in the polymer obtained by polymerization.
  • polymerization reactive compound examples include polymer raw materials, for example, precursors such as monomers or oligomers in which several monomers are connected.
  • a polymer raw material includes, for example, a curable resin, and more specifically, may be a raw material for radical polymerization or ionic polymerization (cationic polymerization or anionic polymerization).
  • the number of repeating monomer units in the oligomer is, for example, 2 to 10, and preferably 2 to 5, from the viewpoint that the polymerization reactive compound is easily dispersed in the ink.
  • a polymerization reactive compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the curable resin may be a photocurable resin that cures with a polymerization initiator activated by the action of light, or a thermosetting resin that cures with a polymerization initiator that is activated by the action of heat.
  • the curable resin here does not refer to a polymer compound, but refers to a raw material or raw material mixture of a polymer before it is polymerized by a polymerization reaction initiator to form a polymer. Heating the ink coating film fuses the metal nanoparticles to each other and removes the dispersant, so using a thermosetting resin is advantageous in that it can be cured when the coating film is heated. It is.
  • curable resin examples include epoxy resin, acrylic resin, phenol resin, silicon resin, vinyl ester resin, vinyl ether resin, unsaturated polyester resin, diallyl phthalate resin, and urethane resin. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • curable resins epoxy resins, vinyl ether resins, acrylic resins, vinyl ester resins and the like are preferable from the viewpoints that the stability of the metal nanoparticles is not easily impaired and that the curing is easy, and epoxy resins and vinyl ether resins are particularly preferable. .
  • an epoxy resin For example, a bisphenol type epoxy, a phenol novolak type epoxy, an alicyclic epoxy resin, the glycidyl ester type epoxy of organic carboxylic acids, etc. can be used.
  • the bisphenol type epoxy include bisphenol A type epoxy, bisphenol F type epoxy, bisphenol AD type epoxy, hydrogenated bisphenol A type epoxy, and the like.
  • the bisphenol type epoxy also includes an epoxy (ie, diglycidyl ether) of a C 2-3 alkylene oxide adduct of bisphenols such as bisphenol A, bisphenol F, and bisphenol AD.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • alicyclic epoxy resins are preferable from the viewpoint of easily reducing the resistance of the metal film.
  • the alicyclic epoxy resin include cycloalkene oxide type alicyclic epoxy resins, polyglycidyl ethers of alicyclic polyols, polyglycidyl esters of alicyclic polycarboxylic acids, and the like. Since the alicyclic epoxy resin has an alicyclic group (particularly, a cycloalkene oxide group), it is easily oriented in the coating film of the metal nano ink and hardly enters between the metal nanoparticles.
  • the cycloalkene oxide group of the cycloalkene oxide type alicyclic epoxy resin is preferably C 5-8 cycloalkene oxide such as cyclopentene oxide, cyclohexene oxide, cyclooctene oxide, and more preferably C 5-6 cycloalkene oxide.
  • Examples of alicyclic epoxy resins include epoxy cycloalkanes, compounds linked by epoxy cycloalkanes, and esters having an epoxy cycloalkane skeleton. These compounds may have a substituent.
  • modified products of these epoxy resins for example, modified lactones such as ⁇ -caprolactone are also included in the alicyclic epoxy resins.
  • examples of the epoxycycloalkane include 1,2-epoxy C 5-8 cycloalkane such as 1,2-epoxy-4-vinylcyclohexane.
  • examples of the compound to which the epoxycycloalkane is linked include a compound in which the epoxycycloalkane is linked by a direct bond, an alkylidene group or an alkylene group.
  • examples of such a compound include two epoxy C 5-8 cycloalkanes such as 1- (3 ′, 4′-epoxycyclohexyl) -3,4-epoxycyclohexane.
  • the ester having an epoxycycloalkane skeleton may have either an alcohol component or a carboxylic acid component constituting the ester having an epoxycycloalkane skeleton. May have an epoxycycloalkane skeleton.
  • Examples of the ester in which both the alcohol component and the carboxylic acid component have an epoxycycloalkane skeleton include an epoxy C 5-8 cycloalkyl group such as 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate.
  • Examples include esters of C 1-2 alkanols and epoxy C 5-8 cycloalkanecarboxylic acids.
  • ester having an epoxycycloalkane skeleton examples include aliphatic polycarboxylic acids such as tetra (3,4-epoxycyclohexylmethyl) butanetetracarboxylate and C 1-2 having an epoxy C 5-8 cycloalkyl group. Also included are esters with alkanols.
  • polyglycidyl ether of the alicyclic polyol examples include C 5-8 cycloalkanediol diglycidyl ether such as cyclohexanediol diglycidyl ether; C 5-8 cycloalkanedi C 1-2 such as cyclohexanedimethanol diglycidyl ether. Examples thereof include alkanol diglycidyl ether. Further, diglycidyl ether of hydrogenated bisphenol such as hydrogenated bisphenol A and diglycidyl ether of C 2-3 alkylene oxide adduct of hydrogenated bisphenol are also included in polyglycidyl ether of alicyclic polyol.
  • polyglycidyl ester of alicyclic polycarboxylic acid examples include diglycidyl ester of C 5-8 cyclohexane-dicarboxylic acid such as diglycidyl cyclohexane dicarboxylate.
  • Polyol poly (vinyl ether) is preferable as the vinyl ether which is a polymerization reactive compound of vinyl ether resin.
  • examples of the polyol poly (vinyl ether) include alkylene glycol divinyl ether, polyalkylene glycol divinyl ether, divinyl ether of diol having an alicyclic group, methylolpropane trivinyl ether, pentaerythritol tetravinyl ether, and the like.
  • alkylene glycol divinyl ether examples include ethylene glycol divinyl ether, propylene glycol divinyl ether, trimethylene glycol divinyl ether, and 1,4-butanediol divinyl ether.
  • the polyalkylene glycol divinyl ether, diethylene glycol divinyl ether, oxy C 2-4 poly C 2-4 alkylene glycol repeating units of alkylene units is from 2 to 4 such as triethylene glycol divinyl ether (TEGDVE) is preferred .
  • TEGDVE triethylene glycol divinyl ether
  • divinyl ethers of diols having alicyclic groups include C 5-8 cycloalkanediol divinyl ethers such as cyclohexanediol divinyl ether; C 5-8 cycloalkanedi C 1-2 alkanol divinyl ethers such as cyclohexanedimethanol divinyl ether. Etc. are preferable.
  • Examples of the (meth) acrylic acid ester that is a polymerization reactive compound of an acrylic resin include di (meth) acrylic acid esters of alkylene glycol such as di (meth) acrylic acid ester of ethylene glycol.
  • acrylic acid ester and methacrylic acid ester are generically called (meth) acrylic acid ester.
  • Examples of the carboxylic acid vinyl ester which is a polymerization reactive compound of the vinyl ester resin include divinyl esters of dicarboxylic acids such as succinic acid divinyl ester and phthalic acid divinyl ester.
  • a polymerization reactive compound having no ester bond (particularly, a chain ester bond) may be used.
  • cycloalkene oxide type alicyclic epoxy resins or epoxy compounds
  • vinyl ether compounds At least one selected is preferred.
  • These resins may be combined with other curable resins (the curable resins other than these resins among the curable resins exemplified above).
  • curable resins epoxy resins (excluding cycloalkene oxide type alicyclic epoxy resins), acrylic resins, vinyl ester resins and the like are preferable.
  • the amount (total amount) of the cycloalkene oxide type alicyclic epoxy resin and vinyl ether resin in the entire polymerization reactive compound is, for example, 70% by mass or more, and may be 80% by mass or more or 90% by mass or more. .
  • the surface free energy of the polymerization reactive compound is, for example, 42 mJ / m 2 or less, and preferably 20 to 40 mJ / m 2 .
  • the surface free energy is in such a range, the reason is not clear, but the firing of the metal nanoparticles is likely to proceed, and the conductivity of the metal film is likely to be improved.
  • the polymerization reaction initiator is activated by the action of heat and / or light to advance the polymerization of the polymerization reactive compound.
  • the polymerization reaction initiator include those that generate a base (or anion) or an acid (or cation) or generate a radical by the action of heat and / or light.
  • curing agent used with curable resins such as a thermosetting resin and a photocurable resin, can also be used.
  • the metal nano ink may contain a kind of polymerization reaction initiator, and may contain a plurality of polymerization reaction initiators as necessary.
  • the polymerization reaction initiator for example, a known radical polymerization initiator or ionic polymerization initiator is used depending on the type of the polymerization reactive compound.
  • the radical polymerization initiator include peroxides, persulfates, azobisisobutyronitrile, and the like.
  • the base generator that generates a base (or anion) include a nonionic base generator and an ionic base generator.
  • Nonionic base generators can generate primary amines, secondary amines, imidazoles and the like.
  • the ionic base generator can generate strong organic bases such as tertiary amines, amidines, and guanidines.
  • Examples of the acid generator that generates acid include sulfonium salt-based, iodonium salt-based, and nonionic acid generators. Of these, sulfonium salt-based and iodonium salt-based acid generators that generate cations (that is, cation generators) are preferable.
  • a known curing agent can be used according to the kind of the polymerization reactive compound, but in addition to the above base generator and acid generator, a latent curing agent is used. It is preferable.
  • the latent curing agent can be appropriately selected according to the kind of the polymerization reactive compound, and examples thereof include boron trifluoride-amine complex, dicyandiamide, organic acid hydrazide, and latent imidazole.
  • a polymerization reaction initiator that generates cations by the action of heat and / or light that is, A cation generator.
  • the cation generator is preferably neutral in the inactive state.
  • an inactive state is a state before heat and / or light act on a polymerization reaction initiator.
  • the polymerization reaction initiator is preferably neutral in an inert state such as in a room temperature (eg, 20 to 35 ° C.) atmosphere or before irradiation with light for activation.
  • neutrality includes what an acidic component and a basic component exist in the form of a salt.
  • the neutral cation generator for example, a mixture obtained by dissolving or dispersing the cation generator in water has a pH in the range of 5 to 9.
  • Examples of such a cation generator include a cation generator having an anion such as a tetrakis (pentafluorophenyl) borate anion or an anion containing no fluorine atom as a counter ion.
  • Examples of the cation generator include K-PURE (registered trademark) TAG series and CXC series manufactured by KING INDUSTRIES, a photoacid generator manufactured by San Apro, and a photocation polymerization initiator manufactured by ADEKA.
  • a photoacid generator WPAG series manufactured by Wako Pure Chemical Industries, Ltd. can also be used.
  • the total amount of the polymerization reaction initiator and the polymerization reactive compound is, for example, 3 to 50 parts by weight, preferably 5 to 45 parts by weight, with respect to 100 parts by weight of the metal nanoparticles. More preferably. When the total amount of the polymerization reaction initiator and the polymerization reactive compound is within such a range, it is easy to balance the conductivity in the metal film obtained and the adhesion to the substrate.
  • liquid medium examples of the liquid medium contained in the metal nano ink include alkanol, ether, ester, ketone, and hydrocarbon. You may use a liquid medium individually by 1 type or in combination of 2 or more types.
  • alkanol examples include C 1-6 alkanols such as methanol and ethanol.
  • ethers include aliphatic ethers such as diethyl ether and cyclic ethers such as tetrahydrofuran.
  • ester examples include aliphatic esters such as alkyl esters of C 1-4 carboxylic acids such as ethyl acetate, butyl acetate, and ethyl butyrate (eg, C 1-4 alkyl esters or C 1-2 alkyl esters). It is done.
  • ketone examples include aliphatic ketones such as acetone and ethyl methyl ketone (aliphatic ketones having 3 to 6 carbon atoms), alicyclic ketones such as cyclohexanone (C 5-6 cycloalkanone, etc.), and the like.
  • hydrocarbon examples include C 6-10 alkane such as hexane, C 5-8 cycloalkane such as cyclohexane, benzene, toluene and the like.
  • a free amine is easily generated. Since a free amine may react with an ester or a ketone, it is preferable to use a liquid medium other than an ester or a ketone.
  • the liquid medium needs to be volatile because it is removed in the process from the formation of the coating film to the formation of the metal film, but it is liquid at room temperature in consideration of storage of the metal nano ink. It is desirable. From such a viewpoint, the boiling point of the liquid medium is preferably 40 to 250 ° C., and more preferably 100 to 200 ° C.
  • the ratio of the liquid medium in the metal nano ink is preferably 25 to 95% by mass, and may be 25 to 90% by mass.
  • the ratio of the liquid medium is within such a range, the constituent components of the metal nano ink can be easily dispersed, good coating properties can be easily secured, and can be applied to an ink jet printing method.
  • the metal nano ink may include a polyether compound having a polyoxyalkylene unit. In this case, it becomes easier to ensure high adhesion of the metal film.
  • a polyether compound having a polyoxyalkylene unit In particular, when a cycloalkene oxide type alicyclic epoxy resin is used as the polymerization reactive compound, the metal film tends to be hard. Even when such an alicyclic epoxy resin is used, the use of a polyether compound makes it easier to ensure adhesion.
  • the polyoxyalkylene unit is preferably a poly (oxy C 2-4 alkylene) unit such as a polyoxyethylene unit, a polyoxypropylene unit, a polyoxytrimethylene unit, or a polyoxytetramethylene unit.
  • the polyether compound may include one or more of these polyoxyalkylene units.
  • the polyether compound may be a homopolymer such as polyethylene glycol (PEG), polypropylene glycol (PPG), polytrimethylene glycol, polytetramethylene glycol (PTMG). Further, the polyether compound may be a copolymer containing a polyoxyalkylene unit. As the copolymer, those containing two or more polyoxyalkylene units are preferred. Examples of such a copolymer include an ethylene glycol-propylene glycol copolymer, a tetramethylene glycol-ethylene glycol copolymer, and a tetramethylene glycol-propylene glycol copolymer.
  • a polyether compound containing at least a polyoxytetramethylene unit is preferable.
  • examples of such polyether compounds include copolymers of tetramethylene glycol and C 2-3 alkylene glycol such as tetramethylene glycol-ethylene glycol copolymer and tetramethylene glycol-propylene glycol copolymer in addition to PTMG. Is exemplified.
  • the number average molecular weight of the polyether compound can be selected, for example, from the range of 500 to 7000, preferably 1000 to 5000, and more preferably 1000 to 3000. When the number average molecular weight is in such a range, it is easy to ensure high adhesion while keeping the resistance of the metal film low.
  • the metal nano ink may contain a known additive as required.
  • the metal nano ink may include a curing accelerator, a reactive diluent, and the like depending on the type of the polymerization reactive compound.
  • the amount of the additive in the metal nano ink is preferably 10 parts by mass or less or 5 parts by mass or less with respect to 100 parts by mass of the polymerization reaction initiator and the polymerization reactive compound.
  • the viscosity of the metal nano ink at room temperature is preferably, for example, 2 to 10000 mPa ⁇ s, and preferably 4 to 100 mPs ⁇ s when applied to an ink jet system.
  • the metal nano ink can be obtained by mixing metal nanoparticles, a polymerization reaction initiator, a polymerization reactive compound, a liquid medium, and, if necessary, a dispersant.
  • a known stirrer, mixer or the like may be used.
  • the mixing order of the components is not particularly limited. For example, some components may be mixed in advance, and the remaining components may be added and further mixed. Each component may be added at once, or may be added in multiple portions. Since the metal nanoparticles are solid, it is preferable to disperse them in a liquid medium in advance.
  • a metal nano-ink can be prepared by adding a polymerization reaction initiator and a polymerization-reactive compound to a dispersion in which metal nanoparticles are previously dispersed in a liquid medium and mixing them.
  • a dispersion liquid dispersed in a liquid medium may be prepared, and a polymerization reaction initiator and a polymerization reactive compound may be added and mixed. .
  • the manufacturing method of the metal film which concerns on one Embodiment of this invention includes the process of apply
  • metal nano ink is applied to the surface of the substrate.
  • Application of the metal nano ink is not particularly limited, and can be performed by a known application method such as spin coating, spray coating, blade coating, screen printing, and ink jet.
  • the coating film is not limited to a solid film, and may be a pattern film such as wiring or hole filling.
  • the material of the substrate is not particularly limited, and examples thereof include glass, silicon, and plastic.
  • the base material having the coating film obtained in the coating film forming step may be dried as necessary prior to the firing step.
  • the drying conditions can be appropriately determined according to the constituent components of the metal nano ink.
  • the drying temperature is not particularly limited, and may be performed at a temperature at which the liquid medium can be removed.
  • the drying temperature is desirably lower than the firing temperature described later.
  • the base material having the coating film obtained in the coating film forming step is fired.
  • Calcination can be appropriately selected depending on the metal type of the metal nanoparticles, and may be performed, for example, at 50 to 250 ° C., or at 100 to 250 ° C. or 150 to 250 ° C.
  • the firing temperature is preferably 150 ° C. or lower (for example, 50 to 150 ° C.), and may be 100 to 150 ° C.
  • Calcination may be performed in the presence of a reducing agent as necessary. Firing may be performed in an inert gas atmosphere or in the air.
  • the firing time is not particularly limited, but may be, for example, 5 to 120 minutes.
  • the polymerization reaction initiator may be activated by heat applied in the drying step and / or the baking step to advance the polymerization of the polymerization reactive compound. That is, in the drying step and / or the firing step, the polymerization reactive compound is polymerized to be converted into a polymer to become a binder.
  • the coating film When a polymerization reaction initiator that is activated by the action of light is used, it is preferable to irradiate the coating film with light at an appropriate stage from the formation of the coating film to the baking step. You may perform a drying process and / or a baking process under light irradiation.
  • the wavelength of light to be irradiated and the irradiation amount can be appropriately determined according to the kind of the polymerization reaction initiator.
  • the coating film by exposing the coating film to light at an appropriate stage, the polymerization of the polymerization reactive compound proceeds and is converted into a polymer to form a binder.
  • polymerization of a polymerization reactive compound has produced
  • Example 1 (1) Production of Ag nanoparticles 20 g of silver nitrate, 100 g of isobutanol, and 100 g of a dispersant (dodecylamine) were mixed. The mixture was heated until its temperature was 100 ° C. and then refluxed for 5 hours. The solid content in the obtained mixture was collected by sedimentation by centrifugation. The collected solid content was washed three times with methanol and then centrifuged to collect Ag nanoparticles coordinated with dodecylamine. A dispersion liquid was prepared by dispersing the collected Ag nanoparticles in cyclohexanone using an ultrasonic disperser. The mass ratio of Ag nanoparticles to dodecylamine coordinated with Ag nanoparticles was 100: 3. The mass ratio of Ag nanoparticles (Ag nanoparticles coordinated with dodecylamine) and cyclohexanone was 100: 200.
  • a dispersant dodecylamine
  • the obtained dispersion was applied to a substrate by spin coating, and an SEM photograph of Ag nanoparticles was taken. In this photographed image, the average particle diameter of the Ag nanoparticles was calculated by the method described above, and it was 40 nm.
  • (B) Volume resistance of metal film The metal nano ink obtained in (2) above is formed on a 5-inch ( ⁇ 12.7 cm) square silicon substrate using a spin coater so that the film thickness becomes 0.5 ⁇ m. It was applied while adjusting the number of rotations.
  • substrate with which the coating film was formed was set
  • the initial volume resistance value ( ⁇ ⁇ cm) of the metal film was measured by a four-terminal method using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Further, the substrate on which the metal film was formed was left at room temperature for two weeks, and then the volume resistance value was measured in the same manner as described above.
  • Examples 2 to 10 A metal nanoink was prepared and evaluated in the same manner as in Example 1 except that the polymerization reactive compound and polymerization reaction initiator shown in Table 1 were used in the amounts shown in Table 1.
  • the polymerization-reactive compounds and polymerization reaction initiators used are as follows.
  • E1 Bisphenol F type epoxy compound (manufactured by Nippon Kayaku Co., Ltd., RE-304S)
  • E2 Alicyclic epoxy compound (manufactured by Daicel Corporation, Celoxide 2021P)
  • E3 Alicyclic epoxy compound (manufactured by Daicel Corporation, Celoxide 2081)
  • E4 Alicyclic epoxy compound (manufactured by Daicel Corporation, Celoxide 8000)
  • E5 Diglycidyl ether of propylene oxide adduct of bisphenol A (manufactured by ADEKA, EP-4000L)
  • E6 TEGDVE (manufactured by Nippon Carbide Corporation)
  • C1 Thermal cation generator (KING INDUSTRIES, CXC-1821)
  • C2 1-cyanoethyl-2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ-CN)
  • C3 Latent imidazole (manufactured by T & K TOKA, Fuji Cure 7000)
  • Examples 11-14 The metal nano ink was used in the same manner as in Example 8 except that the polymerization reactive compounds and polymerization reaction initiators shown in Table 1 were used in the amounts shown in Table 1 and the liquid medium was used in the amounts shown in Table 1. Prepared and evaluated.
  • Comparative Example 1 A metal nano ink was prepared and evaluated in the same manner as in Example 1 except that the polymerization reactive compound and the polymerization reaction initiator were not used.
  • Comparative Example 2 Implementation was carried out except that 5 parts by mass of polyester resin (byron 500, manufactured by Toyobo Co., Ltd., Byron 500) (p1) was used with respect to 100 parts by mass of Ag nanoparticles without using a polymerization reactive compound and a polymerization reaction initiator.
  • Metal nanoinks were prepared and evaluated in the same manner as in Example 1.
  • Comparative Example 3 Example except that 5 parts by mass of phenoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., JER1256) (p2) was used with respect to 100 parts by mass of Ag nanoparticles without using a polymerization reactive compound and a polymerization reaction initiator.
  • metal nanoinks were prepared and evaluated.
  • Table 1 shows the evaluation results together with the compositions of the metal nano-inks of Examples 1 to 14 and Comparative Examples 1 to 3.
  • A1 to A14 are Examples 1 to 14, and B1 to B3 are Comparative Examples 1 to 3.
  • the amount of Ag nanoparticles in Table 1 is an amount including dodecylamine which is a dispersant.
  • the adhesion of the metal film to the base material was high, the fused state of the Ag nanoparticles was good, and the initial volume resistance value was low.
  • the coating property of metal nano ink was also high, and a favorable coating film was formed.
  • B1 which does not use a binder
  • the initial volume resistance value was low, but the metal film was completely peeled off with the adhesive tape, and sufficient adhesion to the substrate was not obtained.
  • the comparative examples B2 and B3 in which the organic polymer was blended with the metal nano ink only some Ag nanoparticles were fused, and the initial volume resistance value was extremely high.
  • Example 15 (1) Preparation of Ag nanoparticles Into a 1 L eggplant flask, 500 mL of water was added, and further 10 g of a dispersant (octylamine) and 1 g of hydrazine hydrate (reducing agent) were added and stirred and mixed in a nitrogen atmosphere. . Under stirring, an aqueous silver nitrate solution in which 7 g of silver nitrate was dissolved in 60 g of water was added to the mixture and stirred for 5 minutes. The dispersion was allowed to stand, the supernatant was removed, and cyclohexanol acetate was added to the precipitated solid and dispersed with a homogenizer.
  • a dispersant octylamine
  • hydrazine hydrate reducing agent
  • the upper separated organic phase (dispersion liquid) in which Ag nanoparticles coordinated with octylamine were dispersed was recovered.
  • the obtained dispersion was observed by SEM, and it was confirmed that the particle diameter of the particles was 30 to 50 nm.
  • (B) Volume resistance of metal film The metal nano-ink obtained in (2) above is formed on a disk-shaped silicon substrate having a diameter of 5 inches ( ⁇ 12.7 cm) using a spin coater, and the film thickness is 0.5 ⁇ m. It was applied while adjusting the rotational speed so that The board
  • Example 15 (2) the amount of the polyether compound was changed to the values shown in Table 2. Except for this, a metal nanoink was prepared and evaluated in the same manner as in Example 15.
  • Examples 18-26 A metal nanoink was prepared and evaluated in the same manner as in Example 16 except that the polymerization reactive compounds shown in Table 2 were used in the amounts shown in Table 2.
  • the polymerization reactive compounds used are as follows. The above-mentioned thing was used about (e1), (e4), and (e7).
  • Comparative Example 4 A dispersion was prepared in the same manner as in Example 16 except that pentylamine was used instead of octylamine as the dispersant. A metal nano ink was prepared and evaluated in the same manner as in Example 16 except that the obtained dispersion was used.
  • Comparative Example 5 A dispersion was prepared in the same manner as in Example 16 except that oleylamine was used in place of octylamine as the dispersant. A metal nano ink was prepared and evaluated in the same manner as in Example 16 except that the obtained dispersion was used.
  • Table 2 shows the evaluation results together with the compositions of the metal nano-inks of Examples 15 to 26 and Comparative Examples 4 to 5.
  • A15 to A26 are Examples 15 to 26, and B4 to B5 are Comparative Examples 4 to 5.
  • the amount of Ag nanoparticles in Table 2 is an amount including the amine of the dispersant.
  • Examples 27-41 A metal nanoink was prepared and evaluated in the same manner as in Example 16 except that the polyether compound shown in Table 3 was used. The volume resistance value was evaluated only when firing at 120 ° C.
  • the polyether compounds used are as follows.
  • D1 PTMG (manufactured by Mitsubishi Chemical Corporation, PTMG850, number average molecular weight: 850)
  • D2 PTMG (Mitsubishi Chemical Corporation, PTMG1000, number average molecular weight: 1000)
  • D3 PTMG (Mitsubishi Chemical Corporation, PTMG 1300, number average molecular weight: 1300)
  • D4 PTMG (manufactured by Mitsubishi Chemical Corporation, PTMG 1500, number average molecular weight: 1500)
  • D5 PTMG (manufactured by Mitsubishi Chemical Corporation, PTMG1800, number average molecular weight: 1800)
  • D7 PTMG (Mitsubishi Chemical Corporation, PTMG3000, number average molecular weight: 3000)
  • D8 PEG (manufactured by NOF Corporation, PEG # 1000, number average molecular weight: 1000)
  • D9) PPG (manufactured by Sanyo Chemical Co., Ltd., PP-1000, number average molecular weight:
  • Table 3 shows the evaluation results together with the compositions of the metal nano inks of Examples 27 to 41.
  • A27 to A41 are Examples 27 to 41.
  • the amount of Ag nanoparticles in Table 3 is an amount including the amine of the dispersant.
  • the metal nano ink according to the embodiment of the present invention has high adhesion to a base material and can form a low-resistance metal film, various uses in which a highly conductive metal film is used, for example, a wiring board It is useful for forming circuit patterns and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

基材に対する密着性が高く、低抵抗の金属膜を形成することができる金属ナノインクを提供する。金属ナノインクは、焼結型の金属ナノインクであり、金属ナノ粒子と、重合反応性化合物と、重合反応開始剤と、揮発性の液状媒体と、分散剤と、を含む。前記重合反応開始剤は、熱および/または光の作用により活性化して前記重合反応性化合物の重合を進行させるものである。分散剤は、C6-14アルキルアミンを含む。

Description

金属ナノインクおよびそれを用いた金属膜の製造方法
 本発明は、金属ナノ粒子が液状媒体に分散した焼成型のインク(つまり、焼成型の金属ナノインク)およびそれを用いた金属膜の製造方法に関する。
 従来、回路基板に回路パターンを形成したり、電極の導電層を形成したりする際には、金属ナノ粒子を含む導電性ペーストが使用されている。この場合、基板上に、スクリーン印刷などにより導電性ペーストを塗布することで回路パターンや導電層が形成される。特許文献1では、金属ナノ粒子と、有機高分子と、分散媒とを含む組成物を基材上に塗布して、焼成することにより、太陽電池用の電極を作製することが提案されている。
 一方、金属ナノ粒子を含むインクを用いて回路パターンを形成する方法も提案されている。特許文献2や特許文献3には、高分子化合物と、金属ナノ粒子などとを含む導電性インクが提案されている。特許文献2では、インクの塗膜の焼成物を用いて体積抵抗率を評価している。
特開2013-140991号公報 特開2010-80095号公報 特開2013-112807号公報
 金属ナノ粒子を含む塗膜の焼成により得られる薄膜(金属膜)では、金属ナノ粒子同士の接触により導電パスが形成されるため、高い導電性を確保するには、金属ナノ粒子同士を焼結させて物理的な接触性を高めることが重要である。一方、特許文献1および2では、導電性のペーストやインクを基材上に付着させるために有機高分子が使用されている。しかし、有機高分子を用いる場合、ペーストやインク中で凝集した状態となり易く、金属ナノ粒子間に存在して導電パスの形成を阻害する。
 本発明の目的は、基材に対する密着性が高く、かつ低抵抗の金属膜を形成することができる金属ナノインクおよびそれを用いた金属膜の製造方法を提供することである。
 本発明の一局面は、金属ナノ粒子と、
 重合反応性化合物と、
 重合反応開始剤と、
 揮発性の液状媒体と、
 分散剤と、を含み、
 前記重合反応開始剤は、熱および/または光の作用により活性化して前記重合反応性化合物の重合を進行させるものであり、
 前記分散剤は、C6-14アルキルアミンを含む、焼成型の金属ナノインクに関する。
 本発明の他の一局面は、上記の金属ナノインクを基材に塗布して塗膜を形成する工程、
および
 前記塗膜を焼成して金属膜を形成する工程、を含む、金属膜の製造方法に関する。
 本発明の上記局面によれば、金属ナノ粒子同士の接触が損なわれることを抑制して、基材に対する密着性が高く、低抵抗の金属膜を形成することができる焼成型の金属ナノインクおよびそれを用いた金属膜の製造方法を提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、以下の詳細な説明によりさらによく理解されるであろう。
[金属ナノインク]
 本発明の一実施形態に係る金属ナノインクは、金属ナノ粒子と、重合反応性化合物と、重合反応開始剤と、揮発性の液状媒体と、を含む。ここで、重合反応開始剤は、熱および/または光の作用により活性化して重合反応性化合物の重合を進行させるものである。本実施形態に係る金属ナノインクは、焼成型の金属ナノインクである。焼成型の金属ナノインクとは、基材などの表面に塗布して形成された塗膜を焼成することにより、金属膜を形成するためのインクである。
 一般に、インクに含まれる金属ナノ粒子を基材に付着させたり、膜質が良好な金属膜を形成したりするために、インクにはバインダが含まれる。従来の金属ナノインクでは、バインダとして有機高分子が使用されている。しかし、有機高分子は分子鎖が長いため、インク中で凝集した状態となり易い。金属膜では、金属ナノ粒子同士の接触により導電性パスが形成される。そのため、有機高分子の凝集物が存在すると、導電パスの形成が阻害され、金属膜の抵抗を低減し難い。
 本実施形態では、熱および/または光の作用により重合可能な重合反応性化合物を用いる。このような重合反応性化合物は、高分子の原料に相当し、高分子に比べて分子鎖が短い。そのため、重合反応性化合物は、従来使用されている有機高分子の場合とは異なり、金属ナノインク中に分散され易い。そして、高い分散性で分散した重合反応性化合物が、塗膜形成後に重合反応開始剤の作用により重合することで、高分子に変換されてバインダとなるため、金属ナノ粒子と基材との間の結着性を確保することができるとともに、バインダの凝集が抑制される。よって、金属ナノ粒子間の導電性パスの形成が阻害されないため、低抵抗の金属膜を得ることができる。
 (金属ナノ粒子)
 金属ナノ粒子を形成する金属材料としては、金属単体、および合金などが例示される。
 金属単体または合金に含まれる金属元素としては、典型金属元素、遷移金属元素などが挙げられる。典型金属としては、例えば、Zn、Al、Ga、In、Ge、Sn、Pb、Sb、Biなどが挙げられる。遷移金属としては、例えば、Ti、Zr、V、Cr、Mn、Fe、Ru、Co、Ni、Pd、Pt、Cu、Ag、Auなどが挙げられる。合金は、これらの金属元素を二種以上含むものが好ましい。金属元素としては、Al、Sn、Ti、Ni、Pt、Cu、Ag、Auなどが好ましい。金属材料のうち、Cu単体、Ag単体、Cu合金、Ag合金などが好ましく、中でも、Agまたはその合金が好ましい。
 金属ナノインクは、材料が異なる複数種の金属ナノ粒子を含んでいてもよい。例えば、金属ナノインクは、Agまたはその合金で形成された第1金属ナノ粒子と、前記例示の金属のうちAg以外の金属の単体または合金で形成された第2金属ナノ粒子とを組み合わせて含んでもよい。この場合、金属ナノ粒子全体に占める第1金属ナノ粒子の割合は、80質量%以上であることが好ましく、80~99質量%または85~99質量%であってもよい。
 金属ナノ粒子の平均粒子径は、5nm以上1000nm未満の範囲から選択できる。平均粒子径は、5~500nmであることが好ましく、5~200nmまたは5~100nmであることがさらに好ましい。このような平均粒子径を有する金属ナノ粒子を用いることで、金属ナノ粒子間の接触を高めることができるとともに、比較的低い温度でも金属ナノ粒子同士が融着し易くなるため、金属ナノインクを用いて形成される金属膜の導電性を高め易い。
 なお、本明細書中、平均粒子径とは、体積粒度分布の累積体積50%における粒径(D50)である。平均粒子径(D50)は、レーザー回折式の粒度分布測定装置を用いて、レーザー回折散乱法によって測定することができる。また、金属ナノ粒子の平均粒子径は、金属ナノインクの塗膜の走査型電子顕微鏡(SEM)写真において、任意に選択した複数(例えば、10個)の金属ナノ粒子の外縁で囲まれた領域と同じ面積を有する相当円の直径を求め、平均化することにより算出してもよい。
 金属ナノ粒子の形状は、特に制限されず、球状、楕円球状、多角柱状、多角錐状、扁平形状(薄片状、鱗片状、フレーク状など)、またはこれらの類似する形状などのいずれの形状であってもよい。金属ナノ粒子間の接触を高め易い観点からは、球状、楕円球状、扁平形状、もしくはこれらに類似する形状であることが好ましい。
 金属ナノ粒子としては、市販のものを使用してもよく、金属材料を蒸発させることにより形成したものを用いてもよい。また、液相や気相中で化学反応を利用して作製した金属ナノ粒子を用いてもよい。
 (分散剤)
 金属ナノインクは、分散剤を含んでもよい。分散剤を用いることで、インク中で金属ナノ粒子が凝集することが抑制され、金属ナノ粒子を安定化することができる。
 分散剤は、金属ナノインクを調製する際に添加してもよいが、金属ナノ粒子に配位した状態で使用することが好ましい。分散剤は、金属ナノ粒子とともに混合し、必要により加熱することで金属ナノ粒子に配位させてもよく、金属ナノ粒子の作製過程で分散剤を用いることにより金属ナノ粒子に配位させてもよい。
 分散剤としては、例えば、金属ナノ粒子に配位する極性の官能基と疎水性の有機基とを有する有機化合物が使用される。分散剤は、金属膜の形成過程の適当な段階で除去されることが好ましいため、低分子化合物(例えば、分子量500以下の化合物)であることが好ましい。極性の官能基としては、例えば、アミノ基の他、メルカプト基、ヒドロキシル基(フェノール性ヒドロキシル基を含む)、カルボニル基、エステル基、カルボキシル基などの酸素含有基などが挙げられる。分散剤は、極性の官能基を一種含んでいてもよく、二種以上含んでいてもよい。
 分散剤としては、金属ナノ粒子の種類にもよるが、室温安定性の観点からは、有機アミンを用いることが好ましい。有機アミンは、一級アミン、二級アミン、三級アミンのいずれであってもよく、環状アミンおよび鎖状アミンのいずれであってもよい。金属ナノ粒子に配位し易い観点からは、一級アミン(中でも、一級鎖状アミン)が好ましい。有機アミンとしては、例えば、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミンなどのアルキルアミンが好ましい。分散安定性が高く、金属膜の作製過程で除去し易い観点からは、C6-14アルキルアミンまたはC8-12アルキルアミンが好ましい。
 炭素数の少ないアミン(例えば、C6-10アルキルアミン)は、反応性が高いため、金属ナノインクの保存安定性が低下する場合がある。重合反応性化合物として、シクロアルケンオキサイド型の脂環式エポキシ樹脂を用いる場合、このような炭素数が少ないアミンを用いても、高い保存安定性を確保することができる。その一方で、炭素数が少ないアミンは反応性が高いため、低温焼成などにより、温和な条件下で重合反応を行うことができる。中でも、C8-10アルキルアミンが好ましい。
 金属ナノインク中に含まれる分散剤(好ましくは、金属ナノ粒子に配位した分散剤)の量は、金属ナノ粒子100質量部に対して、例えば、0.1~10質量部であり、0.5~5質量部であることが好ましい。分散剤の量がこのような範囲である場合、インク中で金属ナノ粒子を安定化し易く、分散剤の除去も容易である。
 (重合反応性化合物)
 重合反応性化合物としては、活性化した重合反応開始剤の作用により重合(架橋や硬化も含む)して高分子を形成可能であればよい。
 重合反応性化合物は、好ましくは、重合に関与する重合性基を複数個有するものである。このような点で、一般的な反応性希釈剤などとは区別される。重合反応性化合物が有する重合性基の個数は、例えば、2~6個であり、2~4個が好ましい。
 重合反応性化合物の重合により得られる高分子は、金属膜中でバインダとして機能する。そのため、高分子の結着性を確保する観点から、重合反応性化合物は極性の官能基を有することが好ましい。重合反応性化合物の種類にもよるが、このような官能基としては、オキシ基(-O-)、カルボニル基、カルボニルオキシ基(-C(=O)-O-)、カルボニルジオキシ基(-O-C(=O)-O-)、エポキシ基などの酸素含有基を含むものを用いてもよい。中でも、ナノ粒子の金属分散安定性のために用いた分散剤の金属への配位を妨げないように、エーテル基を用いることが好ましい。また、重合により得られる高分子にも、上記の官能基または酸素含有基が残存していることが好ましい。
 重合反応性化合物としては、高分子の原料、例えば、モノマーまたはモノマーがいくつか連なったオリゴマーなどの前駆体が挙げられる。このような高分子の原料には、例えば、硬化性樹脂が含まれ、より具体的には、ラジカル重合又はイオン重合(カチオン重合若しくはアニオン重合)の原料であってよい。なお、オリゴマーにおけるモノマー単位の繰り返し数は、重合反応性化合物がインク中で分散し易い観点から、例えば、2~10であり、2~5が好ましい。
 重合反応性化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 硬化性樹脂は、光の作用により活性化された重合反応開始剤で硬化する光硬化性樹脂であってもよく、熱の作用により活性化された重合反応開始剤で硬化する熱硬化性樹脂であってもよい。なお、ここでいう硬化性樹脂とは、高分子化合物を指すものではなく、重合反応開始剤により、高分子化して、ポリマーを形成する前のポリマーの原料または原料混合物をいう。インクの塗膜を加熱することで、金属ナノ粒子同士が融着するとともに、分散剤が除去されるため、熱硬化性樹脂を用いると塗膜を加熱する際に硬化させることもできる点で有利である。
 硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ケイ素樹脂、ビニルエステル樹脂、ビニルエーテル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ウレタン系樹脂などが挙げられる。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 金属ナノ粒子の安定性を損ない難く、硬化が容易であるなどの観点から、硬化性樹脂のうち、エポキシ樹脂、ビニルエーテル樹脂、アクリル樹脂、ビニルエステル樹脂などが好ましく、特にエポキシ樹脂およびビニルエーテル樹脂が好ましい。
 エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノール型エポキシ、フェノールノボラック型エポキシ、脂環式エポキシ樹脂、有機カルボン酸類のグリシジルエステル型エポキシなどを用いることができる。ビスフェノール型エポキシとしては、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ビスフェノールAD型エポキシ、水添ビスフェノールA型エポキシなどが含まれる。また、ビスフェノール型エポキシには、ビスフェノールA、ビスフェノールF、ビスフェノールADなどのビスフェノール類のC2-3アルキレンオキサイド付加物のエポキシ(つまり、ジグリシジルエーテル)も含まれる。エポキシ樹脂は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 エポキシ樹脂のうち、金属膜の抵抗をより低減し易い観点からは、脂環式エポキシ樹脂が好ましい。脂環式エポキシ樹脂としては、例えば、シクロアルケンオキサイド型の脂環式エポキシ樹脂、脂環族ポリオールのポリグリシジルエーテル、脂環族ポリカルボン酸のポリグリシジルエステルなどが挙げられる。脂環式エポキシ樹脂は、脂環族基(特に、シクロアルケンオキサイド基)を有するため、金属ナノインクの塗膜中で、配向し易く、金属ナノ粒子間に入り込み難い。そのため、重合により硬化しても、金属ナノ粒子間に硬化物が入り込み難く、金属ナノ粒子同士の融着を阻害し難いことから、得られる金属膜の導電性をさらに高めることができる。
 シクロアルケンオキサイド型の脂環式エポキシ樹脂が有するシクロアルケンオキサイド基としては、シクロペンテンオキサイド、シクロヘキセンオキサイド、シクロオクテンオキサイドなどのC5-8シクロアルケンオキサイドが好ましく、C5-6シクロアルケンオキサイドがさらに好ましい。脂環式エポキシ樹脂としては、エポキシシクロアルカン、エポキシシクロアルカンが連結した化合物、エポキシシクロアルカン骨格を有するエステルが例示できる。これらの化合物は置換基を有していてもよい。また、これらのエポキシ樹脂の変性体、例えば、ε-カプロラクトンなどのラクトン変性体なども、脂環式エポキシ樹脂に含まれる。
 シクロアルケンオキサイド型の脂環式エポキシ樹脂のうち、エポキシシクロアルカンとしては、1,2-エポキシ-4-ビニルシクロヘキサンなどの1,2-エポキシC5-8シクロアルカンが例示できる。エポキシシクロアルカンが連結した化合物としては、例えば、エポキシシクロアルカンが直接結合、アルキリデン基またはアルキレン基などで連結した化合物が挙げられる。このような化合物としては、1-(3',4'-エポキシシクロヘキシル)-3,4-エポキシシクロヘキサンなどの2つのエポキシC5-8シクロアルカンが例示できる。
 シクロアルケンオキサイド型の脂環式エポキシ樹脂のうち、エポキシシクロアルカン骨格を有するエステルは、エステルを構成するアルコール成分およびカルボン酸成分のいずれか一方がエポキシシクロアルカン骨格を有していてもよく、双方がエポキシシクロアルカン骨格を有していてもよい。アルコール成分およびカルボン酸成分の双方がエポキシシクロアルカン骨格を有するエステルとしては、例えば、3',4'-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレートなどのエポキシC5-8シクロアルキル基を有するC1-2アルカノールとエポキシC5-8シクロアルカンカルボン酸とのエステルが挙げられる。また、エポキシシクロアルカン骨格を有するエステルには、例えば、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)などの脂肪族ポリカルボン酸とエポキシC5-8シクロアルキル基を有するC1-2アルカノールとのエステルも含まれる。
 脂環族ポリオールのポリグリシジルエーテルとしては、例えば、シクロヘキサンジオールジグリシジルエーテルなどのC5-8シクロアルカンジオールジグリシジルエーテル;シクロヘキサンジメタノールジグリシジルエーテルなどのC5-8シクロアルカンジC1-2アルカノールジグリシジルエーテルなどが挙げられる。また、水添ビスフェノールAなどの水添ビスフェノールのジグリシジルエーテル、および水添ビスフェノールのC2-3アルキレンオキサイド付加物のジグリシジルエーテルも、脂環族ポリオールのポリグリシジルエーテルに含まれる。
 脂環族ポリカルボン酸のポリグリシジルエステルとしては、シクロヘキサンジカルボン酸ジグリシジルなどのC5-8シクロヘキサン-ジカルボン酸のジグリシジルエステルなどが例示できる。
 ビニルエーテル樹脂の重合反応性化合物であるビニルエーテルとしては、ポリオールポリ(ビニルエーテル)が好ましい。ポリオールポリ(ビニルエーテル)として、例えば、アルキレングリコールジビニルエーテル、ポリアルキレングリコールジビニルエーテル、脂環族基を有するジオールのジビニルエーテル、メチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテルなどが例示される。
 アルキレングリコールジビニルエーテルとしては、エチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、トリメチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテルなどが挙げられる。ポリアルキレングリコールジビニルエーテルとしては、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル(TEGDVE)などのオキシC2-4アルキレンユニットの繰り返し単位が2~4であるポリC2-4アルキレングリコールのジビニルエーテルが好ましい。脂環族基を有するジオールのジビニルエーテルとしては、シクロヘキサンジオールジビニルエーテルなどのC5-8シクロアルカンジオールジビニルエーテル;シクロヘキサンジメタノールジビニルエーテルなどのC5-8シクロアルカンジC1-2アルカノールジビニルエーテルなどが好ましい。
 アクリル樹脂の重合反応性化合物である(メタ)アクリル酸エステルとしては、例えば、エチレングリコールのジ(メタ)アクリル酸エステルなどのアルキレングリコールのジ(メタ)アクリル酸エステルなどが挙げられる。なお、アクリル酸エステルおよびメタクリル酸エステルを、(メタ)アクリル酸エステルと総称する。ビニルエステル樹脂の重合反応性化合物であるカルボン酸ビニルエステルとしては、コハク酸ジビニルエステル、フタル酸ジビニルエステルなどのジカルボン酸のジビニルエステルが例示できる。
 なお、金属膜の導電性を高め易い観点から、エステル結合(特に、鎖状のエステル結合)を有しない重合反応性化合物を用いてもよい。
 金属ナノ粒子の安定性を損ない難く、硬化が容易である観点から、これらの重合反応性化合物の中でも、シクロアルケンオキサイド型の脂環式エポキシ樹脂(またはエポキシ化合物)、およびビニルエーテル化合物からなる群より選択される少なくとも一種が好ましい。これらの樹脂と、他の硬化性樹脂(上記で例示した硬化性樹脂のうちこれらの樹脂以外の硬化性樹脂)とを組み合わせてもよい。他の硬化性樹脂のうち、エポキシ樹脂(シクロアルケンオキサイド型の脂環式エポキシ樹脂を除く)、アクリル樹脂、ビニルエステル樹脂などが好ましい。重合反応性化合物全体に占めるシクロアルケンオキサイド型の脂環式エポキシ樹脂およびビニルエーテル樹脂の量(総量)は、例えば、70質量%以上であり、80質量%以上または90質量%以上であってもよい。
 重合反応性化合物の表面自由エネルギーは、例えば、42mJ/m2以下であり、20~40mJ/m2であることが好ましい。表面自由エネルギーがこのような範囲である場合、その理由は定かではないが、金属ナノ粒子の焼成が進行し易く、金属膜の導電性を高め易い。
 (重合反応開始剤)
 重合反応開始剤は、熱および/または光の作用により活性化して重合反応性化合物の重合を進行させるものである。重合反応開始剤としては、例えば、熱および/または光の作用により、塩基(またはアニオン)や酸(またはカチオン)を生成したり、ラジカルを生成したりするものが挙げられる。また、重合反応開始剤としては、熱硬化性樹脂や光硬化性樹脂などの硬化性樹脂で使用されるその他の硬化剤も使用できる。金属ナノインクは、一種の重合反応開始剤を含んでもよく、必要に応じて、複数の重合反応開始剤を含んでもよい。
 重合反応開始剤としては、重合反応性化合物の種類に応じて、例えば、公知のラジカル重合開始剤やイオン重合開始剤などが使用される。ラジカル重合開始剤としては、例えば、過酸化物、過硫酸塩、アゾビスイソブチロニトリルなどが挙げられる。
 塩基(またはアニオン)を生成する塩基発生剤としては、非イオン型塩基発生剤、イオン型塩基発生剤などが挙げられる。非イオン型塩基発生剤は、1級アミン、2級アミン、イミダゾールなどを発生可能である。イオン型塩基発生剤は、3級アミン、アミジン、グアニジンなどの有機強塩基を発生可能である。
 酸を生成する酸発生剤としては、スルホニウム塩系、ヨードニウム塩系、非イオン系などの酸発生剤が例示できる。中でも、カチオンを生成するスルホニウム塩系やヨードニウム塩系の酸発生剤(つまり、カチオン発生剤)が好ましい。
 その他の硬化剤としては、例えば、重合反応性化合物の種類に応じて公知の硬化剤を使用することができるが、上記のような塩基発生剤や酸発生剤の他、潜在性硬化剤を用いることが好ましい。潜在性硬化剤としては、重合反応性化合物の種類に応じて適宜選択できるが、例えば、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジド、潜在性イミダゾールなどが挙げられる。
 金属ナノインクのポットライフを確保し易いことに加え、金属膜の高い導電性を長期間確保し易い観点から、重合反応開始剤のうち、熱および/または光の作用によりカチオンを生成するもの(つまり、カチオン発生剤)が好ましい。カチオン発生剤は、不活性状態において中性であるものが好ましい。なお、不活性状態とは、重合反応開始剤に熱および/または光が作用する前の状態である。重合反応開始剤は、例えば、室温(例えば、20~35℃)雰囲気下や活性化するための光を照射する前の段階などの不活性状態で、中性であることが好ましい。なお、中性とは、酸性成分と塩基性成分が塩のような形で存在するものであるものを含む。中性のカチオン発生剤としては、例えば、カチオン発生剤を水中に溶解または分散させて得られる混合物のpHが5~9の範囲であるものが好ましい。
 このようなカチオン発生剤としては、例えば、特に、テトラキス(ペンタフルオロフェニル)ボレートアニオンなどのアニオンやフッ素原子を含まないアニオンを対イオンとするカチオン発生剤などが挙げられる。また、カチオン発生剤としては、例えば、KING INDUSTRIES社製のK-PURE(登録商標)TAGシリーズおよびCXCシリーズ、サンアプロ(株)製の光酸発生剤、(株)ADEKA製の光カチオン重合開始剤、和光純薬工業(株)製の光酸発生剤WPAGシリーズなども使用できる。
 重合反応開始剤と重合反応性化合物との総量は、金属ナノ粒子100質量部に対して、例えば、3~50質量部であり、5~45質量部であることが好ましく、10~40質量部であることがさらに好ましい。重合反応開始剤および重合反応性化合物の総量がこのような範囲である場合、得られる金属膜における導電性と基材に対する密着性とのバランスを取り易い。
 (液状媒体)
 金属ナノインクに含まれる液状媒体としては、アルカノール、エーテル、エステル、ケトン、炭化水素などが挙げられる。液状媒体は、一種を単独でまたは二種以上を組み合わせて用いてもよい。
 アルカノールとしては、例えば、メタノール、エタノールなどのC1-6アルカノールが挙げられる。
 エーテルとしては、ジエチルエーテルなどの脂肪族エーテル、テトラヒドロフランなどの環状エーテルが例示できる。
 エステルとしては、脂肪族エステル、例えば、酢酸エチル、酢酸ブチル、酪酸エチルなどのC1-4カルボン酸のアルキルエステル(例えば、C1-4アルキルエステルまたはC1-2アルキルエステルなど)などが挙げられる。
 ケトンとしては、例えば、アセトン、エチルメチルケトンなどの脂肪族ケトン(炭素数3~6の脂肪族ケトンなど)、シクロヘキサノンなどの脂環族ケトン(C5-6シクロアルカノンなど)などが挙げられる。
 炭化水素としては、例えば、ヘキサンなどのC6-10アルカン、シクロヘキサンなどのC5-8シクロアルカン、ベンゼン、トルエンなどが挙げられる。
 C6-10アルキルアミンなどの炭素数が少ないアミンを分散剤として用いる場合には、遊離のアミンが生成し易い。遊離のアミンは、エステルやケトンと反応することがあるため、液状媒体としては、エステルやケトン以外のものを用いることが好ましい。
 液状媒体は、塗膜を形成してから金属膜を形成するまでの過程で除去されるため、揮発性である必要があるが、金属ナノインクを保管する場合を考慮して、室温では液体であることが望ましい。このような観点から、液状媒体の沸点は、40~250℃であることが好ましく、100~200℃であることがさらに好ましい。
 金属ナノインク中の液状媒体の割合は、25~95質量%であることが好ましく、25~90質量%であってもよい。液状媒体の割合がこのような範囲である場合、金属ナノインクの構成成分を分散し易く、良好な塗工性を確保し易く、インクジェット印刷方式などにも適用できる。
 (ポリエーテル化合物)
 金属ナノインクは、ポリオキシアルキレンユニットを有するポリエーテル化合物を含んでもよい。この場合、金属膜の高い密着性をさらに確保し易くなる。特に、重合反応性化合物として、シクロアルケンオキサイド型の脂環式エポキシ樹脂を用いる場合には、金属膜が硬くなり易い。このような脂環式エポキシ樹脂を用いる場合でも、ポリエーテル化合物を用いることで密着性をより確保し易くなる。
 ポリオキシアルキレンユニットとしては、ポリオキシエチレンユニット、ポリオキシプロピレンユニット、ポリオキシトリメチレンユニット、ポリオキシテトラメチレンユニットなどのポリ(オキシC2-4アルキレン)ユニットが好ましい。ポリエーテル化合物は、これらのポリオキシアルキレンユニットを一種含んでもよく、二種以上含んでもよい。
 ポリエーテル化合物は、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリトリメチレングリコール、ポリテトラメチレングリコール(PTMG)などの単独重合体であってもよい。また、ポリエーテル化合物は、ポリオキシアルキレンユニットを含む共重合体であってもよい。共重合体としては、二種以上のポリオキシアルキレンユニットを含むものが好ましい。このような共重合体としては、例えば、エチレングリコール-プロピレングリコール共重合体、テトラメチレングリコール-エチレングリコール共重合体、テトラメチレングリコール-プロピレングリコール共重合体などが挙げられる。
 中でも、少なくともポリオキシテトラメチレンユニットを含むポリエーテル化合物が好ましい。このようなポリエーテル化合物としては、PTMGの他、テトラメチレングリコール-エチレングリコール共重合体、テトラメチレングリコール-プロピレングリコール共重合体などのテトラメチレングリコールとC2-3アルキレングリコールとの共重合体などが例示される。
 ポリエーテル化合物の数平均分子量は、例えば、500~7000の範囲から選択でき、1000~5000が好ましく、1000~3000がさらに好ましい。数平均分子量がこのような範囲である場合、金属膜の抵抗を低く保ちながらも、高い密着性を確保し易い。
 (その他)
 金属ナノインクは、必要に応じて、公知の添加剤を含んでもよい。例えば、金属ナノインクは、重合反応性化合物の種類に応じて、硬化促進剤、反応性希釈剤などを含んでもよい。金属ナノインク中の添加剤の量は、重合反応開始剤および重合反応性化合物100質量部に対して、例えば、10質量部以下または5質量部以下であることが好ましい。
 金属ナノインクの室温(25℃)での粘度は、例えば、2~10000mPa・sであることが好ましく、インクジェット方式に適用する場合には、4~100mPs・sであることが好ましい。
 金属ナノインクは、金属ナノ粒子、重合反応開始剤、重合反応性化合物、液状媒体、および必要により分散剤を混合することにより得ることができる。構成成分をより均一に分散させるため、公知の攪拌機、ミキサーなどを用いてもよい。
 構成成分の混合順序は特に制限されない。例えば、一部の成分を予め混合し、残りの成分を添加してさらに混合してもよい。各成分は、一度に添加してもよく、複数回に分けて添加してもよい。金属ナノ粒子は固体であるため、予め液状媒体中に分散させておくことが好ましい。例えば、液状媒体に金属ナノ粒子を予め分散した分散液に、重合反応開始剤、および重合反応性化合物を添加し、混合することにより金属ナノインクを調製することができる。分散剤を用いる場合、金属ナノ粒子に予め分散剤を予め配位させた後、液状媒体に分散させた分散液を調製し、重合反応開始剤および重合反応性化合物を添加、混合してもよい。
[金属膜の製造方法]
 本発明の一実施形態に係る金属膜の製造方法は、上記の金属ナノインクを基材に塗布して塗膜を形成する工程と、塗膜を焼成して金属膜を形成する工程とを含む。
 塗膜形成工程では、基材の表面に金属ナノインクを塗布する。金属ナノインクの塗布は、特に制限されず、スピンコート、スプレーコート、ブレードコート、スクリーン印刷、インクジェットなどの公知の塗布方法により行うことができる。また塗膜は、ベタ膜に限らず、配線や穴埋めといったパターン膜であってよい。
 基材の材質としては、特に制限されないが、例えば、ガラス、シリコン、プラスチックなどが挙げられる。
 塗膜形成工程で得られた塗膜を有する基材は、焼成工程に先立って、必要に応じて乾燥してもよい。乾燥条件は、金属ナノインクの構成成分などに応じて適宜決定できる。乾燥工程では、揮発性の液状媒体を除去することが好ましい。
 乾燥温度は特に制限されず、液状媒体を除去できる温度で行ってもよい。乾燥温度は、後述の焼成の温度よりも低いことが望ましい。
 焼成工程では、塗膜形成工程で得られた塗膜を有する基材を焼成する。焼成により、塗膜内に含まれる金属ナノ粒子同士が融着して、得られる金属膜の抵抗を大幅に低減することができる。金属ナノ粒子のナノサイズ効果により、金属の融点よりも低い温度で融着するため、焼成は比較的低温であっても十分に金属膜の抵抗を低減する効果が得られる。
 焼成は、金属ナノ粒子の金属の種類に応じて適宜選択でき、例えば、50~250℃行ってもよく、100~250℃または150~250℃で行ってもよい。分散剤として炭素数の少ないアミンを用いると、温和な条件下でも金属膜を形成することができる。この場合、焼成温度は、150℃以下(例えば、50~150℃)であることが好ましく、100~150℃であってもよい。
 焼成は、必要に応じて、還元剤の存在下で行なってもよい。
 焼成は、不活性ガス雰囲気下で行ってもよく、大気中で行ってもよい。
 焼成時間は、特に制限されないが、例えば、5~120分であってもよい。
 重合反応開始剤として、熱の作用により活性化するものを用いる場合には、乾燥工程および/または焼成工程で加えられる熱により活性化させ、重合反応性化合物の重合を進行させてもよい。つまり、乾燥工程および/または焼成工程において、重合反応性化合物が重合することで、高分子に変換されてバインダとなる。
 重合反応開始剤として、光の作用により活性化するものを用いる場合には、塗膜形成後から焼成工程までの適当な段階で塗膜に光を照射することが好ましい。乾燥工程および/または焼成工程を、光照射下で行ってもよい。照射する光の波長や照射量は、重合反応開始剤の種類に応じて適宜決定できる。このように、適当な段階で塗膜を光に暴露することで、重合反応性化合物の重合が進行し、高分子に変換されて、バインダが生成する。
 このように、得られる金属膜には、重合反応性化合物の重合により得られた高分子バインダが生成しているため、基材と金属膜との高い密着性を確保することができる。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1
(1)Agナノ粒子の作製
 硝酸銀20gと、イソブタノール100gと、分散剤(ドデシルアミン)100gとを混合した。混合物を、その温度が100℃になるまで加熱し、次いで5時間還流した。得られた混合物中の固形分を遠心分離で沈降させて回収した。回収した固形分を、メタノールで3回洗浄した後、遠心分離することにより、ドデシルアミンが配位したAgナノ粒子を回収した。回収したAgナノ粒子を、シクロヘキサノン中に、超音波分散機を用いて分散させることにより分散液を調製した。Agナノ粒子とAgナノ粒子に配位したドデシルアミンとの質量比は、100:3であった。また、Agナノ粒子(ドデシルアミンが配位したAgナノ粒子)とシクロヘキサノンとの質量比は、100:200であった。
 得られた分散液をスピンコートで基材に塗布し、Agナノ粒子のSEM写真を撮影した。この撮影画像において、既述の方法によりAgナノ粒子の平均粒子径を算出したところ、40nmであった。
(2)金属ナノインクの調製
 上記(1)で得られた分散液に、スターラーで攪拌しながら、重合反応性化合物としてビスフェノールF型エポキシ化合物((株)日本化薬製、RE-304S)(e1)、および重合反応開始剤として熱カチオン発生剤(KING社製、CXC-1821)(c1)を添加して混合した。このとき、Agナノ粒子(ドデシルアミンが配位したAgナノ粒子)100質量部に対して、重合反応性化合物(e1)の量を2質量部、重合反応開始剤(c1)の量を0.02質量部とした。得られた混合物を、孔径3μmのメンブランフィルターでろ過し、ろ液を回収することにより、金属ナノインクを得た。
(3)評価
 (a)塗工性
 上記(2)で得られた金属ナノインクを、5インチ(≒12.7cm)四方のシリコン基板上に、スピンコーターを用いて、膜厚が0.5μmになるように回転数を調整しながら塗布した。このときの塗膜の状態を目視で確認した。基板上で金属ナノインクの塗膜にムラが生じたものをB、ムラがなく良好な塗膜が形成されているものをAとして評価した。
 (b)金属膜の体積抵抗
 上記(2)で得られた金属ナノインクを、5インチ(≒12.7cm)四方のシリコン基板上に、スピンコーターを用いて、膜厚が0.5μmになるように回転数を調整しながら塗布した。塗膜が形成された基板を、ホットプレート上に置き、基板の温度が120℃となるようにして加熱して塗膜を乾燥させた。次いで、基板の温度が180℃となるように30分加熱することにより焼成して、金属膜を有する基板を作製した。そして、抵抗率計((株)三菱化学アナリテック製、ロレスタGP)を用いて、金属膜の初期の体積抵抗値(μΩ・cm)を4端子法により測定した。
 さらに金属膜が形成された基板を二週間室温で放置した後、上記と同様に体積抵抗値を測定した。
 (c)Ag粒子の融着
 上記(b)で初期の体積抵抗値を測定した後、金属膜を基板ごと割って、SEMで金属膜の断面を観察した。Agナノ粒子が完全に融着して平均粒径を測定したとき(初期)の形状を維持していないものをA、一部のAgナノ粒子が融着していたものをBとして、評価した。
 (d)基材に対する密着性
 上記(b)と同様にして基板上に金属膜を形成した。金属膜に、1mm幅で碁盤目に切れ目を入れ、粘着テープを貼り、その後剥がした。粘着テープを剥がす際の金属膜の剥がれの程度を目視で観察した。金属膜が全く剥がれなかった場合をA、一部剥がれた場合をB、完全に剥がれた場合をCとして評価した。
 実施例2~10
 表1に示す重合反応性化合物および重合反応開始剤を表1に示す量で用いたこと以外は、実施例1と同様にして金属ナノインクを調製し、評価を行った。
 なお、使用した重合反応性化合物および重合反応開始剤は以下の通りである。
 重合反応性化合物:
 (e1):ビスフェノールF型エポキシ化合物((株)日本化薬製、RE-304S)
 (e2):脂環式エポキシ化合物((株)ダイセル製、セロキサイド2021P)
 (e3):脂環式エポキシ化合物((株)ダイセル製、セロキサイド2081)
 (e4):脂環式エポキシ化合物((株)ダイセル製、セロキサイド8000)
 (e5):ビスフェノールAのプロピレンオキサイド付加物のジグリシジルエーテル((株)ADEKA製、EP-4000L)
 (e6):TEGDVE(日本カーバイド(株)製)
 重合反応開始剤:
 (c1):熱カチオン発生剤(KING INDUSTRIES社製、CXC-1821)
 (c2):1-シアノエチル-2-エチル-4-メチルイミダゾール(四国化成工業(株)製、2E4MZ-CN)
 (c3):潜在性イミダゾール((株)T&K TOKA製、フジキュアー7000)
 実施例11~14
 表1に示す重合反応性化合物および重合反応開始剤を表1に示す量で用いたこと、また液状媒体を表1に示す量で用いたこと以外は、実施例8と同様にして金属ナノインクを調製し、評価を行った。
 比較例1
 重合反応性化合物および重合反応開始剤を用いなかったこと以外は、実施例1と同様にして金属ナノインクを調製し、評価を行った。
 比較例2
 重合反応性化合物および重合反応開始剤を用いず、ポリエステル樹脂(東洋紡績(株)製、バイロン500)(p1)を、Agナノ粒子100質量部に対して5質量部用いたこと以外は、実施例1と同様にして金属ナノインクを調製し、評価を行った。
 比較例3
 重合反応性化合物および重合反応開始剤を用いず、フェノキシ樹脂(三菱化学(株)製、JER1256)(p2)を、Agナノ粒子100質量部に対して5質量部用いたこと以外は、実施例1と同様にして金属ナノインクを調製し、評価を行った。
 実施例1~14および比較例1~3の金属ナノインクの組成とともに、評価結果を表1に示す。A1~A14は実施例1~14であり、B1~B3は比較例1~3である。なお、表1中のAgナノ粒子の量は、分散剤であるドデシルアミンも含む量である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例では、基材に対する金属膜の密着性が高く、Agナノ粒子の融着状態も良好で、初期の体積抵抗値が低かった。また、実施例では、金属ナノインクの塗工性も高く、良好な塗膜が形成された。それに対し、バインダを用いないB1では、初期の体積抵抗値は低いものの、金属膜は粘着テープで完全に剥がれてしまい、基材に対して十分な密着性が得られなかった。有機高分子を金属ナノインクに配合した比較例のB2およびB3では、一部のAgナノ粒子しか融着しておらず、初期の体積抵抗値が極めて高くなった。
 なお、A1~A12およびB1については、二週間放置した後の体積抵抗値は初期の体積抵抗値と変わらず、低く抑えられていた。また、A13、A14、B2およびB3では、二週間放置した後は、導通が取れなくなった。金属膜の抵抗が経時的に増加すること抑制する観点からは、(c1)のような中性のカチオン発生剤を用いることが好ましい。
 実施例15
(1)Agナノ粒子の作製
 1Lのナスフラスコに、水500mLを入れ、さらに、分散剤(オクチルアミン)10g、およびヒドラジン水和物(還元剤)1gを添加し、窒素雰囲気下で撹拌混合した。混合物に、撹拌下で、硝酸銀7gを60gの水に溶解させた硝酸銀水溶液を添加し、5分間撹拌した。分散液を静置し、上澄み液を除去し、沈殿した固形分に、シクロヘキサノールアセテートを加えてホモジナイザーで分散させた。分離した上層の、オクチルアミンが配位したAgナノ粒子が分散した有機相(分散液)を回収した。得られた分散液をSEM観察し、粒子の粒子径が30~50nmであることを確認した。
(2)金属ナノインクの調製
 重合反応性化合物としてリモネンオキサイド(LDO)(e7)、重合反応開始剤(c1)、およびポリエーテル化合物(数平均分子量Mn2000のPTMG(d6))をシクロヘキサノールアセテートに溶解した溶液を調製した。得られた溶液を、上記(1)で得られた分散液に添加して混合した。このとき、Agナノ粒子(オクチルアミンが配位したAgナノ粒子)100質量部に対して、重合反応性化合物(e1)の量を5質量部、重合反応開始剤(c1)の量を0.1質量部、ポリエーテル化合物(d6)の量を0.5質量部とした。得られた混合物を、孔径1μmのガラスフィルターで濾過し、ろ液を回収することにより、金属ナノインクを得た。
(3)評価
 (a)塗工性
 実施例1と同様にして、上記(2)で得られた金属ナノインクの塗工性を評価した。
 (b)金属膜の体積抵抗
 上記(2)で得られた金属ナノインクを、直径5インチ(≒12.7cm)の円盤状のシリコン基板上に、スピンコーターを用いて、膜厚が0.5μmになるように回転数を調整しながら塗布した。塗膜が形成された基板を、ホットプレート上に置き、基板の温度が120℃となるようにして加熱することにより焼成した。抵抗率計((株)三菱化学アナリテック製、ロレスタGP)を用いて、基板上の焼成膜の初期の体積抵抗値Ri(μΩ・cm)を4端子法により測定した。
 また、焼成温度を180℃にした場合についても、同様に、初期の体積抵抗値を測定した。
 (c)基材に対する密着性
 上記(b)と同様にして、焼成温度120℃で基板上に焼成膜を形成した。焼成膜に、1mm幅で碁盤目に切れ目を入れ、粘着テープを貼り、その後剥がした。粘着テープを剥がす際の焼成膜の剥がれの程度を目視で観察した。焼成膜が全く剥がれなかった場合をA、一部剥がれた場合をB、完全に剥がれた場合をCとして評価した。
 (d)貯蔵安定性
 上記(2)で得られた金属ナノインクを、23℃の恒温室に1ヶ月静置した。1ヶ月静置後の金属ナノインクを用いて、上記(b)と同様の手順にて120℃で基板上に焼成膜を作製し、焼成膜の体積抵抗値Rsを測定した。このときの体積抵抗値Rsが、初期の体積抵抗値Riに対する比率を下記の基準で評価した。
 A:Rs≦2Ri
 B:2Ri<Rs≦10Ri
 C:10Ri<Rs
 実施例16~17
 実施例15の(2)において、ポリエーテル化合物の量を表2に示す値に変更した。このこと以外は、実施例15と同様にして、金属ナノインクを調製し、評価を行った。
 実施例18~26
 表2に示す重合反応性化合物を表2に示す量で用いたこと以外は、実施例16と同様にして金属ナノインクを調製し、評価を行った。
 使用した重合反応性化合物は、以下の通りである。(e1)、(e4)および(e7)については前述のものを用いた。
 (e8):1,2,5,6-ジエポキシシクロオクタン
 (e9):4,5,8,9-ジエポキシトリシクロデカン
 (e10):2-(7-オキサビシクロ[4.1.0]ヘプタン-3-イル)オキシラン
 (e11):脂環式エポキシ化合物((株)ダイセル製、セロキサイド2000)
 (e12):ピネンオキシド
 (e13):リモネンオキシド
 (e14):ビスフェノールA型エポキシ化合物(三菱化学(株)製、jER(登録商標)828)
 比較例4
 分散剤として、オクチルアミンに代えて、ペンチルアミンを用いたこと以外は実施例16と同様に分散液を調製した。得られた分散液を用いたこと以外は、実施例16と同様にして金属ナノインクを調製し、評価を行った。
 比較例5
 分散剤として、オクチルアミンに代えて、オレイルアミンを用いたこと以外は実施例16と同様に分散液を調製した。得られた分散液を用いたこと以外は、実施例16と同様にして金属ナノインクを調製し、評価を行った。
 実施例15~26および比較例4~5の金属ナノインクの組成とともに、評価結果を表2に示す。A15~A26は実施例15~26であり、B4~B5は比較例4~5である。なお、表2中のAgナノ粒子の量は、分散剤のアミンも含む量である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、ペンチルアミンを用いた比較例4では、塗膜にムラが生じ、密着性を評価できなかった。オレイルアミンを用いた比較例5では、体積抵抗値が測定限界を超え、導電性を確保できなかった。それに対し、実施例では、基材に対する金属膜の密着性が高く、初期の体積抵抗値が低かった。また、実施例では、金属ナノインクの塗工性も高く、良好な塗膜が形成された。また、実施例15~24では、高い貯蔵安定性が得られた。
 実施例27~41
 ポリエーテル化合物として表3に示すものを用いたこと以外は、実施例16と同様にして金属ナノインクを調製し、評価を行った。体積抵抗値の評価は、120℃で焼成した場合のみ行なった。使用したポリエーテル化合物は、以下の通りである。
 (d1):PTMG(三菱化学(株)製、PTMG850、数平均分子量:850)
 (d2):PTMG(三菱化学(株)製、PTMG1000、数平均分子量:1000)
 (d3):PTMG(三菱化学(株)製、PTMG1300、数平均分子量:1300)
 (d4):PTMG(三菱化学(株)製、PTMG1500、数平均分子量:1500)
 (d5):PTMG(三菱化学(株)製、PTMG1800、数平均分子量:1800)
 (d7):PTMG(三菱化学(株)製、PTMG3000、数平均分子量:3000)
 (d8):PEG(日油(株)製、PEG♯1000、数平均分子量:1000)
 (d9):PPG(三洋化成(株)製、PP-1000、数平均分子量:1000)
 (d10):PPG(三洋化成(株)製、PP-2000、数平均分子量:2000)
 (d11):PPG(三洋化成(株)製、PP-3000、数平均分子量:3200)
 (d12):PPG(三洋化成(株)製、PP-4000、数平均分子量:4150)
 (d13):テトラメチレングリコール-エチレングリコール共重合体(日油(株)製、DC-1100、数平均分子量:1000)
 (d14):テトラメチレングリコール-エチレングリコール共重合体(日油(株)製、DC-1800E、数平均分子量:1800)
 (d15):テトラメチレングリコール-エチレングリコール共重合体(日油(株)製、DC-3000E、数平均分子量:3000)
 (d16):テトラメチレングリコール-プロピレングリコール共重合体(日油(株)製、DCB-2000、数平均分子量:2000)
 実施例27~41の金属ナノインクの組成とともに、評価結果を表3に示す。A27~A41は実施例27~41である。なお、表3中のAgナノ粒子の量は、分散剤のアミンも含む量である。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、これらの実施例でも、基材に対する金属膜の密着性が高く、初期の体積抵抗値が低かった。また、実施例では、金属ナノインクの塗工性も高く、良好な塗膜が形成された。また、実施例では、高い貯蔵安定性が得られた。
 本発明の実施形態に係る金属ナノインクは、基材に対する密着性が高く、低抵抗の金属膜を形成することができるため、高導電性の金属膜が利用される種々の用途、例えば、配線基板などの回路パターンなどの形成に有用である。

Claims (14)

  1.  金属ナノ粒子と、
     重合反応性化合物と、
     重合反応開始剤と、
     揮発性の液状媒体と、
     分散剤と、を含み、
     前記重合反応開始剤は、熱および/または光の作用により活性化して前記重合反応性化合物の重合を進行させるものであり、
     前記分散剤は、C6-14アルキルアミンを含む、焼成型の金属ナノインク。
  2.  前記分散剤は、C8-12アルキルアミンを含む、請求項1に記載の金属ナノインク。
  3.  前記金属ナノインク中の前記液状媒体の割合は、25~95質量%である、請求項1または2に記載の金属ナノインク。
  4.  前記重合反応開始剤と前記重合反応性化合物との総量は、前記金属ナノ粒子100質量部に対して、3~50質量部である、請求項1~3のいずれか1項に記載の金属ナノインク。
  5.  前記重合反応開始剤は、熱および/または光の作用により活性化してカチオンを生成す
    る、請求項1~4のいずれか1項に記載の金属ナノインク。
  6.  前記重合反応性化合物は、熱硬化性樹脂であり、
     前記重合反応開始剤は、前記熱硬化性樹脂を硬化させる硬化剤である、請求項1~5のいずれか1項に記載の金属ナノインク。
  7.  前記重合反応性化合物は、エポキシ樹脂およびビニルエーテルからなる群より選択される少なくとも一種である、請求項1~6のいずれか1項に記載の金属ナノインク。
  8.  前記重合反応性化合物は、脂環式エポキシ樹脂およびビニルエーテルからなる群より選択される少なくとも一種である、請求項1~7のいずれか1項に記載の金属ナノインク。
  9.  前記重合反応性化合物は、シクロアルケンオキサイド型の脂環式エポキシ樹脂およびビニルエーテルからなる群より選択される少なくとも一種である、請求項1~8のいずれか1項に記載の金属ナノインク。
  10.  さらにポリオキシアルキレンユニットを有するポリエーテル化合物を含む、請求項1~9のいずれか1項に記載の金属ナノインク。
  11.  前記ポリエーテル化合物は、少なくともポリオキシテトラメチレンユニットを含む、請求項10に記載の金属ナノインク。
  12.  前記ポリエーテル化合物の数平均分子量は、1000~5000である、請求項10または11に記載の金属ナノインク。
  13.  前記金属ナノ粒子の平均粒子径は、5~500nmである、請求項1~12のいずれか1項に記載の金属ナノインク。
  14.  請求項1~13のいずれか1項に記載の金属ナノインクを基材に塗布して塗膜を形成する工程、および
     前記塗膜を焼成して金属膜を形成する工程、を含む、金属膜の製造方法。
PCT/JP2016/002534 2015-05-27 2016-05-25 金属ナノインクおよびそれを用いた金属膜の製造方法 WO2016189866A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680027147.7A CN107636087B (zh) 2015-05-27 2016-05-25 金属纳米油墨及使用了该金属纳米油墨的金属膜的制造方法
KR1020177034211A KR20180012765A (ko) 2015-05-27 2016-05-25 금속 나노 잉크 및 그것을 이용한 금속막의 제조 방법
US15/576,534 US10626280B2 (en) 2015-05-27 2016-05-25 Nano-metal ink and process for producing metal film using same
EP16799579.4A EP3305862B1 (en) 2015-05-27 2016-05-25 Nano-metal ink and process for producing metal film using same
JP2017520241A JP6732199B2 (ja) 2015-05-27 2016-05-25 金属ナノインクおよびそれを用いた金属膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-107607 2015-05-27
JP2015107607 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016189866A1 true WO2016189866A1 (ja) 2016-12-01

Family

ID=57394203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002534 WO2016189866A1 (ja) 2015-05-27 2016-05-25 金属ナノインクおよびそれを用いた金属膜の製造方法

Country Status (7)

Country Link
US (1) US10626280B2 (ja)
EP (1) EP3305862B1 (ja)
JP (1) JP6732199B2 (ja)
KR (1) KR20180012765A (ja)
CN (1) CN107636087B (ja)
TW (1) TWI716408B (ja)
WO (1) WO2016189866A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116978A1 (ja) * 2017-12-14 2019-06-20 ナガセケムテックス株式会社 金属インク、金属インクの製造方法、および金属パターンを備える基材の製造方法
WO2019159566A1 (ja) * 2018-02-14 2019-08-22 株式会社スリーボンド 導電性接着剤およびその硬化物
WO2020075590A1 (ja) * 2018-10-11 2020-04-16 株式会社ダイセル インク、焼結体、及び装飾ガラス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698925B (zh) * 2019-10-16 2022-03-08 江苏科技大学 一种纳米印刷导电油墨组合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329945A (ja) * 2001-04-27 2002-11-15 Harima Chem Inc 異方性導電材料を利用する基板間導通の形成方法
JP2006233034A (ja) * 2005-02-25 2006-09-07 Toyo Ink Mfg Co Ltd ミラーインキおよび鏡面印刷方法
JP2007317367A (ja) * 2006-05-23 2007-12-06 Dainippon Ink & Chem Inc 導電性膜の製造方法
JP2009138242A (ja) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
JP2011037999A (ja) * 2009-08-12 2011-02-24 Dic Corp 導電性インキ及び導電性パターン形成方法
JP2014080559A (ja) * 2012-09-27 2014-05-08 Mitsuboshi Belting Ltd 導電性組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309521B2 (ja) 2006-10-11 2013-10-09 三菱マテリアル株式会社 電極形成用組成物及びその製造方法並びに該組成物を用いた電極の形成方法
JP5201407B2 (ja) 2008-09-24 2013-06-05 Dic株式会社 導電性インクジェットインク
JP2013112807A (ja) 2011-12-01 2013-06-10 Daiso Co Ltd 導電性インク組成物、及び導電性パターンの製造方法
WO2015163076A1 (ja) * 2014-04-25 2015-10-29 株式会社ダイセル 銀粒子塗料組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329945A (ja) * 2001-04-27 2002-11-15 Harima Chem Inc 異方性導電材料を利用する基板間導通の形成方法
JP2006233034A (ja) * 2005-02-25 2006-09-07 Toyo Ink Mfg Co Ltd ミラーインキおよび鏡面印刷方法
JP2007317367A (ja) * 2006-05-23 2007-12-06 Dainippon Ink & Chem Inc 導電性膜の製造方法
JP2009138242A (ja) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
JP2011037999A (ja) * 2009-08-12 2011-02-24 Dic Corp 導電性インキ及び導電性パターン形成方法
JP2014080559A (ja) * 2012-09-27 2014-05-08 Mitsuboshi Belting Ltd 導電性組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116978A1 (ja) * 2017-12-14 2019-06-20 ナガセケムテックス株式会社 金属インク、金属インクの製造方法、および金属パターンを備える基材の製造方法
JPWO2019116978A1 (ja) * 2017-12-14 2020-12-17 ナガセケムテックス株式会社 金属インク、金属インクの製造方法、および金属パターンを備える基材の製造方法
JP7248592B2 (ja) 2017-12-14 2023-03-29 ナガセケムテックス株式会社 金属インク、金属インクの製造方法、および金属パターンを備える基材の製造方法
WO2019159566A1 (ja) * 2018-02-14 2019-08-22 株式会社スリーボンド 導電性接着剤およびその硬化物
US11332645B2 (en) 2018-02-14 2022-05-17 Threebond Co., Ltd. Conductive adhesive and cured product thereof
WO2020075590A1 (ja) * 2018-10-11 2020-04-16 株式会社ダイセル インク、焼結体、及び装飾ガラス

Also Published As

Publication number Publication date
EP3305862A1 (en) 2018-04-11
KR20180012765A (ko) 2018-02-06
US10626280B2 (en) 2020-04-21
US20180148587A1 (en) 2018-05-31
CN107636087B (zh) 2021-02-02
EP3305862A4 (en) 2018-05-02
TW201708438A (zh) 2017-03-01
EP3305862B1 (en) 2019-07-10
CN107636087A (zh) 2018-01-26
TWI716408B (zh) 2021-01-21
JPWO2016189866A1 (ja) 2018-05-10
JP6732199B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6732199B2 (ja) 金属ナノインクおよびそれを用いた金属膜の製造方法
KR102295909B1 (ko) 은 피복 합금 분말, 도전성 페이스트, 전자 부품 및 전기 장치
JP5735716B2 (ja) 導電材料及び接続構造体
JP6140189B2 (ja) 導電ペースト及びその製造方法
WO2012098643A1 (ja) 金属粒子粉末およびそれを用いたペースト組成物
JP6018476B2 (ja) 熱硬化型導電性ペースト
TW201351044A (zh) 紫外線硬化性樹脂組成物
JP2013077557A (ja) 異方性導電材料及び接続構造体
JP6496431B2 (ja) 導電材料及び接続構造体
JP2006032165A (ja) 導電性金属粒子とそれを用いた導電性樹脂組成物及び導電性接着剤
JP2015137338A (ja) 導電性繊維被覆粒子を含む硬化性組成物
JP2010153506A (ja) 導電性バンプ形成用組成物及びそれを用いてなるプリント配線基板
JP2010055788A (ja) 銀ペースト
TW201932551A (zh) 金屬墨、金屬墨之製造方法及具金屬圖案之基材之製造方法
JP4241546B2 (ja) 反応型導電性樹脂組成物及びそれを用いた導電性接着剤
JP2014001354A (ja) 導電性インク組成物
JP2018060786A (ja) 導電材料及び接続構造体
KR20220011375A (ko) 투명 전극용 나노 실버 졸 페이스트
JP2015137336A (ja) 導電性繊維被覆粒子を含む硬化性組成物
JP2015137339A (ja) 導電性繊維被覆粒子を含む硬化性組成物
JP2024020841A (ja) 導電性組成物
CN117222702A (zh) 能够烧结的导电组合物
JP2015008131A (ja) 導電材料及び接続構造体
JP2014037537A (ja) 導電性樹脂組成物、それを用いて得られる導電性パターンを有する基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520241

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576534

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177034211

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799579

Country of ref document: EP