WO2016182248A1 - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
WO2016182248A1
WO2016182248A1 PCT/KR2016/004636 KR2016004636W WO2016182248A1 WO 2016182248 A1 WO2016182248 A1 WO 2016182248A1 KR 2016004636 W KR2016004636 W KR 2016004636W WO 2016182248 A1 WO2016182248 A1 WO 2016182248A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
extension
light emitting
pad
semiconductor layer
Prior art date
Application number
PCT/KR2016/004636
Other languages
English (en)
French (fr)
Inventor
김예슬
김경완
오상현
서덕일
우상원
김지혜
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150066878A external-priority patent/KR20160133836A/ko
Priority claimed from KR1020150076455A external-priority patent/KR20160140173A/ko
Priority claimed from KR1020150149532A external-priority patent/KR20170048885A/ko
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to CN201690001029.4U priority Critical patent/CN208400869U/zh
Publication of WO2016182248A1 publication Critical patent/WO2016182248A1/ko
Priority to US15/405,031 priority patent/US10186638B2/en
Priority to US16/218,042 priority patent/US10707382B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/42Forced cooling
    • F21S45/43Forced cooling using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/42Forced cooling
    • F21S45/43Forced cooling using gas
    • F21S45/435Forced cooling using gas circulating the gas within a closed system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device comprising an electrode.
  • the nitride p-type semiconductor layer has a relatively low electrical conductivity compared to the n-type semiconductor layer.
  • the current is not effectively distributed in the horizontal direction in the p-type semiconductor layer, so that current is concentrated in a specific portion of the semiconductor layer (current crowding).
  • current crowding When current is concentrated in the semiconductor layer, the light emitting diode may be vulnerable to electrostatic discharge, and leakage current and efficiency droop may occur.
  • the light emitting efficiency of the light emitting device can be improved, and the heat generation due to the concentration of current can be reduced to improve the lifetime and reliability of the light emitting device.
  • a technique of forming a transparent electrode such as ITO and a current blocking layer on a p-type semiconductor layer in order to efficiently disperse current has been disclosed in the past.
  • a limit to evenly distributing the current throughout the p-type semiconductor layer using only the current blocking layer and the transparent electrode is not good, and when the wire is bonded to the p-type electrode, the wire is disconnected or the p-type electrode peels. Therefore, the defective rate of the light emitting device due to the defects around the p-type electrode increases, thereby reducing the reliability and production yield of the light emitting device.
  • the problem to be solved by the present invention is to provide a light emitting device having a structure capable of evenly distributing a current throughout the light emitting region.
  • Another object of the present invention is to provide a light emitting device capable of minimizing a decrease in reliability of a light emitting device due to a failure of an electrode, particularly an electrode pad.
  • Another object of the present invention is to provide a light emitting device having high reliability against defects caused by electrostatic discharge and electric short.
  • Another object of the present invention is to provide a light emitting device that has a structure capable of evenly distributing current throughout the light emitting region, and can prevent light loss due to a structure for improving current dispersion. .
  • a light emitting device the first conductivity type semiconductor layer; A mesa positioned on the first conductive semiconductor layer and including an active layer and a second conductive semiconductor layer positioned on the active layer; A current blocking layer partially positioned on the mesa; A transparent electrode on the mesa, the transparent electrode including an opening covering the current blocking layer and at least partially exposing the current blocking layer; An insulating layer partially positioned on the mesa; A first electrode on the insulating layer and insulated from the second conductive semiconductor layer, the first electrode including a first electrode pad and a first electrode extension extending from the first electrode pad; And a second electrode on the current blocking layer, the second electrode including a second electrode pad positioned on the opening of the transparent electrode and a second electrode extension extending from the second electrode pad.
  • At least one protrusion protruding from the side of the opening at least a portion of the protrusion is located between the second electrode pad and the current blocking layer, the mesa includes at least one groove formed on the side, A first conductive semiconductor layer is partially exposed through the groove, the insulating layer at least partially covers the side surface of the groove, and the first electrode extension is in contact with the first conductive semiconductor layer through the groove. An extension contact portion.
  • the insulating layer may cover side surfaces of the active layer exposed to the groove.
  • the insulating layer may further cover the periphery of the upper groove.
  • the insulating layer may be spaced apart from the transparent electrode.
  • the at least one groove may include a plurality of grooves spaced apart from each other, and the plurality of grooves may be located at one side of the light emitting device.
  • the first electrode pad may include a pad contact portion contacting the first conductive semiconductor layer.
  • the pad contact portion and the at least one extension contact portion may be located at one side of the light emitting device.
  • the insulating layer may include at least one extension part covering the mesa side of the first electrode pad.
  • a portion of the insulating layer below the first electrode extension may be located in an area defined by the side of the mesa.
  • the first electrode pad may include a pad contact portion contacting the first conductive semiconductor layer, wherein the at least one extension portion includes a plurality of extension portions, and the pad contact portion may include a plurality of extension portions. It can be located in the area between.
  • the at least one groove may have a planar shape having an arc shape.
  • the current blocking layer may include a pad current blocking layer positioned below the second electrode pad, and an extension current blocking layer positioned below the second electrode extension, and through the opening of the transparent electrode.
  • the pad current blocking layer may be at least partially exposed.
  • Side surfaces of the openings of the transparent electrode may be located on the pad current blocking layer.
  • a transparent electrode may be interposed between the second electrode extension part and the extension current blocking layer.
  • the interface between the second electrode pad and the second electrode extension may include an x (+) axis, an x ( ⁇ ) axis, and a virtual coordinate system having an x axis and a y axis with the center of the pad current blocking layer as an origin. It may be located on at least one of the y (+) axis, the y (-) axis and the first to fourth quadrants, wherein the at least one protrusion is an x (+) axis, except for the portion where the interface is located, It may be located on at least one of the x (-) axis, y (+) axis, y (-) axis and the first to fourth quadrants.
  • the interface may be located on the y ( ⁇ ) axis or the fourth quadrant, and the protrusion may be located on the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis.
  • the first electrode pad may be positioned adjacent to one side of the light emitting device, and the first electrode extension may extend from the first electrode pad toward the other side of the light emitting device, and the second electrode pad may emit light. Located adjacent to the other side of the device, the second electrode extension may extend from the second electrode pad toward one side of the light emitting device.
  • a light emitting device the first conductivity type semiconductor layer; A mesa positioned on the first conductive semiconductor layer and including an active layer and a second conductive semiconductor layer positioned on the active layer; A transparent electrode on the mesa; An insulating layer partially positioned on the mesa; And a first electrode on the insulating layer and insulated from the second conductive semiconductor layer, the first electrode including a first electrode pad and a first electrode extension extending from the first electrode pad. And at least one groove formed on a side surface, wherein the first conductive semiconductor layer is partially exposed through the groove, and the insulating layer covers at least partially the side surface of the groove to cover the side of the active layer exposed to the groove.
  • the first electrode extension part may include an extension contact part contacting the first conductive semiconductor layer through the groove.
  • the insulating layer may further cover the periphery of the upper groove.
  • the insulating layer may be spaced apart from the transparent electrode.
  • the first electrode pad may include a pad contact portion contacting the first conductive semiconductor layer.
  • a light emitting device the first conductivity type semiconductor layer; A mesa positioned on the first conductive semiconductor layer and including an active layer and a second conductive semiconductor layer located on the active layer; A first electrode electrically connected to the first conductive semiconductor layer; A second conductive oxide electrode on the mesa; And a second electrode positioned on the second conductive oxide electrode, wherein the first electrode includes a first electrode pad and a first electrode extension extending from the first electrode pad. And at least one metal electrode extension and at least one first conductive oxide electrode extension, the metal electrode extension extending from one side of the first electrode pad, and the first conductive oxide electrode extension extending from the first It extends from the other side besides one side of the electrode pad.
  • the first conductive oxide electrode extension may include at least one of ZnO and ZnO including a metal dopant, and the metal dopant may include Ga.
  • the first electrode extension may include a plurality of metal electrode extensions and / or a plurality of first conductive oxide electrode extensions.
  • the metal electrode extension and the first conductive oxide electrode extension may extend in opposite directions.
  • the metal electrode extension portion and the first conductive oxide electrode extension portion may have different line widths.
  • the line width of the metal electrode extension may be greater than the line width of the first conductive oxide electrode extension.
  • the line width of the first conductive oxide electrode extension may be greater than the line width of the metal electrode extension.
  • One side of the first conductive oxide electrode extension may be coplanar with one side of the first conductive semiconductor layer.
  • the first electrode pad may include a metal electrode pad and a first conductive oxide electrode pad, and the first conductive oxide electrode extension may extend from the first conductive oxide electrode pad.
  • the metal electrode pad may be positioned on the first conductive oxide electrode pad, and the area of the first conductive oxide electrode pad may be larger than the area of the metal electrode pad.
  • At least a portion of the first conductive oxide electrode extension may contact at least a portion of the metal electrode extension.
  • a portion of the first conductive oxide electrode extension may be positioned below the metal electrode extension.
  • a portion of the first conductive oxide electrode extension may be interposed between the first conductive semiconductor layer and the metal electrode extension, and a portion of the first conductive oxide electrode extension is ohmic contact with the first conductive semiconductor layer. Can be formed.
  • the first conductivity type semiconductor layer may include a region in which a portion of the upper surface of the first conductivity type semiconductor layer formed around the mesa is exposed, and the first conductive oxide electrode extension part is exposed to the periphery of the mesa. It may be in contact with the conductive semiconductor layer.
  • the first conductive oxide electrode extension may at least partially surround the mesa.
  • the first conductive oxide electrode extension part may form a closed curve surrounding the mesa.
  • the light emitting device may further include an insulating layer partially disposed on the mesa, wherein a portion of the metal electrode extension and at least a portion of the first electrode pad are positioned on the insulating layer, and the metal electrode extends.
  • the portion may include an extension contact portion contacting the first conductive semiconductor layer.
  • the mesa may include at least one groove recessed from a side thereof, and an upper surface of the first conductivity-type semiconductor layer may be partially exposed through the groove, and the insulating layer may be exposed through the groove.
  • the opening may expose an upper surface of the first conductive semiconductor layer, and the extension contact portion may be in electrical contact with the upper surface of the first conductive semiconductor layer through the opening of the insulating layer.
  • the first conductive oxide electrode extension part may partially surround the mesa, and may not be positioned around the groove of the mesa.
  • a portion of the first conductive oxide electrode extension may be interposed between an upper surface of the first conductive semiconductor layer exposed to the groove and a portion of the metal electrode extension, and the portion of the first conductive oxide electrode extension may be The top surface of the first conductive semiconductor layer exposed to the groove may be in ohmic contact.
  • the current spreading efficiency in the horizontal direction can be improved through the second electrode extension having the extension contact portion, and the active layer side exposed to the groove of the mesa is covered with the insulating layer.
  • the luminous efficiency of the light emitting device due to the electrostatic discharge can be prevented and defects.
  • electrical shorting around the first electrode pad may be prevented through the extension of the insulating layer.
  • the structural stability of the second electrode pad can be improved, and in particular, a defect around the second electrode pad due to ball bonding can be prevented.
  • a light emitting device having a first electrode including a first conductive oxide electrode extension is disclosed, and a light emitting device having improved electrical and optical characteristics can be provided through the first conductive oxide electrode extension.
  • 1A is a plan view illustrating a light emitting device according to an embodiment of the present invention.
  • 1B is a plan view illustrating a light emitting device according to still another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG 3 is an enlarged plan view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is an enlarged cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • 5 and 6 are enlarged plan views and enlarged cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • FIG. 7 and 8 are enlarged plan views and enlarged cross-sectional views illustrating a light emitting device according to still another exemplary embodiment of the present invention.
  • FIGS. 9 and 10 are enlarged plan views and enlarged cross-sectional views illustrating a light emitting device according to still another exemplary embodiment of the present invention.
  • FIG. 11 is an enlarged plan view for describing a light emitting device according to still another embodiment of the present invention.
  • 15 to 17 are plan views, cross-sectional views and enlarged plan views for describing a light emitting device according to still another embodiment of the present invention.
  • 18A to 18F illustrate structures around the second electrode pads according to the comparative examples.
  • 19 to 21 are plan views, cross-sectional views and enlarged plan views for describing a light emitting device according to still another embodiment of the present invention.
  • 22 to 24 are plan views, cross-sectional views, and enlarged plan views for describing a light emitting device according to still another embodiment of the present invention.
  • 25 to 27 are graphs showing experimental values for comparing a light emitting device according to still another embodiment of the present invention with a light emitting device of a comparative example.
  • 28A to 38 are plan views, enlarged plan views, cross-sectional views, and enlarged cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • 39 is an enlarged plan view illustrating a second electrode structure of a light emitting device according to still another embodiment of the present invention.
  • FIG. 40 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • 41 is a plan view illustrating a light emitting device according to still another embodiment of the present invention.
  • FIG. 42 is a plan view illustrating a light transmissive conductive layer of a light emitting device according to still another embodiment of the present invention.
  • FIG. 43 is a plan view illustrating a transparent conductive layer of a light emitting device according to still another embodiment of the present invention.
  • 44 to 47 are cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • 48 (a) and 48 (b) are enlarged plan views for describing a light emitting device according to still another embodiment of the present invention.
  • 49 (a) and 49 (b) are enlarged cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • 50 and 51 are plan views illustrating light emitting devices according to still another exemplary embodiment of the present invention.
  • 52 to 54 are cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • 55 and 56 are plan views illustrating light emitting devices according to still other embodiments of the present invention.
  • 57 to 59 are cross-sectional views for describing a light emitting device according to still another embodiment of the present invention.
  • 60 and 61 are plan views illustrating light emitting devices according to still another exemplary embodiment of the present invention.
  • 62 to 64 are cross-sectional views illustrating light emitting devices according to still other embodiments of the present invention.
  • 65A and 65B are enlarged plan views illustrating light emitting devices according to still other embodiments of the present invention.
  • 66 is an exploded perspective view illustrating an example in which a light emitting device according to embodiments of the present invention is applied to a lighting device.
  • 67 is a cross-sectional view for describing an example in which the light emitting device according to the embodiments of the present invention is applied to a display device.
  • 68 is a cross-sectional view for describing an example in which the light emitting device according to the embodiments of the present invention is applied to a display device.
  • 69 is a cross-sectional view for describing an example in which the light emitting device according to the embodiments of the present invention is applied to a head lamp.
  • the material referred to as ZnO may include a single crystal ZnO having a predetermined crystal structure, for example, may include ZnO having a wurtzite crystal structure.
  • single crystal ZnO may be a single crystal including thermodynamic intrinsic defects, and may also contain small amounts of defects that may occur in manufacturing processes, such as public defects, dislocations, grain boundaries. It may be a single crystal including).
  • the single crystal ZnO may be a single crystal containing a small amount of impurities or dopants. That is, single crystal ZnO including an unintended or unavoidable defect or impurity and single crystal ZnO including a dopant may also be included in the single crystal ZnO referred to herein.
  • FIGS. 4A and 4B show lines D-D 'and E of FIG. 3A, respectively. These are enlarged sectional views showing the cross section of the portion corresponding to the line -E '.
  • the light emitting device includes a light emitting structure 120, a transparent electrode 140, a first electrode 150, and a second electrode 160.
  • the light emitting device may further include a substrate 110 and a current blocking layer 130.
  • the light emitting device may include first to fourth side surfaces 101, 102, 103, and 104, respectively.
  • the substrate 110 may be an insulating or conductive substrate.
  • the substrate 110 may be a growth substrate for growing the light emitting structure 120, and may include a sapphire substrate, a silicon carbide substrate, a silicon substrate, a gallium nitride substrate, an aluminum nitride substrate, and the like.
  • the substrate 110 may be a secondary substrate for supporting the light emitting structure 120.
  • the substrate 110 may be a sapphire substrate, and in particular, may be a patterned sapphire substrate (PSS) having a patterned upper surface.
  • PSS patterned sapphire substrate
  • the substrate 110 may include a plurality of protrusions 110p formed on an upper surface thereof.
  • the first conductive semiconductor layer 121 is described as being located on the substrate 110, but the substrate 110 is a growth substrate capable of growing the semiconductor layers 121, 123, and 125.
  • the semiconductor layers 121, 123, and 125 may be separated or removed through physical and / or chemical methods, and may be omitted.
  • the light emitting structure 120 may include a first conductivity type semiconductor layer 121, a second conductivity type semiconductor layer 125 and a first conductivity type semiconductor layer 121 positioned on the first conductivity type semiconductor layer 121.
  • the active layer 123 may be disposed between the second conductive semiconductor layers 125.
  • the light emitting structure 120 may be positioned on the first conductivity type semiconductor layer 121 and may include a mesa 120m including an active layer 123 and a second conductivity type semiconductor layer 125.
  • the first conductive semiconductor layer 121, the active layer 123, and the second conductive semiconductor layer 125 may be grown and formed in a chamber using a known method such as MOCVD.
  • the first conductivity-type semiconductor layer 121, the active layer 123, and the second conductivity-type semiconductor layer 125 may include a III-V series nitride-based semiconductor, and include, for example, (Al, Ga, In And a nitride based semiconductor such as N).
  • the first conductive semiconductor layer 121 may include n-type impurities (eg, Si, Ge. Sn), and the second conductive semiconductor layer 125 may include p-type impurities (eg, Mg, Sr, Ba). It may also be the reverse.
  • the active layer 123 may include a multi-quantum well structure (MQW), and the composition ratio of the nitride semiconductor may be adjusted to emit a desired wavelength.
  • the second conductivity-type semiconductor layer 125 may be a p-type semiconductor layer.
  • the mesa 120m is positioned on a portion of the first conductivity type semiconductor layer 121, so that the surface of the first conductivity type semiconductor layer 121 may be exposed in an area where the mesa 120m is not formed. have.
  • the mesa 120m may be formed by partially etching the second conductivity-type semiconductor layer 125 and the active layer 123.
  • the shape of the mesa 120m is not limited, but for example, as shown, the mesa 120m may be formed along the side surface of the first conductivity-type semiconductor layer 121.
  • the mesa 120m may have an inclined side surface, but may have a side surface perpendicular to the top surface of the first conductivity type semiconductor layer 121.
  • the mesa 120m may include at least one groove 120g recessed from the side thereof.
  • the groove 120g may provide an area in which the first electrode 150 and the first conductive semiconductor layer 121 are in electrical contact with each other.
  • the mesa 120m may further include an uneven pattern 127 to be formed at a side surface thereof, as shown in FIG. 1B. Accordingly, the light extraction efficiency of the light emitting device can be improved.
  • the present invention is not limited thereto, and an area in which the first conductive semiconductor layer 121 is exposed may not be formed.
  • the light emitting device has a structure other than the horizontal structure as illustrated (for example, a vertical structure), the top surface of the first conductive semiconductor layer 121 may not be exposed.
  • the current blocking layer 130 is at least partially positioned on the second conductivity type semiconductor layer 125.
  • the current blocking layer 130 may be located on the second conductive semiconductor layer 125 to correspond to a portion where the second electrode 160 is located.
  • the current blocking layer 130 may include a pad current blocking layer 131 and an extension current blocking layer 133.
  • the pad current blocking layer 131 and the extension current blocking layer 133 may be positioned corresponding to the positions of the second electrode pad 161 and the second electrode extension 163, respectively.
  • the pad current blocking layer 131 is disposed adjacent to the first side 101 of the light emitting device, and the extension current blocking layer 133 is disposed from the first side 101 to the third side ( It may be arranged to extend in the direction toward 103.
  • the current blocking layer 130 may prevent the current from being concentrated by directly transferring the current supplied to the second electrode 160 to the semiconductor layer. Accordingly, the current blocking layer 130 may have an insulating property, may include an insulating material, and may be formed of a single layer or multiple layers.
  • the current blocking layer 130 may include SiO x or SiN x , or may include a distributed Bragg reflector in which insulating material layers having different refractive indices are stacked. That is, the current blocking layer 130 may have light transmittance, may have light reflectivity, or may have selective light reflectivity.
  • the current blocking layer 130 may have a larger area than the second electrode 160 formed on the current blocking layer 130. Accordingly, the second electrode 160 may be located in the region where the current blocking layer 130 is formed.
  • the transparent electrode 140 may be positioned on the second conductive semiconductor layer 125, and may also cover a portion of the top surface of the second conductive semiconductor layer 125 and a portion of the current blocking layer 130.
  • the transparent electrode 140 may include an opening 140a partially exposing the pad current blocking layer 131.
  • the transparent electrode 140 includes a protrusion 140p protruding from the side surface 140g of the opening 140a.
  • the side surface 140g of the opening 140a may be spaced apart from the current blocking layer 130, and may be formed along the side surface of the current blocking layer 130.
  • the protrusion 140p may partially contact the current blocking layer 130, and may cover a portion of the side and top surfaces of the current blocking layer 130.
  • the protrusion 140p may be formed in plural.
  • the transparent electrode 140 may include a material having light transmittance and electrical conductivity, and may include, for example, at least one of a conductive oxide such as ITO, ZnO, IZO, and the like, and a light transmissive metal layer such as Ni / Au. .
  • the transparent electrode 140 may form an ohmic contact with the second conductivity-type semiconductor layer 125. Since the second electrode 160 does not directly contact the second conductive semiconductor layer 125, the current may be more effectively dispersed through the transparent electrode 140. With respect to the transparent electrode 140, it will be described in more detail later with reference to FIGS.
  • the first electrode 150 may be positioned on the first conductive semiconductor layer 121 and is electrically connected to the first conductive semiconductor layer 121.
  • the first electrode 150 may include a first electrode pad 151 and a first electrode extension 153.
  • the first electrode 150 contacts the top surface of the first conductive semiconductor layer 121 where the second conductive semiconductor layer 125 and the active layer 123 are partially removed to expose the first electrode semiconductor layer 125. It may be electrically connected to the 121.
  • a part of the first electrode pad 151 and the first electrode extension 153 may be located on the mesa 120m, and at this time, the mesa 120m and the first electrode 150
  • An insulating layer 170 may be interposed between the portions.
  • the first electrode pad 151 may be disposed adjacent to the third side surface 103 of the light emitting device, and the first electrode extension 153 extends along the third side surface 103 and the second side surface 102. Can be.
  • the insulating layer 170 may be positioned below the first electrode pad 151 and below a part of the first electrode extension 153 positioned on the upper surface of the mesa 120m. Accordingly, the first electrode 150 and the second conductivity type semiconductor layer 125 are insulated from each other.
  • the groove 120g of the mesa 120m may be exposed without being covered by the insulating layer 170, and the portion of the first conductivity-type semiconductor layer 121 and the first electrode extension 153 exposed by the groove 120g may be exposed. ) Is in electrical contact. As such, the portion of the first electrode pad 151 does not directly contact the first conductivity type semiconductor layer 121, but a part of the first electrode extension 153 contacts the first conductivity type semiconductor layer 121. By forming an electrical connection, the current can be smoothly distributed in the horizontal direction when driving the light emitting device.
  • the arrangement of the first electrode 150 is not limited thereto, and may be variously modified and changed according to the shape of the light emitting device.
  • the first electrode 150 may serve to supply external power to the first conductive semiconductor layer 121, and the first electrode 150 may be formed of a metal such as Ti, Pt, Au, Cr, Ni, Al, or the like. It may include a substance. In addition, the first electrode 150 may be formed of a single layer or multiple layers.
  • the second electrode 160 is positioned on the second conductive semiconductor layer 125, and at least a part of the second electrode 160 is positioned on the region where the current blocking layer 130 is located.
  • the second electrode 160 includes a second electrode pad 161 and a second electrode extension 163, and each of the second electrode pad 161 and the second electrode extension 163 has a pad current blocking layer ( 131 and the extension current blocking layer 133. Therefore, a portion of the transparent electrode 140 may be interposed between the second electrode 160 and the current blocking layer 130.
  • the second electrode pad 161 may be positioned on the opening 140a of the transparent electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the transparent electrode 140 is the second electrode pad 161 and the pad current blocking layer 131. ) Can be placed between. Therefore, the second electrode pad 161 and the protrusion 140p of the transparent electrode 140 are in contact with each other and electrically connected to each other.
  • the shape of the second electrode pad 161 is not limited, but may be formed in a generally circular shape, for example.
  • the pad current blocking layer 131 of the current blocking layer 130 may also be formed in a circle similar to the shape of the second electrode pad 161, and the opening 140a of the transparent electrode 140 may also have a substantially similar circle. Can be formed.
  • the present invention is not limited thereto.
  • the position of the second electrode pad 161 is not limited, the second electrode pad 161 may be disposed to emit light in front of the active layer 123 of the light emitting device by smoothly distributing current.
  • the second electrode pad 153 may be positioned adjacent to the first side 101 opposite to the third side 103 where the first electrode pad 151 is adjacent.
  • the second electrode extension 163 extends from the second electrode pad 161.
  • the second electrode extension 163 may extend from the second electrode pad 161 toward the third side surface 103.
  • the direction in which the second electrode extension 163 extends may change as the second electrode extension 163 extends.
  • an end of the second electrode extension 163 may be bent to face a portion between the third side surface 103 and the fourth side surface 104 of the light emitting device. This may be variously designed in consideration of the distance between the first electrode pad 151 and the second electrode extension 163.
  • the transparent electrode 140 is interposed between at least a portion of the second electrode extension 163 and the extension current blocking layer 133, so that the second electrode extension 163 is connected to the transparent electrode 140. Electrically connected.
  • the arrangement of the second electrode 160 is not limited thereto, and may be variously modified and changed according to the shape of the light emitting device.
  • the second electrode 160 may include a conductive material, for example, may include a metallic material such as Ti, Pt, Au, Cr, Ni, Al, Mg, or the like, and may be formed in a single layer or a multilayer structure. have.
  • the Ti layer / Au layer, the Ti layer / Pt layer / Au layer, the Cr layer / Au layer, the Cr layer / Pt layer / Au layer, the Ni layer / Au layer It may include at least one of a metal layer structure of Ni layer / Pt layer / Au layer, and Cr layer / Al layer / Cr layer / Ni layer / Au layer.
  • the transparent electrode 140 is interposed between a part of the second electrode 160 and the current blocking layer 130, and the second electrode 160 and the transparent electrode 140 contact each other. Current is conducted. Therefore, the area where the second electrode 160 is in contact with the transparent electrode 140 may be adjusted so that the current can be effectively distributed, and this will be described with reference to FIGS. 3 and 4. 5 to 11, light emitting devices according to various embodiments will be described.
  • 18A to 18F illustrate structures around the second electrode pads according to the comparative examples.
  • FIGS. 18A and 18B show the structure of the second electrode pad 61 according to Comparative Example 1.
  • FIG. Referring to FIGS. 18A and 18B, an opening of the transparent electrode 40 is formed on the pad current blocking layer 31, so that the transparent electrode 40 is formed of the second electrode pad 61.
  • the second electrode pad 61 is continuously contacted along the edge.
  • peeling of the second electrode pad 61 easily occurs at a portion where the transparent electrode 40 and the second electrode pad 61 are in contact, thereby lowering the reliability of the light emitting device.
  • the part which can suppress peeling of the 2nd electrode pad 61 is lacking.
  • the ball bonding is formed on the upper surface of the second electrode pad 61, the second electrode pad 61 is more easily peeled off, and therefore, such a structure has a low Ball Shear Test (BST) value.
  • BST Ball Shear Test
  • FIGS. 18C and 18D show the structure of the second electrode pad 61 according to Comparative Example 2.
  • FIG. Referring to FIGS. 18C and 18D, the transparent electrode 40 is spaced apart from the pad current blocking layer 31, and the second electrode pad 61 is positioned on the pad current blocking layer 31. .
  • the structure of Comparative Example 2 since it is not in contact with the transparent electrode 40 and the second electrode pad 61, it may have a higher BST value than the structure of Comparative Example 1. However, since the second electrode pad 61 and the transparent electrode 40 do not contact each other, current dispersion in the region around the second electrode pad 61 is not smoothly performed.
  • FIGS. 18E and 18F show the structure of the second electrode pad 61 according to Comparative Example 3.
  • the pad current blocking layer 31 has an opening, and the transparent electrode 40 covers the pad current blocking layer 31.
  • the second electrode pad 61 is located on the pad current blocking layer 31.
  • the uneven pattern is formed on the surface of the transparent electrode 40 on the pad current blocking layer 31, the peeling of the second electrode pad 61 can be suppressed by the uneven pattern. Therefore, the structure of Comparative Example 3 can provide a light emitting device having a higher BST value than that of Comparative Example 1.
  • the second electrode pad 61 has a structure in which the lower second conductive semiconductor layer is directly connected to the transparent electrode 40 through the lower electrode pad 61, the static electricity is directly conducted to the second conductive semiconductor layer when static electricity is generated. Can be. Therefore, the structure of the comparative example 3 is weak in resistance to electrostatic discharge (ESD), and the reliability of the light emitting element which has the structure of the comparative example 3 falls.
  • ESD electrostatic discharge
  • FIGS. 3 and 4 show an enlarged plane of the ⁇ region of FIG. 1, and (a) and (b) of FIG. 4 respectively show lines D-D 'and E-E of FIG. Are enlarged cross-sectional views showing the cross section of the portion corresponding to the line.
  • the transparent electrode 140 is represented by a solid line
  • the current blocking layer 130 and the second electrode 160 are represented by a broken line.
  • the opening 140a of the transparent electrode 140 includes a side surface 140g, and the side surface 140g has a pad current blocking layer. Spaced from 131.
  • the opening 140a of the transparent electrode 140 is formed along the side surface of the pad current blocking layer 131, and generally corresponds to the side shape of the pad current blocking layer 131. Accordingly, the transparent electrode 140 and the second conductivity-type semiconductor layer 125 may contact each other in a space other than the space between the pad current blocking layer 131 and the transparent electrode 140. The current may be evenly distributed in the horizontal direction on the semiconductor layer 125.
  • the transparent electrode 140 includes at least one protrusion 140p, and the protrusion 140p protrudes from the side surface of the opening 140a. As shown in FIGS. 4A and 4B, the protrusion 140p partially covers the side and top surfaces of the pad current blocking layer 131, and the pad current blocking layer 131 and the second electrode pad. It is interposed between 161. Therefore, the second electrode pad 161 and the protrusion 140p are electrically connected to each other so that current is conducted through the second electrode pad 161 and the protrusion 140p. Accordingly, the current injection to the region where the protrusion 140p is located can be made smoothly. Since the second electrode extension 163 of the second electrode 160 contacts the transparent electrode 140, current is injected into the second conductive semiconductor layer 125 by the second electrode extension 163. . Therefore, the number and position of the protrusions 140p may be adjusted according to the position of the second electrode extension 163.
  • an imaginary plane having an x-axis and a y-axis is defined using the central portion 161c of the second electrode pad 161 as the origin.
  • the imaginary plane includes a first quadrant 1QD, a second quadrant 2QD, a third quadrant 3QD, and a fourth quadrant 4QD.
  • a portion where the second electrode extension 163 extends from the second electrode pad 161, that is, an interface between the second electrode pad 161 and the second electrode extension 163 ( 165 may be positioned on at least one of the x (+) axis, the x ( ⁇ ) axis, the y (+) axis, the y ( ⁇ ) axis, and the first to fourth quadrants 1QD, 2QD, 3QD, and 4QD.
  • at least one protrusion 140p may have a remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis, and a second part except for a portion where the interface 165 is located.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is located in the fourth quadrant 4QD, and the three protrusions 140p are respectively formed of the first, second, and fourth projections 140p. It is located in the second and third quadrants 1QD, 2QD, and 3QD. Accordingly, a current is injected into the region corresponding to the fourth quadrant 4QD by the second electrode extension 163, and the regions corresponding to the first, second, and third quadrants 1QD, 2QD, and 3QD. Current may be injected by the protrusions 140p.
  • an area of a portion where the lower surface of the second electrode pad 161 and the transparent electrode 140 contact each other may be 1% or more and 20% or less with respect to the entire lower surface area of the second electrode pad 161, and furthermore, 1.5% It may be more than 13%, furthermore, may be 3% or more and 5% or less.
  • the protrusion 140p may have various shapes, and for example, may have an arc shape to an elliptical arc shape as shown.
  • the transparent electrode 140 is interposed only in a part of the interface between the second electrode pad 161 and the pad current blocking layer 131, peeling of the second electrode pad 161 can be effectively suppressed. have.
  • the edge portion of the lower surface of the second electrode pad 161 is mostly in contact with the current blocking layer 131, and only a portion of the edge portion is in contact with the transparent electrode 140 by the second electrode pad 161.
  • the peeling of the second electrode pad 161 may be prevented and a light emitting device having a high BST value may be provided.
  • the second electrode pad 161 is in contact with the protrusion 140p of the transparent electrode 140, thereby alleviating current condensation that may occur from the second electrode pad 161 and the transparent electrode 140.
  • the current can be smoothly distributed to the portions where the second electrode extension 163 is not located.
  • the power of the light emitting device can be improved, and the forward voltage Vf can be lowered.
  • the portion in which the second electrode pad 161 and the second conductive semiconductor layer 125 are directly connected through the transparent electrode 140 does not exist, defects or breakage due to static electricity may be prevented, thereby preventing static electricity.
  • a light emitting device having high resistance to discharge can be provided. That is, according to the present embodiment, the peeling of the second electrode pad 161 is prevented, so that the reliability is high, the current dispersion efficiency is excellent, and the resistance to electrostatic discharge is high, and the problems of Comparative Examples 1 to 3 are improved.
  • the light emitting element is provided.
  • the shape and position of the first electrode 150, the second electrode 160, and the protrusion 140p may be variously changed as necessary.
  • the position and shape of the first electrode 150 and the second electrode 160 may be modified, and the position and shape of the first electrode 150 and the second electrode 160 may be changed.
  • the position of the protrusion 140p may also be changed.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is positioned on the y ( ⁇ ) axis, and the three protrusions 140p are each x (+). It is located on the axis, the x (-) axis, and the y (+) axis.
  • 5 to 11 are plan views and cross-sectional views illustrating a structure of a region around the second electrode pad 161 according to other embodiments.
  • FIGS. 5A and 5B show enlarged planes of the ⁇ region of FIG. 1, and FIGS. 6A and 6B show lines F-F 'and G of FIG. 5A, respectively. These are enlarged sectional views showing the cross section of the portion corresponding to the line -G '.
  • the transparent electrode 140 is represented by a solid line
  • the current blocking layer 130 and the second electrode 160 are represented by a broken line. 5 and 6, as described above, the positions of the protrusions 140p may be variously modified, and as in the other exemplary embodiment of FIGS. 5 and 6, the positions of the protrusions 140p may be adjusted. have.
  • an imaginary plane having an x-axis and a y-axis is defined using the central portion 161c of the second electrode pad 161 as the origin.
  • a portion where the second electrode extension 163 extends from the second electrode pad 161, that is, an interface between the second electrode pad 161 and the second electrode extension 163 ( 165 may be positioned on at least one of the x (+) axis, the x ( ⁇ ) axis, the y (+) axis, the y ( ⁇ ) axis, and the first to fourth quadrants 1QD, 2QD, 3QD, and 4QD. Can be.
  • At least one protrusion 140p may have a remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis, and a second part except for a portion where the interface 165 is located. It may be located on at least one of the first to fourth quadrants (1QD, 2QD, 3QD, 4QD).
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is located in the fourth quadrant 4QD, and the three protrusions 140p are each x (+). ), X (-) and y (+) axes.
  • a current is injected into the region corresponding to the fourth quadrant 4QD by the second electrode extension 163 and corresponding to the x (+) axis, the x (-) axis, and the y (+) axis.
  • Currents may be injected into the peripheral regions of the protrusions 140p by the protrusions 140p.
  • the change of the position of the protrusion 140p may be performed by horizontal current dispersion efficiency of the transparent electrode 140 (electrical resistance in the horizontal direction within the transparent electrode 140) and horizontal current dispersion of the semiconductor layer of the light emitting structure 120. It may be determined in consideration of efficiency and the like.
  • the transparent electrode 140 may be formed by a method such as sputtering or electron beam deposition (e-beam evapartion), and the electrical resistance in the horizontal direction of the transparent electrode 140 may vary according to a manufacturing method, and According to the thickness of the transparent electrode 140, the electrical resistance in the horizontal direction may vary.
  • the second conductivity type semiconductor layer 125 may also have electrical resistance in the horizontal direction depending on the crystal growth surface, crystal quality, and internal structure.
  • the current distribution in the horizontal direction is smooth, it is preferable to form the position of the protrusion 140p so that a current is injected into the front surface of the active layer 123. Therefore, the protrusion 140p is formed in the embodiment of FIGS. In the case of forming as described above, the injection of current to the portion positioned opposite to the second electrode extension part 163 is facilitated, so that the light emission power is relatively higher.
  • the protrusion 140p in the structure where the horizontal current spreading is relatively smooth, placing the protrusion 140p closer to the first electrode extension 151 has a more positive effect on the luminous efficiency, and thus the protrusion 140p is When formed as in the embodiment of Figs. 1 to 4, the luminous power is relatively higher. That is, as in the above-described examples, the number and position of the protrusions 140p may be variously changed according to the structure of the light emitting device and the properties of the material.
  • FIGS. 7A and 7B show enlarged planes of the ⁇ region of FIG. 1, and FIGS. 8A and 8B show lines H-H 'and I of FIG. 7A, respectively. These are enlarged sectional views showing the cross section of the portion corresponding to the -I 'line.
  • the transparent electrode 140 is represented by a solid line
  • the current blocking layer 130 and the second electrode 160 are represented by a broken line.
  • the side surface 140g of the opening 140a may be located on the pad current blocking layer 131. Accordingly, unlike the embodiment of FIGS. 1 to 4, according to the present embodiment, the second conductivity is exposed between the pad current blocking layer 131 and the side surface 140g of the opening 140a of the transparent electrode 140. The surface of the type semiconductor layer 125 may be covered. Therefore, the second conductivity type semiconductor layer 125 positioned below the opening 140a may be protected from the outside. However, the side surface 140g of the opening 140a disposed on the pad current blocking layer 131 is spaced apart from the second electrode pad 161. Therefore, the peeling of the second electrode pad 161 is also performed in this embodiment. Can be effectively suppressed.
  • the position and the number of the protrusions 140p may be variously adjusted.
  • the second electrode pad 161 and the second electrode extension 163 may be adjusted.
  • the interface 165 may be located in the fourth quadrant 4QD, and the three protrusions 140p may be located in the first, second and third quadrants 1QD, 2QD, and 3QD, respectively.
  • FIGS. 9A and 9B show enlarged planes of the ⁇ region of FIG. 1, and FIGS. 10A and 10B show lines J-J 'and K of FIG. 9A, respectively. It is enlarged sectional drawing which shows the cross section of the part corresponding to -K 'line
  • the transparent electrode 140 is represented by a solid line
  • the current blocking layer 130 and the second electrode 160 are represented by a broken line.
  • the current blocking layer 130 is omitted in comparison with the light emitting device of FIGS. 1 to 4. Accordingly, a portion of the lower surface of the second electrode pad 161 is in contact with the second conductivity type semiconductor layer 125, and the side surface 140g of the transparent electrode 140 is spaced apart from the second electrode pad 161. In addition, at least a part of the protrusion 140p of the transparent electrode 140 is interposed between the second conductive semiconductor layer 125 and the second electrode pad 161. In this case, the contact resistance between the second electrode pad 161 and the second conductive semiconductor layer 125 may be higher than the contact resistance between the second electrode pad 161 and the transparent electrode 140.
  • the second electrode pad 161 and the second conductivity-type semiconductor layer 125 may be in contact with each other by Schottky contact. Therefore, when the second conductivity-type semiconductor layer 125 is a p-type semiconductor layer, the second electrode pad 161 is schottky contacted to the second conductivity-type semiconductor layer 125, so that a current flows in the second electrode pad 161. ) May hardly flow into the second conductivity-type semiconductor layer 125. Therefore, in this case, an effect similar to that in which the current blocking layer 130 is positioned below the second electrode pad 161 can be derived. Also, in the present embodiment, the position and the number of the protrusions 140p may be variously adjusted. For example, as illustrated in FIG.
  • the second electrode pad 161 and the second electrode extension 163 may be adjusted.
  • the interface 165 may be located in the fourth quadrant 4QD, and the three protrusions 140p may be located in the first, second and third quadrants 1QD, 2QD, and 3QD, respectively.
  • FIGS. 11A and 11B show enlarged planes of the ⁇ region in FIG. 1.
  • the shape of the protrusion 140p may be variously modified as compared with the embodiment of FIGS. 1 to 4.
  • the transparent electrode 140 is represented by a solid line
  • the current blocking layer 130 and the second electrode 160 are represented by a broken line.
  • the protrusion 140pa or 140pb may have a polygonal shape, in particular, a rectangular shape, and may also have a shape consisting of a straight line and a curved line.
  • the transparent electrode 140 including the protrusion 140p described in the above embodiments may be applied to light emitting devices having various structures.
  • a light emitting device according to other embodiments of the present invention will be described with reference to the drawings, and a detailed description of the same configuration will be omitted.
  • FIGS. 13A and 13B are cross-sectional views showing sections of portions corresponding to lines L-L 'and M-M' of FIG. 12, respectively.
  • . 14A and 14B show enlarged planes of the ⁇ region of FIG. 12.
  • the transparent electrode 140 is represented by a solid line, and current blocking is performed.
  • Layer 130 and second electrode 160 are indicated by broken lines.
  • the light emitting device includes a light emitting structure 120, a transparent electrode 140, a first electrode 150, and a second electrode 160.
  • the light emitting device may further include a substrate 110 and a current blocking layer 130.
  • the light emitting structure 120 may be positioned on the substrate 110 and may further include a mesa 120m including the second conductivity-type semiconductor layer 125 and the active layer 123. A portion where the first conductivity type semiconductor layer 121 is exposed may be formed around the mesa 120m, and the first electrode 150 may be formed in at least a portion of the portion where the first conductivity type semiconductor layer 121 is exposed. This disposed area may be provided.
  • the mesa 120m may include a groove portion in which the first conductivity-type semiconductor layer 121 is partially exposed, and the first electrode 150 may be disposed in the groove portion.
  • the mesa 120m may include a concave-convex pattern 127 to be formed at a side thereof, and thus, light extraction efficiency of the light emitting device may be improved.
  • the current blocking layer 130 is at least partially positioned on the second conductivity type semiconductor layer 125.
  • the current blocking layer 130 may be located on the second conductive semiconductor layer 125 to correspond to a portion where the second electrode 160 is located.
  • the current blocking layer 130 may include a pad current blocking layer 131 and an extension current blocking layer 133.
  • the transparent electrode 140 may be positioned on the second conductive semiconductor layer 125, and may also cover a portion of the top surface of the second conductive semiconductor layer 125 and a portion of the current blocking layer 130.
  • the transparent electrode 140 may include an opening 140a partially exposing the pad current blocking layer 131.
  • the transparent electrode 140 includes a protrusion 140p protruding from the side surface 140g of the opening 140a.
  • the first electrode 150 may be positioned on the first conductive semiconductor layer 121 and is electrically connected to the first conductive semiconductor layer 121.
  • the first electrode 150 may be in ohmic contact with the first conductive semiconductor layer 121 through the surface of the first conductive semiconductor layer 121 exposed to the groove of the mesa 120m.
  • the first electrode 150 may include a first electrode pad 151 and a first electrode extension 153.
  • the first electrode pad 151 may be located adjacent to one side of the light emitting device, and the first electrode extension 153 may face the first side of the light emitting device toward the other side of the light emitting device. May extend from 151.
  • a plurality of first electrode extensions 153 may be formed.
  • the second electrode 160 is positioned on the second conductive semiconductor layer 125, and at least a part of the second electrode 160 is positioned on the region where the current blocking layer 130 is located.
  • the second electrode 160 includes a second electrode pad 161 and a second electrode extension 163, and each of the second electrode pad 161 and the second electrode extension 163 has a pad current blocking layer ( 131 and the extension current blocking layer 133. Therefore, a portion of the transparent electrode 140 may be interposed between the second electrode 160 and the current blocking layer 130.
  • the second electrode pad 161 may be positioned on the opening 140a of the transparent electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the transparent electrode 140 is the second electrode pad 161 and the pad current blocking layer 131. ) Can be placed between. Therefore, the second electrode pad 161 and the protrusion 140p of the transparent electrode 140 are in contact with each other and electrically connected to each other.
  • the second electrode extension 163 extends from the second electrode pad 161. In the present embodiment, the second electrode extension 163 may extend in a direction from the second electrode pad 161 toward the first electrode pad 151.
  • a plurality of second electrode extensions 163 may be formed, and three second electrode extensions 163 may be formed.
  • the second electrode extension 163 may be positioned between the first electrode extensions 153, and at least one of the first electrode extensions 153 may be located between the second electrode extensions 163. It can be located at Accordingly, the current spreading efficiency can be improved.
  • the protruding portion 140p of the transparent electrode 140 is the interface 165 with respect to the imaginary surface having the x-axis and the y-axis as the origin of the central portion 161c of the second electrode pad 161. ), The remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis and the first to fourth quadrants (1QD, 2QD, 3QD, 4QD) It may be located on at least one of.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 may include a first quadrant 1QD, a second quadrant 2QD, and y ( ⁇ ). Located on the axis The protrusion 140p is positioned on the y (+) axis, the third quadrant 3QD, and the fourth quadrant 4QD, not the portion where the interface 165 is located.
  • 15 to 17 are views for explaining another light emitting device according to another embodiment of the present invention.
  • 15 is a plan view of a light emitting device according to the embodiment, and FIGS. 16A and 16B are cross-sectional views showing cross sections of portions corresponding to lines N-N 'and O-O' of FIG. 15, respectively.
  • . 17A and 17B show enlarged planes of the gamma region of FIG. 15.
  • the transparent electrode 140 is represented by a solid line, and current blocking is performed.
  • Layer 130 and second electrode 160 are indicated by broken lines.
  • the light emitting device includes a light emitting structure 120, a transparent electrode 140, a first electrode 150, and a second electrode 160.
  • the light emitting device may further include a substrate 110 and a current blocking layer 130.
  • the light emitting structure 120 may be positioned on the substrate 110 and may further include a mesa 120m including the second conductivity-type semiconductor layer 125 and the active layer 123.
  • a portion where the first conductivity type semiconductor layer 121 is exposed may be formed around the mesa 120m, and the first electrode 150 may be formed in at least a portion of the portion where the first conductivity type semiconductor layer 121 is exposed.
  • This disposed area may be provided.
  • the mesa 120m may include a groove portion in which the first conductivity-type semiconductor layer 121 is partially exposed, and the first electrode 150 may be disposed in the groove portion.
  • the current blocking layer 130 is at least partially positioned on the second conductivity type semiconductor layer 125.
  • the current blocking layer 130 may be located on the second conductive semiconductor layer 125 to correspond to a portion where the second electrode 160 is located.
  • the current blocking layer 130 may include a pad current blocking layer 131 and an extension current blocking layer 133.
  • the transparent electrode 140 may be positioned on the second conductive semiconductor layer 125, and may also cover a portion of the top surface of the second conductive semiconductor layer 125 and a portion of the current blocking layer 130.
  • the transparent electrode 140 may include an opening 140a partially exposing the pad current blocking layer 131.
  • the transparent electrode 140 includes a protrusion 140p protruding from the side surface 140g of the opening 140a.
  • the first electrode 150 may be positioned on the first conductive semiconductor layer 121 and is electrically connected to the first conductive semiconductor layer 121.
  • the first electrode 150 may be in ohmic contact with the first conductive semiconductor layer 121 through the surface of the first conductive semiconductor layer 121 exposed to the groove of the mesa 120m.
  • the first electrode 150 may include a first electrode pad 151 and a first electrode extension 153.
  • the first electrode pad 151 may be located adjacent to one side of the light emitting device, and the first electrode extension 153 may face the first side of the light emitting device toward the other side of the light emitting device. May extend from 151. In addition, a plurality of first electrode extensions 153 may be formed.
  • the second electrode 160 is positioned on the second conductive semiconductor layer 125, and at least a part of the second electrode 160 is positioned on the region where the current blocking layer 130 is located.
  • the second electrode 160 includes a second electrode pad 161 and a second electrode extension 163, and each of the second electrode pad 161 and the second electrode extension 163 has a pad current blocking layer ( 131 and the extension current blocking layer 133. Therefore, a portion of the transparent electrode 140 may be interposed between the second electrode 160 and the current blocking layer 130.
  • the second electrode pad 161 may be positioned on the opening 140a of the transparent electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the transparent electrode 140 is the second electrode pad 161 and the pad current blocking layer 131. ) Can be placed between. Therefore, the second electrode pad 161 and the protrusion 140p of the transparent electrode 140 are in contact with each other and electrically connected to each other.
  • the second electrode extension 163 extends from the second electrode pad 161. In the present embodiment, the second electrode extension 163 may extend in a direction from the second electrode pad 161 toward the first electrode pad 151.
  • a plurality of second electrode extensions 163 may be formed, and two second electrode extensions 163 may be formed.
  • the first electrode extension 153 may be disposed to be sandwiched between the second electrode extension 163. Accordingly, the current spreading efficiency can be improved.
  • the protruding portion 140p of the transparent electrode 140 is the interface 165 with respect to the imaginary surface having the x-axis and the y-axis as the origin of the central portion 161c of the second electrode pad 161. ), The remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis and the first to fourth quadrants (1QD, 2QD, 3QD, 4QD) It may be located on at least one of. Referring to FIG. 17B, the interface 165 of the second electrode pad 161 and the second electrode extension 163 is positioned on the first quadrant 1QD and the second quadrant 2QD. The protrusion 140p is positioned on the y (+) axis and the y ( ⁇ ) axis, not the portion where the interface 165 is located.
  • 19 to 21 are plan views, cross-sectional views and enlarged plan views for describing a light emitting device according to another embodiment of the present invention.
  • 19 is a plan view of a light emitting device according to the embodiment
  • FIGS. 20A and 20B are cross-sectional views showing sections of portions corresponding to the P-P 'lines and the Q-Q' lines of FIG. 19, respectively.
  • FIGS. 21A and 21B illustrate an enlarged plane of a region around the second electrode pad 161 of FIG. 19.
  • the transparent electrode 140 is provided for convenience of description. Is indicated by a solid line, and the current blocking layer 130 and the second electrode 160 are indicated by broken lines.
  • the light emitting device according to the embodiment of FIGS. 19 to 21 is different from the light emitting device of FIGS. 1 to 4 in that it includes a plurality of light emitting cells C1 to C7.
  • the light emitting device of the present embodiment will be described based on the differences, and detailed description of the same configuration will be omitted.
  • the light emitting device includes a plurality of light emitting cells C1 to C7, a first electrode 150, a second electrode 160, and a connection electrode 190 including a light emitting structure 120.
  • Each of the light emitting cells C1 to C7 includes a transparent electrode 140, and further, the light emitting device may further include a substrate 110 and a current blocking layer 130.
  • the current blocking layer 130 may include a pad current blocking layer 131, an extension current blocking layer 133, and a connection electrode current blocking layer 135.
  • the plurality of light emitting cells C1 to C7 may be positioned on the substrate 110 and may further include a mesa 120m including the second conductivity-type semiconductor layer 125 and the active layer 123. .
  • a portion where the first conductivity type semiconductor layer 121 is exposed may be formed around the mesa 120m, and the first electrode 150 may be formed in at least a portion of the portion where the first conductivity type semiconductor layer 121 is exposed.
  • the region in which the electrode is disposed and the region in which the connection electrode 190 is connected may be provided.
  • the first electrode 150 may be positioned on at least one of the plurality of light emitting cells C1 to C7, and the second electrode 160 may be positioned on at least one of the plurality of light emitting cells C1 to C7. can do.
  • the second electrode 160 may be located on the first light emitting cell C1
  • the first electrode 150 may be located on the seventh light emitting cell C7.
  • the plurality of light emitting cells C1 to C7 may be electrically connected to each other, and may be electrically connected to each other so that at least one electrical connection of a series, parallel, and anti-parallel connection is formed.
  • the plurality of light emitting cells C1 to C7 are connected in series with each other.
  • the portion of the first conductive semiconductor layer 121 exposed in the first light emitting cell C1 and the transparent electrode 140 of the second light emitting cell C2 are electrically connected to each other through the connection electrode 190.
  • the first and second light emitting cells C1 and C2 are connected to each other in series by the connection electrode 190.
  • the second to seventh light emitting cells C2 to C7 may be connected in series to other adjacent light emitting cells.
  • the light emitting device of the present embodiment includes a configuration in which the first to seventh light emitting cells C1 to C7 are connected to each other in series.
  • the present invention is not limited thereto, and at least some of the light emitting cells C1 to C7 may be connected in parallel or anti-parallel.
  • the shape of the light emitting cells C1 to C7 is not limited, but in the present embodiment, the light emitting cells C1 to C7 may have a parallelogram and a pentagon.
  • the area of the light emitting cells C1 to C7 is substantially the same, and therefore, the area of the effective light emitting surface from which light is emitted from each of the light emitting cells C1 to C7 may be substantially the same.
  • the connection electrode 190 may electrically connect adjacent light emitting cells C1 to C7, and may include a first contact part 191, a connection part 193, and a second contact part 195.
  • the first contact portion 191 may be electrically connected to the first conductive semiconductor layer 121 of the first light emitting cell C1
  • the second contact portion 191 may be electrically connected.
  • the contact unit 195 is electrically connected to the transparent electrode 140 of the second light emitting cell C2 and electrically connected to the second conductive semiconductor layer 125 of the second light emitting cell C2.
  • the connection unit 193 electrically connects the first contact unit 191 and the second contact unit 195 to each other so that the first light emitting cell C1 and the second light emitting cell C2 may be connected in series. do.
  • connection electrode current blocking layer 135 may be positioned in at least a portion of the connection electrode 190 under the connection electrode.
  • the connection electrode current blocking layer 135 may be positioned under the second contact portion 195, and the second light emitting cell C2 is disposed between the connection electrode current blocking layer 135 and the second contact portion 195.
  • the transparent electrode 140 may be interposed.
  • the connection electrode current blocking layer 135 may be formed to extend toward the side of the second light emitting cell C2 so as to be at least partially positioned below the connection part 193, and furthermore, the first light emitting cell C1. It may also be located on the separation area between the second light emitting cell (C2).
  • the connecting portion 193 contacts the first conductive semiconductor layer 121 of the second light emitting cell C2 through the side surface of the second light emitting cell C2 to prevent the electrical short.
  • the width of the connection electrode current blocking layer 135 positioned below the connection portion 193 may be larger than the width of the connection portion 193.
  • the transparent electrode 140 of the second light emitting cell C2 may be formed to extend toward the first light emitting cell C1 to be interposed between the connection electrode current blocking layer 135 and the connecting portion 193. Furthermore, the transparent electrode 140 extending toward the first light emitting cell C1 may contact the first conductive semiconductor layer 121 of the first light emitting cell C1.
  • the electrical connection between the first light emitting cell C1 and the second light emitting cell C2 may be formed not only by the connection electrode 190 but also by the transparent electrode 140 extending from the second light emitting cell C2. have.
  • the width of the transparent electrode 140 positioned below the connecting portion 193 may be greater than the width of the connecting portion 193 and may be smaller than the width of the connecting electrode current blocking layer 135.
  • the protrusions 110pa positioned in the spaced apart regions of the light emitting cells C1 to C7 are protrusions positioned below the light emitting cells C1 to C7. It may have a size smaller than (110p).
  • the exposed protrusions 110pa may have a relatively small size by etching an upper surface of the substrate 110 during an isolation process for separating the light emitting cells.
  • the connecting electrode current blocking layer 135, the transparent electrode 140, and the connecting portion 193 formed on the exposed protrusions 110pa having such a relatively small size are curved along the profile of the surface of the protrusions 110pa. It may have a dark surface.
  • connection part 193 Since the connection part 193 is formed on the projections 110pa having a relatively small size, the connection part 193 may be formed more stably than when the connection part 193 is formed on the protrusion part 110p of the substrate 110.
  • the reliability of the electrode 190 may be improved. That is, when the connecting electrode 190 is formed on the protrusion 110pa having a relatively small size, the connecting electrode 190 is formed on the protrusion 110p having a relatively large size. The likelihood of peeling or disconnection of the 190 is reduced, so that the failure of the light emitting device due to the failure of the connection electrode 190 is prevented. Therefore, manufacturing yield and reliability of the light emitting device can be improved.
  • connection form of the connection electrode 190 described above may be similarly applied to the electrical connection form between the other light emitting cells C2 to C7.
  • the position of the connection electrode 190 may be changed in various ways, and the position and shape of the connection electrode 190 may be smoothly distributed in the horizontal direction. Can be changed.
  • the second contact part 195 is positioned adjacent to one side of the second light emitting cell C2, and the second contact part 195 is the work. It extends toward other sides adjacent to the side.
  • the first contact portion 191 (connected with the third light emitting cell C3) positioned on the second light emitting cell C2 is located adjacent to the other side surface opposite to the one side surface. It extends toward other sides adjacent to the side.
  • the present invention is not limited thereto.
  • the first electrode 150 may be positioned on the first conductive semiconductor layer 121 and is electrically connected to the first conductive semiconductor layer 121.
  • the first electrode 150 may be connected to the first conductivity-type semiconductor layer 121 through the surface of the first conductivity-type semiconductor layer 121 exposed to the groove of the mesa 120m of the seventh light emitting cell C7. You can make an ohmic contact.
  • the first electrode 150 may further include an electrode extension (not shown).
  • the second electrode 160 may include a second electrode pad 161 and a second electrode extension 163, and the second electrode 160 may be positioned on the first light emitting cell C1.
  • the second electrode pad 161 may be located on the opening 140a of the transparent electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the transparent electrode 140 is the second electrode pad 161 and the pad current blocking layer 131. ) Can be placed between. Therefore, the second electrode pad 161 and the protrusion 140p of the transparent electrode 140 are in contact with each other and electrically connected to each other.
  • the second electrode extension 163 extends from the second electrode pad 161.
  • the second electrode extension 163 may have a shape and a position similar to that of the second contact portion 195 positioned on other light emitting cells (second to seventh light emitting cells). Can be.
  • the protruding portion 140p of the transparent electrode 140 is the interface 165 with respect to the imaginary surface having the x-axis and the y-axis as the origin of the central portion 161c of the second electrode pad 161. ), The remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis and the first to fourth quadrants (1QD, 2QD, 3QD, 4QD) It may be located on at least one of. Referring to FIG. 21B, the interface 165 of the second electrode pad 161 and the second electrode extension 163 is positioned on the third quadrant 3QD. The protrusion 140p may be positioned on the first quadrant 1QD, the second quadrant 2QD, and the fourth quadrant 4QD, rather than the portion where the interface 165 is located.
  • 22 to 24 are plan views, cross-sectional views, and enlarged plan views for describing a light emitting device according to another embodiment of the present invention.
  • 22 is a plan view of a light emitting device according to the embodiment
  • FIGS. 23A and 23B are cross-sectional views showing sections of portions corresponding to the R-R 'and S-S' lines of FIG. 22, respectively.
  • FIGS. 24A and 24B show enlarged planes of the area around the second electrode pad 161 of FIG. 22, and in the enlarged views of FIG. 24, the transparent electrode 140 is provided for convenience of description. Is indicated by a solid line, and the current blocking layer 130 and the second electrode 160 are indicated by broken lines.
  • the light emitting device according to the embodiment of FIGS. 22 to 24 is different from the light emitting device of FIGS. 19 to 21 in that the arrangement of the plurality of light emitting cells C1 to C7 is different.
  • the light emitting device of the present embodiment will be described based on the differences, and detailed description of the same configuration will be omitted.
  • the light emitting device includes a plurality of light emitting cells C1 to C7, a first electrode 150, a second electrode 160, and a connection electrode 190 including a light emitting structure 120. ).
  • Each of the light emitting cells C1 to C7 includes a transparent electrode 140, and further, the light emitting device may further include a substrate 110 and a current blocking layer 130.
  • the current blocking layer 130 may include a pad current blocking layer 131, an extension current blocking layer 133, and a connection electrode current blocking layer 135.
  • the light emitting cells C1 to C7 of the present embodiment have a generally rectangular shape, and similarly to the embodiment of FIGS. 19 to 21, the light emitting cells C1 to C7 may be connected in series.
  • the arrangement of the first electrode 150, the second electrode 160, and the connection electrode 190 may be modified.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is positioned on the third quadrant 3QD and the fourth quadrant 4QD. do.
  • the protrusion 140p may be positioned on the first quadrant 1QD, the second quadrant 2QD, and the y ( ⁇ ) axis, rather than a portion where the interface 165 is located.
  • a light emitting device having a structure in which seven light emitting cells are connected to each other in series is disclosed, but the present invention is not limited thereto.
  • the number, shape, and electrical connection of the light emitting cells are not limited, and may be variously modified.
  • 25 and 26 are graphs showing experimental values for comparing the light emitting device according to the embodiment of the present invention with the light emitting device of the comparative example.
  • the structure of the Example and the comparative example is substantially similar to the structure of the light emitting element according to the embodiment of FIGS.
  • the embodiment has a transparent electrode 140 including the protrusion 140p as in the embodiment of FIGS. 1 to 4, and the comparative example has the protrusion (as shown in FIGS. 18C and 18D). It has a transparent electrode 140 which does not contain 140p).
  • the light emitting device of the example was found to have a higher optical power and a lower forward voltage than the light emitting device of the comparative example. That is, it can be seen that the light emitting device of the embodiment has a smoother current dispersion in the horizontal direction than the light emitting device of the comparative example, so that the optical power is relatively high and the forward voltage is relatively low.
  • FIG. 27 shows BST value measurement data for each of light emitting devices of Examples and Comparative Examples.
  • the structure of the Example and the comparative example is substantially similar to the structure of the light emitting element according to the embodiment of FIGS.
  • the embodiment has a transparent electrode 140 including the protrusion 140p as in the embodiment of FIGS. 1 to 4
  • the comparative example has a transparent electrode as shown in FIGS. 18A and 18B. It has a structure located over the whole edge of this 2nd electrode pad.
  • the light emitting device of the example was found to have a BST value of about 2.6% higher than that of the comparative example. That is, in the light emitting device of Examples, peeling of the second electrode pad is suppressed in comparison with the light emitting device, and it can be seen that reliability is improved.
  • FIGS. 29 to 38 are plan views, enlarged plan views, cross-sectional views, and enlarged cross-sectional views illustrating a light emitting device according to some embodiments of the present invention.
  • FIG. 28A shows a plane of the light emitting element
  • FIG. 28B shows a plane of the light emitting element, and shows a portion shown in the enlarged plan views, sectional views and enlarged cross-sectional views of FIGS. 29 to 38.
  • 29A and 29B show an enlarged view of region X of FIG. 28B
  • FIG. 30 shows an enlarged view of region Y of FIG. 28B
  • FIG. 31 shows an enlarged view of region Z of FIG. 28B.
  • the light emitting device includes a light emitting structure 120, a transparent electrode 140, a first electrode 150, and an insulating layer 170. Furthermore, the light emitting device may further include a substrate 110, a current blocking layer 130, a second electrode 160, and a passivation layer 230. In addition, the light emitting device may include first to fourth side surfaces 101, 102, 103, and 104, respectively.
  • the substrate 110 may be an insulating or conductive substrate.
  • the substrate 110 may be a growth substrate for growing the light emitting structure 120, and may include a sapphire substrate, a silicon carbide substrate, a silicon substrate, a gallium nitride substrate, an aluminum nitride substrate, and the like.
  • the substrate 110 may be a sapphire substrate, and in particular, may be a patterned sapphire substrate (PSS) having a patterned upper surface.
  • PSS patterned sapphire substrate
  • the substrate 110 may include a plurality of protrusions 110p formed on an upper surface thereof.
  • the present invention is not limited thereto, and the substrate 110 may be a secondary substrate for supporting the light emitting structure 120.
  • the first conductive semiconductor layer 121 is described as being located on the substrate 110, but the substrate 110 is a growth substrate capable of growing the semiconductor layers 121, 123, and 125.
  • the semiconductor layers 121, 123, and 125 may be separated or removed through physical and / or chemical methods, and may be omitted.
  • the light emitting structure 120 may include a first conductivity type semiconductor layer 121, a second conductivity type semiconductor layer 125 and a first conductivity type semiconductor layer 121 positioned on the first conductivity type semiconductor layer 121.
  • the active layer 123 may be disposed between the second conductive semiconductor layers 125.
  • the light emitting structure 120 is disposed on the first conductivity type semiconductor layer 121 and includes a mesa 120m including an active layer 123 and a second conductivity type semiconductor layer 125.
  • the first conductive semiconductor layer 121, the active layer 123, and the second conductive semiconductor layer 125 may be grown and formed in a chamber using a known method such as MOCVD.
  • the first conductivity-type semiconductor layer 121, the active layer 123, and the second conductivity-type semiconductor layer 125 may include a III-V series nitride-based semiconductor, and include, for example, (Al, Ga, In And a nitride based semiconductor such as N).
  • the first conductive semiconductor layer 121 may include n-type impurities (eg, Si, Ge. Sn), and the second conductive semiconductor layer 125 may include p-type impurities (eg, Mg, Sr, Ba). It may also be the reverse.
  • the active layer 123 may include a multi-quantum well structure (MQW), and the composition ratio of the nitride semiconductor may be adjusted to emit a desired wavelength.
  • the second conductivity-type semiconductor layer 125 may be a p-type semiconductor layer.
  • the mesa 120m is positioned on a portion of the first conductivity type semiconductor layer 121, so that the surface of the first conductivity type semiconductor layer 121 may be exposed in an area where the mesa 120m is not formed. have.
  • the mesa 120m may be formed by partially etching the second conductivity-type semiconductor layer 125 and the active layer 123.
  • the shape of the mesa 120m is not limited, but for example, as shown, the mesa 120m may be formed along the side surface of the first conductivity-type semiconductor layer 121.
  • the mesa 120m may have an inclined side surface, but may have a side surface perpendicular to the top surface of the first conductivity type semiconductor layer 121.
  • the mesa 120m may include at least one groove 120g recessed from the side thereof.
  • the groove 120g may provide an area in which the first electrode 150 and the first conductive semiconductor layer 121 are electrically contacted.
  • the groove 120g may be formed in plural, and the plurality of grooves 120g may be located along one side of the light emitting device. As shown, the plurality of grooves 120g may be located on the second side surface 102 of the light emitting device, wherein the side of the light emitting device where the plurality of grooves 120g are positioned is a relatively long side. Can be.
  • the second side surface 102 can have a longer length than the first and third side surfaces 101, 103 adjacent to the second side surface 102.
  • the plurality of grooves 120g may be spaced apart from each other at substantially the same separation distance.
  • a plurality of grooves 120g providing contact areas of the first electrode 150 and the first conductivity-type semiconductor layer 121 are positioned along side surfaces having a relatively long length, so that the entire area of the light emitting device is evenly distributed. Can supply current.
  • the plurality of grooves 120g are formed at substantially the same separation distance, current may be evenly distributed throughout the light emitting area.
  • the groove 120g may have a planar shape including at least a portion of a polygon, a circle, or an oval.
  • the planar shape of the groove 120g may be an arc shape.
  • the planar shape of the groove 120g is formed in an arc shape, thereby minimizing the reduction in the emission area due to the formation of the groove 120g (the area of the active layer 123 removed due to the formation of the groove 120g), A region where the conductive semiconductor layer 121 and the first electrode 150 are in contact may be sufficiently provided.
  • the present invention is not limited thereto.
  • the mesa 120m may further include an uneven pattern 127 formed on at least a portion of the side surface thereof. Accordingly, the light extraction efficiency of the light emitting device can be improved.
  • the current blocking layer 130 is at least partially positioned on the second conductivity type semiconductor layer 125.
  • the current blocking layer 130 may be located on the second conductive semiconductor layer 125 to correspond to a portion where the second electrode 160 is located.
  • the current blocking layer 130 may include a pad current blocking layer 131 and an extension current blocking layer 133.
  • the pad current blocking layer 131 and the extension current blocking layer 133 may be positioned corresponding to the positions of the second electrode pad 161 and the second electrode extension 163, respectively.
  • the pad current blocking layer 131 is disposed adjacent to the first side 101 of the light emitting device, and the extension current blocking layer 133 is disposed from the first side 101 to the third side ( It may be arranged to extend in the direction toward 103.
  • the current blocking layer 130 may prevent the current from being concentrated by directly transferring the current supplied to the second electrode 160 to the semiconductor layer.
  • the current blocking layer 130 may have an insulating property, may include an insulating material, and may be formed of a single layer or multiple layers.
  • the current blocking layer 130 may include SiO x or SiN x , or may include a distributed Bragg reflector in which insulating material layers having different refractive indices are stacked. That is, the current blocking layer 130 may have light transmittance, may have light reflectivity, or may have selective light reflectivity.
  • the current blocking layer 130 may have a larger area than the second electrode 160 formed on the current blocking layer 130.
  • the second electrode 160 may be located in the region where the current blocking layer 130 is formed.
  • the current blocking layer 130 may have an area larger than that of the second electrode 160, and may have a plane shape generally corresponding to the plane shape of the second electrode 160. Accordingly, the current blocking layer 130 is a current that is supplied to the second electrode 160 is directly transmitted to the first conductive semiconductor layer 121 through the transparent electrode 140 to block the concentration of current, Light emission efficiency may be reduced by absorbing or reflecting light to the current blocking layer 130.
  • the transparent electrode 140 may be positioned on the second conductive semiconductor layer 125, and may also cover a portion of the top surface of the second conductive semiconductor layer 125 and a portion of the current blocking layer 130. As enlarged in FIG. 29, the transparent electrode 140 may include an opening 140a partially exposing the pad current blocking layer 131. In addition, the transparent electrode 140 includes a protrusion 140p protruding from the side surface 140g of the opening 140a. The side surface 140g of the opening 140a may be positioned on the pad current blocking layer 131 and may be formed along the outer side surface of the pad current blocking layer 131. The protrusion 140p may protrude toward the center of the pad current blocking layer 131, and the protrusion 140p may be formed in plural.
  • the transparent electrode 140 may include a material having light transmittance and electrical conductivity, and may include, for example, at least one of a conductive oxide such as ITO, ZnO, IZO, and the like, and a light transmissive metal layer such as Ni / Au. .
  • the transparent electrode 140 may form an ohmic contact with the second conductivity-type semiconductor layer 125. Since the second electrode 160 does not directly contact the second conductive semiconductor layer 125, the current may be more effectively dispersed through the transparent electrode 140.
  • the second electrode 160 is positioned on the second conductive semiconductor layer 125, and at least a part of the second electrode 160 is positioned on the region where the current blocking layer 130 is located.
  • the second electrode 160 includes a second electrode pad 161 and a second electrode extension 163, and each of the second electrode pad 161 and the second electrode extension 163 has a pad current blocking layer ( 131 and the extension current blocking layer 133. Therefore, a portion of the transparent electrode 140 may be interposed between the second electrode 160 and the current blocking layer 130.
  • the second electrode pad 161 may be positioned on the opening 140a of the transparent electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the transparent electrode 140 is the second electrode pad 161 and the pad current blocking layer 131. ) Can be placed between. Therefore, the second electrode pad 161 and the protrusion 140p of the transparent electrode 140 are in contact with each other and electrically connected to each other.
  • the shape of the second electrode pad 161 is not limited, but may be formed in a generally circular shape, for example.
  • the pad current blocking layer 131 of the current blocking layer 130 may also be formed in a circle similar to the shape of the second electrode pad 161, and the opening 140a of the transparent electrode 140 may also have a substantially similar circle. Can be formed.
  • the present invention is not limited thereto.
  • the position of the second electrode pad 161 is not limited, the second electrode pad 161 may be disposed to emit light in front of the active layer 123 of the light emitting device by smoothly distributing current.
  • the second electrode pad 153 may be positioned adjacent to the first side 101 opposite to the third side 103 where the first electrode pad 151 is adjacent.
  • the second electrode extension 163 extends from the second electrode pad 161.
  • the second electrode extension 163 may extend from the second electrode pad 161 toward the third side surface 103.
  • the direction in which the second electrode extension 163 extends may change as the second electrode extension 163 extends.
  • an end of the second electrode extension 163 may be bent to face a portion between the third side surface 103 and the fourth side surface 104 of the light emitting device. This may be variously designed in consideration of the distance between the first electrode pad 151 and the second electrode extension 163.
  • the transparent electrode 140 is interposed between at least a portion of the second electrode extension 163 and the extension current blocking layer 133, so that the second electrode extension 163 is connected to the transparent electrode 140. Electrically connected.
  • the arrangement of the second electrode 160 is not limited thereto, and may be variously modified and changed according to the shape of the light emitting device.
  • the second electrode 160 may include a conductive material, for example, may include a metallic material such as Ti, Pt, Au, Cr, Ni, Al, Mg, or the like, and may be formed in a single layer or a multilayer structure. have.
  • the Ti layer / Au layer, the Ti layer / Pt layer / Au layer, the Cr layer / Au layer, the Cr layer / Pt layer / Au layer, the Ni layer / Au layer It may include at least one of a metal layer structure of Ni layer / Pt layer / Au layer, and Cr layer / Al layer / Cr layer / Ni layer / Au layer.
  • the transparent electrode 140 is interposed between a part of the second electrode 160 and the current blocking layer 130, and the second electrode 160 and the transparent electrode 140 contact each other. Current is conducted. Therefore, the area where the second electrode 160 and the transparent electrode 140 contact each other may be adjusted so that the current can be effectively distributed.
  • the second electrode 160 of the present embodiment will be described with reference to FIG. 29. In particular, the structure of the region around the second electrode pad 161 will be described in more detail.
  • the transparent electrode 140 is represented by a solid line, and the current blocking layer 130 and the second electrode 160 are represented by a broken line.
  • the opening 140a of the transparent electrode 140 includes a side surface 140g, and the side surface 140g is positioned on the pad current blocking layer 131. It is spaced apart from the two electrode pads 161.
  • the opening 140a of the transparent electrode 140 is formed along the side surface of the pad current blocking layer 131, and generally corresponds to the side shape of the pad current blocking layer 131.
  • the top surface of the second conductivity-type semiconductor layer 125 may be covered by the transparent electrode 140 without being exposed. Accordingly, the static electricity generated around the second electrode pad 161 can be prevented from directly conducting to the second conductivity type semiconductor layer 125, so that failure of the light emitting device can be prevented more effectively by electrostatic discharge. have.
  • the transparent electrode 140 includes at least one protrusion 140p, and the protrusion 140p protrudes from the side surface of the opening 140a. As shown in FIGS. 29A and 29B, the protrusion 140p partially covers the side and top surfaces of the pad current blocking layer 131, and blocks the pad current. It is interposed between the layer 131 and the second electrode pad 161. Therefore, the second electrode pad 161 and the protrusion 140p are electrically connected to each other so that current is conducted through the second electrode pad 161 and the protrusion 140p. Accordingly, the current injection to the region where the protrusion 140p is located can be made smoothly.
  • the second electrode extension 163 of the second electrode 160 contacts the transparent electrode 140, current is injected into the second conductive semiconductor layer 125 by the second electrode extension 163. . Therefore, the number and position of the protrusions 140p may be adjusted according to the position of the second electrode extension 163.
  • an imaginary plane (virtual coordinate system) having an x axis and a y axis is defined by using the central portion 161c of the second electrode pad 161 as the origin.
  • the imaginary plane includes a first quadrant 1QD, a second quadrant 2QD, a third quadrant 3QD, and a fourth quadrant 4QD.
  • a portion where the second electrode extension 163 extends from the second electrode pad 161, that is, an interface between the second electrode pad 161 and the second electrode extension 163 ( 165 may be positioned on at least one of the x (+) axis, the x ( ⁇ ) axis, the y (+) axis, the y ( ⁇ ) axis, and the first to fourth quadrants 1QD, 2QD, 3QD, and 4QD.
  • at least one protrusion 140p may have a remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis, and a second part except for a portion where the interface 165 is located.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is located on the fourth quadrant 4QD or y ( ⁇ ) axis, and the three protrusions ( 140p) is located on the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis, respectively.
  • a current is injected into the region corresponding to the fourth quadrant 4QD or the y ( ⁇ ) axis, and the current is injected by the second electrode extension 163, and the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis are provided.
  • Currents may be injected into the regions corresponding to the periphery by the protrusions 140p.
  • an area of a portion where the lower surface of the second electrode pad 161 and the transparent electrode 140 contact each other may be 1% or more and 20% or less with respect to the entire lower surface area of the second electrode pad 161, and furthermore, 1.5% It may be more than 13%, furthermore, may be 3% or more and 5% or less.
  • the area of the portion where the lower surface of the second electrode pad 161 is in contact with the transparent electrode 140 is relative to each other. It can be made larger. Therefore, peeling of the second electrode pad 161, which may occur at a portion where the second electrode pad 161 and the transparent electrode 140 contact, can be effectively suppressed.
  • the protrusion 140p may have various shapes, and for example, may have an arc shape to an elliptical arc shape as shown.
  • the transparent electrode 140 is interposed only in a part of the interface between the second electrode pad 161 and the pad current blocking layer 131, peeling of the second electrode pad 161 can be effectively suppressed.
  • the edge portion of the lower surface of the second electrode pad 161 is mostly in contact with the current blocking layer 131, and only a portion of the edge portion is in contact with the transparent electrode 140 by the second electrode pad 161.
  • the peeling of the second electrode pad 161 may be prevented and a light emitting device having a high BST value may be provided.
  • the second electrode pad 161 is in contact with the protrusion 140p of the transparent electrode 140, thereby alleviating current condensation that may occur while being spaced apart from the second electrode pad 161 and the transparent electrode 140.
  • the current can be smoothly distributed to the portions where the second electrode extension 163 is not located. By smoothly distributing the current in the horizontal direction, the power of the light emitting device can be improved, and the forward voltage Vf can be lowered. Furthermore, since the portion in which the second electrode pad 161 and the second conductive semiconductor layer 125 are directly connected through the transparent electrode 140 does not exist, defects or breakage due to static electricity may be prevented, thereby preventing static electricity.
  • a light emitting device having high resistance to discharge can be provided.
  • the peeling of the second electrode pad 161 is prevented, so that the reliability is high, the current dispersion efficiency is excellent, and the resistance to electrostatic discharge is high, and the problems of Comparative Examples 1 to 3 are improved.
  • the light emitting element is provided.
  • the shape and position of the first electrode 150, the second electrode 160, and the protrusion 140p may be variously changed as necessary.
  • the side surface 140g of the opening 140a of the transparent electrode 140 may be spaced apart from the pad current blocking layer 131.
  • the side surface 140g of the opening 140a may be spaced apart from the side surface of the pad current blocking layer 131.
  • the second conductivity-type semiconductor layer 125 may be partially exposed between the side surface 140g of the opening 140a and the pad current blocking layer 131.
  • the first electrode 150 may be positioned on the first conductive semiconductor layer 121 and electrically connected to the first conductive semiconductor layer 121.
  • the first electrode 150 may include a first electrode pad 151 and a first electrode extension 153.
  • the first electrode 150 may be in ohmic contact with a portion of the upper surface of the first conductive semiconductor layer 121 in which the second conductive semiconductor layer 125 and the active layer 123 are partially removed and exposed. It may be electrically connected with the layer 121.
  • the first electrode 150 may be positioned on the mesa 120m, and the insulating layer 170 may be interposed between the first electrode 150 and the mesa 120m.
  • the insulating layer 170 may include an insulating material, for example, SiO 2 , SiN x , may include a distributed Bragg reflector in which layers having different refractive indices are repeatedly stacked.
  • a portion of the first electrode pad 151 and the first electrode extension part 153 may contact the first conductivity type semiconductor layer 121.
  • the first electrode 150 will be described in more detail with reference to FIGS. 28A, 30, 31, and 35 to 38.
  • the first electrode extension 153 is positioned on the insulating layer 170, and a portion of the first electrode extension 153 overlaps the at least one groove 120g in the vertical direction.
  • the first electrode extension part 153 includes an extension contact part 153a which is in contact with the first conductivity type semiconductor layer 121, and the extension contact part 153a is the first conductivity type semiconductor layer 121. ) And ohmic contact.
  • the extension contact portion 153a forms an electrical connection with the first conductivity type semiconductor layer 121 exposed by the at least one groove 120g, and the remaining portion of the first electrode extension 153 is formed of an insulating layer ( By being formed on the 170 and insulated from the first conductive semiconductor layer 121, electrons move to the first conductive semiconductor layer 121 through the extension contact portion 153a when the light emitting device is driven ( That is, current is conducted through the extension contact portion 153a).
  • the entire first electrode extension 153 is the first conductivity type semiconductor.
  • the density of electrons injected into the first conductive semiconductor layer 121 may vary according to a distance from the first electrode pad 151. That is, the density of electrons injected from a portion located relatively close to the first electrode pad 151 in the first electrode extension 153 is relative to the first electrode pad 151 in the first electrode extension 153. It is higher than the density of electrons injected from the part located far away. Therefore, when the entire first electrode extension 153 contacts the first conductivity type semiconductor layer 121, current spreading performance may decrease.
  • the first conductive type semiconductor layer 121 is contacted through the extension contact portion 153a of the first electrode extension 153, but the remaining portion of the first electrode extension 153 is not included. They are insulated from the first conductivity type semiconductor layer 121 by the insulating layer 170. Accordingly, electron injection may be made through the extension contact portion 153a to maintain the electron injection density in the plurality of extension contact portions 153a in a similar manner. Accordingly, electrons may be smoothly injected even through a portion of the first electrode extension part 153 that is far from the first electrode pad 151, thereby improving current dispersion efficiency of the light emitting device.
  • the extension contact portion 153a may correspond to the position and number of the grooves 120g, the separation distances of the extension contact portions 153a may be substantially the same, and the extension contact portions 153a may be formed on one side of the light emitting device. It can be located along. For example, the extension contact portions 153a may be located adjacent to the second side 102 of the light emitting device.
  • the insulating layer 170 positioned below the extension contact portion 153a may have a width larger than the line width of the first electrode extension 153, so that the mesa 120m and the first electrode extension 153 are provided. To prevent the conduction of electricity more effectively.
  • a portion of the insulating layer 170 located below the first electrode extension 153 may be located in an area defined by the side surface of the mesa 120m. Therefore, as shown in FIG. 30, a portion of the upper surface of the mesa 120m may be exposed around the portion of the insulating layer 170 positioned below the first electrode extension 153, and in particular, the mesa 120m.
  • the concave-convex pattern 127 on the side surface is exposed without being covered by the insulating layer 170.
  • the present invention is not limited thereto.
  • the insulating layer 170 may at least partially cover the side surface of the groove 120g.
  • the side surface of the active layer 123 exposed to the side surface of the groove 120g may be covered.
  • the peripheral region of the extension contact portion 153a may be electrostatic. Is likely to occur.
  • the light emitting structure 120 around the extension contact portion 153a may be damaged by the discharge of static electricity. In particular, when the active layer 123 is damaged by the static discharge, the light emitting area is reduced by the damaged portion.
  • the insulating layer 170 to cover the side surface of the active layer 123 exposed to the side surface of the groove 120g, it is possible to prevent the reduction of the light emitting area due to the damage of the active layer 123 due to the electrostatic discharge. .
  • the insulating layer 170 may be formed to further cover the periphery of the upper portion of the groove 120g. As illustrated in FIG. 30, the insulating layer 170 may further cover the upper surface of the mesa 120m around the groove 120g. Accordingly, it is possible to prevent the static electricity from being conducted to the second conductivity type semiconductor layer 125 through the upper surface of the mesa 120m around the groove 120g, thereby further improving the resistance of the light emitting device to electrostatic discharge. .
  • the first electrode pad 151 is positioned on the insulating layer 170, and is electrically insulated from the upper surface of the mesa 120m, that is, the second conductivity type semiconductor layer 125.
  • the first electrode pad 151 may include a pad contact portion 151a, and the pad contact portion 151a may be in ohmic contact with the first conductive semiconductor layer 121. A portion of the first electrode pad 151 may contact the first conductive semiconductor layer 121 through the pad contact portion 151a.
  • the pad contact portion 151a is located on the side of the mesa 120m and is insulated from the side of the mesa 120m by the insulating layer 170. Since the first electrode pad 151 includes the pad contact portion 151a, electron injection may be performed through the pad contact portion 151a.
  • the pad contact portion 151a and the extension contact portion 153a may be located along the same side of the light emitting device, for example, adjacent to the second side surface 102.
  • the present invention is not limited thereto, and the pad contact portion 151a and the extension contact portion 153a may be formed to be adjacent to at least two other sides in consideration of current dispersion.
  • the insulating layer 170 may further include at least one extension part 171 that protrudes from the side surface thereof, and the extension part 171 is a mesa 120m around the first electrode pad 151. Can cover the side.
  • the insulating layer 170 may include two extension parts 171, and the two extension parts 171 may emit light around the first electrode pad 151. Is formed extending in the direction toward the second side 102 and the third side 103 of. In this case, the pad contact portion 151a may be located between the two extension portions 171.
  • the conductive material leaves the first electrode pad 151 to form the mesa 120m. It may be formed on the side. In this case, an electrical short may occur due to the conductive material.
  • the expansion part 171 since the side of the mesa 120m around the first electrode pad 151 is covered by the expansion part 171, the expansion part 171 even if the conductive material is formed outside the first electrode pad 151. It may be insulated from the mesa (120m) side through. As a result, defects in the light emitting device and reduction in manufacturing yield can be prevented.
  • the insulating layer 170 may be spaced apart from the transparent electrode 140.
  • the insulating layer 170 is likely to conduct a fine current due to a defect generated during formation or itself.
  • leakage current flowing between the transparent electrode 140 and the first electrode 150 may occur through the insulating layer 170. Therefore, the insulating layer 170 and the transparent electrode 140 may be separated from each other to prevent leakage current through the insulating layer 170, thereby improving electrical characteristics of the light emitting device.
  • the first electrode 150 may serve to supply external power to the first conductive semiconductor layer 121, and the first electrode 150 may be formed of a metal such as Ti, Pt, Au, Cr, Ni, Al, or the like. It may include a substance. In addition, the first electrode 150 may be formed of a single layer or multiple layers.
  • the light emitting device may further include a passivation layer 230 at least partially covering the surface of the light emitting device.
  • the passivation layer 230 may at least partially cover the light emitting structure 120 and the transparent electrode 140, and furthermore, the first electrode extension 153 and the second electrode extension ( 163 may be further covered.
  • the passivation layer 230 may include openings at least partially exposing the first electrode pad 151 and the second electrode pad 161, and the first and second electrode pads 151 may be disposed through the openings. 161 may form an electrical connection.
  • the passivation layer 230 may protect the light emitting device from external moisture or harmful gas.
  • the passivation layer 230 may be formed of an insulating material, and may be formed of a single layer or multiple layers.
  • the passivation layer 230 may include SiO 2 , MgF 2 , SiN, or the like, or may include a distributed Bragg reflector in which different material layers, such as TiO 2 and SiO 2 , are repeatedly stacked.
  • the uppermost layer may be formed of SiN, in which case SiN may have high moisture resistance to effectively protect the light emitting device from external moisture.
  • FIG. 41 to 49 are plan views, cross-sectional views, enlarged plan views, and enlarged cross-sectional views illustrating light emitting devices according to embodiments of the present invention.
  • FIG. 41 is a plan view showing a plane of the light emitting device
  • FIG. 42 is a plan view showing a plane of the light emitting device and omits some configurations to explain the arrangement of the transparent conductive layer 180.
  • 43 is a plan view illustrating a plane of the light emitting device, and for explaining a predetermined current path region CPR.
  • 44 to 47 are cross-sectional views showing cross sections of portions corresponding to lines A-A ', B-B', C-C ', and D-D' of FIG. 41, respectively.
  • FIG. 48 is an enlarged plan view showing an alpha area of FIG. 41 in an enlarged manner
  • FIG. 49 is an enlarged cross sectional view showing a cross section of a portion corresponding to the line E-E 'and F-F' in FIG.
  • the light emitting device includes a light emitting structure 120, a first electrode 200, and a second electrode 160. Furthermore, the light emitting device may further include a substrate 110, a current blocking layer 130, and a second conductive oxide electrode 140. In addition, the light emitting device may include first to fourth side surfaces 101, 102, 103, and 104, respectively. As shown in the figure, the light emitting device may have a rectangular shape in plan, but the present invention is not limited thereto.
  • the substrate 110 may be an insulating or conductive substrate.
  • the substrate 110 may be a growth substrate for growing the light emitting structure 120, and may include a sapphire substrate, a silicon carbide substrate, a silicon substrate, a gallium nitride substrate, an aluminum nitride substrate, and the like.
  • the substrate 110 may be a sapphire substrate, and in particular, may be a patterned sapphire substrate (PSS) having a patterned upper surface.
  • PSS patterned sapphire substrate
  • the substrate 110 may include a plurality of protrusions 110p formed on an upper surface thereof.
  • the present invention is not limited thereto, and the substrate 110 may be a secondary substrate for supporting the light emitting structure 120.
  • the first conductive semiconductor layer 121 is described as being located on the substrate 110, but the substrate 110 is a growth substrate capable of growing the semiconductor layers 121, 123, and 125.
  • the semiconductor layers 121, 123, and 125 may be separated or removed through physical and / or chemical methods, and may be omitted.
  • the light emitting structure 120 may include a first conductivity type semiconductor layer 121, a second conductivity type semiconductor layer 125 and a first conductivity type semiconductor layer 121 positioned on the first conductivity type semiconductor layer 121.
  • the active layer 123 may be disposed between the second conductive semiconductor layers 125.
  • the light emitting structure 120 may be positioned on the first conductivity type semiconductor layer 121 and may include a mesa 120m including an active layer 123 and a second conductivity type semiconductor layer 125.
  • the first conductive semiconductor layer 121, the active layer 123, and the second conductive semiconductor layer 125 may be grown and formed in a chamber using a known method such as MOCVD.
  • the first conductivity-type semiconductor layer 121, the active layer 123, and the second conductivity-type semiconductor layer 125 may include a III-V series nitride-based semiconductor, and include, for example, (Al, Ga, In And a nitride based semiconductor such as N).
  • the first conductive semiconductor layer 121 may include n-type impurities (eg, Si, Ge. Sn), and the second conductive semiconductor layer 125 may include p-type impurities (eg, Mg, Sr, Ba). It may also be the reverse.
  • the active layer 123 may include a multi-quantum well structure (MQW), and the composition ratio of the nitride semiconductor may be adjusted to emit a desired wavelength.
  • the second conductivity-type semiconductor layer 125 may be a p-type semiconductor layer.
  • the mesa 120m is positioned on a portion of the first conductivity type semiconductor layer 121, so that the surface of the first conductivity type semiconductor layer 121 may be exposed in an area where the mesa 120m is not formed. have. For example, as illustrated in FIGS. 41 to 47, an upper surface of the first conductivity-type semiconductor layer 121 may be exposed in at least some regions around the mesa 120m.
  • the mesa 120m may be formed by partially etching the second conductivity-type semiconductor layer 125 and the active layer 123.
  • the shape of the mesa 120m is not limited, but for example, as shown, the mesa 120m may be formed along the side surface of the first conductivity-type semiconductor layer 121.
  • the mesa 120m may have an inclined side surface, but may have a side surface perpendicular to the top surface of the first conductivity type semiconductor layer 121.
  • the mesa 120m may include at least one side including at least one groove 120g recessed from the side thereof. A portion of the first conductivity type semiconductor layer 121 may be exposed through the groove 120g. Furthermore, when the groove 120g is formed in plural, the mesa 120m may include at least one protrusion 120p disposed between the grooves 120g.
  • mesa 120m may include first to fourth side surfaces 120a, 120b, 120c and 120d, respectively.
  • the first to fourth side surfaces 120a, 120b, 120c and 120d of the mesa 120m may be located adjacent to the first to fourth side surfaces 101, 102, 103 and 104, respectively. have.
  • the first side surface 120a of the mesa 120m may be positioned adjacent to the first side surface 101 of the light emitting device, and may be formed along the first side surface 101 of the light emitting device.
  • At this time, at least one of the sides of the mesa (120m) may include at least one groove (120g), in this embodiment the second side (120b) of the mesa (120m) includes a plurality of grooves (120g) can do.
  • the first conductive semiconductor layer 121 is exposed through the plurality of grooves 120g, and the first conductive semiconductor layer 121 exposed through the groove 120g has the metal extension contact portion 155 described later. May be in electrical contact with.
  • a plurality of protrusions 120p are formed between the grooves 120g.
  • the separation distance between the grooves 120g may be substantially constant, but the present invention is not limited thereto.
  • groove 120g may be formed on two or more of the sides of mesa 120m.
  • the groove 120g may be formed on the second side surface 120b and the third side surface 120c of the mesa 120m.
  • the mesa 120m may further include an uneven pattern (not shown) to be formed on the side surface thereof. Light is scattered through the uneven pattern, so that light extraction efficiency of the light emitting device may be improved.
  • the current blocking layer 130 is at least partially positioned on the second conductivity type semiconductor layer 125.
  • the current blocking layer 130 may be located on the second conductive semiconductor layer 125 to correspond to a portion where the second electrode 160 is located.
  • the current blocking layer 130 may include a pad current blocking layer 131 and an extension current blocking layer 133.
  • the pad current blocking layer 131 and the extension current blocking layer 133 may be positioned corresponding to the positions of the second electrode pad 161 and the second electrode extension 163, respectively.
  • the pad current blocking layer 131 is disposed adjacent to the first side 101 of the light emitting device, and the extension current blocking layer 133 is disposed from the first side 101 to the third side ( It may be arranged to extend in the direction toward 103.
  • the current blocking layer 130 may prevent the current from being concentrated by directly transferring the current supplied to the second electrode 160 to the semiconductor layer. Accordingly, the current blocking layer 130 may have an insulating property, may include an insulating material, and may be formed of a single layer or multiple layers.
  • the current blocking layer 130 may include SiO x or SiN x , or may include a distributed Bragg reflector in which insulating material layers having different refractive indices are stacked. That is, the current blocking layer 130 may have light transmittance, may have light reflectivity, or may have selective light reflectivity.
  • the current blocking layer 130 may have a larger area than the second electrode 160 formed on the current blocking layer 130. Accordingly, the second electrode 160 may be located in the region where the current blocking layer 130 is formed.
  • the second conductive oxide electrode 140 may be positioned on the second conductive semiconductor layer 125, and may also partially remove a portion of the upper surface of the second conductive semiconductor layer 125 and a portion of the current blocking layer 130. Cover.
  • the second conductive oxide electrode 140 may include an opening 140a partially exposing the pad current blocking layer 131.
  • the second conductive oxide electrode 140 includes a protrusion 140p protruding from the side surface 140g of the opening 140a.
  • the side surface 140g of the opening 140a may be positioned on the pad current blocking layer 131, and may be generally formed along the side surface of the pad current blocking layer 131.
  • the protrusion 140p may protrude from the side surface 140g of the opening 140a.
  • the protrusion 140p may protrude toward the center of the pad current blocking layer 131.
  • the protrusion 140p may be formed in plural.
  • the second conductive oxide electrode 140 may include a material having light transmittance and electrical conductivity, for example, conductive oxides such as ITO, RuOx, RuOx / ITO, MgO, ZnO, and the like, and light transmittances such as Ni / Au. It may also include at least one of the metal layers. In addition, the second conductive oxide electrode 140 may form an ohmic contact with the second conductive semiconductor layer 125. Since the second electrode 160 does not directly contact the second conductive semiconductor layer 125, current may be more effectively dispersed through the second conductive oxide electrode 140. When the second conductive oxide electrode 140 includes ZnO, the second conductive oxide electrode 140 may include various dopants. The dopant may include, for example, at least one of Ag, In, Sn, Cd, Ga, Al, Mg, Ti, Mo, Ni, Cu, Au, Pt, Rh, Ir, Ru, and Pd.
  • the dopant may include, for example, at least one of Ag, In, Sn, Cd,
  • the second conductive oxide electrode 140 may include at least one of GZO, ZnO, and ITO including a Ga dopant.
  • the second conductive oxide electrode 140 may include a material substantially the same as that of the first conductive oxide electrode 180 described later, or may be formed of the same material.
  • the second conductive oxide electrode 140 and the first conductive oxide electrode 180 may be formed of different materials, for example, the second conductive oxide electrode 140 is formed of ITO.
  • the first conductive oxide electrode 180 may be formed of ZnO including Ga dopant.
  • the second electrode 160 is positioned on the second conductive semiconductor layer 125, and at least a part of the second electrode 160 is positioned on the region where the current blocking layer 130 is located.
  • the second electrode 160 includes a second electrode pad 161 and a second electrode extension 163, and each of the second electrode pad 161 and the second electrode extension 163 has a pad current blocking layer ( 131 and the extension current blocking layer 133. Therefore, a portion of the second conductive oxide electrode 140 may be interposed between the second electrode 160 and the current blocking layer 130.
  • the second electrode pad 161 may be positioned on the opening 140a of the second conductive oxide electrode 140.
  • the second electrode pad 161 and the side surface 140g of the opening 140a are spaced apart from each other, and at least a part of the protrusion 140p of the conductive oxide electrode 140 may have the second electrode pad 161 and the pad current blocking layer ( 131 may be positioned between. Therefore, the second electrode pad 161 and the protrusion 140p of the second conductive oxide electrode 140 are in contact with each other and electrically connected to each other.
  • the shape of the second electrode pad 161 is not limited, but may be formed in a generally circular shape, for example.
  • the pad current blocking layer 131 of the current blocking layer 130 may also be formed in a circle similar to the shape of the second electrode pad 161, and the opening 140a of the second conductive oxide electrode 140 may also be generally formed. It may be formed in a similar circle.
  • the present invention is not limited thereto.
  • the position of the second electrode pad 161 is not limited, the second electrode pad 161 may be disposed to emit light in front of the active layer 123 of the light emitting device by smoothly distributing current.
  • the second electrode pad 153 may be positioned adjacent to the first side 101 opposite to the third side 103 where the metal electrode pad 151 is adjacent.
  • the second electrode extension 163 extends from the second electrode pad 161.
  • the second electrode extension 163 may extend from the second electrode pad 161 toward the third side surface 103.
  • the direction in which the second electrode extension 163 extends may change as the second electrode extension 163 extends.
  • an end of the second electrode extension 163 may be bent to face a portion between the third side surface 103 and the fourth side surface 104 of the light emitting device. This may be variously designed in consideration of the distance between the metal electrode pad 151 and the second electrode extension 163.
  • a second conductive oxide electrode 140 is interposed between at least a portion of the second electrode extension 163 and the extension current blocking layer 133, whereby the second electrode extension 163 has a second conductivity. It is electrically connected to the oxide electrode 140.
  • the end of the second electrode extension 163 may include a portion having a width greater than the average width of the second electrode extension 163.
  • an end of the second electrode extension 163 may be formed in a circular shape having a diameter larger than the width of the second electrode extension 163.
  • the diameter of the end may be about 0.5 to 5 ⁇ m larger than the width of the second electrode extension 163.
  • the present invention is not limited thereto, and the shape of the end of the second electrode extension 163 may be modified in various forms such as polygon, ellipse, and arc.
  • the arrangement of the second electrode 160 is not limited thereto, and may be variously modified and changed according to the shape of the light emitting device.
  • the second electrode 160 may include a conductive material, for example, may include a metallic material such as Ti, Pt, Au, Cr, Ni, Al, Mg, or the like, and may be formed in a single layer or a multilayer structure. have.
  • the Ti layer / Au layer, the Ti layer / Pt layer / Au layer, the Cr layer / Au layer, the Cr layer / Pt layer / Au layer, the Ni layer / Au layer It may include at least one of a metal layer structure of Ni layer / Pt layer / Au layer, and Cr layer / Al layer / Cr layer / Ni layer / Au layer.
  • the second conductive oxide electrode 140 is interposed between a part of the second electrode 160 and the current blocking layer 130, so that the second electrode 160 and the second conductive oxide electrode 140 are interposed therebetween. Current is conducted through this contacting portion. Therefore, the area where the second electrode 160 and the second conductive oxide electrode 140 contact each other may be adjusted so that the current can be effectively distributed, and in this regard, with reference to FIGS. 48 and 49, The structure of the region around the second electrode 160, particularly the second electrode pad 161, will be described in more detail.
  • An enlarged view of FIG. 48 shows an enlarged region ⁇ in FIG. 41
  • FIGS. 49A and 49B show cross-sectional views of portions corresponding to lines E-E 'and F-F' of FIG. 49, respectively. do.
  • the second conductive oxide electrode 140 is represented by a solid line, and the current blocking layer 130 and the second electrode 160 are represented by a broken line. Indicated.
  • the opening 140a of the second conductive oxide electrode 140 includes a side surface 140g, and the side surface 140g is positioned on the pad current blocking layer 131, but has a second electrode pad. Spaced from 161.
  • the opening 140a of the second conductive oxide electrode 140 is formed along the side surface of the pad current blocking layer 131, and is generally formed to correspond to the side shape of the pad current blocking layer 131.
  • the top surface of the second conductivity-type semiconductor layer 125 may be covered by the second conductive oxide electrode 140 without being exposed. Accordingly, the static electricity generated around the second electrode pad 161 can be prevented from directly conducting to the second conductivity type semiconductor layer 125, so that failure of the light emitting device can be prevented more effectively by electrostatic discharge. have.
  • the second conductive oxide electrode 140 includes at least one protrusion 140p, and the protrusion 140p protrudes from the side surface of the opening 140a.
  • the at least one protrusion 140p may include a pad current blocking layer 131.
  • the side surface and the upper surface of the panel) are partially covered, and are interposed between the pad current blocking layer 131 and the second electrode pad 161. Therefore, the second electrode pad 161 and the protrusion 140p are electrically connected to each other so that current is conducted through the second electrode pad 161 and the protrusion 140p. Accordingly, the current injection to the region where the protrusion 140p is located can be made smoothly.
  • the second electrode extension 163 of the second electrode 160 contacts the second conductive oxide electrode 140, a current to the second conductive semiconductor layer 125 is caused by the second electrode extension 163. Injection is made. Therefore, the number and position of the protrusions 140p may be adjusted according to the position of the second electrode extension 163.
  • an imaginary plane (virtual coordinate system) having an x axis and a y axis is defined by using the central portion 161c of the second electrode pad 161 as the origin.
  • the imaginary plane includes a first quadrant 1QD, a second quadrant 2QD, a third quadrant 3QD, and a fourth quadrant 4QD.
  • a portion where the second electrode extension 163 extends from the second electrode pad 161, that is, an interface between the second electrode pad 161 and the second electrode extension 163 ( 165 may be positioned on at least one of the x (+) axis, the x ( ⁇ ) axis, the y (+) axis, the y ( ⁇ ) axis, and the first to fourth quadrants 1QD, 2QD, 3QD, and 4QD.
  • at least one protrusion 140p may have a remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis, and a second part except for a portion where the interface 165 is located.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is located on the fourth quadrant 4QD or y ( ⁇ ) axis, and the three protrusions ( 140p) is located on the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis, respectively.
  • a current is injected into the region corresponding to the fourth quadrant 4QD or the y ( ⁇ ) axis, and the current is injected by the second electrode extension 163, and the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis are provided.
  • Currents may be injected into the regions corresponding to the periphery by the protrusions 140p.
  • 65A and 65B are enlarged plan views illustrating light emitting devices according to embodiments of the present invention.
  • an imaginary plane (virtual coordinate system) having an x-axis and a y-axis is defined using the central portion 161c of the second electrode pad 161 as the origin.
  • the imaginary plane includes a first quadrant 1QD, a second quadrant 2QD, a third quadrant 3QD, and a fourth quadrant 4QD.
  • a portion where the second electrode extension 163 extends from the second electrode pad 161, that is, an interface between the second electrode pad 161 and the second electrode extension 163 ( 165 may be positioned on at least one of the x (+) axis, the x ( ⁇ ) axis, the y (+) axis, the y ( ⁇ ) axis, and the first to fourth quadrants 1QD, 2QD, 3QD, and 4QD.
  • at least one protrusion 140p may have a remaining x (+) axis, x (-) axis, y (+) axis, y (-) axis, and a second part except for a portion where the interface 165 is located.
  • the interface 165 of the second electrode pad 161 and the second electrode extension 163 is located on the fourth quadrant 4QD or y ( ⁇ ) axis, and the three protrusions ( 140p) is located on the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis, respectively.
  • a current is injected into the region corresponding to the fourth quadrant 4QD or the y ( ⁇ ) axis, by the second electrode extension 163, and the x (+) axis, the x ( ⁇ ) axis, and the y (+) axis are injected.
  • Currents may be injected into the regions corresponding to the periphery by the protrusions 140p.
  • the area of the lower surface of the second electrode pad 161 and the portion of the second conductive oxide electrode 140 that is in contact with each other may be 1% or more and 20% or less with respect to the entire lower surface area of the second electrode pad 161. , 1.5% or more and 13% or less, and further, 3% or more and 5% or less.
  • the area can be made relatively large. Therefore, peeling of the second electrode pad 161 that may occur at a portion where the second electrode pad 161 and the second conductive oxide electrode 140 contact each other can be effectively suppressed.
  • the protrusion 140p may have various shapes, and for example, may have an arc shape to an elliptical arc shape as shown.
  • the second conductive oxide electrode 140 is interposed only in a part of the interface between the second electrode pad 161 and the pad current blocking layer 131, thereby effectively peeling off the second electrode pad 161. It can be suppressed.
  • the second electrode pad 161 may be spaced apart from the second electrode pad 161 and the second conductive oxide electrode 140 by contacting the protrusion 140p of the second conductive oxide electrode 140.
  • the current congestion may be alleviated and current may be smoothly distributed to portions where the second electrode extension 163 is not located. By smoothly distributing the current in the horizontal direction, the power of the light emitting device can be improved, and the forward voltage Vf can be lowered.
  • the portion in which the second electrode pad 161 and the second conductive semiconductor layer 125 are directly connected through the second conductive oxide electrode 140 does not exist, defects or breakage due to static electricity may be prevented. Thus, a light emitting device having high resistance to electrostatic discharge can be provided.
  • the first electrode 200 is electrically connected to the first conductivity type semiconductor layer 121.
  • the first electrode 200 may be in ohmic contact with a portion of the upper surface of the first conductivity type semiconductor layer 121 in which the second conductivity type semiconductor layer 125 and the active layer 123 are partially removed to expose the first conductivity type semiconductor. It may be electrically connected with the layer 121.
  • the first electrode 200 is located on the light emitting structure 120. For example, at least a part of the first electrode 200 may be located on the first conductivity type semiconductor layer 121, or at least a part of the first electrode 200 may be located on the mesa 120m. .
  • the first electrode 200 may include first electrode pads 151 and 181 and first electrode extensions 153, 182, 183, 184 and 185.
  • the first electrode 200 includes a metal electrode 150 and a first conductive oxide electrode 180.
  • the metal electrode 150 may include a metal electrode pad 151 and a metal electrode extension 153
  • the first conductive oxide electrode 180 may include first conductive oxide electrode extensions 182, 183, 184, and 185.
  • And may further include a first conductive oxide electrode pad 181.
  • the first electrode pads 151 and 181 may include a metal electrode pad 151, and may further include a first conductive oxide electrode pad 181.
  • the first electrode extensions 153, 182, 183, 184, and 185 may include at least one metal electrode extension 153 and at least one first conductive oxide electrode extension 182, 183, 184, and 185. Can be.
  • At least one metal electrode extension 153 and at least one first conductive oxide electrode extension 182, 183, 184, 185 extend from the first electrode pads 151, 181.
  • the metal electrode extension 153 may extend from one side of the first electrode pads 151 and 181, and the first conductive oxide electrode extension 182, 183, 184, and 185 may be formed in addition to the one side. It may extend from the other side of the first electrode pad (151, 181).
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 and the metal electrode extensions 153 may extend in opposite directions.
  • first conductive oxide electrode extensions 182, 183, 184, and 185 are positioned on an area where the first conductive semiconductor layer 121 of the light emitting structure 120 is exposed to form a first conductive semiconductor layer ( 121) may be in electrical contact.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may be positioned on at least some of the regions surrounding the mesas 120m, and may be disposed along at least some of the side surfaces of the mesas 120m. have.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may at least partially surround the mesa 120m, and in various embodiments, the first conductive oxide electrode extensions 182 and 183.
  • first conductive oxide electrode extensions 182, 183, 184, and 185 may form a closed curve surrounding the mesa 120m. Since the first conductive oxide electrode extensions 182, 183, 184, and 185 are disposed around the mesa 120m, current dispersion efficiency of the light emitting device may be improved.
  • first conductive oxide electrode extensions 182, 183, 184, and 185 may extend from first conductive oxide electrode pad 181.
  • the first conductive oxide electrode pad 181 may be in contact with the metal electrode pad 151 and electrically connected thereto.
  • the metal electrode pad 151 may be located on the first conductive oxide electrode pad 181.
  • an area of the metal electrode pad 151 may be smaller than that of the first conductive oxide electrode pad 181.
  • the structure of the first electrode 200 will be described in more detail with reference to FIGS. 41 to 47.
  • the structure of the first electrode 200 according to the present embodiment is exemplary, and the first electrode 200 is not limited according to the structure of the light emitting device shown.
  • the metal first electrode 200 including the metal electrode extension 153 and the metal electrode pad 151 will be described.
  • the metal first electrode 200 may be positioned on the mesa 120m, and the insulating layer 170 may be interposed between the metal first electrode 200 and the mesa 120m.
  • the insulating layer 170 may include an insulating material, for example, SiO 2 , SiN x , may include a distributed Bragg reflector in which layers having different refractive indices are repeatedly stacked.
  • the insulating layer 170 may cover a portion of the side surface of the mesa 120m.
  • the insulating layer 170 may include at least one opening that at least partially exposes an upper surface of the first conductivity-type semiconductor layer 121 exposed to the groove 120g of the mesa 120m.
  • the metal electrode extension 153 may contact the first conductivity type semiconductor layer 121.
  • the metal electrode extension 153 includes an extension contact portion 155 and may be in ohmic contact with the first conductivity type semiconductor layer 121 through the extension contact portion 155.
  • the metal electrode pad 151 may be disposed on the insulating layer 170 and may not be in contact with the first conductive semiconductor layer 121.
  • the present invention is not limited thereto, and in various embodiments, a part of the metal electrode pad 151 may be formed to be in ohmic contact with the first conductive semiconductor layer 121.
  • the metal electrode extension 153 is positioned on the insulating layer 170, and a portion of the metal electrode extension 153 overlaps the at least one groove 120g in the vertical direction.
  • the metal electrode extension part 153 includes an extension contact part 155 that contacts the first conductivity type semiconductor layer 121, and the extension contact part 155 includes the first conductivity type semiconductor layer 121. And ohmic contact.
  • the extension contact portion 155 forms an electrical connection with the first conductive semiconductor layer 121 exposed by the at least one groove 120g, and the remaining portion of the metal electrode extension 153 is insulated from the insulating layer 170. And formed on the first conductive semiconductor layer 121, the electrons move to the first conductive semiconductor layer 121 through the extension contact portion 155 when the light emitting device is driven. That is, current is conducted through the extension contact portion 155.
  • the density of electrons injected into the first conductivity-type semiconductor layer 121 may vary according to a distance from the metal electrode pad 151. That is, the density of electrons injected from a portion located relatively close to the metal electrode pad 151 in the metal electrode extension 153 is located relatively far from the metal electrode pad 151 in the metal electrode extension 153. Higher than the density of electrons injected from the part. Therefore, when the entire metal electrode extension 153 contacts the first conductive semiconductor layer 121, current spreading performance may decrease.
  • the first conductive type semiconductor layer 121 is contacted through the extension contact portion 155 of the metal electrode extension 153, but the remaining portions of the metal electrode extension 153 are insulated.
  • the layer 170 is insulated from the first conductive semiconductor layer 121. Accordingly, electron injection may be made through the extension contact portion 155 to substantially maintain the electron injection density in the plurality of extension contact portions 155. Accordingly, electrons may be smoothly injected even through a portion of the metal electrode extension portion 153 that is far from the metal electrode pad 151, thereby improving current dispersion efficiency of the light emitting device.
  • the extension contact portion 155 may correspond to the position and number of the grooves 120g, the separation distances of the extension contact portions 155 may be substantially the same, and the extension contact portions 155 may be formed on one side of the light emitting device. It can be located along. For example, the extension contact portions 155 may be located adjacent to the second side 102 of the light emitting device. However, the present invention is not limited thereto, and the extension contact portions 155 may be formed along at least two sides of the light emitting device.
  • the insulating layer 170 positioned below the extension contact portion 155 may have a width larger than the line width of the metal electrode extension 153, so that the mesa 120m and the metal electrode extension 153 may be separated from each other. It more effectively prevents the conduction of electricity.
  • a portion of the insulating layer 170 positioned below the metal electrode extension 153 may be located in an area defined by the side surface of the mesa 120m. Thus, as shown, a portion of the upper surface of the mesa 120m may be exposed around the portion of the insulating layer 170 located below the metal electrode extension 153.
  • the mesa 120m includes an uneven pattern (not shown) formed on the side surface, the uneven pattern is exposed without being covered by the insulating layer 170.
  • the present invention is not limited thereto.
  • the insulating layer 170 may at least partially cover the side surface of the groove 120g.
  • the insulating layer 170 may be formed to further cover the periphery of the upper portion of the groove 120g. As shown, the insulating layer 170 may further cover the upper surface of the mesa (120m) around the groove (120g). Accordingly, it is possible to prevent the static electricity from being conducted to the second conductivity type semiconductor layer 125 through the upper surface of the mesa 120m around the groove 120g, thereby improving the resistance of the light emitting device to the electrostatic discharge.
  • the insulating layer 170 may be spaced apart from the second conductive oxide electrode 140. As shown, the insulating layer 170 on the mesa 120m may be spaced apart from the second conductive oxide electrode 140.
  • the insulating layer 170 is likely to conduct a fine current due to a defect generated during formation or itself.
  • the insulating layer 170 is in contact with the second conductive oxide electrode 140 having a relatively low electrical resistance, leakage between the second conductive oxide electrode 140 and the first electrode 200 through the insulating layer 170. Current may occur. Therefore, the insulating layer 170 and the second conductive oxide electrode 140 may be separated from each other to prevent leakage current through the insulating layer 170, thereby improving electrical characteristics of the light emitting device.
  • the metal electrode 150 may serve to supply external power to the first conductivity type semiconductor layer 121, and may include a metal material such as Ti, Pt, Au, Cr, Ni, Al, W, Ag, or the like. Can be. In addition, the metal electrode 150 may be formed of a single layer or multiple layers.
  • the metal electrode pad 151 may be connected to a wire (not shown). Accordingly, external power may be supplied to the light emitting device through the wire.
  • the first conductive oxide electrode 180 may include first conductive oxide electrode extensions 182, 183, 184, and 185 extending from the first electrode pads 151 and 181.
  • the first conductive oxide electrode 180 may further include a first conductive oxide electrode pad 181.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may have a first conductivity. It may extend from the oxide electrode pad 181.
  • the first conductive oxide electrode 180 may include a conductive material having light transmittance.
  • the first conductive oxide electrode 180 may include a light transmissive conductive oxide, and may include, for example, ZnO including a dopant.
  • the dopant is, for example, silver (Ag), indium (In), tin (Sn), zinc (Zn), cadmium (Cd), gallium (Ga), aluminum (Al), magnesium (Mg), titanium ( At least one of Ti, molybdenum (Mo), nickel (Ni), copper (Cu), gold (Au), platinum (Pt), rhodium (Rh), iridium (Ir), ruthenium (Ru), and palladium (Pd) It may include.
  • the first conductive oxide electrode 180 may be formed of Ga-doped ZnO, that is, GZO.
  • the ZnO or GZO included in the first conductive oxide electrode 180 may be formed through various methods.
  • the ZnO or GZO may be formed through various known methods, and for example, may be formed through sputtering, atomic layer deposition, vacuum deposition, electrochemical deposition, or pulsed laser deposition.
  • the first conductive oxide electrode 180 may include at least one of single crystal ZnO, single crystal GZO, polycrystalline ZnO, polycrystalline GZO, amorphous ZnO, and amorphous GZO.
  • the first conductive oxide electrode 180 may be formed of a single layer or multiple layers.
  • the first conductive oxide electrode 180 may be formed of multiple layers including an undoped ZnO layer and a doped ZnO (eg, GZO) layer.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may be in electrical contact with the first conductive semiconductor layer 121 at least partially, and further, ohmic with the first conductive semiconductor layer 121. You can also contact.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 are positioned on an area where the top surface of the first conductive semiconductor layer 121 of the light emitting structure 120 is exposed to form a first conductive semiconductor layer ( 121).
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may be positioned on an upper surface of the first conductivity-type semiconductor layer 121 exposed to the periphery of the mesas 120m, and at least mesas 120m. May be partially enclosed.
  • first conductive oxide electrode extensions 182, 183, 184, and 185 are spaced apart from the side surface of the mesa 120m.
  • first conductive oxide electrode extensions 182, 183, 184, and 185 may be spaced apart from side surfaces of the first conductive semiconductor layer 121, but the present invention is not limited thereto. Side surfaces of the first conductive oxide electrode extensions 182, 183, 184, and 185 may be generally flush with the side surfaces of the first conductive semiconductor layer 121.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may include a first portion 182, a second portion 183, and a third portion. 184 and fourth portion 185.
  • the first portion 182 extends from the first electrode pads 151 and 181 to extend toward the fourth side 104 of the light emitting device, and extends from the third side 120c of the mesa 120m and the light emitting device. It is located between the third side surfaces 103.
  • the first portion 182 may extend in a direction different from the direction in which the metal electrode extension 153 extends from the metal electrode pad 151.
  • the direction in which the first portion 182 extends may extend in the metal electrode. It may be opposite to the direction in which the portion 153 extends.
  • the first portion 182 is connected to the first conductive oxide electrode pad 181, and the first conductive oxide electrode pad 181 is positioned under the metal electrode pad 151 to be electrically connected to the metal electrode pad 151. Connected.
  • the first conductive oxide electrode pad 181 is formed to have a larger area than the metal electrode pad 151, so that the metal electrode pad 151 can be stably formed.
  • An insulating layer 170 may be interposed between the first conductive oxide electrode pad 181 and the second conductive semiconductor layer 125.
  • a portion of the first conductive oxide electrode pad 181 may be formed extending along the side of the mesa 120m, so that a portion of the first conductive oxide electrode pad 181 is exposed to the periphery of the mesa 120m.
  • the first conductive oxide electrode pad 181 may be omitted, and in this case, the first portion 182 may be in contact with the metal electrode pad 151 to be electrically connected.
  • the second portion 183 may extend from the first portion 182 and extend along the fourth side 104 of the light emitting device.
  • the second portion 183 may be located between the fourth side surface 120d of the mesa 120m and the fourth side surface 104 of the light emitting device.
  • the third portion 184 may extend from the second portion 183 and extend along the first side 101 of the light emitting device.
  • the third portion 184 may be located between the first side surface 120a of the mesa 120m and the first side surface 101 of the light emitting device.
  • the fourth portion 185 may extend from the third portion 184 to extend along the second side surface 102 of the light emitting device.
  • the fourth portion 185 may be located between the second side surface 120b of the mesa 120m and the second side surface 102 of the light emitting device. In the present embodiment, the fourth portion 185 does not extend to the portion where the metal electrode extension 153 is located. That is, the fourth portion 185 may be disposed along a portion of the second side surface 102 of the light emitting device such that the fourth portion 185 does not extend to the periphery of the portion where the groove 120g of the mesa 120m is formed.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 are formed to be electrically connected to the first conductivity-type semiconductor layer 121 exposed to the periphery of the mesa 120m, thereby providing a mesa 120m. Smooth current distribution in the periphery of the periphery. More specifically, referring to FIG. 43, the current applied when driving the light emitting device mainly moves through the first electrode 200 and the second electrode 160. Accordingly, there is a high probability that current is concentrated in the current path region CPR formed of a set of lines L corresponding to the straight path between the first electrode 200 and the second electrode 160, and thus the current path region ( In addition to CPR), the current is less likely to be distributed in the remaining areas.
  • the first electrode 200 is electrically connected to the first conductivity-type semiconductor layer 121 through the extension contact portion 155, as shown in FIG.
  • the current may not be smoothly supplied to the peripheral areas of the first side surface 101, the third side surface 103, and the fourth side surface 104.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 are formed to at least partially surround the mesa 120m, whereby the first conductive oxide electrode extensions 182, 183, 184, The current path may be smoothly formed even in an area formed of a set of lines corresponding to the straight path between the first electrode 185 and the second electrode 160.
  • the current dispersion efficiency of the light emitting device can be improved, and the light emitting efficiency of the light emitting device can be improved by minimizing the non-light emitting area of the active layer 123.
  • the current may be evenly distributed in the horizontal direction, thereby reducing the forward voltage Vf of the light emitting device.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 have light transmittance, so that the light emitted from the light emitting structure 120 has the first conductive oxide electrode extensions 182, 183, 184, and 185. Can be prevented from being absorbed and lost.
  • the light emitting device according to the comparative example when the first electrode has a metal electrode extension, and the metal electrode extension is arranged with the first conductive oxide electrode extension 182, 183, 184, 185 of the present embodiment, Even if the light loss occurs due to the metal electrode extension, the current dispersion efficiency is increased, but the light output is lowered.
  • the light emitting device of the present embodiment includes the first conductive oxide electrode extensions 182, 183, 184, and 185, thereby improving the electrical characteristics of the light emitting device and preventing the light loss from being lowered. Can improve the output.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may include ZnO or GZO having excellent light transmittance or may be formed of ZnO or GZO. Even though the 184 and 185 are formed relatively thick, light absorption and light loss by the first conductive oxide electrode extensions 182, 183, 184 and 185 may be minimized.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may have a light transmittance of 90% or more even though the thickness of the first conductive oxide electrode extensions 182, 183, 184, and 185 may be greater than or equal to 200 nm and more than 800 nm, thereby minimizing light loss.
  • the thickness of the first conductive oxide electrode extensions 182, 183, 184, and 185 can be formed relatively thick, so that the electrical resistance of the first conductive oxide electrode extensions 182, 183, 184, and 185 is low, resulting in a low current. Can be more smoothly distributed. That is, according to the present embodiment, a light emitting device having improved electrical and optical characteristics is provided through the first conductive oxide electrode extensions 182, 183, 184, and 185 including ZnO or GZO.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 may have different line widths from those of the metal electrode extension 151.
  • the line width W1 of the metal electrode extension 151 may be larger than the line width W2 of the first conductive oxide electrode extension 182, 183, 184, or 185. Since the metal electrode extension 151 is generally patterned through a lift-off process, there may be a limit in reducing the line width W1 in consideration of a process margin. On the other hand, since the first conductive oxide electrode extensions 182, 183, 184, and 185 are patterned through an etching process, the line width W2 smaller than the line width W1 of the metal electrode extension 151 may be obtained even in consideration of a process margin.
  • the area of the first conductivity type semiconductor layer 121 exposed around the mesa 120m for forming the first conductive oxide electrode extensions 182, 183, 184, and 185 may be minimized.
  • the reduction of the area of the light emitting area according to the decrease of the area of the mesa 120m can be minimized.
  • the present invention is not limited thereto.
  • the arrangement of the first conductive oxide electrode 180 may be variously modified.
  • 50 to 64 are diagrams for describing a first conductive oxide electrode 180 in a light emitting device according to various embodiments.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 of the first conductive oxide electrode 180 may be formed to surround the mesa 120m. Accordingly, the first conductive oxide electrode extensions 182, 183, 184, and 185 may form a closed curve surrounding the mesa 120m. 50 and 51, the fourth portion 185 may also be formed on the top surface of the first conductivity-type semiconductor layer 121 exposed around the grooves 120g of the mesa 120m. The fourth portion 185 extends along the second side surface 102 of the light emitting device and extends to the third side surface 103.
  • the light emitting device of the present embodiment includes a plurality of first portions 182, and the two first portions 182 are respectively formed from the first electrode pads 151 and 181 to the second side surface 102 and the fourth side surface 104. It may extend in the direction toward). Accordingly, the direction in which at least one of the plurality of first portions 182 extends may be substantially the same as the direction in which the metal electrode extension 153 extends.
  • the first portion 182 may be connected to the fourth portion 185, so that the first conductive oxide electrode extensions 182, 183, 184, and 185 are formed in a closed curve surrounding the periphery of the mesa 120m. Can be.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 form a closed curve, and the first conductive oxide electrode extensions 182, 183, 184, and 185 have a broken line. Does not include the end of. Since the first conductive oxide electrode extensions 182, 183, 184, and 185 are formed of a conductive oxide such as ZnO or GZO, the first conductive oxide electrode extensions 182, 183, 184, and 185 may be peeled off from the ends, and cracks may occur.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 do not include these ends, light emission due to the damage of the first conductive oxide electrode extensions 182, 183, 184, and 185 is caused. The fall of the reliability of an element can be prevented.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 of the first conductive oxide electrode 180 may have sidewalls of the first conductive type semiconductor layer ( It may be formed to be generally flush with the side of 121, that is to be generally flush. Accordingly, the line width W3 of the first conductive oxide electrode extensions 182, 183, 184, and 185 according to the present exemplary embodiment is the first conductive oxide electrode extension 182 according to the embodiments of FIGS. 41 to 54. , 183, 184, and 185 may be larger than the line width W2. Furthermore, the line width W3 of the first conductive oxide electrode extensions 182, 183, 184, and 185 may be larger than the line width W1 of the metal electrode extension 153.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 are formed to have a relatively larger line width W3, so that the first conductive oxide electrode extensions 182, 183, 184, The contact area between the contact hole 185 and the first conductivity type semiconductor layer 121 may be increased. Therefore, current supply through the first conductive oxide electrode extensions 182, 183, 184, and 185 may be smoother, thereby further improving current dispersion efficiency.
  • the first conductive oxide electrode extensions 182, 183, 184, and 185 have a relatively larger line width W3, so that the first conductive oxide electrode extensions 182, 183, 184, It is possible to reduce the probability that a failure that 185 is broken occurs.
  • first conductive oxide electrode extensions 182, 183, 184, 185, and 186 may contact at least a portion of the metal electrode extension 153.
  • the light emitting device of the present exemplary embodiment may include first conductive oxide electrode extensions 182, 183, 184, 185, and 186 further including a fifth portion 186.
  • the fifth portion 186 may be positioned below the metal electrode extension 153 and may contact the metal electrode extension 153.
  • a portion of the fifth portion 186 may be interposed between the insulating layer 170 and the metal electrode extension 153.
  • the fifth portion 186 may be interposed between the extension contact portion 155 and the first conductivity-type semiconductor layer 121 exposed to the groove 120g. Accordingly, the extension contact portion 155 is not directly in ohmic contact with the first conductivity-type semiconductor layer 121, and the fifth portion 186 forms an ohmic contact with the first conductivity-type semiconductor layer 121. The current may be conducted to the metal electrode extension 153 through the fifth portion 186.
  • the metal electrode extension 153 is located on the first conductive oxide electrode extension 182, 183, 184, 185, 186, in particular, the fifth portion 186.
  • the metal electrode extension 153 is positioned on the surface of the first conductive oxide electrode extension 182, 183, 184, 185, or 186 formed of the conductive oxide, the insulating layer 170 or the light emitting structure 120 may be formed.
  • adhesiveness is excellent. Accordingly, the metal electrode extension 153 can be stably formed, and the probability of peeling is reduced, thereby improving stability and reliability of the light emitting device.
  • the contact resistance between the metal electrode extension 153 and the first conductivity type semiconductor layer 121 may be defined by the first conductive oxide electrode extension 182, 183, 184, 185, 186 and the first conductivity. It may be higher than the contact resistance with the type semiconductor layer 121.
  • the first conductive oxide electrode extensions 182, 183, 184, 185, and 186 may be connected to the first conductive semiconductor layer 121 and the metal electrode extension 153, in particular, the extension contact portion 155.
  • the arrangement of the second electrode extension 163 and the size and position of the groove 120g of the mesa 120m may be controlled in consideration of the current dispersion efficiency of the light emitting device.
  • the distance A1 from the metal electrode extension 153 extending along the second side surface 102 of the light emitting element to the second electrode extension 163 is determined from the end of the second electrode extension 163. It is larger than the distance A2 to the first electrode pads 151 and 181.
  • the second electrode extension 163 extends in a direction toward the first electrode pads 151 and 181, and the metal electrode extension 153 extending along the second electrode extension 163 and the second side surface 102.
  • the current density is lowered around the end of the second electrode extension 163 to prevent the current dispersion efficiency from being lowered.
  • the distance A3 from the end of the second electrode extension 163 to the outer edge of the second conductive oxide electrode 140 (the edge disposed along the fourth side surface 104) is the second electrode pad 161.
  • A3 May be substantially the same as the distance from the side of the second conductive oxide electrode 140 to the outer edge (the edge disposed along the fourth side 104).
  • A3 may be about 50 to 60 ⁇ m.
  • the second electrode extension 163 may be located on the fourth side 104 side rather than the second side surface 102 of the light emitting device.
  • the second electrode extension 163 is located closer to the fourth side 104 than the second side 102 of the light emitting device, and is a longitudinal center line A-A 'passing through the center of the light emitting device.
  • the second electrode extension 163 may be spaced apart from the predetermined distance A4.
  • the A4 may be about 14-18 ⁇ m. Since the metal electrode extension 153 is located adjacent to the second side surface 102, the current is disposed by positioning the second electrode extension 163 closer to the fourth side 104 than the second side surface 102. Dispersion can be improved.
  • the width of the portion where the extension contact portion 1555 of the metal electrode extension 153 contacts the first conductivity-type semiconductor layer 121 that is, the width B1 of the opening of the insulating layer 170 is an insulating layer. 170 may be smaller than the gap B2 between the openings.
  • the distance B2 may be adjusted to be at least three times larger than B1, and in this case, the dispersibility of the current injected through the extension contact portion 155 may be further improved.
  • 66 is an exploded perspective view illustrating an example in which a light emitting device according to embodiments of the present invention is applied to a lighting device.
  • the lighting apparatus includes a diffusion cover 1010, a light emitting device module 1020, and a body portion 1030.
  • the body portion 1030 may accommodate the light emitting device module 1020, and the diffusion cover 1010 may be disposed on the body portion 1030 to cover the upper portion of the light emitting device module 1020.
  • the body portion 1030 is not limited as long as it can receive and support the light emitting device module 1020 and supply electric power to the light emitting device module 1020.
  • the body portion 1030 may include a body case 1031, a power supply device 1033, a power case 1035, and a power connection portion 1037.
  • the power supply device 1033 is accommodated in the power case 1035 and electrically connected to the light emitting device module 1020, and may include at least one IC chip.
  • the IC chip may adjust, convert, or control the characteristics of the power supplied to the light emitting device module 1020.
  • the power case 1035 may receive and support the power supply 1033, and the power case 1035 to which the power supply 1033 is fixed may be located inside the body case 1031. .
  • the power connection unit 115 may be disposed at a lower end of the power case 1035 and may be coupled to the power case 1035. Accordingly, the power connection unit 1037 may be electrically connected to the power supply device 1033 inside the power case 1035 to serve as a path through which external power may be supplied to the power supply device 1033.
  • the light emitting device module 1020 includes a substrate 1023 and a light emitting device 1021 disposed on the substrate 1023.
  • the light emitting device module 1020 may be disposed on the body case 1031 and electrically connected to the power supply device 1033.
  • the substrate 1023 is not limited as long as it can support the light emitting device 1021.
  • the substrate 1023 may be a printed circuit board including wiring.
  • the substrate 1023 may have a shape corresponding to the fixing portion of the upper portion of the body case 1031 so as to be stably fixed to the body case 1031.
  • the light emitting device 1021 may include at least one of the light emitting devices according to the embodiments of the present invention described above.
  • the diffusion cover 1010 may be disposed on the light emitting device 1021, and may be fixed to the body case 1031 to cover the light emitting device 1021.
  • the diffusion cover 1010 may have a translucent material and may adjust the directivity of the lighting device by adjusting the shape and the light transmittance of the diffusion cover 1010. Therefore, the diffusion cover 1010 may be modified in various forms according to the purpose of use of the lighting device and the application aspect.
  • 67 is a cross-sectional view for describing an example in which the light emitting device according to the embodiments of the present invention is applied to a display device.
  • the display device includes a display panel 2110, a backlight unit providing light to the display panel 2110, and a panel guide supporting a lower edge of the display panel 2110.
  • the display panel 2110 is not particularly limited and may be, for example, a liquid crystal display panel including a liquid crystal layer.
  • a gate driving PCB for supplying a driving signal to the gate line may be further located at the edge of the display panel 2110.
  • the gate driving PCB is not configured in a separate PCB, but may be formed on the thin film transistor substrate.
  • the backlight unit includes a light source module including at least one substrate and a plurality of light emitting devices 2160.
  • the backlight unit may further include a bottom cover 2180, a reflective sheet 2170, a diffusion plate 2131, and optical sheets 2130.
  • the bottom cover 2180 may be opened upward to accommodate the substrate, the light emitting device 2160, the reflective sheet 2170, the diffusion plate 2131, and the optical sheets 2130.
  • the bottom cover 2180 may be combined with the panel guide.
  • the substrate may be disposed under the reflective sheet 2170 and be surrounded by the reflective sheet 2170.
  • the present invention is not limited thereto, and when the reflective material is coated on the surface, the reflective material may be positioned on the reflective sheet 2170.
  • the substrate may be formed in plural, and the plurality of substrates may be arranged in a side-by-side arrangement, but is not limited thereto.
  • the light emitting device 2160 may include at least one of the light emitting devices according to the embodiments of the present invention described above.
  • the light emitting devices 2160 may be regularly arranged in a predetermined pattern on the substrate.
  • a lens 2210 may be disposed on each light emitting device 2160 to improve uniformity of light emitted from the plurality of light emitting devices 2160.
  • the diffusion plate 2131 and the optical sheets 2130 are positioned on the light emitting device 2160. Light emitted from the light emitting device 2160 may be supplied to the display panel 2110 in the form of a surface light source through the diffusion plate 2131 and the optical sheets 2130.
  • the light emitting device according to the embodiments of the present invention may be applied to the direct type display device as the present embodiment.
  • 68 is a cross-sectional view illustrating an example in which a light emitting device according to an embodiment is applied to a display device.
  • the display device including the backlight unit includes a display panel 3210 on which an image is displayed and a backlight unit disposed on a rear surface of the display panel 3210 to irradiate light.
  • the display apparatus includes a frame 240 that supports the display panel 3210 and accommodates the backlight unit, and covers 3240 and 3280 that surround the display panel 3210.
  • the display panel 3210 is not particularly limited and may be, for example, a liquid crystal display panel including a liquid crystal layer.
  • a gate driving PCB for supplying a driving signal to the gate line may be further located at an edge of the display panel 3210.
  • the gate driving PCB is not configured in a separate PCB, but may be formed on the thin film transistor substrate.
  • the display panel 3210 may be fixed by covers 3240 and 3280 positioned at upper and lower portions thereof, and the cover 3280 positioned at lower portions thereof may be coupled to the backlight unit.
  • the backlight unit for providing light to the display panel 3210 may include a lower cover 3270 having a portion of an upper surface thereof, a light source module disposed on one side of the lower cover 3270, and positioned in parallel with the light source module to provide point light. And a light guide plate 3250 for converting to surface light.
  • the backlight unit according to the present exemplary embodiment is disposed on the light guide plate 3250 and is disposed below the light guide plate 3250 and the optical sheets 3230 for diffusing and condensing light.
  • the display apparatus may further include a reflective sheet 3260 reflecting in the direction of the display panel 3210.
  • the light source module includes a substrate 3220 and a plurality of light emitting devices 3110 spaced apart from each other by a predetermined interval on one surface of the substrate 3220.
  • the substrate 3220 is not limited as long as it supports the light emitting device 3110 and is electrically connected to the light emitting device 3110.
  • the substrate 3220 may be a printed circuit board.
  • the light emitting device 3110 may include at least one light emitting device according to the embodiments of the present invention described above. Light emitted from the light source module is incident to the light guide plate 3250 and is supplied to the display panel 3210 through the optical sheets 3230. Through the light guide plate 3250 and the optical sheets 3230, the point light sources emitted from the light emitting devices 3110 may be transformed into surface light sources.
  • the light emitting device according to the embodiments of the present invention may be applied to the edge type display device as the present embodiment.
  • 69 is a cross-sectional view illustrating an example in which a light emitting device according to an embodiment of the present invention is applied to a head lamp.
  • the head lamp includes a lamp body 4070, a substrate 4020, a light emitting device 4010, and a cover lens 4050. Furthermore, the head lamp may further include a heat dissipation unit 4030, a support rack 4060, and a connection member 4040.
  • the substrate 4020 is fixed by the support rack 4060 and spaced apart from the lamp body 4070.
  • the substrate 4020 is not limited as long as it is a substrate capable of supporting the light emitting device 4010.
  • the substrate 4020 may be a substrate having a conductive pattern such as a printed circuit board.
  • the light emitting device 4010 is positioned on the substrate 4020 and may be supported and fixed by the substrate 4020.
  • the light emitting device 4010 may be electrically connected to an external power source through the conductive pattern of the substrate 4020.
  • the light emitting device 4010 may include at least one light emitting device according to the embodiments of the present invention described above.
  • the cover lens 4050 is positioned on a path along which light emitted from the light emitting element 4010 travels.
  • the cover lens 4050 may be disposed spaced apart from the light emitting element 4010 by the connecting member 4040, and may be disposed in a direction to provide light emitted from the light emitting element 4010. Can be.
  • the connection member 4040 may fix the cover lens 4050 with the substrate 4020 and may be disposed to surround the light emitting device 4010 to serve as a light guide for providing the light emitting path 4045.
  • connection member 4040 may be formed of a light reflective material or coated with a light reflective material.
  • the heat dissipation unit 4030 may include a heat dissipation fin 4031 and / or a heat dissipation fan 4033, and emits heat generated when the light emitting device 4010 is driven to the outside.
  • the light emitting device may be applied to the head lamp, in particular, a vehicle head lamp as in the present embodiment.

Abstract

본 발명의 일 실시예에 따른 발광 소자는, 개구부를 갖는 투명 전극을 갖고, 투명 전극은 개구부의 측면에 돌출부를 갖는다. 제2 전극 패드는 투명 전극의 개구부 상에 배치되며, 상기 돌출부와 접한다. 이에 따라, 제2 전극 패드의 박리를 방지하여 발광 소자의 신뢰성을 향상시킬 수 있다.

Description

발광 소자
본 발명은 발광 소자에 관한 것으로, 특히 전극을 포함하는 발광 소자에 관한 것이다.
질화물계 반도체를 이용하는 발광 소자에 있어서, 질화물계 p형 반도체층은 n형 반도체층에 비해 상대적으로 낮은 전기 도전성을 갖는다. 이로 인하여, p형 반도체층에서 전류가 수평방향으로 효과적으로 분산되지 않아, 반도체층의 특정 부분에 전류가 집중되는 현상이 발생한다(current crowding). 반도체층 내에서 전류가 집중되는 경우, 발광 다이오드가 정전기 방전에 취약해 지고, 누설 전류 및 효율 드룹이 발생할 수 있다.
전류를 발광 영역 전체에 고르게 분산시킴으로써, 발광 소자의 발광 효율을 향상시킬 수 있고, 전류 집중에 의한 발열을 감소시켜 발광 소자의 수명 및 신뢰성을 향상시킬 수 있다.
이에, 전류를 효율적으로 분산시키기 위하여 p형 반도체층 상에 ITO와 같은 투명 전극 및 전류 차단층을 형성하는 기술이 종래에 개시된 바 있다. 그러나 전류 차단층 및 투명 전극만으로 p형 반도체층 전체에 고르게 전류를 분산시키는 것에는 한계가 있다. 아울러, 투명 전극과 p형 전극 간의 접합성이 좋지 않아, 상기 p형 전극에 와이어를 접합하는 경우, 와이어가 단선되거나 p형 전극이 박리(peeling)되는 현상이 발생한다. 따라서, p형 전극 주변의 불량으로 인한 발광 소자의 불량률이 증가하여, 발광 소자의 신뢰성 및 생산 수율이 저하된다.
또한, 발광 소자의 구동 시, 전류를 효율적으로 분산시키기 위하여, 각각 전극 패드 및 전극 연장부를 갖는 p형 전극과 n형 전극의 배치를 다양하게 하는 기술이 개시된 바 있다. 그러나 상기 전극들에 광이 흡수되어 발생하는 광 손실로 인하여, 전극들의 배치 변경을 통한 전류 분산 효율 증가에 한계가 있다.
본 발명이 해결하고자 하는 과제는, 발광 영역 전체에 걸쳐 전류를 고르게 분산시킬 수 있는 구조를 갖는 발광 소자를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 전극, 특히 전극 패드의 불량으로 인한 발광 소자의 신뢰성의 감소를 최소화할 수 있는 발광 소자를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 정전기 방전에 의한 불량 및 전기적 쇼트에 대한 신뢰성이 높은 발광 소자를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 발광 영역 전체에 걸쳐 전류를 고르게 분산시킬 수 있는 구조를 가지며, 아울러, 전류 분산 향상을 위한 구조로 인한 광 손실을 방지할 수 있는 발광 소자를 제공하는 것이다.
본 발명의 일 측면에 따른 발광 소자는, 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 위치하며, 활성층과 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사; 상기 메사 상에 부분적으로 위치하는 전류 차단층; 상기 메사 상에 위치하며, 상기 전류 차단층을 덮되, 상기 전류 차단층을 적어도 부분적으로 노출시키는 개구부를 포함하는 투명 전극; 상기 메사 상에 부분적으로 위치하는 절연층; 상기 절연층 상에 위치하여 상기 제2 도전형 반도체층과 절연되며, 제1 전극 패드 및 상기 제1 전극 패드로부터 연장되는 제1 전극 연장부를 포함하는 제1 전극; 및 상기 전류 차단층 상에 위치하며, 상기 투명 전극의 개구부 상에 위치하는 제2 전극 패드 및 상기 제2 전극 패드로부터 연장되는 제2 전극 연장부를 포함하는 제2 전극을 포함하고, 상기 투명 전극은 상기 개구부의 측면으로부터 돌출된 적어도 하나의 돌출부를 포함하되, 상기 돌출부의 적어도 일부는 상기 제2 전극 패드와 상기 전류 차단층 사이에 위치하고, 상기 메사는 그 측면에 형성된 적어도 하나의 그루브를 포함하되, 상기 그루브를 통해 제1 도전형 반도체층이 부분적으로 노출되고, 상기 절연층은 상기 그루브의 측면을 적어도 부분적으로 덮고, 상기 제1 전극 연장부는 상기 그루브를 통해 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함한다.
상기 절연층은 상기 그루브에 노출된 활성층의 측면을 덮을 수 있다.
또한, 상기 절연층은 상기 그루브 상부의 주변을 더 덮을 수 있다.
상기 절연층은 상기 투명 전극과 이격될 수 있다.
상기 적어도 하나의 그루브는 서로 이격된 복수의 그루브들을 포함할 수 있고, 상기 복수의 그루브들은 상기 발광 소자의 일 측면에 위치할 수 있다.
상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함할 수 있다.
나아가, 상기 패드 컨택 부분과 상기 적어도 하나의 연장부 컨택 부분은 상기 발광 소자의 일 측면에 위치할 수 있다.
상기 절연층은 상기 제1 전극 패드 주변의 메사 측면을 덮는 적어도 하나의 확장부를 포함할 수 있다.
상기 절연층 중, 상기 제1 전극 연장부의 아래에 위치하는 부분은 상기 메사의 측면에 의해 정의되는 영역 내에 위치할 수 있다.
상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함할 수 있고, 상기 적어도 하나의 확장부는 복수의 확장부들을 포함하며, 상기 패드 컨택 부분은 상기 복수의 확장부들의 사이 영역에 위치할 수 있다.
상기 적어도 하나의 그루브는 원호 형태의 평면 형상을 가질 수 있다.
상기 전류 차단층은 상기 제2 전극 패드의 아래에 위치하는 패드 전류 차단층, 및 상기 제2 전극 연장부의 아래에 위치하는 연장부 전류 차단층을 포함할 수 있고, 상기 투명 전극의 개구부를 통해 상기 패드 전류 차단층이 적어도 부분적으로 노출될 수 있다.,
상기 투명 전극의 개구부의 측면은 상기 패드 전류 차단층 상에 위치할 수 있다.
상기 투명 전극의 개구부의 측면은 상기 패드 전류 차단층으로부터 이격될 수 있다.
상기 제2 전극 연장부와 상기 연장부 전류 차단층 사이에는 투명 전극이 개재될 수 있다.
상기 패드 전류 차단층의 중심부를 원점으로 하여 x축과 y축을 갖는 가상의 좌표계를 기준으로, 상기 제2 전극 패드와 상기 제2 전극 연장부의 계면은 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면 중 적어도 하나 상에 위치할 수 있고, 상기 적어도 하나의 돌출부는 상기 계면이 위치하는 부분을 제외하고, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면 중 적어도 하나 상에 위치할 수 있다.
상기 계면은 상기 y(-)축 또는 상기 제4 사분면 상에 위치할 수 있고, 상기 돌출부는 x(+)축, x(-)축 및 y(+)축 상에 위치할 수 있다.
상기 제1 전극 패드는 상기 발광 소자의 일 측면에 인접하여 위치하고, 상기 제1 전극 연장부는 상기 제1 전극 패드로부터 상기 발광 소자의 타 측면을 향하여 연장될 수 있고, 상기 제2 전극 패드는 상기 발광 소자의 타 측면에 인접하여 위치하고, 상기 제2 전극 연장부는 상기 제2 전극 패드로부터 상기 발광 소자의 일 측면을 향하여 연장될 수 있다.
본 발명의 또 다른 측면에 따른 발광 소자는, 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 위치하며, 활성층과 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사; 상기 메사 상에 위치하는 투명 전극; 상기 메사 상에 부분적으로 위치하는 절연층; 및 상기 절연층 상에 위치하여 상기 제2 도전형 반도체층과 절연되며, 제1 전극 패드 및 상기 제1 전극 패드로부터 연장되는 제1 전극 연장부를 포함하는 제1 전극을 포함하고, 상기 메사는 그 측면에 형성된 적어도 하나의 그루브를 포함하되, 상기 그루브를 통해 제1 도전형 반도체층이 부분적으로 노출되고, 상기 절연층은 상기 그루브의 측면을 적어도 부분적으로 덮어 상기 그루브에 노출된 상기 활성층의 측면을 덮고, 상기 제1 전극 연장부는 상기 그루브를 통해 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함할 수 있다.
상기 절연층은 상기 그루브 상부의 주변을 더 덮을 수 있다.
상기 절연층은 상기 투명 전극과 이격될 수 있다.
상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함할 수 있다.
본 발명의 또 다른 측면에 따른 발광 소자는, 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 위치하며, 활성층 및 상기 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사; 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 상기 메사 상에 위치하는 제2 도전성 산화물 전극; 및 상기 제2 도전성 산화물 전극 상에 위치하는 제2 전극을 포함하고, 상기 제1 전극은 제1 전극 패드 및 상기 제1 전극 패드로부터 연장된 제1 전극 연장부를 포함하며, 상기 제1 전극 연장부는, 적어도 하나의 금속 전극 연장부 및 적어도 하나의 제1 도전성 산화물 전극 연장부를 포함하고, 상기 금속 전극 연장부는 상기 제1 전극 패드의 일 측면으로부터 연장되고, 상기 제1 도전성 산화물 전극 연장부는 상기 제1 전극 패드의 일 측면 외에 다른 측면으로부터 연장된다.
제1 도전성 산화물 전극 연장부는 ZnO 및 금속 도펀트를 포함하는 ZnO 중 적어도 하나를 포함할 수 있고, 상기 금속 도펀트는 Ga을 포함할 수 있다.
상기 제1 전극 연장부는 복수의 금속 전극 연장부 및/또는 복수의 제1 도전성 산화물 전극 연장부를 포함할 수 있다.
상기 금속 전극 연장부와 상기 제1 도전성 산화물 전극 연장부를 서로 반대 방향으로 연장될 수 있다.
상기 금속 전극 연장부와 상기 제1 도전성 산화물 전극 연장부는 서로 다른 선폭을 가질 수 있다.
상기 금속 전극 연장부의 선폭은 상기 제1 도전성 산화물 전극 연장부의 선폭보다 클 수 있다.
상기 제1 도전성 산화물 전극 연장부의 선폭은 상기 금속 전극 연장부의 선폭보다 클 수 있다.
상기 제1 도전성 산화물 전극 연장부의 일 측면은 상기 제1 도전형 반도체층의 일 측면과 동일 평면을 이룰 수 있다.
상기 제1 전극 패드는 금속 전극 패드 및 제1 도전성 산화물 전극 패드를 포함할 수 있고, 상기 제1 도전성 산화물 전극 연장부는 상기 제1 도전성 산화물 전극 패드로부터 연장될 수 있다.
상기 금속 전극 패드는 상기 제1 도전성 산화물 전극 패드 상에 위치하고, 상기 제1 도전성 산화물 전극 패드의 면적은 상기 금속 전극 패드의 면적보다 클 수 있다.
상기 제1 도전성 산화물 전극 연장부의 적어도 일부는 상기 금속 전극 연장부의 적어도 일부와 접촉할 수 있다.
상기 제1 도전성 산화물 전극 연장부의 일부는 상기 금속 전극 연장부의 아래에 위치할 수 있다.
상기 제1 도전성 산화물 전극 연장부의 일부는 상기 제1 도전형 반도체층과 상기 금속 전극 연장부의 사이에 개재될 수 있고, 상기 제1 도전성 산화물 전극 연장부의 일부는 상기 제1 도전형 반도체층과 오믹 컨택을 형성할 수 있다.
상기 제1 도전형 반도체층은 상기 메사 주변에 형성된 상기 제1 도전형 반도체층의 상면의 일부가 노출된 영역을 포함할 수 있고, 상기 제1 도전성 산화물 전극 연장부는 상기 메사 주변에 노출된 제1 도전형 반도체층과 접촉할 수 있다.
상기 제1 도전성 산화물 전극 연장부는 상기 메사를 적어도 부분적으로 둘러쌀 수 있다.
상기 제1 도전성 산화물 전극 연장부는 상기 메사를 둘러싸는 폐곡선을 형성할 수 있다.
상기 발광 소자는, 상기 메사 상에 부분적으로 위치하는 절연층을 더 포함할 수 있고, 상기 금속 전극 연장부의 일부 및 상기 제1 전극 패드의 적어도 일부는 상기 절연층 상에 위치하되, 상기 금속 전극 연장부는 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함할 수 있다.
상기 메사는 그 측면으로부터 함입된 적어도 하나의 그루브를 포함할 수 있으며, 상기 그루브를 통해 상기 제1 도전형 반도체층의 상면이 부분적으로 노출될 수 있고, 상기 절연층은 상기 그루브를 통해 노출된 제1 도전형 반도체층의 상면을 노출시키는 개구부를 포함할 수 있으며, 상기 연장부 컨택 부분은 상기 절연층의 개구부를 통해 상기 제1 도전형 반도체층의 상면과 전기적으로 접촉될 수 있다.
상기 제1 도전성 산화물 전극 연장부는 상기 메사를 부분적으로 둘러싸되, 상기 메사의 그루브 주변에는 위치하지 않을 수 있다.
상기 제1 도전성 산화물 전극 연장부의 일부는 상기 그루브에 노출된 제1 도전형 반도체층의 상면과 상기 금속 전극 연장부의 일부의 사이에 개재될 수 있고, 상기 제1 도전성 산화물 전극 연장부의 상기 일부는 상기 그루브에 노출된 제1 도전형 반도체층의 상면과 오믹 컨택할 수 있다.
본 발명의 실시예들에 따르면, 연장부 컨택 부분을 갖는 제2 전극 연장부를 통해 수평 방향으로의 전류 분산 효율(performance)을 향상시킬 수 있고, 메사의 그루브에 노출된 활성층 측면을 절연층으로 커버하여, 정전기 방전에 의한 발광 소자의 발광 효율 감소 및 불량을 방지할 수 있다. 또한, 절연층의 확장부를 통해 제1 전극 패드 주변에서의 전기적 쇼트를 방지할 수 있다. 나아가, 제2 전극 패드의 구조적 안정성을 향상시킬 수 있고, 특히, 볼 본딩에 따른 제2 전극 패드 주변에서의 불량을 방지할 수 있다.
또한, 제1 도전성 산화물 전극 연장부를 포함하는 제1 전극을 갖는 발광 소자가 개시되며, 제1 도전성 산화물 전극 연장부를 통해 전기적 특성 및 광학적 특성이 개선된 발광 소자가 제공될 수 있다.
도 1a는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 1b는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 2는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 3은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 확대 평면도들이다.
도 4는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 확대 단면도들이다.
도 5 및 도 6은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 확대 평면도들 및 확대 단면도들이다.
도 7 및 도 8은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 확대 평면도들 및 확대 단면도들이다.
도 9 및 도 10은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 확대 평면도들 및 확대 단면도들이다.
도 11은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 확대 평면도들이다.
도 12 내지 도 14는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다.
도 15 내지 도 17은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다.
도 18의 (a) 내지 (f)는 비교예들에 따른 제2 전극 패드 주변의 구조를 도시한다.
도 19 내지 도 21은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다.
도 22 내지 도 24는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다.
도 25 내지 도 27은 본 발명의 또 다른 실시예에 따른 발광 소자를 비교예의 발광 소자와 비교하기 위한 실험값을 나타내는 그래프들이다.
도 28a 내지 도 38은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 평면도들, 확대 평면도들, 단면도들 및 확대 단면도들이다.
도 39는 본 발명의 또 다른 실시예들에 따른 발광 소자의 제2 전극 구조를 설명하기 위한 확대 평면도이다.
도 40은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 단면도이다.
도 41은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 평면도이다.
도 42는 본 발명의 또 다른 실시예들에 따른 발광 소자의 투광성 도전층을 설명하기 위한 평면도이다.
도 43은 본 발명의 또 다른 실시예들에 따른 발광 소자의 투광성 도전층을 설명하기 위한 평면도이다.
도 44 내지 도 47은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 48의 (a) 및 (b)은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 확대 평면도들이다.
도 49의 (a) 및 (b)는 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 확대 단면도들이다.
도 50 및 도 51은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 평면도들이다.
도 52 내지 도 54는 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 55 및 도 56은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 평면도들이다.
도 57 내지 도 59는 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 60 및 도 61은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 평면도들이다.
도 62 내지 도 64는 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 65의 (a) 및 (b)은 본 발명의 또 다른 실시예들에 따른 발광 소자를 설명하기 위한 확대 평면도들이다.
도 66은 본 발명의 실시예들에 따른 발광 소자를 조명 장치에 적용한 예를 설명하기 위한 분해 사시도이다.
도 67은 본 발명의 실시예들에 따른 발광 소자를 디스플레이 장치에 적용한 예를 설명하기 위한 단면도이다.
도 68은 본 발명의 실시예들에 따른 발광 소자를 디스플레이 장치에 적용한 예를 설명하기 위한 단면도이다.
도 69는 본 발명의 실시예들에 따른 발광 소자를 헤드 램프에 적용한 예를 설명하기 위한 단면도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 있는 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이하 설명되는 반도체층들에 대한 각 조성비, 성장 방법, 성장 조건, 두께 등은 예시에 해당하며, 하기 기재된 바에 따라 본 발명이 제한되는 것은 아니다. 예를 들어, AlGaN로 표기되는 경우, Al과 Ga의 조성비는 통상의 기술자의 필요에 따라 다양하게 적용될 수 있다. 또한, 후술하는 실시예들에서, ZnO로 지칭되는 물질은 소정의 결정 구조를 갖는 단결정 ZnO를 포함할 수 있으며, 예를 들어, 우르짜이트(wurtzite) 결정 구조를 갖는 ZnO를 포함할 수 있다. 또한, 단결정 ZnO는 열역학적 진성 결함(intrinsic defect)을 포함하는 단결정일 수 있고, 또한, 제조 공정 등에서 발생할 수 있는 미소량의 결함, 예를 들어, 공공 결함, 전위(dislocation), 그레인 바운더리(grain boundary) 등을 포함하는 단결정일 수 있다. 또한, 단결정 ZnO는 미소량의 불순물 또는 도펀트를 포함하는 단결정일 수 있다. 즉, 의도하지 않거나 피할 수 없는 결함 또는 불순물을 포함하는 단결정 ZnO 및 도펀트를 포함하는 단결정 ZnO 역시 본 명세서에서 지칭하는 단결정 ZnO에 모두 포함될 수 있다.
도 1a 및 도 2 내지 도 4는 본 발명의 일 실시예에 다른 발광 소자를 설명하기 위한 도면들이다. 도 1a는 본 발명의 일 실시예에 따른 발광 소자의 평면도이고, 도 2 (a) 내지 (c)는 각각 도 1 (a)의 A-A'선, B-B'선 및 C-C'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 3의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시하며, 도 4의 (a) 및 (b)는 각각 도 3(a)의 D-D'선 및 E-E'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다.
도 1a 및 도 2 내지 도 4를 참조하면, 상기 발광 소자는 발광 구조체(120), 투명 전극(140), 제1 전극(150) 및 제2 전극(160)을 포함한다. 나아가, 상기 발광 소자는, 기판(110) 및 전류 차단층(130)을 더 포함할 수 있다. 또한, 상기 발광 소자는 제1 내지 제4 측면(각각, 101, 102, 103, 104)을 포함할 수 있다.
기판(110)은 절연성 또는 도전성 기판일 수 있다. 또한, 기판(110)은 발광 구조체(120)를 성장시키기 위한 성장 기판일 수 있으며, 사파이어 기판, 실리콘 카바이드 기판, 실리콘 기판, 질화갈륨 기판, 질화알루미늄 기판 등을 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 기판(110)은 발광 구조체(120)를 지지하기 위한 2차 기판일 수도 있다. 예를 들어, 기판(110)은 사파이어 기판일 수 있으며, 특히, 상면이 패터닝된 패턴된 사파이어 기판(patterned sapphire substrate; PSS)일 수 있다. 기판(110)이 패턴된 사파이어 기판인 경우, 기판(110)은 그 상면에 형성된 복수의 돌출부(110p)들을 포함할 수 있다.
본 실시예에서, 제1 도전형 반도체층(121)이 기판(110) 상에 위치하는 것으로 설명하나, 기판(110)이 반도체층들(121, 123, 125)을 성장시킬 수 있는 성장 기판인 경우, 반도체층(121, 123, 125)들을 성장시킨 후에 물리적 및/또는 화학적 방법을 통해 분리 또는 제거되어 생략될 수도 있다.
발광 구조체(120)는 제1 도전형 반도체층(121), 제1 도전형 반도체층(121)상에 위치하는 제2 도전형 반도체층(125), 및 제1 도전형 반도체층(121)과 제2 도전형 반도체층(125)의 사이에 위치하는 활성층(123)을 포함할 수 있다. 또한, 발광 구조체(120)는 제1 도전형 반도체층(121) 상에 위치하며, 활성층(123) 및 제2 도전형 반도체층(125)을 포함하는 메사(120m)를 포함할 수 있다.
제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 MOCVD와 같은 공지의 방법을 이용하여 챔버 내에서 성장되어 형성될 수 있다. 또한, 제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 Ⅲ-Ⅴ 계열 질화물계 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 제1 도전형 반도체층(121)은 n형 불순물 (예를 들어, Si, Ge. Sn)을 포함할 수 있고, 제2 도전형 반도체층(125)은 p형 불순물 (예를 들어, Mg, Sr, Ba)을 포함할 수 있다. 또한, 그 반대일 수도 있다. 활성층(123)은 다중양자우물 구조(MQW)를 포함할 수 있고, 원하는 파장을 방출하도록 질화물계 반도체의 조성비가 조절될 수 있다. 특히, 본 실시예에 있어서, 제2 도전형 반도체층(125)은 p형 반도체층일 수 있다.
메사(120m)는 제1 도전형 반도체층(121)의 일부 영역 상에 위치하며, 이에 따라, 메사(120m)가 형성되지 않는 영역에는 제1 도전형 반도체층(121)의 표면이 노출될 수 있다. 메사(120m)은 제2 도전형 반도체층(125)과 활성층(123)을 부분적으로 식각함으로써 형성될 수 있다. 메사(120m)의 형태는 제한되지 않으나, 예를 들어, 도시된 바와 같이, 메사(120m)는 제1 도전형 반도체층(121)의 측면을 따라 형성될 수 있다. 메사(120m)는 경사진 측면을 가질 수 있으나, 제1 도전형 반도체층(121)의 상면에 대해 수직인 측면을 가질 수도 있다. 또한, 본 실시예에 있어서, 메사(120m)는 그 측면으로부터 함입된 적어도 하나의 그루브(120g)를 포함할 수 있다. 후술하는 바와 같이, 그루브(120g)는 제1 전극(150)과 제1 도전형 반도체층(121)이 전기적으로 접촉하는 영역을 제공할 수 있다.
또한, 메사(120m)는 도 1b에 도시된 바와 같이, 그 측면에 형성될 요철 패턴(127)을 더 포함할 수도 있다. 이에 따라, 발광 소자의 광 추출 효율이 향상될 수 있다.
다만, 본 발명이 이에 한정되는 것은 아니며, 제1 도전형 반도체층(121)이 노출된 영역은 형성되지 않을 수도 있다. 발광 소자가 도시된 바와 같은 수평형 구조가 아닌 다른 구조일 때(예를 들어, 수직형 구조), 제1 도전형 반도체층(121)의 상면은 노출되지 않을 수도 있다.
전류 차단층(130)은 제2 도전형 반도체층(125) 상에 적어도 부분적으로 위치한다. 전류 차단층(130)은 제2 도전형 반도체층(125) 상에 제2 전극(160)이 위치하는 부분에 대응하여 위치할 수 있다. 전류 차단층(130)은 패드 전류 차단층(131) 및 연장부 전류 차단층(133)을 포함할 수 있다. 패드 전류 차단층(131)과 연장부 전류 차단층(133)은 각각 제2 전극 패드(161) 및 제2 전극 연장부(163)의 위치에 대응하여 위치할 수 있다. 따라서, 도시된 바와 같이, 패드 전류 차단층(131)은 발광 소자의 제1 측면(101)에 인접하여 배치되고, 연장부 전류 차단층(133)은 제1 측면(101)으로부터 제3 측면(103)으로 향하는 방향으로 연장되도록 배치될 수 있다.
전류 차단층(130)은 제2 전극(160)으로 공급된 전류가 반도체층에 직접적으로 전달되어, 전류가 집중되는 것을 방지할 수 있다. 따라서, 전류 차단층(130)은 절연성을 가질 수 있고, 절연성 물질을 포함할 수 있으며, 단일층 또는 다중층으로 형성될 수도 있다. 예를 들어, 전류 차단층(130)은 SiOx 또는 SiNx을 포함할 수 있고, 또는 굴절률이 다른 절연성 물질층들이 적층된 분포 브래그 반사기를 포함할 수도 있다. 즉, 전류 차단층(130)은 광 투과성을 가질 수도 있고, 광 반사성을 가질 수도 있으며, 또한 선택적 광 반사성을 가질 수도 있다.
또한, 전류 차단층(130)은 전류 차단층(130) 상에 형성되는 제2 전극(160)보다 큰 면적을 가질 수 있다. 이에 따라, 제2 전극(160)은 전류 차단층(130)이 형성되는 영역 내 상에 위치할 수 있다.
투명 전극(140)은 제2 도전형 반도체층(125) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 상면의 일부, 및 전류 차단층(130)의 일부를 덮는다. 투명 전극(140)은 패드 전류 차단층(131)을 부분적으로 노출시키는 개구부(140a)를 포함할 수 있다. 또한, 투명 전극(140)은 상기 개구부(140a)의 측면(140g)으로부터 돌출된 돌출부(140p)를 포함한다. 개구부(140a)의 측면(140g)은 전류 차단층(130)으로부터 이격될 수 있으며, 전류 차단층(130)의 측면을 따라 형성될 수 있다. 한편, 돌출부(140p)는 부분적으로 전류 차단층(130)과 접할 수 있으며, 또한, 전류 차단층(130)의 측면 및 상면의 일부를 덮을 수 있다. 돌출부(140p)는 복수로 형성될 수 있다. 투명 전극(140)은 광 투과성 및 전기적 도전성을 갖는 물질을 포함할 수 있고, 예를 들어, ITO, ZnO, IZO등과 같은 도전성 산화물 및 Ni/Au와 같은 광 투과성 금속층 중 적어도 하나를 포함할 수도 있다. 또한, 투명 전극(140)은 제2 도전형 반도체층(125)과 오믹 컨택을 형성할 수 있다. 제2 전극(160)이 제2 도전형 반도체층(125)과 직접적으로 접촉하지 않으므로, 투명 전극(140)을 통해 더욱 효과적으로 전류가 분산될 수 있다. 투명 전극(140)과 관련하여, 도 3 및 도 4를 통해 후술하여 더욱 상세하게 설명한다.
제1 전극(150)은 제1 도전형 반도체층(121) 상에 위치할 수 있으며, 제1 도전형 반도체층(121)과 전기적으로 연결된다. 제1 전극(150)은 제1 전극 패드(151) 및 제1 전극 연장부(153)를 포함할 수 있다. 제1 전극(150)은 제2 도전형 반도체층(125)과 활성층(123)이 부분적으로 제거되어 노출된 제1 도전형 반도체층(121)의 상면과 오믹 컨택함으로써, 제1 도전형 반도체층(121)과 전기적으로 연결될 수 있다.
본 실시예에 있어서, 제1 전극 패드(151) 및 제1 전극 연장부(153)의 일부는 메사(120m) 상에 위치할 수 있고, 이때, 메사(120m)와 제1 전극(150)의 일부 사이에는 절연층(170)이 개재될 수 있다. 제1 전극 패드(151)은 발광 소자의 제3 측면(103)에 인접하여 배치될 수 있고, 제1 전극 연장부(153)는 제3 측면(103) 및 제2 측면(102)을 따라 연장될 수 있다. 한편, 절연층(170)은 제1 전극 패드(151)의 아래, 및 메사(120m)의 상면에 위치하는 제1 전극 연장부(153)의 일부의 아래에 위치할 수 있다. 이에 따라, 제1 전극(150)과 제2 도전형 반도체층(125)은 서로 절연된다. 메사(120m)의 그루브(120g)는 절연층(170)에 덮이지 않고 노출될 수 있으며, 그루브(120g)에 의해 노출된 제1 도전형 반도체층(121) 부분과 제1 전극 연장부(153)가 전기적으로 접촉된다. 이와 같이, 제1 전극 패드(151) 부분은 제1 도전형 반도체층(121)에 직접적으로 접촉되지 않고, 제1 전극 연장부(153)의 일부가 제1 도전형 반도체층(121)에 접촉되어 전기적 연결을 형성함으로써, 발광 소자 구동 시 전류가 수평 방향으로 원활하게 분산될 수 있다. 한편, 제1 전극(150)의 배치는 이에 한정되는 것은 아니며, 발광 소자의 형태에 따라 다양하게 변형 및 변경될 수 있다.
제1 전극(150)은 제1 도전형 반도체층(121)에 외부의 전원을 공급하는 역할을 할 수 있고, 제1 전극(150)은 Ti, Pt, Au, Cr, Ni, Al 등과 같은 금속 물질을 포함할 수 있다. 또한, 제1 전극(150)은 단일층 또는 다중층으로 이루어질 수 있다.
제2 전극(160)은 제2 도전형 반도체층(125) 상에 위치하되, 제2 전극(160)의 적어도 일부는 전류 차단층(130)이 위치하는 영역 상에 위치한다. 제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극 패드(161)와 제2 전극 연장부(163)는 각각 패드 전류 차단층(131) 및 연장부 전류 차단층(133) 상에 위치할 수 있다. 따라서, 제2 전극(160)과 전류 차단층(130) 사이에는 투명 전극(140)의 일부가 개재될 수 있다.
특히, 제2 전극 패드(161)는 투명 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 패드(161)의 형상은 제한되지 않으나, 예컨대, 도시된 바와 같이 대체로 원형으로 형성될 수 있다. 이에 따라, 전류 차단층(130)의 패드 전류 차단층(131) 역시 제2 전극 패드(161) 형상과 유사한 원형으로 형성될 수 있고, 투명 전극(140)의 개구부(140a) 역시 대체로 유사한 원형으로 형성될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다. 제2 전극 패드(161)의 위치는 제한되지 않으나, 전류를 원활하게 분산시켜 발광 소자의 활성층(123) 전면에서 발광이 이루어지도록 배치될 수 있다. 예컨대, 도시된 바와 같이, 제2 전극 패드(153)는 제1 전극 패드(151)가 인접하여 위치하는 제3 측면(103)에 반대하는 제1 측면(101)에 인접하여 위치할 수 있다.
제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 제3 측면(103) 측으로 향하는 방향으로 연장될 수 있다. 또한, 제2 전극 연장부(163)가 연장되는 방향은 제2 전극 연장부(163)에 연장함에 따라 변화할 수 있다. 예컨대, 제2 전극 연장부(163)의 말단은 발광 소자의 제3 측면(103)과 제4 측면(104)의 사이 부분을 향하도록 휘어질 수 있다. 이는 제1 전극 패드(151)와 제2 전극 연장부(163)의 거리를 고려하여 다양하게 설계될 수 있다. 제2 전극 연장부(163)의 적어도 일부와 연장부 전류 차단층(133)의 사이에는 투명 전극(140)이 개재되며, 이에 따라, 제2 전극 연장부(163)는 투명 전극(140)과 전기적으로 연결된다.
한편, 제2 전극(160)의 배치는 이에 한정되는 것은 아니며, 발광 소자의 형태에 따라 다양하게 변형 및 변경될 수 있다.
제2 전극(160)은 도전성 물질을 포함할 수 있고, 예컨대, Ti, Pt, Au, Cr, Ni, Al, Mg 등과 같은 금속성 물질을 포함할 수 있으며, 단일층 또는 다중층 구조로 형성될 수 있다. 제2 전극(160)이 다중층으로 형성되는 경우, Ti층/Au층, Ti층/Pt층/Au층, Cr층/Au층, Cr층/Pt층/Au층, Ni층/Au층, Ni층/Pt층/Au층, 및 Cr층/Al층/Cr층/Ni층/Au층의 금속 적층 구조 중 적어도 하나를 포함할 수 있다.
상술한 바와 같이, 제2 전극(160)의 일부와 전류 차단층(130)의 사이에 투명 전극(140)이 개재되어, 제2 전극(160)과 투명 전극(140)이 접촉하는 부분을 통해 전류가 도통된다. 따라서, 전류가 효과적으로 분산될 수 있도록, 제2 전극(160)과 투명 전극(140)이 접촉하는 영역이 조절될 수 있으며, 이와 관련하여, 도 3 및 도 4를 참조하여 설명한다. 나아가, 도 5 내지 도 11을 참조하여, 다양한 실시예들에 따른 발광 소자들에 대해 설명한다.
먼저, 제2 전극 패드 주변의 구조와 관련하여, 비교예들을 설명한다. 도 18의 (a) 내지 (f)는 비교예들에 따른 제2 전극 패드 주변의 구조를 도시한다.
먼저, 도 18의 (a) 및 (b)는 비교예 1에 따른 제2 전극 패드(61)의 구조를 도시한다. 도 18의 (a) 및 (b)를 참조하면, 투명 전극(40)의 개구부는 패드 전류 차단층(31) 상에 형성되며, 따라서, 투명 전극(40)은 제2 전극 패드(61)의 테두리를 따라 연속적으로 제2 전극 패드(61)와 접촉한다. 비교예 1의 구조에 따르면, 투명 전극(40)과 제2 전극 패드(61)가 접촉하는 부분에서 제2 전극 패드(61)의 박리(peeling)가 쉽게 발생하여 발광 소자의 신뢰성을 저하시킨다. 특히, 제2 전극 패드(61)의 테두리 전체가 투명 전극(40)과 접촉되므로, 제2 전극 패드(61)의 박리를 억제할 수 있는 부분이 결여되어 있다. 나아가, 제2 전극 패드(61)의 상면에 볼 본딩을 형성하는 경우, 더욱 쉽게 제2 전극 패드(61)가 박리되며, 따라서, 이러한 구조는 낮은 BST(Ball Shear Test)값을 갖는다.
도 18의 (c) 및 (d)는 비교예 2에 따른 제2 전극 패드(61)의 구조를 도시한다. 도 18의 (c) 및 (d)를 참조하면, 투명 전극(40)은 패드 전류 차단층(31)으로부터 이격되며, 제2 전극 패드(61)는 패드 전류 차단층(31) 상에 위치한다. 비교예 2의 구조에 따르면, 투명 전극(40)과 제2 전극 패드(61)과 접촉하지 않으므로, 비교예 1의 구조에 비해 높은 BST값을 가질 수 있다. 그러나, 제2 전극 패드(61)와 투명 전극(40)이 접촉되지 않아, 제2 전극 패드(61) 주변 영역의 전류 분산이 원활하게 이루어지지 않는다.
도 18의 (e) 및 (f)는 비교예 3에 따른 제2 전극 패드(61)의 구조를 도시한다. 도 18의 (e) 및 (f)를 참조하면, 패드 전류 차단층(31)은 개구부를 가지며, 투명 전극(40)이 패드 전류 차단층(31)을 덮는다. 제2 전극 패드(61)는 패드 전류 차단층(31) 상에 위치한다. 비교예 3의 구조에 따르면, 패드 전류 차단층(31) 상부의 투명 전극(40) 표면에 요철 패턴이 형성됨으로써, 상기 요철 패턴에 의해 제2 전극 패드(61)의 박리가 억제될 수 있다. 따라서, 비교예 3의 구조는 비교예 1에 비해 높은 BST값을 갖는 발광 소자를 제공할 수 있다. 그러나, 제2 전극 패드(61)가 하부의 제2 도전형 반도체층과 투명 전극(40)을 통해 직접적으로 연결되는 구조를 가져, 정전기 발생 시 정전기가 직접적으로 제2 도전형 반도체층으로 도통될 수 있다. 따라서, 비교예 3의 구조는 정전기 방전(ESD)에 대한 내성이 약해, 비교예 3의 구조를 갖는 발광 소자의 신뢰성이 저하된다.
이하, 도 3 및 도 4를 참조하여 본 발명의 실시예에 따른 제2 전극 패드(161) 주변의 구조에 관해 설명한다. 도 3의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시하며, 도 4의 (a) 및 (b)는 각각 도 3(a)의 D-D'선 및 E-E'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다. 도 3의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 3(a), 도 4(a) 및 도 4(b)를 참조하면, 투명 전극(140)의 개구부(140a)는 측면(140g)을 포함하고, 상기 측면(140g)은 패드 전류 차단층(131)으로부터 이격된다. 이때, 투명 전극(140)의 개구부(140a)는 패드 전류 차단층(131)의 측면을 따라 형성되되, 대체로 상기 패드 전류 차단층(131)의 측면 형상에 대응하도록 형성된다. 이에 따라, 패드 전류 차단층(131)과 투명 전극(140)의 이격 공간을 제외한 다른 부분들에서 투명 전극(140)과 제2 도전형 반도체층(125)이 접촉할 수 있어, 제2 도전형 반도체층(125) 상에서 전류가 수평 방향으로 고르게 분산될 수 있다.
투명 전극(140)은 적어도 하나의 돌출부(140p)를 포함하고, 돌출부(140p)는 개구부(140a)의 측면으로부터 돌출된다. 돌출부(140p)는, 도 4(a) 및 (b)에 도시된 바와 같이, 패드 전류 차단층(131)의 측면 및 상면을 부분적으로 덮으며, 패드 전류 차단층(131)과 제2 전극 패드(161)의 사이에 개재된다. 따라서, 제2 전극 패드(161)와 돌출부(140p)가 전기적으로 연결되어, 제2 전극 패드(161)와 돌출부(140p)를 통해 전류가 도통된다. 이에 따라, 돌출부(140p)가 위치하는 영역에 대한 전류 주입이 원활하게 이루어질 수 있다. 제2 전극(160)의 제2 전극 연장부(163)는 투명 전극(140)에 접촉하므로, 제2 전극 연장부(163)에 의해 제2 도전형 반도체층(125)에 대한 전류 주입이 이루어진다. 따라서, 돌출부(140p)의 개수 및 위치는 제2 전극 연장부(163)의 위치에 따라 조절될 수 있다.
구체적으로, 도 3(b)를 참조하여 설명한다. 먼저, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면을 정의한다. 상기 가상의 면은 제1 사분면(1QD), 제2 사분면(2QD), 제3 사분면(3QD) 및 제4 사분면(4QD)을 포함한다. 상기 가상의 면을 기준으로, 제2 전극 패드(161)로부터 제2 전극 연장부(163)가 연장되는 부분, 즉, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 이때, 적어도 하나의 돌출부(140p)는 상기 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 예컨대, 본 실시예에서, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD)에 위치하고, 3개의 돌출부들(140p)은 각각 제1, 제2 및 제3 사분면(1QD, 2QD, 3QD)에 위치한다. 따라서, 제4 사분면(4QD)에 대응하는 영역에는 제2 전극 연장부(163)에 의해 전류가 주입되고, 제1, 제2 및 제3 사분면(1QD, 2QD, 3QD)에 대응하는 영역들에는 돌출부(140p)들에 의해 전류가 주입될 수 있다.
한편, 제2 전극 패드(161)의 하면과 투명 전극(140)이 접하는 부분의 면적은 제2 전극 패드(161)의 전체 하면 면적에 대하여, 1% 이상 20% 이하일 수 있고, 나아가, 1.5% 이상 13% 이하일 수 있으며, 더 나아가, 3% 이상 5% 이하일 수 있다. 제2 전극 패드(161)의 하면과 투명 전극(140)이 접하는 부분의 면적을 상술한 비율로 조절함으로써, 제2 전극 패드(161)와 패드 전류 차단층(131)이 접하는 부분의 면적을 상대적으로 크게 할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)이 접하는 부분에서 발생할 수 있는 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다.
또한, 돌출부(140p)는 다양한 형상을 가질 수 있으며, 예컨대, 도시된 바와 같이 원호 내지 타원호 형상을 가질 수 있다.
본 실시예와 같이, 제2 전극 패드(161)와 패드 전류 차단층(131) 간의 계면의 일부 영역에만 투명 전극(140)이 개재됨으로써, 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다. 특히, 제2 전극 패드(161) 하면의 테두리 부분이 대부분 전류 차단층(131)에 접하고, 상기 테두리 부분의 극히 일부분만 투명 전극(140)과 접하는 구조를 갖는 제2 전극 패드(161)에 의해, 제2 전극 패드(161)의 박리가 방지되고, BST값이 높은 발광 소자가 제공될 수 있다. 이에 더하여, 제2 전극 패드(161)가 투명 전극(140)의 돌출부(140p)와 접촉함으로써, 제2 전극 패드(161)과 투명 전극(140)으로부터 이격되어 발생할 수 있는 전류 밀집 현상을 완화시킬 수 있고, 제2 전극 연장부(163)가 위치하지 않는 부분들에 대해 전류가 원활하게 분산될 수 있도록 한다. 수평 방향으로 전류가 원활하게 분산됨으로써, 발광 소자의 파워가 향상될 수 있고, 순방향 전압(Vf)이 낮아질 수 있다. 나아가, 제2 전극 패드(161)와 제2 도전형 반도체층(125)이 투명 전극(140)을 통해 직접적으로 연결되는 부분이 존재하지 않으므로, 정전기에 의한 불량 또는 파손이 방지될 수 있어, 정전기 방전에 대한 내성이 높은 발광 소자가 제공될 수 있다. 즉, 본 실시예에 따르면, 제2 전극 패드(161)의 박리가 방지되어 신뢰성이 높고, 전류 분산 효율이 우수하며, 정전기 방전에 대한 내성이 높아, 비교예 1 내지 비교예 3의 문제점들이 개선된 발광 소자가 제공된다.
본 실시예의 발광 소자에 있어서, 제1 전극(150), 제2 전극(160) 및 돌출부(140p)의 형태 및 위치는 필요에 따라 다양하게 변경될 수 있다. 예컨대, 도 1 (b)와 같이 제1 전극(150) 및 제2 전극(160)의 위치 및 형태가 변형될 수도 있고, 상기 제1 전극(150) 및 제2 전극(160)의 위치 및 형태에 따라 돌출부(140p)의 위치 역시 변경될 수 있다. 본 실시예에 따르면, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 y(-)축 상에 위치하고, 3개의 돌출부들(140p)은 각각 x(+)축, x(-)축, 및 y(+)축 상에 위치한다. 도 5 내지 도 11은 다른 실시예들에 따른 제2 전극 패드(161) 주변 영역의 구조를 설명하기 위한 평면도들 및 단면도들이다.
먼저, 도 5의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시하며, 도 6의 (a) 및 (b)는 각각 도 5(a)의 F-F'선 및 G-G'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다. 도 5의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다. 도 5 및 도 6을 참조하면, 상술한 바와 같이 돌출부(140p)들의 위치는 다양하게 변형될 수 있으며, 도 5 및 도 6에 따른 또 다른 실시예와 같이 돌출부(140p)들의 위치가 조절될 수 있다.
도 6(b)에 도시된 바와 같이, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면을 정의한다. 상기 가상의 면을 기준으로, 제2 전극 패드(161)로부터 제2 전극 연장부(163)가 연장되는 부분, 즉, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 이때, 적어도 하나의 돌출부(140p)는 상기 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 예컨대, 본 실시예에서, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD)에 위치하고, 3개의 돌출부들(140p)은 각각 x(+)축, x(-)축, 및 y(+)축 상에 위치한다. 따라서, 제4 사분면(4QD)에 대응하는 영역에는 제2 전극 연장부(163)에 의해 전류가 주입되고, x(+)축, x(-)축, 및 y(+)축에 대응하는 부분의 주변 영역들에는 돌출부(140p)들에 의해 전류가 주입될 수 있다.
도 5 및 도 6의 실시예는 도 1 내지 도 4의 실시예와 비교하여, 돌출부(140p)에 의해 전류가 주입되는 영역에서 차이가 있다. 이와 같은 돌출부(140p)의 위치 변경은 투명 전극(140)의 수평 방향 전류 분산 효율(투명 전극(140) 내에서 수평 방향으로의 전기적 저항) 및 발광 구조체(120)의 반도체층의 수평 방향 전류 분산 효율 등을 고려하여 결정될 수 있다. 예컨대, 투명 전극(140)은 스퍼터링 또는 전자선 증착(e-beam evapartion)과 같은 방법을 통해 형성될 수 있는데, 제조 방법에 따라 투명 전극(140)의 수평 방향으로의 전기적 저항이 달라질 수 있고, 또한, 투명 전극(140)의 두께에 따라 수평 방향으로의 전기적 저항이 달라질 수 있다. 또한, 제2 도전형 반도체층(125) 역시 결정 성장면, 결정 품질 및 내부 구조에 따라 수평 방향으로의 전기적 저항이 달라질 수 있다. 상대적으로 수평 방향 전류 분산이 원활한 구조에서는, 활성층(123)의 전면에 전류가 주입되도록 돌출부(140p)의 위치를 형성하는 것이 바람직하며, 따라서, 돌출부(140p)를 도 5 및 도 6의 실시예와 같이 형성하는 경우에 제2 전극 연장부(163)에 반대하여 위치하는 부분으로의 전류 주입이 원활해져 발광 파워가 상대적으로 더 높다. 반면, 수평 방향 전류 분산이 상대적으로 덜 원활한 구조에서는, 돌출부(140p)를 제1 전극 연장부(151)에 가깝게 배치하는 것이 발광 효율에 더 긍정적인 영향을 미치게 되어, 따라서, 돌출부(140p)를 도 1 내지 도 4의 실시예와 같이 형성하는 경우에 발광 파워가 상대적으로 더 높다. 즉, 상술한 예시들과 같이, 발광 소자의 구조 및 물질 등의 특성에 따라, 돌출부(140p)의 개수 및 위치를 다양하게 변경할 수 있다.
다음, 도 7의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시하며, 도 8의 (a) 및 (b)는 각각 도 7(a)의 H-H'선 및 I-I'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다. 도 7의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 7 및 도 8을 참조하면, 개구부(140a)의 측면(140g)은 패드 전류 차단층(131) 상에 위치할 수 있다. 이에 따라, 도 1 내지 도 4의 실시예와 달리, 본 실시예에 따르면, 패드 전류 차단층(131)과 투명 전극(140)의 개구부(140a) 측면(140g)의 사이에 노출되는 제2 도전형 반도체층(125)의 표면이 커버될 수 있다. 따라서, 상기 개구부(140a)의 아래에 위치하는 제2 도전형 반도체층(125)이 외부로부터 보호될 수 있다. 다만, 패드 전류 차단층(131) 상에 위치하는 개구부(140a)의 측면(140g)은 제2 전극 패드(161)와 이격되며, 따라서, 본 실시예서도 제2 전극 패드(161)의 박리는 효과적으로 억제될 수 있다. 또한, 본 실시예에 있어서도, 돌출부(140p)의 위치 및 개수는 다양하게 조절될 수 있으며, 예컨대, 도 7(b)와 같이, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD)에 위치하고, 3개의 돌출부들(140p)은 각각 제1, 제2 및 제3 사분면(1QD, 2QD, 3QD)에 위치할 수 있다.
다음, 도 9의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시하며, 도 10의 (a) 및 (b)는 각각 도 9(a)의 J-J'선 및 K-K'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다. 도 9의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
본 실시예의 발광 소자는, 도 1 내지 도 4의 발광 소자와 비교하여, 전류 차단층(130)이 생략되어 있다. 따라서, 제2 전극 패드(161)의 하면 일부는 제2 도전형 반도체층(125)과 접촉하고, 투명 전극(140)의 측면(140g)은 제2 전극 패드(161)로부터 이격된다. 또한, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 도전형 반도체층(125)과 제2 전극 패드(161)의 사이에 개재된다. 이때, 제2 전극 패드(161)와 제2 도전형 반도체층(125) 간의 접촉 저항은 제2 전극 패드(161)와 투명 전극(140) 간의 접촉 저항에 비해 높을 수 있다. 또한, 제2 전극 패드(161)와 제2 도전형 반도체층(125)은 서로 쇼트키 컨택될 수도 있다. 따라서, 제2 도전형 반도체층(125)이 p형 반도체층인 경우, 제2 전극 패드(161)는 제2 도전형 반도체층(125)에 쇼트키 컨택됨으로써, 전류가 제2 전극 패드(161)로부터 제2 도전형 반도체층(125)으로 거의 흐르지 않을 수 있다. 따라서, 이 경우, 전류 차단층(130)이 제2 전극 패드(161)의 아래에 위치하는 경우와 유사한 효과가 도출될 수 있다. 또한, 본 실시예에 있어서도, 돌출부(140p)의 위치 및 개수는 다양하게 조절될 수 있으며, 예컨대, 도 9(b)와 같이, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD)에 위치하고, 3개의 돌출부들(140p)은 각각 제1, 제2 및 제3 사분면(1QD, 2QD, 3QD)에 위치할 수 있다.
다음, 도 11의 (a) 및 (b)는 도 1의 α영역의 평면을 확대 도시한다. 본 실시예에 따르면, 도 1 내지 도 4의 실시예와 비교하여, 돌출부(140p)의 형상이 다양하게 변형될 수 있다. 도 11의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다. 예컨대, 도 11의 (a) 및 (b)에 도시된 바와 같이, 돌출부(140pa 또는 140pb)는 다각형 형상, 특히, 사각형 형상을 가질 수 있으며, 또한, 직선과 곡선으로 이루어진 형상을 가질 수도 있다.
상술한 실시예들에서 설명한 돌출부(140p)를 포함하는 투명 전극(140)은 다양한 구조의 발광 소자에 대해서 적용될 수 있다. 이하, 도면들을 참조하여 본 발명의 다른 실시예들에 따른 발광 소자를 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다.
도 12 내지 도 14는 본 발명의 다른 실시예에 다른 발광 소자를 설명하기 위한 도면들이다. 도 12는 상기 실시예에 따른 발광 소자의 평면도이고, 도 13 (a) 및 (b)는 각각 도 12의 L-L'선 및 M-M'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 14의 (a) 및 (b)는 도 12의 β영역의 평면을 확대 도시하며, 도 12의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 12 내지 도 14를 참조하면, 상기 발광 소자는 발광 구조체(120), 투명 전극(140), 제1 전극(150) 및 제2 전극(160)을 포함한다. 나아가, 상기 발광 소자는, 기판(110) 및 전류 차단층(130)을 더 포함할 수 있다.
발광 구조체(120)는 기판(110) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 및 활성층(123)을 포함하는 메사(120m)를 포함할 수 있다. 메사(120m) 주변에는 제1 도전형 반도체층(121)이 노출된 부분이 형성될 수 있고, 상기 제1 도전형 반도체층(121)이 노출된 부분 중 적어도 일부 영역에는 제1 전극(150)이 배치되는 영역이 제공될 수 있다. 예컨대, 본 실시예에서, 메사(120m)는 제1 도전형 반도체층(121)이 부분적으로 노출되는 홈부를 포함하고, 상기 홈부 내에 제1 전극(150)이 배치될 수 있다. 또한, 메사(120m)는 그 측면에 형성될 요철 패턴(127)을 포함할 수 있고, 이에 따라, 발광 소자의 광 추출 효율이 향상될 수 있다.
전류 차단층(130)은 제2 도전형 반도체층(125) 상에 적어도 부분적으로 위치한다. 전류 차단층(130)은 제2 도전형 반도체층(125) 상에 제2 전극(160)이 위치하는 부분에 대응하여 위치할 수 있다. 전류 차단층(130)은 패드 전류 차단층(131) 및 연장부 전류 차단층(133)을 포함할 수 있다. 투명 전극(140)은 제2 도전형 반도체층(125) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 상면의 일부, 및 전류 차단층(130)의 일부를 덮는다. 투명 전극(140)은 패드 전류 차단층(131)을 부분적으로 노출시키는 개구부(140a)를 포함할 수 있다. 또한, 투명 전극(140)은 상기 개구부(140a)의 측면(140g)으로부터 돌출된 돌출부(140p)를 포함한다.
제1 전극(150)은 제1 도전형 반도체층(121) 상에 위치할 수 있으며, 제1 도전형 반도체층(121)과 전기적으로 연결된다. 특히, 제1 전극(150)은 메사(120m)의 홈부에 노출된 제1 도전형 반도체층(121)의 표면을 통해, 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 제1 전극(150)은 제1 전극 패드(151) 및 제1 전극 연장부(153)를 포함할 수 있다.
제1 전극 패드(151)는 발광 소자의 일 측면에 인접하여 위치할 수 있고, 제1 전극 연장부(153)는 상기 발광 소자의 일 측면에 반대하여 위치하는 타 측면 방향을 향해 제1 전극 패드(151)로부터 연장될 수 있다. 또한, 제1 전극 연장부(153)는 복수로 형성될 수 있으며, 예컨대, 도시된 바와 같이 2개의 제1 전극 연장부(153)가 형성될 수 있다. 제2 전극(160)은 제2 도전형 반도체층(125) 상에 위치하되, 제2 전극(160)의 적어도 일부는 전류 차단층(130)이 위치하는 영역 상에 위치한다. 제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극 패드(161)와 제2 전극 연장부(163)는 각각 패드 전류 차단층(131) 및 연장부 전류 차단층(133) 상에 위치할 수 있다. 따라서, 제2 전극(160)과 전류 차단층(130) 사이에는 투명 전극(140)의 일부가 개재될 수 있다.
특히, 제2 전극 패드(161)는 투명 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 제1 전극 패드(151) 측으로 향하는 방향으로 연장될 수 있다. 또한, 제2 전극 연장부(163)는 복수로 형성될 수 있으며, 제2 전극 연장부(163)는 3개로 형성될 수 있다. 이때, 제2 전극 연장부(163)는 제1 전극 연장부(153)들 사이에 위치할 수 있고, 제1 전극 연장부(153)들 중 적어도 하나는 제2 전극 연장부(163)들 사이에 위치할 수 있다. 이에 따라, 전류 분산 효율이 향상될 수 있다.
본 실시예에 있어서도, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면을 기준으로, 투명 전극(140)의 돌출부(140p)는 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 도 14의 (b)를 참조하면, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제1 사분면(1QD), 제2 사분면(2QD) 및 y(-)축 상에 위치한다. 돌출부(140p)는 상기 계면(165)이 위치하는 부분이 아닌, y(+)축, 제3 사분면(3QD) 및 제4 사분면(4QD) 상에 위치한다.
도 15 내지 도 17은 본 발명의 다른 실시예에 다른 발광 소자를 설명하기 위한 도면들이다. 도 15는 상기 실시예에 따른 발광 소자의 평면도이고, 도 16 (a) 및 (b)는 각각 도 15의 N-N'선 및 O-O'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 17의 (a) 및 (b)는 도 15의 γ영역의 평면을 확대 도시하며, 도 15의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 15 내지 도 17을 참조하면, 상기 발광 소자는 발광 구조체(120), 투명 전극(140), 제1 전극(150) 및 제2 전극(160)을 포함한다. 나아가, 상기 발광 소자는, 기판(110) 및 전류 차단층(130)을 더 포함할 수 있다.
발광 구조체(120)는 기판(110) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 및 활성층(123)을 포함하는 메사(120m)를 포함할 수 있다. 메사(120m) 주변에는 제1 도전형 반도체층(121)이 노출된 부분이 형성될 수 있고, 상기 제1 도전형 반도체층(121)이 노출된 부분 중 적어도 일부 영역에는 제1 전극(150)이 배치되는 영역이 제공될 수 있다. 예컨대, 본 실시예에서, 메사(120m)는 제1 도전형 반도체층(121)이 부분적으로 노출되는 홈부를 포함하고, 상기 홈부 내에 제1 전극(150)이 배치될 수 있다.
전류 차단층(130)은 제2 도전형 반도체층(125) 상에 적어도 부분적으로 위치한다. 전류 차단층(130)은 제2 도전형 반도체층(125) 상에 제2 전극(160)이 위치하는 부분에 대응하여 위치할 수 있다. 전류 차단층(130)은 패드 전류 차단층(131) 및 연장부 전류 차단층(133)을 포함할 수 있다. 투명 전극(140)은 제2 도전형 반도체층(125) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 상면의 일부, 및 전류 차단층(130)의 일부를 덮는다. 투명 전극(140)은 패드 전류 차단층(131)을 부분적으로 노출시키는 개구부(140a)를 포함할 수 있다. 또한, 투명 전극(140)은 상기 개구부(140a)의 측면(140g)으로부터 돌출된 돌출부(140p)를 포함한다.
제1 전극(150)은 제1 도전형 반도체층(121) 상에 위치할 수 있으며, 제1 도전형 반도체층(121)과 전기적으로 연결된다. 특히, 제1 전극(150)은 메사(120m)의 홈부에 노출된 제1 도전형 반도체층(121)의 표면을 통해, 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 제1 전극(150)은 제1 전극 패드(151) 및 제1 전극 연장부(153)를 포함할 수 있다.
제1 전극 패드(151)는 발광 소자의 일 측면에 인접하여 위치할 수 있고, 제1 전극 연장부(153)는 상기 발광 소자의 일 측면에 반대하여 위치하는 타 측면 방향을 향해 제1 전극 패드(151)로부터 연장될 수 있다. 또한, 제1 전극 연장부(153)는 복수로 형성될 수도 있다. 제2 전극(160)은 제2 도전형 반도체층(125) 상에 위치하되, 제2 전극(160)의 적어도 일부는 전류 차단층(130)이 위치하는 영역 상에 위치한다. 제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극 패드(161)와 제2 전극 연장부(163)는 각각 패드 전류 차단층(131) 및 연장부 전류 차단층(133) 상에 위치할 수 있다. 따라서, 제2 전극(160)과 전류 차단층(130) 사이에는 투명 전극(140)의 일부가 개재될 수 있다.
특히, 제2 전극 패드(161)는 투명 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 제1 전극 패드(151) 측으로 향하는 방향으로 연장될 수 있다. 또한, 제2 전극 연장부(163)는 복수로 형성될 수 있으며, 제2 전극 연장부(163)는 2개로 형성될 수 있다. 이때, 제1 전극 연장부(153)는 제2 전극 연장부(163)의 사이에 끼인 형태로 배치될 수 있다. 이에 따라, 전류 분산 효율이 향상될 수 있다.
본 실시예에 있어서도, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면을 기준으로, 투명 전극(140)의 돌출부(140p)는 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 도 17의 (b)를 참조하면, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제1 사분면(1QD) 및 제2 사분면(2QD) 상에 위치한다. 돌출부(140p)는 상기 계면(165)이 위치하는 부분이 아닌, y(+)축 및 y(-)축 상에 위치한다.
도 19 내지 도 21은 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다. 도 19는 상기 실시예에 따른 발광 소자의 평면도이고, 도 20 (a) 및 (b)는 각각 도 19의 P-P'선 및 Q-Q'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 21의 (a) 및 (b)는 도 19의 제2 전극 패드(161) 주변 영역의 평면을 확대 도시하며, 도 19의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 19 내지 도 21의 실시예에 따른 발광 소자는, 도 1 내지 도 4의 발광 소자와 비교하여, 복수의 발광셀(C1 내지 C7)들을 포함하는 점에서 차이가 있다. 이하 차이점을 중심으로 본 실시예의 발광 소자를 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다. 도 19 내지 도 21을 참조하면, 상기 발광 소자는 발광 구조체(120)를 포함하는 복수의 발광셀들(C1 내지 C7), 제1 전극(150), 제2 전극(160) 및 연결 전극(190)을 포함한다. 발광셀들(C1 내지 C7) 각각은 투명 전극(140)을 포함하며, 나아가, 상기 발광 소자는, 기판(110) 및 전류 차단층(130)을 더 포함할 수 있다. 이때, 전류 차단층(130)은 패드 전류 차단층(131), 연장부 전류 차단층(133) 및 연결 전극 전류 차단층(135)을 포함할 수 있다.
복수의 발광셀들(C1 내지 C7)은 기판(110) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 및 활성층(123)을 포함하는 메사(120m)를 포함할 수 있다. 메사(120m) 주변에는 제1 도전형 반도체층(121)이 노출된 부분이 형성될 수 있고, 상기 제1 도전형 반도체층(121)이 노출된 부분 중 적어도 일부 영역에는 제1 전극(150)이 배치되는 영역 및 연결 전극(190)이 연결되는 영역이 제공될 수 있다.
복수의 발광셀들(C1 내지 C7) 중 적어도 하나 상에는 제1 전극(150)이 위치할 수 있고, 또한, 복수의 발광셀들(C1 내지 C7) 중 적어도 하나 상에는 제2 전극(160)이 위치할 수 있다. 예컨대, 도시된 바와 같이, 제2 전극(160)은 제1 발광셀(C1) 상에 위치할 수 있고, 제1 전극(150)은 제7 발광셀(C7) 상에 위치할 수 있다.
복수의 발광셀들(C1 내지 C7)은 서로 전기적으로 연결될 수 있으며, 직렬, 병렬 및 역병렬 연결 중 적어도 하나의 전기적 연결이 형성되도록 서로 전기적으로 연결될 수 있다. 본 실시예에 있어서, 복수의 발광셀들(C1 내지 C7)은 서로 직렬로 연결된다. 도시된 바와 같이, 제1 발광셀(C1)에서 제1 도전형 반도체층(121)이 노출된 부분과 제2 발광셀(C2)의 투명 전극(140)은 연결 전극(190)을 통해 전기적으로 연결되며, 상기 연결 전극(190)에 의해 제1 및 제2 발광셀(C1, C2)은 서로 직렬로 연결된다. 이와 유사하게, 제2 발광셀(C2) 내지 제7 발광셀(C7)은 각각 인접하는 다른 발광셀에 직렬로 연결될 수 있다. 이에 따라, 본 실시예의 발광 소자는 제1 내지 제7 발광셀(C1 내지 C7)들이 서로 직렬로 연결된 구성을 포함한다. 다만, 본 발명이 이에 한정되는 것은 아니며, 발광셀(C1 내지 C7)들 중 적어도 일부는 병렬 또는 역병렬로 연결될 수도 있다.
발광셀들(C1 내지 C7)의 형상은 제한되지 않으나, 본 실시예에서 발광셀들(C1 내지 C7)은 평행사변형 및 오각형을 가질 수 있다. 발광셀들(C1 내지 C7)의 면적은 대체로 동일하며, 따라서, 각각의 발광셀들(C1 내지 C7)에서 광이 방출되는 유효 발광면의 면적 역시 대체로 동일할 수 있다.
한편, 연결 전극(190)은 인접하는 발광셀들(C1 내지 C7)을 전기적으로 연결하며, 제1 컨택부(191), 연결부(193) 및 제2 컨택부(195)를 포함할 수 있다. 도 19의 확대도 및 도 20의 (b)를 참조하면, 제1 컨택부(191)는 제1 발광셀(C1)의 제1 도전형 반도체층(121)과 전기적으로 연결될 수 있고, 제2 컨택부(195)는 제2 발광셀(C2)의 투명 전극(140)과 전기적으로 연결되어 제2 발광셀(C2)의 제2 도전형 반도체층(125)과 전기적으로 연결된다. 또한, 연결부(193)는 제1 컨택부(191)와 제2 컨택부(195)를 서로 전기적으로 연결하여, 제1 발광셀(C1)과 제2 발광셀(C2)이 직렬로 연결될 수 있도록 한다.
연결 전극(190) 하부의 적어도 일부 영역에는 연결 전극 전류 차단층(135)이 위치할 수 있다. 연결 전극 전류 차단층(135)은 제2 컨택부(195)의 아래에 위치할 수 있으며, 연결 전극 전류 차단층(135)과 제2 컨택부(195)의 사이에는 제2 발광셀(C2)의 투명 전극(140)이 개재될 수 있다. 또한, 연결 전극 전류 차단층(135)은 연결부(193)의 아래에 적어도 부분적으로 위치하도록, 제2 발광셀(C2)의 측면으로 연장되어 형성될 수 있고, 나아가, 제1 발광셀(C1)과 제2 발광셀(C2) 사이의 이격 영역 상에도 위치할 수 있다. 이에 따라, 연결부(193)가 제2 발광셀(C2)의 측면을 통해 제2 발광셀(C2)의 제1 도전형 반도체층(121)에 접촉되어 전기적 쇼트가 발생하는 것을 방지한다. 한편, 연결부(193)에 따른 전기적 쇼트를 더욱 효과적으로 방지하기 위하여, 연결부(193)의 하부에 위치하는 연결 전극 전류 차단층(135)의 폭은 연결부(193)의 폭보다 클 수 있다. 또한, 제2 발광셀(C2)의 투명 전극(140)은 연결 전극 전류 차단층(135)와 연결부(193)의 사이에 개재되도록, 제1 발광셀(C1) 측으로 연장되어 형성될 수 있다. 나아가, 제1 발광셀(C1) 측으로 연장되어 형성되는 투명 전극(140)은 제1 발광셀(C1)의 제1 도전형 반도체층(121)에 접촉할 수 있다. 따라서, 연결 전극(190)뿐만 아니라, 제2 발광셀(C2)로부터 연장되어 형성된 투명 전극(140)에 의해서도 제1 발광셀(C1)과 제2 발광셀(C2) 간의 전기적 연결이 형성될 수 있다. 연결부(193) 아래에 위치하는 투명 전극(140)의 폭은 연결부(193)의 폭보다 클 수 있고, 연결 전극 전류 차단층(135)의 폭보다 작을 수 있다.
한편, 기판(110) 상면의 복수의 돌출부(110p)들 중, 발광셀들(C1 내지 C7)의 이격 영역에 위치하는 돌출부(110pa)들은 발광셀들(C1 내지 C7)의 하부에 위치하는 돌출부(110p)들보다 작은 크기를 가질 수 있다. 상기 노출된 돌출부(110pa)들은 발광셀 분리를 위한 개별화(isolation) 공정 중, 기판(110)의 상면이 식각됨으로써 상대적으로 작은 크기를 가질 수 있다. 이러한 상대적으로 작은 크기를 갖는 노출된 돌출부(110pa)들 상에 형성되는 연결 전극 전류 차단층(135), 투명 전극(140) 및 연결부(193)는 상기 돌출부(110pa)들 표면의 프로파일을 따라 굴곡진 표면을 가질 수 있다. 연결부(193)가 상대적으로 작은 크기의 돌출부(110pa)들 상에 형성됨으로써, 기판(110)의 돌출부(110p) 상에 연결부(193)가 형성되는 경우에 비해 더욱 안정적으로 형성될 수 있어, 연결 전극(190)의 신뢰성이 향상될 수 있다. 즉, 상대적으로 작은 크기를 갖는 돌출부(110pa) 상에 연결 전극(190)이 형성되는 경우, 상대적으로 큰 크기를 갖는 돌출부(110p)상에 연결 전극(190)이 형성되는 경우에 비해 연결 전극(190)의 박리 또는 단선이 발생할 확률이 감소되어, 연결 전극(190)의 불량으로 인한 발광 소자의 불량이 방지된다. 따라서, 발광 소자의 제조 수율 및 신뢰성이 향상될 수 있다.
상술한 연결 전극(190)의 연결 형태는 다른 발광셀들(C2 내지 C7) 간의 전기적 연결 형태에도 유사하게 적용될 수 있다. 또한, 하나의 발광셀(C1 내지 C7 중 하나)에서, 연결 전극(190)의 위치는 다양하게 변경될 수 있으며, 전류가 수평 방향으로 원활하게 분산될 수 있도록 연결 전극(190)의 위치 및 형태가 변경될 수 있다. 예컨대, 도시된 바와 같이, 제2 발광셀(C2)에 있어서, 제2 컨택부(195)는 제2 발광셀(C2)의 일 측면에 인접하여 위치하고, 제2 컨택부(195)는 상기 일 측면에 인접하는 다른 측면들을 향해 연장되는 형태를 갖는다. 또한, 제2 발광셀(C2) 상에 위치하는 제1 컨택부(191)(제3 발광셀(C3)과 연결되는)는 상기 일 측면에 반대하여 위치하는 타 측면에 인접하여 위치하고, 상기 타 측면에 인접하는 다른 측면들을 향해 연장되는 형태를 갖는다. 다만, 본 발명이 이에 한정되는 것은 아니다.
제1 전극(150)은 제1 도전형 반도체층(121) 상에 위치할 수 있으며, 제1 도전형 반도체층(121)과 전기적으로 연결된다. 특히, 제1 전극(150)은 제7 발광셀(C7)의 메사(120m)의 홈부에 노출된 제1 도전형 반도체층(121)의 표면을 통해, 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 제1 전극(150)은 전극 연장부(미도시)를 더 포함할 수도 있다.
제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극(160)은 제1 발광셀(C1) 상에 위치할 수 있다. 제2 전극 패드(161)는 투명 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 다른 발광셀들(제2 내지 제7 발광셀) 상에 위치하는 제2 컨택부(195)의 형태 및 위치와 유사한 형태 및 위치를 가질 수 있다.
본 실시예에 있어서도, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면을 기준으로, 투명 전극(140)의 돌출부(140p)는 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 도 21의 (b)를 참조하면, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제3 사분면(3QD) 상에 위치한다. 돌출부(140p)는 상기 계면(165)이 위치하는 부분이 아닌, 제1 사분면(1QD), 제2 사분면(2QD) 및 제4 사분면(4QD) 상에 위치할 수 있다.
도 22 내지 도 24는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도, 단면도들 및 확대 평면도들이다. 도 22는 상기 실시예에 따른 발광 소자의 평면도이고, 도 23 (a) 및 (b)는 각각 도 22의 R-R'선 및 S-S'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 24의 (a) 및 (b)는 도 22의 제2 전극 패드(161) 주변 영역의 평면을 확대 도시하며, 도 24의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다.
도 22 내지 도 24의 실시예에 따른 발광 소자는, 도 19 내지 도 21의 발광 소자와 비교하여, 복수의 발광셀(C1 내지 C7)들의 배치가 다른 점에서 차이가 있다. 이하 차이점을 중심으로 본 실시예의 발광 소자를 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다. 도 22 내지 도 24을 참조하면, 상기 발광 소자는 발광 구조체(120)를 포함하는 복수의 발광셀들(C1 내지 C7), 제1 전극(150), 제2 전극(160) 및 연결 전극(190)을 포함한다. 발광셀들(C1 내지 C7) 각각은 투명 전극(140)을 포함하며, 나아가, 상기 발광 소자는, 기판(110) 및 전류 차단층(130)을 더 포함할 수 있다. 이때, 전류 차단층(130)은 패드 전류 차단층(131), 연장부 전류 차단층(133) 및 연결 전극 전류 차단층(135)을 포함할 수 있다.
본 실시예의 발광셀들(C1 내지 C7)은 대체로 직사각형의 형상을 가지며, 도 19 내지 도 21의 실시예와 유사하게 발광셀들(C1 내지 C7)은 서로 직렬로 연결될 수 있다. 본 실시예의 발광셀들(C1 내지 C7)의 배치 관계에 따라, 제1 전극(150), 제2 전극(160) 및 연결 전극(190)의 배치가 변형될 수 있다. 특히, 도 24의 (b)를 참조하면, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제3 사분면(3QD) 및 제4 사분면(4QD) 상에 위치한다. 돌출부(140p)는 상기 계면(165)이 위치하는 부분이 아닌, 제1 사분면(1QD), 제2 사분면(2QD) 및 y(-)축 상에 위치할 수 있다.
상술한 실시예들에서, 7개의 발광셀들이 서로 직렬로 연결된 구조를 갖는 발광 소자에 대해 개시하고 있으나, 본 발명은 이에 한정되지 않는다. 발광셀들의 개수, 형태 및 전기적 연결 관계를 제한되지 않으며, 다양하게 변형될 수 있다.
실험예 1
도 25 및 도 26은 본 발명의 실시예에 따른 발광 소자를 비교예의 발광 소자와 비교하기 위한 실험값을 나타내는 그래프들이다. 본 실험예에서, 실시예와 비교예의 구조는 도 1 내지 도 4의 실시예에 따른 발광 소자의 구조와 대체로 유사하다. 다만, 실시예는 도 1 내지 도 4의 실시예와 같이 돌출부(140p)를 포함하는 투명 전극(140)을 갖고, 비교예는 도 18의 도 (c) 및 (d)의 구조와 같이 돌출부(140p)를 포함하지 않는 투명 전극(140)을 갖는다.
도 25 및 도 26은 실시예와 비교예의 발광 소자 각각에 대해서 20mA에서의 광 파워 및 순방향 전압을 비교 도시하며, 동일한 구조를 갖는 다른 발광 소자들을 2차에 걸쳐 비교하였다. 도 25 및 도 26에 나타난 바와 같이, 실시예의 발광 소자는 비교예의 발광 소자에 비해 높은 광 파워를 갖고, 낮은 순방향 전압을 갖는 것으로 나타났다. 즉, 실시예의 발광 소자는 비교예의 발광 소자에 비해 수평 방향으로의 전류 분산이 원활하게 이루어져, 광 파워는 상대적으로 높아지고, 순방향 전압은 상대적으로 낮아진 것을 알 수 있다.
실험예 2
도 27은 실시예와 비교예의 발광 소자 각각에 대해서 BST 값 측정 데이터를 나타낸다. 본 실험예에서, 실시예와 비교예의 구조는 도 1 내지 도 4의 실시예에 따른 발광 소자의 구조와 대체로 유사하다. 다만, 실시예는 도 1 내지 도 4의 실시예와 같이 돌출부(140p)를 포함하는 투명 전극(140)을 갖고, 비교예는 도 18의 도 (a) 및 (b)의 구조와 같이 투명 전극이 제2 전극 패드의 테두리 전체에 걸쳐 위치하는 구조를 갖는다. 도 27에 나타난 바와 같이, 실시예의 발광 소자는 비교예의 발광 소자에 비해 약 2.6% 높은 BST값을 갖는 것으로 나타났다. 즉, 실시예의 발광 소자는 비교예에 발광 소자에 비해 제2 전극 패드의 박리가 억제되어, 신뢰성이 향상된 것을 알 수 있다.
도 28a 내지 도 38은 본 발명의 몇몇 실시예들에 따른 발광 소자를 설명하기 위한 평면도들, 확대 평면도들, 단면도들 및 확대 단면도들이다. 도 28a는 상기 발광 소자의 평면을 도시하고, 도 28b는 상기 발광 소자의 평면을 도시하되, 도 29 내지 도 38의 확대 평면도들, 단면도들 및 확대 단면도들에서 도시하는 부분을 나타낸다. 도 29 (a) 및 (b)는 도 28b의 X 영역을 확대 도시하며, 도 30은 도 28b의 Y 영역을 확대 도시하고, 도 31는 도 28b의 Z 영역을 확대 도시한다. 도 32 내지 도 38은 각각 도 28b도 28b선, B-B'선, C-C'선, D-D'선, E-E'선, F-F'선 및 G-G'선에 대응하는 부분의 단면을 도시한다.
도 28a 내지 도 38을 참조하면, 상기 발광 소자는 발광 구조체(120), 투명 전극(140), 제1 전극(150) 및 절연층(170)을 포함한다. 나아가, 상기 발광 소자는, 기판(110), 전류 차단층(130), 제2 전극(160), 및 패시베이션층(230)을 더 포함할 수 있다. 또한, 상기 발광 소자는 제1 내지 제4 측면(각각, 101, 102, 103, 104)을 포함할 수 있다.
기판(110)은 절연성 또는 도전성 기판일 수 있다. 또한, 기판(110)은 발광 구조체(120)를 성장시키기 위한 성장 기판일 수 있으며, 사파이어 기판, 실리콘 카바이드 기판, 실리콘 기판, 질화갈륨 기판, 질화알루미늄 기판 등을 포함할 수 있다. 예를 들어, 기판(110)은 사파이어 기판일 수 있으며, 특히, 상면이 패터닝된 패턴된 사파이어 기판(patterned sapphire substrate; PSS)일 수 있다. 기판(110)이 패턴된 사파이어 기판인 경우, 기판(110)은 그 상면에 형성된 복수의 돌출부(110p)들을 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 기판(110)은 발광 구조체(120)를 지지하기 위한 2차 기판일 수도 있다.
본 실시예에서, 제1 도전형 반도체층(121)이 기판(110) 상에 위치하는 것으로 설명하나, 기판(110)이 반도체층들(121, 123, 125)을 성장시킬 수 있는 성장 기판인 경우, 반도체층(121, 123, 125)들을 성장시킨 후에 물리적 및/또는 화학적 방법을 통해 분리 또는 제거되어 생략될 수도 있다.
발광 구조체(120)는 제1 도전형 반도체층(121), 제1 도전형 반도체층(121)상에 위치하는 제2 도전형 반도체층(125), 및 제1 도전형 반도체층(121)과 제2 도전형 반도체층(125)의 사이에 위치하는 활성층(123)을 포함할 수 있다. 또한, 발광 구조체(120)는 제1 도전형 반도체층(121) 상에 위치하며, 활성층(123) 및 제2 도전형 반도체층(125)을 포함하는 메사(120m)를 포함한다.
제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 MOCVD와 같은 공지의 방법을 이용하여 챔버 내에서 성장되어 형성될 수 있다. 또한, 제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 Ⅲ-Ⅴ 계열 질화물계 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 제1 도전형 반도체층(121)은 n형 불순물 (예를 들어, Si, Ge. Sn)을 포함할 수 있고, 제2 도전형 반도체층(125)은 p형 불순물 (예를 들어, Mg, Sr, Ba)을 포함할 수 있다. 또한, 그 반대일 수도 있다. 활성층(123)은 다중양자우물 구조(MQW)를 포함할 수 있고, 원하는 파장을 방출하도록 질화물계 반도체의 조성비가 조절될 수 있다. 특히, 본 실시예에 있어서, 제2 도전형 반도체층(125)은 p형 반도체층일 수 있다.
메사(120m)는 제1 도전형 반도체층(121)의 일부 영역 상에 위치하며, 이에 따라, 메사(120m)가 형성되지 않는 영역에는 제1 도전형 반도체층(121)의 표면이 노출될 수 있다. 메사(120m)은 제2 도전형 반도체층(125)과 활성층(123)을 부분적으로 식각함으로써 형성될 수 있다. 메사(120m)의 형태는 제한되지 않으나, 예를 들어, 도시된 바와 같이, 메사(120m)는 제1 도전형 반도체층(121)의 측면을 따라 형성될 수 있다. 메사(120m)는 경사진 측면을 가질 수 있으나, 제1 도전형 반도체층(121)의 상면에 대해 수직인 측면을 가질 수도 있다.
또한, 본 실시예에 있어서, 메사(120m)는 그 측면으로부터 함입된 적어도 하나의 그루브(120g)를 포함할 수 있다. 후술하는 바와 같이, 그루브(120g)는 제1 전극(150)과 제1 도전형 반도체층(121)이 전기적으로 컨택하는 영역을 제공할 수 있다. 그루브(120g)는 복수로 형성될 수 있으며, 복수의 그루브(120g)들은 발광 소자의 일 측면을 따라 위치할 수 있다. 도시된 바와 같이, 복수의 그루브(120g)들은 발광 소자의 제2 측면(102)에 위치할 수 있으며, 이때, 복수의 그루브(120g)들이 위치하는 발광 소자의 측면은 상대적으로 길이가 긴 측면일 수 있다. 제2 측면(102)은 제2 측면(102)에 인접하는 제1 및 제3 측면(101, 103)에 비해 긴 길이를 가질 수 있다. 또한, 복수의 그루브(120g)들은 대체로 동일한 이격 거리를 두고 서로 이격될 수 있다. 제1 전극(150)과 제1 도전형 반도체층(121)의 컨택 영역을 제공하는 복수의 그루브(120g)들이 상대적으로 긴 길이를 갖는 측면을 따라 위치함으로써, 발광 소자의 발광 영역 전체에 걸쳐 고르게 전류를 공급할 수 있다. 또한, 복수의 그루브(120g)들이 대체로 동일한 이격 거리로 형성됨으로써, 발광 영역 전체에 걸쳐 전류가 고르게 분산될 수 있다.
그루브(120g)는 다각형, 원형 또는 타원형의 적어도 일부를 포함하는 평면 형상을 가질 수 있다. 예를 들어, 도 30에 도시된 바와 같이, 그루브(120g)의 평면 형상은 원호 형상일 수 있다. 그루브(120g)의 평면 형상이 원호 형상으로 형성됨으로써, 그루브(120g)의 형성으로 인한 발광 영역의 감소(그루브(120g)의 형성으로 인하여 제거되는 활성층(123)의 영역)를 최소화하면서, 제1 도전형 반도체층(121)과 제1 전극(150)이 컨택되는 영역을 충분히 제공할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 메사(120m)는 그 측면의 적어도 일부에 형성된 요철 패턴(127)을 더 포함할 수 있다. 이에 따라, 발광 소자의 광 추출 효율이 향상될 수 있다.
전류 차단층(130)은 제2 도전형 반도체층(125) 상에 적어도 부분적으로 위치한다. 전류 차단층(130)은 제2 도전형 반도체층(125) 상에 제2 전극(160)이 위치하는 부분에 대응하여 위치할 수 있다. 전류 차단층(130)은 패드 전류 차단층(131) 및 연장부 전류 차단층(133)을 포함할 수 있다. 패드 전류 차단층(131)과 연장부 전류 차단층(133)은 각각 제2 전극 패드(161) 및 제2 전극 연장부(163)의 위치에 대응하여 위치할 수 있다. 따라서, 도시된 바와 같이, 패드 전류 차단층(131)은 발광 소자의 제1 측면(101)에 인접하여 배치되고, 연장부 전류 차단층(133)은 제1 측면(101)으로부터 제3 측면(103)으로 향하는 방향으로 연장되도록 배치될 수 있다.
전류 차단층(130)은 제2 전극(160)으로 공급된 전류가 반도체층에 직접적으로 전달되어, 전류가 집중되는 것을 방지할 수 있다. 따라서, 전류 차단층(130)은 절연성을 가질 수 있고, 절연성 물질을 포함할 수 있으며, 단일층 또는 다중층으로 형성될 수도 있다. 예를 들어, 전류 차단층(130)은 SiOx 또는 SiNx을 포함할 수 있고, 또는 굴절률이 다른 절연성 물질층들이 적층된 분포 브래그 반사기를 포함할 수도 있다. 즉, 전류 차단층(130)은 광 투과성을 가질 수도 있고, 광 반사성을 가질 수도 있으며, 또한 선택적 광 반사성을 가질 수도 있다. 또한, 전류 차단층(130)은 전류 차단층(130) 상에 형성되는 제2 전극(160)보다 큰 면적을 가질 수 있다. 이에 따라, 제2 전극(160)은 전류 차단층(130)이 형성되는 영역 내 상에 위치할 수 있다. 나아가, 전류 차단층(130)은 제2 전극(160)보다 큰 면적을 갖되, 제2 전극(160)의 평면 형상에 대체로 대응하는 평면 형상을 가질 수 있다. 이에 따라, 전류 차단층(130)은 제2 전극(160)으로 공급되는 전류가 투명 전극(140)을 통해 제1 도전형 반도체층(121)으로 직접적으로 전달되어 전류가 집중되는 것은 차단하되, 전류 차단층(130)에 광이 흡수되거나 반사되어 발광 효율이 감소되는 것은 최소화시킬 수 있다.
투명 전극(140)은 제2 도전형 반도체층(125) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 상면의 일부, 및 전류 차단층(130)의 일부를 덮는다. 도 29에 확대 도시된 바와 같이, 투명 전극(140)은 패드 전류 차단층(131)을 부분적으로 노출시키는 개구부(140a)를 포함할 수 있다. 또한, 투명 전극(140)은 상기 개구부(140a)의 측면(140g)으로부터 돌출된 돌출부(140p)를 포함한다. 개구부(140a)의 측면(140g)은 패드 전류 차단층(131) 상에 위치할 수 있으며, 패드 전류 차단층(131)의 외곽 측면을 따라 형성될 수 있다. 한편, 돌출부(140p)는 패드 전류 차단층(131)의 중심부를 향해 돌출될 수 있으며, 돌출부(140p)는 복수로 형성될 수 있다. 투명 전극(140)은 광 투과성 및 전기적 도전성을 갖는 물질을 포함할 수 있고, 예를 들어, ITO, ZnO, IZO등과 같은 도전성 산화물 및 Ni/Au와 같은 광 투과성 금속층 중 적어도 하나를 포함할 수도 있다. 또한, 투명 전극(140)은 제2 도전형 반도체층(125)과 오믹 컨택을 형성할 수 있다. 제2 전극(160)이 제2 도전형 반도체층(125)과 직접적으로 접촉하지 않으므로, 투명 전극(140)을 통해 더욱 효과적으로 전류가 분산될 수 있다.
제2 전극(160)은 제2 도전형 반도체층(125) 상에 위치하되, 제2 전극(160)의 적어도 일부는 전류 차단층(130)이 위치하는 영역 상에 위치한다. 제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극 패드(161)와 제2 전극 연장부(163)는 각각 패드 전류 차단층(131) 및 연장부 전류 차단층(133) 상에 위치할 수 있다. 따라서, 제2 전극(160)과 전류 차단층(130) 사이에는 투명 전극(140)의 일부가 개재될 수 있다.
특히, 제2 전극 패드(161)는 투명 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 투명 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 패드(161)의 형상은 제한되지 않으나, 예컨대, 도시된 바와 같이 대체로 원형으로 형성될 수 있다. 이에 따라, 전류 차단층(130)의 패드 전류 차단층(131) 역시 제2 전극 패드(161) 형상과 유사한 원형으로 형성될 수 있고, 투명 전극(140)의 개구부(140a) 역시 대체로 유사한 원형으로 형성될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다. 제2 전극 패드(161)의 위치는 제한되지 않으나, 전류를 원활하게 분산시켜 발광 소자의 활성층(123) 전면에서 발광이 이루어지도록 배치될 수 있다. 예컨대, 도시된 바와 같이, 제2 전극 패드(153)는 제1 전극 패드(151)가 인접하여 위치하는 제3 측면(103)에 반대하는 제1 측면(101)에 인접하여 위치할 수 있다.
제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 제3 측면(103) 측으로 향하는 방향으로 연장될 수 있다. 또한, 제2 전극 연장부(163)가 연장되는 방향은 제2 전극 연장부(163)에 연장함에 따라 변화할 수 있다. 예컨대, 제2 전극 연장부(163)의 말단은 발광 소자의 제3 측면(103)과 제4 측면(104)의 사이 부분을 향하도록 휘어질 수 있다. 이는 제1 전극 패드(151)와 제2 전극 연장부(163)의 거리를 고려하여 다양하게 설계될 수 있다. 제2 전극 연장부(163)의 적어도 일부와 연장부 전류 차단층(133)의 사이에는 투명 전극(140)이 개재되며, 이에 따라, 제2 전극 연장부(163)는 투명 전극(140)과 전기적으로 연결된다.
한편, 제2 전극(160)의 배치는 이에 한정되는 것은 아니며, 발광 소자의 형태에 따라 다양하게 변형 및 변경될 수 있다.
제2 전극(160)은 도전성 물질을 포함할 수 있고, 예컨대, Ti, Pt, Au, Cr, Ni, Al, Mg 등과 같은 금속성 물질을 포함할 수 있으며, 단일층 또는 다중층 구조로 형성될 수 있다. 제2 전극(160)이 다중층으로 형성되는 경우, Ti층/Au층, Ti층/Pt층/Au층, Cr층/Au층, Cr층/Pt층/Au층, Ni층/Au층, Ni층/Pt층/Au층, 및 Cr층/Al층/Cr층/Ni층/Au층의 금속 적층 구조 중 적어도 하나를 포함할 수 있다.
상술한 바와 같이, 제2 전극(160)의 일부와 전류 차단층(130)의 사이에 투명 전극(140)이 개재되어, 제2 전극(160)과 투명 전극(140)이 접촉하는 부분을 통해 전류가 도통된다. 따라서, 전류가 효과적으로 분산될 수 있도록, 제2 전극(160)과 투명 전극(140)이 접촉하는 영역이 조절될 수 있으며, 이와 관련하여, 도 29를 참조하여 본 실시예의 제2 전극(160), 특히 제2 전극 패드(161) 주변 영역의 구조에 대해 더욱 상세하게 설명한다.
이하, 도 29를 참조하여 본 발명의 실시예에 따른 제2 전극 패드(161) 주변의 구조에 관해 설명한다. 도 29 (a) 및 (b)의 확대도들에서, 설명의 편의를 위하여 투명 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다. 도 29에 따른 본 발명의 실시예에 따르면, 투명 전극(140)의 개구부(140a)는 측면(140g)을 포함하고, 상기 측면(140g)은 패드 전류 차단층(131) 상에 위치하되, 제2 전극 패드(161)로부터 이격된다. 이때, 투명 전극(140)의 개구부(140a)는 패드 전류 차단층(131)의 측면을 따라 형성되되, 대체로 상기 패드 전류 차단층(131)의 측면 형상에 대응하도록 형성된다. 특히, 개구부(140a)의 측면이 패드 전류 차단층(131) 상에 위치함으로써, 제2 도전형 반도체층(125)의 상면이 노출되지 않고 투명 전극(140)에 의해 커버될 수 있다. 이에 따라, 제2 전극 패드(161) 주변에서 발생하는 정전기가 제2 도전형 반도체층(125)으로 직접적으로 도통되는 것이 방지될 수 있어, 정전기 방전에 의해 발광 소자의 불량을 더욱 효과적으로 방지할 수 있다.
투명 전극(140)은 적어도 하나의 돌출부(140p)를 포함하고, 돌출부(140p)는 개구부(140a)의 측면으로부터 돌출된다. 돌출부(140p)는, 도 29(a) 및 (b)에 도시된 바와 같이, 상기 적어도 하나의 돌출부(140p)는 패드 전류 차단층(131)의 측면 및 상면을 부분적으로 덮으며, 패드 전류 차단층(131)과 제2 전극 패드(161)의 사이에 개재된다. 따라서, 제2 전극 패드(161)와 돌출부(140p)가 전기적으로 연결되어, 제2 전극 패드(161)와 돌출부(140p)를 통해 전류가 도통된다. 이에 따라, 돌출부(140p)가 위치하는 영역에 대한 전류 주입이 원활하게 이루어질 수 있다. 제2 전극(160)의 제2 전극 연장부(163)는 투명 전극(140)에 접촉하므로, 제2 전극 연장부(163)에 의해 제2 도전형 반도체층(125)에 대한 전류 주입이 이루어진다. 따라서, 돌출부(140p)의 개수 및 위치는 제2 전극 연장부(163)의 위치에 따라 조절될 수 있다.
구체적으로, 도 29(b)를 참조하여 설명한다. 먼저, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면(가상의 좌표계)을 정의한다. 상기 가상의 면은 제1 사분면(1QD), 제2 사분면(2QD), 제3 사분면(3QD) 및 제4 사분면(4QD)을 포함한다. 상기 가상의 좌표계를 기준으로, 제2 전극 패드(161)로부터 제2 전극 연장부(163)가 연장되는 부분, 즉, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 이때, 적어도 하나의 돌출부(140p)는 상기 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 예컨대, 본 실시예에서, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD) 또는 y(-)축 상에 위치하고, 3개의 돌출부들(140p)은 각각 x(+)축, x(-)축 및 y(+)축 상에 위치한다. 따라서, 제4 사분면(4QD) 또는 y(-)축 주변에 대응하는 영역에는 제2 전극 연장부(163)에 의해 전류가 주입되고, x(+)축, x(-)축 및 y(+)축 주변에 대응하는 영역들에는 돌출부(140p)들에 의해 전류가 주입될 수 있다.
한편, 제2 전극 패드(161)의 하면과 투명 전극(140)이 접하는 부분의 면적은 제2 전극 패드(161)의 전체 하면 면적에 대하여, 1% 이상 20% 이하일 수 있고, 나아가, 1.5% 이상 13% 이하일 수 있으며, 더 나아가, 3% 이상 5% 이하일 수 있다. 제2 전극 패드(161)의 하면과 투명 전극(140)이 접하는 부분의 면적을 상술한 비율로 조절함으로써, 제2 전극 패드(161)와 패드 전류 차단층(131)이 접하는 부분의 면적을 상대적으로 크게 할 수 있다. 따라서, 제2 전극 패드(161)와 투명 전극(140)이 접하는 부분에서 발생할 수 있는 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다. 또한, 돌출부(140p)는 다양한 형상을 가질 수 있으며, 예컨대, 도시된 바와 같이 원호 내지 타원호 형상을 가질 수 있다.
본 실시예와 같이, 제2 전극 패드(161)와 패드 전류 차단층(131) 간의 계면의 일부 영역에만 투명 전극(140)이 개재됨으로써, 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다. 특히, 제2 전극 패드(161) 하면의 테두리 부분이 대부분 전류 차단층(131)에 접하고, 상기 테두리 부분의 극히 일부분만 투명 전극(140)과 접하는 구조를 갖는 제2 전극 패드(161)에 의해, 제2 전극 패드(161)의 박리가 방지되고, BST값이 높은 발광 소자가 제공될 수 있다. 이에 더하여, 제2 전극 패드(161)가 투명 전극(140)의 돌출부(140p)와 접촉함으로써, 제2 전극 패드(161)와 투명 전극(140)으로부터 이격되어 발생할 수 있는 전류 밀집 현상을 완화시킬 수 있고, 제2 전극 연장부(163)가 위치하지 않는 부분들에 대해 전류가 원활하게 분산될 수 있도록 한다. 수평 방향으로 전류가 원활하게 분산됨으로써, 발광 소자의 파워가 향상될 수 있고, 순방향 전압(Vf)이 낮아질 수 있다. 나아가, 제2 전극 패드(161)와 제2 도전형 반도체층(125)이 투명 전극(140)을 통해 직접적으로 연결되는 부분이 존재하지 않으므로, 정전기에 의한 불량 또는 파손이 방지될 수 있어, 정전기 방전에 대한 내성이 높은 발광 소자가 제공될 수 있다. 즉, 본 실시예에 따르면, 제2 전극 패드(161)의 박리가 방지되어 신뢰성이 높고, 전류 분산 효율이 우수하며, 정전기 방전에 대한 내성이 높아, 비교예 1 내지 비교예 3의 문제점들이 개선된 발광 소자가 제공된다.
본 실시예의 발광 소자에 있어서, 제1 전극(150), 제2 전극(160) 및 돌출부(140p)의 형태 및 위치는 필요에 따라 다양하게 변경될 수 있다. 또한, 투명 전극(140) 개구부(140a)의 측면(140g)은 패드 전류 차단층(131)으로부터 이격되어 위치할 수도 있다. 도 39에 도시된 바와 같이, 개구부(140a)의 측면(140g)은 패드 전류 차단층(131)의 측면으로부터 이격되어 위치할 수 있다. 이에 따라, 개구부(140a)의 측면(140g)과 패드 전류 차단층(131)의 사이에는 제2 도전형 반도체층(125)이 부분적으로 노출될 수도 있다.
제1 전극(150)은 제1 도전형 반도체층(121) 상에 위치할 수 있으며, 제1 도전형 반도체층(121)과 전기적으로 연결된다. 제1 전극(150)은 제1 전극 패드(151) 및 제1 전극 연장부(153)를 포함할 수 있다. 제1 전극(150)은 제2 도전형 반도체층(125)과 활성층(123)이 부분적으로 제거되어 노출된 제1 도전형 반도체층(121)의 상면 일부와 오믹 컨택함으로써, 제1 도전형 반도체층(121)과 전기적으로 연결될 수 있다. 본 실시예에 있어서, 제1 전극(150)은 메사(120m) 상에 위치하되, 제1 전극(150)과 메사(120m)의 사이에는 절연층(170)이 개재될 수 있다. 이때, 절연층(170)은 절연성 물질을 포함할 수 있으며, 예컨대, SiO2, SiNx, 굴절률이 서로 다른 층들이 반복 적층된 분포 브래그 반사기 등을 포함할 수 있다. 또한, 제1 전극 패드(151) 및 제1 전극 연장부(153)의 일부는 제1 도전형 반도체층(121)과 컨택할 수 있다.
이하, 도 28a, 도 30, 도 31, 및 도 35 내지 도 38을 참조하여 제1 전극(150)과 관련하여 더욱 구체적으로 설명한다.
제1 전극 연장부(153)는 절연층(170) 상에 위치하되, 제1 전극 연장부(153)의 일부는 적어도 하나의 그루브(120g)와 상하 방향으로 중첩되어 위치한다. 이때, 제1 전극 연장부(153)는 제1 도전형 반도체층(121)과 컨택되는 연장부 컨택 부분(153a)을 포함하며, 연장부 컨택 부분(153a)은 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 연장부 컨택 부분(153a)이 적어도 하나의 그루브(120g)에 의해 노출된 제1 도전형 반도체층(121)과 전기적 연결을 형성하고, 제1 전극 연장부(153)의 나머지 부분은 절연층(170) 상에 형성되어 제1 도전형 반도체층(121)과 절연됨으로써, 발광 소자 구동 시 전자(electron)들은 연장부 컨택 부분(153a)을 통해 제1 도전형 반도체층(121)으로 이동한다(즉, 연장부 컨택 부분(153a)을 통해 전류가 도통된다).
제1 전극(150)이 n형 전극인 경우, 전자들은 제1 전극(150)으로부터 제2 전극(160)을 향하는 방향으로 이동하는데, 제1 전극 연장부(153) 전체가 제1 도전형 반도체층(121)과 컨택하는 경우 제1 전극 패드(151)로부터 거리에 따라 제1 도전형 반도체층(121)에 주입되는 전자의 밀도가 달라질 수 있다. 즉, 제1 전극 연장부(153)에서 제1 전극 패드(151)에 상대적으로 가깝게 위치하는 부분으로부터 주입되는 전자의 밀도는 제1 전극 연장부(153)에서 제1 전극 패드(151)에서 상대적으로 멀리 위치하는 부분으로부터 주입되는 전자의 밀도보다 높다. 따라서, 제1 전극 연장부(153) 전체가 제1 도전형 반도체층(121)에 컨택하는 경우, 전류 분산 효율(current spreading performance)이 저하될 수 있다.
반면, 본 실시예에 따르면, 제1 전극 연장부(153)의 연장부 컨택 부분(153a)을 통해서 제1 도전형 반도체층(121)과 컨택하되, 제1 전극 연장부(153)의 나머지 부분들은 절연층(170)에 의해 제1 도전형 반도체층(121)과 절연된다. 따라서, 연장부 컨택 부분(153a)을 통해서 전자 주입이 이루어져, 복수의 연장부 컨택 부분(153a)에서의 전자 주입 밀도를 대체로 유사하게 유지할 수 있다. 이에 따라, 제1 전극 연장부(153)에서 제1 전극 패드(151)로부터 거리가 먼 부분을 통해서도 원활하게 전자가 주입될 수 있어, 발광 소자의 전류 분산 효율을 향상시킬 수 있다.
연장부 컨택 부분(153a)은 그루브(120g)의 위치 및 개수에 대응할 수 있으므로, 연장부 컨택 부분(153a)들의 이격 거리는 대체로 동일할 수 있으며, 연장부 컨택 부분(153a)들은 발광 소자의 일 측면을 따라 위치할 수 있다. 예컨대, 연장부 컨택 부분(153a)들은 발광 소자의 제2 측면(102)에 인접하여 위치할 수 있다.
한편, 연장부 컨택 부분(153a)의 아래에 위치하는 절연층(170)은 제1 전극 연장부(153)의 선폭보다 큰 폭을 가질 수 있어, 메사(120m)와 제1 전극 연장부(153)간에 전기가 도통되는 것을 더욱 효과적으로 방지한다. 또한, 절연층(170) 중 제1 전극 연장부(153)의 아래에 위치하는 부분은 메사(120m)의 측면에 의해 정의되는 영역 내에 위치할 수 있다. 따라서, 도 30 등에 도시된 바와 같이, 절연층(170) 중 제1 전극 연장부(153)의 아래에 위치하는 부분 주변에는 메사(120m) 상면의 일부가 노출될 수 있으며, 특히, 메사(120m) 측면의 요철 패턴(127)은 절연층(170)에 덮이지 않고 노출된다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 절연층(170)은 그루브(120g)의 측면을 적어도 부분적으로 덮을 수 있다. 특히, 그루브(120g)의 측면에 노출된 활성층(123)의 측면을 덮을 수 있다. 제1 전극 연장부(153)의 연장부 컨택 부분(153a)은 그루브(120g)에 의해 노출된 제1 도전형 반도체층(121)과 컨택하므로, 연장부 컨택 부분(153a)의 주변 영역은 정전기가 발생할 확률이 높다. 이러한 정전기의 방전에 의해 연장부 컨택 부분(153a) 주변의 발광 구조체(120)가 손상될 수 있으며, 특히, 정전기 방전에 의해 활성층(123)이 손상되면, 손상된 부분만큼 발광 영역이 감소하게 된다. 따라서, 절연층(170)을 그루브(120g)의 측면에 노출된 활성층(123)의 측면을 덮도록 형성함으로써, 정전기 방전으로 인한 활성층(123)의 손상에 따른 발광 영역의 감소를 방지할 수 있다.
나아가, 절연층(170)은 그루브(120g) 상부의 주변을 더 덮도록 형성될 수 있다. 도 30 등에 도시된 바와 같이, 절연층(170)은 그루브(120g) 주변의 메사(120m) 상면을 더 덮을 수 있다. 이에 따라, 그루브(120g) 주변의 메사(120m) 상면을 통해 정전기가 제2 도전형 반도체층(125)에 도통되는 것을 방지할 수 있어, 정전기 방전에 대한 발광 소자의 내성을 더욱 향상시킬 수 있다.
제1 전극 패드(151)는 절연층(170) 상에 위치하여, 메사(120m)의 상면, 즉 제2 도전형 반도체층(125)과 전기적으로 절연된다. 제1 전극 패드(151)는 패드 컨택 부분(151a)을 포함할 수 있으며, 패드 컨택 부분(151a)은 제1 도전형 반도체층(121)과 오믹 컨택될 수 있다. 패드 컨택 부분(151a)을 통해 제1 전극 패드(151)의 일부가 제1 도전형 반도체층(121)과 컨택할 수 있다. 패드 컨택 부분(151a)은 메사(120m)의 측면 상에 위치하되, 절연층(170)에 의해 메사(120m)의 측면과 절연된다. 제1 전극 패드(151)가 패드 컨택 부분(151a)을 포함함으로써, 패드 컨택 부분(151a)을 통해 전자 주입이 이루어질 수 있다. 따라서, 발광 소자의 전류 분산 효율이 더욱 향상될 수 있다. 이때, 패드 컨택 부분(151a)과 연장부 컨택 부분(153a)들은 발광 소자의 동일한 일 측면을 따라 위치할 수 있으며, 예컨대, 제2 측면(102)에 인접하여 위치할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 전류 분산을 고려하여 패드 컨택 부분(151a)과 연장부 컨택 부분(153a)들은 적어도 두 개의 다른 측면들에 인접하도록 형성될 수도 있다.
한편, 절연층(170)은 그 측면으로부터 돌출되어 확장되는 적어도 하나의 확장부(171)를 더 포함할 수 있고, 상기 확장부(171)는 제1 전극 패드(151) 주변의 메사(120m) 측면을 덮을 수 있다. 예컨대, 도 31 등에 도시된 바와 같이, 절연층(170)은 두 개의 확장부(171)를 포함할 수 있고, 상기 두 개의 확장부(171)는 제1 전극 패드(151)의 주변에서 발광 소자의 제2 측면(102) 및 제3 측면(103)을 향하는 방향으로 연장되어 형성된다. 이때, 패드 컨택 부분(151a)은 상기 두 개의 확장부(171)들 사이에 위치할 수 있다. 본 실시예의 발광 소자에 전원을 공급하기 위해, 제1 전극 패드(151)에 전기적 본딩(예컨대, 볼 본딩)을 형성하는 경우, 도전성 물질이 제1 전극 패드(151)를 벗어나 메사(120m)의 측면에도 형성될 가능성이 있다. 이러한 경우 상기 도전성 물질에 의해 전기적 쇼트가 발생할 수 있다. 본 실시예에 따르면, 확장부(171)에 의해 제1 전극 패드(151) 주변의 메사(120m) 측면이 커버되므로, 도전성 물질이 제1 전극 패드(151)를 벗어나 형성되더라도 확장부(171)를 통해 메사(120m) 측면과 절연될 수 있다. 이에 따라, 발광 소자의 불량 및 제조 수율 감소를 방지할 수 있다.
절연층(170)은 투명 전극(140)과 이격될 수 있다. 절연층(170)은 형성 과정에서 발생하거나 자체적으로 함유하는 결함에 의해 미세 전류를 도통시킬 가능성이 있다. 이러한 절연층(170)이 비교적 낮은 전기적 저항을 갖는 투명 전극(140)과 접촉하면, 절연층(170)을 통해 투명 전극(140)과 제1 전극(150)간에 흐르는 누설 전류가 발생할 수 있다. 따라서, 절연층(170)과 투명 전극(140)을 이격시켜, 절연층(170)을 통한 누설 전류 발생을 방지하여 발광 소자의 전기적 특성을 향상시킬 수 있다.
제1 전극(150)은 제1 도전형 반도체층(121)에 외부의 전원을 공급하는 역할을 할 수 있고, 제1 전극(150)은 Ti, Pt, Au, Cr, Ni, Al 등과 같은 금속 물질을 포함할 수 있다. 또한, 제1 전극(150)은 단일층 또는 다중층으로 이루어질 수 있다.
한편, 몇몇 실시예들에 따른 발광 소자는, 발광 소자의 표면을 적어도 부분적으로 덮는 패시베이션층(230)을 더 포함할 수 있다. 도 40에 도시된 바와 같이, 패시베이션층(230)은 발광 구조체(120) 및 투명 전극(140)을 적어도 부분적으로 덮을 수 있고, 나아가, 제1 전극 연장부(153) 및 제2 전극 연장부(163)를 더 덮을 수 있다. 이때, 패시베이션층(230)은 제1 전극 패드(151) 및 제2 전극 패드(161)를 적어도 부분적으로 노출시키는 개구부들을 포함할 수 있으며, 상기 개구부를 통해 제1 및 제2 전극 패드(151, 161)에 전기적 연결을 형성할 수 있다.
패시베이션층(230)은 외부의 습기 또는 유해 가스로부터 발광 소자를 보호할 수 있다. 패시베이션층(230)은 절연성 물질로 형성될 수 있고, 단일층 또는 다중층으로 이루어질 수 있다. 예를 들어, 패시베이션층(230)은 SiO2, MgF2, SiN 등을 포함할 수 있고, 또는 TiO2 및 SiO2와 같은 서로 다른 물질층이 반복 적층된 분포 브래그 반사기를 포함할 수도 있다. 또한, 패시베이션층(230)이 다중층으로 이루어진 경우, 최상층은 SiN으로 형성될 수 있고, 이 경우 SiN은 내습성이 높아 상기 발광 소자를 외부 습기로부터 효과적으로 보호할 수 있다.
도 41 내지 도 49는 본 발명의 실시예들에 따른 발광 소자를 설명하기 위한 평면도들, 단면도들, 확대 평면도들 및 확대 단면도들이다. 구체적으로, 도 41은 상기 발광 소자의 평면을 도시하는 평면도이고, 도 42는 상기 발광 소자의 평면을 도시하되, 투광성 도전층(180)의 배치를 설명하기 위하여 몇몇 구성을 생략하여 도시하는 평면도이고, 도 43은 상기 발광 소자의 평면을 도시하되, 소정의 전류 경로 영역(CPR)을 설명하기 위한 평면도이다. 도 44 내지 도 47은 각각 도 41의 A-A'선, B-B'선, C-C'선, 및 D-D'선에 대응하는 부분의 단면을 도시하는 단면도들이다. 또한, 도 48은 도 41의 α영역을 확대 도시하는 확대 평면도이며, 도 49는 도 48의 E-E'선 및 F-F'선에 대응하는 부분의 단면을 도시하는 확대 단면도들이다.
도 41 내지 도 49를 참조하면, 상기 발광 소자는 발광 구조체(120), 제1 전극(200), 제2 전극(160)을 포함한다. 나아가, 상기 발광 소자는, 기판(110), 전류 차단층(130) 및 제2 도전성 산화물 전극(140)을 더 포함할 수 있다. 또한, 상기 발광 소자는 제1 내지 제4 측면(각각, 101, 102, 103, 104)을 포함할 수 있다. 상기 발광 소자는, 도시된 바와 같이, 평면적으로 장방형의 형상을 가질 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
기판(110)은 절연성 또는 도전성 기판일 수 있다. 또한, 기판(110)은 발광 구조체(120)를 성장시키기 위한 성장 기판일 수 있으며, 사파이어 기판, 실리콘 카바이드 기판, 실리콘 기판, 질화갈륨 기판, 질화알루미늄 기판 등을 포함할 수 있다. 예를 들어, 기판(110)은 사파이어 기판일 수 있으며, 특히, 상면이 패터닝된 패턴된 사파이어 기판(patterned sapphire substrate; PSS)일 수 있다. 기판(110)이 패턴된 사파이어 기판인 경우, 기판(110)은 그 상면에 형성된 복수의 돌출부(110p)들을 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 기판(110)은 발광 구조체(120)를 지지하기 위한 2차 기판일 수도 있다.
본 실시예에서, 제1 도전형 반도체층(121)이 기판(110) 상에 위치하는 것으로 설명하나, 기판(110)이 반도체층들(121, 123, 125)을 성장시킬 수 있는 성장 기판인 경우, 반도체층(121, 123, 125)들을 성장시킨 후에 물리적 및/또는 화학적 방법을 통해 분리 또는 제거되어 생략될 수도 있다.
발광 구조체(120)는 제1 도전형 반도체층(121), 제1 도전형 반도체층(121)상에 위치하는 제2 도전형 반도체층(125), 및 제1 도전형 반도체층(121)과 제2 도전형 반도체층(125)의 사이에 위치하는 활성층(123)을 포함할 수 있다. 또한, 발광 구조체(120)는 제1 도전형 반도체층(121) 상에 위치하며, 활성층(123) 및 제2 도전형 반도체층(125)을 포함하는 메사(120m)를 포함할 수 있다.
제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 MOCVD와 같은 공지의 방법을 이용하여 챔버 내에서 성장되어 형성될 수 있다. 또한, 제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 Ⅲ-Ⅴ 계열 질화물계 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 제1 도전형 반도체층(121)은 n형 불순물 (예를 들어, Si, Ge. Sn)을 포함할 수 있고, 제2 도전형 반도체층(125)은 p형 불순물 (예를 들어, Mg, Sr, Ba)을 포함할 수 있다. 또한, 그 반대일 수도 있다. 활성층(123)은 다중양자우물 구조(MQW)를 포함할 수 있고, 원하는 파장을 방출하도록 질화물계 반도체의 조성비가 조절될 수 있다. 특히, 본 실시예에 있어서, 제2 도전형 반도체층(125)은 p형 반도체층일 수 있다.
메사(120m)는 제1 도전형 반도체층(121)의 일부 영역 상에 위치하며, 이에 따라, 메사(120m)가 형성되지 않는 영역에는 제1 도전형 반도체층(121)의 표면이 노출될 수 있다. 예컨대, 도 41 내지 도 47 등에 도시된 바와 같이, 메사(120m) 주변의 적어도 일부 영역에는 제1 도전형 반도체층(121)의 상면이 노출될 수 있다. 메사(120m)는 제2 도전형 반도체층(125)과 활성층(123)을 부분적으로 식각함으로써 형성될 수 있다. 메사(120m)의 형태는 제한되지 않으나, 예를 들어, 도시된 바와 같이, 메사(120m)는 제1 도전형 반도체층(121)의 측면을 따라 형성될 수 있다. 메사(120m)는 경사진 측면을 가질 수 있으나, 제1 도전형 반도체층(121)의 상면에 대해 수직인 측면을 가질 수도 있다.
또한, 메사(120m)는 그 측면으로부터 함입된 적어도 하나의 그루브(120g)를 포함하는 적어도 하나의 측면을 포함할 수 있다. 그루브(120g)를 통해 제1 도전형 반도체층(121)의 일부가 노출될 수 있다. 나아가, 상기 그루브(120g)가 복수로 형성된 경우, 메사(120m)는 그루브(120g)들 사이에 배치된 적어도 하나의 돌출부(120p)를 포함할 수 있다.
예컨대, 도시된 바와 같이, 메사(120m)는 제1 내지 제4 측면(각각, 120a, 120b, 120c, 120d)을 포함할 수 있다. 메사(120m)의 제1 내지 제4 측면(각각, 120a, 120b, 120c, 120d)은 각각 발광 소자의 제1 내지 제4 측면(각각, 101, 102, 103, 104)에 인접하여 위치할 수 있다. 예컨대, 메사(120m)의 제1 측면(120a)은 발광 소자의 제1 측면(101)에 인접하여 위치하며, 대체로 발광 소자의 제1 측면(101)을 따라 형성될 수 있다. 이때, 메사(120m)의 측면들 중 적어도 하나는 적어도 하나의 그루브(120g)를 포함할 수 있으며, 본 실시예에서 메사(120m)의 제2 측면(120b)은 복수의 그루브(120g)를 포함할 수 있다. 복수의 그루브(120g)를 통해 제1 도전형 반도체층(121)이 노출되며, 상기 그루브(120g)를 통해 노출된 제1 도전형 반도체층(121)은 후술하는 금속 연장부 컨택 부분(155)과 전기적으로 접촉될 수 있다. 또한, 그루브(120g)들 사이에는 복수의 돌출부들(120p)이 형성된다. 그루브(120g)들 간의 이격 거리는 대체로 일정할 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 다양한 실시예들에서, 그루브(120g)는 메사(120m)의 측면들 중 둘 이상의 측면에 형성될 수도 있다. 예를 들어, 그루브(120g)는 메사(120m)의 제2 측면(120b) 및 제3 측면(120c)에 형성될 수도 있다.
또한, 메사(120m)는 그 측면에 형성될 요철 패턴(미도시)을 더 포함할 수도 있다. 상기 요철 패턴을 통해 광이 산란되어, 발광 소자의 광 추출 효율이 향상될 수 있다.
전류 차단층(130)은 제2 도전형 반도체층(125) 상에 적어도 부분적으로 위치한다. 전류 차단층(130)은 제2 도전형 반도체층(125) 상에 제2 전극(160)이 위치하는 부분에 대응하여 위치할 수 있다. 전류 차단층(130)은 패드 전류 차단층(131) 및 연장부 전류 차단층(133)을 포함할 수 있다. 패드 전류 차단층(131)과 연장부 전류 차단층(133)은 각각 제2 전극 패드(161) 및 제2 전극 연장부(163)의 위치에 대응하여 위치할 수 있다. 따라서, 도시된 바와 같이, 패드 전류 차단층(131)은 발광 소자의 제1 측면(101)에 인접하여 배치되고, 연장부 전류 차단층(133)은 제1 측면(101)으로부터 제3 측면(103)으로 향하는 방향으로 연장되도록 배치될 수 있다.
전류 차단층(130)은 제2 전극(160)으로 공급된 전류가 반도체층에 직접적으로 전달되어, 전류가 집중되는 것을 방지할 수 있다. 따라서, 전류 차단층(130)은 절연성을 가질 수 있고, 절연성 물질을 포함할 수 있으며, 단일층 또는 다중층으로 형성될 수도 있다. 예를 들어, 전류 차단층(130)은 SiOx 또는 SiNx을 포함할 수 있고, 또는 굴절률이 다른 절연성 물질층들이 적층된 분포 브래그 반사기를 포함할 수도 있다. 즉, 전류 차단층(130)은 광 투과성을 가질 수도 있고, 광 반사성을 가질 수도 있으며, 또한 선택적 광 반사성을 가질 수도 있다.
또한, 전류 차단층(130)은 전류 차단층(130) 상에 형성되는 제2 전극(160)보다 큰 면적을 가질 수 있다. 이에 따라, 제2 전극(160)은 전류 차단층(130)이 형성되는 영역 내 상에 위치할 수 있다.
제2 도전성 산화물 전극(140)은 제2 도전형 반도체층(125) 상에 위치할 수 있고, 또한, 제2 도전형 반도체층(125) 상면의 일부, 및 전류 차단층(130)의 일부를 덮는다. 제2 도전성 산화물 전극(140)은 패드 전류 차단층(131)을 부분적으로 노출시키는 개구부(140a)를 포함할 수 있다. 또한, 제2 도전성 산화물 전극(140)은 상기 개구부(140a)의 측면(140g)으로부터 돌출된 돌출부(140p)를 포함한다. 개구부(140a)의 측면(140g)은 패드 전류 차단층(131) 상에 위치할 수 있으며, 대체로 패드 전류 차단층(131)의 측면을 따라 형성될 수 있다. 한편, 돌출부(140p)는 개구부(140a)의 측면(140g)으로부터 돌출될 수 있다. 돌출부(140p)는 패드 전류 차단층(131)의 중심부를 향하여 돌출될 수 있다. 돌출부(140p)는 복수로 형성될 수 있다.
제2 도전성 산화물 전극(140)은 광 투과성 및 전기적 도전성을 갖는 물질을 포함할 수 있고, 예를 들어, ITO, RuOx, RuOx/ITO, MgO, ZnO 등과 같은 도전성 산화물 및 Ni/Au와 같은 광 투과성 금속층 중 적어도 하나를 포함할 수도 있다. 또한, 제2 도전성 산화물 전극(140)은 제2 도전형 반도체층(125)과 오믹 컨택을 형성할 수 있다. 제2 전극(160)이 제2 도전형 반도체층(125)과 직접적으로 접촉하지 않으므로, 제2 도전성 산화물 전극(140)을 통해 더욱 효과적으로 전류가 분산될 수 있다. 제2 도전성 산화물 전극(140)이 ZnO를 포함하는 경우, 제2 도전성 산화물 전극(140)은 다양한 도펀트를 포함할 수 있다. 상기 도펀트는, 예를 들어, Ag, In, Sn, Cd, Ga, Al, Mg, Ti, Mo, Ni, Cu, Au, Pt, Rh, Ir, Ru 및 Pd 중 적어도 하나를 포함할 수 있다.
본 실시예에 있어서, 제2 도전성 산화물 전극(140)은 Ga 도펀트를 포함하는 GZO, ZnO, 및 ITO중 적어도 하나를 포함할 수 있다. 또한, 제2 도전성 산화물 전극(140)은 후술하는 제1 도전성 산화물 전극(180)과 실질적으로 동일한 물질을 포함하거나, 실질적으로 동일한 물질로 형성될 수도 있다. 또한, 다른 실시예에서, 제2 도전성 산화물 전극(140)과 제1 도전성 산화물 전극(180)은 서로 다른 물질로 형성될 수 있고, 예를 들어, 제2 도전성 산화물 전극(140)은 ITO로 형성될 수 있고, 제1 도전성 산화물 전극(180)은 Ga 도펀트를 포함하는 ZnO로 형성될 수 있다.
제2 전극(160)은 제2 도전형 반도체층(125) 상에 위치하되, 제2 전극(160)의 적어도 일부는 전류 차단층(130)이 위치하는 영역 상에 위치한다. 제2 전극(160)은 제2 전극 패드(161) 및 제2 전극 연장부(163)를 포함하고, 제2 전극 패드(161)와 제2 전극 연장부(163)는 각각 패드 전류 차단층(131) 및 연장부 전류 차단층(133) 상에 위치할 수 있다. 따라서, 제2 전극(160)과 전류 차단층(130) 사이에는 제2 도전성 산화물 전극(140)의 일부가 개재될 수 있다.
특히, 제2 전극 패드(161)는 제2 도전성 산화물 전극(140)의 개구부(140a) 상에 위치할 수 있다. 제2 전극 패드(161)와 상기 개구부(140a)의 측면(140g)은 이격되되, 도전성 산화물 전극(140)의 돌출부(140p)의 적어도 일부는 제2 전극 패드(161)와 패드 전류 차단층(131)의 사이에 위치할 수 있다. 따라서, 제2 전극 패드(161)와 제2 도전성 산화물 전극(140)의 돌출부(140p)는 접촉되어 전기적으로 연결된다. 제2 전극 패드(161)의 형상은 제한되지 않으나, 예컨대, 도시된 바와 같이 대체로 원형으로 형성될 수 있다. 이에 따라, 전류 차단층(130)의 패드 전류 차단층(131) 역시 제2 전극 패드(161) 형상과 유사한 원형으로 형성될 수 있고, 제2 도전성 산화물 전극(140)의 개구부(140a) 역시 대체로 유사한 원형으로 형성될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다. 제2 전극 패드(161)의 위치는 제한되지 않으나, 전류를 원활하게 분산시켜 발광 소자의 활성층(123) 전면에서 발광이 이루어지도록 배치될 수 있다. 예컨대, 도시된 바와 같이, 제2 전극 패드(153)는 금속 전극 패드(151)가 인접하여 위치하는 제3 측면(103)에 반대하는 제1 측면(101)에 인접하여 위치할 수 있다.
제2 전극 연장부(163)는 제2 전극 패드(161)로부터 연장된다. 본 실시예에 있어서, 제2 전극 연장부(163)는 제2 전극 패드(161)로부터 제3 측면(103) 측으로 향하는 방향으로 연장될 수 있다. 또한, 제2 전극 연장부(163)가 연장되는 방향은 제2 전극 연장부(163)에 연장함에 따라 변화할 수 있다. 예컨대, 제2 전극 연장부(163)의 말단은 발광 소자의 제3 측면(103)과 제4 측면(104)의 사이 부분을 향하도록 휘어질 수 있다. 이는 금속 전극 패드(151)와 제2 전극 연장부(163)의 거리를 고려하여 다양하게 설계될 수 있다. 제2 전극 연장부(163)의 적어도 일부와 연장부 전류 차단층(133)의 사이에는 제2 도전성 산화물 전극(140)이 개재되며, 이에 따라, 제2 전극 연장부(163)는 제2 도전성 산화물 전극(140)과 전기적으로 연결된다.
또한, 제2 전극 연장부(163)의 끝단은 제2 전극 연장부(163)의 평균 폭보다 큰 폭을 갖는 부분을 포함할 수 있다. 예컨대, 제2 전극 연장부(163)의 끝단은 지름이 제2 전극 연장부(163)의 폭보다 큰 원형 형태로 형성될 수 있다. 이때, 상기 끝단의 지름은 제2 전극 연장부(163)의 폭보다 약 0.5 내지 5㎛ 더 클 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 제2 전극 연장부(163)의 끝단의 형태는 다각형, 타원형, 원호형 등 다양한 형태로 변형될 수 있다.
한편, 제2 전극(160)의 배치는 이에 한정되는 것은 아니며, 발광 소자의 형태에 따라 다양하게 변형 및 변경될 수 있다.
제2 전극(160)은 도전성 물질을 포함할 수 있고, 예컨대, Ti, Pt, Au, Cr, Ni, Al, Mg 등과 같은 금속성 물질을 포함할 수 있으며, 단일층 또는 다중층 구조로 형성될 수 있다. 제2 전극(160)이 다중층으로 형성되는 경우, Ti층/Au층, Ti층/Pt층/Au층, Cr층/Au층, Cr층/Pt층/Au층, Ni층/Au층, Ni층/Pt층/Au층, 및 Cr층/Al층/Cr층/Ni층/Au층의 금속 적층 구조 중 적어도 하나를 포함할 수 있다.
상술한 바와 같이, 제2 전극(160)의 일부와 전류 차단층(130)의 사이에 제2 도전성 산화물 전극(140)이 개재되어, 제2 전극(160)과 제2 도전성 산화물 전극(140)이 접촉하는 부분을 통해 전류가 도통된다. 따라서, 전류가 효과적으로 분산될 수 있도록, 제2 전극(160)과 제2 도전성 산화물 전극(140)이 접촉하는 영역이 조절될 수 있으며, 이와 관련하여, 도 48 및 도 49를 참조하여 본 실시예의 제2 전극(160), 특히 제2 전극 패드(161) 주변 영역의 구조에 대해 더욱 상세하게 설명한다. 도 48의 확대도는 도 41의 α영역을 확대 도시하며, 도 49의 (a) 및 (b)는 각각 도 49의 E-E'선 및 F-F'선에 대응하는 부분의 단면을 도시한다.
도 48의 (a) 및 (b)의 확대도들에서, 설명의 편의를 위하여 제2 도전성 산화물 전극(140)을 실선으로 나타내고, 전류 차단층(130) 및 제2 전극(160)은 파선으로 나타내었다. 본 실시예에 따르면, 제2 도전성 산화물 전극(140)의 개구부(140a)는 측면(140g)을 포함하고, 상기 측면(140g)은 패드 전류 차단층(131) 상에 위치하되, 제2 전극 패드(161)로부터 이격된다. 이때, 제2 도전성 산화물 전극(140)의 개구부(140a)는 패드 전류 차단층(131)의 측면을 따라 형성되되, 대체로 상기 패드 전류 차단층(131)의 측면 형상에 대응하도록 형성된다. 특히, 개구부(140a)의 측면이 패드 전류 차단층(131) 상에 위치함으로써, 제2 도전형 반도체층(125)의 상면이 노출되지 않고 제2 도전성 산화물 전극(140)에 의해 커버될 수 있다. 이에 따라, 제2 전극 패드(161) 주변에서 발생하는 정전기가 제2 도전형 반도체층(125)으로 직접적으로 도통되는 것이 방지될 수 있어, 정전기 방전에 의해 발광 소자의 불량을 더욱 효과적으로 방지할 수 있다.
제2 도전성 산화물 전극(140)은 적어도 하나의 돌출부(140p)를 포함하고, 돌출부(140p)는 개구부(140a)의 측면으로부터 돌출된다. 돌출부(140p)는, 도 48(a), 도 48(b), 도 49(a) 및 도 49(b)에 도시된 바와 같이, 상기 적어도 하나의 돌출부(140p)는 패드 전류 차단층(131)의 측면 및 상면을 부분적으로 덮으며, 패드 전류 차단층(131)과 제2 전극 패드(161)의 사이에 개재된다. 따라서, 제2 전극 패드(161)와 돌출부(140p)가 전기적으로 연결되어, 제2 전극 패드(161)와 돌출부(140p)를 통해 전류가 도통된다. 이에 따라, 돌출부(140p)가 위치하는 영역에 대한 전류 주입이 원활하게 이루어질 수 있다. 제2 전극(160)의 제2 전극 연장부(163)는 제2 도전성 산화물 전극(140)에 접촉하므로, 제2 전극 연장부(163)에 의해 제2 도전형 반도체층(125)에 대한 전류 주입이 이루어진다. 따라서, 돌출부(140p)의 개수 및 위치는 제2 전극 연장부(163)의 위치에 따라 조절될 수 있다.
구체적으로, 도 48(b)를 참조하여 설명한다. 먼저, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면(가상의 좌표계)을 정의한다. 상기 가상의 면은 제1 사분면(1QD), 제2 사분면(2QD), 제3 사분면(3QD) 및 제4 사분면(4QD)을 포함한다. 상기 가상의 좌표계를 기준으로, 제2 전극 패드(161)로부터 제2 전극 연장부(163)가 연장되는 부분, 즉, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 이때, 적어도 하나의 돌출부(140p)는 상기 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 예컨대, 본 실시예에서, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD) 또는 y(-)축 상에 위치하고, 3개의 돌출부들(140p)은 각각 x(+)축, x(-)축 및 y(+)축 상에 위치한다. 따라서, 제4 사분면(4QD) 또는 y(-)축 주변에 대응하는 영역에는 제2 전극 연장부(163)에 의해 전류가 주입되고, x(+)축, x(-)축 및 y(+)축 주변에 대응하는 영역들에는 돌출부(140p)들에 의해 전류가 주입될 수 있다.
다른 다양한 실시예들에서, 돌출부(140p)들의 위치 및 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)의 위치는 다양하게 변형될 수 있다. 도 65의 (a) 및 (b)은 본 발명의 실시예들에 따른 발광 소자를 설명하기 위한 확대 평면도들이다. 도 65의 (a) 및 (b)를 참조하면, 제2 전극 패드(161)의 중심부(161c)를 원점으로 하여, x축과 y축을 갖는 가상의 면(가상의 좌표계)을 정의한다. 상기 가상의 면은 제1 사분면(1QD), 제2 사분면(2QD), 제3 사분면(3QD) 및 제4 사분면(4QD)을 포함한다. 상기 가상의 좌표계를 기준으로, 제2 전극 패드(161)로부터 제2 전극 연장부(163)가 연장되는 부분, 즉, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 이때, 적어도 하나의 돌출부(140p)는 상기 계면(165)이 위치하는 부분을 제외하고, 나머지의 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면(1QD, 2QD, 3QD, 4QD) 중 적어도 하나 상에 위치할 수 있다. 예컨대, 본 실시예에서, 제2 전극 패드(161)와 제2 전극 연장부(163)의 계면(165)은 제4 사분면(4QD) 또는 y(-)축 상에 위치하고, 3개의 돌출부들(140p)은 각각 x(+)축, x(-)축 및 y(+)축 상에 위치한다. 따라서, 제4 사분면(4QD) 또는 y(-)축 주변에 대응하는 영역에는 제2 전극 연장부(163)에 의해 전류가 주입되고, x(+)축, x(-)축 및 y(+)축 주변에 대응하는 영역들에는 돌출부(140p)들에 의해 전류가 주입될 수 있다.
한편, 제2 전극 패드(161)의 하면과 제2 도전성 산화물 전극(140)이 접하는 부분의 면적은 제2 전극 패드(161)의 전체 하면 면적에 대하여, 1% 이상 20% 이하일 수 있고, 나아가, 1.5% 이상 13% 이하일 수 있으며, 더 나아가, 3% 이상 5% 이하일 수 있다. 제2 전극 패드(161)의 하면과 제2 도전성 산화물 전극(140)이 접하는 부분의 면적을 상술한 비율로 조절함으로써, 제2 전극 패드(161)와 패드 전류 차단층(131)이 접하는 부분의 면적을 상대적으로 크게 할 수 있다. 따라서, 제2 전극 패드(161)와 제2 도전성 산화물 전극(140)이 접하는 부분에서 발생할 수 있는 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다. 또한, 돌출부(140p)는 다양한 형상을 가질 수 있으며, 예컨대, 도시된 바와 같이 원호 내지 타원호 형상을 가질 수 있다.
본 실시예와 같이, 제2 전극 패드(161)와 패드 전류 차단층(131) 간의 계면의 일부 영역에만 제2 도전성 산화물 전극(140)이 개재됨으로써, 제2 전극 패드(161)의 박리를 효과적으로 억제할 수 있다. 이에 더하여, 제2 전극 패드(161)가 제2 도전성 산화물 전극(140)의 돌출부(140p)와 접촉함으로써, 제2 전극 패드(161)와 제2 도전성 산화물 전극(140)으로부터 이격되어 발생할 수 있는 전류 밀집 현상을 완화시킬 수 있고, 제2 전극 연장부(163)가 위치하지 않는 부분들에 대해 전류가 원활하게 분산될 수 있도록 한다. 수평 방향으로 전류가 원활하게 분산됨으로써, 발광 소자의 파워가 향상될 수 있고, 순방향 전압(Vf)이 낮아질 수 있다. 나아가, 제2 전극 패드(161)와 제2 도전형 반도체층(125)이 제2 도전성 산화물 전극(140)을 통해 직접적으로 연결되는 부분이 존재하지 않으므로, 정전기에 의한 불량 또는 파손이 방지될 수 있어, 정전기 방전에 대한 내성이 높은 발광 소자가 제공될 수 있다.
제1 전극(200)은 제1 도전형 반도체층(121)과 전기적으로 연결된다. 제1 전극(200)은 제2 도전형 반도체층(125)과 활성층(123)이 부분적으로 제거되어 노출된 제1 도전형 반도체층(121)의 상면 일부와 오믹 컨택함으로써, 제1 도전형 반도체층(121)과 전기적으로 연결될 수 있다. 제1 전극(200)은 발광 구조체(120) 상에 위치한다. 예컨대, 제1 전극(200)의 적어도 일부는 제1 도전형 반도체층(121) 상에 위치할 수도 있고, 또는, 제1 전극(200)의 적어도 일부는 메사(120m) 상에 위치할 수도 있다.
제1 전극(200)은 제1 전극 패드(151, 181) 및 제1 전극 연장부(153, 182, 183, 184, 185)를 포함할 수 있다. 또한, 제1 전극(200)은 금속 전극(150) 및 제1 도전성 산화물 전극(180)을 포함한다. 금속 전극(150)은 금속 전극 패드(151) 및 금속 전극 연장부(153)를 포함할 수 있고, 제1 도전성 산화물 전극(180)은 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 포함할 수 있고, 나아가, 제1 도전성 산화물 전극 패드(181)를 더 포함할 수 있다. 또한, 제1 전극 패드(151, 181)는 금속 전극 패드(151)를 포함할 수 있고, 나아가, 제1 도전성 산화물 전극 패드(181)를 더 포함할 수 있다. 제1 전극 연장부(153, 182, 183, 184, 185)는 적어도 하나의 금속 전극 연장부(153) 및 적어도 하나의 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 포함할 수 있다.
적어도 하나의 금속 전극 연장부(153) 및 적어도 하나의 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 제1 전극 패드(151, 181)로부터 연장된다. 이때, 금속 전극 연장부(153)는 제1 전극 패드(151, 181)의 일 측면으로부터 연장될 수 있고, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 상기 일 측면 외에 제1 전극 패드(151, 181)의 다른 측면으로부터 연장될 수 있다. 예컨대, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)와 금속 전극 연장부(153)는 서로 반대 방향으로 연장될 수 있다. 또한, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 발광 구조체(120)의 제1 도전형 반도체층(121)이 노출된 영역 상에 위치하여, 제1 도전형 반도체층(121)과 전기적으로 접촉될 수 있다. 특히, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m) 주변 영역 중 적어도 일부 영역 상에 위치할 수 있으며, 메사(120m)의 측면 중 적어도 일부를 따라 배치될 수도 있다. 이에 따라, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)를 적어도 부분적으로 둘러쌀 수 있고, 다양한 실시예들에서, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)를 둘러싸는 폐곡선을 형성할 수도 있다. 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 메사(120m) 주변에 배치됨으로써, 발광 소자의 전류 분산 효율이 향상될 수 있다.
또한, 몇몇 실시예들에서, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 제1 도전성 산화물 전극 패드(181)로부터 연장될 수 있다. 이때, 제1 도전성 산화물 전극 패드(181)는 금속 전극 패드(151)와 접촉되어 전기적으로 연결될 수 있다. 금속 전극 패드(151)는 제1 도전성 산화물 전극 패드(181) 상에 위치할 수 있다. 또한, 금속 전극 패드(151)의 면적은 제1 도전성 산화물 전극 패드(181)의 면적보다 작을 수 있다.
이하, 본 실시예에 따른 발광 소자에 있어서, 제1 전극(200)의 구조를 도 41 내지 도 47을 참조하여 더욱 상세하게 설명한다. 다만, 본 실시예에 따른 제1 전극(200)의 구조는 예시적인 것이며, 도시된 발광 소자의 구조에 따라 제1 전극(200)이 제한되는 것은 아니다.
먼저, 금속 전극 연장부(153) 및 금속 전극 패드(151)를 포함하는 금속 제1 전극(200)과 관련하여 설명한다. 본 실시예에 있어서, 금속 제1 전극(200)은 메사(120m) 상에 위치하되, 금속 제1 전극(200)과 메사(120m)의 사이에는 절연층(170)이 개재될 수 있다. 이때, 절연층(170)은 절연성 물질을 포함할 수 있으며, 예컨대, SiO2, SiNx, 굴절률이 서로 다른 층들이 반복 적층된 분포 브래그 반사기 등을 포함할 수 있다. 이때, 절연층(170)은 메사(120m)의 측면의 일부를 덮을 수 있다. 또한, 절연층(170)은 메사(120m)의 그루브(120g)에 노출된 제1 도전형 반도체층(121)의 상면을 적어도 부분적으로 노출시키는 적어도 하나의 개구부를 포함할 수 있다.
또한, 금속 전극 연장부(153)의 일부는 제1 도전형 반도체층(121)과 컨택할 수 있다. 금속 전극 연장부(153)는 연장부 컨택 부분(155)을 포함하며, 연장부 컨택 부분(155)을 통해 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 금속 전극 패드(151)는 절연층(170) 상에 위치하여, 제1 도전형 반도체층(121)과 컨택되지 않을 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 다양한 실시예들에서, 금속 전극 패드(151)의 일부는 제1 도전형 반도체층(121)과 오믹 컨택 하도록 형성될 수도 있다.
금속 전극 연장부(153)는 절연층(170) 상에 위치하되, 금속 전극 연장부(153)의 일부는 적어도 하나의 그루브(120g)와 상하 방향으로 중첩되어 위치한다. 이때, 금속 전극 연장부(153)는 제1 도전형 반도체층(121)과 컨택되는 연장부 컨택 부분(155)을 포함하며, 연장부 컨택 부분(155)은 제1 도전형 반도체층(121)과 오믹 컨택할 수 있다. 연장부 컨택 부분(155)이 적어도 하나의 그루브(120g)에 의해 노출된 제1 도전형 반도체층(121)과 전기적 연결을 형성하고, 금속 전극 연장부(153)의 나머지 부분은 절연층(170) 상에 형성되어 제1 도전형 반도체층(121)과 절연됨으로써, 발광 소자 구동 시 전자(electron)들은 연장부 컨택 부분(155)을 통해 제1 도전형 반도체층(121)으로 이동한다. 즉, 연장부 컨택 부분(155)을 통해 전류가 도통된다.
제1 전극(200)이 n형 전극인 경우, 전자들은 제1 전극(200)으로부터 제2 전극(160)을 향하는 방향으로 이동하는데, 금속 전극 연장부(153) 전체가 제1 도전형 반도체층(121)과 컨택하는 경우 금속 전극 패드(151)로부터 거리에 따라 제1 도전형 반도체층(121)에 주입되는 전자의 밀도가 달라질 수 있다. 즉, 금속 전극 연장부(153)에서 금속 전극 패드(151)에 상대적으로 가깝게 위치하는 부분으로부터 주입되는 전자의 밀도는 금속 전극 연장부(153)에서 금속 전극 패드(151)에서 상대적으로 멀리 위치하는 부분으로부터 주입되는 전자의 밀도보다 높다. 따라서, 금속 전극 연장부(153) 전체가 제1 도전형 반도체층(121)에 컨택하는 경우, 전류 분산 효율(current spreading performance)이 저하될 수 있다.
반면, 본 실시예에 따르면, 금속 전극 연장부(153)의 연장부 컨택 부분(155)을 통해서 제1 도전형 반도체층(121)과 컨택하되, 금속 전극 연장부(153)의 나머지 부분들은 절연층(170)에 의해 제1 도전형 반도체층(121)과 절연된다. 따라서, 연장부 컨택 부분(155)을 통해서 전자 주입이 이루어져, 복수의 연장부 컨택 부분(155)에서의 전자 주입 밀도를 대체로 유사하게 유지할 수 있다. 이에 따라, 금속 전극 연장부(153)에서 금속 전극 패드(151)로부터 거리가 먼 부분을 통해서도 원활하게 전자가 주입될 수 있어, 발광 소자의 전류 분산 효율을 향상시킬 수 있다.
연장부 컨택 부분(155)은 그루브(120g)의 위치 및 개수에 대응할 수 있으므로, 연장부 컨택 부분(155)들의 이격 거리는 대체로 동일할 수 있으며, 연장부 컨택 부분(155)들은 발광 소자의 일 측면을 따라 위치할 수 있다. 예컨대, 연장부 컨택 부분(155)들은 발광 소자의 제2 측면(102)에 인접하여 위치할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 연장부 컨택 부분(155)들은 발광 소자의 적어도 두 측면을 따라 형성될 수도 있다.
한편, 연장부 컨택 부분(155)의 아래에 위치하는 절연층(170)은 금속 전극 연장부(153)의 선폭보다 큰 폭을 가질 수 있어, 메사(120m)와 금속 전극 연장부(153)간에 전기가 도통되는 것을 더욱 효과적으로 방지한다. 또한, 절연층(170) 중 금속 전극 연장부(153)의 아래에 위치하는 부분은 메사(120m)의 측면에 의해 정의되는 영역 내에 위치할 수 있다. 따라서, 도시된 바와 같이, 절연층(170) 중 금속 전극 연장부(153)의 아래에 위치하는 부분 주변에는 메사(120m) 상면의 일부가 노출될 수 있다. 메사(120m)가 그 측면에 형성된 요철 패턴(미도시)을 포함하는 경우, 상기 요철 패턴은 절연층(170)에 덮이지 않고 노출된다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 절연층(170)은 그루브(120g)의 측면을 적어도 부분적으로 덮을 수 있다. 나아가, 절연층(170)은 그루브(120g) 상부의 주변을 더 덮도록 형성될 수 있다. 도시된 바와 같이, 절연층(170)은 그루브(120g) 주변의 메사(120m) 상면을 더 덮을 수 있다. 이에 따라, 그루브(120g) 주변의 메사(120m) 상면을 통해 정전기가 제2 도전형 반도체층(125)에 도통되는 것을 방지할 수 있어, 정전기 방전에 대한 발광 소자의 내성을 향상시킬 수 있다.
또한, 절연층(170)은 제2 도전성 산화물 전극(140)과 이격될 수 있다. 도시된 바와 같이, 메사(120m) 상에 위치하는 절연층(170)은 제2 도전성 산화물 전극(140)과 이격될 수 있다. 절연층(170)은 형성 과정에서 발생하거나 자체적으로 함유하는 결함에 의해 미세 전류를 도통시킬 가능성이 있다. 이러한 절연층(170)이 비교적 낮은 전기적 저항을 갖는 제2 도전성 산화물 전극(140)과 접촉하면, 절연층(170)을 통해 제2 도전성 산화물 전극(140)과 제1 전극(200)간에 흐르는 누설 전류가 발생할 수 있다. 따라서, 절연층(170)과 제2 도전성 산화물 전극(140)을 이격시켜, 절연층(170)을 통한 누설 전류 발생을 방지하여 발광 소자의 전기적 특성을 향상시킬 수 있다.
금속 전극(150)은 제1 도전형 반도체층(121)에 외부의 전원을 공급하는 역할을 할 수 있고, Ti, Pt, Au, Cr, Ni, Al, W, Ag 등과 같은 금속 물질을 포함할 수 있다. 또한, 금속 전극(150)은 단일층 또는 다중층으로 이루어질 수 있다. 금속 전극 패드(151)는 와이어(미도시)와 연결될 수 있고, 이에 따라, 와이어를 통해 외부의 전원이 발광 소자에 공급될 수 있다.
제1 도전성 산화물 전극(180)은 제1 전극 패드(151, 181)로부터 연장되는 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 포함할 수 있다. 또한, 제1 도전성 산화물 전극(180)은 제1 도전성 산화물 전극 패드(181)를 더 포함할 수 있고, 이 경우, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 제1 도전성 산화물 전극 패드(181)로부터 연장될 수 있다.
제1 도전성 산화물 전극(180)은 광 투과성을 갖는 도전성 물질을 포함할 수 있다. 본 실시예에 있어서, 제1 도전성 산화물 전극(180)은 광 투과성 도전성 산화물을 포함할 수 있고, 예컨대, 도펀트를 포함하는 ZnO를 포함할 수 있다. 상기 도펀트는, 예를 들어, 은(Ag), 인듐(In), 주석(Sn), 아연(Zn), 카드뮴(Cd), 갈륨(Ga), 알루미늄(Al), 마그네슘(Mg), 티타늄(Ti), 몰리브덴(Mo), 니켈(Ni), 동(Cu), 금(Au), 백금(Pt), 로듐(Rh), 이리듐(Ir), 루테늄(Ru) 및 팔라듐(Pd) 중 적어도 하나를 포함할 수 있다. 일 실시예에서, 제1 도전성 산화물 전극(180)은 Ga도핑된 ZnO, 즉 GZO로 형성될 수 있다.
제1 도전성 산화물 전극(180)에 포함된 ZnO 또는 GZO는 다양한 방법을 통해서 형성될 수 있다. 상기 ZnO 또는 GZO는 다양한 공지의 방법을 통해 형성될 수 있으며, 예컨대, 스퍼터링, 원자층 증착법, 진공 증착법, 전기화학 증착법, 펄스 레이져 증착법 등을 통해 형성될 수 있다. 제1 도전성 산화물 전극(180)은 단결정 ZnO, 단결정 GZO, 다결정 ZnO, 다결정 GZO, 비정질(amorphous) ZnO, 및 비정질 GZO 중 적어도 하나를 포함할 수 있다. 또한, 제1 도전성 산화물 전극(180)은 단일층 또는 다중층으로 이루어질 수 있다. 예를 들어, 제1 도전성 산화물 전극(180)은 언도핑된 ZnO층 및 도핑된 ZnO(예를 들어, GZO)층을 포함하는 다중층으로 이루어질 수도 있다.
제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 적어도 부분적으로 제1 도전형 반도체층(121)과 전기적으로 접촉될 수 있고, 나아가, 제1 도전형 반도체층(121)과 오믹 컨택할 수도 있다. 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 발광 구조체(120)의 제1 도전형 반도체층(121)의 상면이 노출된 영역 상에 위치하여, 제1 도전형 반도체층(121)과 접촉할 수 있다. 예컨대, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)의 주변에 노출된 제1 도전형 반도체층(121)의 상면 상에 위치하되, 메사(120m)를 적어도 부분적으로 둘러쌀 수 있다. 이때, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)의 측면과 이격된다. 또한, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 제1 도전형 반도체층(121)의 측면과 이격될 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 몇몇 실시예들에서 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 측면은 제1 도전형 반도체층(121)의 측면과 대체로 나란하게(flush) 형성될 수 있다.
일 실시예에서, 도 41 내지 도 43에 도시된 바와 같이, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 제1 부분(182), 제2 부분(183), 제3 부분(184) 및 제4 부분(185)을 포함할 수 있다.
제1 부분(182)은 제1 전극 패드(151, 181)로부터 연장되어 발광 소자의 제4 측면(104)을 향하는 방향으로 연장되되, 메사(120m)의 제3 측면(120c)과 발광 소자의 제3 측면(103)의 사이에 위치한다. 제1 부분(182)은 금속 전극 연장부(153)가 금속 전극 패드(151)로부터 연장되는 방향과 다른 방향으로 연장될 수 있고, 예컨대, 제1 부분(182)이 연장되는 방향은 금속 전극 연장부(153)가 연장되는 방향과 반대 방향일 수 있다. 제1 부분(182)은 제1 도전성 산화물 전극 패드(181)에 연결되며, 제1 도전성 산화물 전극 패드(181)는 금속 전극 패드(151)의 아래에 위치하여 금속 전극 패드(151)와 전기적으로 연결된다. 이때, 제1 도전성 산화물 전극 패드(181)는 금속 전극 패드(151)보다 넓은 면적을 갖도록 형성되어, 금속 전극 패드(151)가 안정적으로 형성될 수 있도록 한다. 제1 도전성 산화물 전극 패드(181)과 제2 도전형 반도체층(125)의 사이에는 절연층(170)이 개재될 수 있다. 제1 도전성 산화물 전극 패드(181)의 일부분은 메사(120m)의 측면을 따라 연장되어 형성될 수 있고, 이에 따라, 제1 도전성 산화물 전극 패드(181)의 일부분은 메사(120m)의 주변에 노출된 제1 도전형 반도체층(121)과 전기적으로 접촉될 수 있다. 다만, 제1 도전성 산화물 전극 패드(181)는 생략될 수도 있고, 이 경우, 제1 부분(182)는 금속 전극 패드(151)에 접촉되어 전기적으로 연결된다.
제2 부분(183)은 제1 부분(182)으로부터 연장되어, 발광 소자의 제4 측면(104)을 따라 연장될 수 있다. 제2 부분(183)은 메사(120m)의 제4 측면(120d)과 발광 소자의 제4 측면(104)의 사이에 위치할 수 있다. 제3 부분(184)은 제2 부분(183)으로부터 연장되어, 발광 소자의 제1 측면(101)을 따라 연장될 수 있다. 제3 부분(184)은 메사(120m)의 제1 측면(120a)과 발광 소자의 제1 측면(101)의 사이에 위치할 수 있다. 또한, 제4 부분(185)은 제3 부분(184)으로부터 연장되어, 발광 소자의 제2 측면(102)을 따라 연장될 수 있다. 제4 부분(185)은 메사(120m)의 제2 측면(120b)과 발광 소자의 제2 측면(102)의 사이에 위치할 수 있다. 본 실시예에서, 제4 부분(185)은 금속 전극 연장부(153)가 위치하는 부분까지 연장되지 않는다. 즉, 제4 부분(185)은 발광 소자의 제2 측면(102)의 일부분을 따라 배치되어, 메사(120m)의 그루브(120g)가 형성된 부분의 주변까지 연장되지 않도록 형성될 수 있다.
이와 같이, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 메사(120m)의 주변에 노출된 제1 도전형 반도체층(121)에 전기적으로 연결되도록 형성됨으로써, 메사(120m)의 외곽의 주변 부분에 전류 분산을 원활하게 한다. 도 43을 참조하여 더욱 구체적으로 설명하면, 발광 소자 구동 시 인가된 전류는, 제1 전극(200)과 제2 전극(160)을 통해 주로 이동한다. 이에 따라, 제1 전극(200)과 제2 전극(160) 간의 직선 경로에 대응하는 선(L)의 집합으로 이루어진 전류 경로 영역(CPR)에 전류가 집중될 확률이 높아, 상기 전류 경로 영역(CPR) 외에 나머지 영역에는 전류가 분산될 확률이 낮다. 본 실시예에서, 제1 전극(200)은 연장부 컨택 부분(155)을 통해 제1 도전형 반도체층(121)에 전기적으로 연결되므로, 도 43에 도시된 바와 같이, 상대적으로 발광 소자의 제1 측면(101), 제3 측면(103) 및 제4 측면(104)의 주변 영역에 전류가 원활하게 공급되지 않을 수 있다. 본 실시예에 따르면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 메사(120m)를 적어도 부분적으로 둘러싸도록 형성됨으로써, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)와 제2 전극(160) 간의 직선 경로에 대응하는 선의 집합으로 이루어진 영역에도 원활하게 전류 경로를 형성할 수 있다. 이에 따라, 발광 소자의 전류 분산 효율을 향상시킬 수 있어, 활성층(123) 영역 중 비발광 영역을 최소화하여 발광 소자의 발광 효율을 향상시킬 수 있다. 또한, 수평 방향으로 전류가 고르게 분산되도록 하여, 발광 소자의 순방향 전압(Vf)을 감소시킬 수 있다.
더욱이, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 광 투과성을 가져, 발광 구조체(120)에서 방출된 광이 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)에 흡수되어 손실되는 것을 방지할 수 있다. 일 비교예에 따른 발광 소자에 있어서, 제1 전극이 금속 전극 연장부를 갖고, 상기 금속 전극 연장부가 본 실시예의 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)와 같이 배치되는 경우, 금속 전극 연장부에 의해 광 손실이 발생하여 전류 분산 효율이 증가하더라도 오히려 광 출력이 저하된다. 반면 본 실시예의 발광 소자는 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 포함함으로써, 발광 소자의 전기적 특성을 향상시킴과 동시에 광 손실 저하를 방지할 수 있어, 발광 소자의 광 출력을 향상시킬 수 있다.
특히, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 광 투과성이 우수한 ZnO 또는 GZO를 포함하거나 ZnO 또는 GZO로 형성될 수 있어, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 상대적으로 두껍게 형성하더라도 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)에 의한 광 흡수 및 광 손실을 최소화할 수 있다. 예컨대, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 200nm 이상, 나아가, 800nm이상의 두께를 가지더라도, 90% 이상의 광 투과율을 가질 수 있어서 광 손실을 최소화할 수 있다. 더욱이, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 두께를 비교적 두껍게 형성할 수 있어, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 전기적 저항이 낮아 전류가 더욱 원활하게 분산될 수 있다. 즉, 본 실시예에 따르면, ZnO 또는 GZO를 포함하는 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 통해 전기적 특성 및 광학적 특성이 개선된 발광 소자가 제공된다.
다시 도 41 내지 도 47을 참조하면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 금속 전극 연장부(151)와 다른 선폭을 가질 수 있다. 금속 전극 연장부(151)의 선폭(W1)은 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 선폭(W2)보다 클 수 있다. 금속 전극 연장부(151)는 일반적으로, 리프트 오프 공정을 통해 패터닝되므로, 공정 마진 등을 고려할 때, 선폭(W1)을 감소시키는 것에 한계가 있을 수 있다. 반면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 식각 공정을 통해 패터닝되므로, 공정 마진 등을 고려하더라도 금속 전극 연장(151)의 선폭(W1)보다 작은 선폭(W2)을 가질 수 있다. 따라서, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 형성하기 위한 메사(120m) 주변에 노출된 제1 도전형 반도체층(121)의 면적을 최소화할 수 있고, 이에 따라, 메사(120m)의 면적 감소에 따른 발광 영역 면적의 감소를 최소화할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
다양한 실시예들에서, 제1 도전성 산화물 전극(180)의 배치는 다양하게 변형될 수 있다. 도 50 내지 도 64는 다양한 실시예들에 따른 발광 소자에 있어서, 제1 도전성 산화물 전극(180)을 설명하기 위한 도면들이다.
먼저, 도 50 내지 도 54를 참조하면, 제1 도전성 산화물 전극(180)의 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)를 둘러싸도록 형성될 수 있다. 이에 따라, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)를 둘러싸는 폐곡선을 형성할 수 있다. 도 50 및 도 51에 도시된 바와 같이, 제4 부분(185)은 메사(120m)의 그루브(120g)들 주변에 노출된 제1 도전형 반도체층(121)의 상면 상에도 형성될 수 있다. 제4 부분(185)은 발광 소자의 제2 측면(102)을 따라 연장되어, 제3 측면(103)까지 연장된다. 본 실시예의 발광 소자는 복수의 제1 부분(182)을 포함하며, 두 개의 제1 부분(182)들은 각각 제1 전극 패드(151, 181)로부터 제2 측면(102) 및 제4 측면(104)을 향하는 방향으로 연장될 수 있다. 따라서, 복수의 제1 부분(182) 중 적어도 하나가 연장되는 방향은 금속 전극 연장부(153)가 연장되는 방향과 대체로 동일할 수 있다. 제1 부분(182)은 제4 부분(185)과 연결될 수 있고, 이에 따라, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 메사(120m)의 주변을 둘러싸는 폐곡선으로 형성될 수 있다.
본 실시예에 따르면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 폐곡선을 형성하여, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 선이 끊어지는 형태의 단부를 포함하지 않는다. 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 ZnO 또는 GZO와 같은 도전성 산화물로 형성되므로, 단부를 포함하는 경우 상기 단부에서 박리될 수도 있고, 또한, 깨짐이 발생할 수도 있다. 본 실시예의 경우, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)이 이러한 단부를 포함하지 않아, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 손상에 따른 발광 소자의 신뢰성 저하를 방지할 수 있다.
다른 실시예에서, 도 55 내지 도 59를 참조하면, 제1 도전성 산화물 전극(180)의 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)는 그 측면이 제1 도전형 반도체층(121)의 측면과 대체로 동일한 평면을 이루도록, 즉 대체로 나란하도록(flush) 형성될 수 있다. 이에 따라, 본 실시예에 따른 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 선폭(W3)은 도 41 내지 도 54의 실시예들에 따른 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 선폭(W2)보다 클 수 있다. 나아가, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)의 선폭(W3)은 금속 전극 연장부(153)의 선폭(W1)보다 클 수 있다.
본 실시예에 따르면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 상대적으로 더 큰 선폭(W3)을 갖도록 형성되어, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)와 제1 도전형 반도체층(121)이 접촉되는 접촉 면적을 증가시킬 수 있다. 따라서, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)를 통한 전류 공급이 더욱 원활해져 전류 분산 효율을 더욱 향상시킬 수 있다. 또한, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 상대적으로 더 큰 선폭(W3)을 가짐으로써, 발광 소자 제조 공정 중에 제1 도전성 산화물 전극 연장부(182, 183, 184, 185)가 단선되는 불량이 발생할 확률을 감소시킬 수 있다.
또 다른 실시예에서, 도 60 내지 도 64를 참조하면, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)의 적어도 일부는 금속 전극 연장부(153)의 적어도 일부와 접촉할 수 있다. 본 실시예의 발광 소자는, 제5 부분(186)을 더 포함하는 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)를 포함할 수 있다. 제5 부분(186)은 금속 전극 연장부(153)의 아래에 위치하며, 금속 전극 연장부(153)와 접촉할 수 있다. 제5 부분(186)의 일부는 절연층(170)과 금속 전극 연장부(153)의 사이에 개재될 수 있다. 또한, 제5 부분(186)의 적어도 일부는 연장부 컨택 부분(155)과 그루브(120g)에 노출된 제1 도전형 반도체층(121)의 사이에 개재될 수 있다. 이에 따라, 연장부 컨택 부분(155)은 제1 도전형 반도체층(121)과 직접적으로 오믹 컨택되지 않고, 제5 부분(186)이 제1 도전형 반도체층(121)과 오믹 컨택을 형성함으로써, 제5 부분(186)을 통해 금속 전극 연장부(153)로 전류가 도통될 수 있다.
본 실시예에 따르면, 금속 전극 연장부(153)가 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186), 특히, 제5 부분(186) 상에 위치한다. 도전성 산화물로 형성된 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)의 표면 상에 금속 전극 연장부(153)가 위치하는 경우, 절연층(170) 또는 발광 구조체(120)의 표면 상에 금속 전극 연장부(153)가 위치하는 경우에 비해 접합성이 우수하다. 따라서, 금속 전극 연장부(153)가 안정적으로 형성될 수 있고, 박리될 확률이 감소하여 발광 소자의 안정성 및 신뢰성이 향상된다. 더욱이, 금속 전극 연장부(153)를 형성하는 물질 및 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)를 형성하는 물질에 따라 제1 도전형 반도체층(121)과의 오믹 컨택 특성이 달라질 수 있다. 몇몇 실시예들에, 금속 전극 연장부(153)와 제1 도전형 반도체층(121)과의 접촉 저항은 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)와 제1 도전형 반도체층(121)과의 접촉 저항보다 높을 수도 있다. 따라서 이러한 경우, 제1 도전성 산화물 전극 연장부(182, 183, 184, 185, 186)를 제1 도전형 반도체층(121)과 금속 전극 연장부(153), 특히 연장부 컨택 부분(155)의 사이에 개재시킴으로써, 제1 전극(200)과 제1 도전형 반도체층(121)과의 전기적 접촉 특성을 향상시킬 수 있다.
다시, 도 41 내지 도 47을 참조하면, 제2 전극 연장부(163)의 배치 및 메사(120m)의 그루브(120g)의 크기 및 위치 등은 발광 소자의 전류 분산 효율을 고려하여 제어될 수 있다. 예컨대, 발광 소자의 제2 측면(102)을 따라 연장되는 금속 전극 연장부(153)로부터 제2 전극 연장부(163)까지의 거리(A1)는 제2 전극 연장부(163)의 끝단으로부터 제1 전극 패드(151, 181)까지의 거리(A2)보다 크다. 제2 전극 연장부(163)는 제1 전극 패드(151, 181)를 향하는 방향으로 연장하되, 제2 전극 연장부(163)와 제2 측면(102)을 따라 연장되는 금속 전극 연장부(153)까지의 거리를 대체로 일정하게 유지함으로써, 전류 분산 효율을 향상시킬 수 있다. 또한, A2를 A1보다 작게 형성함으로써, 제2 전극 연장부(163)의 끝단 주변에서 전류 밀도가 낮아져 전류 분산 효율이 저하되는 것을 방지한다. 또한, 제2 전극 연장부(163)의 끝단으로부터 제2 도전성 산화물 전극(140)의 외곽 테두리(제4 측면(104)을 따라 배치된 테두리)까지의 거리(A3)는 제2 전극 패드(161)의 측면으로부터 제2 도전성 산화물 전극(140)의 외곽 테두리(제4 측면(104)을 따라 배치된 테두리)까지의 거리와 대체로 동일할 수 있다. 이때, A3는 약 50 내지 60 ㎛일 수 있다. 또한, 제2 전극 연장부(163)는 발광 소자의 제2 측면(102)보다 제4 측면(104) 측에 치우쳐 위치할 수 있다. 도시된 바와 같이, 제2 전극 연장부(163)는 발광 소자의 제2 측면(102)보다 제4 측면(104)에 더 가깝게 위치하며, 발광 소자의 중심을 지나는 종방향 중심선(A-A'선에 대응할 수 있음)으로부터 제2 전극 연장부(163)는 소정 거리(A4)로 이격될 수 있다. 상기 A4는 약 14 내지 18㎛일 수 있다. 금속 전극 연장부(153)가 제2 측면(102)에 인접하여 위치하므로, 제2 전극 연장부(163)가 제2 측면(102)보다 제4 측면(104)에 더 가깝게 위치하도록 배치함으로써 전류 분산을 향상시킬 수 있다.
또한, 금속 전극 연장부(153)의 연장부 컨택 부분(1555)이 제1 도전형 반도체층(121)과 접촉하는 부분의 폭, 즉, 절연층(170) 개구부의 폭(B1)은 절연층(170) 개구부들 사이 간격(B2)보다 작을 수 있다. B2는 B1보다 3배 이상 크도록 간격을 조절될 수 있고, 이 경우, 연장부 컨택 부분(155)를 통해 주입되는 전류의 분산성을 더욱 향상시킬 수 있다.
도 66은 본 발명의 실시예들에 따른 발광 소자를 조명 장치에 적용한 예를 설명하기 위한 분해 사시도이다.
도 66을 참조하면, 본 실시예에 따른 조명 장치는, 확산 커버(1010), 발광 소자 모듈(1020) 및 바디부(1030)를 포함한다. 바디부(1030)는 발광 소자 모듈(1020)을 수용할 수 있고, 확산 커버(1010)는 발광 소자 모듈(1020)의 상부를 커버할 수 있도록 바디부(1030) 상에 배치될 수 있다.
바디부(1030)는 발광 소자 모듈(1020)을 수용 및 지지하여, 발광 소자 모듈(1020)에 전기적 전원을 공급할 수 있는 형태이면 제한되지 않는다. 예를 들어, 도시된 바와 같이, 바디부(1030)는 바디 케이스(1031), 전원 공급 장치(1033), 전원 케이스(1035), 및 전원 접속부(1037)를 포함할 수 있다.
전원 공급 장치(1033)는 전원 케이스(1035) 내에 수용되어 발광 소자 모듈(1020)과 전기적으로 연결되며, 적어도 하나의 IC칩을 포함할 수 있다. 상기 IC칩은 발광 소자 모듈(1020)로 공급되는 전원의 특성을 조절, 변환 또는 제어할 수 있다. 전원 케이스(1035)는 전원 공급 장치(1033)를 수용하여 지지할 수 있고, 전원 공급 장치(1033)가 그 내부에 고정된 전원 케이스(1035)는 바디 케이스(1031)의 내부에 위치할 수 있다. 전원 접속부(115)는 전원 케이스(1035)의 하단에 배치되어, 전원 케이스(1035)와 결속될 수 있다. 이에 따라, 전원 접속부(1037)는 전원 케이스(1035) 내부의 전원 공급 장치(1033)와 전기적으로 연결되어, 외부 전원이 전원 공급 장치(1033)에 공급될 수 있는 통로 역할을 할 수 있다.
발광 소자 모듈(1020)은 기판(1023) 및 기판(1023) 상에 배치된 발광 소자(1021)를 포함한다. 발광 소자 모듈(1020)은 바디 케이스(1031) 상부에 마련되어 전원 공급 장치(1033)에 전기적으로 연결될 수 있다.
기판(1023)은 발광 소자(1021)를 지지할 수 있는 기판이면 제한되지 않으며, 예를 들어, 배선을 포함하는 인쇄회로기판일 수 있다. 기판(1023)은 바디 케이스(1031)에 안정적으로 고정될 수 있도록, 바디 케이스(1031) 상부의 고정부에 대응하는 형태를 가질 수 있다. 발광 소자(1021)는 상술한 본 발명의 실시예들에 따른 발광 소자들 중 적어도 하나를 포함할 수 있다.
확산 커버(1010)는 발광 소자(1021) 상에 배치되되, 바디 케이스(1031)에 고정되어 발광 소자(1021)를 커버할 수 있다. 확산 커버(1010)는 투광성 재질을 가질 수 있으며, 확산 커버(1010)의 형태 및 광 투과성을 조절하여 조명 장치의 지향 특성을 조절할 수 있다. 따라서 확산 커버(1010)는 조명 장치의 이용 목적 및 적용 태양에 따라 다양한 형태로 변형될 수 있다.
도 67은 본 발명의 실시예들에 따른 발광 소자를 디스플레이 장치에 적용한 예를 설명하기 위한 단면도이다.
본 실시예의 디스플레이 장치는 표시패널(2110), 표시패널(2110)에 광을 제공하는 백라이트 유닛 및, 상기 표시패널(2110)의 하부 가장자리를 지지하는 패널 가이드를 포함한다.
표시패널(2110)은 특별히 한정되지 않고, 예컨대, 액정층을 포함하는 액정표시패널일 수 있다. 표시패널(2110)의 가장자리에는 상기 게이트 라인으로 구동신호를 공급하는 게이트 구동 PCB가 더 위치할 수 있다. 여기서, 게이트 구동 PCB는 별도의 PCB에 구성되지 않고, 박막 트랜지스터 기판상에 형성될 수도 있다.
백라이트 유닛은 적어도 하나의 기판 및 복수의 발광 소자(2160)를 포함하는 광원 모듈을 포함한다. 나아가, 백라이트 유닛은 바텀커버(2180), 반사 시트(2170), 확산 플레이트(2131) 및 광학 시트들(2130)을 더 포함할 수 있다.
바텀커버(2180)는 상부로 개구되어, 기판, 발광 소자(2160), 반사 시트(2170), 확산 플레이트(2131) 및 광학 시트들(2130)을 수납할 수 있다. 또한, 바텀커버(2180)는 패널 가이드와 결합될 수 있다. 기판은 반사 시트(2170)의 하부에 위치하여, 반사 시트(2170)에 둘러싸인 형태로 배치될 수 있다. 다만, 이에 한정되지 않고, 반사 물질이 표면에 코팅된 경우에는 반사 시트(2170) 상에 위치할 수도 있다. 또한, 기판은 복수로 형성되어, 복수의 기판들이 나란히 배치된 형태로 배치될 수 있으나, 이에 한정되지 않고, 단일의 기판으로 형성될 수도 있다.
발광 소자(2160)는 상술한 본 발명의 실시예들에 따른 발광 소자들 중 적어도 하나를 포함할 수 있다. 발광 소자(2160)들은 기판 상에 일정한 패턴으로 규칙적으로 배열될 수 있다. 또한, 각각의 발광 소자(2160) 상에는 렌즈(2210)가 배치되어, 복수의 발광 소자(2160)들로부터 방출되는 광을 균일성을 향상시킬 수 있다.
확산 플레이트(2131) 및 광학 시트들(2130)은 발광 소자(2160) 상에 위치한다. 발광 소자(2160)로부터 방출된 광은 확산 플레이트(2131) 및 광학 시트들(2130)을 거쳐 면 광원 형태로 표시패널(2110)로 공급될 수 있다.
이와 같이, 본 발명의 실시예들에 따른 발광 소자는 본 실시예와 같은 직하형 디스플레이 장치에 적용될 수 있다.
도 68은 일 실시예에 따른 발광 소자를 디스플레이 장치에 적용한 예를 설명하기 위한 단면도이다.
본 실시예에 따른 백라이트 유닛이 구비된 디스플레이 장치는 영상이 디스플레이되는 표시패널(3210), 표시패널(3210)의 배면에 배치되어 광을 조사하는 백라이트 유닛을 포함한다. 나아가, 상기 디스플레이 장치는, 표시패널(3210)을 지지하고 백라이트 유닛이 수납되는 프레임(240) 및 상기 표시패널(3210)을 감싸는 커버(3240, 3280)를 포함한다.
표시패널(3210)은 특별히 한정되지 않고, 예컨대, 액정층을 포함하는 액정표시패널일 수 있다. 표시패널(3210)의 가장자리에는 상기 게이트 라인으로 구동신호를 공급하는 게이트 구동 PCB가 더 위치할 수 있다. 여기서, 게이트 구동 PCB는 별도의 PCB에 구성되지 않고, 박막 트랜지스터 기판상에 형성될 수도 있다. 표시패널(3210)은 그 상하부에 위치하는 커버(3240, 3280)에 의해 고정되며, 하부에 위치하는 커버(3280)는 백라이트 유닛과 결속될 수 있다.
표시패널(3210)에 광을 제공하는 백라이트 유닛은 상면의 일부가 개구된 하부 커버(3270), 하부 커버(3270)의 내부 일 측에 배치된 광원 모듈 및 상기 광원 모듈과 나란하게 위치되어 점광을 면광으로 변환하는 도광판(3250)을 포함한다. 또한, 본 실시예의 백라이트 유닛은 도광판(3250) 상에 위치되어 광을 확산 및 집광시키는 광학 시트들(3230), 도광판(3250)의 하부에 배치되어 도광판(3250)의 하부방향으로 진행하는 광을 표시패널(3210) 방향으로 반사시키는 반사시트(3260)를 더 포함할 수 있다.
광원 모듈은 기판(3220) 및 상기 기판(3220)의 일면에 일정 간격으로 이격되어 배치된 복수의 발광 소자(3110)를 포함한다. 기판(3220)은 발광 소자(3110)를 지지하고 발광 소자(3110)에 전기적으로 연결된 것이면 제한되지 않으며, 예컨대, 인쇄회로기판일 수 있다. 발광 소자(3110)는 상술한 본 발명의 실시예들에 따른 발광 소자를 적어도 하나 포함할 수 있다. 광원 모듈로부터 방출된 광은 도광판(3250)으로 입사되어 광학 시트들(3230)을 통해 표시패널(3210)로 공급된다. 도광판(3250) 및 광학 시트들(3230)을 통해, 발광 소자(3110)들로부터 방출된 점 광원이 면 광원으로 변형될 수 있다.
이와 같이, 본 발명의 실시예들에 따른 발광 소자는 본 실시예와 같은 에지형 디스플레이 장치에 적용될 수 있다.
도 69는 본 발명의 일 실시예에 따른 발광 소자를 헤드 램프에 적용한 예를 설명하기 위한 단면도이다.
도 69를 참조하면, 상기 헤드 램프는, 램프 바디(4070), 기판(4020), 발광 소자(4010) 및 커버 렌즈(4050)를 포함한다. 나아가, 상기 헤드 램프는, 방열부(4030), 지지랙(4060) 및 연결 부재(4040)를 더 포함할 수 있다.
기판(4020)은 지지랙(4060)에 의해 고정되어 램프 바디(4070) 상에 이격 배치된다. 기판(4020)은 발광 소자(4010)를 지지할 수 있는 기판이면 제한되지 않으며, 예컨대, 인쇄회로기판과 같은 도전 패턴을 갖는 기판일 수 있다. 발광 소자(4010)는 기판(4020) 상에 위치하며, 기판(4020)에 의해 지지 및 고정될 수 있다. 또한, 기판(4020)의 도전 패턴을 통해 발광 소자(4010)는 외부의 전원과 전기적으로 연결될 수 있다. 또한, 발광 소자(4010)는 상술한 본 발명의 실시예들에 따른 발광 소자를 적어도 하나 포함할 수 있다.
커버 렌즈(4050)는 발광 소자(4010)로부터 방출되는 광이 이동하는 경로 상에 위치한다. 예컨대, 도시된 바와 같이, 커버 렌즈(4050)는 연결 부재(4040)에 의해 발광 소자(4010)로부터 이격되어 배치될 수 있고, 발광 소자(4010)로부터 방출된 광을 제공하고자하는 방향에 배치될 수 있다. 커버 렌즈(4050)에 의해 헤드 램프로부터 외부로 방출되는 광의 지향각 및/또는 색상이 조절될 수 있다. 한편, 연결 부재(4040)는 커버 렌즈(4050)를 기판(4020)과 고정시킴과 아울러, 발광 소자(4010)를 둘러싸도록 배치되어 발광 경로(4045)를 제공하는 광 가이드 역할을 할 수도 있다. 이때, 연결 부재(4040)는 광 반사성 물질로 형성되거나, 광 반사성 물질로 코팅될 수 있다. 한편, 방열부(4030)는 방열핀(4031) 및/또는 방열팬(4033)을 포함할 수 있고, 발광 소자(4010) 구동 시 발생하는 열을 외부로 방출시킨다.
이와 같이, 본 발명의 실시예들에 따른 발광 소자는 본 실시예와 같은 헤드 램프, 특히, 차량용 헤드 램프에 적용될 수 있다.
이상에서, 본 발명의 다양한 실시예들에 대하여 설명하였지만, 상술한 다양한 실시예들 및 특징들에 본 발명이 한정되는 것은 아니고, 본 발명의 특허청구범위에 의한 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형과 변경이 가능하다.

Claims (42)

  1. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 위치하며, 활성층과 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사;
    상기 메사 상에 부분적으로 위치하는 전류 차단층;
    상기 메사 상에 위치하며, 상기 전류 차단층을 덮되, 상기 전류 차단층을 적어도 부분적으로 노출시키는 개구부를 포함하는 투명 전극;
    상기 메사 상에 부분적으로 위치하는 절연층;
    상기 절연층 상에 위치하여 상기 제2 도전형 반도체층과 절연되며, 제1 전극 패드 및 상기 제1 전극 패드로부터 연장되는 제1 전극 연장부를 포함하는 제1 전극; 및
    상기 전류 차단층 상에 위치하며, 상기 투명 전극의 개구부 상에 위치하는 제2 전극 패드 및 상기 제2 전극 패드로부터 연장되는 제2 전극 연장부를 포함하는 제2 전극을 포함하고,
    상기 투명 전극은 상기 개구부의 측면으로부터 돌출된 적어도 하나의 돌출부를 포함하되, 상기 돌출부의 적어도 일부는 상기 제2 전극 패드와 상기 전류 차단층 사이에 위치하고,
    상기 메사는 그 측면에 형성된 적어도 하나의 그루브를 포함하되, 상기 그루브를 통해 제1 도전형 반도체층이 부분적으로 노출되고,
    상기 절연층은 상기 그루브의 측면을 적어도 부분적으로 덮고, 상기 제1 전극 연장부는 상기 그루브를 통해 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함하는 발광 소자.
  2. 청구항 1에 있어서,
    상기 절연층은 상기 그루브에 노출된 활성층의 측면을 덮는 발광 소자.
  3. 청구항 2에 있어서,
    상기 절연층은 상기 그루브 상부의 주변을 더 덮는 발광 소자.
  4. 청구항 1에 있어서,
    상기 절연층은 상기 투명 전극과 이격되는 발광 소자.
  5. 청구항 1에 있어서,
    상기 적어도 하나의 그루브는 서로 이격된 복수의 그루브들을 포함하고, 상기 복수의 그루브들은 상기 발광 소자의 일 측면에 위치하는 발광 소자.
  6. 청구항 1에 있어서,
    상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함하는 발광 소자.
  7. 청구항 6에 있어서,
    상기 패드 컨택 부분과 상기 적어도 하나의 연장부 컨택 부분은 상기 발광 소자의 일 측면에 위치하는 발광 소자.
  8. 청구항 1에 있어서,
    상기 절연층은 상기 제1 전극 패드 주변의 메사 측면을 덮는 적어도 하나의 확장부를 포함하는 발광 소자.
  9. 청구항 8에 있어서,
    상기 절연층 중, 상기 제1 전극 연장부의 아래에 위치하는 부분은 상기 메사의 측면에 의해 정의되는 영역 내에 위치하는 발광 소자.
  10. 청구항 8에 있어서,
    상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함하고,
    상기 적어도 하나의 확장부는 복수의 확장부들을 포함하며, 상기 패드 컨택 부분은 상기 복수의 확장부들의 사이 영역에 위치하는 발광 소자.
  11. 청구항 1에 있어서,
    상기 적어도 하나의 그루브는 원호 형태의 평면 형상을 갖는 발광 소자.
  12. 청구항 1에 있어서,
    상기 전류 차단층은 상기 제2 전극 패드의 아래에 위치하는 패드 전류 차단층, 및 상기 제2 전극 연장부의 아래에 위치하는 연장부 전류 차단층을 포함하고,
    상기 투명 전극의 개구부를 통해 상기 패드 전류 차단층이 적어도 부분적으로 노출되는 발광 소자.
  13. 청구항 12에 있어서,
    상기 투명 전극의 개구부의 측면은 상기 패드 전류 차단층 상에 위치하는 발광 소자.
  14. 청구항 12에 있어서,
    상기 투명 전극의 개구부의 측면은 상기 패드 전류 차단층으로부터 이격되는 발광 소자.
  15. 청구항 12에 있어서,
    상기 제2 전극 연장부와 상기 연장부 전류 차단층 사이에는 투명 전극이 개재되는 발광 소자.
  16. 청구항 12에 있어서,
    상기 패드 전류 차단층의 중심부를 원점으로 하여 x축과 y축을 갖는 가상의 좌표계를 기준으로,
    상기 제2 전극 패드와 상기 제2 전극 연장부의 계면은 x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면 중 적어도 하나 상에 위치하고,
    상기 적어도 하나의 돌출부는 상기 계면이 위치하는 부분을 제외하고, x(+)축, x(-)축, y(+)축, y(-)축 및 제1 내지 제4 사분면 중 적어도 하나 상에 위치하는 발광 소자.
  17. 청구항 16에 있어서,
    상기 계면은 상기 y(-)축 또는 상기 제4 사분면 상에 위치하고, 상기 돌출부는 x(+)축, x(-)축 및 y(+)축 상에 위치하는 발광 소자.
  18. 청구항 17에 있어서,
    상기 제1 전극 패드는 상기 발광 소자의 일 측면에 인접하여 위치하고, 상기 제1 전극 연장부는 상기 제1 전극 패드로부터 상기 발광 소자의 타 측면을 향하여 연장되고,
    상기 제2 전극 패드는 상기 발광 소자의 타 측면에 인접하여 위치하고, 상기 제2 전극 연장부는 상기 제2 전극 패드로부터 상기 발광 소자의 일 측면을 향하여 연장되는 발광 소자.
  19. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 위치하며, 활성층과 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사;
    상기 메사 상에 위치하는 투명 전극;
    상기 메사 상에 부분적으로 위치하는 절연층; 및
    상기 절연층 상에 위치하여 상기 제2 도전형 반도체층과 절연되며, 제1 전극 패드 및 상기 제1 전극 패드로부터 연장되는 제1 전극 연장부를 포함하는 제1 전극을 포함하고,
    상기 메사는 그 측면에 형성된 적어도 하나의 그루브를 포함하되, 상기 그루브를 통해 제1 도전형 반도체층이 부분적으로 노출되고,
    상기 절연층은 상기 그루브의 측면을 적어도 부분적으로 덮어 상기 그루브에 노출된 상기 활성층의 측면을 덮고, 상기 제1 전극 연장부는 상기 그루브를 통해 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함하는 발광 소자.
  20. 청구항 19에 있어서,
    상기 절연층은 상기 그루브 상부의 주변을 더 덮는 발광 소자.
  21. 청구항 19에 있어서,
    상기 절연층은 상기 투명 전극과 이격되는 발광 소자.
  22. 청구항 19에 있어서,
    상기 제1 전극 패드는 상기 제1 도전형 반도체층과 컨택되는 패드 컨택 부분을 포함하는 발광 소자.
  23. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 위치하며, 활성층 및 상기 활성층 상에 위치하는 제2 도전형 반도체층을 포함하는 메사;
    상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극;
    상기 메사 상에 위치하는 제2 도전성 산화물 전극; 및
    상기 제2 도전성 산화물 전극 상에 위치하는 제2 전극을 포함하고,
    상기 제1 전극은 제1 전극 패드 및 상기 제1 전극 패드로부터 연장된 제1 전극 연장부를 포함하며,
    상기 제1 전극 연장부는, 적어도 하나의 금속 전극 연장부 및 적어도 하나의 제1 도전성 산화물 전극 연장부를 포함하고,
    상기 금속 전극 연장부는 상기 제1 전극 패드의 일 측면으로부터 연장되고, 상기 제1 도전성 산화물 전극 연장부는 상기 제1 전극 패드의 일 측면 외에 다른 측면으로부터 연장되는 발광 소자.
  24. 청구항 23에 있어서,
    제1 도전성 산화물 전극 연장부는 ZnO 및 금속 도펀트를 포함하는 ZnO 중 적어도 하나를 포함하고,
    상기 금속 도펀트는 Ga을 포함하는 발광 소자.
  25. 청구항 23에 있어서,
    상기 제1 전극 연장부는 복수의 금속 전극 연장부 및/또는 복수의 제1 도전성 산화물 전극 연장부를 포함하는 발광 소자.
  26. 청구항 23에 있어서,
    상기 금속 전극 연장부와 상기 제1 도전성 산화물 전극 연장부를 서로 반대 방향으로 연장되는 발광 소자.
  27. 청구항 23에 있어서,
    상기 금속 전극 연장부와 상기 제1 도전성 산화물 전극 연장부는 서로 다른 선폭을 갖는 발광 소자.
  28. 청구항 27에 있어서,
    상기 금속 전극 연장부의 선폭은 상기 제1 도전성 산화물 전극 연장부의 선폭보다 큰 발광 소자.
  29. 청구항 27에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 선폭은 상기 금속 전극 연장부의 선폭보다 큰 발광 소자.
  30. 청구항 29에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 일 측면은 상기 제1 도전형 반도체층의 일 측면과 동일 평면을 이루는 발광 소자.
  31. 청구항 23에 있어서,
    상기 제1 전극 패드는 금속 전극 패드 및 제1 도전성 산화물 전극 패드를 포함하고,
    상기 제1 도전성 산화물 전극 연장부는 상기 제1 도전성 산화물 전극 패드로부터 연장되는 발광 소자.
  32. 청구항 31에 있어서,
    상기 금속 전극 패드는 상기 제1 도전성 산화물 전극 패드 상에 위치하고, 상기 제1 도전성 산화물 전극 패드의 면적은 상기 금속 전극 패드의 면적보다 큰 발광 소자.
  33. 청구항 23에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 적어도 일부는 상기 금속 전극 연장부의 적어도 일부와 접촉하는 발광 소자.
  34. 청구항 33에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 일부는 상기 금속 전극 연장부의 아래에 위치하는 발광 소자.
  35. 청구항 34에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 일부는 상기 제1 도전형 반도체층과 상기 금속 전극 연장부의 사이에 개재되고, 상기 제1 도전성 산화물 전극 연장부의 일부는 상기 제1 도전형 반도체층과 오믹 컨택을 형성하는 발광 소자.
  36. 청구항 23에 있어서,
    상기 제1 도전형 반도체층은 상기 메사 주변에 형성된 상기 제1 도전형 반도체층의 상면의 일부가 노출된 영역을 포함하고,
    상기 제1 도전성 산화물 전극 연장부는 상기 메사 주변에 노출된 제1 도전형 반도체층과 접촉하는 발광 소자.
  37. 청구항 35에 있어서,
    상기 제1 도전성 산화물 전극 연장부는 상기 메사를 적어도 부분적으로 둘러싸는 발광 소자.
  38. 청구항 36에 있어서,
    상기 제1 도전성 산화물 전극 연장부는 상기 메사를 둘러싸는 폐곡선을 형성하는 발광 소자.
  39. 청구항 23에 있어서,
    상기 메사 상에 부분적으로 위치하는 절연층을 더 포함하고,
    상기 금속 전극 연장부의 일부 및 상기 제1 전극 패드의 적어도 일부는 상기 절연층 상에 위치하되, 상기 금속 전극 연장부는 상기 제1 도전형 반도체층과 컨택되는 연장부 컨택 부분을 포함하는 발광 소자.
  40. 청구항 39에 있어서,
    상기 메사는 그 측면으로부터 함입된 적어도 하나의 그루브를 포함하며, 상기 그루브를 통해 상기 제1 도전형 반도체층의 상면이 부분적으로 노출되고, 상기 절연층은 상기 그루브를 통해 노출된 제1 도전형 반도체층의 상면을 노출시키는 개구부를 포함하며,
    상기 연장부 컨택 부분은 상기 절연층의 개구부를 통해 상기 제1 도전형 반도체층의 상면과 전기적으로 접촉되는 발광 소자.
  41. 청구항 40에 있어서,
    상기 제1 도전성 산화물 전극 연장부는 상기 메사를 부분적으로 둘러싸되, 상기 메사의 그루브 주변에는 위치하지 않는 발광 소자.
  42. 청구항 40에 있어서,
    상기 제1 도전성 산화물 전극 연장부의 일부는 상기 그루브에 노출된 제1 도전형 반도체층의 상면과 상기 금속 전극 연장부의 일부의 사이에 개재되고,
    상기 제1 도전성 산화물 전극 연장부의 상기 일부는 상기 그루브에 노출된 제1 도전형 반도체층의 상면과 오믹 컨택하는 발광 소자.
PCT/KR2016/004636 2015-05-13 2016-05-03 발광 소자 WO2016182248A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690001029.4U CN208400869U (zh) 2015-05-13 2016-05-03 发光元件
US15/405,031 US10186638B2 (en) 2015-05-13 2017-01-12 Light emitting element
US16/218,042 US10707382B2 (en) 2015-05-13 2018-12-12 Light emitting element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0066878 2015-05-13
KR1020150066878A KR20160133836A (ko) 2015-05-13 2015-05-13 발광 소자
KR1020150076455A KR20160140173A (ko) 2015-05-29 2015-05-29 발광 소자
KR10-2015-0076455 2015-05-29
KR10-2015-0149532 2015-10-27
KR1020150149532A KR20170048885A (ko) 2015-10-27 2015-10-27 발광 소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/405,031 Continuation-In-Part US10186638B2 (en) 2015-05-13 2017-01-12 Light emitting element

Publications (1)

Publication Number Publication Date
WO2016182248A1 true WO2016182248A1 (ko) 2016-11-17

Family

ID=57249131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004636 WO2016182248A1 (ko) 2015-05-13 2016-05-03 발광 소자

Country Status (3)

Country Link
US (2) US10186638B2 (ko)
CN (2) CN209729940U (ko)
WO (1) WO2016182248A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281523A (zh) * 2017-01-06 2018-07-13 首尔伟傲世有限公司 具有电流阻挡层的发光元件
US20180212123A1 (en) * 2017-01-24 2018-07-26 Epistar Corporation Light-emitting diode device
CN108428772A (zh) * 2017-02-15 2018-08-21 晶元光电股份有限公司 光电元件
CN108646448A (zh) * 2018-05-09 2018-10-12 京东方科技集团股份有限公司 一种镜片基板、液晶镜片及液晶眼镜

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905729B2 (en) * 2015-03-27 2018-02-27 Seoul Viosys Co., Ltd. Light emitting diode
USD845920S1 (en) 2015-08-12 2019-04-16 Epistar Corporation Portion of light-emitting diode unit
KR102476036B1 (ko) * 2016-05-09 2022-12-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자
KR102188960B1 (ko) * 2017-01-13 2020-12-10 한국전자통신연구원 광학 장치, 분포 브라그 반사형 레이저 다이오드의 제조방법, 및 광학 장치의 제조 방법
JP6750653B2 (ja) * 2017-09-29 2020-09-02 日亜化学工業株式会社 発光素子
KR102486391B1 (ko) * 2017-11-09 2023-01-09 삼성전자주식회사 고해상도 디스플레이 장치
KR20190098709A (ko) * 2018-02-14 2019-08-22 에피스타 코포레이션 발광 장치, 그 제조 방법 및 디스플레이 모듈
DE102018112255A1 (de) * 2018-05-22 2019-11-28 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
JP2019212903A (ja) * 2018-05-30 2019-12-12 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 発光ダイオード及びそれを有する発光素子
CN111916539B (zh) * 2019-05-08 2022-04-19 深圳第三代半导体研究院 一种正装集成单元二极管芯片
US11380788B2 (en) * 2020-03-23 2022-07-05 Semiconductor Components Industries, Llc Structures and methods for source-down vertical semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573537B1 (en) * 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
KR20040074328A (ko) * 2003-02-17 2004-08-25 엘지전자 주식회사 발광 다이오드 및 그의 제조 방법
KR100787171B1 (ko) * 2007-01-02 2007-12-21 (주)에피플러스 발광다이오드
KR20140146957A (ko) * 2013-06-18 2014-12-29 삼성전자주식회사 반도체 발광소자
KR20150004139A (ko) * 2013-07-02 2015-01-12 서울바이오시스 주식회사 정전방전에 강한 발광 다이오드 칩 및 그것을 갖는 발광 다이오드 패키지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002927B4 (de) * 2006-01-09 2010-06-02 Seoul Opto Device Co. Ltd., Ansan Licht emittierende Diode mit ITO-Schicht und Verfahren zur Herstellung einer solchen
CN102779918B (zh) * 2007-02-01 2015-09-02 日亚化学工业株式会社 半导体发光元件
KR20130024089A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 발광소자
WO2013051326A1 (ja) * 2011-10-05 2013-04-11 シャープ株式会社 窒化物半導体発光素子、及び窒化物半導体発光素子の製造方法
WO2014098510A1 (en) * 2012-12-21 2014-06-26 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
DE102014203781A1 (de) 2014-02-28 2015-09-03 Schmidhauser Ag Frequenzumrichter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573537B1 (en) * 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
KR20040074328A (ko) * 2003-02-17 2004-08-25 엘지전자 주식회사 발광 다이오드 및 그의 제조 방법
KR100787171B1 (ko) * 2007-01-02 2007-12-21 (주)에피플러스 발광다이오드
KR20140146957A (ko) * 2013-06-18 2014-12-29 삼성전자주식회사 반도체 발광소자
KR20150004139A (ko) * 2013-07-02 2015-01-12 서울바이오시스 주식회사 정전방전에 강한 발광 다이오드 칩 및 그것을 갖는 발광 다이오드 패키지

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113442A (ja) * 2017-01-06 2018-07-19 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 電流遮断層を有する発光素子
CN108281523A (zh) * 2017-01-06 2018-07-13 首尔伟傲世有限公司 具有电流阻挡层的发光元件
US10340418B2 (en) 2017-01-06 2019-07-02 Seoul Viosys Co., Ltd. Ultraviolet light emitting device having current blocking layer
CN108346726B (zh) * 2017-01-24 2021-07-09 晶元光电股份有限公司 发光二极管元件
US20180212123A1 (en) * 2017-01-24 2018-07-26 Epistar Corporation Light-emitting diode device
CN108346726A (zh) * 2017-01-24 2018-07-31 晶元光电股份有限公司 发光二极管元件
US11430934B2 (en) 2017-01-24 2022-08-30 Epistar Corporation Light-emitting diode device
US10505092B2 (en) 2017-01-24 2019-12-10 Epistar Corporation Light-emitting diode device
US20200020839A1 (en) * 2017-01-24 2020-01-16 Epistar Corporation Light-emitting diode device
TWI702737B (zh) * 2017-01-24 2020-08-21 晶元光電股份有限公司 發光二極體元件
TWI702738B (zh) * 2017-01-24 2020-08-21 晶元光電股份有限公司 發光二極體元件
US10784427B2 (en) 2017-01-24 2020-09-22 Epistar Corporation Light-emitting diode device
CN108428772A (zh) * 2017-02-15 2018-08-21 晶元光电股份有限公司 光电元件
CN108428772B (zh) * 2017-02-15 2021-08-06 晶元光电股份有限公司 光电元件
CN108646448B (zh) * 2018-05-09 2021-03-23 京东方科技集团股份有限公司 一种镜片基板、液晶镜片及液晶眼镜
CN108646448A (zh) * 2018-05-09 2018-10-12 京东方科技集团股份有限公司 一种镜片基板、液晶镜片及液晶眼镜

Also Published As

Publication number Publication date
US10707382B2 (en) 2020-07-07
US20190123244A1 (en) 2019-04-25
CN209729940U (zh) 2019-12-03
CN208400869U (zh) 2019-01-18
US10186638B2 (en) 2019-01-22
US20170125640A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2016182248A1 (ko) 발광 소자
WO2018117382A1 (ko) 고 신뢰성 발광 다이오드
WO2017191923A1 (ko) 발광 다이오드
WO2017065545A1 (en) Compact light emitting diode chip and light emitting device including the same
WO2016021919A1 (ko) 발광 다이오드 및 그 제조 방법
WO2016076637A1 (en) Light emitting device
WO2019124843A1 (ko) 칩 스케일 패키지 발광 다이오드
WO2016133292A1 (ko) 광 추출 효율이 향상된 발광 소자
WO2017183944A1 (ko) 발광소자 및 이를 포함하는 표시장치
WO2019088763A1 (ko) 반도체 소자
WO2018106030A9 (ko) 발광소자
WO2018044102A1 (ko) 칩 스케일 패키지 발광 다이오드
WO2016129873A2 (ko) 발광소자 및 발광 다이오드
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2015186972A1 (ko) 반도체 발광소자 및 이의 제조방법
WO2015190817A1 (ko) 반도체 발광소자
WO2020159068A1 (ko) 발광 다이오드
WO2017119743A1 (ko) 반도체 발광소자
WO2016032193A1 (ko) 발광 소자 및 이의 제조 방법
WO2020013563A1 (ko) 발광 소자 및 이의 제조 방법
WO2016190651A1 (ko) 광학 렌즈, 조명 모듈 및 이를 구비한 라이트 유닛
WO2022108157A1 (ko) 표시 장치
WO2015170848A1 (ko) 발광소자
WO2017010705A1 (ko) 발광 다이오드, 그것을 제조하는 방법 및 그것을 갖는 발광 소자 모듈
WO2023282667A1 (ko) 화소 및 이를 구비한 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792894

Country of ref document: EP

Kind code of ref document: A1