WO2016183983A1 - 一种人造金红石的制备方法 - Google Patents

一种人造金红石的制备方法 Download PDF

Info

Publication number
WO2016183983A1
WO2016183983A1 PCT/CN2015/089845 CN2015089845W WO2016183983A1 WO 2016183983 A1 WO2016183983 A1 WO 2016183983A1 CN 2015089845 W CN2015089845 W CN 2015089845W WO 2016183983 A1 WO2016183983 A1 WO 2016183983A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
titanium slag
soluble titanium
weight
modifier
Prior art date
Application number
PCT/CN2015/089845
Other languages
English (en)
French (fr)
Inventor
陈菓
陈晋
彭金辉
张利波
郭胜惠
周俊文
Original Assignee
云南民族大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南民族大学 filed Critical 云南民族大学
Publication of WO2016183983A1 publication Critical patent/WO2016183983A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide

Definitions

  • the invention belongs to the technical field of preparation of inorganic crystals. More specifically, the present invention relates to a method of preparing artificial rutile.
  • Acid-soluble titanium slag and metallic iron can be obtained by melting ilmenite in an electric furnace.
  • the smelting process is mainly to remove iron, but the ability to remove non-ferrous impurities is poor, so the quality of the product is greatly affected by the raw materials.
  • the main production method of titanium slag is mainly made of ilmenite ore, which is made into acid-soluble high-titanium slag or enriched and processed into high-titanium slag and artificial rutile by electric furnace smelting.
  • Preparation out of conventional titanium rich ilmenite smelting furnace feed generally contain TiO 2 by weight of 60% -75%, Ca and Mg up to 4% to 7%.
  • the production of titanium dioxide by the chlorination method requires that the content of TiO 2 in the raw material is >90%, and CaO+MgO ⁇ 1.5%.
  • CN 200310110821 discloses a method for improving the grade of titanium slag TiO 2 , which adopts titanium slag produced in Panxi area, and obtains artificial rutile with TiO 2 content of 89.8% through fluidized roasting, gas reduction and high pressure acid leaching. The process fluidization and high pressure equipment are required to be higher, and the obtained artificial rutile grade is lower.
  • CN 100455683C discloses a method for preparing a titanium-rich material by using an electric furnace titanium slag. The method uses a titanium slag in Yunnan as a raw material, and proposes an acid-base combined leaching method to obtain a titanium-rich material with TiO 2 >90%. High-pressure equipment, high investment costs, also improve the technical operation difficulty, and the quality of the titanium-rich material obtained is low.
  • the method adopts simple equipment, mild process conditions, low energy consumption and less by-products, and meets the requirements of energy saving, emission reduction and clean metallurgy.
  • the present invention has been achieved by the following technical solutions.
  • the invention relates to a method for preparing artificial rutile.
  • the acid-soluble titanium slag and the modifier are uniformly mixed, and then modified in a microwave reactor at a temperature of 750 ° C to 850 ° C. After treatment for 2h ⁇ 4h, a modified acid-soluble titanium slag is obtained;
  • the modified acid-soluble titanium slag obtained in the step A is mixed with the inorganic acid aqueous solution to perform acid removal, and then filtered, washed and dried. Obtaining an acid leaching residue;
  • the acid leaching residue obtained in the step B is calcined at a temperature of from 900 ° C to 1000 ° C to obtain the artificial rutile.
  • the acid-soluble titanium slag in the step A, has a TiO 2 content of 72.0% by weight or more, SiO 2 of 9.5% or less, MgO of 1.5% or less, and CaO of 0.5% by weight.
  • the following titanium slag; the acid-soluble titanium slag has a particle size of -100 mesh of 80% by weight or more.
  • the modifier is one or more selected from the group consisting of sodium carbonate, sodium hydroxide, phosphorus pentoxide, sodium phosphate, and ammonium dihydrogen phosphate.
  • Modifier the modifier has a particle size of -200 mesh.
  • the acid-soluble titanium slag has a particle size of -160 mesh and is 80% by weight or more.
  • the modified acid-soluble titanium slag has a particle size of -160 mesh and is 80% by weight or more.
  • the frequency of the microwave reactor is from 912 to 920 MHz.
  • the frequency of the microwave reactor is from 912 to 918 MHz.
  • the mineral acid is sulfuric acid.
  • step B the aqueous mineral acid solution
  • the concentration is 15 to 30% by weight.
  • step B the acid removal treatment is carried out at a boiling temperature for 90 to 120 minutes.
  • step C the calcination is carried out in a microwave reactor at a frequency of 912 to 9180 MHz for 28 to 32 minutes.
  • step C the calcination is carried out in a microwave reactor at a frequency of 912 to 918 MHz for 1 to 3 hours.
  • the artificial rutile in step C, has a purity of 91% or more by weight.
  • the beneficial effects of the invention are that the artificial rutile obtained by the method of the invention completely meets the requirements for the production of titanium white by the chlorination method, and the raw material has wide adaptability compared with the prior art. Due to the selection of microwave heating as the heating method, the equipment investment required by the invention is 17% less than the prior art, the energy consumption is 25% lower, the purity of the artificial rutile is more than 91%, the by-products are less, the environmental pollution is small, and the energy conservation and emission reduction are met. With the requirements of clean metallurgy.
  • Figure 1 is an X-ray diffraction pattern of an artificial rutile prepared by the method of the present invention.
  • the invention relates to a method for preparing artificial rutile.
  • the invention adopts microwave to irradiate the acid-soluble titanium slag to which the modifier is added by microwave irradiation.
  • the microwave irradiation treatment can cause obvious intergranular cracks inside the acid-soluble titanium slag, and these cracks facilitate the leaching agent to enter the acid-soluble titanium slag, making it easier to leaching.
  • the additive has a strong destructive effect on the silicate minerals, improves the efficiency of impurity elution, and thereby improves the purity of the artificial rutile.
  • the acid-soluble titanium slag and the modifier are uniformly mixed, and then modified in a microwave reactor at a temperature of 750 ° C to 850 ° C. deal with From 2h to 4h, a modified acid-soluble titanium slag is obtained.
  • the acid-soluble titanium slag used in the present invention is a by-product obtained by melting ilmenite in an electric furnace.
  • the acid soluble titanium slag used in the present invention generally has the following chemical composition: by weight
  • TiO 2 is determined by the aluminum reduction method according to the GB/T1706-2006 standard.
  • SiO 2 is determined by the perchloric acid dehydration weight method of the root YB/T190.1-2001 standard.
  • MgO is determined by CyDTA titration according to the YB/T190.4-2001 standard.
  • CaO is determined by atomic absorption spectrometry according to the YSBC19811-2000 standard.
  • the acid-soluble titanium slag has a particle size of -100 mesh of 80% by weight or more. If the particle size of the acid-soluble titanium slag does not meet the requirements, it can be processed by using existing grinding equipment and screening equipment, for example, by Nanchang General Testing and Prototyping Factory, the sealed sample pulverizer (JG100-3)
  • the grinding equipment sold is a screening equipment sold by the Shangxu Wusi Instrument Factory in Shangyu City, Zhejiangzhou.
  • the acid-soluble titanium slag used is, for example, acid solubility obtained by Yuntong Group Titanium Industry Co., Ltd., Pangang Group Titanium Industry Co., Ltd., Yunnan Xingling Mining Co., Ltd. or Yunnan Xinli Nonferrous Metal Co., Ltd. Titanium slag.
  • the acid-soluble titanium slag may also be a commercially available product, but their chemical composition should satisfy the above requirements.
  • the modification treatment is understood to be a treatment for changing the phase composition of the acid-soluble titanium slag.
  • the modifier is understood to be a chemical substance having the ability to destroy the structure of a solid solution. Therefore, any other chemical substance having such a property and having no adverse effect on its subsequent treatment can be used in the present invention and is also within the scope of the present invention.
  • the modifier is one or more modifiers selected from the group consisting of sodium carbonate, sodium hydroxide, phosphorus pentoxide, sodium phosphate, and ammonium dihydrogen phosphate.
  • the modifier is one or more modifiers selected from the group consisting of sodium carbonate, sodium hydroxide, sodium phosphate, and ammonium dihydrogen phosphate.
  • the modifier is one or more modifiers selected from the group consisting of sodium carbonate, sodium hydroxide and ammonium dihydrogen phosphate.
  • the modifier has a particle size of -200 mesh.
  • the modifiers used in the present invention are all currently marketed products.
  • the weight ratio of the acid-soluble titanium slag to the modifier is less than 5:1, the reaction is incomplete, and some of the acid-soluble titanium slag remains unreacted; if the weight ratio of the acid-soluble titanium slag to the modifier Above 5:2, some of the modifier is unreacted and consumes too much modifier; therefore, it is reasonable that the weight ratio of the acid-soluble titanium slag to the modifier is 5:1 to 2, preferably 5: 1.2 to 1.8; more preferably 5: 1.4 to 1.6.
  • the acid-soluble titanium slag and the modifier need to be modified at a temperature of 750 ° C to 850 ° C for 2 h to 4 h.
  • the reaction temperature of the acid-soluble titanium slag and the modifier is lower than 750 ° C, the reaction is insufficient and the degree of deepening is insufficient; if the temperature of the modification treatment is higher than 850 ° C, sintering phenomenon occurs;
  • the temperature of the modification treatment is 750 ° C to 850 ° C, and is preferably 780 ° C to 820 ° C.
  • the modification treatment time is less than 2 h, the reaction is incomplete; if the modification treatment time is longer than 4 h, excessive and unnecessary energy consumption is generated; therefore, the modification treatment The time is from 2 h to 4 h, preferably from 2.4 h to 3.6 h, more preferably from 2.8 h to 3.2 h.
  • a modified acid-soluble titanium slag is prepared, and its basic chemical composition is a series of non-stoichiometric Na-Fe-Ti-O solid solution and Na-Mg-Ti-O solid solution.
  • the detection method is X-ray. Diffraction analysis.
  • the modified acid-soluble titanium slag has a particle size of -160 mesh and is 80% by weight or more.
  • the apparatus used in the modification treatment of the present invention is a microwave reactor which is a product currently on the market, such as a product sold by Kunming University of Science and Technology under the trade name Microwave Box Reactor (HM type).
  • HM type Microwave Box Reactor
  • the frequency of the microwave reactor used in the present invention is 912 to 920 MHz, preferably 912 to 918 MHz, and the microwave reactor power should be selected according to the amount of the treated material.
  • the modified acid-soluble titanium slag obtained in the step A is mixed with the inorganic acid aqueous solution to perform acid removal, and then filtered, washed and dried. , to obtain an acid leaching residue. It should be noted here that the solid-liquid ratio of the modified acid-soluble titanium slag and the inorganic acid aqueous solution is calculated by weight ratio.
  • the purpose of this step is to remove impurities in the modified acid-soluble titanium slag using an aqueous solution of a mineral acid.
  • the impurities to be removed are, for example, impurities such as Fe 2 O 3 , CaO, MgO, and Al 2 O 3 .
  • the basic chemical composition of the acid leaching slag obtained in this step is anatase TiO 2 , rutile TiO 2 and Na-Fe-Ti-O solid solution.
  • the mineral acid is sulfuric acid.
  • inorganic acids such as hydrochloric acid
  • hydrochloric acid may also be employed in the properties or properties, and such inorganic acids are also within the scope of the present invention.
  • the solid-liquid ratio of the modified acid-soluble titanium slag to the inorganic acid aqueous solution is higher than 1:4, the leaching acid quickly reaches saturation and the leaching cannot be continued; if the acid-soluble titanium slag and the inorganic acid aqueous solution are modified
  • the solid-liquid ratio is lower than 1:6, the volume of the reaction vessel is increased, and it is difficult to handle. Therefore, it is feasible that the solid-liquid ratio of the modified acid-soluble titanium slag to the inorganic acid aqueous solution is 1:4 to 6, preferably 1 : 4.5 to 5.5, more preferably 1:4.8 to 5.2.
  • the concentration of the aqueous mineral acid solution is 15 to 30% by weight.
  • the acidic decontamination is carried out at a boiling temperature for 90 to 120 minutes.
  • the equipment used for the filtration is a product currently on the market, such as a product sold by METTLER TOLEDO Instrument Co., Ltd. under the trade name circulating water vacuum pump (SHZ-D (III)).
  • the equipment used for washing is a product currently on the market, such as a product sold by METTLER TOLEDO Instrument Co., Ltd. under the trade name circulating water vacuum pump (SHZ-D (III)).
  • the detergent used is usually water or other suitable solvent.
  • the water content is up to 10.0% by weight.
  • the drying equipment used in the present invention is a product currently on the market, such as a product sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE).
  • DZX-9030MBE Digital Drum Drying Box
  • the acid leaching residue obtained in the step B is calcined at a temperature of from 900 ° C to 1000 ° C to obtain the artificial rutile.
  • the calcination temperature is 900.
  • a temperature of from ° C to 1000 ° C is suitable, and is preferably from 930 ° C to 960 ° C. Calcined at a temperature of 900 ° C to 1000 ° C for 1.0 to 3.0 h.
  • the calcining apparatus used in the present invention is a product currently on the market, such as a product sold by Kunming University of Science and Technology under the trade name Microwave Box Reactor (HM type).
  • HM type Microwave Box Reactor
  • the product obtained in this calcination step was subjected to qualitative and quantitative analysis by X-ray diffraction structure.
  • the equipment used for X-ray diffraction analysis was an X-ray diffraction analyzer (D/Max 2200X) from Rigaku, Japan.
  • the analysis conditions were a tube pressure of 35 kV, a tube flow of 20 mA, and a graphite monochromator filter.
  • the ⁇ 2 ⁇ step-scan method performs analysis test at a scan speed of 3°/min in the range of 3 to 100°.
  • the acid-soluble titanium slag obtained by Pangang Group Titanium Industry Co., Ltd. was analyzed by the method described in this manual. Its chemical composition is TiO 2 72.0% by weight, SiO 2 9.5%, MgO 1.5% and CaO 0.5%.
  • the acid-soluble titanium slag has a particle size of -100 mesh and is 80% by weight.
  • the acid-soluble titanium slag and the sodium carbonate modifier are uniformly mixed, and then in the name of the microwave box reactor (HM) by Kunming University of Science and Technology. Type) sold in a microwave reactor at a frequency of 912 MHz and a temperature of 780 ° C for 2.4 h to obtain a modified acid-soluble titanium slag, which is detected by the method described in the present specification.
  • the chemical composition is Na 2 Fe 2 Ti 6 O 16 , Na 0.9 Fe 0.9 Ti 1.1 O 4 , Na 0.9 Mg 0.45 Ti 3.55 O 8 , Na 5.48 Mg 0.74 Ti 7.26 O 18 , and its particle size is -160 mesh by weight. 82%; then
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 26% by weight of a sulfuric acid aqueous solution of 1:4.5.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed 3 times with water to a liquid-solid ratio of 3:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 95 ° C. Drying under the conditions of 0.6 h, obtaining an acid leaching residue having a water content of 10.0% by weight;
  • HM type microwave box reactor
  • the acid leaching residue obtained in step B was calcined at a temperature of 930 ° C for 2.0 h, and the obtained product was subjected to X-ray diffraction analysis.
  • the results are shown in Fig. 1. From the results, it was confirmed that the product was an artificial rutile having a TiO 2 purity of 91.7%, wherein the content of CaO was 0.27% by weight, and the content of MgO was 0.92% by weight.
  • the acid-soluble titanium slag obtained by Yunnan Xinli Nonferrous Metal Co., Ltd. was analyzed by the method described in the present specification, and its chemical composition was 72.5% by weight of TiO 2 , 9.2% by SiO 2 , 1.2% by MgO and 0.5% by CaO;
  • the acid-soluble titanium slag has a particle size of -100 mesh and is 80 86 82 84 84 83% by weight.
  • the weight ratio of the acid-soluble titanium slag to the modifier is 5:1.6
  • the acid-soluble titanium slag and the sodium hydroxide modifier are uniformly mixed, and then in the microwave box reactor by the Kunming University of Science and Technology (trade name) HM type) sold in a microwave reactor under the conditions of a microwave reactor frequency of 915 MHz and a temperature of 800 ° C for 3.6 h to obtain a modified acid-soluble titanium slag, which is detected by the method described in the present specification.
  • the chemical composition is rutile TiO 2 , Fe 2 Ti 2 O 5 and its particle size is -160 mesh is 80% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 15% by weight of a sulfuric acid aqueous solution of 1:5.5.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed 4 times with liquid to solid ratio of 4:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 100 ° C. Drying under the conditions of 0.8 h, obtaining an acid leaching residue having a water content of 9.8% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 92.1%, wherein the content of CaO was 0.24% by weight, and the content of MgO was 0.89% by weight.
  • the acid-soluble titanium slag obtained by Yuntong Group Titanium Industry Co., Ltd. was analyzed by the method described in the present specification, and its chemical composition was 72.8% by weight of TiO 2 , SiO 2 9.0%, MgO 0.9% and CaO 0.2%;
  • the acid-soluble titanium slag has a particle size of -100 mesh and is 82% by weight.
  • the acid-soluble titanium slag is uniformly mixed with sodium carbonate, sodium hydroxide, phosphorus pentoxide, sodium phosphate or ammonium dihydrogen phosphate modifier.
  • the microwave reactor in a microwave reactor sold by Kunming University of Science and Technology under the trade name of a microwave box reactor (HM type), the microwave reactor has a frequency of 918 MHz and a temperature of 750 ° C for 2.0 h, thereby obtaining a kind of
  • the modified acid-soluble titanium slag is detected by the method described in the specification, and its chemical composition is rutile type TiO 2 , Na 0.36 Fe 0.69 Ti 3.34 O 8 , Fe 2 Ti 2 O 5 , and its particle size is -160 mesh. 85% by weight; then
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 20% by weight of a sulfuric acid aqueous solution of 1:4.0.
  • acidic doping for 100min remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc., and then use the circulating water vacuum pump (SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed twice with water at a liquid-solid ratio of 5:1, and then dried using a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 105 °C. Drying for 0.5 h under the conditions, obtaining an acid leaching residue having a water content of 9.8% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 92.0%, wherein the content of CaO was 0.20% by weight, and the content of MgO was 0.75% by weight.
  • the acid-soluble titanium slag obtained by Yunnan Xingling Mining Co., Ltd. was analyzed by the method described in the present specification, and its chemical composition was TiO 2 73.0% by weight, SiO 2 8.5%, MgO 1.0% and CaO 0.3% by weight;
  • the particle size of the acid-soluble titanium slag is -100 mesh and is 84% by weight.
  • the acid-soluble titanium slag and the sodium phosphate modifier are uniformly mixed according to the weight ratio of the acid-soluble titanium slag to the modifier of 5:1.2, and then the product is called a microwave box reactor (HM) by Kunming University of Science and Technology. Type) sold in a microwave reactor at a frequency of 912 MHz and a temperature of 850 ° C for 4.0 h to obtain a modified acid-soluble titanium slag, which is detected by the method described in the present specification.
  • the chemical composition is rutile type TiO 2 , Na 3 PO 4 , Fe 2 Ti 2 O 5 , and its particle size is -160 mesh, which is 85% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a 30% by weight aqueous solution of sulfuric acid.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D (III) circulating water vacuum pump
  • the filter is sold, and then washed 3 times with water to a liquid-solid ratio of 3:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 95 ° C. Drying under the conditions of 0.6 h, obtaining an acid leaching residue having a water content of 9.5% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 92.6%, wherein the content of CaO was 0.21% by weight, and the content of MgO was 0.86% by weight.
  • the acid-soluble titanium slag obtained by Pangang Group Titanium Industry Co., Ltd. was analyzed by the method described in this manual. Its chemical composition is 72.8% by weight of TiO 2 , SiO 2 9.0%, MgO 1.4% and CaO 0.3%.
  • the acid-soluble titanium slag has a particle size of -100 mesh and is 84% by weight.
  • the acid-soluble titanium slag and the sodium carbonate and sodium hydroxide mixture (weight ratio 1:1) modifier are uniformly mixed, and then in Kunming
  • the University of Science and Technology used a microwave reactor with a commercial name microwave box reactor (HM type) to modify the microwave reactor at a frequency of 915MHz and a temperature of 830 °C for 2.6 hours to obtain a modified acid-soluble titanium.
  • HM type commercial name microwave box reactor
  • the slag is detected by the method described in the specification, and its chemical composition is rutile type TiO 2 , Na 0.36 Fe 0.69 Ti 3.34 O 8 , Fe 2 Ti 2 O 5 , and its particle size is -160 mesh, 85% by weight; then
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a 28% by weight aqueous solution of sulfuric acid.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed 4 times with liquid to solid ratio of 4:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 100 ° C. Drying for 1.0 h under the conditions to obtain an acid leaching residue having a water content of 9.0% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 93.4%, wherein the content of CaO was 0.18% by weight, and the content of MgO was 0.84% by weight.
  • the acid-soluble titanium slag obtained by Yuntong Group Titanium Industry Co., Ltd. was analyzed by the method described in the present specification, and its chemical composition was TiO 2 74.0% by weight, SiO 2 8.5%, MgO 0.8% and CaO 0.2% by weight;
  • the acid-soluble titanium slag has a particle size of -100 mesh and is 80 86 82 84 84 83% by weight.
  • the acid-soluble titanium slag is mixed with sodium phosphate and ammonium dihydrogen phosphate mixture (2:1) modifier uniformly, and then by Kunming Institute of Technology The university has modified the acid-soluble titanium slag in a microwave reactor sold under the trade name of microwave box reactor (HM type) under the condition of microwave reactor frequency of 920MHz and temperature of 820 °C for 3.0h. Detected by the method described in this specification, its chemical composition is rutile type TiO 2 , Na 3 PO 4 , Fe 2 Ti 2 O 5 , its particle size is -160 mesh is 85% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous solution of the sulfuric acid according to the solid-liquid ratio of the modified acid-soluble titanium slag to the aqueous solution of 20% by weight of the sulfuric acid aqueous solution of 1:5.2, at the boiling temperature.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc., and then use the circulating water vacuum pump (SHZ-D (III)) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed twice with water at a liquid-solid ratio of 5:1, and then dried using a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 105 °C. Drying for 1.0 h under the conditions, obtaining an acid leaching residue having a water content of 9.5% by weight;
  • DZX-9030MBE Digital Drum Drying Box
  • the product was determined to be an artificial rutile having a TiO 2 purity of 93.2%, wherein the content of CaO was 0.16% by weight, and the content of MgO was 0.82% by weight.
  • the acid-soluble titanium slag used was prepared.
  • the weight ratio of the acid-soluble titanium slag to the modifier is 5:1.4, the acid-soluble titanium slag and the sodium carbonate modifier are uniformly mixed, and then modified in an electric resistance furnace at a temperature of 780 ° C. 2.4h, a modified acid-soluble titanium slag was obtained, and then ground to a particle size of -160 mesh to 82% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 26% by weight of a sulfuric acid aqueous solution of 1:4.5.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed 3 times with liquid to solid ratio of 3:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 95 °C. Drying under the conditions of 0.6 h, obtaining an acid leaching residue having a water content of 10.0% by weight;
  • the acid leaching residue obtained in step B was calcined at a temperature of 930 ° C for 2.0 h, and the obtained product was subjected to X-ray diffraction analysis. From the results, it was confirmed that the product was artificial rutile having a TiO 2 purity of 80.18%, wherein the content of CaO was 0.27% by weight, and the content of MgO was 0.92% by weight.
  • the acid soluble titanium slag of Example 2 was used.
  • the acid-soluble titanium slag is uniformly mixed with the sodium hydroxide modifier, and then modified in an electric resistance furnace at a temperature of 800 ° C. After treatment for 3.6 h, a modified acid-soluble titanium slag is obtained, which is further ground to a particle size of -160 mesh to 80% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 15% by weight of a sulfuric acid aqueous solution of 1:5.5.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed 4 times with liquid to solid ratio of 4:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 100 ° C. Drying under the conditions of 0.8 h, obtaining an acid leaching residue having a water content of 9.8% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 79.25%, wherein the content of CaO was 0.27% by weight, and the content of MgO was 0.97% by weight.
  • the acid-soluble titanium slag of Example 3 was used.
  • the weight ratio of the acid-soluble titanium slag to the modifier is 5:1.0, the acid-soluble titanium slag and the phosphorus pentoxide modifier are uniformly mixed, and then modified in a resistance furnace at a temperature of 750 ° C. After treatment for 2.0 h, a modified acid-soluble titanium slag was obtained, which was further ground to a particle size of -160 mesh to 85% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a concentration of 20% by weight of a sulfuric acid aqueous solution of 1:4.0.
  • acidic doping for 100min remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc., and then use the circulating water vacuum pump (SHZ-D(III) under the trade name of METTLER TOLEDO Instrument Co., Ltd.
  • the filter is sold, and then washed twice with water at a liquid-solid ratio of 5:1, and then dried using a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 105 °C. Drying for 0.5 h under the conditions, obtaining an acid leaching residue having a water content of 9.8% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 76.86%, wherein the content of CaO was 0.39% by weight, and the content of MgO was 1.16% by weight.
  • the acid-soluble titanium slag of Example 4 was used.
  • the weight ratio of the acid-soluble titanium slag to the modifier is 5:1.2, the acid-soluble titanium slag and the sodium phosphate modifier are uniformly mixed, and then modified in an electric resistance furnace at a temperature of 850 ° C. 4.0h, a modified acid-soluble titanium slag was obtained, and then ground to a particle size of -160 mesh to 85% by weight;
  • the modified acid-soluble titanium slag obtained in the step A is uniformly mixed with the aqueous sulfuric acid solution at a boiling temperature according to a solid-liquid ratio of the modified acid-soluble titanium slag to a 30% by weight aqueous solution of sulfuric acid.
  • remove impurities such as Fe 2 O 3 , CaO, MgO, Al 2 O 3 , etc.
  • SHZ-D (III) circulating water vacuum pump
  • the filter is sold, and then washed 3 times with water to a liquid-solid ratio of 3:1, and then used by a drying equipment sold by Shanghai Boxun Industrial Equipment Co., Ltd. under the trade name Digital Drum Drying Box (DZX-9030MBE) at a temperature of 95 ° C. Drying under the conditions of 0.6 h, obtaining an acid leaching residue having a water content of 9.5% by weight;
  • the product was determined to be an artificial rutile having a TiO 2 purity of 82.08%, wherein the content of CaO was 0.32% by weight, and the content of MgO was 1.22% by weight.

Abstract

提供一种人造金红石的制备方法,包括酸溶性钛渣与改性剂在微波反应器中进行改性处理、酸性除杂与煅烧。由于利用微波作为加热方式,该方法所需要的设备投资少,能耗低。人造金红石纯度在91%以上,副产物较少,环境污染小。

Description

一种人造金红石的制备方法 技术领域
本发明属于无机晶体的制备技术领域。更具体地,本发明涉及一种人造金红石的制备方法。
背景技术
电炉熔炼钛铁矿可以获得酸溶性钛渣和金属铁。熔炼过程主要是除铁,而对非铁杂质去除能力差,因而产品质量受原料影响较大。现阶段钛渣的主要生产方法主要是以钛铁矿为原料,采用电炉熔炼的方法制成酸溶性高钛渣或富集处理后加工成高钛渣和人造金红石。
传统电炉熔炼钛铁矿制备出来的富钛料一般含TiO2以重量计60%-75%,钙、镁含量可达4%~7%。而氯化法生产钛白要求原料中TiO2的含量>90%,且CaO+MgO<1.5%。
CN 200310110821公开了一种提高钛渣TiO2品位的方法,该发明采用攀西地区生产的钛渣,经流态化焙烧、煤气还原与高压酸浸,得到TiO2含量为89.8%的人造金红石,该工艺流态化与高压设备要求较高,得到的人造金红石品位较低。CN 100455683C公开了一种用电炉钛渣制取富钛料的方法,该方法以云南某地钛渣为原料,提出酸碱联合浸出法,得到TiO2>90%的富钛料,该工艺采用高压设备,投资成本较高,也提高了技术操作难度,且得到的富钛料质量较低。
为了解决现有技术存在的技术缺陷,本发明人在总结现有技术的基础上,通过大量实验研究与分析,终于完成了本发明。
发明内容
【技术问题】
本发明的目的是提供一种人造金红石的制备方法。该方法采用的设备简单,工艺条件温和,能耗较低,副产物较少,符合节能减排与清洁冶金的要求。
【技术方案】
本发明是通过下述技术方案实现的。
本发明涉及一种人造金红石的制备方法。
该制备方法的步骤如下:
A、改性处理
按照酸溶性钛渣与改性剂的重量比为5:1~2,将酸溶性钛渣与改性剂混合均匀,然后在微波反应器中在温度750℃~850℃的条件下进行改性处理2h~4h,得到一种改性酸溶性钛渣;接着
B、酸性除杂
按照改性酸溶性钛渣与无机酸水溶液固液比为1:4~6,将步骤A得到的改性酸溶性钛渣与无机酸水溶液混合均匀进行酸性除杂,再进行过滤、洗涤与干燥,得到一种酸浸渣;
C、煅烧
让步骤B得到的酸浸渣在温度900℃~1000℃的条件下进行煅烧,得到所述的人造金红石。
根据本发明的一种优选实施方式,在步骤A中,所述酸溶性钛渣是以重量计TiO2含量为72.0%以上、SiO2为9.5%以下、MgO为1.5%以下与CaO为0.5%以下的钛渣;所述酸溶性钛渣的粒度是-100目为以重量计80%以上。
根据本发明的另一种优选实施方式,在步骤A中,所述的改性剂是一种或多种选自碳酸钠、氢氧化钠、五氧化二磷、磷酸钠和磷酸二氢铵的改性剂;所述的改性剂的粒度是-200目。
根据本发明的另一种优选实施方式,在步骤A中,所述酸溶性钛渣的粒度是-160目为以重量计80%以上。
根据本发明的另一种优选实施方式,在步骤A中,所述改性酸溶性钛渣的粒度是-160目为以重量计80%以上。
根据本发明的另一种优选实施方式,在步骤A中,所述微波反应器的频率为912~920MHz。
根据本发明的另一种优选实施方式,在步骤A中,所述微波反应器的频率为912~918MHz。
根据本发明的另一种优选实施方式,在步骤B中,所述的无机酸是硫酸。
根据本发明的另一种优选实施方式,在步骤B中,所述无机酸水溶液的 浓度是以重量计15~30%。
根据本发明的另一种优选实施方式,在步骤B中,在沸腾温度下酸性除杂处理90~120min。
根据本发明的另一种优选实施方式,在步骤C中,所述的煅烧是在微波反应器中在频率912~9180MHz的条件下处理28~32min。
根据本发明的另一种优选实施方式,在步骤C中,所述的煅烧是在微波反应器中在频率912~918MHz的条件下处理1h~3h。
根据本发明的另一种优选实施方式,在步骤C中,所述人造金红石的纯度是以重量计91%以上。
【有益效果】
本发明的有益效果是:与现有技术相比,采用本发明方法所得到人造金红石完全符合氯化法生产钛白的要求,原料具有广泛的适应性。由于选用微波加热作为加热方式,本发明所需要的设备投资比现有技术少17%、能耗低25%、人造金红石纯度在91%以上,副产物较少,环境污染小,符合节能减排与清洁冶金的要求。
附图说明
图1是采用本发明方法制备的人造金红石的X-射线衍射图。
具体实施方式
下面将更详细地描述本发明。
本发明涉及一种人造金红石的制备方法。
本发明采用微波对添加改性剂的酸溶性钛渣进行微波辐照处理。其一,微波辐照处理可使酸溶性钛渣内部产生明显的晶粒间裂纹,而这些裂纹便于浸出剂进入酸溶性钛渣,使其更易于浸出。其二,所述添加剂对硅酸盐矿物具有强烈的破坏作用,提高了杂质溶出的效率,从而提高了人造金红石的纯度。
该制备方法的步骤如下:
A、改性处理
按照酸溶性钛渣与改性剂的重量比为5:1~2,将酸溶性钛渣与改性剂混合均匀,然后在微波反应器中在温度750℃~850℃的条件下进行改性处理 2h~4h,得到一种改性酸溶性钛渣。
本发明使用的酸溶性钛渣是在电炉熔炼钛铁矿时所得到的副产物。本发明使用的酸溶性钛渣一般具有下述化学组成:以重量计
Figure PCTCN2015089845-appb-000001
其中TiO2是根据GB/T1706-2006标准采用铝还原法测定的。SiO2是根YB/T190.1-2001标准采用高氯酸脱水重量法测定的。MgO是根据YB/T190.4-2001标准采用CyDTA滴定法测定的。CaO是根据YSBC19811-2000标准采用原子吸收光谱法测定的。
所述酸溶性钛渣的粒度是-100目为以重量计80%以上。如果所述酸溶性钛渣的粒度不符合其要求,可以使用现有的磨碎设备与筛分设备进行处理,例如由南昌通用化验制样机厂以商品名密封式制样粉碎机(JG100-3)销售的磨碎设备,由浙江上虞市道墟五四仪器厂以商品名标准筛销售的筛分设备。
在本发明中,所使用的酸溶性钛渣例如是由云铜集团钛业有限公司、攀钢集团钛业有限责任公司、云南兴棱矿业有限公司或云南新立有色金属有限公司获得的酸溶性钛渣。所述的酸溶性钛渣也可以是从市场上获得的商品,但它们的化学组成应该满足上述要求。
在本发明中,所述的改性处理应该理解是一种改变酸溶性钛渣物相组成的处理。
在本发明中,所述的改性剂应该理解是一种具有破坏固溶体结构能力的化学物质。因此,凡是具有这种性质,并且对其后续处理没有任何不良影响的其它化学物质都可以用于本发明,也在本发明的保护范围之内。
所述的改性剂是一种或多种选自碳酸钠、氢氧化钠、五氧化二磷、磷酸钠和磷酸二氢铵的改性剂。
优选地,所述的改性剂是一种或多种选自碳酸钠、氢氧化钠、磷酸钠和磷酸二氢铵的改性剂。
更优选地,所述的改性剂是一种或多种选自碳酸钠、氢氧化钠和磷酸二氢铵的改性剂。
所述的改性剂的粒度是-200目。
本发明使用的改性剂都是目前市场上销售的产品。
在本发明中,如果酸溶性钛渣与改性剂的重量比小于5:1,则会反应不完全,仍有部分酸溶性钛渣未反应;如果酸溶性钛渣与改性剂的重量比高于5:2,则会有部分改性剂未反应,消耗过多的改性剂;因此,酸溶性钛渣与改性剂的重量比为5:1~2是合理的,优选地是5:1.2~1.8;更优选地是5:1.4~1.6。
所述的酸溶性钛渣与改性剂需在温度750℃~850℃的条件下进行改性处理2h~4h。
所述酸溶性钛渣与改性剂的改性处理温度低于750℃,则会反应不充分,深化程度不够;如果这种改性处理的温度高于850℃,则会出现烧结现象;于是这种改性处理的温度为750℃~850℃是合理的,优选地是780℃~820℃。
同样地,如果这种改性处理的时间小于2h,则会反应不完全;如果这种改性处理的时间长于4h,则会产生过多而且不必要的能耗;因此,这种改性处理的时间为2h~4h是恰当的,优选地是2.4h~3.6h,更优选地是2.8h~3.2h。
这个步骤制备得到一种改性酸溶性钛渣,它的基本化学组成是一系列非化学计量的Na-Fe-Ti-O系固溶体和Na-Mg-Ti-O系固溶体其检测方法是X射线衍射分析。所述改性酸溶性钛渣的粒度是-160目为以重量计80%以上。
本发明改性处理所使用的设备是一种微波反应器,它是目前市场上销售的产品,例如由昆明理工大学以商品名微波箱式反应器(HM型)销售的产品。
本发明使用的微波反应器的频率为912~920MHz,优选地是912~918MHz,其微波反应器功率应根据处理物料的量进行选择。
B、酸性除杂
按照改性酸溶性钛渣与无机酸水溶液固液比为1:4~6,将步骤A得到的改性酸溶性钛渣与无机酸水溶液混合均匀进行酸性除杂,再进行过滤、洗涤与干燥,得到一种酸浸渣。这里需要说明的是,改性酸溶性钛渣与无机酸水溶液的固液比按照重量比计算。
这个步骤的目的在于使用无机酸水溶液除去改性酸溶性钛渣中的杂质。除去的杂质例如是Fe2O3、CaO、MgO、Al2O3等杂质。
采用前面描述的分析方法进行分析确定,这个步骤得到的酸浸渣基本化学组成是锐钛型TiO2、金红石型TiO2以及Na-Fe-Ti-O固溶体。
在这个步骤中,所述的无机酸是硫酸。当然,根据酸溶性钛渣的化学组 成或性能还可以选用其它的无机酸,例如盐酸,这些无机酸也在本发明的保护范围之内。
根据本发明,如果改性酸溶性钛渣与无机酸水溶液固液比高于1:4,则会导致浸出酸很快达到饱和度,无法继续浸出;如果改性酸溶性钛渣与无机酸水溶液固液比低于1:6,则会增大反应容器的体积,不易操作,因此,改性酸溶性钛渣与无机酸水溶液固液比为1:4~6是可行的,优选地是1:4.5~5.5,更优选地是1:4.8~5.2。
所述无机酸水溶液的浓度是以重量计15~30%。
优选地,在这个步骤中,所述的酸性除杂在沸腾温度下进行90~120min。
在这个步骤中,过滤时所使用的设备是目前市场上销售的产品,例如由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的产品。
洗涤时所使用的设备是目前市场上销售的产品,例如由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的产品。使用的洗涤剂通常是水或其它合适溶剂。采用常规少量多次洗涤方法,洗涤直至达到酸浸渣滤液pH值维持在6.5~7.5水平,然后在干燥设备中在温度95~105℃的条件下干燥0.5~1.0h,使所述酸浸渣的水含量达到以重量计10.0%以下。
本发明使用的干燥设备是目前市场上销售的产品,例如由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的产品。
C、煅烧
让步骤B得到的酸浸渣在温度900℃~1000℃的条件下进行煅烧,得到所述的人造金红石。
在这个步骤中,如果煅烧温度低于900℃,则会导致仍有部分锐钛型TiO2未发生晶型转变;如果煅烧温度高于1000℃,则会出现烧结现象;因此,煅烧温度为900℃~1000℃是合适的,优选地是930℃~960℃。在温度900℃~1000℃的条件下煅烧1.0~3.0h。
本发明使用的煅烧设备是目前市场上销售的产品,例如由昆明理工大学以商品名微波箱式反应器(HM型)销售的产品。
在这个煅烧步骤得到的产物进行了X-射线衍射结构定性与定量分析。
X-射线衍射分析所使用的设备是日本Rigaku公司的X射线衍射分析仪(D/Max 2200X),分析条件是管压35kv,管流20mA,采用石墨单色器滤波、 θ~2θ步进扫描方式,在3~100°范围以3°/min的扫描速度进行分析测试。
X-射线衍射分析结果列于附图1。由附图1可以确定,在这个煅烧步骤得到的产物主要是金红石。
采用连续扫描方法,以SiO2作为标准物质,由X-射线衍射图结果按照Bragg式2dsinθ=λ计算得到所述产物为TiO2纯度为91%以上的人造金红石。
通过下述实施例将能够更好地理解本发明。
实施例1:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由攀钢集团钛业有限责任公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 72.0%、SiO2 9.5%、MgO 1.5%与CaO 0.5%;所述酸溶性钛渣的粒度是-100目为以重量计80%。
按照酸溶性钛渣与改性剂的重量比为5:1.4,将所述的酸溶性钛渣与碳酸钠改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为912MHz与温度780℃的条件下进行改性处理2.4h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是Na2Fe2Ti6O16、Na0.9Fe0.9Ti1.1O4、Na0.9Mg0.45Ti3.55O8、Na5.48Mg0.74Ti7.26O18,它的粒度是-160目为以重量计82%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计26%的硫酸酸水溶液固液比为1:4.5,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂110min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比3:1洗涤3次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度95℃的条件下干燥0.6h,得到水含量为以重量计10.0%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度930℃的条件下煅烧2.0h,得到的产物进行了X-射线衍射分析,其结果见附图1,由该结果确定所述的产物为TiO2纯度为91.7%的人造金红石,其中CaO的含量为以重量计0.27%,MgO的含量为以 重量计0.92%。
实施例2:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由云南新立有色金属有限公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 72.5%、SiO2 9.2%、MgO 1.2%与CaO 0.5%;所述酸溶性钛渣的粒度是-100目为以重量计80 86 82 84 84 83%。
按照酸溶性钛渣与改性剂的重量比为5:1.6,将所述的酸溶性钛渣与氢氧化钠改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为915MHz与温度800℃的条件下进行改性处理3.6h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是金红石型TiO2、Fe2Ti2O5它的粒度是-160目为以重量计80%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计15%的硫酸酸水溶液固液比为1:5.5,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂90min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比4:1洗涤4次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度100℃的条件下干燥0.8h,得到水含量为以重量计9.8%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度960℃的条件下煅烧1.0h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为92.1%的人造金红石,其中CaO的含量为以重量计0.24%,MgO的含量为以重量计0.89%。
实施例3:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由云铜集团钛业有限公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 72.8%、SiO2 9.0%、MgO 0.9%与CaO 0.2%;所述酸溶性钛渣的粒度是-100目为以重量计82%。
按照酸溶性钛渣与改性剂的重量比为5:1.0,将所述的酸溶性钛渣与碳酸钠、氢氧化钠、五氧化二磷、磷酸钠或磷酸二氢铵改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为918MHz与温度750℃的条件下进行改性处理2.0h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是金红石型TiO2、Na0.36Fe0.69Ti3.34O8、Fe2Ti2O5,它的粒度是-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计20%的硫酸酸水溶液固液比为1:4.0,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂100min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比5:1洗涤2次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度105℃的条件下干燥0.5h,得到水含量为以重量计9.8%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度900℃的条件下煅烧1.5h,得到的产物进行了X-射线衍射分析,确定所述的产物为TiO2纯度为92.0%的人造金红石,其中CaO的含量为以重量计0.20%,MgO的含量为以重量计0.75%。
实施例4:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由云南兴棱矿业有限公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 73.0%、SiO2 8.5%、MgO 1.0%与CaO 0.3%;所述酸溶性钛渣的粒度是-100目为以重量计84%。
按照酸溶性钛渣与改性剂的重量比为5:1.2,将所述的酸溶性钛渣与磷酸钠改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为912MHz与温度850℃的条件下进行改性处理4.0h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是金红石型TiO2、Na3PO4、Fe2Ti2O5,它的粒度是-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计30%的硫酸酸水溶液固液比为1:6.0,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂120min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比3:1洗涤3次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度95℃的条件下干燥0.6h,得到水含量为以重量计9.5%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度1000℃的条件下煅烧1.8h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为92.6%的人造金红石,其中CaO的含量为以重量计0.21%,MgO的含量为以重量计0.86%。
实施例5:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由攀钢集团钛业有限责任公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 72.8%、SiO2 9.0%、MgO 1.4%与CaO 0.3%;所述酸溶性钛渣的粒度是-100目为以重量计84%。
按照酸溶性钛渣与改性剂的重量比为5:1.8,将所述的酸溶性钛渣与碳酸钠与氢氧化钠混合物(重量比1:1)改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为915MHz与温度830℃的条件下进行改性处理2.6h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是金红石型TiO2、 Na0.36Fe0.69Ti3.34O8、Fe2Ti2O5,它的粒度是-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计28%的硫酸酸水溶液固液比为1:5,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂100min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比4:1洗涤4次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度100℃的条件下干燥1.0h,得到水含量为以重量计9.0%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度980℃的条件下煅烧1.2h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为93.4%的人造金红石,其中CaO的含量为以重量计0.18%,MgO的含量为以重量计0.84%。
实施例6:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
采用本说明书描述的方法对由云铜集团钛业有限公司获得的酸溶性钛渣进行了分析,其化学组成是以重量计TiO2 74.0%、SiO2 8.5%、MgO 0.8%与CaO 0.2%;所述酸溶性钛渣的粒度是-100目为以重量计80 86 82 84 84 83%。
按照酸溶性钛渣与改性剂的重量比为5:2.0,将所述的酸溶性钛渣与磷酸钠与磷酸二氢铵混合物(2:1)改性剂混合均匀,然后在由昆明理工大学以商品名微波箱式反应器(HM型)销售的微波反应器中在微波反应器的频率为920MHz与温度820℃的条件下进行改性处理3.0h,得到一种改性酸溶性钛渣,采用本说明书描述的方法检测,它的化学组成是金红石型TiO2、Na3PO4、Fe2Ti2O5,它的粒度是-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计20%的硫酸酸水溶液固液比为1:5.2,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂120min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再 使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比5:1洗涤2次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度105℃的条件下干燥1.0h,得到水含量为以重量计9.5%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度950℃的条件下煅烧2.0h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为93.2%的人造金红石,其中CaO的含量为以重量计0.16%,MgO的含量为以重量计0.82%。
对比实施例1:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
使用的酸溶性钛渣进行制备。
按照酸溶性钛渣与改性剂的重量比为5:1.4,将所述的酸溶性钛渣与碳酸钠改性剂混合均匀,然后在电阻炉中在温度780℃的条件下进行改性处理2.4h,得到一种改性酸溶性钛渣,再磨碎至粒度-160目为以重量计82%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计26%的硫酸酸水溶液固液比为1:4.5,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂110min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比3:1洗涤3次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)售的干燥设备在温度95℃的条件下干燥0.6h,得到水含量为以重量计10.0%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度930℃的条件下煅烧2.0h,得到的产物进行了X-射线衍射分析,由该结果确定所述的产物为TiO2纯度为80.18%的人造金红石,其中CaO的含量为以重量计0.27%,MgO的含量为以重量计0.92%。
对比实施例2:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
使用实施例2的酸溶性钛渣。
按照酸溶性钛渣与改性剂的重量比为5:1.6,将所述的酸溶性钛渣与氢氧化钠改性剂混合均匀,然后在电阻炉中在温度800℃的条件下进行改性处理3.6h,得到一种改性酸溶性钛渣,再磨碎至粒度是-160目为以重量计80%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计15%的硫酸酸水溶液固液比为1:5.5,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂90min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比4:1洗涤4次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度100℃的条件下干燥0.8h,得到水含量为以重量计9.8%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度960℃的条件下煅烧1.0h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为79.25%的人造金红石,其中CaO的含量为以重量计0.27%,MgO的含量为以重量计0.97%。
对比实施例3:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
使用实施例3的酸溶性钛渣。
按照酸溶性钛渣与改性剂的重量比为5:1.0,将所述的酸溶性钛渣与五氧化二磷改性剂混合均匀,然后在电阻炉中在温度750℃的条件下进行改性处理2.0h,得到一种改性酸溶性钛渣,再磨碎至粒度-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计20%的硫酸酸水溶液固液比为1:4.0,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂100min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比5:1洗涤2次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度105℃的条件下干燥0.5h,得到水含量为以重量计9.8%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度900℃的条件下煅烧1.5h,得到的产物进行了X-射线衍射分析,确定所述的产物为TiO2纯度为76.86%的人造金红石,其中CaO的含量为以重量计0.39%,MgO的含量为以重量计1.16%。
对比实施例4:人造金红石的制备
该实施例的实施步骤如下:
A、改性处理
使用实施例4的酸溶性钛渣。
按照酸溶性钛渣与改性剂的重量比为5:1.2,将所述的酸溶性钛渣与磷酸钠改性剂混合均匀,然后在电阻炉中在温度850℃的条件下进行改性处理4.0h,得到一种改性酸溶性钛渣,再磨碎至粒度-160目为以重量计85%;接着
B、酸性除杂
按照改性酸溶性钛渣与浓度为以重量计30%的硫酸酸水溶液固液比为1:6.0,将步骤A得到的改性酸溶性钛渣与所述硫酸酸水溶液混合均匀,在沸腾温度下进行酸性除杂120min,除去Fe2O3、CaO、MgO、Al2O3等杂质,再使用由梅特勒—托利多仪器有限公司以商品名循环水式真空泵(SHZ-D(Ⅲ))销售的过滤机过滤,然后用水按照液固比3:1洗涤3次,接着使用由上海博讯实业设备公司以商品名数显鼓风干燥箱(DZX-9030MBE)销售的干燥设备在温度95℃的条件下干燥0.6h,得到水含量为以重量计9.5%的酸浸渣;
C、煅烧
由昆明理工大学以商品名微波箱式反应器(HM型)销售的反应器,让步骤B得到的酸浸渣在温度1000℃的条件下煅烧1.8h,得到的产物进行了X-射线衍射分析,确定所述的产物是TiO2纯度为82.08%的人造金红石,其中CaO的含量为以重量计0.32%,MgO的含量为以重量计1.22%。
实施例1-6的实施结果与对比实施例1-4的实施结果对比分析知道,采用本发明方法所得到人造金红石纯度比对比实施例高16.54%,这个结果是出乎人们预料之外的结果。

Claims (9)

  1. 一种人造金红石的制备方法,其特征在于该制备方法的步骤如下:
    A、改性处理
    按照酸溶性钛渣与改性剂的重量比为5:1~2,将酸溶性钛渣与改性剂混合均匀,然后在微波反应器中在温度750℃~850℃的条件下进行改性处理2h~4h,得到一种改性酸溶性钛渣;接着
    B、酸性除杂
    按照改性酸溶性钛渣与无机酸水溶液固液比为1:4~6,将步骤A得到的改性酸溶性钛渣与无机酸水溶液混合均匀进行酸性除杂,再进行过滤、洗涤与干燥,得到一种酸浸渣;
    C、煅烧
    让步骤B得到的酸浸渣在温度900℃~1000℃的条件下进行煅烧,得到所述的人造金红石。
  2. 根据权利要求1所述的制备方法,其特征在于在步骤A中,所述酸溶性钛渣是以重量计TiO2含量为72.0%以上、SiO2为9.5%以下、MgO为1.5%以下与CaO为0.5%以下的钛渣;所述酸溶性钛渣的粒度是-100目为以重量计80%以上。
  3. 根据权利要求1所述的制备方法,其特征在于在步骤A中,所述的改性剂是一种或多种选自碳酸钠、氢氧化钠、五氧化二磷、磷酸钠和磷酸二氢铵的改性剂;所述的改性剂的粒度是-200目。4、根据权利要求1所述的制备方法,其特征在于在步骤A中,所述改性酸溶性钛渣的粒度是-160目为以重量计80%以上。
  4. 根据权利要求1所述的制备方法,其特征在于在步骤A中,所述微波反应器的频率为912~918MHz。
  5. 根据权利要求1所述的制备方法,其特征在于在步骤B中,所述的无机酸是硫酸。
  6. 根据权利要求1所述的制备方法,其特征在于在步骤B中,所述无机酸水溶液的浓度是以重量计15~30%。
  7. 根据权利要求1所述的制备方法,其特征在于在步骤B中,所述的酸性除杂在沸腾温度下进行90~120min。
  8. 根据权利要求1所述的制备方法,其特征在于在步骤C中,所述的煅烧是在微波反应器中在频率912~918MHz的条件下处理1h~3h。
  9. 根据权利要求10所述的制备方法,其特征在于在步骤C中,所述人造金红石的纯度是以重量计91%以上。
PCT/CN2015/089845 2015-05-15 2015-09-17 一种人造金红石的制备方法 WO2016183983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510250414.4A CN104860347B (zh) 2015-05-15 2015-05-15 一种人造金红石的制备方法
CN201510250414.4 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016183983A1 true WO2016183983A1 (zh) 2016-11-24

Family

ID=53906594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089845 WO2016183983A1 (zh) 2015-05-15 2015-09-17 一种人造金红石的制备方法

Country Status (2)

Country Link
CN (1) CN104860347B (zh)
WO (1) WO2016183983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705226A (zh) * 2020-06-22 2020-09-25 眉山顺应动力电池材料有限公司 一种高钛渣除杂的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860347B (zh) * 2015-05-15 2017-07-07 云南民族大学 一种人造金红石的制备方法
CN105600823B (zh) * 2016-03-28 2017-09-08 云南民族大学 一种微波制备金红石的方法
CN107304067A (zh) * 2016-04-18 2017-10-31 云南民族大学 一种磷酸活化与微波加热联合处理高钛渣制备人造金红石的方法
CN107399758A (zh) * 2016-05-19 2017-11-28 云南民族大学 一种由高钛渣制备人造金红石的方法
CN107399760A (zh) * 2016-05-20 2017-11-28 云南民族大学 一种微波钠化焙烧高钛渣制备人造金红石的方法
CN107399757A (zh) * 2016-05-20 2017-11-28 云南民族大学 一种微波加热与流态化浸出联合制备人造金红石的方法
CN107459058B (zh) * 2016-06-02 2021-06-08 昆明冶金高等专科学校 一种利用钛精矿生产人造金红石的方法
CN106602007B (zh) * 2016-11-25 2019-03-08 清华大学深圳研究生院 一种表面可调控的钛酸锂材料的制备方法
CN108793238A (zh) * 2017-04-26 2018-11-13 云南民族大学 一种微波焙烧磷酸浸出制备金红石的方法
CN108793242A (zh) * 2017-05-03 2018-11-13 云南民族大学 一种机械活化辅助微波焙烧制备人造金红石的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338431A (zh) * 2001-09-15 2002-03-06 云南省冶金研究设计院 人造金红石的制造方法
CN1710122A (zh) * 2005-06-16 2005-12-21 昆明理工大学 一种初级富钛料制取金红石型富钛料的方法
CN102139918A (zh) * 2011-02-18 2011-08-03 昆明冶金研究院 一种制备高品位人造金红石的方法
CN104860347A (zh) * 2015-05-15 2015-08-26 云南民族大学 一种人造金红石的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812595A (zh) * 2010-05-06 2010-08-25 北京矿冶研究总院 一种钛渣生产人造金红石的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338431A (zh) * 2001-09-15 2002-03-06 云南省冶金研究设计院 人造金红石的制造方法
CN1710122A (zh) * 2005-06-16 2005-12-21 昆明理工大学 一种初级富钛料制取金红石型富钛料的方法
CN102139918A (zh) * 2011-02-18 2011-08-03 昆明冶金研究院 一种制备高品位人造金红石的方法
CN104860347A (zh) * 2015-05-15 2015-08-26 云南民族大学 一种人造金红石的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705226A (zh) * 2020-06-22 2020-09-25 眉山顺应动力电池材料有限公司 一种高钛渣除杂的方法
CN111705226B (zh) * 2020-06-22 2022-05-31 四川顺应动力电池材料有限公司 一种高钛渣除杂的方法

Also Published As

Publication number Publication date
CN104860347A (zh) 2015-08-26
CN104860347B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2016183983A1 (zh) 一种人造金红石的制备方法
WO2016183984A1 (zh) 一种由酸溶性钛渣制备金红石的方法
CN105859167B (zh) 一种由磷石膏制备高白、高纯无水硫酸钙的方法
JP5792727B2 (ja) 濃縮チタン塩酸抽出残渣、その使用およびチタン顔料の調製方法
CN109179464A (zh) 一种二次铝灰高效清洁资源化利用的方法
CN102557128B (zh) 钛白粉生产工艺
CN112111661B (zh) 钒渣钙锰复合焙烧提钒的方法
CN106929696A (zh) TiCl4精制尾渣铵浸制备高纯氧化钒的方法
CN107032400A (zh) TiCl4精制尾渣碱浸制备高纯氧化钒的方法
CN108179265A (zh) 一种从含铬钒物料中分离提取钒的方法
CN108018437B (zh) 一种钒钛磁铁矿铁、钒、钛低温综合回收工艺
CN102718267B (zh) 一种利用黄铵铁矾渣制氧化铁黑的方法
CN110306065A (zh) 一种钒渣制备偏钒酸铵的方法
CN105600823B (zh) 一种微波制备金红石的方法
CN108950181A (zh) 一种氧化铍的制备工艺
CN106830064A (zh) 偏钛酸湿法脱硫方法
CN105819517A (zh) 一种利用粉煤灰制备氧化铁红的方法
CN104944466A (zh) 一种湿法制备富钛料的生产方法
CN106350680B (zh) 一种从石油燃灰中钠化焙烧提取有价金属的方法
CN106698487A (zh) 一种从铝灰中回收氧化铝的除杂方法及该方法制备的氧化铝
CN103073125B (zh) 一种酸解红土镍矿废水的利用方法
CN107304067A (zh) 一种磷酸活化与微波加热联合处理高钛渣制备人造金红石的方法
CN105836797A (zh) 一种由酸溶性钛渣制备金红石的方法
CN105110380B (zh) 一种利用含钙镁氯化亚铁溶液制备颜料级Fe2O3的方法
CN108017088A (zh) 一种钼酸锌的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892361

Country of ref document: EP

Kind code of ref document: A1