WO2016182270A1 - 유기전계발광소자 - Google Patents

유기전계발광소자 Download PDF

Info

Publication number
WO2016182270A1
WO2016182270A1 PCT/KR2016/004732 KR2016004732W WO2016182270A1 WO 2016182270 A1 WO2016182270 A1 WO 2016182270A1 KR 2016004732 W KR2016004732 W KR 2016004732W WO 2016182270 A1 WO2016182270 A1 WO 2016182270A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nuclear atoms
groups
formula
atoms
Prior art date
Application number
PCT/KR2016/004732
Other languages
English (en)
French (fr)
Inventor
이순창
정재호
박성민
홍상훈
곽태호
Original Assignee
머티어리얼사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160046520A external-priority patent/KR101857518B1/ko
Application filed by 머티어리얼사이언스 주식회사 filed Critical 머티어리얼사이언스 주식회사
Priority to CN201680002346.2A priority Critical patent/CN106612616B/zh
Publication of WO2016182270A1 publication Critical patent/WO2016182270A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80

Definitions

  • the present invention relates to an organic electroluminescent device. More particularly, the present invention relates to an organic light emitting display device comprising a specific hole transport material and a specific electron blocking material.
  • an organic light emitting display device is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. That is, in the organic electroluminescent device, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and they recombine in the emission layer to emit light.
  • More detailed structure of the organic light emitting device is a substrate, an anode, a hole injection layer for receiving holes in the anode, a hole transport layer for transporting holes, an electron blocking layer for blocking the entry of electrons from the light emitting layer to the hole transport layer, the hole and the electron coupling It consists of a light emitting layer that emits light, a hole blocking layer that blocks the entrance of holes from the light emitting layer to the electron transport layer, an electron transport layer that accepts electrons from the cathode and transports them to the light emitting layer, an electron injection layer that accepts electrons from the cathode, and a cathode.
  • a light emitting layer may be formed by doping a small amount of fluorescent or phosphorescent dye into an electron transport layer or a hole transport layer without a separate light emitting layer.
  • a single polymer generally serves as a hole transport layer, a light emitting layer, and an electron transport layer. You can also do this at the same time.
  • the organic thin film layers between the two electrodes are formed by vacuum deposition or spin coating, inkjet printing, laser thermal transfer, or the like. The reason why the organic light emitting diode is manufactured in a multilayer thin film structure is to stabilize the interface between the electrode and the organic material.
  • the hole and the electron transport layer have a large difference in the movement speed of holes and electrons. This is because luminous efficiency can be increased by effectively transferring electrons and electrons to the light emitting layer to balance the density of holes and electrons.
  • the driving principle of the organic light emitting display device is as follows. When a voltage is applied between the anode and the cathode, holes injected from the anode are moved to the light emitting layer via the hole injection layer and the hole transport layer. On the other hand, electrons are injected into the light emitting layer from the cathode via the electron injection layer and the electron transport layer, and carriers are recombined in the light emitting layer to generate excitons. The excitons change from the excited state to the ground state, whereby the fluorescent molecules in the light emitting layer emit light to form an image.
  • the light emitted while the excited state falls to the ground state through the singlet excited state is called “fluorescence”
  • the light emitted while falling to the ground state through the triplet excited state is called “phosphorescence”.
  • fluorescence the probability of singlet excited state is 25% (triple state 75%), and there is a limit of luminous efficiency, while phosphorescence is used to emit up to 75% triplet state and singlet excited state 25%.
  • the internal quantum efficiency can be up to 100%.
  • the biggest problem for the organic light emitting device is life and efficiency. As the display becomes larger, such efficiency and life problems must be solved.
  • An object of the present invention is to provide an organic electroluminescent device in which driving voltage characteristics, luminous efficiency, luminance, and device life are remarkably improved by using a specific hole transport material and a specific electron blocking material.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and a plurality of organic thin film layers between the anode and the cathode, the organic thin film layer comprises a light emitting layer, between the anode and the light emitting layer
  • an organic electroluminescent device comprising a first organic thin film layer comprising a compound represented by Formula 1 and a second organic thin film layer comprising a compound represented by Formula 2 below:
  • n, p and q are each an integer of 0 to 5;
  • Ar 1 is a single bond, an arylene group having 6 to 18 carbon atoms or a heteroarylene group having 5 to 18 nuclear atoms,
  • Ar 2 to Ar 5 are the same as or different from each other, and each independently 6 to 30 arylamino group of nuclear atoms, 6 to 30 aralkylamino group of nuclear atoms, heteroarylamino group of 2 to 24 nuclear atoms, C 1 ⁇ 10 alkyl group, an alkenyl group of C 2 ⁇ 10, C 2 ⁇ 10 of the alkynyl group, C 3 ⁇ 10 cycloalkyl group, a nuclear atoms 3 to 10 heterocycloalkyl group, C 4 ⁇ 60 aryl group and a nuclear atoms It is selected from the group consisting of 5 to 20 heteroaryl groups;
  • At least one of R 1 to R 18 is a substituent represented by the formula (3),
  • R 1 to R 18 other than the substituent represented by the formula 3 are the same or different and are each independently hydrogen, deuterium, an alkynyl group of C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 of the , C 3 ⁇ 12 cycloalkyl group, a number of nuclear atoms of 2 to 30 heterocycloalkyl group, C 7 ⁇ 30 aralkyl group, the number of nuclear atoms having 1 to 30 alkoxy group, a halogen group, a cyano group, a nitro group, a hydroxy group, C 6-30 aryl groups, nuclear hetero atoms 2-30 heteroaryl groups, nuclear atoms 3-30 heteroaralkyl groups, nuclear atoms 1-30 alkylamino groups, nuclear atoms 6-30 arylamino groups, nuclei Aralkylamino group having 6 to 30 atoms, heteroarylamino group having 2 to 24 nuclear atoms, alkylsilyl group
  • L is a single bond, a C 6-18 arylene group or a heteroarylene group having 3 to 18 nuclear atoms
  • L is linked to at least one of R 1 to R 18 of an adjacent spiro-type core; Or adjacent nitrogen (N) atoms, and Ar 6 and Ar 7 Are linked together to form a heterocyclic group having 5 to 18 nuclear atoms,
  • Ar 6 and Ar 7 are the same or different and are each independently hydrogen, deuterium, a cycloalkyl group of C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 alkynyl group, C 3 ⁇ 12 of the, A heterocycloalkyl group having 2 to 30 nuclear atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 2 to 30 nuclear atoms and a heteroaralkyl group having 3 to 30 nuclear atoms Selected from the group;
  • Ar 6 and Ar 7 are each independently connected with a nitrogen (N) atom and L to form a saturated or unsaturated ring having 5 to 18 nuclear atoms, or when L is a single bond, Ar 6 and Ar 7 are each Independently connected to a nitrogen (N) atom and a spiro-type core to form a saturated or unsaturated ring of 5 to 18 nuclear atoms,
  • alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aralkyl group, alkoxy group, aryl group, heteroaryl group, heteroaralkyl group, alkylamino group, arylamino group, aralkylamino group, heteroarylamino group, alkylsilyl group , aryl silyl group, an aryloxy group, an arylene group and heteroarylene groups are each independently hydrogen, deuterium, a cyano group, a nitro group, a halogen group, hydroxyl group, C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 to 24 alkynyl groups, C 3 to 12 cycloalkyl groups, 2 to 30 heterocycloalkyl groups, C 7 to 30 aralkyl groups, C 6 to 30 aryl groups, C 6 to 24 arylalkyl groups, Heteroaryl group
  • Alkyl as used herein means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. Examples thereof include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond. Examples thereof include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Aryl in the present invention means a monovalent substituent derived from a C6 to C60 aromatic hydrocarbon combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included.
  • Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl as used herein means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and may also include a form in which the two or more rings are condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carb
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 6 to 60 carbon atoms.
  • R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means an alkyl having 1 to 40 carbon atoms, and linear, branched or cyclic structure It may include.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • cycloalkyl is meant herein monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Heterocycloalkyl as used herein means a monovalent substituent derived from 3 to 40 non-aromatic hydrocarbons of nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms.
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • the organic electroluminescent device of the present invention provides significantly improved driving voltage characteristics, luminous efficiency, and luminance by using a specific hole transport material and a specific electron blocking material.
  • An organic electroluminescent device comprising an anode, a cathode, and a plurality of organic thin film layers between the anode and the cathode, wherein the organic thin film layer includes a light emitting layer, and comprises a compound represented by the following Formula 1 between the anode and the light emitting layer:
  • An organic electroluminescent device comprising a first organic thin film layer and a second organic thin film layer comprising a compound represented by Formula 2 below:
  • n, p and q are each an integer of 0 to 5;
  • Ar 1 is a single bond, an arylene group having 6 to 18 carbon atoms or a heteroarylene group having 5 to 18 nuclear atoms,
  • Ar 2 to Ar 5 are the same as or different from each other, and each independently 6 to 30 arylamino group of nuclear atoms, 6 to 30 aralkylamino group of nuclear atoms, heteroarylamino group of 2 to 24 nuclear atoms, C 1 ⁇ 10 alkyl group, an alkenyl group of C 2 ⁇ 10, C 2 ⁇ 10 of the alkynyl group, C 3 ⁇ 10 cycloalkyl group, a nuclear atoms 3 to 10 heterocycloalkyl group, C 4 ⁇ 60 aryl group and a nuclear atoms It is selected from the group consisting of 5 to 20 heteroaryl groups;
  • At least one of R 1 to R 18 is a substituent represented by the formula (3),
  • R 1 to R 18 other than the substituent represented by the formula 3 are the same or different and are each independently hydrogen, deuterium, an alkynyl group of C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 of the , C 3 ⁇ 12 cycloalkyl group, a number of nuclear atoms of 2 to 30 heterocycloalkyl group, C 7 ⁇ 30 aralkyl group, the number of nuclear atoms having 1 to 30 alkoxy group, a halogen group, a cyano group, a nitro group, a hydroxy group, C 6-30 aryl groups, nuclear hetero atoms 2-30 heteroaryl groups, nuclear atoms 3-30 heteroaralkyl groups, nuclear atoms 1-30 alkylamino groups, nuclear atoms 6-30 arylamino groups, nuclei Aralkylamino group having 6 to 30 atoms, heteroarylamino group having 2 to 24 nuclear atoms, alkylsilyl group
  • L is a single bond, a C 6-18 arylene group or a heteroarylene group having 3 to 18 nuclear atoms
  • L is linked to at least one of R 1 to R 18 of an adjacent spiro-type core; Or adjacent nitrogen (N) atoms, and Ar 6 and Ar 7 Are linked together to form a heterocyclic group having 5 to 18 nuclear atoms,
  • Ar 6 and Ar 7 are the same or different and are each independently hydrogen, deuterium, a cycloalkyl group of C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 alkynyl group, C 3 ⁇ 12 of the, A heterocycloalkyl group having 2 to 30 nuclear atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 2 to 30 nuclear atoms and a heteroaralkyl group having 3 to 30 nuclear atoms Selected from the group;
  • Ar 6 and Ar 7 are each independently connected with a nitrogen (N) atom and L to form a saturated or unsaturated ring having 5 to 18 nuclear atoms, or when L is a single bond, Ar 6 and Ar 7 are each Independently connected to a nitrogen (N) atom and a spiro-type core to form a saturated or unsaturated ring of 5 to 18 nuclear atoms,
  • alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aralkyl group, alkoxy group, aryl group, heteroaryl group, heteroaralkyl group, alkylamino group, arylamino group, aralkylamino group, heteroarylamino group, alkylsilyl group , aryl silyl group, an aryloxy group, an arylene group and heteroarylene groups are each independently hydrogen, deuterium, a cyano group, a nitro group, a halogen group, hydroxyl group, C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 to 24 alkynyl groups, C 3 to 12 cycloalkyl groups, 2 to 30 heterocycloalkyl groups, C 7 to 30 aralkyl groups, C 6 to 30 aryl groups, C 6 to 24 arylalkyl groups, Heteroaryl group
  • the compound represented by the formula (2) may be selected from the group consisting of the compound represented by the following formulas 4 to 7:
  • R 1 to R 18 , L, Ar 6 and Ar 7 are each as defined in Chemical Formulas 1 to 3.
  • Ar 1 is a single bond, an arylene group having 6 to 18 carbon atoms or a heteroarylene group having 5 to 18 nuclear atoms, preferably a single bond or an arylene group having 6 to 18 carbon atoms. And, more preferably, it may be selected from the group consisting of phenylene group, biphenylene group and terphenylene group, but is not limited to the examples.
  • Ar 2 to Ar 5 are the same as or different from each other, and each independently 6 to 30 arylamino group of nuclear atoms, 6 to 30 aralkylamino group of nuclear atoms, 2 nuclear atoms To 24 heteroarylamino groups, C 1-10 alkyl groups, C 2-10 alkenyl groups, C 2-10 alkynyl groups, C 3-10 cycloalkyl groups, 3-10 heterocycloalkyl groups, C It may be selected from the group consisting of 4 to 60 aryl groups and 5 to 20 heteroaryl groups, preferably C 4 to 60 aryl groups or 5 to 20 heteroaryl groups, more preferably Preferably it may be selected from the group consisting of phenyl group, biphenyl group and terphenyl group, but is not limited to the examples.
  • the compound represented by Formula 1 of the present invention may be more specifically selected from the group consisting of the following compounds, but is not limited thereto:
  • the compound represented by Formula 1 of the present invention may be more specifically selected from the group consisting of the following compounds:
  • R 1 to R 18 is a substituent represented by Formula 3
  • R 1 to R 18 which is not a substituent represented by Formula 3 are the same or different from each other, independently represent hydrogen, deuterium, C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 of the alkynyl group, the number of nuclear atoms a cycloalkyl group, a C 3 ⁇ 12 2 to 30 heterocycloalkyl group, C 7
  • L may be a single bond, an arylene group having 6 to 18 carbon atoms or a heteroarylene group having 3 to 18 nuclear atoms, preferably a single bond, phenyl, biphenyl, terphenyl , Naphthalene, carbazole, dibenzofuran, and dibenzothiophene, but are not limited to examples.
  • Ar 6 and Ar 7 are the same or different, each independently represent a hydrogen, a deuterium, C 1 ⁇ 30 alkyl group, C 2 ⁇ 30 alkenyl group, C 2 ⁇ 24 of the alkynyl group, C 3 ⁇ 12 cycloalkyl group, the number of nuclear atoms of 2 to 30 heterocycloalkyl group, C 7 ⁇ 30 aralkyl group, C 6 ⁇ 30 aryl group, the number of nuclear atoms of 2 to 30 hetero aryl group and the nucleus of atoms of It may be selected from the group consisting of 3 to 30 heteroaralkyl groups, preferably an aryl group of C 4 ⁇ 60 or a heteroaryl group of 5 to 20 nuclear atoms, more preferably methyl, ethyl, propyl, Isopropyl, t-butyl, cyclohexyl, trimethylsilyl, triphenylsilyl, substituted or
  • the compound represented by Formula 2 of the present invention may be more specifically selected from the group consisting of the following compounds, but is not limited thereto:
  • an organic electroluminescent device comprising an anode, a cathode, and a plurality of organic thin film layers between the anode and the cathode, wherein the organic thin film layer comprises a light emitting layer, represented by the formula (1) between the anode and the light emitting layer It may include a first organic thin film layer comprising a compound to be and a second organic thin film layer comprising a compound represented by the formula (2).
  • the first organic thin film layer is a hole transport layer
  • the second organic thin film layer is an electron blocking layer, but is not limited to the examples.
  • the hole transport layer may further include a hole transport material known in the art, in addition to the compound represented by Formula 1, and the electron blocking layer further includes an electron blocking material known in the art, in addition to the compound represented by Formula 2 Can be.
  • the organic thin film layer further includes a hole injection layer, each layer included in the organic thin film layer is a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), and an emission layer (EML) Can be stacked in the order of.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EML emission layer
  • the organic thin film layer further includes a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer, and each layer included in the organic thin film layer includes a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL). ), An emission layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EML emission layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the organic thin film layer may have a structure in which layers having various functions known in the art (not limited to organic layers) are stacked in addition to the laminated structure as described above for efficient light emission and long life of the device. .
  • the organic electroluminescent device of the present invention will be described by way of example.
  • the contents exemplified below do not limit the organic light emitting device of the present invention.
  • a positive electrode is coated on a surface of a substrate by a conventional method to form a positive electrode.
  • the substrate used is preferably a glass substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling and waterproof.
  • the material for the anode indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), and the like, which are transparent and have excellent conductivity, may be used.
  • a hole injection layer is formed on the surface of the anode by vacuum thermal evaporation or spin coating of a hole injection layer (HIL) material in a conventional manner.
  • hole injection layer materials include copper phthalocyanine (CuPc), 4,4 ', 4 "-tris (3-methylphenylamino) triphenylamine (m-MTDATA), 4,4', 4" -tris (3-methylphenyl Amino) phenoxybenzene (m-MTDAPB), starburst amines 4,4 ', 4 "-tri (N-carbazolyl) triphenylamine (TCTA), 4,4', 4" -tris Examples include (N- (2-naphthyl) -N-phenylamino) -triphenylamine (2-TNATA) or IDE406 available from Idemitsu.
  • a hole transport layer is formed on the surface of the hole injection layer by vacuum thermal evaporation or spin coating of a hole transport layer (HTL) material in a conventional manner.
  • the hole transport layer may be formed by stacking the compound represented by Chemical Formula 1.
  • the light emitting layer (EML) material on the surface of the hole transport layer by vacuum thermal evaporation or spin coating in a conventional manner to form a light emitting layer.
  • EML light emitting layer
  • tris (8-hydroxyquinolinolato) aluminum (Alq 3 ), etc. may be used as the sole light emitting material or the light emitting host material among the light emitting layer materials, and in the case of blue, Balq (8-hydroxyquinoline) may be used.
  • An electron blocking layer is formed on the surface of the hole transport layer by vacuum thermal evaporation or spin coating of an electron blocking layer (EBL) material in a conventional manner.
  • EBL electron blocking layer
  • a compound represented by Chemical Formula 2 may be used as the electron blocking layer material.
  • IDE102 In the case of a dopant which can be used together with a light emitting host in the light emitting layer material, IDE102, IDE105, which is available from Idemitsu as a fluorescent dopant, and tris (2-phenylpyridine) iridium (III) (Ir (ppy) as a phosphorescent dopant 3), iridium (III) bis [(4,6-difluorophenyl) pyridinato-N, C-2 '] picolinate (FIrpic) (Chihaya Adachi et al., Appl. Phys Lett., 2001, 79, 3082-3084), platinum (II) octaethyl porphyrin (PtOEP), TBE002 (Kobiion) and the like can be used.
  • iridium (III) Ir (ppy) as a phosphorescent dopant 3
  • An electron transport layer is formed on the surface of the light emitting layer by vacuum thermal evaporation or spin coating of an electron transport layer (ETL) material in a conventional manner.
  • ETL electron transport layer
  • the electron transport layer material used is not particularly limited, and preferably tris (8-hydroxyquinolinolato) aluminum (Alq 3) may be used.
  • HBL hole blocking layer
  • the hole blocking layer may be formed by vacuum thermal evaporation and spin coating of the hole blocking layer material in a conventional manner, and the hole blocking layer material is not particularly limited, but is preferably (8-hydroxyquinolinol).
  • Earth) lithium (Liq) bis (8-hydroxy-2-methylquinolinolato) -aluminum biphenoxide (BAlq), bathocuproine (BCP), LiF and the like can be used.
  • An electron injection layer is formed on the surface of the electron transport layer by vacuum thermal evaporation or spin coating of an electron injection layer (EIL) material in a conventional manner.
  • the electron injection layer material used may be a material such as LiF, Liq, Li 2 O, BaO, NaCl, CsF.
  • the negative electrode material is formed on the surface of the electron injection layer by vacuum thermal deposition in a conventional manner.
  • the negative electrode material used is lithium (Li), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium (Mg), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag) and the like can be used.
  • indium tin oxide (ITO) or indium zinc oxide (IZO) may be used to form a transparent cathode through which light can pass.
  • the capping layer CPL may be formed on the surface of the cathode by the composition for capping layer formation of the present invention.
  • the organic light emitting device may be manufactured in the order described above, that is, in the order of anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / electron injection layer / cathode, and vice versa.
  • the electron injection layer, the electron transport layer, the light emitting layer, the electron blocking layer, the hole transport layer, the hole injection layer and the anode may be manufactured in the order.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-4-amine and 4.45 g (10 mmol) of 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] were used. Experiment was carried out in the same manner as.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-3-amine and 4.45 g (10 mmol) of 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] were used. Experiment was carried out in the same manner as.
  • N-phenylspiro (benzo [de] instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] ]
  • Synthesis Example 2-1 The same method as Synthesis Example 2-1 except that 4.58 g (10 mmol) of anthracene-7,9'-fluorene] -2'-amine and 2.29 g (10 mmol) of (4-bromophenyl) trimethylsilane were used.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] ] Synthesis except using 2.59 g (10 mmol) of furan-4-amine and 4.77 g (10 mmol) of 2 '-(4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] The experiment was carried out in the same manner as in Example 2-1.
  • Experiment was carried out in the same manner as in Synthesis Example 2-1, except that 4.77 g (10 mmol) was used.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] ] 2.59 g (10 mmol) of furan-4-amine and 2 '-(4'-bromo- [1,1'-biphenyl] -4-yl) spiro [benzo [de] anthracene-7,9'- Fluorene] was tested in the same manner as in Synthesis Example 2-1 except that 5.98 g (10 mmol) was used.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-4-amine and 4.45 g (10 mmol) of 9-bromospyro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same way.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-3-amine and 4.45 g (10 mmol) of 9-bromospyro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same way.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] Synthesis example, except that 2.59 g (10 mmol) of furan-4-amine and 4.77 g (10 mmol) of 9- (4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in 2-1.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] Synthesis Example, except that 2.59 g (10 mmol) of furan-3-amine and 4.77 g (10 mmol) of 9- (4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in 2-1.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] Synthesis example, except that 2.59 g (10 mmol) of furan-4-amine and 4.77 g (10 mmol) of 3- (4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in 2-1.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] Synthesis example, except that 2.59 g (10 mmol) of furan-3-amine and 4.77 g (10 mmol) of 3- (4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in 2-1.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-4-amine and 4.45 g (10 mmol) of 4'-chromospiro [benzo [de] anthracene-7,9'-fluorene] were used. Experiment was carried out in the same manner as.
  • Synthesis Example 2-1 except that 2.59 g (10 mmol) of furan-3-amine and 4.45 g (10 mmol) of 4'-chromospiro [benzo [de] anthracene-7,9'-fluorene] were used. Experiment was carried out in the same manner as.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] ] Synthesis, except that 2.59 g (10 mmol) of furan-4-amine and 4.77 g (10 mmol) of 4 '-(4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in Example 2-1.
  • N-phenyldibenzo [b, d instead of di ([1,1'-biphenyl] -4-yl) amine and 2'-bromospyro [benzo [de] anthracene-7,9'-fluorene] ] Synthesis except that 2.59 g (10 mmol) of furan-3-amine and 4.77 g (10 mmol) of 4 '-(4-chlorophenyl) spiro [benzo [de] anthracene-7,9'-fluorene] were used. The experiment was carried out in the same manner as in Example 2-1.
  • HAT-CN hole injection layer
  • HIL hole injection layer
  • Compound 1-1 of the present invention was deposited to a thickness of 80 nm to form a hole transport layer (HTL). 9,10- which can form an electron blocking layer (EBL) by vacuum depositing a compound 6 on the hole transport layer to a thickness of 150, and form a light emitting layer (EML) on the electron blocking layer (EBL).
  • EBL electron blocking layer
  • An organic electroluminescent device was manufactured by bonding a seal cap containing a moisture absorbent with a UV curing adhesive to protect the organic electroluminescent device from O 2 or moisture in the air.
  • Example 1 the electron blocking material 20, 29, 38, 74, 103, 139, 142, 152, 162, 180, 198, 208, 226, 328, 346, 410, 411, 420, 448 instead of compound 6.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using 466.
  • Example 1 the organic light emitting display device was manufactured in the same manner as in Example 1, except that Compound 1-2 was used instead of Compound 1-1, and Compound 38 and 103 were used instead of Compound 6. The device was manufactured.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 1-1 in place of the compound 6 which is an electron blocking material in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using NPB instead of Compound 6, which is an electron blocking material, in Example 1.
  • An organic light emitting display device was manufactured in the same manner as in Example 1, except that NPB was used instead of Compound 1-1 as a hole transport material and Compound 38 was used instead of Compound 6 as an electron blocking material. It was.
  • the electron blocking layer (EBL) uses the same material and the present invention as a hole transport layer
  • the driving voltage (volt) of Example 4 and Example 22 using Compound 1-1 or 1-2 was reduced and the luminous efficiency (Cd / A) increased up to about 137%, and the power efficiency (lm / W) was increased. A maximum improvement of about 143% was confirmed.
  • an organic light emitting device capable of realizing low driving voltage, high luminous efficiency and power efficiency can be manufactured.
  • the present invention relates to an organic electroluminescent device. More particularly, the present invention relates to an organic light emitting display device comprising a specific hole transport material and a specific electron blocking material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

양극, 음극, 및 상기 양극과 음극 사이에 복수층의 유기 박막층을 포함하는 유기전계발광소자에있어서, 양극과 발광층 사이에 화학식 1 및 화학식 2 로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전계발광소자를 제공한다. 본 발명의 유기전계발광소자는 고효율 및 장수명의 특성을 나타낸다.

Description

유기전계발광소자
본 발명은 유기전계발광소자에 관한 것이다. 더욱 상세하게는 특정의 정공수송물질과 특정의 전자차단물질을 포함하는 것을 특징으로 하는 유기전계발광소자에 관한 것이다.
현재까지 평판 디스플레이의 대부분을 액정 디스플레이가 차지하고 있으나, 보다 경제적이고 성능이 뛰어나면서 액정 디스플레이와 차별화된 새로운 평판 디스플레이를 개발하려는 노력이 전세계적으로 활발히 진행되고 있다. 최근 차세대 평판 디스플레이로 각광을 받고 있는 유기전계발광소자는 액정 디스플레이에 비해 낮은 구동전압, 빠른 응답속도 및 광시야각 등의 장점을 가지고 있다.
일반적으로 유기전계발광소자의 가장 간단한 구조는 발광층 및 상기 층을 낀 한 쌍의 대향전극으로 구성되어 있다. 즉, 유기전계발광소자에서는 양 전극간에 전계가 인가되면, 음극으로부터 전자가 주입되고, 양극으로부터 정공이 주입되어 이들이 발광층에 있어서 재결합하여 광을 방출하는 현상을 이용한다.
보다 자세한 유기전계발광소자의 구조는 기판, 애노드, 애노드에서 정공을 받아들이는 정공주입층, 정공을 수송하는 정공수송층, 발광층으로부터 정공수송층으로 전자의 진입을 차단하는 전자차단층, 정공과 전자가 결합하여 빛을 내는 발광층, 발광층에서 전자수송층으로 정공의 진입을 차단하는 정공 차단층, 캐소드에서 전자를 받아들여 발광층으로 수송하는 전자수송층, 캐소드에서 전자를 받아들이는 전자주입층 및 캐소드로 구성되어 있다. 경우에 따라서 별도의 발광층 없이 전자수송층이나 정공수송층에 소량의 형광 또는 인광성 염료를 도핑하여 발광층을 구성할 수도 있으며, 고분자를 사용할 경우에는 일반적으로 하나의 고분자가 정공수송층과 발광층 및 전자수송층의 역할을 동시에 수행할 수도 있다. 두 전극 사이의 유기물 박막층들은 진공증착법 또는 스핀 코팅, 잉크젯 프린팅, 레이저 열전사법 등의 방법으로 형성된다. 이렇게 유기전계발광소자를 다층 박막 구조로 제작하는 이유는 전극과 유기물 사이의 계면 안정화를 위함이며 또한 유기물질의 경우, 정공과 전자의 이동 속도 차이가 크므로 적절한 정공수송층과 전자수송층을 사용하여 정공과 전자를 발광층으로 효과적으로 전달하여 정공과 전자의 밀도가 균형을 이루도록 하면 발광 효율을 높일 수 있기 때문이다.
유기전계발광소자의 구동 원리는 다음과 같다. 상기 애노드 및 캐소드 간에 전압을 인가하면 애노드로부터 주입된 정공은 정공주입층 및 정공수송층을 경유하여 발광층으로 이동된다. 한편, 전자는 캐소드로부터 전자주입층 및 전자수송층을 경유하여 발광층에 주입되고 발광층 영역에서 캐리어들이 재결합하여 엑시톤(exiton)을 생성한다. 이 엑시톤이 여기 상태에서 기저 상태로 변화되고, 이로 인하여 발광층의 형광성 분자가 발광함으로써 화상이 형성된다. 이때 여기 상태가 일중항 여기 상태를 통하여 기저 상태로 떨어지면서 발광하는 것을 "형광"이라고 하며, 삼중항 여기 상태를 통하여 기저 상태로 떨어지면서 발광하는 것을 "인광"이라고 한다. 형광의 경우, 일중항 여기 상태의 확률일 25%(삼중항 상태 75%)이며, 발광 효율의 한계가 있는 반면에 인광을 사용하면 삼중항 상태 75%와 일중항 여기 상태 25%까지 발광에 이용할 수 있으므로 이론적으로 내부양자 효율 100%까지 가능하다.
이러한 유기전계발광소자에 있어 가장 문제가 되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 되는 상황이다.
유기전계발광소자에 있어서 양극과 음극 사이에 발광층을 포함하는 일층 또는 복수층으로 이루어지는 유기 박막층의 각층에 포함되는 성분들의 특성은 소자의 구동 전압, 발광 효율, 휘도, 및 소자의 수명에 큰 영향을 미친다. 따라서, 상기 유기 박막층의 각층에 포함되는 성분들에 대한 연구가 활발히 진행되고 있다. 관련 선행기술문헌으로는 일본 등록특허 제3828595호 및 대한민국 등록특허 제1142056호가 있다.
본 발명은 특정의 정공수송물질 및 특정의 전자차단물질을 사용함으로써 구동 전압 특성, 발광 효율, 휘도, 및 소자의 수명이 현저히 향상되는 유기전계발광소자를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 복수층의 유기 박막층을 포함하는 유기전계발광소자로서, 상기 유기 박막층은 발광층을 포함하며, 상기 양극과 발광층 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 제1 유기박막층 및 하기 화학식 2로 표시되는 화합물을 포함하는 제2 유기박막층을 포함하는 유기전계발광소자를 제공한다:
[화학식 1]
Figure PCTKR2016004732-appb-I000001
[화학식 2]
Figure PCTKR2016004732-appb-I000002
[화학식 3]
Figure PCTKR2016004732-appb-I000003
여기서,
m, n, p 및 q는 각각 0 내지 5의 정수이며;
Ar1은 단일결합, C6~18의 아릴렌기 또는 핵원자수 5 내지 18개의 헤테로아릴렌기이며,
Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, C1~10의 알킬기, C2~10의 알케닐기, C2~10의 알키닐기, C3~10의 시클로알킬기, 핵원자수 3 내지 10개의 헤테로시클로알킬기, C4~60의 아릴기 및 핵원자수 5 내지 20개의 헤테로아릴기로 이루어진 군으로부터 선택되며;
R1 내지 R18 중 적어도 하나는 상기 화학식 3으로 표시되는 치환기이며,
상기 화학식 3으로 표시되는 치환기가 아닌 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, 핵원자수 1 내지 30개의 알콕시기, 할로겐기, 시아노기, 니트로기, 히드록시기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아르알킬기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군으로부터 선택되며,
L은 단일결합, C6~18의 아릴렌기 또는 핵원자수 3 내지 18개의 헤테로아릴렌기이며,
L은 인접하는 스파이로형 코어의 R1 내지 R18 중 하나 이상과 연결되거나; 또는 인접하는 질소(N) 원자, 및 Ar6 및 Ar7 과 함께 연결되어 핵원자수 5 내지 18개의 헤테로고리기를 형성하고,
Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기 및 핵원자수 3 내지 30개의 헤테로아르알킬기로 이루어진 군으로부터 선택되거나,
Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 L과 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하거나, 또는 L이 단일 결합일 경우, Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 스파이로형 코어와 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하며,
상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아르알킬기, 알콕시기, 아릴기, 헤테로아릴기, 헤테로아르알킬기, 알킬아미노기, 아릴아미노기, 아르알킬아미노기, 헤테로아릴아미노기, 알킬실릴기, 아릴실릴기, 아릴옥시기, 아릴렌기 및 헤테로아릴렌기는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, C6~24의 아릴알킬기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아릴알킬기, 핵원자수 1 내지 30개의 알콕시기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 7 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이할 수 있다.
본 발명에서 "알킬"은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 40개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40개의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60개의 아릴로 치환된 아민을 의미한다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 60개의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명의 유기전계발광소자는 특정의 정공수송물질 및 특정의 전자차단물질을 사용함으로써 크게 개선된 구동 전압 특성, 발광 효율, 및 휘도를 제공한다.
이하, 본 발명을 상세히 설명한다.
양극, 음극, 및 상기 양극과 음극 사이에 복수층의 유기 박막층을 포함하는 유기전계발광소자로서, 상기 유기 박막층은 발광층을 포함하며, 상기 양극과 발광층 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 제1 유기박막층 및 하기 화학식 2로 표시되는 화합물을 포함하는 제2 유기박막층을 포함하는 유기전계발광소자에 관한 것이다:
[화학식 1]
Figure PCTKR2016004732-appb-I000004
[화학식 2]
Figure PCTKR2016004732-appb-I000005
[화학식 3]
Figure PCTKR2016004732-appb-I000006
여기서,
m, n, p 및 q는 각각 0 내지 5의 정수이며;
Ar1은 단일결합, C6~18의 아릴렌기 또는 핵원자수 5 내지 18개의 헤테로아릴렌기이며,
Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, C1~10의 알킬기, C2~10의 알케닐기, C2~10의 알키닐기, C3~10의 시클로알킬기, 핵원자수 3 내지 10개의 헤테로시클로알킬기, C4~60의 아릴기 및 핵원자수 5 내지 20개의 헤테로아릴기로 이루어진 군으로부터 선택되며;
R1 내지 R18 중 적어도 하나는 상기 화학식 3으로 표시되는 치환기이며,
상기 화학식 3으로 표시되는 치환기가 아닌 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, 핵원자수 1 내지 30개의 알콕시기, 할로겐기, 시아노기, 니트로기, 히드록시기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아르알킬기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군으로부터 선택되며,
L은 단일결합, C6~18의 아릴렌기 또는 핵원자수 3 내지 18개의 헤테로아릴렌기이며,
L은 인접하는 스파이로형 코어의 R1 내지 R18 중 하나 이상과 연결되거나; 또는 인접하는 질소(N) 원자, 및 Ar6 및 Ar7 과 함께 연결되어 핵원자수 5 내지 18개의 헤테로고리기를 형성하고,
Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기 및 핵원자수 3 내지 30개의 헤테로아르알킬기로 이루어진 군으로부터 선택되거나,
Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 L과 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하거나, 또는 L이 단일 결합일 경우, Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 스파이로형 코어와 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하며,
상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아르알킬기, 알콕시기, 아릴기, 헤테로아릴기, 헤테로아르알킬기, 알킬아미노기, 아릴아미노기, 아르알킬아미노기, 헤테로아릴아미노기, 알킬실릴기, 아릴실릴기, 아릴옥시기, 아릴렌기 및 헤테로아릴렌기는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, C6~24의 아릴알킬기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아릴알킬기, 핵원자수 1 내지 30개의 알콕시기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 7 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이할 수 있다.
본 발명의 바람직한 한 구현예에 따르면, 화학식 2로 표시되는 화합물은 하기 화학식 4 내지 7로 표시되는 화합물로 이루어진 군으로부터 선택될 수 있다:
[화학식 4]
Figure PCTKR2016004732-appb-I000007
[화학식 5]
Figure PCTKR2016004732-appb-I000008
[화학식 6]
Figure PCTKR2016004732-appb-I000009
[화학식 7]
Figure PCTKR2016004732-appb-I000010
여기서,
R1 내지 R18, L, Ar6 및 Ar7 각각은 화학식 1 내지 화학식 3에서 정의한 바와 같다.
본 발명의 바람직한 한 구현예에 따르면, Ar1은 단일결합, C6~18의 아릴렌기 또는 핵원자수 5 내지 18개의 헤테로아릴렌기이며이며, 바람직하게는 단일결합 또는 C6~18의 아릴렌기이며, 보다 바람직하게는 페닐렌기, 비페닐렌기 및 터페닐렌기로 이루어진 군으로부터 선택될 수 있지만, 예시에 국한되는 것은 아니다.
본 발명의 바람직한 한 구현예에 따르면, Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, C1~10의 알킬기, C2~10의 알케닐기, C2~10의 알키닐기, C3~10의 시클로알킬기, 핵원자수 3 내지 10개의 헤테로시클로알킬기, C4~60의 아릴기 및 핵원자수 5 내지 20개의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 C4~60의 아릴기 또는 핵원자수 5 내지 20개의 헤테로아릴기이며, 보다 바람직하게는 페닐기, 비페닐기 및 터페닐기로 이루어진 군으로부터 선택될 수 있지만, 예시에 국한되는 것은 아니다.
본 발명의 바람직한 한 구현 예에 따르면, 본 발명의 화학식 1로 표시되는 화합물은 보다 구체적으로 아래의 화합물로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016004732-appb-I000011
Figure PCTKR2016004732-appb-I000012
보다 바람직하게, 본 발명의 화학식1로 표시되는 화합물은 보다 구체적으로 아래의 화합물로 이루어진 군에서 선택될 수 있다:
Figure PCTKR2016004732-appb-I000013
본 발명의 바람직한 한 구현 예에 따르면, R1 내지 R18 중 적어도 하나는 상기 화학식 3으로 표시되는 치환기이며, 상기 화학식 3으로 표시되는 치환기가 아닌 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, 핵원자수 1 내지 30개의 알콕시기, 할로겐기, 시아노기, 니트로기, 히드록시기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아르알킬기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 수소, C1~10의 알킬기, C3~10의 시클로알킬기, 핵원자수 1 내지 30개의 알킬실릴기, C6~30의 아릴기 및 핵원자수 2 내지 30개의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있으며, 보다 바람직하게는 수소, 메틸, 에틸, 프로필, 아이소 프로필, t-부틸, 시클로헥실, 트리메틸실릴, 트리페닐실릴, 페닐, 비페닐, 터페닐, 비페닐렌기, 트리페닐렌기, 나프틸, 페난트릴, 플루오렌기, 피렌기, 다이벤조퓨라닐, 벤조퓨라닐, 벤조사이오닐, 다이벤조사이오페닐, 카르바졸릴, 스파이로바이플로렌닐, 안트라세닐, 아세나프틸렌기, 피리디닐, 카르볼리닐, 퀴놀리닐, 이소퀴놀리닐, 티안트렌기, 9H-티안테닐, 크산테닐, 다이벤조다이옥시닐, 페노크산티닐, 9,9 다이메틸-9,10-다이하이드로안트라세닐, 테트라하이드로나프탈렌기, 테트라메틸인돌리닐, 및 4a,9a-다이메틸핵사하이드로카르바졸릴로 이루어진 군으로부터 선택될 수 있지만, 예시에 국한되는 것은 아니다.
본 발명의 바람직한 한 구현 예에 따르면, L은 단일결합, C6~18의 아릴렌기 또는 핵원자수 3 내지 18개의 헤테로아릴렌기일 수 있으며, 바람직하게는 단일결합, 페닐, 비페닐, 터페닐, 나프탈렌, 카바졸, 다이벤조퓨란, 및 다이벤조티오펜으로 이루어진 군으로부터 선택될 수 있지만, 예시에 국한되는 것은 아니다.
본 발명의 바람직한 한 구현 예에 따르면, Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기 및 핵원자수 3 내지 30개의 헤테로아르알킬기로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 C4~60의 아릴기 또는 핵원자수 5 내지 20개의 헤테로아릴기이며, 보다 바람직하게는 메틸, 에틸, 프로필, 아이소 프로필, t-부틸, 시클로헥실, 트리메틸실릴, 트리페닐실릴, 치환되거나 치환되지 않은 페닐, 비페닐, 터페닐, 비페닐렌기, 트리페닐렌기, 나프틸, 페난트릴, 플루오렌기, 피렌기, 다이벤조퓨라닐, 벤조퓨라닐, 벤조사이오닐, 다이벤조사이오페닐, 카르바졸릴, 스파이로바이플로렌닐, 안트라세닐,아세나프틸렌기, 피리디닐,카르볼리닐, 퀴놀리닐, 이소퀴놀리닐, 티안트렌기, 9H-티안테닐, 크산테닐, 다이벤조다이옥시닐, 페노크산티닐, 9,9 다이메틸-9,10-다이하이드로안트라세닐, 테트라하이드로나프탈렌기, 테트라메틸인돌리닐, 및 4a,9a-다이메틸핵사하이드로카르바졸릴로 이루어진 군으로부터 선택될 수 있지만, 예시에 국한되는 것은 아니다.
본 발명의 바람직한 한 구현 예에 따르면, 본 발명의 화학식2로 표시되는 화합물은 보다 구체적으로 아래의 화합물로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016004732-appb-I000014
Figure PCTKR2016004732-appb-I000015
Figure PCTKR2016004732-appb-I000016
Figure PCTKR2016004732-appb-I000017
Figure PCTKR2016004732-appb-I000018
Figure PCTKR2016004732-appb-I000019
Figure PCTKR2016004732-appb-I000020
Figure PCTKR2016004732-appb-I000021
Figure PCTKR2016004732-appb-I000022
Figure PCTKR2016004732-appb-I000023
Figure PCTKR2016004732-appb-I000024
Figure PCTKR2016004732-appb-I000025
Figure PCTKR2016004732-appb-I000026
Figure PCTKR2016004732-appb-I000027
Figure PCTKR2016004732-appb-I000028
Figure PCTKR2016004732-appb-I000030
Figure PCTKR2016004732-appb-I000031
Figure PCTKR2016004732-appb-I000032
Figure PCTKR2016004732-appb-I000033
Figure PCTKR2016004732-appb-I000034
Figure PCTKR2016004732-appb-I000035
Figure PCTKR2016004732-appb-I000036
Figure PCTKR2016004732-appb-I000037
Figure PCTKR2016004732-appb-I000038
Figure PCTKR2016004732-appb-I000039
Figure PCTKR2016004732-appb-I000040
Figure PCTKR2016004732-appb-I000041
Figure PCTKR2016004732-appb-I000042
본 발명에 있어서, 양극, 음극, 및 상기 양극과 음극 사이에 복수층의 유기 박막층을 포함하는 유기전계발광소자로서, 상기 유기 박막층은 발광층을 포함하며, 상기 양극과 발광층 사이에 상기 화학식 1로 표시되는 화합물을 포함하는 제1 유기박막층 및 상기 화학식 2로 표시되는 화합물을 포함하는 제2 유기박막층을 포함할 수 있다. 구체적으로, 제1 유기박막층은 정공수송층이며, 상기 제2 유기박막층은 전자차단층이지만, 예시에 국한되는 것은 아니다.
상기 정공수송층에는 상기 화학식 1로 표시되는 화합물 외에 이 분야에 공지된 정공수송물질이 더 포함될 수 있으며, 상기 전자차단층에는 상기 화학식 2로 표시되는 화합물 외에 이 분야에 공지된 전자차단물질이 더 포함될 수 있다.
본 발명에 있어서, 상기 유기 박막층은 정공주입층을 더 포함하며, 유기 박막층에 포함된 각 층은 정공주입층(HIL), 정공수송층(HTL), 전자차단층(EBL), 및 발광층(EML)의 순서로 적층될 수 있다.
또한, 상기 유기 박막층은 정공주입층, 발광층, 전자수송층, 및 전자주입층을 더 포함하며, 유기 박막층에 포함된 각 층은 정공주입층(HIL), 정공수송층(HTL), 전자차단층(EBL), 발광층(EML), 전자수송층(ETL), 및 전자주입층(EIL)의 순서로 적층될 수 있다.
더 나아가서, 상기 유기 박막층은 상기와 같은 적층 구조 외에 효율적인 발광 및 소자의 수명연장을 위하여 이 분야에서 공지되어 있는 다양한 기능을 갖는 층(유기물 층으로 한정되지 않음)들이 더 적층된 구조를 가질 수도 있다.
이하에서, 본 발명의 유기전계발광소자에 대하여 예를 들어 설명한다. 그러나, 하기에 예시된 내용이 본 발명의 유기전계발광소자를 한정하는 것은 아니다.
본 발명에 따른 유기전계발광소자의 제조방법으로는, 먼저 기판 표면에 양극용 물질을 통상적인 방법으로 코팅하여 양극을 형성한다. 이때, 사용되는 기판은 투명성, 표면 평활성, 취급 용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 바람직하다. 또한, 양극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화아연(ZnO) 등이 사용될 수 있다.
다음으로, 상기 양극 표면에 정공주입층(HIL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 정공주입층을 형성한다. 이러한 정공주입층 물질로는 구리프탈로시아닌(CuPc), 4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민(m-MTDATA), 4,4',4"-트리스(3-메틸페닐아미노)페녹시벤젠(m-MTDAPB), 스타버스트(starburst)형 아민류인 4,4',4"-트리(N-카바졸릴)트리페닐아민(TCTA), 4,4',4"-트리스(N-(2-나프틸)-N-페닐아미노)-트리페닐아민(2-TNATA) 또는 이데미츠사(Idemitsu)에서 구입가능한 IDE406을 예로 들 수 있다.
상기 정공주입층 표면에 정공수송층(HTL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 정공수송층을 형성한다. 본 발명의 유기전계발광소자에서 정공수송층은 상기 화학식 1로 표시되는 화합물을 적층하여 형성할 수 있다.
상기 정공수송층 표면에 발광층(EML) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 발광층을 형성한다. 이때, 사용되는 발광층 물질 중 단독 발광물질 또는 발광 호스트 물질은 녹색의 경우 트리스(8-하이드록시퀴놀리놀라토)알루미늄(Alq3) 등이 사용될 수 있으며, 청색의 경우 Balq(8-하이드록시퀴놀린베릴륨염), DPVBi(4,4'-비스(2,2-바이페닐에테닐)-1,1'-바이페닐)계열, 스파이로(Spiro)물질, 스파이로-DPVBi(스파이로-4,4'-비스(2,2-바이페닐에테닐)-1,1'-바이페닐), LiPBO(2-(2-벤조옥사졸릴)-페놀 리튬염), 비스(바이페닐비닐)벤젠, 알루미늄-퀴놀린 금속착체, 이미다졸, 티아졸 및 옥사졸의 금속착체 등이 사용될 수 있다.
상기 정공수송층 표면에 전자차단층(EBL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 전자차단층을 형성한다. 상기 전자차단층 물질로는 상기 화학식 2로 표시되는 화합물이 사용될 수 있다.
발광층 물질 중 발광 호스트와 함께 사용될 수 있는 도펀트(dopant)의 경우 형광 도펀트로서 이데미츠사(Idemitsu)에서 구입 가능한 IDE102, IDE105, 인광 도펀트로는 트리스(2-페닐피리딘)이리듐(III)(Ir(ppy)3), 이리듐(III)비스[(4,6-다이플루오로페닐)피리디나토-N,C-2']피콜린산염(FIrpic) (참조문헌[Chihaya Adachi et al., Appl. Phys. Lett., 2001, 79, 3082-3084]), 플라티늄(II)옥타에틸포르피린(PtOEP), TBE002(코비온사) 등이 사용될 수 있다.
상기 발광층 표면에 전자수송층(ETL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 전자수송층을 형성한다. 이때, 사용되는 전자수송층 물질의 경우 특별히 제한되지 않으며, 바람직하게는 트리스(8-하이드록시퀴놀리놀라토)알루미늄(Alq3)을 사용할 수 있다.
선택적으로는, 발광층과 전자수송층 사이에 정공 차단층(HBL)을 추가로 형성하고 발광층에 인광 도펀트를 함께 사용함으로써, 삼중항 여기자 또는 정공이 전자수송층으로 확산되는 현상을 방지할 수 있다.
정공 차단층의 형성은 정공 차단층 물질을 통상적인 방법으로 진공 열증착 및 스핀 코팅하여 실시할 수 있으며, 정공 차단층 물질의 경우 특별히 제한되지는 않으나, 바람직하게는 (8-하이드록시퀴놀리놀라토)리튬(Liq), 비스(8-하이드록시-2-메틸퀴놀리놀나토)-알루미늄비페녹사이드(BAlq), 바쏘쿠프로인 (bathocuproine, BCP) 및 LiF 등을 사용할 수 있다.
상기 전자수송층 표면에 전자주입층(EIL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 전자주입층을 형성한다. 이때, 사용되는 전자주입층 물질은 LiF, Liq, Li2O, BaO, NaCl, CsF 등의 물질이 사용될 수 있다. 상기 전자주입층 표면에 음극용 물질을 통상적인 방법으로 진공 열증착하여 음극을 형성한다.
이때, 사용되는 음극용 물질로는 리튬(Li), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘(Mg), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag) 등이 사용될 수 있다. 또한, 전면발광 유기전계발광소자의 경우 산화인듐주석(ITO) 또는 산화인듐아연(IZO)를 사용하여 빛이 투과할 수 있는 투명한 음극을 형성할 수도 있다.
상기 음극의 표면에는 본 발명의 캡핑층 형성용 조성물에 의해 캡핑층(CPL)이 형성될 수 있다.
본 발명에 따른 유기전계발광소자는 상술한 바와 같은 순서, 즉 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입층/음극 순으로 제조하여도 되고, 그 반대로 음극/전자주입층/전자수송층/발광층/전자차단층/정공수송층/정공주입층/양극의 순서로 제조하여도 무방하다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
합성예
합성예 1-1: 화합물 1-1의 제조
Figure PCTKR2016004732-appb-I000043
디([1,1'-바이페닐]-4-일)아민 20.00g(62mmol)에 4,4'-디브로모-1,1'-바이페닐 9.71g(31mmol)를 톨루엔 187mL에 용해시킨 후, Pd2dba3 373mg(0.62mmol), t-Bu3P(50% 톨루엔 용해) 1.01g(2.50mmol), t-BuONa 13.16g(137mmol)을 첨가하고 4시간 동안 가열 및 환류하여 반응 완결을 확인한 후 메탄올을 첨가하고 여과한 뒤 흰색 고체를 헥산/메틸렌클로라이드(Hex/MC)로 재결정하여 화합물 1-1 23.44g을 95%의 수율로 얻었다.
합성예 1-2: 화합물 1-2의 제조
Figure PCTKR2016004732-appb-I000044
디([1,1'-바이페닐]-4-일)아민 20.00g(62mmol)에 3,3'-디브로모-1,1'-바이페닐 9.71g(31mmol)를 톨루엔 187mL에 용해시킨 후, Pd2dba3 373mg(0.62mmol), t-Bu3P(50% 톨루엔 용해) 1.01g(2.50mmol), t-BuONa 13.16g(137mmol)을 첨가하고 4시간 동안 가열 및 환류하여 반응 완결을 확인한 후 메탄올을 첨가하고 여과한 뒤 흰색 고체를 헥산/메틸렌클로라이드(Hex/MC)로 재결정하여 화합물 1-2를 21.96g을 89%의 수율로 얻었다.
합성예 2-1 (물질 1)
Figure PCTKR2016004732-appb-I000045
디([1,1'-바이페닐]-4-일)아민 3.21g(10mmol)과 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 톨루엔 30ml에 녹인 후 소디움 -부톡사이드 2.88g(30mmol), 트리--부틸포스핀 (50% in 톨루엔) 161mg(0.4mmol), 비스(디벤질리덴아세톤) 팔라디움(0) 115mg(0.2mmol)을 첨가한 후 3시간 동안 교반, 환류하였다. 반응 완결 후 상온으로 식히고 에틸 아세테이트 50ml와 H2O 50ml를 첨가하여 유기층을 추출하였다. 유기층을 MgSO4로 처리 후 여과, 건조하고 n-헥산/메틸렌 클로라이드로 컬럼하여 물질 1 5.83g을 85%의 수율로 얻었다.
합성예 2-2 (물질 2)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 1-브로모-4-(터-부틸)벤젠 2.13g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-3 (물질 6)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 2'-브로모스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-4 (물질 9)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 2'-브로모스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-5 (물질 9)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-(9,9-디메틸-9H-플루오렌-2-일)디벤조[b,d]퓨란-4-아민 3.75g(10mmol)과 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-6 (물질 10)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-(9,9-디메틸-9H-플루오렌-2-일)디벤조[b,d]퓨란-4-아민 3.75g(10mmol)과 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-7 (물질 13)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 1-브로모-4-플루오루벤젠 1.75g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-8 (물질 15)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 4-브로모디벤조[b,d]티오펜 2.63g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-9 (물질 19)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 2'-브로모스파이로[벤조[de] 안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-10 (물질 20)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-3-아민 3.35g(10mmol)과 2'-브로모스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-11 (물질 29)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N,6-디페닐디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 2'-브로모스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-12 (물질 30)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 3-브로모-9-페닐-9H-카바졸 3.22g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-13 (물질 37)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 2'-브로모스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-14 (물질 38)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 2'-브로모스파이로 [벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-15 (물질 47)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-16 (물질 63)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 2'-(4-클로로페닐) 스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-17 (물질 64)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 1-브로모나프탈렌 2.07g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-18 (물질 65)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐스파이로[벤조[de]안트라센-7,9'-플루오렌]-2'-아민 4.58g(10mmol)과 (4-브로모페닐)트리메틸실란 2.29g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-19 (물질 74)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 2'-(4-클로로페닐)스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-20 (물질 84)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 2'-(4-클로로페닐)스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-21 (물질 94)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N,6-디페닐디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 2'-(4-클로로페닐)스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-22 (물질 103)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 2'-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-23 (물질 125)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 2'-브로모스파이로 [벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-24 (물질 128)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 2'-(4'-브로모-[1,1'-바이페닐]-4-일)스파이로[벤조[de]안트라센-7,9'-플루오렌] 5.98g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-25 (물질 139)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-26 (물질 142)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-27 (물질 143)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-(9,9-디메틸-9H-플루오렌-2-일)디벤조[b,d]퓨란-4-아민 3.75g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-28 (물질 152)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-29 (물질 153)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-3-아민 3.35g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-30 (물질 162)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N,6-디페닐디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-31 (물질 170)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-32 (물질 171)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 9-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-33 (물질 180)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 9-클로로스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-34 (물질 189)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 9-클로로스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-35 (물질 198)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 9-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-36 (물질 208)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 9-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-37 (물질 226)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 9-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-38 (물질 318)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 3-(4-클로로페닐)스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-39 (물질 328)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 3-(4-클로로페닐)스파이로[벤조 [de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-40 (물질 346)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 3-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-41 (물질 379)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-42 (물질 382)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-43 (물질 383)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-(9,9-디메틸-9H-플루오렌-2-일)디벤조[b,d]퓨란-4-아민 3.75g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-44 (물질 392)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-45 (물질 393)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)디벤조[b,d]퓨란-3-아민 3.35g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-46 (물질 402)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N,6-디페닐디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-47 (물질 410)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-48 (물질 411)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-4-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 4'-크로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-49 (물질 420)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-([1,1'-바이페닐]-2-일)-9,9-디메틸-9H-플루오렌-2-아민 3.61g(10mmol)과 4'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.45g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-50 (물질 438)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-4-아민 2.59g(10mmol)과 4'-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-51 (물질 448)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N-페닐디벤조[b,d]퓨란-3-아민 2.59g(10mmol)과 4'-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-52 (물질 458)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 N,6-디페닐디벤조[b,d]퓨란-4-아민 3.35g(10mmol)과 4'-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
합성예 2-53 (물질 466)
디([1,1'-바이페닐]-4-일)아민 및 2'-브로모스파이로[벤조[de]안트라센-7,9'-플루오렌] 대신 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 2.85g(10mmol)과 4'-(4-클로로페닐)스파이로[벤조[de]안트라센-7,9'-플루오렌] 4.77g(10mmol)을 사용한 것을 제외하고는 합성예 2-1과 동일한 방법으로 실험하였다.
상기에서 합성된 화합물(합성예2-1 ~ 합성예2-53)의 NMR 및 수율 데이터를 하기 표 1에 나타내었다.
물질번호 NMR 수율(%)
1 1H NMR (CDCl3, 300 MHz): δ =8.15(t, 2H), 7.80(d, 1H), 7.73(d, 1H), 7.69(d, 1H), 7.56-7.49(m, 5H), 7.44-7.25(m, 14H), 7.14(d, 1H), 7.10-7.00(m, 6H), 6.93(s, 1H), 6.90(d, 1H), 6.76(d, 1H), 6.69(d, 1H) ppm. 85
2 1H NMR (CDCl3, 500 MHz): δ =8.15(d, 1H), 8.12(d, 1H), 7.79(d, 1H), 7.71-7.63(m, 3H), 7.55(t, 1H), 7.29-7.22(m, 3H), 7.11-6.96(m, 7H), 6.92(d, 2H), 6.89-6.83(m, 5H), 6.73(d, 1H), 6.65(d, 1H), 1.25(s, 9H) ppm. 65
6 1H NMR (CDCl3, 300 MHz): δ =8.10(d, 1H), 8.06(d, 1H), 7.88(d, 1H), 7.73(t, 3H), 7.64(m, 1H), 7.57-7.48(m, 4H), 7.42-7.34(m, 5H), 7.34-7.24(m, 4H), 7.23-7.14(m, 4H), 7.07-7.02(m, 3H), 6.97(t, 1H), 6.90-6.83(m, 3H), 6.71(d, 1H), 6.65(d, 1H) ppm. 58
9 1H NMR (CDCl3, 300 MHz): δ =8.08 (d, 1H), 8.04 (d, 1H), 7.86 (d, 1H), 7.70 (t, 3H), 7.60(d, 1H), 7.53(d, 1H), 7.50(t, 1H), 7.37(t, 1H), 7.31-7.23(m, 3H), 7.18-7.15(t, 2H), 7.14-7.08(m, 4H), 7.04-6.99(m, 3H), 6.97-6.90(m, 2H), 6.87-6.81(m, 3H), 6.69(d, 1H), 6.63(d, 1H) ppm. 61
10 1H NMR (CDCl3, 300 MHz): δ =8.08(d, 1H), 8.05(d, 1H), 7.90(d, 1H), 7.74-7.65(m, 4H), 7.58(d, 1H), 7.54(d, 1H), 7.48(t, 1H), 7.42-7.09(m, 14H), 7.01-6.92(m, 3H), 6.83(t, 2H), 6.75(d, 1H), 6.68(d, 1H), 1.22(s, 3H), 1.16(s, 3H) ppm. 72
13 1H NMR (CDCl3, 500 MHz): δ =8.16(d, 1H), 8.14(d, 1H), 7.80(d, 1H), 7.72-7.64(m, 3H), 7.57(t, 1H), 7.30-7.21(m, 3H), 7.10-6.97(m, 5H), 6.93-6.84(m, 6H), 6.82-6.76(m, 3H), 6.71(d, 1H), 6.64(d, 1H) ppm. 55
15 1H NMR (CDCl3, 500 MHz): δ =8.09-8.01(m, 3H), 7.85(d, 1H), 7.72-7.62(m, 4H), 7.51-7.45(m, 2H), 7.43-7.37(m, 2H), 7.30-7.23(m, 2H), 7.20-7.06(m, 6H), 7.01-6.85(m, 6H), 6.74(s, 1H), 6.73(d, 1H), 6.68(d, 1H) ppm. 72
19 1H NMR (CDCl3, 300 MHz): δ =8.12(d, 2H), 7.81(d, 1H), 7.76(d, 1H), 7.72(t, 2H), 7.68(d, 1H), 7.61(d, 1H), 7.49(t, 1H), 7.46(d, 1H), 7.36(t, 1H), 7.30-7.25(m, 4H), 7.11(m, 4H), 7.06(t, 1H), 7.05-6.98(m, 3H), 6.96-6.90(m, 2H), 6.88(d, 2H), 6.74(d, 1H), 6.67(d, 1H) ppm. 62
20 1H NMR (CDCl3, 300 MHz): δ =8.11(d, 2H), 7.82(d, 1H), 7.77-7.71(m, 3H), 7.68(d, 1H), 7.65(d, 1H), 7.51(d, 2H), 7.48(t, 2H), 7.43-7.32(m, 5H), 7.32-7.24(m, 5H), 7.15(d, 2H), 7.10-6.98(m, 5H), 6.91(s, 1H), 6.90(d, 1H), 6.76(d, 1H), 6.69(d, 1H) ppm. 78
29 1H NMR (CDCl3, 300 MHz): δ =8.01(d, 1H), 7.99(d, 1H), 7.84(d, 1H), 7.83(t, 2H), 7.65(d, 1H), 7.60-7.56(m, 2H), 7.46(t, 1H), 7.41(t, 1H), 7.38(d, 1H), 7.31(t, 1H), 7.28-7.19(m, 6H), 7.16(t, 2H), 7.14-7.00(m, 6H), 6.98(t, 1H), 6.90(d, 1H), 6.87(t, 1H), 6.78(t, 1H), 6.63(d, 1H), 6.57(t, 2H) ppm. 70
30 1H NMR (CDCl3, 500 MHz): δ =8.08(d, 2H), 7.86(d, 1H), 7.67(d, 2H), 7.64-7.33(m, 11H), 7.31-7.12(m, 8H), 7.09-6.95(m, 4H), 6.94-6.80(m, 4H), 6.76(d, 1H), 6.70(d, 1H) ppm. 69
37 1H NMR (CDCl3, 300 MHz): δ =8.12(t, 2H), 7.78-7.64(m, 4H), 7.58-7.48(m, 2H), 7.41-7.12(m, 10H), 7.10-6.92(m, 6H), 6.92-6.78(m, 3H), 6.74(d, 1H), 6.66(d, 1H), 1.19(s, 3H), 1.14(s, 3H) ppm. 86
38 1H NMR (CDCl3, 300 MHz): δ =8.09(t, 2H), 7.77-7.70(m, 3H), 7.64(d, 1H), 7.54(t, 3H), 7.47(t, 1H), 7.43-7.35(m, 5H), 7.34-7.18(m, 7H), 7.15(d, 1H), 7.11-7.06(m, 3H), 7.03(t, 1H), 6.99(t, 1H), 6.93(s, 1H), 6.89(d, 1H), 6.84(d, 1H), 6.76(d, 1H), 6.68(d, 1H), 1.21(s, 3H), 1.16(s, 3H) ppm. 64
47 1H NMR (CDCl3, 300 MHz): δ =8.09(d, 1H), 8.08(d, 1H), 7.75(d, 1H), 7.67(d, 1H), 7.63(d, 1H), 7.50(t, 2H), 7.47(br, 1H), 7.32-7.18(m, 10H), 7.11-6.90(m, 8H), 6.85(br, 2H), 6.76(d, 1H), 6.68(br, 2H), 6.56(d, 1H), 6.51(d, 1H), 1.04(s, 3H), 0.96(s, 3H) ppm. 73
63 1H NMR (CDCl3, 300 MHz): δ =8.26(d, 1H), 8.21(d, 1H), 7.87-7.77(m, 4H), 7.67(d, 1H), 7.61(t, 1H), 7.58(d, 1H), 7.44(d, 1H), 7.39-7.06(m, 16H), 6.98(t, 2H), 6.93(d, 1H), 6.85(t, 2H), 6.77(d, 3H), 6.71(t, 1H), 6.67(d, 1H), 6.58(d, 1H) ppm. 58
64 1H NMR (CDCl3, 500 MHz): δ =8.12(d, 1H), 8.10(d, 1H), 7.81-7.73(m, 3H), 7.68-7.59(m, 4H), 7.55(d, 1H), 7.53(t, 1H), 7.45(m, 1H), 7.41-7.32(m, 2H), 7.28-7.18(m, 3H), 7.12(d, 1H), 7.00(t, 3H), 6.97-6.92(d, 2H), 6.87-6.77(m, 4H), 6.70(d, 1H), 6.63(d, 1H) ppm. 64
65 1H NMR (CDCl3, 500 MHz): δ =8.15(d, 1H), 8.13(d, 1H), 7.79(d, 1H), 7.71-7.64(m, 3H), 7.55(t, 1H), 7.30-7.18(m, 4H), 7.12-6.92(m, 8H), 6.92-6.83(m, 5H), 6.73(d, 1H), 6.65(d, 1H), 0.20(s, 6H), 0.15(s, 3H) ppm. 58
74 1H NMR (CDCl3, 300 MHz): δ =8.26(d, 1H), 8.21(d, 1H), 7.91(d, 1H), 7.87(d, 1H), 7.83(d, 1H), 7.82(d, 1H), 7.72(d, 1H), 7.67(d, 1H), 7.62(t, 2H), 7.37-7.26(m, 7H), 7.24-7.15(m, 6H), 7.09(t, 1H), 7.05(d, 2H), 7.01-6.96(m, 4H), 6.93(d, 1H), 6.67(d, 1H), 6.58(d, 1H) ppm. 64
84 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.22(d, 1H), 7.89(d, 1H), 7.86-7.82(m, 3H), 7.73(d, 1H), 7.69(d, 1H), 7.66-7.60(m, 2H), 7.48(d, 1H), 7.38-7.18(m, 11H), 7.13-6.96(m, 8H), 6.94(d, 1H), 6.67(d, 1H), 6.58(d, 1H) ppm. 60
94 1H NMR (CDCl3, 300 MHz): δ =8.27(d, 1H), 8.21(d, 1H), 7.90-7.81(m, 4H), 7.70(d, 1H), 7.68(d, 1H), 7.64-7.59(m, 2H), 7.55(d, 1H), 7.38(t, 1H), 7.36-7.31(m, 3H), 7.30-7.15(m, 9H), 7.12-7.03(m, 7H), 7.01(d, 2H), 6.98(t, 1H), 6.93(d, 1H), 6.67(d, 1H), 6.58(d, 1H) ppm. 65
103 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.23(d, 1H), 7.90(d, 1H), 7.87-7.81(m, 2H), 7.70-7.51(m, 7H), 7.49-7.18(m, 16H), 7.15-6.96(m, 6H), 6.94(d, 1H), 6.68(d, 1H), 6.59(d, 1H), 1.50(s, 6H) ppm. 55
125 1H NMR (CDCl3, 300 MHz): δ =8.03(d, 1H), 7.99(d, 1H), 7.77(d, 1H), 7.66(d, 1H), 7.61(d, 1H), 7.53(d, 1H), 7.52(d, 1H), 7.46(t, 1H), 7.40(d, 1H), 7.34(t, 1H), 7.27-7.12(m, 10H), 7.09(t, 1H), 6.99-6.81(m, 8H), 6.77(d, 1H), 6.56(d, 1H), 6.51(d, 1H), 6.48(d, 1H) ppm. 68
128 1H NMR (CDCl3, 500 MHz): δ =8.29(d, 1H), 8.23(d, 1H), 7.94(d, 1H), 7.91(d, 1H), 7.85(d, 2H), 7.76(d, 1H), 7.70-7.61(m, 3H), 7.51(d, 2H), 7.46(d, 2H), 7.43(d, 2H), 7.39-7.16(m, 10H), 7.15-7.07(m, 5H), 7.06-6.97(m, 3H), 6.95(d, 1H), 6.68(d, 1H), 6.59(d, 1H) ppm. 58
139 1H NMR (CDCl3, 500 MHz): δ =8.15(d, 1H), 8.08(d, 1H), 7.93(d, 1H), 7.79(d, 1H), 7.66(m, 2H), 7.61(t, 1H), 7.55(m, 4H), 7.42(t, 2H), 7.38-7.28(m, 6H), 7.16-7.12(m, 4H), 7.05(t, 2H), 6.99(d, 2H), 6.86(d, 2H), 6.77(t, 2H), 6.53(d, 1H), 6.09(d, 1H) ppm. 46
142 1H NMR (CDCl3, 500 MHz): δ =8.13(d, 1H), 8.05(d, 1H), 7.93(d, 1H), 7.77(d, 1H), 7.67-7.55(m, 3H), 7.53(d, 2H), 7.40-7.31(m, 2H), 7.28(t, 1H), 7.16-7.07(m, 6H), 7.02-6.93(m, 5H), 6.84(d, 2H), 6.73(t, 2H), 6.52(d, 1H), 6.03(d, 1H) ppm. 65
143 1H NMR (CDCl3, 500 MHz): δ =8.17(d, 1H), 8.09(d, 1H), 7.93(d, 1H), 7.78(d, 1H), 7.66-7.58(m, 4H), 7.53(d, 2H), 7.46(d, 1H), 7.39-7.24(m, 6H), 7.15-7.08(m, 6H), 7.01(d, 1H), 6.94(d, 1H), 6.86(d, 2H), 6.71(t, 2H), 6.51(d, 1H), 6.07(s, 1H), 1.32(s, 6H) ppm. 78
152 1H NMR (CDCl3, 500 MHz): δ =8.12(s, 1H), 8.05(d, 1H), 7.83(d, 1H), 7.78(s, 1H), 7.67(d, 1H), 7.60(m, 4H), 7.50(d, 1H), 7.39(t, 1H), 7.32(t, 1H), 7.23-7.15(m, 3H), 7.14-7.07(m, 4H), 7.06-6.81(m, 8H), 6.59(d, 1H), 6.23(s, 1H) ppm. 62
153 1H NMR (CDCl3, 500 MHz): δ =8.14(d, 1H), 8.06(d, 1H), 7.86(d, 1H), 7.80(d, 1H), 7.67(d, 1H), 7.66-7.58(m, 4H), 7.56(d, 2H), 7.52(d, 1H), 7.47-7.38(m, 3H), 7.36-7.31(m, 4H), 7.23-7.10(m, 6H), 7.02(d, 3H), 6.97(d, 2H), 6.92(d, 1H), 6.61(d, 1H), 6.27(s, 1H) ppm. 74
162 1H NMR (CDCl3, 500 MHz): δ =8.22(d, 1H), 8.16(d, 1H), 7.87(d, 1H), 7.77(d, 1H), 7.65-7.54(m, 4H), 7.51(d, 2H), 7.41(t, 1H), 7.30(m, 2H), 7.16(t, 3H), 7.12-7.04(m, 7H), 7.03-6.95(m, 4H), 6.74(d, 2H), 6.64(t, 2H), 6.46(d, 1H), 5.98(d, 1H) ppm. 58
170 1H NMR (CDCl3, 500 MHz): δ =8.13(s, 1H), 8.06(d, 1H), 7.79(s, 1H), 7.67-7.57(m, 5H), 7.43(d, 1H), 7.37(d, 1H), 7.32(d, 1H), 7.30-7.23(m, 3H), 7.16(t, 1H), 7.13-7.03(m, 4H), 7.03-6.77(m, 8H), 6.57(d, 1H), 6.26(s, 1H), 1.30(s, 6H) ppm. 82
171 1H NMR (CDCl3, 500 MHz): δ =8.15(s, 1H), 8.08(d, 1H), 7.99(s, 1H), 7.68-7.58(m, 5H), 7.56(d, 2H), 7.49-7.41(m, 3H), 7.38(d, 1H), 7.36-7.23(m, 7H), 7.20-7.11(m, 3H), 7.08-7.00(m, 4H), 6.92(br, 3H), 6.58(d, 1H), 6.30(s, 1H), 1.33(s, 6H) ppm. 57
182 1H NMR (CDCl3, 300 MHz): δ =8.07(d, 1H), 7.91(d, 1H), 7.74(d, 1H), 7.65-7.49(m, 5H), 7.32-7.05(m, 13H), 6.96-6.81(m, 8H), 6.64(s, 1H), 6.55(br, 1H), 6.53(d, 1H), 5.99(s, 1H), 1.18(s, 6H) ppm. 81
189 1H NMR (CDCl3, 300 MHz): δ =8.10(d, 1H), 7.97(d, 1H), 7.80(d, 1H), 7.74(d, 1H), 7.62(d, 1H), 7.58(t, 1H), 7.46(d, 2H), 7.34(t, 2H), 7.29(t, 1H), 7.25-7.17(m, 5H), 7.10(t, 1H), 7.04(t, 2H), 6.99(d, 2H), 6.86(t, 2H), 6.77(d, 2H), 6.71(t, 2H), 6.67-6.54(m, 4H), 6.48(d, 1H), 5.72(d, 1H) ppm. 70
198 1H NMR (CDCl3, 500 MHz): δ =8.28(d, 1H), 8.26(d, 1H), 7.94(d, 1H), 7.84(d, 1H), 7.82(d, 2H), 7.75(d, 1H), 7.69(d, 1H), 7.64(t, 1H), 7.53(d, 1H), 7.39-7.30(m, 5H), 7.29-7.07(m, 11H), 7.05-7.00(m, 3H), 6.97(d, 2H), 6.74(d, 1H), 6.63(d, 1H) ppm. 87
208 1H NMR (CDCl3, 500 MHz): δ =8.29(d, 1H), 8.27(d, 1H), 7.84(t, 4H), 7.75(d, 1H), 7.69(d, 1H), 7.65(t, 1H), 7.53(d, 1H), 7.49(d, 1H), 7.40-7.28(m, 5H), 7.28-7.08(m, 9H), 7.07-7.01(m, 6H), 6.74(d, 1H), 6.63(d, 1H) ppm. 66
226 1H NMR (CDCl3, 500 MHz): δ =8.29(d, 1H), 8.27(d, 1H), 7.75(t, 3H), 7.69(d, 1H), 7.65(d, 1H), 7.63(d, 1H), 7.55(t, 2H), 7.40-7.08(m, 15H), 7.05-6.98(m, 6H), 6.75(d, 1H), 6.63(d, 1H), 1.39(s, 6H), ppm. 74
346 1H NMR (CDCl3, 500 MHz): δ =8.32(d, 1H), 8.25(d, 1H), 7.91(d, 1H), 7.84(d, 2H), 7.68-7.61(m, 3H), 7.45(d, 2H), 7.41(d, 1H), 7.37(t, 2H), 7.35-7.21(m, 10H), 7.20-7.12(m, 4H), 7.08(br, 1H), 7.03(d, 2H), 6.99(t, 1H), 6.65(d, 1H), 6.54(d, 1H), 1.45(s, 6H), ppm. 66
379 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.24(d, 1H), 7.97(d, 1H), 7.86(d, 1H), 7.84(d, 1H), 7.77(d, 1H), 7.72(br, 1H), 7.65(t, 1H), 7.61(d, 2H), 7.52(d, 2H), 7.47(d, 1H), 7.42(t, 3H), 7.37-7.24(m, 6H), 7.23-6.93(m, 7H), 6.91(d, 2H), 6.78-6.52(t, 2H) ppm. 72
382 1H NMR (CDCl3, 300 MHz): δ =8.27(d, 1H), 8.22(d, 1H), 7.94(d, 1H), 7.84(d, 1H), 7.81(d, 1H), 7.73(d, 1H), 7.69(d, 1H), 7.62(t, 1H), 7.43-7.36(m, 2H), 7.34-7.22(m, 7H), 7.15(d, 1H), 7.08(t, 1H), 7.04(d, 2H), 7.03-6.93(m, 4H), 6.88(t, 2H), 6.68(s, 1H), 6.60(s, 1H) ppm. 73
383 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.25(d, 1H), 7.98(d, 1H), 7.88(d, 1H), 7.78-7.58(m, 6H), 7.46(d, 1H), 7.42-7.21(m, 8H), 7.18(d, 1H), 7.12(t, 1H), 7.08-6.86(m, 8H), 6.72(d, 1H), 6.63(d, 1H), 1.39(s, 3H), 1.28(s, 3H) ppm. 76
392 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.24(d, 1H), 7.86(t, 2H), 7.81(m, 2H), 7.73(d, 1H), 7.65(t, 1H), 7.50(d, 1H), 7.37(t, 1H), 7.36-7.23(m, 8H), 7.21(d, 1H), 7.14(t, 1H), 7.13-7.01(m, 5H), 6.92(d, 1H), 6.88(d, 1H), 6.64(s, 1H), 6.56(s, 1H) ppm. 76
393 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.23(d, 1H), 7.89-7.81(m, 4H), 7.72(d, 1H), 7.64(t, 1H), 7.60(d, 2H), 7.56(d, 2H), 7.50(d, 1H), 7.43(t, 2H), 7.40-7.23(m, 7H), 7.18-7.04(m, 4H), 7.02(t, 1H), 6.92(d, 2H), 6.91(d, 2H), 6.67(d, 1H), 6.58(d, 1H) ppm. 68
402 1H NMR (CDCl3, 300 MHz): δ =8.24(d, 1H), 8.19(d, 1H), 7.92(d, 1H), 7.81(d, 1H), 7.78(d, 1H), 7.74(d, 1H), 7.69-7.61(m, 2H), 7.59(t, 1H), 7.54(d, 2H), 7.41(t, 1H), 7.32-7.20(m, 5H), 7.15(d, 1H), 7.12-6.98(m, 8H), 6.95(t, 1H), 6.91(t, 1H), 6.87(d, 1H), 6.84(s, 1H), 6.79(d, 1H), 6.58(d, 1H), 6.43(d, 1H) ppm. 69
410 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.23(d, 1H), 7.86(d, 1H), 7.77(d, 1H), 7.71(d, 1H), 7.66-7.59(m, 3H), 7.37(d, 1H), 7.35-7.20(m, 9H), 7.17-7.08(m, 3H), 7.07-6.98(m, 4H), 6.90(d, 1H), 6.86(d, 1H), 6.64(d, 1H), 6.55(d, 1H), 1.39(d, 6H) ppm. 92
411 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.24(d, 1H), 7.87(d, 1H), 7.79(d, 1H), 7.72(t, 1H), 7.68-7.59(m, 5H), 7.56(d, 2H), 7.43(t, 2H), 7.39(d, 1H), 7.37-7.13(m, 11H), 7.10-6.99(m, 3H), 6.91(d, 1H), 6.88(d, 1H), 6.61(m, 2H), 1.43(d, 6H) ppm. 87
420 1H NMR (CDCl3, 300 MHz): δ =8.23(d, 1H), 8.17(d, 1H), 7.82(d, 1H), 7.71(d, 1H), 7.68(d, 1H), 7.65(d, 1H), 7.62-7.54(m, 2H), 7.43-7.18(m, 12H), 7.13(d, 1H), 7.05-6.90(m, 5H), 6.87-6.69(m, 4H), 6.66(d, 1H), 6.54(d, 1H), 5.96(d, 1H) ppm. 65
438 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.22(d, 1H), 7.99(d, 1H), 7.85(d, 1H), 7.81(m, 1H), 7.69(d, 1H), 7.64(t, 1H), 7.49-7.46(m, 3H), 7.43(t, 1H), 7.38-7.20(m, 13H), 7.14-6.98(m, 5H), 6.94-6.90(m, 2H), 6.67(d, 1H), 6.58(d, 1H) ppm. 34
438 1H NMR (CDCl3, 500 MHz): δ =8.31(d, 1H), 8.24(d, 1H), 7.97(d, 1H), 7.90(d, 1H), 7.84(d, 2H), 7.81(m, 1H), 7.61(d, 1H), 7.45-7.27(m, 12H), 7.26-7.12(m, 7H), 7.06(t, 1H), 7.03(d, 2H), 6.98(t, 1H), 6.65(d, 1H), 6.54(d, 1H) ppm. 80
448 1H NMR (CDCl3, 300 MHz): δ =8.29(d, 1H), 8.23(d, 1H), 7.89(d, 1H), 7.86(d, 1H), 7.70(d, 1H), 7.64(t, 1H), 7.54-7.49(m, 3H), 7.40(t, 2H), 7.38-7.21(m, 13H), 7.19-7.10(m, 3H), 7.08(t, 1H), 7.01(t, 1H), 6.96(d, 1H), 6.94(d, 1H), 6.69(d, 1H), 6.59(d, 1H) ppm. 45
448 1H NMR (CDCl3, 500 MHz): δ =8.33(d, 1H), 8.25(d, 1H), 7.92-7.81(m, 5H), 7.61(d, 1H), 7.52(d, 2H), 7.46(d, 2H), 7.40-7.23(m, 13H), 7.22-7.06(m, 5H), 7.03(d, 2H), 6.99(t, 1H), 6.65(d, 1H), 6.54(d, 1H) ppm. 76
458 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.23(d, 1H), 7.95(d, 1H), 7.85(d, 1H), 7.81(d, 1H), 7.69(d, 1H), 7.64(t, 2H), 7.50(d, 2H), 7.46-7.41(m, 4H), 7.37(t, 3H), 7.34-7.20(m, 10H), 7.19(d, 1H), 7.15(t, 1H), 7.10(t, 1H), 7.06-6.98(m, 3H), 6.94-6.90(m, 2H), 6.67(d, 1H), 6.58(d, 1H) ppm. 67
466 1H NMR (CDCl3, 300 MHz): δ =8.28(d, 1H), 8.23(d, 1H), 7.85(d, 1H), 7.71-7.62(m, 4H), 7.50(d, 2H), 7.41(d, 1H), 7.36-7.20(m, 13H), 7.18(d, 1H), 7.14(t, 2H), 7.07(q, 2H), 7.01(t, 1H), 6.95(d, 1H), 6.93(d, 1H), 6.68(d, 1H), 6.59(d, 1H), 1.47(s, 6H), ppm. 55
실시예 1: 유기전계발광소자 제조
반사층이 형성된 기판 위에 ITO로 양극을 형성하고, N2 플라즈마 또는 UV-Ozone으로 표면처리 하였다. 그 위에 정공주입층(HIL)으로 HAT-CN을 10nm의 두께로 증착시켰다. 이어서 본 발명의 화합물 1-1을 80nm 두께로 증착시켜 정공수송층(HTL)을 형성하였다. 상기 정공수송층 상부에 화합물 6을 150 Å 두께로 진공 증착하여 전자차단층(EBL)을 형성하고, 상기 전자차단층(EBL) 상부에 발광층(EML)으로 blue EML을 형성할 수 있는 9,10-비스(2-나프틸)안트라센(ADN)을 25nm 증착 시키면서 도판트(Dopant)로 2,5,8,11-테트라-부틸-페리렌(t-Bu-Perylene)을 약 5%정도 도핑(dopping)하였다. 그 위에 안트라센 유도체와 LiQ를 1:1로 혼합하여 30nm의 두께로 전자수송층(ETL)을 증착하였으며, 그 위에 전자주입층(EIL)으로 LiQ를 10nm 두께로 증착시켰다. 그 후, 음극으로 마그네슘과 은(Ag)을 9:1로 혼합한 혼합물을 15nm의 두께로 증착시켰으며, 상기 음극 위에 캐핑(capping) 층으로 N4,N4'-비스[4-[비스(3-메틸페닐)아미노]페닐]-N4,N4'-디페닐-[1,1'-바이페닐]-4,4'-디아민(DNTPD)을 65nm 두께로 증착시켰다. 그 위에 UV 경화형 접착제로 흡습제가 함유된 씰 캡(seal cap)을 합착하여 대기중의 O2나 수분으로부터 유기전계발광소자를 보호할 수 있게 하여 유기전계발광소자를 제조하였다.
실시예 2 ~ 21
상기 실시예 1에서 전자차단물질을 화합물 6 대신에 20, 29, 38, 74, 103, 139, 142, 152, 162, 180, 198, 208, 226, 328, 346, 410, 411, 420, 448 및 466을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
실시예 22 ~ 23
상기 실시예 1에서 정공수송물질을 화합물 1-1 대신 화합물 1-2를 사용하고, 전자차단물질을 화합물 6 대신에 각각 화합물 38 및 103을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
비교예 1
상기 실시예 1에서 전자차단물질인 화합물 6을 대신하여 상기 화합물 1-1을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
비교예 2
상기 실시예 1에서 전자차단물질인 화합물 6을 대신하여 NPB를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
비교예 3
상기 실시예 1에서 정공수송물질인 화합물 1-1을 대신하여 NPB를 사용한 것과 전자차단물질인 화합물 6을 대신하여 화합물 38을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
HTL EBL Volt Cd/A lm/W CIEx CIEy
비교예1 화합물1-1 화합물1-1 3.9 5.0 4.0 0.134 0.058
비교예2 화합물1-1 NPB 4.2 5.0 3.7 0.132 0.061
비교예3 NPB 화합물 38 4.1 4.8 3.7 0.134 0.058
실시예 1 화합물1-1 화합물 6 4.1 6.0 4.6 0.134 0.060
실시예 2 화합물1-1 화합물 20 4.1 6.1 4.7 0.132 0.061
실시예 3 화합물1-1 화합물 29 4.3 7.8 5.7 0.131 0.064
실시예 4 화합물1-1 화합물 38 3.9 6.3 5.1 0.134 0.058
실시예 5 화합물1-1 화합물 74 3.9 5.4 4.3 0.132 0.061
실시예 6 화합물1-1 화합물 103 4.0 5.5 4.3 0.133 0.058
실시예 7 화합물1-1 화합물 139 3.9 6.1 4.9 0.132 0.062
실시예 8 화합물1-1 화합물 142 3.8 5.9 4.9 0.134 0.060
실시예 9 화합물1-1 화합물 152 3.9 5.5 4.4 0.132 0.061
실시예 10 화합물1-1 화합물 162 4.1 6.0 4.6 0.134 0.060
실시예 11 화합물1-1 화합물 180 3.8 5.0 4.1 0.134 0.060
실시예 12 화합물1-1 화합물 198 4.0 6.2 4.9 0.133 0.058
실시예 13 화합물1-1 화합물 208 4.0 5.2 4.1 0.134 0.060
실시예 14 화합물1-1 화합물 226 3.8 6.1 5.0 0.134 0.060
실시예 15 화합물1-1 화합물 328 4.2 5.4 4.0 0.133 0.061
실시예 16 화합물1-1 화합물 346 4.0 5.8 4.6 0.134 0.058
실시예 17 화합물1-1 화합물 410 4.1 5.2 4.0 0.134 0.060
실시예 18 화합물1-1 화합물 411 4.4 6.3 4.5 0.134 0.060
실시예 19 화합물1-1 화합물 420 4.2 5.4 4.0 0.132 0.062
실시예 20 화합물1-1 화합물 448 4.2 6.3 4.7 0.134 0.060
실시예 21 화합물1-1 화합물 466 4.0 5.5 4.3 0.135 0.058
실시예 22 화합물1-2 화합물 38 3.9 6.6 5.3 0.134 0.060
실시예 23 화합물1-2 화합물 103 3.9 7.1 5.7 0.131 0.063
상기 [표 2]의 결과에 따르면, 유기발광소자에서 전자차단층(EBL)을 사용하지 않은 비교예1과 전자차단층(EBL)으로 종래 알려져 있는 NPB를 사용한 비교예2 대비 본 발명의 전자차단층을 사용한 상기 소자 실시예 1-21의 발광효율(Cd/A)이 최대 156%까지 상승함을 알 수 있다.
또한, 정공수송층(HTL)으로 종래 알려져 있는 NPB를 사용하고 전자차단층(EBL)으로 본 발명 화합물38을 사용한 비교예 3대비, 전자차단층(EBL)은 동일 물질을 사용하고 정공수송층으로 본 발명 화합물 1-1 또는 1-2를 사용한 실시예 4 및 실시예 22의 구동전압(volt)이 감소했으며 발광효율(Cd/A)은 최대 약 137%까지 상승하였으며, 전력효율(lm/W)이 최대 약 143% 향상된 것을 확인하였다.
결론적으로, 정공수송층 및 전자차단층에 화학식 1의 화합물과 화학식 2의 화합물을 조합하여 사용함으로써 낮은 구동전압 및 높은 발광효율 및 전력효율을 구현할 수 있는 유기전계발광소자를 제조할 수 있다.
본 발명은 유기전계발광소자에 관한 것이다. 더욱 상세하게는 특정의 정공수송물질과 특정의 전자차단물질을 포함하는 것을 특징으로 하는 유기전계발광소자에 관한 것이다.

Claims (17)

  1. 양극, 음극, 및 상기 양극과 음극 사이에 복수층의 유기 박막층을 포함하는 유기전계발광소자로서,
    상기 유기 박막층은 발광층을 포함하며,
    상기 양극과 발광층 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 제1 유기박막층 및 하기 화학식 2로 표시되는 화합물을 포함하는 제2 유기박막층을 포함하는 유기전계발광소자:
    [화학식 1]
    Figure PCTKR2016004732-appb-I000046
    [화학식 2]
    Figure PCTKR2016004732-appb-I000047
    [화학식 3]
    Figure PCTKR2016004732-appb-I000048
    여기서,
    m, n, p 및 q는 각각 0 내지 5의 정수이며;
    Ar1은 단일결합, C6~18의 아릴렌기 또는 핵원자수 5 내지 18개의 헤테로아릴렌기이며,
    Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, C1~10의 알킬기, C2~10의 알케닐기, C2~10의 알키닐기, C3~10의 시클로알킬기, 핵원자수 3 내지 10개의 헤테로시클로알킬기, C4~60의 아릴기 및 핵원자수 5 내지 20개의 헤테로아릴기로 이루어진 군으로부터 선택되며;
    R1 내지 R18 중 적어도 하나는 상기 화학식 3으로 표시되는 치환기이며,
    상기 화학식 3으로 표시되는 치환기가 아닌 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, 핵원자수 1 내지 30개의 알콕시기, 할로겐기, 시아노기, 니트로기, 히드록시기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아르알킬기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 6 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군으로부터 선택되며,
    L은 단일결합, C6~18의 아릴렌기 또는 핵원자수 3 내지 18개의 헤테로아릴렌기이며,
    L은 인접하는 스파이로형 코어의 R1 내지 R18 중 하나 이상과 연결되거나; 또는 인접하는 질소(N) 원자, Ar6 및 Ar7 과 함께 연결되어 핵원자수 5 내지 18개의 헤테로고리기를 형성하고,
    Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기 및 핵원자수 3 내지 30개의 헤테로아르알킬기로 이루어진 군으로부터 선택되거나,
    Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 L과 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하거나, 또는 L이 단일 결합일 경우, Ar6 및 Ar7은 각각 독립적으로 질소(N) 원자 및 스파이로형 코어와 함께 연결되어 핵원자수 5 내지 18개의 포화 또는 불포화 고리를 형성하며,
    상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아르알킬기, 알콕시기, 아릴기, 헤테로아릴기, 헤테로아르알킬기, 알킬아미노기, 아릴아미노기, 아르알킬아미노기, 헤테로아릴아미노기, 알킬실릴기, 아릴실릴기, 아릴옥시기, 아릴렌기 및 헤테로아릴렌기는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, C1~30의 알킬기, C2~30의 알케닐기, C2~24의 알키닐기, C3~12의 시클로알킬기, 핵원자수 2 내지 30개의 헤테로시클로알킬기, C7~30의 아르알킬기, C6~30의 아릴기, C6~24의 아릴알킬기, 핵원자수 2 내지 30개의 헤테로아릴기, 핵원자수 3 내지 30개의 헤테로아릴알킬기, 핵원자수 1 내지 30개의 알콕시기, 핵원자수 1 내지 30개의 알킬아미노기, 핵원자수 6 내지 30개의 아릴아미노기, 핵원자수 7 내지 30개의 아르알킬아미노기, 핵원자수 2 내지 24개의 헤테로아릴아미노기, 핵원자수 1 내지 30개의 알킬실릴기, 핵원자수 6 내지 30개의 아릴실릴기 및 핵원자수 6 내지 30개의 아릴옥시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이할 수 있다.
  2. 제1항에 있어서,
    상기 화학식 2는 하기 화학식 4 내지 8로 표시되는 화합물로 이루어진 군으로부터 선택되는 유기전계발광소자:
    [화학식 4]
    Figure PCTKR2016004732-appb-I000049
    [화학식 5]
    Figure PCTKR2016004732-appb-I000050
    [화학식 6]
    Figure PCTKR2016004732-appb-I000051
    [화학식 7]
    Figure PCTKR2016004732-appb-I000052
    여기서,
    R1 내지 R18, L, Ar6 및 Ar7 각각은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    상기 Ar1은 단일결합 또는 C6~18의 아릴렌기인 유기전계발광소자.
  4. 제3항에 있어서,
    상기 Ar1은 페닐렌기, 비페닐렌기 및 터페닐렌기로 이루어진 군으로부터 선택되는 유기전계발광소자.
  5. 제1항에 있어서,
    상기 Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 C4~60의 아릴기 또는 핵원자수 5 내지 20개의 헤테로아릴기인 유기전계발광소자.
  6. 제5항에 있어서,
    상기 Ar2 내지 Ar5는 서로 동일하거나 상이하며, 각각 독립적으로 페닐기, 비페닐기 및 터페닐기로 이루어진 군으로부터 선택되는 유기전계발광소자.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 1-1 내지 1-22로 이루어진 군으로부터 선택되는 유기전계발광소자:
    Figure PCTKR2016004732-appb-I000053
    Figure PCTKR2016004732-appb-I000054
  8. 제7항에 있어서,
    상기 화학식 1로 표시되는 화합물은, 하기 화합물로 이루어진 군으로부터 선택되는 유기전계발광소자:
    Figure PCTKR2016004732-appb-I000055
  9. 제1항에 있어서,
    상기 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, C1~10의 알킬기, C3~10의 시클로알킬기, 핵원자수 1 내지 30개의 알킬실릴기, C6~30의 아릴기 및 핵원자수 2 내지 30개의 헤테로아릴기로 이루어진 군으로부터 선택되는 유기전계발광소자.
  10. 제9항에 있어서,
    상기 R1 내지 R18은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 메틸, 에틸, 프로필, 아이소 프로필, t-부틸, 시클로헥실, 트리메틸실릴, 트리페닐실릴, 페닐, 비페닐, 터페닐, 비페닐렌기, 트리페닐렌기, 나프틸, 페난트릴, 플루오렌기, 피렌기, 다이벤조퓨라닐, 벤조퓨라닐, 벤조사이오닐, 다이벤조사이오페닐, 카르바졸릴, 스파이로바이플로렌닐, 안트라세닐, 아세나프틸렌기, 피리디닐, 카르볼리닐, 퀴놀리닐, 이소퀴놀리닐, 티안트렌기, 9H-티안테닐, 크산테닐, 다이벤조다이옥시닐, 페노크산티닐, 9,9 다이메틸-9,10-다이하이드로안트라세닐, 테트라하이드로나프탈렌기, 테트라메틸인돌리닐, 및 4a,9a-다이메틸핵사하이드로카르바졸릴로 이루어진 군으로부터 선택되는 유기전계발광소자.
  11. 제1항에 있어서,
    상기 L은 단일결합, 페닐, 비페닐, 터페닐, 나프탈렌, 카바졸, 다이벤조퓨란, 및 다이벤조티오펜으로 이루어진 군으로부터 선택되는 유기전계발광소자.
  12. 제1항에 있어서,
    상기 Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 C4~60의 아릴기 또는 핵원자수 5 내지 20개의 헤테로아릴기인 유기전계발광소자.
  13. 제12항에 있어서,
    상기 Ar6 및 Ar7은 서로 동일하거나 상이하며, 각각 독립적으로 메틸, 에틸, 프로필, 아이소 프로필, t-부틸, 시클로헥실, 트리메틸실릴, 트리페닐실릴, 치환되거나 치환되지 않은 페닐, 비페닐, 터페닐, 비페닐렌기, 트리페닐렌기, 나프틸, 페난트릴, 플루오렌기, 피렌기, 다이벤조퓨라닐, 벤조퓨라닐, 벤조사이오닐, 다이벤조사이오페닐, 카르바졸릴, 스파이로바이플로렌닐, 안트라세닐, 아세나프틸렌기, 피리디닐,카르볼리닐, 퀴놀리닐, 이소퀴놀리닐, 티안트렌기, 9H-티안테닐, 크산테닐, 다이벤조다이옥시닐, 페노크산티닐, 9,9 다이메틸-9,10-다이하이드로안트라세닐, 테트라하이드로나프탈렌기, 테트라메틸인돌리닐, 및 4a,9a-다이메틸핵사하이드로카르바졸릴로 이루어진 군으로부터 선택되는 유기전계발광소자.
  14. 제 1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화합물 1 내지 493으로 이루어진 군으로부터 선택되는 유기전계발광소자:
    Figure PCTKR2016004732-appb-I000056
    Figure PCTKR2016004732-appb-I000057
    Figure PCTKR2016004732-appb-I000058
    Figure PCTKR2016004732-appb-I000059
    Figure PCTKR2016004732-appb-I000060
    Figure PCTKR2016004732-appb-I000061
    Figure PCTKR2016004732-appb-I000062
    Figure PCTKR2016004732-appb-I000063
    Figure PCTKR2016004732-appb-I000064
    Figure PCTKR2016004732-appb-I000065
    Figure PCTKR2016004732-appb-I000066
    Figure PCTKR2016004732-appb-I000067
    Figure PCTKR2016004732-appb-I000068
    Figure PCTKR2016004732-appb-I000069
    Figure PCTKR2016004732-appb-I000070
    Figure PCTKR2016004732-appb-I000071
    Figure PCTKR2016004732-appb-I000072
    Figure PCTKR2016004732-appb-I000073
    Figure PCTKR2016004732-appb-I000074
    Figure PCTKR2016004732-appb-I000075
    Figure PCTKR2016004732-appb-I000076
    Figure PCTKR2016004732-appb-I000077
    Figure PCTKR2016004732-appb-I000078
    Figure PCTKR2016004732-appb-I000079
    Figure PCTKR2016004732-appb-I000080
    Figure PCTKR2016004732-appb-I000081
    Figure PCTKR2016004732-appb-I000082
    Figure PCTKR2016004732-appb-I000083
    Figure PCTKR2016004732-appb-I000084
  15. 제1항에 있어서,
    상기 유기 박막층은 정공주입층, 정공수송층, 전자차단층, 정공차단층, 전자수송층 및 전자주입층 중에서 선택되는 1층 이상을 포함하는 것을 특징으로 하는 유기전계발광소자.
  16. 제1항에 있어서,
    상기 제1 유기박막층 및 상기 제2 유기박막층은 정공주입층, 정공수송층 및 전자차단층으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 유기전계발광소자.
  17. 제16항에 있어서,
    상기 제1 유기박막층은 정공수송층이며,
    상기 제2 유기박막층은 전자차단층인 것을 특징으로 하는 유기전계발광소자.
PCT/KR2016/004732 2015-05-08 2016-05-04 유기전계발광소자 WO2016182270A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680002346.2A CN106612616B (zh) 2015-05-08 2016-05-04 有机电致发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0064607 2015-05-08
KR20150064607 2015-05-08
KR10-2016-0046520 2016-04-15
KR1020160046520A KR101857518B1 (ko) 2015-05-08 2016-04-15 유기전계발광소자

Publications (1)

Publication Number Publication Date
WO2016182270A1 true WO2016182270A1 (ko) 2016-11-17

Family

ID=57249490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004732 WO2016182270A1 (ko) 2015-05-08 2016-05-04 유기전계발광소자

Country Status (1)

Country Link
WO (1) WO2016182270A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3533784A1 (en) * 2018-02-28 2019-09-04 Novaled GmbH Spiro benzoanthracene-fluorene derivatives and their use in organic electronic devices, displays and lighting devices
CN112480133A (zh) * 2019-09-11 2021-03-12 江苏三月光电科技有限公司 一种以苯并螺蒽为核心的化合物及其应用
CN112812024A (zh) * 2020-04-02 2021-05-18 陕西莱特迈思光电材料有限公司 一种有机化合物和应用以及使用其的有机电致发光器件
US20220115597A1 (en) * 2020-10-13 2022-04-14 Samsung Display Co., Ltd. Light emitting element and amine compound for the same
US11459290B2 (en) 2017-05-22 2022-10-04 Lg Chem, Ltd. Compound and organic light emitting device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110104765A (ko) * 2010-03-17 2011-09-23 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN103664644A (zh) * 2012-08-31 2014-03-26 海洋王照明科技股份有限公司 含苯胺的有机半导体材料及其制备方法和有机电致发光器件
WO2014058232A2 (ko) * 2012-10-10 2014-04-17 대주전자재료 주식회사 스파이로형 유기 재료 및 이를 이용한 유기 전기발광 소자
KR101512058B1 (ko) * 2014-05-22 2015-04-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110104765A (ko) * 2010-03-17 2011-09-23 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN103664644A (zh) * 2012-08-31 2014-03-26 海洋王照明科技股份有限公司 含苯胺的有机半导体材料及其制备方法和有机电致发光器件
WO2014058232A2 (ko) * 2012-10-10 2014-04-17 대주전자재료 주식회사 스파이로형 유기 재료 및 이를 이용한 유기 전기발광 소자
KR101512058B1 (ko) * 2014-05-22 2015-04-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHA, JAE - RYUNG ET AL.: "All Fused Ring Spiro Host and Dopant Materials for Efficient Blue Fluorescent Organic Light-Emitting Diodes", DYES AND PIGMENTS, vol. 120, September 2015 (2015-09-01), pages 251 - 257, XP029187732, [retrieved on 20150424] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459290B2 (en) 2017-05-22 2022-10-04 Lg Chem, Ltd. Compound and organic light emitting device using the same
EP3533784A1 (en) * 2018-02-28 2019-09-04 Novaled GmbH Spiro benzoanthracene-fluorene derivatives and their use in organic electronic devices, displays and lighting devices
WO2019166269A1 (en) * 2018-02-28 2019-09-06 Novaled Gmbh Spiro benzoanthracene-fluorene derivatives and their use in organic electronic devices, displays and lighting devices
CN111788177A (zh) * 2018-02-28 2020-10-16 诺瓦尔德股份有限公司 螺苯并蒽-芴衍生物以及它们在有机电子器件、显示和照明装置中的应用
CN112480133A (zh) * 2019-09-11 2021-03-12 江苏三月光电科技有限公司 一种以苯并螺蒽为核心的化合物及其应用
CN112480133B (zh) * 2019-09-11 2023-08-08 江苏三月科技股份有限公司 一种以苯并螺蒽为核心的化合物及其应用
CN112812024A (zh) * 2020-04-02 2021-05-18 陕西莱特迈思光电材料有限公司 一种有机化合物和应用以及使用其的有机电致发光器件
CN112812024B (zh) * 2020-04-02 2022-03-29 陕西莱特迈思光电材料有限公司 一种有机化合物和应用以及使用其的有机电致发光器件
US20220115597A1 (en) * 2020-10-13 2022-04-14 Samsung Display Co., Ltd. Light emitting element and amine compound for the same

Similar Documents

Publication Publication Date Title
WO2017150859A1 (ko) 함질소 화합물 및 이를 포함하는 유기 발광 소자
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2017204594A1 (ko) 유기 발광 소자
WO2018230969A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020251180A1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2014021572A1 (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2018128470A1 (ko) 유기전계발광소자
WO2016182270A1 (ko) 유기전계발광소자
WO2015099438A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017105039A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2020242165A1 (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016089165A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2022270835A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019027189A1 (ko) 유기 전계 발광 소자
WO2016099204A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2020096419A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015167223A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2015084047A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2022108258A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022055321A1 (ko) 신규한 캡핑층용 화합물 및 이를 포함하는 유기 발광 소자
WO2019066242A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792916

Country of ref document: EP

Kind code of ref document: A1