WO2018230969A1 - 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2018230969A1
WO2018230969A1 PCT/KR2018/006716 KR2018006716W WO2018230969A1 WO 2018230969 A1 WO2018230969 A1 WO 2018230969A1 KR 2018006716 W KR2018006716 W KR 2018006716W WO 2018230969 A1 WO2018230969 A1 WO 2018230969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
layer
Prior art date
Application number
PCT/KR2018/006716
Other languages
English (en)
French (fr)
Inventor
이순창
강현빈
도광석
김진성
곽태호
Original Assignee
머티어리얼사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 머티어리얼사이언스 주식회사 filed Critical 머티어리얼사이언스 주식회사
Priority to CN201880034486.7A priority Critical patent/CN110678449B/zh
Publication of WO2018230969A1 publication Critical patent/WO2018230969A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic compound and an organic electroluminescent device comprising the same.
  • the organic EL device which has been in the spotlight as a next-generation flat panel display, has advantages such as low driving voltage, fast response speed, and wide viewing angle, compared to a liquid crystal display.
  • an organic electroluminescent device In general, the simplest structure of an organic electroluminescent device is composed of a light emitting layer and a pair of opposing electrodes sandwiching the light emitting layer. That is, in the organic electroluminescent device, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and they recombine in the light emitting layer to utilize light.
  • the structure of the organic EL device in detail is a substrate, anode, a hole injection layer for receiving holes in the anode, a hole transport layer for transporting holes, an electron blocking layer for blocking the entry of electrons from the light emitting layer to the hole transport layer, hole and electron coupling Light emitting layer that emits light, a hole blocking layer that blocks the entrance of holes from the light emitting layer to the electron transport layer, an electron transport layer that accepts electrons from the cathode and transports them to the light emitting layer, and an electron injection layer and cathode that accepts electrons from the cathode. .
  • a light emitting layer may be formed by doping a small amount of fluorescent or phosphorescent dye into an electron transport layer or a hole transport layer without a separate light emitting layer.
  • a single polymer generally serves as a hole transport layer, a light emitting layer, and an electron transport layer. You can also do this at the same time.
  • the organic layer between the two electrodes is formed by a vacuum deposition method or spin coating, inkjet printing, laser thermal transfer method. The reason why the organic electroluminescent device is manufactured in a multilayer thin film structure is to stabilize the interface between the electrode and the organic material.
  • the hole and the electron transport layer have a large difference in the movement speed of holes and electrons. This is because luminous efficiency can be increased by effectively transferring electrons and electrons to the light emitting layer to balance the density of holes and electrons.
  • the driving principle of the organic EL device is as follows.
  • the excited state falls to the ground state through the singlet excited state (singlet state) and emits light, it is referred to as “fluorescence”, and the fall off to the ground state through the triplet excited state (Triplet state) is emitted. It is called "phosphorescence”.
  • fluorescence the probability of singlet excited state is 25% (triple state 75%), and there is a limit of luminous efficiency, while phosphorescence is used to emit up to 75% of triplet state and 25% of singlet excited state. Theoretically, the internal quantum efficiency can be up to 100%.
  • the biggest problem for the organic light emitting device is the lifetime and efficiency
  • the display of such a large area is a situation that must be solved such efficiency and lifetime problems.
  • the properties of the components included in each layer of the organic film layer including one or more layers including the light emitting layer between the anode and the cathode affect the driving voltage, the luminous efficiency, and the brightness of the device. This greatly affects the lifetime of the device.
  • the present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide an organic compound including an aromatic amine group and a six-membered aromatic heterocyclic group as a compound having improved electron transport ability.
  • an object of the present invention is to provide an organic electroluminescent device excellent in low voltage driveability, luminous efficiency and lifespan by using the organic compound of the present invention in an electron transport layer and / or an electron transport auxiliary layer.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic film layer between the anode and the cathode, the organic film layer comprises a light emitting layer, wherein at least one organic film layer located between the cathode and the light emitting layer is represented by the formula It provides an organic electroluminescent device comprising a compound to be.
  • X 1 to X 3 are each independently N or C (R ′), at least one is N, wherein R ′ is hydrogen, deuterium, a halogen group, a hydroxy group, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl having 1 to 20 carbon atoms An alkyl group, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 24 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, and a heteroaryl group having 6 to 30 carbon atoms,
  • A is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms, and a substituted or unsubstituted carbon atom 6 It is selected from the group consisting of to 30 heteroarylalkylene groups, and includes one or more substituents represented by the following formula (2),
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted carbon atom having 6 to 30 hetero groups Arylene group,
  • R 1 to R 3 are each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms Group, a substituted or unsubstituted aralkyl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a cycloalkylaryl group having 9 to 20 carbon atoms, and a substituted or unsubstituted hetero atom having 6 to 30 carbon atoms Selected from the group consisting of arylalkyl groups,
  • R 4 and R 5 are each independently an alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon atom 6 to From the group consisting of 30 aralkyl groups, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, substituted or unsubstituted heteroarylalkyl groups having 6 to 30 carbon atoms, and substituted or unsubstituted heterocycloalkyl groups having 3 to 40 carbon atoms Selected,
  • R 1 to R 5 are each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, C1-30 alkyl group, C1-20 cycloalkyl group, C2
  • an interface dipole phenomenon is easily induced between the aromatic amine group and the six-membered aromatic hetero ring in the structure to lower the electron injection barrier, and the organic electroluminescent device including the electron transport electron transport device It is excellent in capability, and can have low voltage driving characteristics, high luminous efficiency, and lifetime characteristics.
  • halogen group is fluorine, chlorine, bromine or iodine.
  • Alkyl as used herein means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. Examples thereof include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon of 2 to 40 carbon atoms having at least one carbon-carbon triple bond. Examples thereof include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Aryl in the present invention means a monovalent substituent derived from a C6 to C60 aromatic hydrocarbon combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included.
  • Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, dimethylfluorenyl, spirofluorenyl, and the like.
  • arylene means a divalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings. Examples of such arylene include, but are not limited to, phenylene, naphthylene, phenanthrylene, and the like.
  • Heteroaryl as used herein means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 6 to 30 carbon atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and may also include a form in which the two or more rings are condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carb
  • Heteroarylene in the present invention means a divalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 6 to 30 carbon atoms.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 6 to 60 carbon atoms.
  • R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means an alkyl having 1 to 40 carbon atoms, and linear, branched or cyclic structure It may include.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • alkoxy may be straight, branched or cyclic. Although carbon number of alkoxy is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • Alkyl in the present invention means an aryl-alkyl group in which aryl and alkyl are as described above.
  • Preferred aralkyls include lower alkyl groups.
  • suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl.
  • the bond to the parent moiety is via alkyl.
  • arylamino group means an amine substituted with an aryl group having 6 to 30 carbon atoms.
  • alkylamino group means an amine substituted with an alkyl group having 1 to 30 carbon atoms.
  • aralkylamino group means an amine substituted with an aryl-alkyl group having 6 to 30 carbon atoms.
  • heteroarylamino group means an amine group substituted with an aryl group having 6 to 30 carbon atoms and a heterocyclic group.
  • heteroarylkyl group means an aryl-alkyl group substituted with a heterocyclic group.
  • cycloalkyl is meant herein monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl, and the like.
  • heterocycloalkyl monovalent substituents derived from non-aromatic hydrocarbons of 3 to 40 carbon atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons is N, O, S or Se Is substituted with a hetero atom such as Examples of such heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms.
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • combines with adjacent groups to form a ring refers to a substituted or unsubstituted aliphatic hydrocarbon ring in combination with adjacent groups; Substituted or unsubstituted aromatic hydrocarbon ring; Substituted or unsubstituted aliphatic heterocycle; Substituted or unsubstituted aromatic heterocycle; Or to form a condensed ring thereof.
  • aliphatic hydrocarbon ring refers to a ring consisting only of carbon and hydrogen atoms as a non-aromatic ring.
  • aromatic hydrocarbon ring examples include, but are not limited to, phenyl group, naphthyl group, anthracenyl group, and the like.
  • aliphatic heterocycle refers to an aliphatic ring containing one or more of the heteroatoms.
  • aromatic heterocycle means an aromatic ring containing at least one of heteroatoms.
  • the aliphatic hydrocarbon ring, the aromatic hydrocarbon ring, the aliphatic hetero ring and the aromatic hetero ring may be monocyclic or polycyclic.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is replaced, that is, a position where a substituent may be substituted, and when two or more are substituted , Two or more substituents may be the same or different from each other.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic film layer between the anode and the cathode, the organic film layer comprises a light emitting layer, wherein at least one organic film layer located between the cathode and the light emitting layer is represented by the formula It provides an organic electroluminescent device comprising a compound to be.
  • X 1 to X 3 are each independently N or C (R '), at least one is N, wherein R' is hydrogen, deuterium, halogen, hydroxy group, alkyl group of 1 to 30 carbon atoms, carbon number From 1 to 20 cycloalkyl groups, alkenyl groups of 2 to 30 carbon atoms, alkynyl groups of 2 to 24 carbon atoms, aralkyl groups of 7 to 30 carbon atoms, aryl groups of 6 to 30 carbon atoms, and heteroaryl groups of 6 to 30 carbon atoms.
  • R' is hydrogen, deuterium, halogen, hydroxy group, alkyl group of 1 to 30 carbon atoms, carbon number From 1 to 20 cycloalkyl groups, alkenyl groups of 2 to 30 carbon atoms, alkynyl groups of 2 to 24 carbon atoms, aralkyl groups of 7 to 30 carbon atoms, aryl groups of 6 to 30 carbon atoms, and heteroaryl groups of 6 to 30 carbon
  • A is selected from a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms, and a substituted or unsubstituted group A heteroarylalkylene group having 6 to 30 carbon atoms, and includes one or more substituents represented by the following Chemical Formula 2,
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted carbon atom having 6 to 30 hetero groups
  • R 1 to R 3 are each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group of 1 to 30 carbon atoms, cycloalkyl group of 1 to 20 carbon atoms, substituted or unsubstituted C 6 To 30 aryl group, substituted or unsubstituted aralkyl group having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, cycloalkylaryl group having 9 to 20 carbon atoms, and substituted or unsubstituted carbon atom 6
  • R 4 and R 5 are each independently an al
  • the organic compound represented by Formula 1 includes a 6-membered aromatic heterocyclic group and an aromatic amine group represented by Formula 2.
  • the six-membered aromatic heterocyclic group is a nitrogen containing aromatic ring.
  • At least two or more of X 1 to X 3 of Chemical Formula 1 may be N, for example, pyridine, pyrimidine, pyrazine or triazine, and more preferably pyrimidine or triazine.
  • the nitrogen-containing 6-membered aromatic heterocyclic group in the organic compound represented by Formula 1 acts as an electron withdrawing group (EWG) and lowers the energy level of the lowest level non-occupied molecular orbital (LUMO), thereby The difference with the energy level of the lowest level unoccupied molecular orbital of the host and dopant is reduced, and ultimately, the electrons move from the electron transport layer to the light emitting layer.
  • EWG electron withdrawing group
  • LUMO lowest level non-occupied molecular orbital
  • the maximum occupied molecular orbital (HOMO) in the organic compound represented by Formula 1 is dispersed in an aromatic amine group, and the electron density of the lowest unoccupied molecular orbital (LUMO) is concentrated to a six-membered aromatic heterocyclic group, thereby making it possible to obtain a polarity of the organic compound. bipolar) characteristics are increased and the electron transport ability is improved.
  • the organic compound represented by Chemical Formula 1 includes an aromatic amine group and a six-membered aromatic heterocyclic group at the same time, thereby causing an interface dipole phenomenon due to unshared electron pairs of nitrogen atoms in the amine group and the six-membered aromatic heterocyclic group, and ultimately, The injection barrier of electrons is lowered.
  • the organic film layer including the organic compound represented by Chemical Formula 1 includes an electron transport layer having a high mobility characteristic, and thus has an organic electric field having voltage driveability and high luminous efficiency and lifetime characteristics.
  • a in the compound represented by Formula 1 is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, at least one substituted or unsubstituted aralkylene group having at least one substituent represented by Formula 2, substituted Or an unsubstituted heteroarylene group having 3 to 30 carbon atoms and a substituted or unsubstituted heteroarylalkylene group having 6 to 30 carbon atoms.
  • A is a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthalenyl group, a substituted or unsubstituted Substituted phenanthrenyl group, substituted or unsubstituted fluorene group, substituted or unsubstituted spirofluorene group, substituted or unsubstituted dibenzofuran group, substituted or unsubstituted dibenzothiophene group, substituted or unsubstituted And a substituted or unsubstituted carbazole group.
  • L 2 may be preferably a single compound, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group, and more preferably, a phenyl group or a biphenyl group.
  • R 4 and R 5 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, and a substituted or unsubstituted C 3 to It may be selected from the group consisting of 40 cycloalkyl groups.
  • R 4 and R 5 are each independently substituted or unsubstituted phenyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted imidazole group, Substituted or unsubstituted pyrazole group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted pyridazinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted benzopyridyl group, substituted or unsubstituted Benzopyrazinyl group, substituted or unsubstituted benzopyrimidinyl group, substituted or unsubstituted phenanthrolinyl group, substituted or unsubstituted benzofuranyl group, substituted or unsubstituted dibenzofuranyl group
  • R 1 to R 3 are each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group of 1 to 30 carbon atoms, cycloalkyl group of 1 to 20 carbon atoms, substituted or unsubstituted carbon number Aryl groups of 6 to 30, substituted or unsubstituted aralkyl groups of 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups of 3 to 30 carbon atoms, cycloalkylaryl groups of 9 to 20 carbon atoms, and substituted or unsubstituted carbon atoms 6 to 30 heteroarylalkyl groups.
  • R 1 and R 2 may be selected from a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthalenyl group, a substituted or unsubstituted phenanthrenyl group
  • R 3 may be hydrogen, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthalenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthrenyl group, Substituted or unsubstituted terphenyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted imidazole group, substituted or unsubstituted pyrazole group, substituted
  • the compound represented by Formula 1 may specifically be a compound selected from the group consisting of the following compounds.
  • the organic film layer of the organic EL device of the present specification may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic film layers are stacked.
  • the organic electroluminescent device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron transport auxiliary layer, a hole blocking layer as an organic film layer.
  • the structure of the organic electroluminescent device is not limited thereto and may include a smaller number of organic film layers.
  • At least one organic film layer comprising the formula 1 is a group consisting of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron transport auxiliary layer and a hole blocking layer It may include one or more layers selected from.
  • At least one organic film layer comprising the formula (1) may include at least one layer selected from the group consisting of an electron injection layer, an electron transport layer, an electron transport auxiliary layer and a hole blocking layer.
  • At least one organic film layer comprising the formula (1) may include at least one layer selected from the group consisting of an electron transport layer and an electron transport auxiliary layer.
  • the organic electroluminescent element of the present invention will be described by way of example. However, the contents illustrated below do not limit the organic EL device of the present invention.
  • the organic electroluminescent device of the present invention may have a structure in which an anode (hole injection electrode), a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML) and a cathode (electron injection electrode) are sequentially stacked.
  • the electron blocking layer EBL may be further disposed between the anode and the light emitting layer, and the electron transport layer ETL and the electron injection layer EIL may be further included between the cathode and the light emitting layer.
  • a hole transport auxiliary layer and a hole blocking layer (HBL) may be further included between the cathode and the light emitting layer.
  • a positive electrode is coated on a surface of a substrate by a conventional method to form an anode.
  • the substrate used is preferably a glass substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling and waterproof.
  • the positive electrode material indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2), zinc oxide (ZnO), and the like, which are transparent and have excellent conductivity, may be used.
  • a hole injection layer is formed on the surface of the anode by vacuum thermal evaporation or spin coating of a hole injection layer (HIL) material in a conventional manner.
  • hole injection layer materials include copper phthalocyanine (CuPc), 4,4 ', 4 "-tris (3-methylphenylamino) triphenylamine (m-MTDATA), 4,4', 4" -tris (3-methylphenyl Amino) phenoxybenzene (m-MTDAPB), starburst amines 4,4 ', 4 "-tri (N-carbazolyl) triphenylamine (TCTA), 4,4', 4" -tris Examples include (N- (2-naphthyl) -N-phenylamino) -triphenylamine (2-TNATA) or IDE406 available from Idemitsu.
  • a hole transport layer is formed on the surface of the hole injection layer by vacuum thermal evaporation or spin coating of a hole transport layer (HTL) material in a conventional manner.
  • HTL hole transport layer
  • the hole transport layer material bis (N- (1-naphthyl-n-phenyl)) benzidine ( ⁇ -NPD), N, N'-di (naphthalen-1-yl) -N, N'-biphenyl -Benzidine (NPB) or N, N'-biphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD).
  • the light emitting layer (EML) material on the surface of the hole transport layer by vacuum thermal evaporation or spin coating in a conventional manner to form a light emitting layer.
  • EML light emitting layer
  • tris (8-hydroxyquinolinolato) aluminum (Alq 3 ), etc. may be used as the sole light emitting material or the light emitting host material among the light emitting layer materials, and in the case of blue, Balq (8-hydroxyquinoline) may be used.
  • the compound of the present invention may be preferably used as a blue fluorescent dopant, and as the other fluorescent dopant, IDE102, IDE105, phosphorescent dopant, which is available from Idemitsu.
  • an electron blocking layer EBL may be further formed between the hole transport layer and the light emitting layer.
  • the electron transport layer is formed by vacuum thermal evaporation or spin coating of the compound represented by Chemical Formula 1 of the present invention on the surface of the light emitting layer.
  • HBL hole blocking layer
  • the hole blocking layer may be formed by vacuum thermal evaporation and spin coating of the hole blocking layer material in a conventional manner, and the hole blocking layer material is not particularly limited, but is preferably (8-hydroxyquinolinola).
  • Earth) lithium (Liq) bis (8-hydroxy-2-methylquinolinolato) -aluminum biphenoxide (BAlq), bathocuproine (BCP), LiF and the like can be used.
  • An electron injection layer is formed on the surface of the electron transport layer by vacuum thermal evaporation or spin coating of an electron injection layer (EIL) material in a conventional manner.
  • EIL electron injection layer
  • a material such as LiF, Liq, Li 2 O, BaO, NaCl, CsF may be used as the electron injection layer material.
  • the negative electrode material is formed on the surface of the electron injection layer by vacuum thermal deposition in a conventional manner.
  • the negative electrode material used is lithium (Li), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium (Mg), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag) and the like can be used.
  • a transparent cathode through which light may pass may be formed using indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the method of synthesizing the compounds of the present invention is not limited to the methods illustrated below, and the compounds of the present invention may be prepared by the methods illustrated below and methods known in the art.
  • Pd 2 (dba) 3 (0.274 g, 0.300 mmol) and 50% t-Bu 3 P (0.484 g, 0.600 mmol) were added at room temperature under nitrogen atmosphere, and the mixture was refluxed at 90 ° C. for 6 hours.
  • N- (3'-bromo-5 '-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1'-biphenyl] -4-yl) -N -Phenylpyridin-3-amine (6.32 g, 10.0 mmol) with phenanthren-9-ylboronic acid (4.27 g, 13.0 mmol), K 2 CO 3 (4.15 g, 30.0 mmol), toluene 100 mL, purified water 25 mL, 25 mL of ethanol was added at room temperature.
  • Pd (PPh 3 ) 4 (0.346 g, 0.300 mmol) was added at room temperature under a nitrogen atmosphere, followed by stirring at 90 ° C.
  • N- (3'-bromo-5 '-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1'-biphenyl] -4-yl) -N -Phenylpyridin-3-amine (6.32 g, 10.0 mmol) and 1-naphthalene boronic acid (2.24 g, 13.0 mmol), K 2 CO 3 (4.15 g, 30.0 mmol), toluene 100 mL, purified water 25 mL, ethanol 25 mL was added at room temperature.
  • Pd (PPh 3 ) 4 (0.346 g, 0.300 mmol) was added at room temperature under a nitrogen atmosphere, followed by stirring at 90 ° C. for 6 hours.
  • Pd (PPh 3 ) 4 (0.346 g, 0.300 mmol) was added at room temperature under a nitrogen atmosphere, followed by stirring at 90 ° C. for 6 hours. 100 ml of purified water was added at room temperature, and the layers were separated. An organic layer was obtained and treated with MgSO 4 . Filtration was followed by silica gel column chromatography with dichloromethane and n-heptane and recrystallization with dichloromethane and n-heptane to obtain compound 16 (3.39 g, 48%).
  • Pd (PPh 3 ) 4 (0.346 g, 0.300 mmol) was added at room temperature under a nitrogen atmosphere, followed by stirring at 90 ° C. for 6 hours. 100 ml of purified water was added at room temperature, and the layers were separated. An organic layer was obtained and treated with MgSO 4 . Filtration was followed by silica gel column chromatography with dichloromethane and n-heptane and recrystallization with dichloromethane and n-heptane to obtain compound 289 (4.10 g, 51%).
  • the substrate in which the Ag alloy, which is a light-reflective layer, and ITO (10 nm), which is an anode of the organic EL device, were sequentially stacked was patterned by dividing the substrate into a cathode, an anode region, and an insulating layer through a photo-lithograph process. After that, the surface was treated with O2: N2 plasma for the purpose of increasing work-function and cleaning of the anode (ITO).
  • HIL hole injection layer
  • N4, N4, N4 ', N4'-tetra ([1,1'-biphenyl] -4-yl)-[1,1'-biphenyl] -4,4'-diamine is placed on the hole injection layer.
  • Vacuum deposition was performed to form a hole transport layer having a thickness of 100 kHz.
  • EBL electron blocking layer
  • HTL hole transport layer
  • Benzo [b, d] furan-4-amine was formed to a thickness of 150 kHz, and a light emitting layer (EML) was formed on the electron blocking layer (EBL).
  • EBL electron blocking layer
  • 200 ⁇ was doped with N1, N1, N6, N6-tetrakis (4- (1-silyl) phenyl) pyrene-1,6-diamine as a dopant while depositing ⁇ , ⁇ -ADN.
  • a light emitting layer of thickness was laminated.
  • Compound 9 and Liq were deposited 1: 1 on the emission layer to form an electron transport layer (ETL) with a thickness of 360 , and magnesium (Mg) and silver (Ag) were deposited with a thickness of 160 ⁇ at a 9: 1 ratio as the cathode.
  • ETL electron transport layer
  • Mg magnesium
  • Ag silver
  • I was.
  • 4,4'-diamine was deposited to a thickness of 63-65 nm.
  • An organic electroluminescent device was manufactured by bonding a seal cap with a UV curable adhesive on a capping layer (CPL) to protect the organic electroluminescent device from O 2 or moisture in the air.
  • CPL capping layer
  • Example 2 The same method as in Example 1 was used except that Compound 235, 2, 4, 5, 16, 165, 227, 271 or 282 was used instead of Compound 9 to form an electron transport layer. To produce an organic electroluminescent device.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Alq3 was used instead of Compound 9 to form an electron transport layer.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound A was used instead of Compound 9 to form the ETL.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound B was used instead of Compound 9 to form the ETL.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound C, which is a widely used electron transport layer compound, was used instead of Compound 9 to form an electron transport layer.
  • the devices fabricated in Examples and Comparative Examples were driven with a current of 10 mA / cm 2 to measure voltage, brightness and color characteristics and are shown in the table below.
  • the substrate in which the Ag alloy, which is a light-reflective layer, and ITO (10 nm), which is an anode of the organic EL device, were sequentially stacked was patterned by dividing the substrate into a cathode, an anode region, and an insulating layer through a photo-lithograph process. After that, the surface was treated with O2: N2 plasma for the purpose of increasing work-function and cleaning of the anode (ITO).
  • a hole injection layer (HIL) was formed thereon with 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) to a thickness of 100 mm 3.
  • N4, N4, N4 ', N4'-tetra ([1,1'-biphenyl] -4-yl)-[1,1'-biphenyl] -4,4'-diamine is placed on the hole injection layer.
  • Vacuum deposition was performed to form a hole transport layer having a thickness of 1000 kHz.
  • EBL electron blocking layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • HTL hole transport layer
  • Tetrakis (4- (1-silyl) phenyl) pyrene-1,6-diamine was doped to form a light emitting layer having a thickness of 200 kHz.
  • the compound 9 and Liq were deposited together 1: 1 to form an electron transport layer (ETL) having a thickness of 300, and magnesium (Mg) as a cathode.
  • ETL electron transport layer
  • Mg magnesium
  • silver (Ag) were deposited to a thickness of 160 mm in a 9: 1 ratio.
  • 4,4'-diamine was deposited to a thickness of 63-65 nm.
  • An organic electroluminescent device was manufactured by bonding a seal cap with a UV curable adhesive on a capping layer (CPL) to protect the organic electroluminescent device from O 2 or moisture in the air.
  • CPL capping layer
  • An organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound A was used instead of Compound 9 to form an electron transport layer.
  • An organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound A was used instead of Compound 9 when forming an electron transport layer, and BCP was used instead of Compound 187 when forming an electron transport auxiliary layer. Produced.
  • An organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound A was used instead of Compound 9 when forming an electron transport layer, and Balq was used instead of Compound 187 when forming an electron transport auxiliary layer. Produced.
  • the devices fabricated in Examples and Comparative Examples were driven with a current of 10 mA / cm 2 to measure voltage, brightness and color characteristics and are shown in the table below.
  • the organic electroluminescence was performed in the same manner as in Example 11, except that the electron transport layer was formed using Compound A instead of Compound 9, and Compound A was used instead of Compound 187 when forming the electron transport auxiliary layer.
  • the device was produced.
  • the compound of the present invention since the compound of the present invention has high efficiency, lifespan characteristics of the organic EL device may be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 방향족 아민기와 6원자 헤테로 방향족 고리를 포함하는 유기 화합물 및 이를 포함하는 유기 전계 발광 소자로, 전자 수송 능력이 향상된 유기 화합물을 포함하는 유기 전계 발광 소자는 저전압 구동성, 발광 효율 및 수명성이 우수하다.

Description

유기 화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
현재까지 평판 디스플레이의 대부분을 액정 디스플레이가 차지하고 있으나, 보다 경제적이고 성능이 뛰어나면서 액정 디스플레이와 차별화된 새로운 평판 디스플레이를 개발하려는 노력이 전 세계적으로 활발히 진행되고 있다.
최근 차세대 평판 디스플레이로 각광을 받고 있는 유기 전계 발광 소자는 액정 디스플레이에 비해 낮은 구동전압, 빠른 응답속도 및 광시야각 등의 장점을 가지고 있다.
일반적으로 유기 전계 발광 소자의 가장 간단한 구조는 발광층 및 발광층을 사이에 둔 한 쌍의 대향 전극으로 구성되어 있다. 즉, 유기 전계 발광 소자에서는 양 전극 간에 전계가 인가되면, 음극으로부터 전자가 주입되고, 양극으로부터 정공이 주입되어 이들이 발광층에 있어서 재결합하여 광을 방출하는 현상을 이용한다.
보다 자세한 유기 전계 발광 소자의 구조는 기판, 애노드, 애노드에서 정공을 받아들이는 정공주입층, 정공을 수송하는 정공수송층, 발광층으로부터 정공 수송층으로 전자의 진입을 차단하는 전자차단층, 정공과 전자가 결합하여 빛을 내는 발광층, 발광층에서 전자수송층으로 정공의 진입을 차단하는 정공 차단층, 캐소드에서 전자를 받아들여 발광층으로 수송하는 전자수송층, 캐소드에서 전자를 받아 들이는 전자주입층 및 캐소드로 구성되어 있다.
경우에 따라서 별도의 발광층 없이 전자수송층이나 정공수송층에 소량의 형광 또는 인광성 염료를 도핑하여 발광층을 구성할 수도 있으며, 고분자를 사용할 경우에는 일반적으로 하나의 고분자가 정공 수송층과 발광층 및 전자수송층의 역할을 동시에 수행할 수도 있다. 두 전극 사이의 유기막층들은 진공증착법 또는 스핀 코팅, 잉크젯 프린팅, 레이저 열전사법 등의 방법으로 형성된다. 이렇게 유기 전계 발광 소자를 다층 박막 구조로 제작하는 이유는 전극과 유기물 사이의 계면 안정화를 위함이며 또한 유기물질의 경우, 정공과 전자의 이동 속도 차이가 크므로 적절한 정공수송층과 전자수송층을 사용하여 정공과 전자를 발광층으로 효과적으로 전달하여 정공과 전자의 밀도가 균형을 이루도록 하면 발광 효율을 높일 수 있기 때문이다.
유기 전계 발광 소자의 구동 원리는 다음과 같다.
상기 애노드 및 캐소드 간에 전압을 인가하면 애노드로부터 주입된 정공은 정공주입층 및 정공수송층을 경유하여 발광층으로 이동된다. 한편, 전자는 캐소드로부터 전자주입층 및 전자수송층을 경유하여 발광층에 주입되고 발광층 영역에서 캐리어들이 재결합하여 엑시톤(exiton)을 생성한다. 이 엑시톤이 여기 상태에서 기저 상태로 변화되고, 이로 인하여 발광층의 형광성 분자가 발광함으로써 화상이 형성된다. 이때 여기 상태(excited state)가 일중항 여기 상태(singlet state)를 통하여 기저 상태로 떨어지면서 발광하는 것을 "형광"이라고 하며, 삼중항 여기 상태(Triplet state)를 통하여 기저 상태로 떨어지면서 발광하는 것을 "인광"이 라고 한다. 형광의 경우, 일중항 여기 상태의 확률일 25%(삼중항 상태 75%)이며, 발광 효율의 한계가 있는 반면에 인광을 사용하면 삼중항 상태 75%와 일중항 여기 상태 25%까지 발광에 이용할 수 있으므로 이론적으로 내부양자 효율 100%까지 가능하다.
한편, 유기 전계 발광 소자에 있어 가장 문제가 되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 되는 상황이다. 유기 전계 발광 소자에 있어서 양극과 음극 사이에 발광층을 포함하는 일층 또는 복수층으로 이루어지는 유기막층의 각층에 포함되는 성분들의 특성은 소자의 구동 전압, 발광 효율, 휘도에 영향을 미쳐, 이러한 특성 결과를 통해 소자의 수명에 큰 영향을 미친다.
따라서, 상기 유기막층의 각층에 포함되는 성분들에 대한 연구가 활발히 진행되고 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 전자 수송 능력이 향상된 화합물로서, 방향족 아민기와 6원 방향족 헤테로 고리기를 포함하는 유기 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명의 유기 화합물을 전자 주송층 및/또는 전자 수송보조층에 사용하여, 저전압 구동성, 발광 효율 및 수명성이 우수한 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
본 발명은 양극, 음극, 및 양극과 음극 사이에 하나 이상의 유기막층을 포함하는 유기 전계 발광 소자로서, 유기막층은 발광층을 포함하며, 음극과 발광층 사이에 위치한 하나 이상의 유기막층이 하기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
[화학식 1]
Figure PCTKR2018006716-appb-I000001
상기 화학식 1에서,
X1 내지 X3은 각각 독립적으로 N 또는 C(R')이며, 적어도 하나가 N이며, 여기서 R'은 수소, 중수소, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기 및 탄소수 6 내지 30의 헤테로아릴기로 이루어진 군으로부터 선택되며,
A는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬렌기로 이루어진 군으로부터 선택되며, 하기 화학식 2로 표시되는 치환기를 하나 이상 포함하며,
[화학식 2]
Figure PCTKR2018006716-appb-I000002
L1 및 L2는 각각 독립적으로 단일 결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기 또는 치환 또는 비치환된 탄소수 6 내지 30개의 헤테로아릴렌기이고,
R1 내지 R3는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 탄소수 9 내지 20의 사이클로알킬아릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기로 이루어진 군으로부터 선택되며,
R4 및 R5는 각각 독립적으로 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기 및 치환 또는 비치환된 탄소수 3 내지 40의 헤테로시클로알킬기로 이루어진 군으로부터 선택되며,
상기 X, L1, L2, R1 내지 R5는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 6 내지 30의 헤테로아릴기, 탄소수 3 내지 30의 헤테로아르알킬기, 탄소수 9 내지 20의 사이클로알킬아릴기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 6 내지 30의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 3 내지 40의 시클로알킬기, 탄소수 3 내지 40의 헤테로시클로알킬기, 탄소수 6 내지 60의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 인접하는 기와 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
본 발명의 유기 화합물은 구조 내에 포함된 방향족 아민기와 6원 방향족 헤테로 고리사이에는 계면 쌍극자(Interface dipole) 현상이 쉽게 유발되어 전자 주입 장벽을 낮추게 되고, 이를 포함하는 유기 전계 발광 소자는 전자 수송 전자 수송 능력이 우수하며, 저전압 구동성과 높은 발광 효율 및 수명 특성을 가질 수 있다.
이하, 본 발명에 대해 설명한다.
본 명세서에서 "할로겐기"는 불소, 염소, 브롬 또는 요오드이다.
본 발명에서 "알킬"은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, tert-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서"알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴, 다이메틸플루오레닐, 스파이로플루오레닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴렌"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 2가의 치환기를 의미한다. 이러한 아릴렌의 예로는 페닐렌, 나프틸렌, 페난트릴렌 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 탄소수 6 내지 30개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원자 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리딜, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴렌"은 탄소수 6 내지 30개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 2가의 치환기를 의미한다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40개의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알콕시"는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 "아르알킬"은, 아릴 및 알킬이 상기한 바와 같은 아릴-알킬 그룹을 의미한다. 바람직한 아르알킬은 저급 알킬 그룹을 포함한다. 적합한 아르알킬 그룹의 비제한적인 예는 벤질, 2-펜에틸 및 나프탈레닐메틸을 포함한다. 모 잔기에 대한 결합은 알킬을 통해 이루어진다.
본 발명에서 "아릴아미노기"는 탄소수 6 내지 30의 아릴기로 치환된 아민을 의미한다.
본 발명에서 "알킬아미노기"는 탄소수 1 내지 30의 알킬기로 치환된 아민을 의미한다.
본 발명에서 "아르알킬아미노기"는 탄소수 6 내지 30의 아릴-알킬기로 치환된 아민을 의미한다.
본 발명에서 "헤테로아릴아미노기"는 탄소수 6 내지 30의 아릴기 및 헤테로고리기로 치환된 아민기를 의미한다.
본 발명에서 "헤테로아르알킬기"는 헤테로고리기로 치환된 아릴-알킬 그룹을 의미한다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틸(adamantyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 탄소수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 60개의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명에서 "인접하는 기와 서로 결합하여 고리를 형성한다"는 것은 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들의 축합고리를 형성하는 것을 의미한다.
본 명세서에서 "지방족 탄화수소고리"란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다.
본 명세서에서 "방향족 탄화수소고리"의 예로는 페닐기, 나프틸기, 안트라세닐기 등이 있으나 이들에만 한정되는 것은 아니다.
본 명세서에서 "지방족 헤테로고리"란 헤테로원자 중 1개 이상을 포함하는 지방족고리를 의미한다.
본 명세서에서 "방향족 헤테로고리"란 헤테로원자 중 1개 이상을 포함하는 방향족고리를 의미한다.
본 명세서에서 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리는 단환 또는 다환일 수 있다.
본 명세서에서 "치환"은 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 발명은 양극, 음극, 및 양극과 음극 사이에 하나 이상의 유기막층을 포함하는 유기 전계 발광 소자로서, 유기막층은 발광층을 포함하며, 음극과 발광층 사이에 위치한 하나 이상의 유기막층이 하기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
구체적으로 하기 화학식 1로 표시되는 화합물은 다음과 같다.
[화학식 1]
Figure PCTKR2018006716-appb-I000003
상기 화학식 1에서, X1 내지 X3은 각각 독립적으로 N 또는 C(R')이며, 적어도 하나가 N이며, 여기서 R'은 수소, 중수소, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기 및 탄소수 6 내지 30의 헤테로아릴기로 이루어진 군으로부터 선택되며, A는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬렌기로 이루어진 군으로부터 선택되며, 하기 화학식 2로 표시되는 치환기를 하나 이상 포함하며,
[화학식 2]
Figure PCTKR2018006716-appb-I000004
L1 및 L2는 각각 독립적으로 단일 결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기 또는 치환 또는 비치환된 탄소수 6 내지 30개의 헤테로아릴렌기이고, R1 내지 R3는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 탄소수 9 내지 20의 사이클로알킬아릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기로 이루어진 군으로부터 선택되며, R4 및 R5는 각각 독립적으로 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기 및 치환 또는 비치환된 탄소수 3 내지 40의 헤테로시클로알킬기로 이루어진 군으로부터 선택되며, 상기 A, L1, L2, R1 내지 R5는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 6 내지 30의 헤테로아릴기, 탄소수 3 내지 30의 헤테로아르알킬기, 탄소수 9 내지 20의 사이클로알킬아릴기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 6 내지 30의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 3 내지 40의 시클로알킬기, 탄소수 3 내지 40의 헤테로시클로알킬기, 탄소수 6 내지 60의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 인접하는 기와 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
상기 화학식 1로 표시되는 유기 화합물은 6원 방향족 헤테로 고리기와 화학식 2로 표시되는 방향족 아민기를 포함한다.
본 발명의 바람직한 구현예에서, 6원 방향족 헤테로 고리기는 질소 함유 방향족 고리이다. 상기 화학식 1의 X1 내지 X3 중 적어도 2 이상이 N일 수 있으며, 일 예로 피리딘, 피리미딘, 피라진 또는 트리아진일 수 있으며, 더욱 바람직하게는 피리미딘 또는 트리아진이다.
상기 화학식 1로 표시되는 유기 화합물 내의 질소-함유 6원 방향족 헤테로 고리기는 전자 끄는 기(electron withdrawing group, EWG)로 작용하며 최저 준위 비점유 분자궤도(LUMO)의 에너지 준위를 낮추는데, 이로 인해 발광층 내의 호스트 및 도펀트의 최저 준위 비점유 분자궤도의 에너지 준위와의 차이가 감소하고, 궁극적으로 전자 수송층에서 발광층으로 전자의 이동이 용이해진다.
상기 화학식 1로 표시되는 유기 화합물 내의 최대 준위 점유 분자궤도(HOMO)가 방향족 아민기로 분산되고, 최저준위 비점유 분자궤도(LUMO)의 전자 밀도가 6원 방향족 헤테로 고리기로 밀집되어 유기 화합물의 양극성(bipolar) 특성이 증가하고 전자 수송 능력이 향상된다.
상기 화학식 1로 표시되는 유기 화합물은 방향족 아민기와 6원 방향족 헤테로 고리기를 동시에 포함함으로써, 아민기와 6원 방향족 헤테로 고리기 내의 질소 원자의 비공유 전자쌍에 의하여 계면쌍극자(Interface dipole) 현상이 유발되고 궁극적으로 전자의 주입 장벽이 낮아진다.
상기 화학식 1로 표시되는 유기 화합물을 포함하는 유기막층은 높은 이동 특성을 가진 전자 이동층을 포함함으로써, 전압 구동성과 높은 발광 효율 및 수명 특성을 가지는 유기 전계
[화학식 1]
Figure PCTKR2018006716-appb-I000005
[화학식 2]
Figure PCTKR2018006716-appb-I000006
상기 화학식 1로 표시되는 화합물 내의 A는 상기 화학식 2로 표시되는 치환기를 하나 이상 포함하는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬렌기로 이루어진 군으로부터 선택될 수 있다.
본 발명의 바람직한 일 구현예에서, A는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 비페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프탈레닐기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 플루오렌기, 치환 또는 비치환된 스파이로플루오렌기, 치환 또는 비치환된 디벤조퓨란기, 치환 또는 비치환된 디벤조티오펜기, 치환 또는 비치환된 퓨란기, 및 치환 또는 비치환된 카바졸기로 이루어진 군으로부터 선택될 수 있다.
상기 화학식 2에서, L2는 바람직하게 단일겹합, 치환 또는 비치환된 페닐기 및 치환 또는 비치환된 비페닐기일 수 있으며, 더욱 바람직하게는 페닐기 또는 비페닐기일 수 있다. 상기 화학식 2에서, R4 및 R5는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 및 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기로 이루어진 군으로부터 선택될 수 있다.
본 발명의 바람직한 일 구현예에서, R4 및 R5는 각각 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 이미다졸기, 치환 또는 비치환된 피라졸기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 벤조피리딜기, 치환 또는 비치환된 벤조피라지닐기, 치환 또는 비치환된 벤조피리미디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 디벤조퓨라닐기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 디벤조피롤릴기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 아다만틸기로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 R4 및 R5가 각각 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기 및 치환 또는 비치환된 피라지닐기로 이루어진 군으로부터 선택될 수 있으며, 더욱 바람직하게는 페닐기 또는 피리딜기이다.
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 탄소수 9 내지 20의 사이클로알킬아릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기로 이루어진 군으로부터 선택된다.
본 발명의 바람직한 일 구현예에서, R1 및 R2는 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 나프탈레닐기, 치환 또는 비치환된 페난트레닐기 중 선택될 수 있으며, R3는 수소, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 나프탈레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 이미다졸기, 치환 또는 비치환된 피라졸기, 치환 또는 비치환된 피라졸기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 벤조피리딜기, 치환 또는 비치환된 벤조피라지닐기, 치환 또는 비치환된 벤조피리미디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 벤조싸이아졸기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 디벤조퓨라닐기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 디벤조피롤릴기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 아다만틸기로 이루어진 군으로부터 선택될 수 있다.
본 발명의 일 구현예에서, 상기 화학식 1로 표시되는 화합물은 구체적으로 하기 화합물로 이루어진 군으로부터 선택되는 화합물일 수 있다.
Figure PCTKR2018006716-appb-I000007
Figure PCTKR2018006716-appb-I000008
Figure PCTKR2018006716-appb-I000009
Figure PCTKR2018006716-appb-I000010
Figure PCTKR2018006716-appb-I000011
Figure PCTKR2018006716-appb-I000012
Figure PCTKR2018006716-appb-I000013
Figure PCTKR2018006716-appb-I000014
Figure PCTKR2018006716-appb-I000015
Figure PCTKR2018006716-appb-I000016
Figure PCTKR2018006716-appb-I000017
Figure PCTKR2018006716-appb-I000018
Figure PCTKR2018006716-appb-I000019
Figure PCTKR2018006716-appb-I000020
Figure PCTKR2018006716-appb-I000021
Figure PCTKR2018006716-appb-I000022
Figure PCTKR2018006716-appb-I000023
Figure PCTKR2018006716-appb-I000024
Figure PCTKR2018006716-appb-I000025
Figure PCTKR2018006716-appb-I000026
Figure PCTKR2018006716-appb-I000027
Figure PCTKR2018006716-appb-I000028
Figure PCTKR2018006716-appb-I000029
Figure PCTKR2018006716-appb-I000030
Figure PCTKR2018006716-appb-I000031
Figure PCTKR2018006716-appb-I000032
Figure PCTKR2018006716-appb-I000033
Figure PCTKR2018006716-appb-I000034
Figure PCTKR2018006716-appb-I000035
Figure PCTKR2018006716-appb-I000036
Figure PCTKR2018006716-appb-I000037
Figure PCTKR2018006716-appb-I000038
Figure PCTKR2018006716-appb-I000039
Figure PCTKR2018006716-appb-I000040
Figure PCTKR2018006716-appb-I000041
Figure PCTKR2018006716-appb-I000042
Figure PCTKR2018006716-appb-I000043
Figure PCTKR2018006716-appb-I000044
Figure PCTKR2018006716-appb-I000045
Figure PCTKR2018006716-appb-I000046
Figure PCTKR2018006716-appb-I000047
Figure PCTKR2018006716-appb-I000048
Figure PCTKR2018006716-appb-I000049
Figure PCTKR2018006716-appb-I000050
Figure PCTKR2018006716-appb-I000051
Figure PCTKR2018006716-appb-I000052
Figure PCTKR2018006716-appb-I000053
Figure PCTKR2018006716-appb-I000054
Figure PCTKR2018006716-appb-I000055
Figure PCTKR2018006716-appb-I000056
Figure PCTKR2018006716-appb-I000057
Figure PCTKR2018006716-appb-I000058
Figure PCTKR2018006716-appb-I000059
Figure PCTKR2018006716-appb-I000060
Figure PCTKR2018006716-appb-I000061
Figure PCTKR2018006716-appb-I000062
Figure PCTKR2018006716-appb-I000063
Figure PCTKR2018006716-appb-I000064
Figure PCTKR2018006716-appb-I000065
Figure PCTKR2018006716-appb-I000066
Figure PCTKR2018006716-appb-I000067
Figure PCTKR2018006716-appb-I000068
Figure PCTKR2018006716-appb-I000069
Figure PCTKR2018006716-appb-I000070
Figure PCTKR2018006716-appb-I000071
Figure PCTKR2018006716-appb-I000072
Figure PCTKR2018006716-appb-I000073
Figure PCTKR2018006716-appb-I000074
Figure PCTKR2018006716-appb-I000075
Figure PCTKR2018006716-appb-I000076
Figure PCTKR2018006716-appb-I000077
Figure PCTKR2018006716-appb-I000078
Figure PCTKR2018006716-appb-I000079
Figure PCTKR2018006716-appb-I000080
Figure PCTKR2018006716-appb-I000081
본 명세서의 유기 전계 발광 소자의 유기막층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기막층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 전계 발광 소자는 유기막층으로서 정공주입층, 정공수송층, 전자차단층, 발광층, 전자수송층, 전자주입층, 전자 수송보조층, 정공 차단층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 전계 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기막층을 포함할 수 있다.
본 발명의 일 구현예에서, 상기 화학식 1을 포함하는 하나 이상의 유기막층이 정공주입층, 정공수송층, 발광층, 정공차단층, 전자수송층, 전자주입층, 전자 수송보조층 및 정공 차단층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함할 수 있다.
본 발명의 바람직한 구현예에서, 상기 화학식 1을 포함하는 하나 이상의 유기막층이 전자 주입층, 전자 수송층, 전자 수송보조층 및 정공 차단층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함할 수 있다.
본 발명의 더욱 바람직한 구현예에서, 상기 화학식 1을 포함하는 하나 이상의 유기막층이 전자 수송층 및 전자 수송보조층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함할 수 있다.
이하에서, 본 발명의 유기 전계 발광 소자에 대하여 예를 들어 설명한다. 그러나, 하기에 예시된 내용이 본 발명의 유기 전계 발광 소자를 한정하는 것은 아니다.
본 발명의 유기 전계 발광 소자는 양극(정공주입전극), 정공주입층(HIL), 정공수송층(HTL), 발광층(EML) 및 음극(전자주입전극)이 순차적으로 적층된 구조를 가질 수 있으며, 바람직하게는, 양극과 발광층 사이에 전자 차단층(EBL)을, 그리고 음극과 발광층 사이에 전자수송층(ETL), 전자주입층(EIL)을 추가로 포함할 수 있다. 또한 음극과 발광층 사이에 정공수송보조층, 정공차단층(HBL)을 더 포함할 수도 있다.
본 발명에 따른 유기 전계 발광 소자의 제조방법으로는, 먼저 기판 표면에 양극용 물질을 통상적인 방법으로 코팅하여 양극을 형성한다. 이때, 사용되는 기판은 투명성, 표면 평활성, 취급 용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 바람직하다. 또한, 양극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화아연(ZnO) 등이 사용될 수 있다.
다음으로, 상기 양극 표면에 정공주입층(HIL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 정공주입층을 형성한다. 이러한 정공주입층 물질로는 구리프탈로시아닌(CuPc), 4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민(m-MTDATA), 4,4',4"-트리스(3-메틸페닐아미노)페녹시벤젠(m-MTDAPB), 스타버스트(starburst)형 아민류인 4,4',4"-트리(N-카바졸릴)트리페닐아민(TCTA), 4,4',4"-트리스(N-(2-나프틸)-N-페닐아미노)-트리페닐아민(2-TNATA) 또는 이데미츠사(Idemitsu)에서 구입가능한 IDE406을 예로 들 수 있다.
상기 정공주입층 표면에 정공수송층(HTL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 정공수송층을 형성한다. 이때, 정공수송층 물질로는 비스(N-(1-나프틸-n-페닐))벤지딘(α-NPD), N,N'-다이(나프탈렌-1-일)-N,N'-바이페닐-벤지딘(NPB) 또는 N,N'-바이페닐-N,N'-비스(3-메틸페닐)-1,1'-바이페닐-4,4'-다이아민(TPD)을 예로 들 수 있다.
상기 정공수송층 표면에 발광층(EML) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 발광층을 형성한다. 이때, 사용되는 발광층 물질 중 단독 발광물질 또는 발광 호스트 물질은 녹색의 경우 트리스(8-하이드록시퀴놀리놀라토)알루미늄(Alq3) 등이 사용될 수 있으며, 청색의 경우 Balq(8-하이드록시퀴놀린베릴륨염), DPVBi(4,4'-비스(2,2-바이페닐에테닐)-1,1'-바이페닐)계열, 스피로(Spiro)물질, 스피로-DPVBi(스피로-4,4'-비스(2,2-바이페닐에테닐)-1,1'-바이페닐), LiPBO(2-(2-벤조옥사졸릴)-페놀 리튬염), 비스(바이페닐비닐)벤젠, 알루미늄-퀴놀린 금속착체, 이미다졸, 티아졸 및 옥사졸의 금속착체 등이 사용될 수 있다.
발광층 물질 중 발광 호스트와 함께 사용될 수 있는 도판트의 경우, 청색 형광 도판트로 본 발명의 화합물이 바람직하게 사용될 수 있으며, 다른 형광 도판트로서 이데미츠사(Idemitsu)에서 구입 가능한 IDE102, IDE105, 인광 도판트로는 트리스(2-페닐피리딘)이리듐(III)(Ir(ppy)3), 이리듐(III)비스[(4,6-다이플루오로페닐)피리디나토-N,C-2']피콜린산염(FIrpic) (참조문헌[Chihaya Adachi et al., Appl. Phys. Lett., 2001, 79, 3082-3084]), 플라티늄(II)옥타에틸포르피린(PtOEP), TBE002(코비온사) 등이 사용될 수 있다.
선택적으로는, 정공수송층과 발광층 사이에 전자차단층(EBL)을 추가로 형성할 수 있다.
상기 발광층 표면에 본 발명의 화학식 1로 표시되는 화합물을 진공 열증착 또는 스핀 코팅하여 전자수송층을 형성한다.
선택적으로는, 발광층과 전자수송층 사이에 정공차단층(HBL)을 추가로 형성하고 발광층에 인광 도판트를 함께 사용함으로써, 삼중항 여기자 또는 정공이 전자수송층으로 확산되는 현상을 방지할 수 있다.
정공차단층의 형성은 정공차단층 물질을 통상적인 방법으로 진공 열증착 및 스핀 코팅하여 실시할 수 있으며, 정공차단층 물질의 경우 특별히 제한되지는 않으나, 바람직하게는 (8-하이드록시퀴놀리놀라토)리튬(Liq), 비스(8-하이드록시-2-메틸퀴놀리놀나토)-알루미늄비페녹사이드(BAlq), 바쏘쿠프로인 (bathocuproine, BCP) 및 LiF 등을 사용할 수 있다.
상기 전자수송층 표면에 전자주입층(EIL) 물질을 통상적인 방법으로 진공 열증착 또는 스핀 코팅하여 전자주입층을 형성한다. 이때, 사용되는 전자주입층 물질로는 LiF, Liq, Li2O, BaO, NaCl, CsF 등의 물질이 사용될 수 있다.
상기 전자주입층 표면에 음극용 물질을 통상적인 방법으로 진공 열증착하여 음극을 형성한다.
이때, 사용되는 음극용 물질로는 리튬(Li), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘(Mg), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag) 등이 사용될 수 있다. 또한, 전면 발광 유기 전계 발광 소자의 경우 산화인듐주석(ITO) 또는 산화인듐아연(IZO)를 사용하여 빛이 투과할 수 있는 투명한 음극을 형성할 수도 있다.
이하에서, 상기 화학식 1에 따른 유기 화합물들의 합성 방법을 대표적인 예를 들어 하기에 설명한다.
그러나, 본 발명의 화합물들의 합성 방법이 하기 예시된 방법으로 한정되는 것은 아니며, 본 발명의 화합물들은 하기에 예시된 방법과 이 분야의 공지의 방법에 의해 제조될 수 있다.
합성예 1
Figure PCTKR2018006716-appb-I000082
2-(4-(아다만탄 -1-일)-4''-클로로-[1,1':3',1''-터페닐]-5'-일)-4,6-디페닐-1,3,5-트리아진 (6.30 g, 10.0 mmol)과 N-페닐피리딘-3-아민 (2.04 g, 12.0 mmol), NaOtBu 2.88 g (30.0 mmol), 톨루엔 100ml를 투입하였다. 질소 대기하 실온에서 Pd2(dba)3 (0.274 g, 0.300 mmol), Sphos (0.246 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 아세톤으로 재결정하여 화합물 5 (6.11 g, 80%)를 얻었다.
MS (MALDI-TOF) m/z: 763 [M]+
합성예 2
Figure PCTKR2018006716-appb-I000083
2,4-디페닐-6-(4-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)페닐)-1,3,5-트리아진 (4.35 g, 10.0 mmol)과 4'-클로로-N,N-디페닐-[1,1'-바이페닐]-3-아민 (4.27 g, 12.0 mmol), K2CO3 (3.46 g, 25.0 mmol), 톨루엔 100 mL, 정제수 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(OAc)2 (0.067 g, 0.300 mmol), Sphos (0.246 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 n-헵탄으로 실리카겔크로마토그래피를 하여 화합물 195 (4.78 g, 76%)를 얻었다.
MS (MALDI-TOF) m/z: 628 [M]+
합성예 3
Figure PCTKR2018006716-appb-I000084
N-(4'-(아다만탄-1-일)-[1,1'-바이페닐]-4-일)피리딘-3-아민 (3.81 g, 10.0 mmol)과 2-(3-브로모페닐)-4,6-다이페닐-1,3,5-트리아진 (4.27 g, 11.0 mmol), NaOtBu 2.88 g (30.0 mmol), 톨루엔 30 mL 투입하였다. 질소 대기하 실온에서 Pd2(dba)3 (0.274 g, 0.300 mmol), 50% t-Bu3P (0.484 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 환류하였다. 실온에서 정제수를 투입하여 층분리를 한 후, 유기층을 얻고 MgSO4 처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 톨루엔으로 재결정하여 화합물 253 (4.47 g, 65%)를 얻었다.
MS (MALDI-TOF) m/z: 687 [M]+
합성예 4
Figure PCTKR2018006716-appb-I000085
2-(3'-클로로-[1,1'-바이페닐]-3-일)-4,6-다이페닐-1,3,5-트리아진 (4.19 g, 10.0 mmol)과 N-페닐-[1,1'-바이페닐]-4-아민 (2.70 g, 11.0 mmol), NaOtBu 2.88 g (30.0 mmol), 톨루엔 30 mL 투입하였다. 질소 대기하 실온에서 Pd2(dba)3 (0.274 g, 0.300 mmol), 50% t-Bu3P (0.484 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 환류하였다. 실온에서 정제수를 투입하여 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 헵탄으로 재결정하여 화합물 187 (4.96 g, 79%)을 얻었다.
MS (MALDI-TOF) m/z: 628 [M]+
합성예 5
Figure PCTKR2018006716-appb-I000086
N-(3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.32 g, 10.0 mmol)과 페난스렌-9-일보론산 (4.27 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 4 (4.52 g, 62%)를 얻었다.
MS (MALDI-TOF) m/z: 729 [M]+
합성예 6
Figure PCTKR2018006716-appb-I000087
N-(3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.32 g, 10.0 mmol)과 1-나프탈렌 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 2 (3.87 g, 57%)를 얻었다.
MS (MALDI-TOF) m/z: 679 [M]+
합성예 7
Figure PCTKR2018006716-appb-I000088
N-(3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.32 g, 10.0 mmol)과 [1,1'-바이페닐]-4-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 9 (4.45 g, 63%)를 얻었다.
MS (MALDI-TOF) m/z: 705 [M]+
합성예 8
Figure PCTKR2018006716-appb-I000089
3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-N,N-디페닐-[1,1'-비페닐]-4-아민 (6.32 g, 10.0 mmol)과 (4-(피리딘-3-일)페닐)보론산 (2.59 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 271 (3.46 g, 49%)를 얻었다.
MS (MALDI-TOF) m/z: 705 [M]+
합성예 9
Figure PCTKR2018006716-appb-I000090
3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-N,N-디페닐-[1,1'-비페닐]-4-아민 (6.32 g, 10.0 mmol)과 [1,1'-바이페닐]-4-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 76 (3.87 g, 55%)를 얻었다.
MS (MALDI-TOF) m/z: 704 [M]+
합성예 10
Figure PCTKR2018006716-appb-I000091
3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-N,N-디페닐-[1,1'-비페닐]-4-아민 (6.32 g, 10.0 mmol)과 페난스렌-9-일보론산 (4.27 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 74 (3.94 g, 54%)를 얻었다.
MS (MALDI-TOF) m/z: 728 [M]+
합성예 11
Figure PCTKR2018006716-appb-I000092
2,4-디페닐-6-(4-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)페닐)-1,3,5-트리아진 (4.35 g, 10.0 mmol)과 N-(4'-클로로-[1,1'-바이페닐]-3-일)-N-페닐피리딘-3-아민 (4.27 g, 12.0 mmol), K2CO3 (3.46 g, 25.0 mmol), 톨루엔 100 mL, 정제수 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(OAc)2 (0.067 g, 0.300 mmol), Sphos (0.246 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 n-헵탄으로 실리카겔크로마토그래피를 하여 화합물 165 (2.01 g, 32%)를 얻었다.
MS (MALDI-TOF) m/z: 629 [M]+
합성예 12
Figure PCTKR2018006716-appb-I000093
2,4-디페닐-6-(4-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)페닐)-1,3,5-트리아진 (4.35 g, 10.0 mmol)과 N-(4-((1S,3s)-아다만틸-1-일)페닐)-4'-클로로-N-페닐-[1,1'-바이페닐]-3-아민 (6.37 g, 13.0 mmol), K2CO3 (3.46 g, 25.0 mmol), 톨루엔 100 mL, 정제수 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(OAc)2 (0.067 g, 0.300 mmol), Sphos (0.246 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 여액을 농축한 후, 디클로로메탄과 n-헵탄으로 실리카겔크로마토그래피를 하여 화합물 197 (2.51 g, 33%)를 얻었다.
MS (MALDI-TOF) m/z: 762 [M]+
합성예 13
Figure PCTKR2018006716-appb-I000094
3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-N,N-디페닐-[1,1'-비페닐]-4-아민 (6.32 g, 10.0 mmol)과 1-나프탈렌 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 72 (3.80 g, 56%)를 얻었다.
MS (MALDI-TOF) m/z: 678 [M]+
합성예 14
Figure PCTKR2018006716-appb-I000095
N-(3'-브로모-5'-(4,6-디페닐-1,3,5-트리아진-2-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.32 g, 10.0 mmol)과 [1,1'-바이페닐]-3-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 16 (3.39 g, 48%)를 얻었다.
MS (MALDI-TOF) m/z: 705 [M]+
합성예 15
Figure PCTKR2018006716-appb-I000096
N-(3'-브로모-5'-(2,6-다이페닐피리미딘-4-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.31 g, 10.0 mmol)과 [1,1'-바이페닐]-4-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 227 (2.04 g, 29%)를 얻었다.
MS (MALDI-TOF) m/z: 704 [M]+
합성예 16
Figure PCTKR2018006716-appb-I000097
N-(3'-브로모-5'-(2,6-다이-p-톨릴피리딘-4-일)-[1,1'-바이페닐]-4-일)-N-페닐피리딘-3-아민 (6.31 g, 10.0 mmol)과 [1,1'-바이페닐]-4-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 에틸아세테이트로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 에틸아세테이트로 재결정하여 화합물 282 (3.88 g, 53%)를 얻었다.
MS (MALDI-TOF) m/z: 733 [M]+
합성예 17
Figure PCTKR2018006716-appb-I000098
3'-브로모-5'-(4,6-디(나프탈렌-2-일)-1,3,5-트리아진-2-일)-N,N-디페닐-[1,1'-바이페닐]-4-아민 (7.31 g, 10.0 mmol)과 [1,1'-바이페닐]-4-일 보론산 (2.24 g, 13.0 mmol), K2CO3 (4.15 g, 30.0 mmol), 톨루엔 100 mL, 정제수 25 mL, 에탄올 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(PPh3)4 (0.346 g, 0.300 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 289 (4.10 g, 51%)를 얻었다.
MS (MALDI-TOF) m/z: 804 [M]+
합성예 18
Figure PCTKR2018006716-appb-I000099
2,4-디([1,1'-바이페닐]-4-일)-6-(4-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)페닐)-1,3,5-트리아진 (5.87 g, 10.0 mmol)과 4'-클로로-N,N-디페닐-[1,1'-바이페닐]-3-아민 (4.27 g, 12.0 mmol), K2CO3 (3.46 g, 25.0 mmol), 톨루엔 100 mL, 정제수 25 mL를 실온에서 투입하였다. 질소 대기하 실온에서 Pd(OAc)2 (0.067 g, 0.300 mmol), Sphos (0.246 g, 0.600 mmol)을 투입한 후, 90 ℃에서 6시간 동안 교반하였다. 실온에서 정제수 100ml를 넣고 층분리를 한 후, 유기층을 얻고 MgSO4처리하였다. 여과하고 디클로로메탄과 n-헵탄으로 실리카겔 컬럼크로마토그래피를 하고 디클로로메탄과 n-헵탄으로 재결정하여 화합물 296 (4.13 g, 53%)를 얻었다.
MS (MALDI-TOF) m/z: 780 [M]+
<실시예 1: 유기 전계 발광 소자의 제작>
광-반사층인 Ag합금과 유기 전계 발광 소자의 양극인 ITO(10nm)가 순차적으로 적층된 기판을 노광(Photo-Lithograph)공정을 통해 음극과 양극영역 그리고 절연층으로 구분하여 패터닝(Patterning)하였고, 이후 양극(ITO)의 일함수(work-function) 증대와 세정을 목적으로 O2:N2 플라즈마로 표면처리 하였다.
그 위에 정공주입층(HIL)으로 1,4,5,8,9,11-헥사아자트리페닐렌-헥사카보니트릴(hexaazatriphenylene-hexacarbonitrile)(HAT-CN)을 100 Å 두께로 형성하였다.
이어서 상기 정공주입층 상부에, N4,N4,N4',N4'-tetra([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4,4'-diamine을 진공 증착하여 100 Å 두께의 정공수송층을 형성하였다. 상기 정공수송층 (HTL) 상부에 전자차단층(EBL)으로써 N-페닐-N-(4-(스피로[벤조[de]안트라센-7,9'-플루오렌]-2'-일)페닐)디벤조[b,d]푸란-4-아민을 150 Å 두께로 형성하고, 상기 전자차단층(EBL) 상부에 발광층(EML)을 형성하였다. 발광층 내의 청색 호스트 물질로는 α,β-ADN을 증착시키면서 도판트로 N1,N1,N6,N6-테트라키스(4-(1-실릴)페닐)파이렌-1,6-디아민을 도핑하여 200 Å 두께의 발광층을 적층하였다.
발광층 상부에 화합물 9와 Liq를 1:1로 함께 증착하여 360 Å 두께로 전자수송층(ETL)을 형성하였으며, 음극으로 마그네슘(Mg)과 은(Ag)을 9:1 비율로 160 Å 두께로 증착시켰다. 상기 음극 위에 캡핑층으로 N4,N4'-디페닐-N4,N4'-비스(4-(9-페닐-9H-카바졸-3-일)페닐)-[1,1'-비페닐]-4,4'-디아민을 63~65nm 두께로 증착시켰다. 캡핑층(CPL) 위에 UV 경화형 접착제로 씰 캡(seal cap)을 합착하여 대기중의 O2나 수분으로부터 유기 전계 발광 소자를 보호할 수 있게 하여 유기 전계 발광 소자를 제조하였다.
<실시예 2 내지 10>
전자 수송층 형성시 상기 화합물 9 대신 하기 표 1에서와 같이 화합물 235, 2, 4, 5, 16, 165, 227, 271 또는 282를 이용하였다는 점을 제외하고는, 실시예 1과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
<비교예 1>
전자 수송층 형성시 상기 화합물 9 대신 하기 Alq3를 이용하였다는 점을 제외하고는, 실시예 1과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
Figure PCTKR2018006716-appb-I000100
<비교예 2>
전자 수송층 형성시 상기 화합물 9 대신 하기 화합물 A를 이용하였다는 점을 제외하고는, 실시예 1과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[화합물 A]
Figure PCTKR2018006716-appb-I000101
<비교예 3>
전자 수송층 형성시 상기 화합물 9 대신 하기 화합물 B를 이용하였다는 점을 제외하고는, 실시예 1과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[화합물 B]
Figure PCTKR2018006716-appb-I000102
<비교예 4>
전자 수송층 형성시 상기 화합물 9 대신 종래 널리 사용하는 전자 수송층 화합물인 하기 화합물 C를 이용하였다는 점을 제외하고는, 실시예 1과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[화합물 C]
Figure PCTKR2018006716-appb-I000103
실시예와 비교예로 제작된 소자를 10 mA/cm2의 전류로 구동하여 전압, 휘도 및 색특성을 측정하고 이를 아래 표에 나타내었다
Figure PCTKR2018006716-appb-T000001
상기 표 1에 나타낸 바와 같이, 본 발명의 화합물을 전자 수송층에 사용한 소자의 경우, 비교예 화합물에 비해, 구동 전압, 발광 효율, 외부양자효율 (EQE) 등의 특성이 우수한 고효율 유기 전계 발광 소자를 제작할 수 있다. 또한, 본 발명의 화합물은 낮은 구동 전압을 가지면, 효율이 높기 때문에 유기 전계 발광 소자의 수명 특성이 개선됨을 알 수 있다
[실시예 11]
광-반사층인 Ag합금과 유기 전계 발광 소자의 양극인 ITO(10nm)가 순차적으로 적층된 기판을 노광(Photo-Lithograph)공정을 통해 음극과 양극영역 그리고 절연층으로 구분하여 패터닝(Patterning)하였고, 이후 양극(ITO)의 일함수(work-function) 증대와 세정을 목적으로 O2:N2 플라즈마로 표면처리 하였다. 그 위에 정공주입층(HIL)으로 1,4,5,8,9,11-헥사아자트리페닐렌-헥사카보니트릴(hexaazatri phenylene-hexacarbonitrile)(HAT-CN)을 100 Å 두께로 형성하였다.
이어서 상기 정공주입층 상부에, N4,N4,N4',N4'-tetra([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4,4'-diamine을 진공 증착하여 1000 Å 두께의 정공수송층을 형성하였다. 상기 정공수송층 (HTL) 상부에 전자차단층(EBL)으로써 N-페닐-N-(4-(스피로[벤조[de]안트라센-7,9'-플루오렌]-2'-일)페닐)디벤조[b,d]푸란-4-아민을 100 Å 두께로 형성하고, 상기 전자차단층(EBL) 상부에 청색 호스트 물질로 α,β-ADN을 증착시키고 도판트로 N1,N1,N6,N6-테트라키스(4-(1-실릴)페닐)파이렌-1,6-디아민을 도핑하여 200 Å 두께로 발광층을 형성하였다.
발광층 상부에 화합물 187을 50Å 증착하여 전자수송보조층을 형성한 후 상부에 상기 화합물9 와 Liq를 1:1로 함께 증착하여 300 Å 두께로 전자수송층(ETL)을 형성하였으며, 음극으로 마그네슘(Mg)과 은(Ag)을 9:1 비율로 160 Å 두께로 증착시켰다. 상기 음극 위에 캡핑층으로 N4,N4'-디페닐-N4,N4'-비스(4-(9-페닐-9H-카바졸-3-일)페닐)-[1,1'-비페닐]-4,4'-디아민을 63~65nm 두께로 증착시켰다.
캡핑층(CPL) 위에 UV 경화형 접착제로 씰 캡(seal cap)을 합착하여 대기중의 O2나 수분으로부터 유기 전계 발광 소자를 보호할 수 있게 하여 유기 전계 발광 소자를 제조하였다.
[실시예 12 내지 17]
전자수송보조층 형성시 상기 화합물 187 대신 하기 표 2에서와 같이 화합물 195, 72, 74, 76, 197 또는 289를 이용하였다는 점을 제외하고는, 실시예 11과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[실시예 18]
전자수송층 형성시 상기 화합물 9 대신 화합물 A를 이용하였다는 점을 제외하고는, 실시예 11와 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[비교예 4]
전자수송층 형성시 상기 화합물 9 대신 화합물 A를 이용하고, 전자수송보조층 형성시 상기 화합물 187 대신 하기 BCP를 이용하였다는 점을 제외하고는, 실시예 11과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
Figure PCTKR2018006716-appb-I000104
[비교예 5]
전자수송층 형성시 상기 화합물 9 대신 화합물 A를 이용하고, 전자수송보조층 형성시 상기 화합물 187 대신 하기 Balq를 이용하였다는 점을 제외하고는, 실시예 11과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
Figure PCTKR2018006716-appb-I000105
실시예와 비교예로 제작된 소자를 10 mA/cm2의 전류로 구동하여 전압, 휘도 및 색특성을 측정하고 이를 아래 표에 나타내었다.
[비교예 6]
전자수송층 형성이 상기 화합물 9 대신 하기 화합물 A를 이용하고, 전자수송보조층 형성시 상기 화합물 187 대신 하기 화합물 A를 이용하였다는 점을 제외하고는, 실시예 11과 동일한 방법을 이용하여 유기 전계 발광 소자를 제작하였다.
[화합물 A]
Figure PCTKR2018006716-appb-I000106
Figure PCTKR2018006716-appb-T000002
상기 표 2에 나타낸 바와 같이, 본 발명의 화합물을 전자 수송 보조층에 사용한 소자의 경우, 비교예 화합물에 비해, 구동 전압, 발광 효율, 외부양자효율 (EQE) 등의 특성이 우수한 고효율 유기 전계 발광 소자를 제작할 수 있다.
또한, 본 발명의 화합물은 효율이 높기 때문에 유기 전계 발광 소자의 수명 특성이 개선될 수 있다.

Claims (9)

  1. 양극, 음극, 및 양극과 음극 사이에 하나 이상의 유기막층을 포함하는 유기 전계 발광 소자로서,
    유기막층은 발광층을 포함하며,
    음극과 발광층 사이에 위치한 하나 이상의 유기막층이 하기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자:
    [화학식 1]
    Figure PCTKR2018006716-appb-I000107
    상기 화학식 1에서,
    X1 내지 X3은 각각 독립적으로 N 또는 C(R')이며, 적어도 하나가 N이며, 여기서 R'은 수소, 중수소, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기 및 탄소수 6 내지 30의 헤테로아릴기로 이루어진 군으로부터 선택되며,
    A는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬렌기로 이루어진 군으로부터 선택되며, 하기 화학식 2로 표시되는 치환기를 하나 이상 포함하며,
    [화학식 2]
    Figure PCTKR2018006716-appb-I000108
    L1 및 L2는 각각 독립적으로 단일 결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬렌기 또는 치환 또는 비치환된 탄소수 6 내지 30개의 헤테로아릴렌기이고,
    R1 내지 R3는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 탄소수 9 내지 20의 사이클로알킬아릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기로 이루어진 군으로부터 선택되며,
    R4 및 R5는 각각 독립적으로 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아르알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 헤테로아릴알킬기 및 치환 또는 비치환된 탄소수 3 내지 40의 헤테로시클로알킬기로 이루어진 군으로부터 선택되며,
    상기 A, L1, L2, R1 내지 R5는 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 6 내지 30의 헤테로아릴기, 탄소수 3 내지 30의 헤테로아르알킬기, 탄소수 9 내지 20의 사이클로알킬아릴기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 6 내지 30의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 3 내지 40의 시클로알킬기, 탄소수 3 내지 40의 헤테로시클로알킬기, 탄소수 6 내지 60의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 인접하는 기와 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
  2. 제1항에 있어서,
    상기 X1 내지 X3 중 적어도 2 이상이 N인 것을 특징으로 하는 유기 전계 발광 소자.
  3. 제1항에 있어서,
    A가 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 비페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프탈레닐기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 플루오렌기, 치환 또는 비치환된 스파이로플루오렌기, 치환 또는 비치환된 디벤조퓨란기, 치환 또는 비치환된 디벤조티오펜기, 치환 또는 비치환된 퓨란기 및 치환 또는 비치환된 카바졸기로 이루어진 군으로부터 선택되며,
    X1 내지 X3, R1 내지 R5, L1 및 L2는 제1항에서 정의한 바와 동일한 것을 특징으로 하는 유기 전계 발광 소자.
  4. 제1항에 있어서,
    화학식 2가 하기와 같이 정의되는 것을 특징으로 하는 유기 전계 발광 소자:
    [화학식 2]
    Figure PCTKR2018006716-appb-I000109
    상기 화학식 2에서,
    R4 및 R5는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 및 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기로 이루어진 군으로부터 선택되며,
    X1 내지 X3, R1 내지 R3, L1 및 L2는 제1항에서 정의한 바와 동일하다.
  5. 제4항에 있어서,
    R4 및 R5는 각각 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 이미다졸기, 치환 또는 비치환된 피라졸기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 벤조피리딜기, 치환 또는 비치환된 벤조피라지닐기, 치환 또는 비치환된 벤조피리미디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 디벤조퓨라닐기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 디벤조피롤릴기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 아다만틸기로 이루어진 군으로부터 선택되는 것을 특징으로 하는 유기 전계 발광 소자.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 화합물:
    Figure PCTKR2018006716-appb-I000110
    Figure PCTKR2018006716-appb-I000111
    Figure PCTKR2018006716-appb-I000112
    Figure PCTKR2018006716-appb-I000113
    Figure PCTKR2018006716-appb-I000114
    Figure PCTKR2018006716-appb-I000115
    Figure PCTKR2018006716-appb-I000116
    Figure PCTKR2018006716-appb-I000117
    Figure PCTKR2018006716-appb-I000118
    Figure PCTKR2018006716-appb-I000119
    Figure PCTKR2018006716-appb-I000120
    Figure PCTKR2018006716-appb-I000121
    Figure PCTKR2018006716-appb-I000122
    Figure PCTKR2018006716-appb-I000123
    Figure PCTKR2018006716-appb-I000124
    Figure PCTKR2018006716-appb-I000125
    Figure PCTKR2018006716-appb-I000126
    Figure PCTKR2018006716-appb-I000127
    Figure PCTKR2018006716-appb-I000128
    Figure PCTKR2018006716-appb-I000129
    Figure PCTKR2018006716-appb-I000130
    Figure PCTKR2018006716-appb-I000131
    Figure PCTKR2018006716-appb-I000132
    Figure PCTKR2018006716-appb-I000133
    Figure PCTKR2018006716-appb-I000134
    Figure PCTKR2018006716-appb-I000135
    Figure PCTKR2018006716-appb-I000136
    Figure PCTKR2018006716-appb-I000137
    Figure PCTKR2018006716-appb-I000138
    Figure PCTKR2018006716-appb-I000139
    Figure PCTKR2018006716-appb-I000140
    Figure PCTKR2018006716-appb-I000141
    Figure PCTKR2018006716-appb-I000142
    Figure PCTKR2018006716-appb-I000143
    Figure PCTKR2018006716-appb-I000144
    Figure PCTKR2018006716-appb-I000145
    Figure PCTKR2018006716-appb-I000146
    Figure PCTKR2018006716-appb-I000147
    Figure PCTKR2018006716-appb-I000148
    Figure PCTKR2018006716-appb-I000149
    Figure PCTKR2018006716-appb-I000150
    Figure PCTKR2018006716-appb-I000151
    Figure PCTKR2018006716-appb-I000152
    Figure PCTKR2018006716-appb-I000153
    Figure PCTKR2018006716-appb-I000154
    Figure PCTKR2018006716-appb-I000155
    Figure PCTKR2018006716-appb-I000156
    Figure PCTKR2018006716-appb-I000157
    Figure PCTKR2018006716-appb-I000158
    Figure PCTKR2018006716-appb-I000159
    Figure PCTKR2018006716-appb-I000160
    Figure PCTKR2018006716-appb-I000161
    Figure PCTKR2018006716-appb-I000162
    Figure PCTKR2018006716-appb-I000163
    Figure PCTKR2018006716-appb-I000164
    Figure PCTKR2018006716-appb-I000165
    Figure PCTKR2018006716-appb-I000166
    Figure PCTKR2018006716-appb-I000167
    Figure PCTKR2018006716-appb-I000168
    Figure PCTKR2018006716-appb-I000169
    Figure PCTKR2018006716-appb-I000170
    Figure PCTKR2018006716-appb-I000171
    Figure PCTKR2018006716-appb-I000172
    Figure PCTKR2018006716-appb-I000173
    Figure PCTKR2018006716-appb-I000174
    Figure PCTKR2018006716-appb-I000175
    Figure PCTKR2018006716-appb-I000176
    Figure PCTKR2018006716-appb-I000177
    Figure PCTKR2018006716-appb-I000178
    Figure PCTKR2018006716-appb-I000179
    Figure PCTKR2018006716-appb-I000180
    Figure PCTKR2018006716-appb-I000181
    Figure PCTKR2018006716-appb-I000182
    Figure PCTKR2018006716-appb-I000183
    Figure PCTKR2018006716-appb-I000184
  7. 제 1항에 있어서,
    상기 유기막층은 정공주입층, 정공수송층, 발광층, 정공차단층, 전자수송층, 전자주입층, 전자 수송보조층 및 정공 차단층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  8. 제 7항에 있어서,
    상기 유기막층은 전자 주입층, 전자 수송층, 전자 수송보조층 및 정공 차단층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  9. 제 8항에 있어서,
    상기 유기막층은 전자 수송층 및 전자 수송보조층으로 이루어진 군으로부터 선택되는 하나 이상의 층을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2018/006716 2017-06-16 2018-06-14 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 WO2018230969A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880034486.7A CN110678449B (zh) 2017-06-16 2018-06-14 有机化合物及包含该有机化合物的有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170076830 2017-06-16
KR10-2017-0076830 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230969A1 true WO2018230969A1 (ko) 2018-12-20

Family

ID=64659343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006716 WO2018230969A1 (ko) 2017-06-16 2018-06-14 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (3)

Country Link
KR (1) KR102085033B1 (ko)
CN (1) CN110678449B (ko)
WO (1) WO2018230969A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230137903A (ko) 2021-01-29 2023-10-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광소자 및 전자 기기

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747932B (zh) * 2019-03-27 2023-09-26 北京鼎材科技有限公司 一种化合物及其应用、有机电致发光器件
CN110563647B (zh) * 2019-08-27 2021-02-12 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件以及光电转化器件
CN112442012B (zh) * 2019-09-02 2024-03-29 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的器件
CN114423733A (zh) * 2019-09-26 2022-04-29 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN112812102B (zh) * 2020-04-17 2023-04-07 陕西莱特迈思光电材料有限公司 含氮化合物、电子元件和电子装置
WO2022034421A1 (ja) * 2020-08-12 2022-02-17 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
CN114315799B (zh) * 2020-09-29 2023-11-14 江苏三月科技股份有限公司 一种含三嗪结构的化合物及其应用
CN112321585B (zh) * 2020-10-30 2022-04-22 华南理工大学 不对称取代的二苯基吡啶类化合物及其制备与应用
CN112159361A (zh) * 2020-11-06 2021-01-01 烟台显华化工科技有限公司 一种电子传输材料、有机电致发光器件和显示装置
CN112778278B (zh) * 2020-12-31 2022-04-29 温州市工业科学研究院 一种基于金刚烷的磷光发光主体材料及其有机电致发光器件
CN112939788A (zh) * 2021-03-01 2021-06-11 浙江虹舞科技有限公司 一种金刚烷胺类化合物及其应用以及包含该化合物的有机电致发光器件
CN113234010A (zh) * 2021-05-07 2021-08-10 烟台显华化工科技有限公司 一种化合物、电子传输材料、有机电致发光器件和显示装置
CN115385922B (zh) * 2021-05-25 2024-04-23 江苏三月科技股份有限公司 一种氮杂二苯并呋喃修饰的三嗪类化合物及有机电致发光器件
CN114634485B (zh) * 2022-03-22 2023-08-18 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其制备方法和应用
CN116199676A (zh) * 2023-02-03 2023-06-02 北京驳凡科技有限公司 一种化合物及其应用、含有化合物的有机电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193952A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 新規含窒素へテロ環化合物、発光素子材料およびそれらを使用した発光素子
KR20120096876A (ko) * 2010-06-30 2012-08-31 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전계 발광 소자
CN104177304A (zh) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 双极性蓝光磷光主体材料及其制备方法和有机电致发光器件
KR20160027985A (ko) * 2013-07-02 2016-03-10 메르크 파텐트 게엠베하 전자 소자용 재료
KR20160039492A (ko) * 2014-10-01 2016-04-11 가톨릭대학교 산학협력단 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
KR20160121628A (ko) * 2015-04-09 2016-10-20 단국대학교 산학협력단 유기재료 및 이를 함유하는 유기발광다이오드
CN106699733A (zh) * 2016-12-23 2017-05-24 长春海谱润斯科技有限公司 一种芳香族胺类衍生物及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193952A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 新規含窒素へテロ環化合物、発光素子材料およびそれらを使用した発光素子
KR20120096876A (ko) * 2010-06-30 2012-08-31 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전계 발광 소자
CN104177304A (zh) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 双极性蓝光磷光主体材料及其制备方法和有机电致发光器件
KR20160027985A (ko) * 2013-07-02 2016-03-10 메르크 파텐트 게엠베하 전자 소자용 재료
KR20160039492A (ko) * 2014-10-01 2016-04-11 가톨릭대학교 산학협력단 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
KR20160121628A (ko) * 2015-04-09 2016-10-20 단국대학교 산학협력단 유기재료 및 이를 함유하는 유기발광다이오드
CN106699733A (zh) * 2016-12-23 2017-05-24 长春海谱润斯科技有限公司 一种芳香族胺类衍生物及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230137903A (ko) 2021-01-29 2023-10-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광소자 및 전자 기기

Also Published As

Publication number Publication date
KR102085033B1 (ko) 2020-03-05
CN110678449A (zh) 2020-01-10
CN110678449B (zh) 2024-01-12
KR20180137413A (ko) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2018230969A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018216990A1 (ko) 유기화합물 및 이를 포함하는 유기전계발광소자
WO2020080872A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2019139419A1 (ko) 유기 발광 소자
EP3371182A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
WO2020106032A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2020138874A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2020022771A1 (ko) 유기 발광 소자
WO2020166873A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018128470A1 (ko) 유기전계발광소자
WO2021029616A1 (ko) 유기 발광 소자
WO2020022768A1 (ko) 유기 발광 소자
WO2020138876A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2020242165A1 (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2014119895A1 (ko) 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
WO2014084619A1 (ko) 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017116169A1 (ko) 신규한 유기화합물 및 상기 유기화합물을 포함하는 유기전계발광소자
WO2017065419A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2016089165A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2021086143A1 (ko) 유기 화합물, 이를 포함하는 유기 발광 다이오드 및 상기 유기 발광 다이오드를 포함하는 표시장치
WO2016182270A1 (ko) 유기전계발광소자
WO2017073942A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
WO2016021923A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817080

Country of ref document: EP

Kind code of ref document: A1