WO2015167223A1 - 신규한 화합물 및 이를 포함하는 유기발광소자 - Google Patents

신규한 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2015167223A1
WO2015167223A1 PCT/KR2015/004261 KR2015004261W WO2015167223A1 WO 2015167223 A1 WO2015167223 A1 WO 2015167223A1 KR 2015004261 W KR2015004261 W KR 2015004261W WO 2015167223 A1 WO2015167223 A1 WO 2015167223A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
deuterium
halogen
nitrile
substituted
Prior art date
Application number
PCT/KR2015/004261
Other languages
English (en)
French (fr)
Inventor
함호완
김봉기
안현철
김성훈
박민수
김동준
배유진
김근태
이형진
안자은
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201580022608.7A priority Critical patent/CN106255695B/zh
Priority claimed from KR1020150059614A external-priority patent/KR102423699B1/ko
Publication of WO2015167223A1 publication Critical patent/WO2015167223A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the present invention relates to a novel compound and an organic light emitting device including the same, in particular, when applied to the organic light emitting device has excellent hole and electron transport characteristics, and at the same time can implement a high triplet energy and high Tg, low driving voltage,
  • the present invention relates to a novel compound capable of having low power consumption, high efficiency and long life.
  • an organic light emitting device capable of low voltage driving with a self-luminous type has a superior viewing angle, contrast ratio, and the like, and is lighter and thinner than a liquid crystal display (LCD), which is the mainstream of flat panel display devices.
  • LCD liquid crystal display
  • the material used as the organic material layer in the organic light emitting device can be largely classified into light emitting materials, hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like depending on the function.
  • the light emitting material may be classified into a polymer and a low molecule according to molecular weight, and may be classified into a fluorescent material derived from a singlet excited state of electrons and a phosphorescent material derived from a triplet excited state of electrons according to a light emitting mechanism. According to the emission color can be divided into blue, green, red light emitting material and yellow and orange light emitting material required to implement a better natural color.
  • a host / dopant system may be used as a light emitting material.
  • the principle is that when a small amount of dopant having a smaller energy band gap and excellent luminous efficiency than the host mainly constituting the light emitting layer is mixed in the light emitting layer, excitons generated in the host are transported to the dopant to produce high efficiency light.
  • the wavelength of the host is shifted to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant and the host used.
  • the present invention is excellent in the hole and electron transfer characteristics when applied to the organic light emitting device, at the same time can implement a high triplet energy and high Tg, low driving voltage, low power consumption, high efficiency and long life
  • An object of the present invention is to provide a novel compound capable of having.
  • the present invention also includes an organic light-emitting device having excellent hole and electron transfer characteristics, high triplet energy and high Tg, and low driving voltage, low power consumption, high efficiency, and long life. It is an object to provide an element.
  • X is O, S, Se, Te or NAr, wherein Ar is a C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2-50 heteroaryl group unsubstituted or substituted with deuterium, a halogen, an amino group, a nitrile group, a nitro group,
  • Each A is independently N or CR, wherein each R is independently hydrogen; heavy hydrogen; C 1-30 alkyl group unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2-30 alkenyl groups unsubstituted or substituted with deuterium, halogen, amino, nitrile, and nitro groups; C 2-30 alkynyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; A C 1-30 alkoxy group unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-30 aryloxy group which is unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2
  • R 1 and R 2 are each independently hydrogen; heavy hydrogen; C 1-30 alkyl group unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2-30 alkenyl groups unsubstituted or substituted with deuterium, halogen, amino, nitrile, and nitro groups; C 2-30 alkynyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; A C 1-30 alkoxy group unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-30 aryloxy group which is unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2-50 heteroaryl group which is
  • the present invention provides an organic light emitting device comprising the compound represented by the formula (1).
  • the compound of the present invention has excellent hole and electron transfer characteristics when applied to an organic light emitting device, and at the same time can realize high triplet energy and high Tg, and can have a low driving voltage, low power consumption, high efficiency and long life.
  • FIG. 1 schematically illustrates a cross section of an OLED according to an embodiment of the invention.
  • the compound of the present invention is characterized by represented by the following formula (1).
  • X is O, S, Se, Te or NAr, wherein Ar is a C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2-50 heteroaryl group unsubstituted or substituted with deuterium, a halogen, an amino group, a nitrile group, a nitro group,
  • Each A is independently N or CR, wherein each R is independently hydrogen; heavy hydrogen; C 1-30 alkyl group unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2-30 alkenyl groups unsubstituted or substituted with deuterium, halogen, amino, nitrile, and nitro groups; C 2-30 alkynyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; A C 1-30 alkoxy group unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-30 aryloxy group which is unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2
  • R 1 and R 2 are each independently hydrogen; heavy hydrogen; C 1-30 alkyl group unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2-30 alkenyl groups unsubstituted or substituted with deuterium, halogen, amino, nitrile, and nitro groups; C 2-30 alkynyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; A C 1-30 alkoxy group unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-30 aryloxy group which is unsubstituted or substituted with deuterium, halogen, amino, nitrile or nitro group; C 6-50 aryl group which is optionally substituted with deuterium, halogen, amino group, nitrile group, nitro group; Or a C 2-50 heteroaryl group which is
  • the compound of formula 1 according to the present invention has excellent hole and electron transport characteristics, and can simultaneously realize high triplet energy and high Tg, and has a low driving voltage, low power consumption, high efficiency and long life, and is applied to an organic light emitting device. Excellent device characteristics can be exhibited.
  • the present invention also provides an organic light emitting device comprising the compound represented by Chemical Formula 1 in an organic material layer.
  • the compound represented by Chemical Formula 1 is included in the organic light emitting device as a light emitting material or a hole transporting material.
  • the organic light emitting device of the present invention includes one or more organic material layers including the compound represented by Chemical Formula 1, and the method of manufacturing the organic light emitting device is as follows.
  • the organic light emitting device includes an organic material layer such as a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), an electron injection layer (EIL) between an anode and a cathode. It may contain one or more.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML emission layer
  • ETL electron transport layer
  • EIL electron injection layer
  • an anode is formed by depositing a material for an anode electrode having a high work function on the substrate.
  • the substrate may be a substrate used in a conventional organic light emitting device, it is particularly preferable to use a glass substrate or a transparent plastic substrate excellent in mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and waterproof.
  • the anode electrode material transparent and excellent indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), and the like may be used.
  • the anode electrode material may be deposited by a conventional anode forming method, and specifically, may be deposited by a deposition method or a sputtering method.
  • the hole injection layer material may be formed on the anode by vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB), etc., but it is easy to obtain a uniform film quality and also pinholes. It is preferable to form by the vacuum evaporation method in that it is hard to generate
  • the deposition conditions vary depending on the compound used as the material of the hole injection layer, the structure and thermal properties of the desired hole injection layer, and generally, a deposition temperature of 50-500 ° C., It is preferable to select appropriately from a vacuum degree of 10 -8 to 10 -3 torr, a deposition rate of 0.01 to 100 kPa / sec, and a layer thickness of 10 kPa to 5 mu m.
  • the hole injection layer material is not particularly limited, and TCTA (4,4 ′, 4 ′′ -tri (N-carbazolyl) tree, which is a phthalocyanine compound or starburst type amine derivative such as copper phthalocyanine disclosed in US Pat. No. 4,356,429.
  • the hole transport layer material may be formed on the hole injection layer by a method such as vacuum deposition, spin coating, cast, LB, etc., but it is easy to obtain a uniform film quality and is difficult to generate pin holes. It is preferable to form by a vapor deposition method.
  • the deposition conditions vary depending on the compound used, but in general, the hole transport layer is preferably selected in the same condition range as the formation of the hole injection layer.
  • the compound represented by the formula (1) of the present invention as the hole transport layer material, and can also be used arbitrarily selected from conventionally known materials used in the hole transport layer, and the compound represented by the formula (1) A well-known hole transport layer material can also be mixed and used.
  • the known hole transport layer material is carbazole derivatives such as N-phenylcarbazole, polyvinylcarbazole, N, N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1 -Biphenyl] -4,4'- diamine (TPD), N.N'- di (naphthalen- 1-yl) -N, N'- diphenyl benzidine (alpha-NPD), etc.
  • TPD N-phenylcarbazole
  • polyvinylcarbazole polyvinylcarbazole
  • TPD N.N'- di (naphthalen- 1-yl) -N, N'- diphenyl benzidine
  • alpha-NPD N-phenyl benzidine
  • the light emitting layer material may be formed on the hole transport layer by a method such as vacuum deposition, spin coating, casting, LB, etc., but the vacuum deposition method is easy to obtain a uniform film quality and hard to generate pin holes. It is preferable to form by.
  • the deposition conditions vary depending on the compound used, but in general, it is preferable to select within the same condition range as the formation of the hole injection layer.
  • the light emitting layer material may use the compound represented by Formula 1 of the present invention as a host or dopant.
  • a light emitting layer may be formed by using a phosphorescent or fluorescent dopant together.
  • the fluorescent dopant may be IDE102 or IDE105, or BD142 (N 6 , N 12 -bis (3,4-dimethylphenyl) -N 6 , N 12 -dimethyrylcrisne- which can be purchased from Idemitsu Co., Ltd.).
  • 6,12-diamine can be used as green phosphorescent dopant Ir (ppy) 3 (tris (2-phenylpyridine) iridium), blue phosphorescent dopant F2Irpic (iridium (III) bis [4,6- Difluorophenyl) -pyridinato-N, C2 '] picolinate), a red phosphorescent dopant RD61 from UDC, and the like can be co-vacuum deposited (doped).
  • the doping concentration of the dopant is not particularly limited, but the dopant is preferably doped at 0.01 to 15 parts by weight based on 100 parts by weight of the host.
  • the content of the dopant is less than 0.01 parts by weight, there is a problem in that the color development is not performed properly because the amount of the dopant is not sufficient, and if it exceeds 15 parts by weight, the efficiency is drastically reduced due to the concentration quenching phenomenon.
  • the hole suppression material HBL
  • HBL hole suppression material
  • the hole-suppressing material that can be used at this time is not particularly limited, but any one of the well-known ones used as the hole-inhibiting material can be selected and used.
  • an oxadiazole derivative, a triazole derivative, a phenanthroline derivative, or the hole-inhibiting material described in Japanese Patent Laid-Open No. 11-329734 (A1) can be cited.
  • Oxy-2-methylquinolinolato) -aluminum biphenoxide), a phenanthrolines-based compound e.g., BCP (vasocuproin) from UDC
  • BCP vasocuproin
  • An electron transport layer is formed on the light emitting layer formed as above, wherein the electron transport layer is formed by a vacuum deposition method, a spin coating method, a casting method, or the like, and is preferably formed by a vacuum deposition method.
  • the electron transport layer material functions to stably transport electrons injected from the electron injection electrode, and the type thereof is not particularly limited, and examples thereof include quinoline derivatives, especially tris (8-quinolinolato) aluminum (Alq 3). ), Or ET4 (6,6 '-(3,4-dimethyl-1,1-dimethyl-1H-silol-2,5-diyl) di-2,2'-bipyridine).
  • an electron injection layer (EIL) which is a material having a function of facilitating injection of electrons from the cathode, may be stacked on the electron transport layer, and the electron injection layer material may be LiF, NaCl, CsF, Li 2 O, BaO, or the like. The substance of can be used.
  • the deposition conditions of the electron transport layer are different depending on the compound used, it is generally preferable to select within the same condition range as the formation of the hole injection layer.
  • an electron injection layer material may be formed on the electron transport layer, wherein the electron transport layer is formed of a conventional electron injection layer material by a vacuum deposition method, a spin coating method, a casting method, and the like. It is preferable to form by.
  • a cathode forming metal is formed on the electron injection layer by a method such as vacuum deposition or sputtering and used as a cathode.
  • the cathode forming metal may be a metal having low work function, an alloy, an electrically conductive compound, and a mixture thereof. Specific examples include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), and the like. There is this.
  • a transmissive cathode using ITO or IZO may be used to obtain the front light emitting device.
  • the organic light emitting device of the present invention is not only an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an organic light emitting device of the cathode structure, but also the structure of an organic light emitting device of various structures, 1 It is also possible to form a layer or two intermediate layers.
  • each organic material layer formed according to the present invention can be adjusted according to the required degree, preferably 10 to 1,000 nm, more preferably 20 to 150 nm.
  • the present invention has an advantage that the organic material layer including the compound represented by Formula 1 has a uniform surface and excellent shape stability because the thickness of the organic material layer can be adjusted in molecular units.
  • the organic light emitting device of the present invention includes the compound represented by Chemical Formula 1, and has excellent hole and electron transport characteristics, and at the same time, can realize high triplet energy and high Tg, and has a low driving voltage, low power consumption, high efficiency, and long lifespan.
  • Intermediate B and intermediate B2 were synthesized by the same procedure as Intermediate A-1, Intermediate A-2, Intermediate A, Intermediate A1, Intermediate A2, except that 2-bromobenzo [b] thiophene was used instead of 2-bromobenzofuran.
  • Compound 2 was synthesized in the same manner as in compound 1, except that 4-bromo-2,6-diphenylpyridine was reacted with 2-bromo-4,6-diphenylpyridine.
  • Compound 3 was synthesized in the same manner as in compound 1, except that 4-bromo-2,6-diphenylpyridine was reacted with 4-bromo-2,6-diphenylpyrimidine.
  • Compound 4 was synthesized in the same manner as in compound 1, except that 4-bromo-2,6-diphenylpyridine was reacted with 2-bromo-4,6-diphenylpyrimidine.
  • Compound 15 was synthesized in the same manner as Compound 11, except for reacting with Intermediate E2 instead of Intermediate A2.
  • Compound 21 was synthesized in the same manner as Compound 19, except for reacting with Intermediate E instead of Intermediate A.
  • Compound 22 was synthesized in the same manner as Compound 19, except that Interaction F was used instead of Intermediate A.
  • An organic light emitting device was manufactured according to the structure of FIG. 1.
  • the organic light emitting element is stacked in the order of the hole injection electrode 11 / hole injection layer 12 / hole transport layer 13 / light emitting layer 14 / electron transfer layer 15 / electron injection electrode 16 from below.
  • the hole injection layer 12, the hole transport layer 13, the light emitting layer 14, and the electron transport layer 15 of Examples and Comparative Examples used the following materials.
  • ITO 1500 ⁇ thick thin glass substrate was washed with distilled water ultrasonic waves. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, etc. is dried, transferred to a plasma cleaner, and then the substrate is cleaned for 5 minutes by using an oxygen plasma.
  • NPB 250 ⁇ was formed into a hole injection layer HT01 600 ⁇ and a hole transport layer.
  • the light emitting layer was doped with 10% of Compound 1: Ir (ppy) 3 to form a film of 250 ⁇ .
  • ET01: Liq (1: 1) 300) was formed into an electron transport layer, followed by LiF 10 ⁇ and aluminum (Al) 1000 ⁇ , which were encapsulated in a glove box to produce a green organic light emitting device. .
  • a glass substrate coated with an indium tin oxide (ITO) 1500 ⁇ thick thin film was washed by distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, etc. is dried, transferred to a plasma cleaner, and then the substrate is cleaned for 5 minutes by using an oxygen plasma.
  • Compound evaporation was carried out using an evaporator (600 evaporator HT01 600 ⁇ , a hole transport layer compound 11 250 ⁇ ).
  • the light emitting layer was doped with 5% of BH01: BD01 to form 300 ⁇ .
  • Alq 3 Liq (1: 1) 300 ⁇ was formed into an electron transport layer, followed by Liq 10 ⁇ and aluminum (Al) 1000 ⁇ .
  • the organic light emitting device was manufactured by encapsulating the device in a glove box. .
  • an organic light emitting diode was manufactured by using a compound 12 to 22 as a hole transport layer.
  • a green organic light emitting diode was manufactured according to the same method as Example 1 except that Compound 1 was used as the CBP as a light emitting layer host.
  • a green organic light emitting diode was manufactured according to the same method as Example 1 except that Compound 1 was used as Ref. 1 as the light emitting layer host.
  • a green organic light emitting diode was manufactured according to the same method as Example 1 except that Compound 1 was used as Ref. 2 as the light emitting layer host.
  • An organic light emitting diode was manufactured according to the same method as Example 20 except that Compound 20 was used as NPB as the hole transport layer.
  • the embodiment of the present invention has excellent physical properties when used as a light emitting layer host of the green organic light emitting device as compared to Comparative Examples 1 to 3.
  • the efficiency and life is remarkably excellent.
  • the compound of the present invention has excellent hole and electron transfer characteristics when applied to an organic light emitting device, and at the same time can realize high triplet energy and high Tg, and can have a low driving voltage, low power consumption, high efficiency and long life.

Abstract

본 발명은 신규한 화합물에 관한 것으로, 특히 유기발광소자에 적용시 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있는 신규한 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.

Description

신규한 화합물 및 이를 포함하는 유기발광소자
본 발명은 신규한 화합물 및 이를 포함하는 유기발광소자에 관한 것으로, 특히 유기발광소자에 적용시 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있는 신규한 화합물에 관한 것이다.
최근, 자체 발광형으로 저전압 구동이 가능한 유기발광소자는, 평판 표시소자의 주류인 액정디스플레이(LCD, liquid crystal display)에 비해, 시야각, 대조비 등이 우수하고 백라이트가 불필요하여 경량 및 박형이 가능하며 소비전력 측면에서도 유리하고 색 재현 범위가 넓어, 차세대 표시소자로서 주목을 받고 있다.
유기발광소자에서 유기물 층으로 사용되는 재료는 크게 기능에 따라, 발광 재료, 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 상기 발광 재료는 분자량에 따라 고분자과 저분자로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있으며, 발광 재료는 발광 색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트와 호스트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
현재까지 이러한 유기발광소자에 사용되는 물질로서 다양한 화합물들이 알려져 있으나, 이제까지 알려진 물질을 이용한 유기발광소자의 경우 높은 구동전압, 낮은 효율 및 짧은 수명으로 인해 실용화하는 데에 많은 어려움이 있었다. 따라서, 우수한 특성을 갖는 물질을 이용하여 저전압 구동, 고휘도 및 장수명을 갖는 유기발광소자를 개발하려는 노력이 지속되어 왔다.
상기와 같은 문제점을 해결하기 위해, 본 발명은 유기발광소자에 적용시 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있는 신규한 화합물을 제공하는 것을 목적으로 한다.
본 발명은 또한 상기 신규한 화합물을 포함하여 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있는 유기발광소자를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2015004261-appb-I000001
상기 식에서,
*는 각각 1 및 2와 결합하며,
X는 O, S, Se, Te 또는 NAr이며, 여기서 Ar은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이고,
A는 각각 독립적으로 N 또는 CR이며, 여기서 R은 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 A 사이는 서로 연결될 수도 있으며, A가 CR일 경우 인접한 R은 서로 고리를 형성할 수 있으며,
R1 및 R2는 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 R1과 R2는 서로 연결될 수도 있다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기발광소자를 제공한다.
본 발명의 화합물은 유기발광소자에 적용시 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 OLED의 단면을 개략적으로 도시한 것이다.
도면의 부호
10 : 기판
11 : 양극
12 : 정공주입층
13 : 정공전달층
14 : 발광층
15 : 전자전달층
16: 음극
본 발명의 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2015004261-appb-I000002
상기 식에서,
*는 각각 1 및 2와 결합하며,
X는 O, S, Se, Te 또는 NAr이며, 여기서 Ar은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이고,
A는 각각 독립적으로 N 또는 CR이며, 여기서 R은 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 A 사이는 서로 연결될 수도 있으며, A가 CR일 경우 인접한 R은 서로 고리를 형성할 수 있으며,
R1 및 R2는 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 R1과 R2는 서로 연결될 수도 있다.
본 발명에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식
화학식 2 내지 5로 표시되는 것 중 하나일 수 있다.
[화학식 2]
Figure PCTKR2015004261-appb-I000003
[화학식 3]
Figure PCTKR2015004261-appb-I000004
[화학식 4]
Figure PCTKR2015004261-appb-I000005
[화학식 5]
Figure PCTKR2015004261-appb-I000006
상기 화학식 2 내지 5에서 X, A, R1 및 R2는 화학식 1에서 정의한 바와 같다.
본 발명에 있어서, 상기 화학식 1로 표시되는 화합물의 바람직한 예는 다음과 같다:
Figure PCTKR2015004261-appb-I000007
Figure PCTKR2015004261-appb-I000008
Figure PCTKR2015004261-appb-I000009
Figure PCTKR2015004261-appb-I000010
Figure PCTKR2015004261-appb-I000011
Figure PCTKR2015004261-appb-I000012
Figure PCTKR2015004261-appb-I000013
Figure PCTKR2015004261-appb-I000014
Figure PCTKR2015004261-appb-I000015
Figure PCTKR2015004261-appb-I000016
Figure PCTKR2015004261-appb-I000017
Figure PCTKR2015004261-appb-I000018
Figure PCTKR2015004261-appb-I000019
Figure PCTKR2015004261-appb-I000020
Figure PCTKR2015004261-appb-I000021
Figure PCTKR2015004261-appb-I000022
본 발명에 따른 화학식 1의 화합물은 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가져, 유기발광소자에 적용시 우수한 소자특성을 나타낼 수 있다.
또한 본 발명의 화합물은 하기 반응식 1 내지 4로 표시되는 반응식을 통하여 제조될 수 있다:
[반응식 1]
Figure PCTKR2015004261-appb-I000023
[반응식 2]
Figure PCTKR2015004261-appb-I000024
[반응식 3]
Figure PCTKR2015004261-appb-I000025
[반응식 4]
Figure PCTKR2015004261-appb-I000026
상기 반응식들에서 X, A는 화학식 1에서 정의된 바와 같으며, R은 화학식 1의 R1 및 R2와 같다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 유기물층에 포함하는 유기발광소자를 제공한다. 바람직하기로는 상기 화학식 1로 표시되는 화합물은 발광물질 또는 정공수송물질로 유기발광소자에 포함된다.
또한 본 발명의 유기발광소자는 상기 화학식 1로 표시되는 화합물을 포함하는 1층 이상의 유기물층을 포함하는 바, 상기 유기발광소자의 제조방법을 설명하면 다음과 같다.
상기 유기발광소자는 애노드(anode)와 캐소드(cathod) 사이에 정공주입층(HIL), 정공수송층(HTL), 발광층(EML), 전자수송층(ETL), 전자주입층(EIL) 등의 유기물층을 1 개 이상 포함할 수 있다.
먼저, 기판 상부에 높은 일함수를 갖는 애노드 전극용 물질을 증착시켜 애노드를 형성한다. 이때, 상기 기판은 통상의 유기발광소자에서 사용되는 기판을 사용할 수 있으며, 특히 기계적 강도, 열적 안정성, 투명성, 표면평활성, 취급용이성, 및 방수성이 우수한 유리 기판 또는 투명 플라스틱 기판을 사용하는 것이 좋다. 또한, 애노드 전극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화아연(ZnO) 등을 사용할 수 있다. 상기 애노드 전극용 물질은 통상의 애노드 형성방법에 의해 증착할 수 있으며, 구체적으로 증착법 또는 스퍼터링법에 의해 증착할 수 있다.
그 다음, 상기 애노드 전극 상부에 정공주입층 물질을 진공증착법, 스핀코팅법, 캐스트법, LB(Langmuir-Blodgett)법 등과 같은 방법에 의해 형성할 수 있지만, 균일한 막질을 얻기 쉽고, 또한 핀정공이 발생하기 어렵다는 등의 점에서 진공증착법에 의해 형성하는 것이 바람직하다. 상기 진공증착법에 의해 정공주입층을 형성하는 경우 그 증착조건은 정공주입층의 재료로서 사용하는 화합물, 목적하는 정공주입층의 구조 및 열적특성 등에 따라 다르지만, 일반적으로 50-500 ℃의 증착온도, 10-8 내지 10-3 torr의 진공도, 0.01 내지 100 Å/sec의 증착속도, 10 Å 내지 5 ㎛의 층 두께 범위에서 적절히 선택하는 것이 바람직하다.
상기 정공주입층 물질은 특별히 제한되지 않으며, 미국특허 제4,356,429호에 개시된 구리 프탈로시아닌 등의 프탈로시아닌 화합물 또는 스타버스트형 아민 유도체류인 TCTA(4,4',4"-트리(N-카바졸릴)트리페닐아민), m-MTDATA(4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민), m-MTDAPB(4,4',4"-트리스(3-메틸페닐아미노)페녹시벤젠), HI-406(N1,N1'-(비페닐-4,4'-디일)비스(N1-(나프탈렌-1-일)-N4,N4-디페닐벤젠-1,4-디아민) 등을 정공주입층 물질로 사용할 수 있다.
다음으로 상기 정공주입층 상부에 정공수송층 물질을 진공증착법, 스핀코팅법, 캐스트법, LB법 등과 같은 방법에 의해 형성할 수 있지만, 균일한 막질을 얻기 쉽고, 핀정공이 발생하기 어렵다는 점에서 진공증착법에 의해 형성하는 것이 바람직하다. 상기 진공증착법에 의해 정공수송층을 형성하는 경우 그 증착조건은 사용하는 화합물에 따라 다르지만 일반적으로 정공주입층의 형성과 거의 동일한 조건 범위에서 선택하는 것이 좋다.
또한, 상기 정공수송층 물질은 본 발명의 화학식 1로 표시되는 화합물을 사용하는 것이 좋으며, 또한 정공수송층에 사용되고 있는 통상의 공지 물질 중에서 임의로 선택하여 사용할 수 있으며, 본 발명의 화학식 1로 표시되는 화합물과 공지의 정공수송층 물질을 혼합하여 사용할 수도 있다. 구체적으로, 공지의 상기 정공수송층 물질은 N-페닐카바졸, 폴리비닐카바졸 등의 카바졸 유도체, N,N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1-비페닐]-4,4'-디아민(TPD), N.N'-디(나프탈렌-1-일)-N,N'-디페닐 벤지딘(α-NPD) 등의 방향족 축합환을 가지는 통상의 아민 유도체 등이 사용될 수 있다.
그 후, 상기 정공수송층 상부에 발광층 물질을 진공증착법, 스핀코팅법, 캐스트법, LB법 등과 같은 방법에 의해 형성할 수 있지만, 균일한 막질을 얻기 쉽고, 핀정공이 발생하기 어렵다는 점에서 진공증착법에 의해 형성하는 것이 바람직하다. 상기 진공증착법에 의해 발광층을 형성하는 경우 그 증착조건은 사용하는 화합물에 따라 다르지만 일반적으로 정공주입층의 형성과 거의 동일한 조건 범위에서 선택하는 것이 좋다. 또한, 상기 발광층 재료는 본 발명의 화학식 1로 표시되는 화합물을 호스트 또는 도펀트로 사용할 수 있다.
상기 화학식 1로 표시되는 화합물을 발광 호스트로 사용하는 경우, 인광 또는 형광 도펀트를 함께 사용하여 발광층을 형성할 수 있다. 이때, 형광 도펀트로는 이데미츠사(Idemitsu사)에서 구입 가능한 IDE102 또는 IDE105, 또는 BD142(N6,N12-비스(3,4-디메틸페닐)-N6,N12-디메시틸크리센-6,12-디아민)를 사용할 수 있으며, 인광 도펀트로는 녹색 인광 도펀트 Ir(ppy)3(트리스(2-페닐피리딘) 이리듐), 청색 인광 도펀트인 F2Irpic(이리듐(Ⅲ) 비스[4,6-다이플루오로페닐)-피리디나토-N,C2'] 피콜린산염), UDC사의 적색 인광 도펀트 RD61 등이 공동 진공증착(도핑)될 수 있다. 도펀트의 도핑농도는 특별히 제한되지 않으나, 호스트 100 중량부 대비 도펀트가 0.01 내지 15 중량부로 도핑되는 것이 바람직하다. 만약 도펀트의 함량이 0.01 중량부 미만일 경우에는 도펀트량이 충분치 못하여 발색이 제대로 이루어지지 않는다는 문제점이 있으며, 15 중량부를 초과할 경우에는 농도 소광 현상으로 인해 효율이 급격히 감소된다는 문제점이 있다.
또한, 발광층에 인광 도펀트와 함께 사용할 경우에는 삼중항 여기자 또는 정공이 전자수송층으로 확산되는 현상을 방지하기 위하여 정공억제재료(HBL)를 추가로 진공증착법 또는 스핀코팅법에 의해 적층시키는 것이 바람직하다. 이때 사용할 수 있는 정공억제물질은 특별히 제한되지는 않으나, 정공억제재료로 사용되고 있는 공지의 것에서 임의의 것을 선택해서 이용할 수 있다. 예를 들면, 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, 또는 일본특개평 11-329734(A1)에 기재되어 있는 정공억제재료 등을 들 수 있으며, 대표적으로 Balq(비스(8-하이드록시-2-메틸퀴놀리놀나토)-알루미늄 비페녹사이드), 페난트롤린(phenanthrolines)계 화합물(예: UDC사 BCP(바쏘쿠프로인)) 등을 사용할 수 있다.
상기와 같이 형성된 발광층 상부에는 전자수송층이 형성되는데, 이때 상기 전자수송층은 진공증착법, 스핀코팅법, 캐스트법 등의 방법으로 형성되며, 특히 진공증착법에 의해 형성하는 것이 바람직하다.
상기 전자수송층 재료는 전자주입전극으로부터 주입된 전자를 안정하게 수송하는 기능을 하는 것으로서 그 종류가 특별히 제한되지는 않으며, 예를 들어 퀴놀린 유도체, 특히 트리스(8-퀴놀리놀라토)알루미늄(Alq3), 또는 ET4(6,6'-(3,4-디메시틸-1,1-디메틸-1H-실올-2,5-디일)디-2,2'-비피리딘)을 사용할 수 있다. 또한, 전자수송층 상부에 캐소드로부터 전자의 주입을 용이하게 하는 기능을 가지는 물질인 전자주입층(EIL)이 적층될 수 있으며, 전자주입층 물질로는 LiF, NaCl, CsF, Li2O, BaO 등의 물질을 이용할 수 있다.
또한, 상기 전자수송층의 증착조건은 사용하는 화합물에 따라 다르지만, 일반적으로 정공주입층의 형성과 거의 동일한 조건 범위에서 선택하는 것이 좋다.
그 뒤, 상기 전자수송층 상부에 전자주입층 물질을 형성할 수 있으며, 이때 상기 전자수송층은 통상의 전자주입층 물질을 진공증착법, 스핀코팅법, 캐스트법 등의 방법으로 형성되며, 특히 진공증착법에 의해 형성하는 것이 바람직하다.
마지막으로 전자주입층 상부에 캐소드 형성용 금속을 진공증착법이나 스퍼터링법 등의 방법에 의해 형성하고 캐소드로 사용한다. 여기서 캐소드 형성용 금속으로는 낮은 일함수를 가지는 금속, 합금, 전기전도성 화합물, 및 이들의 혼합물을 사용할 수 있다. 구체적인 예로는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag) 등이 있다. 또한, 전면 발광소자를 얻기 위하여 ITO, IZO를 사용한 투과형 캐소드를 사용할 수도 있다.
본 발명의 유기발광소자는 애노드, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 캐소드 구조의 유기발광소자 뿐만 아니라, 다양한 구조의 유기발광소자의 구조가 가능하며, 필요에 따라 1층 또는 2층의 중간층을 더 형성하는 것도 가능하다.
상기와 같이 본 발명에 따라 형성되는 각 유기물층의 두께는 요구되는 정도에 따라 조절할 수 있으며, 바람직하게는 10 내지 1,000 ㎚이며, 더욱 바람직하게는 20 내지 150 ㎚인 것이 좋다.
또한 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 유기물층의 두께를 분자 단위로 조절할 수 있기 때문에 표면이 균일하며, 형태안정성이 뛰어난 장점이 있다.
본 발명의 유기발광소자는 상기 화학식 1로 표시되는 화합물을 포함하여 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가진다.
이하 본 말명에 따른 화합물의 구조 및 그 합성예와 이를 이용한 유기전계발광소자에 대해 설명한다.
중간체A 및 A2의 합성
Figure PCTKR2015004261-appb-I000027
[A-1의 합성]
2-bromobenzofuran 50.0 g, methyl 2-aminobenzoate 42.2 g, t-BuONa 36.6 g, Pd2(dba)3 9.3 g, (t-Bu)3P 11.3 ml를 톨루엔 750 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 A-1 50.2 g (수율 74%)를 얻었다.
[A-2의 합성]
상기 중간체 A-1 50.0 g을 THF 1200 ml에 녹인 후, 0 ℃까지 온도를 내렸다. CH3MgBr 187.1 ml를 천천히 첨가하고 상온으로 천천히 올려 2시간 교반 후 환류 교반하였다. 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 A-2 33.5 g (수율 67%)를 얻었다.
[A의 합성]
상기 A-2 33.5 g에 아세트산 335 ml와 염산 1.4 ml를 넣은 후 24시간 동안 환류 교반시킨 후 상온으로 온도를 내렸다. 석출된 고체를 필터 후 컬럼정제하여 중간체 A 20.3 g (수율 65%)를 얻었다.
m/z: 249.12 (100.0%), 250.12 (18.6%), 251.12 (1.9%)
[A1의 합성]
상기 A 7.0 g, bromobenzene 5.73 g, t-BuONa 4.0 g, Pd2(dba)3 1.0 g, (t-Bu)3P 1.5 ml를 톨루엔 100 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 A1 7.04 g (수율 77%)를 얻었다.
[A2의 합성]
상기 A1 7 g을 MC 70 ml에 녹인 후 NBS 4.0 g을 적가한 후 6시간 동안 교반시켰다. 증류수와 MC를 이용하여 유기층을 추출하고 감압여과한 후 컬럼정제하여 중간체 A2 6.18 g (수율 71%)를 얻었다.
m/z: 405.06 (100.0%), 403.06 (99.5%), 404.06 (25.0%), 406.06 (24.4%), 407.06 (3.2%)
중간체B 및 B2의 합성
Figure PCTKR2015004261-appb-I000028
2-bromobenzofuran 대신 2-bromobenzo[b]thiophene으로 반응한 것을 제외하고는 중간체 A-1, 중간체 A-2, 중간체 A, 중간체 A1, 중간체 A2와 같은 절차로 중간체 B 및 중간체 B2를 합성하였다.
m/z: 265.09 (100.0%), 266.10 (18.6%), 267.09 (4.6%), 267.10 (1.8%), 266.09 (1.2%)
중간체C의 합성
Figure PCTKR2015004261-appb-I000029
2-bromobenzofuran 대신 2-bromo-1-phenyl-1H-indole으로 반응한 것을 제외하고는 중간체 A-1, 중간체 A-2, 중간체 A, 중간체 A1, 중간체 A2와 같은 절차로 중간체 C를 합성하였다.
중간체D의 합성
Figure PCTKR2015004261-appb-I000030
[D-1의 합성]
둥근바닥 플라스크에 NaH 4.41 g, 2-bromo-1H-indole 30 g을 THF 300 ml에 녹인 후 교반하였다. 상기 용액에 Triisopropylsilyl chloride 32.45 g을 첨가하고 2시간 교반하고 용매를 감압여과하여 중간체 D-1 50.15 g(수율 93%)을 얻었다.
[D-2의 합성]
상기 중간체 D-1 50.0 g, methyl 2-aminobenzoate 23.6 g, t-BuONa 20.5 g, Pd2(dba)3 5.2 g, (t-Bu)3P 6.5 ml를 톨루엔 750 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 D-2 40.8g (수율 68%)를 얻었다.
[D-3의 합성]
상기 중간체 D-2 40.8 g을 THF 1000 ml에 녹인 후, 0 ℃까지 온도를 내렸다. CH3MgBr 96.5 ml를 천천히 첨가하고 상온으로 천천히 올려 2시간 교반 후 환류 교반하였다. 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 D-3 27.7 g (수율 68%)를 얻었다.
[D-4의 합성]
상기 D-3 27.7 g에 아세트산 277 ml와 염산 1.1 ml를 넣은 후 24시간 동안 환류 교반시킨 후 상온으로 온도를 내렸다. 석출된 고체를 필터 후 컬럼정제하여 중간체 D-4 17.8 g (수율 67%)를 얻었다.
[D-5의 합성]
상기 중간체 D-4 17.8 g, bromobenzene 8.3 g, t-BuONa 6.4 g, Pd2(dba)3 1.6 g, (t-Bu)3P 2.2 ml를 톨루엔 270 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 D-5 12.7 g (수율 60%)를 얻었다.
[D의 합성]
상기 중간체 D-5 12.7 g, Tetra-n-butylammonium fluoride 1.05 g을 THF 250 ml에 녹인 후 1시간 교반한 후 증류수와 MC로 유기층을 추출하고 감압여과한 후 컬럼 정제하여 중간체 D 7.63 g(수율 89%)를 얻었다.
m/z: 324.16 (100.0%), 325.17 (25.1%), 326.17 (3.0%)
중간체E 및 E2의 합성
Figure PCTKR2015004261-appb-I000031
[E-1의 합성]
methyl 3-aminobenzofuran-2-carboxylate 50.0 g, bromobenzene 38.4 g, t-BuONa 36.6 g, Pd2(dba)3 9.30 g, (t-Bu)3P 10.3 ml를 톨루엔 750 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 E-1 47.5 g (수율 70%)를 얻었다.
[E-2의 합성]
상기 중간체 E-1 47.4 g을 THF 1100 ml에 녹인 후, 0 ℃까지 온도를 내렸다. CH3MgBr 177.4 ml를 천천히 첨가하고 상온으로 천천히 올려 2시간 교반 후 환류 교반하였다. 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 E-2 33.2 g (수율 70%)를 얻었다.
[E의 합성]
상기 E-2 33.2 g에 아세트산 330 ml와 염산 1.4 ml를 넣은 후 24시간 동안 환류 교반시킨 후 상온으로 온도를 내렸다. 석출된 고체를 필터 후 컬럼정제하여 중간체 E 19.5g (수율 63%)를 얻었다.
m/z: 249.12 (100.0%), 250.12 (18.6%), 251.12 (1.9%)
[E1의 합성]
상기 E 7.0 g, bromobenzene 5.73 g, t-BuONa 4.0 g, Pd2(dba)3 1.0 g, (t-Bu)3P 1.5 ml를 톨루엔 100 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 E1 6.85 g (수율 75%)를 얻었다.
[E2의 합성]
상기 E1 6.85 g을 MC 70 ml에 녹인 후 NBS 3.9 g을 적가한 후 6시간 동안 교반시켰다. 증류수와 MC를 이용하여 유기층을 추출하고 감압여과한 후 컬럼정제하여 중간체 E2 5.9 g (수율 70%)를 얻었다.
m/z: 405.06 (100.0%), 403.06 (99.5%), 404.06 (25.0%), 406.06 (24.4%), 407.06 (3.2%)
중간체F 및 F2의 합성
Figure PCTKR2015004261-appb-I000032
methyl 3-aminobenzofuran-2-carboxylate 대신 methyl 3-aminobenzo[b]thiophene-2-carboxylate로 반응한 것을 제외하고는 중간체 E-1, 중간체 E-2, 중간체 E, 중간체 E1, 중간체 E2와 같은 절차로 중간체 F 및 중간체 F2를 합성하였다.
중간체G의 합성
Figure PCTKR2015004261-appb-I000033
methyl 3-aminobenzofuran-2-carboxylate 대신 methyl 3-amino-1-phenyl-1H-indole-2-carboxylate로 반응한 것을 제외하고는 중간체 C-1, 중간체 C-2, 중간체 C와 같은 절차로 중간체 G를 합성하였다.
중간체H의 합성
Figure PCTKR2015004261-appb-I000034
[H-1의 합성]
둥근바닥 플라스크에 NaH 3.4 g, methyl 3-bromo-1H-indole-2-carboxylate 30 g을 THF 300 ml에 녹인 후 교반하였다. 상기 용액에 Triisopropylsilyl chloride 25.04 g을 첨가하고 2시간 교반하고 용매를 감압여과하여 중간체 H-1 42.64 g(수율 88%)을 얻었다.
[H-2의 합성]
상기 중간체 H-1 42.6 g, diphenylamine 19.3 g, t-BuONa 14.9 g, Pd2(dba)3 3.8 g, (t-Bu)3P 4.6 ml를 톨루엔 650 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 H-2 37.8 g (수율 73%)를 얻었다.
[H-3의 합성]
상기 중간체 H-2 37.8 g을 THF 900 ml에 녹인 후, 0 ℃까지 온도를 내렸다. CH3MgBr 75.8 ml를 천천히 첨가하고 상온으로 천천히 올려 2시간 교반 후 환류 교반하였다. 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 중간체 H-3 26.8 g (수율 71%)를 얻었다.
[H-4의 합성]
상기 H-3 26.8 g에 아세트산 270 ml와 염산 1.1 ml를 넣은 후 24시간 동안 환류 교반시킨 후 상온으로 온도를 내렸다. 석출된 고체를 필터 후 컬럼정제하여 중간체 H-4 18.1 g (수율 70%)를 얻었다.
[H의 합성]
상기 중간체 H-4 18.1 g, Tetra-n-butylammonium fluoride 1.5 g을 THF 360 ml에 녹인 후 1시간 교반한 후 증류수와 MC로 유기층을 추출하고 감압여과한 후 컬럼 정제하여 중간체 H 10.53 g(수율 86%)를 얻었다.
m/z: 324.16 (100.0%), 325.17 (25.1%), 326.17 (3.0%)
화합물1의 합성
Figure PCTKR2015004261-appb-I000035
상기 중간체 A 2.5 g, 4-bromo-2,6-diphenylpyridine 3.73 g, t-BuONa 1.45 g, Pd2(dba)3 0.37 g, (t-Bu)3P 0.5 ml를 톨루엔 40 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 화합물1 2.93 g (수율 61%)를 얻었다.
m/z: 478.20 (100.0%), 479.21 (37.1%), 480.21 (6.9%)
화합물2의 합성
Figure PCTKR2015004261-appb-I000036
4-bromo-2,6-diphenylpyridine을 2-bromo-4,6-diphenylpyridine으로 반응한 것을 제외하고는 화합물1과 같은 방법으로 화합물2를 합성하였다.
m/z: 478.20 (100.0%), 479.21 (37.1%), 480.21 (6.9%)
화합물3의 합성
Figure PCTKR2015004261-appb-I000037
4-bromo-2,6-diphenylpyridine을 4-bromo-2,6-diphenylpyrimidine으로 반응한 것을 제외하고는 화합물1과 같은 방법으로 화합물3을 합성하였다.
m/z: 479.20 (100.0%), 480.20 (36.8%), 481.21 (6.3%)
화합물4의 합성
Figure PCTKR2015004261-appb-I000038
4-bromo-2,6-diphenylpyridine을 2-bromo-4,6-diphenylpyrimidine으로 반응한 것을 제외하고는 화합물1과 같은 방법으로 화합물4를 합성하였다.
m/z: 479.20 (100.0%), 480.20 (36.8%), 481.21 (6.3%)
화합물5의 합성
Figure PCTKR2015004261-appb-I000039
상기 중간체 A 2.5 g, NaH 0.30 g을 DMF 25 ml에 넣고 교반하였다. 여기에 2-chloro-4,6-diphenyl-1,3,5-triazine 3.22 g을 DMF 30 ml에 녹인 후 천천히 적가하였다. 상온에서 교반 후 TLC로 반응 종결을 확인하고 실리카 필터 후 재결정하여 화합물5 2.56 g (수율 53%)를 얻었다.
m/z: 480.20 (100.0%), 481.20 (34.9%), 482.20 (6.6%), 481.19 (1.5%)
화합물6의 합성
Figure PCTKR2015004261-appb-I000040
중간체 A를 중간체 B로 반응한 것을 제외하고는 화합물5와 같은 방법으로 화합물6을 합성하였다.
m/z: 496.17 (100.0%), 497.18 (34.9%), 498.18 (5.9%), 498.17 (5.3%), 497.17 (2.3%), 499.17 (1.6%)
화합물7의 합성
Figure PCTKR2015004261-appb-I000041
중간체 A를 중간체 C로 반응한 것을 제외하고는 화합물5와 같은 방법으로 화합물7을 합성하였다.
m/z: 555.24 (100.0%), 556.25 (41.4%), 557.25 (8.4%), 556.24 (1.8%), 558.25 (1.2%)
화합물8의 합성
Figure PCTKR2015004261-appb-I000042
중간체 A를 중간체 E로 반응한 것을 제외하고는 화합물5와 같은 방법으로 화합물8을 합성하였다.
m/z: 480.20 (100.0%), 481.20 (34.9%), 482.20 (6.6%), 481.19 (1.5%)
화합물9의 합성
Figure PCTKR2015004261-appb-I000043
중간체 A를 중간체 F로 반응한 것을 제외하고는 화합물5와 같은 방법으로 화합물9를 합성하였다.
m/z: 496.17 (100.0%), 497.18 (34.9%), 498.18 (5.9%), 498.17 (5.3%), 497.17 (2.3%), 499.17 (1.6%)
화합물10의 합성
Figure PCTKR2015004261-appb-I000044
중간체 A를 중간체 G로 반응한 것을 제외하고는 화합물5와 같은 방법으로 화합물10을 합성하였다.
m/z: 555.24 (100.0%), 556.25 (41.4%), 557.25 (8.4%), 556.24 (1.8%), 558.25 (1.2%)
화합물11의 합성
Figure PCTKR2015004261-appb-I000045
둥근바닥플라스크에 중간체 A2 3.0 g, N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine 3.98 g을 톨루엔 30 ml에 녹이고 K2CO3(2M) 12 ml와 Pd(PPh3)4 0.26 g을 넣은 후 환류 교반하였다. TLC로 반응을 확인하고 물을 첨가 후 반응을 종결시켰다. 유기층을 EA로 추출하고 감압여과한 후 컬럼정제하여 화합물11 2.17 g (수율 57%)를 얻었다.
m/z: 644.28 (100.0%), 645.29 (51.3%), 646.29 (13.1%), 647.29 (2.3%)
화합물12의 합성
Figure PCTKR2015004261-appb-I000046
N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)naphthalen-1-amine로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 12를 합성하였다.
m/z: 694.30 (100.0%), 695.30 (56.4%), 696.31 (15.2%), 697.31 (2.8%)
화합물13의 합성
Figure PCTKR2015004261-appb-I000047
중간체A2 대신 중간체B2로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 13을 합성하였다.
m/z: 736.29 (100.0%), 737.29 (58.9%), 738.30 (16.4%), 738.29 (5.4%), 739.30 (3.2%), 739.29 (2.7%)
화합물14의 합성
Figure PCTKR2015004261-appb-I000048
중간체A2 대신 중간체B2로 N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)naphthalen-1-amine으로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 14를 합성하였다.
m/z: 776.32 (100.0%), 777.33 (61.1%), 778.33 (18.8%), 778.32 (5.0%), 779.33 (3.8%), 779.32 (2.8%), 777.32 (1.5%)
화합물15의 합성
Figure PCTKR2015004261-appb-I000049
중간체A2 대신 중간체E2로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 15를 합성하였다.
m/z: 720.31 (100.0%), 721.32 (57.8%), 722.32 (16.6%), 723.32 (3.2%)
화합물16의 합성
Figure PCTKR2015004261-appb-I000050
중간체A2 대신 중간체E2로 N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)naphthalen-1-amine으로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 16을 합성하였다.
m/z: 760.35 (100.0%), 761.35 (61.1%), 762.35 (19.0%), 763.36 (3.6%)
화합물17의 합성
Figure PCTKR2015004261-appb-I000051
중간체A2 대신 중간체F2로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 17을 합성하였다.
m/z: 736.29 (100.0%), 737.29 (58.9%), 738.30 (16.4%), 738.29 (5.4%), 739.30 (3.2%), 739.29 (2.7%)
화합물18의 합성
Figure PCTKR2015004261-appb-I000052
중간체A2 대신 중간체F2로 N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)naphthalen-1-amine으로 반응한 것을 제외하고는 화합물11과 같은 방법으로 화합물 18을 합성하였다.
m/z: 776.32 (100.0%), 777.33 (61.1%), 778.33 (18.8%), 778.32 (5.0%), 779.33 (3.8%), 779.32 (2.8%), 777.32 (1.5%)
화합물19의 합성
Figure PCTKR2015004261-appb-I000053
상기 중간체 A 2.5 g, N,N-di([1,1'-biphenyl]-4-yl)-4'-bromo-[1,1'-biphenyl]-4-amine 6.65 g, t-BuONa 1.45 g, Pd2(dba)3 0.37 g, (t-Bu)3P 0.5 ml를 톨루엔 100 ml에 녹인 후 환류 교반하였다. TLC로 반응 종결을 확인한 후 유기층을 MC로 추출하고 감압여과한 후 컬럼정제하여 화합물19 3.98g (수율 55%)를 얻었다.
m/z: 720.31 (100.0%), 721.32 (57.8%), 722.32 (16.6%), 723.32 (3.2%)
화합물20의 합성
Figure PCTKR2015004261-appb-I000054
중간체A 대신 중간체B로 반응한 것을 제외하고는 화합물19과 같은 방법으로 화합물 20을 합성하였다.
m/z: 736.29 (100.0%), 737.29 (58.9%), 738.30 (16.4%), 738.29 (5.4%), 739.30 (3.2%), 739.29 (2.7%)
화합물21의 합성
Figure PCTKR2015004261-appb-I000055
중간체A 대신 중간체E로 반응한 것을 제외하고는 화합물19과 같은 방법으로 화합물 21을 합성하였다.
m/z: 720.31 (100.0%), 721.32 (57.8%), 722.32 (16.6%), 723.32 (3.2%)
화합물22의 합성
Figure PCTKR2015004261-appb-I000056
중간체A 대신 중간체F로 반응한 것을 제외하고는 화합물19과 같은 방법으로 화합물 22를 합성하였다.
m/z: 736.29 (100.0%), 737.29 (58.9%), 738.30 (16.4%), 738.29 (5.4%), 739.30 (3.2%), 739.29 (2.7%)
유기발광소자의 제조
도 1에 기재된 구조에 따라 유기발광소자를 제조하였다. 유기발광소자는 아래로부터 정공주입전극(11)/정공주입층(12)/정공수송층(13)/발광층(14)/전자전달층(15)/전자주입전극(16) 순으로 적층되어 있다.
실시예 및 비교예의 정공주입층(12), 정공전달층(13), 발광층(14), 전자전달층(15)는 아래과 같은 물질을 사용하였다.
Figure PCTKR2015004261-appb-I000057
실시예 1
인듐틴옥사이드(ITO)가 1500Å 두께가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 ITO 기판 상부에 열 진공 증착기(thermal evaporator)를 이용하여 정공주입층 HT01 600 Å, 정공수송층으로 NPB 250 Å를 제막하였다. 다음으로 상기 발광층으로 화합물1 : Ir(ppy)3 10%로 도핑하여 250 Å 제막하였다. 다음으로 전자전달층으로 ET01:Liq(1:1) 300 Å 제막한 후 LiF 10 Å, 알루미늄(Al) 1000 Å 제막하고, 이 소자를 글로브 박스에서 밀봉(Encapsulation)함으로써 녹색 유기발광소자를 제작하였다.
실시예 2 내지 실시예 10
실시예 1과 같은 방법으로 발광층 호스트로 각각 화합물 2 내지 10을 사용하여 제막한 녹색 유기발광소자를 제작하였다.
실시예 11
인듐틴옥사이드(ITO)가 1500 Å 두께가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 ITO 기판 상부에 열 진공 증착기(thermal evaporator)를 이용하여 정공주입층 HT01 600 Å, 정공수송층으로 화합물11 250 Å를 제막하였다. 다음으로 상기 발광층으로 BH01:BD01 5%로 도핑하여 300 Å 제막하였다. 다음으로 전자전달층으로 Alq3:Liq(1:1) 300 Å 제막한 후 Liq 10 Å, 알루미늄(Al) 1000 Å 제막하고, 이 소자를 글로브 박스에서 밀봉(Encapsulation)함으로써 유기발광소자를 제작하였다.
실시예 12 내지 실시예 22
실시예 1과 같은 방법으로 정공수송층으로 각각 화합물 12 내지 22를 사용하여 제막한 유기발광소자를 제작하였다.
비교예 1
상기 실시예 1의 발광층 호스트로 화합물1을 CBP로 사용한 것을 제외하고는 동일한 방법으로 녹색 유기발광소자를 제작하였다.
비교예 2
상기 실시예 1의 발광층 호스트로 화합물1을 Ref.1로 사용한 것을 제외하고는 동일한 방법으로 녹색 유기발광소자를 제작하였다.
비교예 3
상기 실시예1의 발광층 호스트로 화합물1을 Ref.2로 사용한 것을 제외하고는 동일한 방법으로 녹색 유기발광소자를 제작하였다.
비교예 4
상기 실시예 20의 정공수송층으로 화합물20을 NPB로 사용한 것을 제외하고는 동일한 방법으로 유기발광소자를 제작하였다.
유기발광소자의 성능평가
키슬리 2400 소스 메져먼트 유닛(Kiethley 2400 source measurement unit)으로 전압을 인가하여 전자 및 정공을 주입하고 코니카 미놀타(Konica Minolta) 분광복사계(CS-2000)를 이용하여 빛이 방출될 때의 휘도를 측정함으로써, 실시예 및 비교예의 유기발광소자의 성능을 인가전압에 대한 전류 밀도 및 휘도를 대기압 조건하에 측정하여 평가하였으며, 그 결과를 표 1 및 표2에 나타내었다.
표 1
Op. V QE(%) Cd/A lm/w CIEx CIEy 수명@5000nit
실시예1 5.98 17.33 45.98 19.81 0.301 0.621 81
실시예2 5.98 17.10 47.13 21.03 0.299 0.619 85
실시예3 6.02 16.98 50.20 20.04 0.298 0.620 90
실시예4 5.94 17.54 47.22 19.98 0.300 0.623 83
실시예5 6.08 16.85 48.39 21.23 0.298 0.614 79
실시예6 6.12 17.26 46.83 18.72 0.298 0.609 101
실시예7 6.34 17.01 49.17 22.46 0.297 0.618 95
실시예8 5.92 17.07 45.55 21.98 0.302 0.609 90
실시예9 6.01 16.93 43.62 20.76 0.300 0.620 75
실시예10 6.19 17.36 47.45 18.99 0.299 0.622 90
비교예1 7.02 12.43 22.12 10.72 0.301 0.623 25
비교예2 6.52 14.56 35.98 15.60 0.300 0.613 42
비교예3 7.74 6.12 8.31 7.76 0.667 0.333 -
표 2
Op. V mA/cm2 Cd/A lm/w CIEx CIEy LT95(hr)
실시예11 4.05 10 6.49 5.02 0.141 0.112 44
실시예12 4.03 10 6.45 5.00 0.141 0.112 45
실시예13 3.91 10 6.65 5.25 0.142 0.111 50
실시예14 3.85 10 6.82 5.30 0.139 0.111 55
실시예15 3.92 10 6.63 5.95 0.138 0.110 48
실시예16 3.92 10 6.60 5.40 0.140 0.111 50
실시예17 3.90 10 6.70 5.90 0.140 0.110 52
실시예18 3.90 10 6.70 5.27 0.140 0.110 47
실시예19 3.93 10 6.73 5.40 0.138 0.112 45
실시예20 3.87 10 6.89 5.29 0.141 0.111 53
실시예21 3.93 10 6.75 5.35 0.142 0.111 46
실시예22 3.87 10 6.90 5.35 0.141 0.111 58
비교예4 5.43 10 5.35 4.24 0.143 0.120 22
상기 표 1에 나타나는 바와 같이 본 발명의 실시예는 비교예 1~3에 비하여 녹색 유기발광소자의 발광층 호스트로 사용시 모두에서 물성이 우수함을 확인할 수 있다. 또한 상기 표 2에서 나타나는 바와 같이 정공수송층으로 사용시에도 효율 및 수명이 현저히 우수한 것을 알 수 있다.
본 발명의 화합물은 유기발광소자에 적용시 정공 및 전자 전달 특성이 우수하고, 동시에 높은 삼중항 에너지 및 높은 Tg를 구현할 수 있으며, 낮은 구동전압, 저소비전력, 고효율 및 장수명을 가지게 할 수 있다.

Claims (6)

  1. 하기 화학식 1로 표시되는 화합물 :
    [화학식 1]
    Figure PCTKR2015004261-appb-I000058
    상기 식에서,
    *는 각각 1 및 2와 결합하며,
    X는 O, S, Se, Te 또는 NAr이며, 여기서 Ar은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이고,
    A는 각각 독립적으로 N 또는 CR이며, 여기서 R은 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 A 사이는 서로 연결될 수도 있으며, A가 CR일 경우 인접한 R은 서로 고리를 형성할 수 있으며,
    R1 및 R2는 각각 독립적으로 수소; 중수소; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알킬기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알케닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-30의 알키닐기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1-30의 알콕시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C6-50의 아릴기; 또는 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C2-50의 헤테로아릴기이며, 점선의 R1과 R2는 서로 연결될 수도 있다.
  2. 제1항에 있어서,
    하기 화학식 2 내지 5로 표시되는 것 중 하나로 표시되는 것을 특징으로 하는 화합물:
    [화학식 2]
    Figure PCTKR2015004261-appb-I000059
    [화학식 3]
    Figure PCTKR2015004261-appb-I000060
    [화학식 4]
    Figure PCTKR2015004261-appb-I000061
    [화학식 5]
    Figure PCTKR2015004261-appb-I000062
    상기 화학식 2 내지 5에서 X, A, R1 및 R2는 화학식 1에서 정의한 바와 같다.
  3. 제1항에 있어서,
    하기 화학식들 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:
    Figure PCTKR2015004261-appb-I000063
    Figure PCTKR2015004261-appb-I000064
    Figure PCTKR2015004261-appb-I000065
    Figure PCTKR2015004261-appb-I000066
    Figure PCTKR2015004261-appb-I000067
    Figure PCTKR2015004261-appb-I000068
    Figure PCTKR2015004261-appb-I000069
    Figure PCTKR2015004261-appb-I000070
    Figure PCTKR2015004261-appb-I000071
    Figure PCTKR2015004261-appb-I000072
    Figure PCTKR2015004261-appb-I000073
    Figure PCTKR2015004261-appb-I000074
    Figure PCTKR2015004261-appb-I000075
    Figure PCTKR2015004261-appb-I000076
    Figure PCTKR2015004261-appb-I000077
    Figure PCTKR2015004261-appb-I000078
  4. 하기 반응식 1 내지 4 중 어느 하나로 표시되는 화학식 2 내지 5의 제조방법:
    [반응식 1]
    Figure PCTKR2015004261-appb-I000079
    [반응식 2]
    Figure PCTKR2015004261-appb-I000080
    [반응식 3]
    Figure PCTKR2015004261-appb-I000081
    [반응식 4]
    Figure PCTKR2015004261-appb-I000082
    상기 반응식들에서 X, A는 화학식 1에서 정의된 바와 같으며, R은 화학식 1의 R1 및 R2와 같다.
  5. 애노드(anode), 캐소드(cathode) 및 두 전극 사이에 제1항 기재의 화합물을 함유하는 1층 이상의 유기물층을 포함하는 유기발광소자.
  6. 제5항에 있어서,
    상기 유기물층이 제1항의 화합물을 발광 호스트 또는 도펀트로서 함유하는 것을 특징으로 하는 유기발광소자.
PCT/KR2015/004261 2014-04-29 2015-04-28 신규한 화합물 및 이를 포함하는 유기발광소자 WO2015167223A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580022608.7A CN106255695B (zh) 2014-04-29 2015-04-28 化合物及包含其的有机发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0051327 2014-04-29
KR20140051327 2014-04-29
KR10-2015-0059614 2015-04-28
KR1020150059614A KR102423699B1 (ko) 2014-04-29 2015-04-28 신규한 화합물 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
WO2015167223A1 true WO2015167223A1 (ko) 2015-11-05

Family

ID=54358875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004261 WO2015167223A1 (ko) 2014-04-29 2015-04-28 신규한 화합물 및 이를 포함하는 유기발광소자

Country Status (1)

Country Link
WO (1) WO2015167223A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046102A (zh) * 2016-12-30 2017-08-15 固安翌光科技有限公司 一种有机电致发光器件
JP2018188418A (ja) * 2016-08-17 2018-11-29 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
US11332474B2 (en) * 2018-08-07 2022-05-17 Lg Display Co., Ltd. Compound and organic light-emission device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117073A (ko) * 2009-01-05 2011-10-26 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 사용한 유기 전기발광 소자
KR20130021185A (ko) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 신규한 헤테로고리 화합물 및 이를 포함한 유기발광 소자
KR20130076223A (ko) * 2011-12-28 2013-07-08 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20130142818A (ko) * 2012-06-20 2013-12-30 주식회사 두산 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140009918A (ko) * 2012-07-13 2014-01-23 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117073A (ko) * 2009-01-05 2011-10-26 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 사용한 유기 전기발광 소자
KR20130021185A (ko) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 신규한 헤테로고리 화합물 및 이를 포함한 유기발광 소자
KR20130076223A (ko) * 2011-12-28 2013-07-08 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20130142818A (ko) * 2012-06-20 2013-12-30 주식회사 두산 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140009918A (ko) * 2012-07-13 2014-01-23 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188418A (ja) * 2016-08-17 2018-11-29 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
US11121326B2 (en) 2016-08-17 2021-09-14 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device and lighting device
CN107046102A (zh) * 2016-12-30 2017-08-15 固安翌光科技有限公司 一种有机电致发光器件
US11332474B2 (en) * 2018-08-07 2022-05-17 Lg Display Co., Ltd. Compound and organic light-emission device

Similar Documents

Publication Publication Date Title
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2016117848A1 (ko) 유기발광소자용 화합물 및 이를 포함하는 유기 발광 소자
WO2020106032A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2019083327A2 (ko) 헤테로고리 화합물을 이용한 유기 발광 소자
WO2011081423A2 (ko) 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2016032150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017065415A1 (ko) 저계조 영역에서의 휘도감소율이 개선된 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019022435A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019147077A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016089165A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2021015417A1 (ko) 유기발광 화합물 및 유기발광소자
WO2020116995A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016021923A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2016060463A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2016099204A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2015167223A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2021150080A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2017095054A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015084047A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2016117861A1 (ko) 신규한 안트라센 유도체 및 및 이를 포함하는 유기 발광 소자
WO2019107710A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786105

Country of ref document: EP

Kind code of ref document: A1