WO2016181740A1 - 車両用の断熱ガラスユニットおよびその製造方法 - Google Patents

車両用の断熱ガラスユニットおよびその製造方法 Download PDF

Info

Publication number
WO2016181740A1
WO2016181740A1 PCT/JP2016/061739 JP2016061739W WO2016181740A1 WO 2016181740 A1 WO2016181740 A1 WO 2016181740A1 JP 2016061739 W JP2016061739 W JP 2016061739W WO 2016181740 A1 WO2016181740 A1 WO 2016181740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass
glass unit
transparent conductive
film
Prior art date
Application number
PCT/JP2016/061739
Other languages
English (en)
French (fr)
Inventor
弘朋 河原
遼太 中村
鈴木 賢一
信孝 青峰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP16792465.3A priority Critical patent/EP3296277B1/en
Priority to CN201680026760.7A priority patent/CN107531566A/zh
Priority to JP2017517831A priority patent/JPWO2016181740A1/ja
Publication of WO2016181740A1 publication Critical patent/WO2016181740A1/ja
Priority to US15/784,348 priority patent/US10576713B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3655Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing at least one conducting layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]

Definitions

  • the present invention relates to a heat insulating glass unit for a vehicle and a manufacturing method thereof.
  • Patent Document 1 describes a heat insulating glass manufactured by forming a multilayer film composed of an indium tin oxide (ITO) layer and a silicon oxide (SiO 2 ) layer on a glass substrate.
  • ITO indium tin oxide
  • SiO 2 silicon oxide
  • the heat insulating glass described in Patent Document 1 has a feature of high visible light transmittance and good heat insulating performance.
  • this heat insulating glass has a problem that the color upon visual recognition shows angle dependency. That is, this heat insulating glass tends to change the color of reflected light (reflected color) depending on the viewing direction. For example, when the insulating glass is viewed from the first direction, it may appear bluish, whereas when the insulating glass is viewed from the second direction, it may appear yellowish. It is preferable to suppress the angle dependency of the reflection color of the heat insulating glass as much as possible in order to give a viewer a sense of incongruity.
  • the plate (glass plate) described in Patent Document 2 has a feature of having a heat radiation reflection coating, being transparent and corrosion resistant, and not being damaged during bending.
  • the plate of Patent Document 2 must be provided with a barrier layer (for example, silicon nitride) having a thickness of 10 nm or more.
  • a barrier layer for example, silicon nitride
  • the visible light transmittance for example, visible light transmittance T V ⁇ 72%) required when used as a windshield of an automobile or the like
  • the upper layer of the barrier layer typically in Patent Document 2. Since it must be compensated for by increasing the thickness of SiO 2 or a compound thereof, productivity deteriorates.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a heat insulating glass unit in which the angle dependency of the reflected color is improved. Moreover, it aims at providing the manufacturing method of such a heat insulation glass unit in this invention.
  • a laminated glass in which a first glass plate and a second glass plate are bonded to each other via an intermediate film;
  • a color correction film disposed on at least one surface of the laminated glass;
  • a transparent conductive layer mainly composed of indium tin oxide (ITO) disposed on the color tone correction film;
  • An upper layer disposed on the transparent conductive layer and having a refractive index of 1.7 or less with respect to light having a wavelength of 630 nm;
  • the color tone correction film has at least a first layer and a second layer, and the first layer is disposed at a position closer to the laminated glass than the second layer, and the color correction film has a wavelength of 630 nm.
  • the refractive index of the first layer is higher than the refractive index of the second layer with respect to light having a wavelength of 630 nm.
  • FIG. 6 is a diagram in which reflection colors generated when light is irradiated at each incident angle in samples 1 to 3 are plotted on color coordinates in a color space.
  • FIG. 6 is a diagram in which reflection colors generated when light is irradiated at each incident angle in Samples 4 to 6 are plotted in color coordinates of a color space.
  • FIG. 1 Insulating glass unit for vehicle according to one embodiment of the present invention, the cross section of the heat insulation glass unit for vehicles by one Embodiment of this invention is shown typically.
  • the heat insulating glass unit 100 includes a laminated glass 110, a color tone correction film 130, a transparent conductive layer 140, an adhesion improving layer 150, and an upper layer 160.
  • the laminated glass 110 has a first surface 112 and a second surface 114, and each layer (film) described below is disposed on the first surface 112 side.
  • the laminated glass 110 is configured by joining a first glass plate 115 and a second glass plate 125 via an intermediate film 120. Accordingly, the first surface 112 of the laminated glass 110 corresponds to the outer surface of the first glass plate 115, and the second surface 114 of the laminated glass 110 corresponds to the outer surface of the second glass plate 125.
  • the color tone correction film 130 is installed on the first surface 112 of the laminated glass 110.
  • the color tone correction film 130 has a role of adjusting the angle dependency of the reflected color of the heat insulating glass unit 100 for a vehicle by controlling the refractive index of two or more layers included in the color tone correction film 130.
  • the color tone correction film 130 is composed of two layers, a first layer 132 and a second layer 136.
  • the refractive index of the first layer 132 with respect to light having a wavelength of 630 nm has a higher value than the refractive index of the second layer 136 with respect to light having a wavelength of 630 nm.
  • the color tone correction film 130 may be composed of three or more layers.
  • the transparent conductive layer 140 is disposed on the color tone correction film 130.
  • the transparent conductive layer 140 is made of a material mainly composed of indium tin oxide (ITO).
  • ITO indium tin oxide
  • a layer is mainly composed of material B means that 50% by mass or more of material B is contained in the A layer.
  • the refractive index of the transparent conductive layer 140 with respect to light having a wavelength of 630 nm is, for example, in the range of 1.7 to 1.8.
  • the adhesion improving layer 150 is disposed between the transparent conductive layer 140 and the upper layer 160 and has a role of suppressing peeling at the interface between the two.
  • the adhesion improving layer 150 is made of a metal oxide such as tin oxide, zinc oxide, and cerium oxide, for example.
  • the arrangement of the adhesion improving layer 150 is arbitrary and may be omitted.
  • the upper layer 160 is disposed on the transparent conductive layer 140 when the adhesion improving layer 150 is not present, and is disposed on the adhesion improving layer 150 when the adhesion improving layer 150 is present.
  • the “upper part” of the “upper layer” means that the laminated glass 110 is disposed on the side farther from the transparent conductive layer 140. Therefore, the expression “upper layer” does not necessarily mean that the upper layer 160 is the uppermost layer (outermost layer).
  • the upper layer 160 serves to protect the transparent conductive layer 140 and to increase the durability of the heat insulating glass unit 100.
  • the upper layer 160 needs to be arranged so as not to adversely affect the color of the heat insulating glass unit 100 and its angle dependency. Therefore, the upper layer 160 is configured so that the refractive index with respect to light having a wavelength of 630 nm is 1.7 or less.
  • the top layer 160 is, for example, a material mainly composed of SiO 2.
  • the heat insulating glass unit 100 having such a configuration exhibits good heat insulating properties.
  • the emissivity of the vehicle insulating glass unit 100 is 0.45 or less. Therefore, when the heat insulating glass unit 100 is applied to, for example, an automobile windshield (windshield), side glass, rear glass, and / or roof glass (hereinafter collectively referred to as a “glass member”), the solar It is possible to significantly suppress the temperature rise in the vehicle due to the incidence of light.
  • the heat insulating glass unit 100 can significantly suppress the angle dependency of the reflected color due to the interaction between the color tone correction film 130 and the layers 132 to 160. Therefore, when the heat insulating glass unit 100 is applied to, for example, a glass member of an automobile, it is possible to significantly suppress a change in color depending on the viewing direction.
  • the heat insulating glass unit 100 has the upper layer 160 having scratch resistance, the durability of the heat insulating glass unit 100 can be improved. For example, when the heat insulating glass unit 100 is applied as a side glass of an automobile, it is possible to significantly suppress the occurrence of scratches due to the raising and lowering of the side glass.
  • the upper layer 160 is composed of a layer mainly composed of silica (SiO 2 ), even if the upper layer 160 is thinned (abraded), the reflected color changes depending on the viewing direction. It is possible to still maintain the suppression effect.
  • each member which comprises the heat insulation glass unit for vehicles by one Embodiment of this invention Next, each member which comprises the heat insulation glass unit for vehicles by one Embodiment of this invention is demonstrated in detail.
  • the reference numerals used in FIG. 1 are used for clarity when representing each member.
  • the laminated glass 110 of the vehicle insulating glass unit 100 includes two glass plates 115 and 125.
  • the types of the glass plates 115 and 125 are not particularly limited, and these may be, for example, soda lime glass, quartz glass, borosilicate glass, or alkali-free glass.
  • the glass plates 115 and 125 may be ultraviolet cut glass plates capable of shielding ultraviolet rays.
  • the first glass plate 115 and the second glass plate 125 may be of different types.
  • the glass plates 115 and 125 may be colorless or colored. Further, the thickness of the glass plates 115 and 125 may be in the range of 2 mm to 6 mm, for example.
  • the intermediate film 120 is disposed between the first and second glass plates 115 and 125.
  • the intermediate film 120 may be made of a transparent resin, for example.
  • a resin for example, polyvinyl butyral (PVB) and polyvinyl chloride can be used.
  • PVB polyvinyl butyral
  • infrared shielding PVB containing a pigment in a dispersed manner is also effective for reducing the total solar transmittance Tts (%).
  • the visible light transmittance, solar radiation transmittance, and light transmittance at a wavelength of 1500 nm of the glass plates 115 and 125 are preferably 70% to 90%, 40% to 65%, and 35% to 60%, respectively. In addition, all of these values are values when measured by a measurement method defined in JIS.
  • the glass plates 115 and 125 may be ultraviolet cut glass plates capable of shielding ultraviolet rays.
  • the shape of the laminated glass 110 is not necessarily flat, and the laminated glass 110 may have a curved surface shape.
  • the thickness of the laminated glass 110 may be in the range of 2 mm to 6 mm, for example.
  • the color tone correction film 130 has a role of adjusting the angle dependency of the reflected color of the heat insulating glass unit 100.
  • the color tone correction film 130 includes a plurality of layers including at least the first layer 132 and the second layer 136.
  • the refractive index of the first layer 132 closer to the laminated glass 110 with respect to light with a wavelength of 630 nm is higher than the refractive index of light with a wavelength of 630 nm of the second layer 136.
  • the first layer 132 has a refractive index in the range of 1.7 to 2.5 with respect to light having a wavelength of 630 nm.
  • the refractive index is preferably in the range of 1.8 to 2.3, and more preferably in the range of 1.8 to 2.2.
  • the second layer 136 has a refractive index of 1.6 or less with respect to light having a wavelength of 630 nm.
  • the refractive index is preferably 1.55 or less.
  • the first layer 132 is preferably mainly composed of an oxide or oxynitride containing at least one of Ti, Nb, Ta, Zn, Al, In, Si, and Zr, for example.
  • oxides or oxynitrides containing at least one of Ti, Nb, Zn, and In are particularly preferable.
  • the first layer 132 may be, for example, titania doped with 0.1% by mass to 10% by mass of silica (silica-doped titania).
  • the 1st layer 132 is comprised with a tin oxide
  • a crack may arise in the 1st layer 132 in a subsequent heating process.
  • the heat treatment process is included in the manufacturing process of the heat insulating glass unit 100, it is not preferable to configure the first layer 132 with tin oxide.
  • the thickness of the first layer 132 is preferably in the range of 3 nm to 40 nm, for example, and more preferably in the range of 5 nm to 35 nm.
  • the second layer 136 may be made of a material mainly composed of any one of SiO 2 , SiON, and MgF 2 .
  • the thickness of the second layer 136 is preferably in the range of 5 nm to 50 nm, for example, and more preferably in the range of 10 nm to 45 nm.
  • the transparent conductive layer 140 is made of a material mainly composed of indium tin oxide (ITO). ITO has an infrared reflection function.
  • ITO indium tin oxide
  • ITO may contain additives.
  • Such an additive may be, for example, Ga, Zn, Al and / or Nb.
  • the ratio of tin oxide in ITO is in the range of 5% by mass to 12.5% by mass of the whole, and preferably in the range of 6.5% by mass to 11% by mass of the whole.
  • the resistance tends to decrease as the amount of tin oxide increases.
  • the transparent conductive layer 140 may include other materials of less than 50% by mass in addition to ITO.
  • a material may be, for example, sodium, lead, and / or iron.
  • the thickness of the transparent conductive layer 140 is, for example, preferably in the range of 100 nm to 200 nm, and more preferably in the range of 120 nm to 170 nm.
  • the refractive index of the transparent conductive layer 140 with respect to light having a wavelength of 630 nm is usually preferably in the range of 1.7 to 1.8.
  • the transparent conductive layer 140 may be configured, for example, by forming an amorphous ITO layer on the color tone correction film 130 and crystallizing this layer.
  • the heat treatment temperature for crystallization is, for example, in the range of 80 ° C to 170 ° C. By this method, a low-resistance ITO layer can be obtained.
  • the adhesion improving layer 150 is disposed as necessary. By disposing the adhesion improving layer 150, the peel strength between the transparent conductive layer 140 and the upper layer 160 may be increased.
  • the adhesion improving layer 150 may be made of, for example, a metal oxide such as tin oxide, zinc oxide, and / or cerium oxide.
  • the thickness of the adhesion improving layer 150 is preferably in the range of 1 nm to 10 nm, for example.
  • the upper layer 160 is disposed to protect a layer existing below the upper layer 160, for example, the transparent conductive layer 140 (and / or the adhesion improving layer 150).
  • the oxidation resistance of the transparent conductive layer 140 (and / or the adhesion improving layer 150) can be improved by disposing the upper layer 160 on the transparent conductive layer 140 (and / or the adhesion improving layer 150). Further, by disposing the upper layer 160, the scratch resistance is increased, and it is possible to prevent the transparent conductive layer 140 (and / or the adhesion improving layer 150) from being thinned (abraded) or damaged.
  • the transmittance of the heat insulating glass unit 100 in the visible light region can be increased.
  • the upper layer 160 is preferably made of a material having a refractive index of 1.7 or less with respect to light having a wavelength of 630 nm, and more preferably made of a material having a refractive index of 1.55 or less. Examples of such a material include silica (SiO 2 ), SiON, and MgF 2 .
  • the upper layer 160 may be a layer mainly composed of silica, for example. In this case, the heat resistance of the transparent conductive layer 140 can be increased. In the case of a layer mainly composed of silica, even if the upper layer 160 is thinned, the effect of suppressing the angle dependency of the reflected color of the initial heat insulating glass unit 100 can still be maintained.
  • the upper layer 160 may be, for example, a layer of zirconia-doped silica (zirconia-doped silica).
  • the doping amount of zirconia with respect to the entire upper layer 160 is preferably in the range of 5 mol% to 40 mol%, for example.
  • the thickness of the upper layer 160 is preferably 60 nm or less, for example.
  • the thickness of the upper layer 160 is more preferably in the range of 20 nm to 60 nm, for example.
  • the thickness of the upper layer 160 is 60 nm or less, an effect that it becomes relatively easy to control the reflected color from the heat insulating glass unit 100 is obtained as will be described later.
  • the heat insulating glass unit 100 preferably has an emissivity in the range of 0.1 to 0.45. In the heat insulating glass unit 100 having such an emissivity, the heat transmissivity with respect to light of infrared and far infrared wavelengths can be significantly reduced.
  • the reflected color from the heat insulation glass unit 100 is represented by CIE1976 L * a * b * color space (D65 light source, 2 degree visual field).
  • the color space of reflected light generated when light is incident at an incident angle in the range of 0 ° to 80 ° is ⁇ 5 ⁇ a * ⁇ 0 and ⁇ 7.
  • the angle dependency of the reflected color can be significantly suppressed.
  • the heat insulating glass unit 100 is applied to, for example, a glass member of a vehicle.
  • a glass member may be, for example, a windshield, a rear glass, a side glass, and a roof glass.
  • the heat insulation glass unit by this invention is applicable also to glass members, such as a window glass of a building, a refrigerator, a freezing apparatus, and a showcase.
  • the heat insulating glass unit of the present invention when the heat insulating glass unit of the present invention is mounted on a vehicle, the heat insulating glass unit is disposed such that the surface on which the film is formed is the vehicle interior side.
  • the heat insulation glass unit in which angle dependence was improved can be provided.
  • membrane was formed may become a vehicle exterior.
  • FIG. 2 schematically shows an example of a flow of a method for manufacturing a heat insulating glass unit for a vehicle according to an embodiment of the present invention.
  • step S110 Preparing the first and second glass plates (S110); Installing a color tone correction film on the first surface of the first glass plate (step S120); Disposing a transparent conductive layer on the color correction film (step S130); Disposing an adhesion improving layer on the transparent conductive layer (step S140); Disposing an upper layer on the adhesion improving layer (step S150); Bonding the first and second glass plates through an intermediate film with the first surface side facing outside (step S160); Have In addition, you may abbreviate
  • Step S110 First, a first glass plate 115 and a second glass plate 125 are prepared.
  • the composition of the first and second glass plates 115 and 125 is not particularly limited, and the first and second glass plates 115 and 125 may be soda lime glass, quartz glass, borosilicate glass, or nothing. You may be comprised with alkali glass.
  • Step S120 Next, the color tone correction film 130 is provided on one surface (first surface) of the first glass plate 115.
  • the color tone correction film 130 may be formed of a plurality of layers including the first layer 132 and the second layer 136.
  • the first layer 132 closer to the first glass plate 115 is mainly composed of, for example, an oxide or oxynitride containing at least one of Ti, Nb, Ta, Zn, Al, In, Si, and Zr. Composed of materials.
  • the first layer 132 may be a layer mainly composed of silica-doped titanium oxide (silica-doped titania).
  • the second layer 136 may be a layer mainly composed of silica.
  • the first and second layers 132 and 136 are formed, for example, by sputtering, vacuum deposition, ion plating, chemical vapor deposition, or wet deposition.
  • the first and second layers 132 and 136 are particularly preferably formed by a sputtering method. This is because the sputtering method has a small environmental load, and the layer obtained by the sputtering method has a relatively uniform thickness.
  • Examples of the sputtering method include a DC sputtering method, an AC sputtering method, a DC pulse sputtering method, a high frequency sputtering method, and a high frequency superimposed DC sputtering method.
  • a magnetron sputtering method may be employed as the sputtering method.
  • the first layer 132 is formed with a thickness of 3 nm to 40 nm, for example, and the second layer 136 is formed with a thickness of 5 nm to 35 nm, for example.
  • a transparent conductive layer 140 mainly composed of ITO is disposed on the color tone correction film 130.
  • the transparent conductive layer 140 may be formed by various sputtering methods as in the case of the color tone correction film 130.
  • the transparent conductive layer 140 is an ITO layer
  • the temperature of the glass plate 110 during the formation of the ITO layer by sputtering is preferably 100 ° C. or lower.
  • the adhesion improving layer 150 is installed on the transparent conductive layer 140.
  • the adhesion improving layer 150 is made of, for example, a metal oxide such as cerium oxide or zinc oxide.
  • the method for forming the adhesion improving layer 150 is not particularly limited.
  • the adhesion improving layer 150 may be formed by directly forming a metal oxide by a conventional method such as various sputtering methods.
  • the metal oxide may be, for example, zinc oxide or cerium oxide.
  • the adhesion improving layer 150 may be formed by, for example, forming a metal film by a conventional method such as a sputtering method and then oxidizing the metal film.
  • the metal film may be, for example, zinc or cerium.
  • the oxidation treatment of the metal film may be performed after forming all the layers.
  • step S150 may be omitted.
  • the upper layer 160 is disposed on the adhesion improving layer 150 (or the transparent conductive layer 140 when the adhesion improving layer 150 is not present).
  • the upper layer 160 may be made of a material mainly composed of silica.
  • the upper layer 160 may be formed by various sputtering methods as in the case of other layers such as the color tone correction film 130.
  • each layer is preferably formed by sputtering.
  • the effect is that the film is softer than the thermal oxide film and no cracks are generated during heat treatment or bending.
  • the entire laminated glass 110 may be heat treated (referred to as “post heat treatment”). Thereby, the transparent conductive layer 140 and the upper layer 160 with few defects can be formed.
  • the post heat treatment is performed, for example, at a temperature of 550 ° C. to 750 ° C. in the atmosphere for about 1 to 30 minutes.
  • the heat insulating glass unit 100 when the heat insulating glass unit 100 is applied to a windshield of a vehicle, the glass plates 115 and 125 are bent. This step is usually performed by heat-treating the glass plates 115 and 125.
  • the heat treatment temperature is usually in the range of 550 ° C to 750 ° C.
  • the heat treatment temperature for this bending process overlaps with the post heat treatment temperature described above. For this reason, the post heat treatment and the bending heat treatment may be performed at a time.
  • the first layer 132 of the color tone correction film 130 is made of tin oxide. This is because when the first layer 132 is made of tin oxide, a crack or a crack may occur in the first layer 132 after the heat treatment.
  • alumina, tantalum oxide, silicon nitride, zircon-boron oxide, or the like may be formed on the upper layer 160.
  • Step S160 Next, the first glass plate 115 and the second glass plate 125 are bonded via the intermediate film 120. At this time, the first glass plate 115 is arranged with respect to the second glass plate 125 so that the first surface, that is, the side on which each layer is formed is the outside.
  • the intermediate film 120 may be polyvinyl butyral or polyvinyl chloride.
  • Bonding is performed by heating and pressurizing the laminate obtained by interposing the intermediate film 120 between the first glass plate 115 and the second glass plate 125.
  • the heat insulating glass unit 100 can be manufactured by the above process.
  • the manufacturing process of the heat insulating glass unit 100 has been briefly described above.
  • the above manufacturing method is merely an example, and it is obvious to those skilled in the art that the heat insulating glass unit according to the embodiment of the present invention can be manufactured by other manufacturing methods.
  • Example 1 The sample of the heat insulation glass unit was manufactured with the following method.
  • the target film thickness was 35 nm.
  • an ITO layer was formed as a transparent conductive layer on the color tone correction film (silica doped titania + silica layer) by sputtering.
  • the target film thickness was 55 nm.
  • the first glass plate was heated at 650 ° C. for 7 minutes as a post heat treatment.
  • Example 1 A sample of the heat insulating glass unit (referred to as “sample 1”) was obtained by heating and pressing the laminate to 135 ° C.
  • the thickness of the interlayer film was 0.76 mm.
  • Example 2 A sample of a heat insulating glass unit (referred to as “sample 2”) was produced in the same manner as in Example 1.
  • Example 2 the thickness of the upper silica layer was 95 nm. Other conditions are the same as in the first embodiment.
  • Example 3 A sample of a heat insulating glass unit (referred to as “sample 3”) was produced in the same manner as in Example 1.
  • the doping amount of zirconia was 33 mol% of the upper layer.
  • the target thickness of the upper layer was 55 nm.
  • Example 3 a heat absorption type PVB (Solar Control Film: manufactured by Sekisui Chemical Co., Ltd.) was used as an intermediate film. Other conditions are the same as in the first embodiment.
  • a silica layer was formed as an upper layer on the ITO layer by sputtering.
  • the target film thickness was 80 nm.
  • the first glass plate was heated at 650 ° C. for 7 minutes as a post heat treatment.
  • sample 4 a sample of the heat insulating glass unit (referred to as “sample 4”) is obtained by bonding the first glass plate and the second glass plate via the intermediate film in the same manner as in Example 1. It was.
  • Comparative Example 2 A sample of a heat insulating glass unit (referred to as “Sample 5”) was produced in the same manner as in Comparative Example 1.
  • a zirconia-doped silica layer (zirconia-doped silica) was formed as the upper layer instead of the silica layer.
  • the doping amount of zirconia with respect to the upper layer is 33 mol%.
  • the thickness of the upper layer was 80 nm.
  • a heat absorption type PVB (Solar Control Film: manufactured by Sekisui Chemical Co., Ltd.) was used as an intermediate film.
  • Comparative Example 3 A sample of a heat insulating glass unit (referred to as “Sample 6”) was produced in the same manner as in Comparative Example 1.
  • the thickness of the ITO layer was 135 nm.
  • the thickness of the upper layer was 46 nm.
  • 2 mm thick soda lime glass FL: manufactured by Asahi Glass Co., Ltd.
  • heat absorption type PVB Solar Control Film: manufactured by Sekisui Chemical Co., Ltd.
  • the target film thickness was 35 nm.
  • an ITO layer was formed as a transparent conductive layer on the color tone correction film (silica doped titania + silica layer) by sputtering.
  • the target film thickness was 10 nm.
  • the target film thickness was 55 nm.
  • the first glass plate was heated at 650 ° C. for 7 minutes as a post heat treatment.
  • Example 7 a sample of a heat insulating glass unit
  • Table 1 below collectively shows the laminated glass configuration and the layer configuration of Samples 1 to 7.
  • V570ARM-500N manufactured by JASCO Corporation
  • irradiate visible light wavelength 300nm to 800nm
  • a predetermined angle 5 ° to 70 °
  • the resulting reflected color was expressed in CIE 1976 L * a * b * color space (D65 light source, 2 ° field of view).
  • Tables 2 to 7 below show the measurement results for Sample 1 to Sample 6, respectively.
  • the incident angle (°) was expressed as an inclination angle with respect to the normal line with the normal line in the upper layer of the sample being 0 °.
  • FIG. 3 is a diagram in which the reflected colors generated when light is irradiated at each incident angle in Samples 1 to 3 are plotted on the color coordinates of the color space.
  • FIG. 4 is a diagram in which the reflected colors generated when light is irradiated at each incident angle in Samples 4 to 6 are plotted on the color coordinates of the color space.
  • the region A is defined as a range in which a * is ⁇ 5 to 0 and b * is ⁇ 7.5 to 4.
  • This region A is defined as a range in which the reflected color does not feel uncomfortable based on the inventors' experience with glass members for automobiles.
  • the color that is close to white to light blue tends to be preferred over white to light red.
  • the area A tends to be somewhat wider on the side of the light blue area (lower left area than the origin).
  • FIG. 3 shows that in samples 1 to 3, the color coordinates of the reflected light are within the region A even if the incident angle changes from 5 ° to 70 °. From this, it was confirmed that in Samples 1 to 3, the angle dependency of the reflected color from the sample was significantly suppressed.
  • sample 4 to sample 6 in FIG. 4 when the incident angle changes from 5 ° to 70 °, the color coordinate of the reflected light deviates greatly from the region A, and the upper left region (strong yellow) greatly deviates from the origin. It can be seen that it tends to be distributed in the (yellowish green area). From this, it was confirmed that Sample 4 to Sample 6 have a problem that the angle dependence of the reflected color from the sample is large, and that there is a sense of incongruity during visual recognition.
  • a spectrophotometer (U4100: manufactured by Hitachi, Ltd.) was used, and each sample was irradiated with light from the lower part (the non-film surface, that is, the second surface 114 side of the laminated glass).
  • the visible light reflectance and visible light transmittance of each sample were measured in the light wavelength range of 300 nm to 2500 nm.
  • the measurement was performed according to JIS A5759.
  • the emissivity (hemispherical emissivity) on the upper side (film surface, ie, upper layer side) of the sample was measured with an emissivity measuring instrument (TSS-5X: manufactured by Japan Sensor).
  • the total solar transmittance Tts (%) was obtained in accordance with the provisions of ISO 13837.
  • the present invention can be used for vehicle glass members, building window glass members, and the like.

Abstract

第1のガラス板および第2のガラス板が中間膜を介して相互に接合された合わせガラスと、該合わせガラスの少なくとも一方の表面に配置された色調補正膜と、該色調補正膜の上に配置されたインジウムスズ酸化物(ITO)を主体とする透明導電層と、該透明導電層の上に配置され、波長630nmの光に対する屈折率が1.7以下である上部層とを有し、前記色調補正膜は、少なくとも第1の層および第2の層を有し、前記第1の層は、前記第2の層よりも前記合わせガラスに近い位置に配置され、波長630nmの光に対する前記第1の層の屈折率は、波長630nmの光に対する前記第2の層の屈折率よりも高いものである、車両用の断熱ガラスユニット。

Description

車両用の断熱ガラスユニットおよびその製造方法
 本発明は、車両用の断熱ガラスユニットおよびその製造方法に関する。
 従来より、自動車等の車両の車内に流入する太陽エネルギーを遮断して、車内の温度上昇を抑制することが可能な断熱ガラスユニットが知られている。
 例えば、特許文献1には、ガラス基板上に、インジウムスズ酸化物(ITO)層および酸化ケイ素(SiO)層からなる多層膜を形成することにより製造された断熱ガラスが記載されている。
特開2004-149400号公報 特表2015-512854号公報
 特許文献1に記載の断熱ガラスは、可視光透過率が高く、良好な断熱性能を有するという特徴を有する。
 しかしながら、この断熱ガラスは、視認の際の色味が角度依存性を示すという問題を有する。すなわち、この断熱ガラスは、視認方向によって反射光の色味(反射色)が変化する傾向にある。例えば、断熱ガラスを第1の方向から見た際には、青っぽく見えるのに対し、断熱ガラスを第2の方向から見た際には、黄色っぽく見える場合がある。このような断熱ガラスの反射色の角度依存性は、視認者に違和感を与えるため、できるだけ抑制することが好ましい。
 また、特許文献2に記載のプレート(ガラス板)は、熱放射反射コーティングを有し、透明性かつ耐食性があり、曲げ加工に際して損傷しないという特徴を有する。
 しかしながら、特許文献2のプレートは、10nm以上の厚さのバリア層(例えば窒化ケイ素)を設けなければならない。その場合、反射色の角度依存性を所望の範囲内に収めることが困難になるだけにとどまらず、前記バリア層が厚くなると可視光透過率が低下する。特に自動車等のウインドシールドとして用いる場合に求められる可視光透過率(例えば可視光透過率T≧72%)を達成しようとすると前記バリア層の上部の層(特許文献2においては典型的にはSiOまたはその化合物)を厚くすることによって補わなければならないため、生産性が悪化する。
 本発明は、このような背景に鑑みなされたものであり、本発明では、反射色の角度依存性が改善された断熱ガラスユニットを提供することを目的とする。また本発明では、そのような断熱ガラスユニットの製造方法を提供することを目的とする。
 本発明では、
 第1のガラス板および第2のガラス板が中間膜を介して相互に接合された合わせガラスと、
 該合わせガラスの少なくとも一方の表面に配置された色調補正膜と、
 該色調補正膜の上に配置されたインジウムスズ酸化物(ITO)を主体とする透明導電層と、
 該透明導電層の上に配置され、波長630nmの光に対する屈折率が1.7以下である上部層とを有し、
 前記色調補正膜は、少なくとも第1の層および第2の層を有し、前記第1の層は、前記第2の層よりも前記合わせガラスに近い位置に配置され、波長630nmの光に対する前記第1の層の屈折率は、波長630nmの光に対する前記第2の層の屈折率よりも高いものである、
 車両用の断熱ガラスユニットが提供される。
 また、本発明では、
 (i)第1のガラス板および第2のガラス板を準備し、
(ii)スパッタリング法により、前記第1のガラス板の第1の表面に、第1の層を形成し、該第1の層の上に、波長630nmの光に対する屈折率が前記第1の層よりも低い第2の層を形成して色調補正膜を成膜し、
(iii)スパッタリング法により、前記色調補正膜の上にインジウムスズ酸化物(ITO)を主体とする透明導電層を成膜し、
(iv)スパッタリング法により、前記透明導電層の上に波長630nmの光に対する屈折率が1.7以下の上部層を成膜し、
(v)前記第1および前記第2のガラス板を、前記第1の表面の側が外側となるようにして、中間膜を介して接合する車両用の断熱ガラスユニットの製造方法が提供される。
 本発明では、反射色の角度依存性が改善された断熱ガラスユニットを提供することができる。また本発明では、そのような断熱ガラスユニットの製造方法を提供することができる。
本発明の一実施形態による車両用の断熱ガラスユニットの構成を模式的に示した断面図である。 本発明の一実施形態による車両用の断熱ガラスユニットの製造方法のフローの一例を模式的に示した図である。 サンプル1~3において、各入射角度で光を照射した際に生じる反射色を、色空間の色座標にプロットした図である。 サンプル4~6において、各入射角度で光を照射した際に生じる反射色を、色空間の色座標にプロットした図である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 (本発明の一実施形態による車両用の断熱ガラスユニット)
 図1には、本発明の一実施形態による車両用の断熱ガラスユニットの断面を模式的に示す。
 図1に示すように、この断熱ガラスユニット100は、合わせガラス110と、色調補正膜130と、透明導電層140と、密着改善層150と、上部層160とを有する。
 合わせガラス110は、第1の表面112および第2の表面114を有し、以降に説明する各層(膜)は、第1の表面112側に配置される。
 合わせガラス110は、第1のガラス板115と第2のガラス板125とを、中間膜120を介して接合することにより構成される。従って、合わせガラス110の第1の表面112は、第1のガラス板115の外表面に対応し、合わせガラス110の第2の表面114は、第2のガラス板125の外表面に対応する。
 色調補正膜130は、合わせガラス110の第1の表面112に設置される。色調補正膜130は、該色調補正膜130に含まれる2以上の層の屈折率を制御することにより、車両用の断熱ガラスユニット100の反射色の角度依存性を調節する役割を有する。
 図1の例では、色調補正膜130は、第1の層132と第2の層136の2層で構成される。この構成では、波長630nmの光に対する第1の層132の屈折率は、波長630nmの光に対して第2の層136の屈折率よりも高い値を有する。
 ただし、これは単なる一例であって、色調補正膜130は、3層以上で構成されても良い。
 透明導電層140は、色調補正膜130の上に配置される。透明導電層140は、インジウムスズ酸化物(ITO)を主体とする材料で構成される。ここで、本願において、「A層は材料Bを主体とする」とは、A層において材料Bを50質量%以上含むことを意味する。
 透明導電層140の波長630nmの光に対する屈折率は、例えば、1.7~1.8の範囲である。
 密着改善層150は、透明導電層140と上部層160の間に配置され、両者の界面での剥離を抑制する役割を有する。密着改善層150は、例えば、酸化スズ、酸化亜鉛、および酸化セリウムなどの金属酸化物で構成される。なお、密着改善層150の配置は任意であり、省略しても良い。
 上部層160は、密着改善層150が存在しない場合、透明導電層140の上に配置され、密着改善層150が存在する場合、密着改善層150の上に配置される。ここで、本願において、「上部層」の「上部」とは、合わせガラス110に対して透明導電層140よりも遠い側に配置されることを意味する。従って、「上部層」と言う表現は、上部層160が、必ずしも最上層(最外層)であることを意味するものではない。
 上部層160は、透明導電層140を保護するとともに、断熱ガラスユニット100の耐久性を高める役割を有する。
 ただし、上部層160は、断熱ガラスユニット100の色味およびその角度依存性に悪影響を及ぼさないように配置される必要がある。そのため、上部層160は、波長630nmの光に対する屈折率が1.7以下となるように構成される。上部層160は、例えば、SiOを主体とする材料で構成される。
 このような構成を有する断熱ガラスユニット100は、良好な断熱性を発揮する。例えば、車両用断熱ガラスユニット100の放射率は、0.45以下である。従って、断熱ガラスユニット100を、例えば、自動車のフロントガラス(ウインドシールド)、サイドガラス、リアガラス、および/またはルーフガラス(以下、これらをまとめて、「ガラス部材」と称する)等に適用した場合、太陽光の入射による車内の温度上昇を、有意に抑制することが可能となる。
 また、断熱ガラスユニット100は、色調補正膜130、さらには各層132~160の相互作用により、反射色の角度依存性を有意に抑制することができる。従って、断熱ガラスユニット100を、例えば自動車のガラス部材等に適用した場合、視認方向による色味の変化を有意に抑制することが可能となる。
 さらに、断熱ガラスユニット100は、耐擦傷性を有する上部層160を有するため、断熱ガラスユニット100の耐久性を高めることができる。例えば、断熱ガラスユニット100を自動車のサイドガラスとして適用した場合、サイドガラスの昇降による傷の発生を有意に抑制することができる。
 特に、断熱ガラスユニット100において、シリカ(SiO)を主体とする層で上部層160を構成した場合、仮に上部層160に減肉(磨滅)が生じたとしても、視認方向による反射色の変化の抑制効果を、依然として維持することが可能となる。
 (本発明の一実施形態による車両用の断熱ガラスユニットを構成する各部材)
 次に、本発明の一実施形態による車両用の断熱ガラスユニットを構成する各部材について、より詳しく説明する。なお、以下の説明では、各部材を表す際に、明確化のため、図1に使用した参照符号を使用する。
 (合わせガラス110)
 車両用断熱ガラスユニット100の合わせガラス110は、2枚のガラス板115、125を有する。
 各ガラス板115、125の種類は、特に限定されず、これらは、例えばソーダライムガラス、石英ガラス、ホウケイ酸ガラス、または無アルカリガラス等であっても良い。ガラス板115、125は、紫外線を遮蔽することが可能な、紫外線カットガラス板であっても良い。なお、第1のガラス板115と第2のガラス板125は、種類が異なっていても良い。
 ガラス板115、125は無色であっても、着色されていても良い。また、ガラス板115、125の厚さは、例えば2mm~6mmの範囲であっても良い。
 第1および第2のガラス板115、125の間には、中間膜120が配置される。
 中間膜120は、例えば、透明な樹脂で構成されても良い。そのような樹脂としては、例えば、ポリビニルブチラール(PVB)およびポリ塩化ビニルなどが使用できる。また、色素を分散含有する赤外線遮蔽PVBも、全日射透過率(Total Solar Transmittance)Tts(%)を低減させるために有効である。
 ガラス板115、125の可視光透過率、日射透過率、および波長1500nmの光の透過率は、それぞれ、70%~90%、40%~65%、35%~60% であることが好ましい。なお、これらの値は、いずれも、JISに規定された測定方法より測定した際の値である。
 また、ガラス板115、125は、紫外線を遮蔽することが可能な、紫外線カットガラス板であっても良い。
 合わせガラス110の形状は、必ずしも平面である必要はなく、合わせガラス110は、曲面形状を有しても良い。合わせガラス110の厚さは、例えば2mm~6mmの範囲であっても良い。
 (色調補正膜130)
 色調補正膜130は、断熱ガラスユニット100の反射色の角度依存性を調節する役割を有する。
 前述のように、色調補正膜130は、少なくとも第1の層132と第2の層136とを含む、複数の層で構成される。
 この場合、合わせガラス110により近い第1の層132の波長630nmの光に対する屈折率は、第2の層136の波長630nmの光に対する屈折率よりも高い。例えば、第1の層132は、波長630nmの光に対して、1.7~2.5の範囲の屈折率を有する。前記屈折率は、1.8~2.3の範囲であることが好ましく、1.8~2.2の範囲であることがより好ましい。
 一方、第2の層136は、波長630nmの光に対して、1.6以下の屈折率を有する。前記屈折率は、1.55以下あることが好ましい。
 第1の層132は、例えば、Ti、Nb、Ta、Zn、Al、In、SiおよびZrの少なくとも一種を含む酸化物または酸窒化物を主体とすることが好ましい。特に、これらの中では、Ti、Nb、Zn、Inの少なくとも一種を含む酸化物または酸窒化物がより好ましい。第1の層132は、例えば、0.1質量%~10質量%のシリカがドープされたチタニア(シリカドープトチタニア;silica-doped titania)であっても良い。
 なお、第1の層132を酸化スズで構成した場合、以降の加熱プロセスにおいて、第1の層132に割れが生じる可能性がある。このため、断熱ガラスユニット100の製造過程に熱処理工程が含まれる場合、第1の層132を酸化スズで構成することは好ましくない。
 第1の層132の厚さは、例えば3nm~40nmの範囲であることが好ましく、5nm~35nmの範囲であることがさらに好ましい。
 第2の層136は、例えば、SiO、SiON、またはMgFのいずれかを主体とする材料で構成されても良い。
 第2の層136の厚さは、例えば5nm~50nmの範囲であることが好ましく、10nm~45nmの範囲であることがさらに好ましい。
 (透明導電層140)
 透明導電層140は、インジウムスズ酸化物(ITO)を主体とする材料で構成される。ITOは、赤外線反射機能を有する。
 ITOには、添加物が含有されても良い。そのような添加物は、例えばGa、Zn、Alおよび/またはNb等であっても良い。
 ITO中の酸化スズの割合は、全体の5質量%~12.5質量%の範囲であり、全体の6.5質量%~11質量%の範囲であることが好ましい。酸化スズの割合が12.5質量%以下の場合、酸化スズの量が多いほど、抵抗が小さくなる傾向にある。
 また、透明導電層140は、ITOの他に、最大50質量%未満の他の材料を含んでも良い。そのような材料は、例えば、ナトリウム、鉛、および/または鉄などであっても良い。
 透明導電層140の厚さは、例えば、100nm~200nmの範囲であることが好ましく、120nm~170nmの範囲であることがさらに好ましい。
 透明導電層140の波長630nmの光に対する屈折率は、通常、1.7~1.8の範囲であることが好ましい。
 透明導電層140は、例えば、色調補正膜130上にアモルファス状のITO層を成膜し、この層を結晶化させることにより構成されても良い。結晶化のため熱処理温度は、例えば、80℃~170℃の範囲である。この方法では、低抵抗のITO層を得ることができる。
 (密着改善層150)
 密着改善層150は、必要に応じて配置される。密着改善層150を配置することにより、透明導電層140と上部層160の間の剥離強度を高められる場合がある。
 密着改善層150は、例えば、酸化スズ、酸化亜鉛、および/または酸化セリウムなどの金属酸化物で構成されても良い。
 密着改善層150厚さは、例えば、1nm~10nmの範囲であることが好ましい。
 (上部層160)
 上部層160は、その下側に存在する層、例えば、透明導電層140(および/または密着改善層150)を保護するために配置される。例えば、透明導電層140(および/または密着改善層150)の上部に上部層160を配置することにより、透明導電層140(および/または密着改善層150)の耐酸化性を高めることができる。また、上部層160を配置することにより、耐擦傷性が高まり、透明導電層140(および/または密着改善層150)に減肉(磨滅)や傷等が生じることを抑制することができる。
 また、適正な上部層160を設置した場合、断熱ガラスユニット100の可視光域の透過率を高めることができる。
 上部層160は、波長630nmの光に対する屈折率が1.7以下の材料で構成されることが好ましく、屈折率が1.55以下の材料で構成されることがより好ましい。そのような材料として、例えば、シリカ(SiO)、SiON、およびMgF等が挙げられる。上部層160は、例えばシリカを主体とする層であっても良い。この場合、透明導電層140の耐熱性を高めることができる。また、シリカを主体とする層の場合、仮に上部層160に減肉が生じても、初期の断熱ガラスユニット100が有する反射色の角度依存性抑制効果を依然として維持することができる。
 上部層160は、例えば、ジルコニアがドープされたシリカ(ジルコニアドープトシリカ;zirconia-doped silica)の層であっても良い。上部層160全体に対するジルコニアのドープ量は、例えば5mol%~40mol%の範囲であることが好ましい。
 上部層160の厚さは、例えば、60nm以下であることが好ましい。上部層160の厚さは、例えば、20nm~60nmの範囲であることがより好ましい。上部層160の厚さを60nm以下とした場合、以降に示すように、断熱ガラスユニット100からの反射色を制御することが比較的容易になるという効果が得られる。
 (断熱ガラスユニット100)
 断熱ガラスユニット100は、0.1~0.45の範囲の放射率を有することが好ましい。このような放射率を有する断熱ガラスユニット100では、赤外および遠赤外の波長の光に対する熱貫流率を有意に低下させることができる。
 なお、本願では、断熱ガラスユニット100からの反射色は、CIE1976 L色空間で表される(D65光源、2°視野)。
 特に、本発明の一実施形態による断熱ガラスユニット100では、入射角度0°~80°の範囲で光が入射した際に生じる反射光の色空間は、-5≦a≦0および-7.5≦b≦4の領域に含まれるという特長がある。従って、断熱ガラスユニット100では、反射色の角度依存性を有意に抑制することができる。
 断熱ガラスユニット100は、例えば、車両のガラス部材等に適用される。そのようなガラス部材は、例えばフロントガラス、リアガラス、サイドガラス、およびルーフガラス等であっても良い。
 なお、本発明による断熱ガラスユニットは、建物の窓ガラス、ならびに冷蔵装置、冷凍装置、およびショーケース等のガラス部材にも適用することができる。
 ここで、本発明の断熱ガラスユニットを車両に実装する場合、断熱ガラスユニットは、膜が形成された面が車内側となるように配置される。このような構成とすることで、角度依存性が改善された断熱ガラスユニットを提供できる。なお、膜が形成された面が車外側となるように実装しても良い。このような構成とすることで、断熱ガラスユニットの角度依存性が改善され、さらに遮熱の効果を得ることができる。
 (本発明の一実施形態による車両用断熱ガラスユニットの製造方法)
 次に、図2を参照して、前述のような特徴を有する本発明の一実施形態による車両用の断熱ガラスユニットの製造方法の一例について説明する。なお、ここでは、一例として、図1に示したような断熱ガラスユニット100を例に、その製造方法について説明する。
 図2には、本発明の一実施形態による車両用の断熱ガラスユニットの製造方法のフローの一例を模式的に示す。
 図2に示すように、この製造方法は、
 第1および第2のガラス板を準備するステップ(S110)と、
 前記第1のガラス板の第1の表面に、色調補正膜を設置するステップ(ステップS120)と、
 前記色調補正膜の上に透明導電層を配置するステップ(ステップS130)と、
 前記透明導電層の上に密着改善層を配置するステップ(ステップS140)と、
 前記密着改善層の上に上部層を配置するステップ(ステップS150)と、
 前記第1および前記第2のガラス板を、前記第1の表面の側が外側となるようにして、中間膜を介して接合するステップ(ステップS160)と、
 を有する。なお、ステップS140、すなわち密着改善層の配置は、省略しても良い。
 以下、各ステップについて詳しく説明する。なお、以降の記載では、明確化のため、各部材を表す際に、図1に使用した参照符号を使用する。
 (ステップS110)
 まず、第1のガラス板115および第2のガラス板125が準備される。
 前述のように、第1および第2のガラス板115、125の組成は、特に限られず、第1および第2のガラス板115、125は、ソーダライムガラス、石英ガラス、ホウケイ酸ガラス、または無アルカリガラスで構成されても良い。
 (ステップS120)
 次に、第1のガラス板115の一方の表面(第1の表面)に、色調補正膜130が設置される。
 前述のように、色調補正膜130は、第1の層132および第2の層136を含む複数の層で形成されても良い。このうち、第1のガラス板115により近い第1の層132は、例えば、Ti、Nb、Ta、Zn、Al、In、SiおよびZrの少なくとも一種を含む酸化物または酸窒化物を主体とする材料で構成される。第1の層132は、例えば、シリカがドープされた酸化チタン(シリカドープトチタニア;silica-doped titania)を主体とする層であっても良い。一方、第2の層136は、シリカを主体とする層であっても良い。
 第1および第2の層132、136は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、化学気相成膜法、または湿式成膜法等により形成される。第1および第2の層132、136は、特に、スパッタリング法により形成されることが好ましい。スパッタリング法は、環境負荷が少なく、スパッタリング法で得られた層は、厚さが比較的均一になるからである。
 スパッタリング法としては、DCスパッタリング法、ACスパッタリング法、DCパルススパッタリング法、高周波スパッタリング法、および高周波重畳DCスパッタリング法等が挙げられる。スパッタリング法としては、マグネトロンスパッタリング法を採用しても良い。
 第1の層132は、例えば、3nm~40nmの厚さで成膜され、第2の層136は、例えば、5nm~35nmの厚さで成膜される。
 (ステップS130)
 次に、色調補正膜130の上に、ITOを主体とする透明導電層140が設置される。
 透明導電層140は、色調補正膜130の場合と同様に、各種スパッタリング法で成膜されても良い。なお、透明導電層140がITO層の場合、透明導電層140をスパッタリング法で成膜する際に、成膜中に合わせガラス110は加熱しないことが好ましい。例えば、スパッタ法によるITO層の成膜中のガラス板110の温度は、100℃以下であることが好ましい。
 (ステップS140)
 次に、透明導電層140の上に、密着改善層150が設置される。密着改善層150は、例えば、酸化セリウムまたは酸化亜鉛などの金属酸化物で構成される。
 密着改善層150の形成方法は、特に限られない。
 密着改善層150は、例えば、各種スパッタリング法などの従来の方法で、金属酸化物を直接成膜することにより、形成しても良い。金属酸化物は、例えば、酸化亜鉛または酸化セリウム等であっても良い。
 あるいは、密着改善層150は、例えば、スパッタリング法などの従来の方法で金属膜を成膜してから、これを酸化させることにより、形成しても良い。金属膜は、例えば、亜鉛またはセリウム等であっても良い。
 後者の場合、金属膜の酸化処理は、全ての層の成膜後に実施しても良い。
 なお、このステップS150は、省略しても良い。
 (ステップS150)
 次に、密着改善層150(密着改善層150が存在しない場合は、透明導電層140)の上に、上部層160が配置される。上部層160は、シリカを主体とする材料で構成されても良い。
 上部層160は、色調補正膜130など、他の層の場合と同様に、各種スパッタリング法で成膜されても良い。
 特に、ステップS120~ステップS150において、各層は、いずれもスパッタリング法で成膜されることが好ましい。この場合、熱酸化膜に比べ膜が柔軟であり、熱処理や曲げ加工の際にクラックが生じないという効果が得られる。
 なお、上部層160を形成した後、合わせガラス110全体を熱処理しても良い(「ポスト熱処理」と称する)。これにより、欠陥が少ない透明導電層140および上部層160を形成することができる。
 ポスト熱処理は、例えば、大気中550℃~750℃の温度で、1分から30分程度実施される。
 ここで、断熱ガラスユニット100を車両のフロントガラス等に適用する場合、ガラス板115、125に対して、曲げ加工が実施される。この工程は、通常、ガラス板115、125を熱処理することにより行われる。熱処理温度は、通常、550℃~750℃の範囲である。
 この曲げ加工の熱処理温度は、前述のポスト熱処理の温度と重複する。このため、ポスト熱処理と曲げ加工の熱処理とを、一度に実施しても良い。
 前述のように、このような熱処理が実施される場合、色調補正膜130の第1の層132を酸化スズで構成することは好ましくない。第1の層132を酸化スズで構成した場合、熱処理後に、第1の層132に割れやクラックが生じる場合があるからである。
 なお、上部層160の上に、さらに別の層(例えばアルミナ、酸化タンタル、窒化シリコン、およびジルコン-ボロン酸化物など)を形成しても良い。
 (ステップS160)
 次に、第1のガラス板115と第2のガラス板125が、中間膜120を介して接合される。この際には、第1のガラス板115は、第1の表面、すなわち各層が形成された側が、外側となるようにして、第2のガラス板125に対して配置される。中間膜120は、ポリビニルブチラールまたはポリ塩化ビニルであっても良い。
 接合は、第1のガラス板115と第2のガラス板125の間に中間膜120を介在させて得た積層体を、加熱および加圧することにより実施される。
 以上の工程により、断熱ガラスユニット100を製造することができる。
 以上、断熱ガラスユニット100の製造工程について、簡単に説明した。ただし、上記製造方法は、単なる一例であって、本発明の一実施形態による断熱ガラスユニットは、その他の製造方法で製造され得ることは当業者には明らかである。
 次に、本発明の実施例について説明する。
 (実施例1)
 以下の方法で、断熱ガラスユニットのサンプルを製造した。
 まず、厚さ2mmのガラス板(VFL:旭硝子社製)を2枚準備した。次に、スパッタリング法により、一方のガラス板(第1のガラス板)の第1の表面に、色調補正膜の第1の層として、シリカを含む酸化チタン(シリカ量8質量%)(波長630nmにおける屈折率=2.1537)を成膜した。成膜には、シリカドープトチタニア(シリカ量8質量%)ターゲットを使用し、膜厚は、10nmを目標とした。
 次に、スパッタリング法により、シリカを含む酸化チタン層の上に、色調補正膜の第2の層として、シリカ層(波長630nmにおける屈折率=1.4620)を成膜した。膜厚は、35nmを目標とした。
 次に、スパッタリング法により、色調補正膜(シリカドープトチタニア+シリカ層)の上に、透明導電層としてITO層を成膜した。膜厚は、150nmを目標とした。なお、成膜の際に、ガラス板は、加熱していない。これにより、アモルファス状のITO層が得られた。その後、ポスト熱処理により結晶化されたITO層(波長630nmにおける屈折率=1.7606)を形成した。
 次に、スパッタリング法により、ITO層の上に、上部層としてシリカ層(波長630nmにおける屈折率=1.4620)を成膜した。膜厚は、55nmを目標とした。
 その後、ポスト熱処理として、第1のガラス板を650℃で7分間加熱した。
 次に、第1のガラス板、中間膜、および第2のガラス板を積層して、積層体を構成した。中間膜には、熱吸収タイプのPVB(Saflex S Series :Eastman社製)を使用した。積層体を135℃に加熱し、加圧することにより、断熱ガラスユニットのサンプル(「サンプル1」と称する)が得られた。
 なお、サンプル1において、中間膜の厚さは、0.76mmであった。
 (実施例2)
 実施例1と同様の方法により、断熱ガラスユニットのサンプル(「サンプル2」と称する)を製造した。
 ただし、この実施例2では、上部層のシリカ層の厚さは、95nmとした。その他の条件は、実施例1の場合と同様である。
 (実施例3)
 実施例1と同様の方法により、断熱ガラスユニットのサンプル(「サンプル3」と称する)を製造した。
 ただし、この実施例3では、上部層として、シリカ層の代わりに、ジルコニアがドープされたシリカ(ジルコニアドープトシリカ)の層(波長630nmにおける屈折率=1.6831)を成膜した。ジルコニアのドープ量は、上部層の33mol%とした。上部層の厚さは、55nmを目標とした。
 また、実施例3では、中間膜として、熱吸収タイプのPVB(Solar Control Film:積水化学社製)を使用した。その他の条件は、実施例1の場合と同様である。
 (比較例1)
 以下の方法で、断熱ガラスユニットのサンプルを製造した。
 まず、厚さ2mmのガラス板(VFL:旭硝子社製)を2枚準備した。次に、スパッタリング法により、一方のガラス板(第1のガラス板)の第1の表面に、透明導電層としてITO層を成膜した。膜厚は、150nmを目標とした。なお、成膜の際に、ガラス板は、加熱していない。これにより、アモルファス状のITO層が得られた。
 次に、スパッタリング法により、ITO層の上に、上部層としてシリカ層を成膜した。膜厚は、80nmを目標とした。
 その後、ポスト熱処理として、第1のガラス板を650℃で7分間加熱した。
 その後は、実施例1と同様の方法により、中間膜を介して第1のガラス板および第2のガラス板を接合することにより、断熱ガラスユニットのサンプル(「サンプル4」と称する)が得られた。
 (比較例2)
 比較例1と同様の方法により、断熱ガラスユニットのサンプル(「サンプル5」と称する)を製造した。
 ただし、この比較例2では、上部層として、シリカ層の代わりに、ジルコニアがドープされたシリカ(ジルコニアドープトシリカ)の層を形成した。上部層に対するジルコニアのドープ量は、33mol%である。上部層の厚さは、80nmとした。また、中間膜として、熱吸収タイプのPVB(Solar Control Film:積水化学社製)を使用した。
 その他の条件は、比較例1の場合と同様である。
 (比較例3)
 比較例1と同様の方法により、断熱ガラスユニットのサンプル(「サンプル6」と称する)を製造した。
 ただし、この比較例3では、ITO層の厚さを、135nmとした。また、上部層として、スパッタリング法により、窒化ケイ素層(SiN層:波長630nmにおける屈折率=2.0898)を形成した。上部層の厚さは、46nmとした。また、第1および第2のガラス板として、厚さ2mmのソーダライムガラス(FL:旭硝子社製)を使用し、中間膜として、熱吸収タイプのPVB(Solar Control Film:積水化学社製)を使用した。
 その他の条件は、比較例1の場合と同様である。
 (実施例4)
 まず、厚さ2mmのガラス板(VFL:旭硝子社製)を2枚準備した。次に、スパッタリング法により、一方のガラス板(第1のガラス板)の第1の表面に、色調補正膜の第1の層として、シリカを含む酸化チタン(シリカ量8質量%)(波長630nmにおける屈折率=2.1537)を成膜した。成膜には、シリカドープトチタニア(シリカ量8質量%)ターゲットを使用し、膜厚は、10nmを目標とした。
 次に、スパッタリング法により、シリカを含む酸化チタン層の上に、色調補正膜の第2の層として、シリカ層(波長630nmにおける屈折率=1.4620)を成膜した。膜厚は、35nmを目標とした。
 次に、スパッタリング法により、色調補正膜(シリカドープトチタニア+シリカ層)の上に、透明導電層としてITO層を成膜した。膜厚は、150nmを目標とした。なお、成膜の際に、ガラス板は、加熱していない。これにより、アモルファス状のITO層が得られた。その後、ポスト熱処理により結晶化されたITO層(波長630nmにおける屈折率=1.7606)を形成した。
 次に、スパッタリング法により、ITO層の上に、密着改善層として窒化ケイ素層(SiN層;波長630nmにおける屈折率=2.0898)を成膜した。膜厚は、10nmを目標とした。
 次に、スパッタリング法により、密着改善層の上に、上部層としてシリカ層(波長630nmにおける屈折率=1.4620)を成膜した。膜厚は、55nmを目標とした。
 その後、ポスト熱処理として、第1のガラス板を650℃で7分間加熱した。
 次に、第1のガラス板、中間膜、および第2のガラス板を積層して、積層体を構成した。中間膜には、熱吸収タイプのPVB(Saflex S Series :Eastman社製)を使用した。積層体を135℃に加熱し、加圧することにより、断熱ガラスユニットのサンプル(「サンプル7」と称する)が得られた。
 以下の表1には、サンプル1~7における合わせガラスの構成、および層構成をまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 次に、各サンプル1~7を用いて、以下の特性評価を実施した。
 (反射色の角度依存性)
 各サンプルを用いて、以下の方法により、反射色の角度依存性を評価した。
 分光光度計(V570ARM-500N:日本分光社製)を使用し、上部層の側から所定の角度(5゜~70゜)で可視光(波長300nm~800nm)を照射し、得られる反射色を測定した。
 得られた反射色は、CIE1976 L色空間で表した(D65光源、2゜視野)。
 以下の表2~表7には、それぞれ、サンプル1~サンプル6における測定結果を示す。ここで、入射角度(°)は、サンプルの上部層における法線を0°とし、この法線に対する傾斜角で表わした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 図3には、サンプル1~サンプル3において、各入射角度で光を照射した際に生じた反射色を、色空間の色座標にプロットした図を示す。同様に、図4には、サンプル4~サンプル6において、各入射角度で光を照射した際に生じた反射色を、色空間の色座標にプロットした図を示す。
 これらの図3および図4では、各サンプルにおいて、光の入射角度が5゜~70゜まで変化した際に生じる反射色の変化を定量的に把握することができる。特に、入射角度によらず、断熱ガラスユニットで反射される反射光の色が、いずれも領域Aに含まれる場合、そのような断熱ガラスユニットは、反射色の角度依存性が有意に抑制されていると言える。
 ここで、領域Aは、aが-5~0であり、bが-7.5~4である範囲として定められる。この領域Aは、自動車用のガラス部材に対する発明者らの経験に基づいて、反射色に違和感を覚えない範囲として定められたものである。一般に、自動車用のガラス部材の場合、反射色は、白色~薄赤色よりも白色~薄青色に近い色が好まれる傾向にある。このため、領域Aは、薄青色領域(原点よりも左下の領域)の側で幾分広くなる傾向にある。
 図3から、サンプル1~3では、入射角度が5゜~70゜まで変化しても、反射光の色座標が領域A内に収まっていることがわかる。このことから、サンプル1~サンプル3では、サンプルからの反射色の角度依存性が有意に抑制されていることが確認された。
 一方、図4において、サンプル4~サンプル6では、入射角度が5゜~70゜まで変化すると、反射光の色座標は、領域Aから大きく逸脱し、原点から大きく外れた左上の領域(強い黄色~黄緑の領域)に分布する傾向にあることがわかる。このことから、サンプル4~サンプル6では、サンプルからの反射色の角度依存性が大きく、視認の際に、違和感が生じるという問題があることが確認された。
 (可視光反射率、可視光透過率、および放射率の測定)
 次に、サンプル1~3を用いて、可視光反射率、可視光透過率、および放射率の測定を実施した。
 測定には、分光光度計(U4100:日立製作所製)を使用し、各サンプルに対して、下部(非膜面、すなわち合せガラスの第2の表面114側)から光を照射した。光の波長が300nm~2500nmの範囲で、各サンプルの可視光反射率および可視光透過率を測定した。測定は、JIS A5759に準拠して実施した。
 一方、サンプルの上部側(膜面すなわち上部層側)の放射率(半球放射率)は、放射率測定器(TSS-5X:ジャパンセンサー社製)により測定した。
 さらに、得られた結果から、ISO 13837の規定に従って、全日射透過率Tts(%)を求めた。
 表8には、サンプル1において得られた測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000008
 表9には、サンプル2において得られた測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000009
 表10には、サンプル3において得られた測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000010
 (成形性:曲げによる膜の亀裂)
 また、厚さ2mmのガラス板(VFL:旭硝子社製)を2枚用意し、それぞれ上述の方法に従って、サンプル1の構成およびサンプル7の構成で膜を形成して膜付きガラス1、膜付きガラス7を得た。その後前記2枚の膜付きガラスを湾曲させ曲げ試験を行った。具体的には、前記膜付きガラス1、膜付きガラス7を640℃で10分間加熱して曲げ成形加工を行った。両者とも曲げの程度は曲率半径が約60cmとなるようにした。曲げ試験の後、膜の亀裂の有無を観察した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 上記曲げ試験の結果から密着改善層の有無が成形性に変化を及ぼさない、すなわち密着改善層の有無によらず膜に亀裂が生じないことがわかった。
 これらの結果から、サンプル1~サンプル3における可視光反射率、可視光透過率、および放射率は、いずれも車両用の断熱ガラスユニットとして、適正な範囲にあることがわかる。このように、サンプル1~サンプル3は、車両用のガラス部材に適用可能であることが確認された。
 本発明は、車両のガラス部材、および建物の窓ガラス部材等に利用することができる。
 本願は、2015年5月11日に出願した日本国特許出願2015-096246号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100   断熱ガラスユニット
 110   合わせガラス
 112   合わせガラスの第1の表面
 114   合わせガラスの第2の表面
 115   第1のガラス板
 120   中間膜
 125   第2のガラス板
 130   色調補正膜
 132   第1の層
 136   第2の層
 140   透明導電層
 150   密着改善層
 160   上部層

Claims (10)

  1.  第1のガラス板および第2のガラス板が中間膜を介して相互に接合された合わせガラスと、
     該合わせガラスの少なくとも一方の表面に配置された色調補正膜と、
     該色調補正膜の上に配置されたインジウムスズ酸化物(ITO)を主体とする透明導電層と、
     該透明導電層の上に配置され、波長630nmの光に対する屈折率が1.7以下である上部層とを有し、
     前記色調補正膜は、少なくとも第1の層および第2の層を有し、前記第1の層は、前記第2の層よりも前記合わせガラスに近い位置に配置され、波長630nmの光に対する前記第1の層の屈折率は、波長630nmの光に対する前記第2の層の屈折率よりも高いものである、
     車両用の断熱ガラスユニット。
  2.  前記透明導電層は、100nm~200nmの範囲の厚さを有する、請求項1に記載の車両用の断熱ガラスユニット。
  3.  前記上部層は、60nm以下の厚さを有する、請求項1または2に記載の車両用の断熱ガラスユニット。
  4.  さらに、前記透明導電層と前記上部層の間に密着改善層を有する、請求項1乃至3のいずれか一つに記載の車両用の断熱ガラスユニット。
  5.  前記密着改善層の厚さが10nm未満である請求項4に記載の車両用の断熱ガラスユニット。
  6.  前記上部層は、SiOを主体とする、請求項1乃至5のいずれか一つに記載の車両用の断熱ガラスユニット。
  7.  前記第1の層は、Ti、Nb、Ta、Zn、Al、In、SiおよびZrの少なくとも一種を含む酸化物または酸窒化物で構成され、および/または
     前記第2の層は、SiOを主体とする、請求項1乃至6のいずれか一つに記載の車両用の断熱ガラスユニット。
  8.  0.45以下の放射率を有する、請求項1乃至7のいずれか一つに記載の車両用の断熱ガラスユニット。
  9.  (i)第1のガラス板および第2のガラス板を準備し、
    (ii)スパッタリング法により、前記第1のガラス板の第1の表面に、第1の層を形成し、該第1の層の上に、波長630nmの光に対する屈折率が前記第1の層よりも低い第2の層を形成して色調補正膜を成膜し、
    (iii)スパッタリング法により、前記色調補正膜の上にインジウムスズ酸化物(ITO)を主体とする透明導電層を成膜し、
    (iv)スパッタリング法により、前記透明導電層の上に波長630nmの光に対する屈折率が1.7以下の上部層を成膜し、
    (v)前記第1および前記第2のガラス板を、前記第1の表面の側が外側となるようにして、中間膜を介して接合する車両用の断熱ガラスユニットの製造方法。
  10.  前記第1の層は、Ti、Nb、Ta、Zn、Al、In、およびZrの少なくとも一種を含む酸化物または酸窒化物で構成され、および/または
     前記第2の層は、SiOを主体とする、請求項9に記載の製造方法。
PCT/JP2016/061739 2015-05-11 2016-04-11 車両用の断熱ガラスユニットおよびその製造方法 WO2016181740A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16792465.3A EP3296277B1 (en) 2015-05-11 2016-04-11 Heat insulating glass unit for vehicle and manufacturing method thereof
CN201680026760.7A CN107531566A (zh) 2015-05-11 2016-04-11 车辆用的隔热玻璃单元及其制造方法
JP2017517831A JPWO2016181740A1 (ja) 2015-05-11 2016-04-11 車両用の断熱ガラスユニットおよびその製造方法
US15/784,348 US10576713B2 (en) 2015-05-11 2017-10-16 Heat insulating glass unit for vehicle and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015096246 2015-05-11
JP2015-096246 2015-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/784,348 Continuation US10576713B2 (en) 2015-05-11 2017-10-16 Heat insulating glass unit for vehicle and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016181740A1 true WO2016181740A1 (ja) 2016-11-17

Family

ID=57247954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061739 WO2016181740A1 (ja) 2015-05-11 2016-04-11 車両用の断熱ガラスユニットおよびその製造方法

Country Status (5)

Country Link
US (1) US10576713B2 (ja)
EP (1) EP3296277B1 (ja)
JP (1) JPWO2016181740A1 (ja)
CN (1) CN107531566A (ja)
WO (1) WO2016181740A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123877A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 遮熱ガラス
WO2019203142A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用ドアガラス
CN110546114A (zh) * 2017-04-26 2019-12-06 佳殿玻璃有限公司 包括具有邻近车辆或建筑物内部的低e涂层的不同玻璃基板的层压窗和/或其制备方法
JP2020529385A (ja) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー 透明導電性酸化物で被覆された物品のシート抵抗を低下させる方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160091B2 (ja) * 2018-04-19 2022-10-25 Agc株式会社 車両用フロントガラス
CN109397790A (zh) * 2018-11-27 2019-03-01 宁波全亮照明科技有限公司 车前挡用升降多功能复合玻璃结构及其制造方法
CN112644113A (zh) * 2020-12-22 2021-04-13 武爱平 一种汽车隔热夹层玻璃及其制造方法
CN115519857A (zh) * 2022-08-11 2022-12-27 福耀玻璃工业集团股份有限公司 调光玻璃及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188547A (ja) * 1996-01-05 1997-07-22 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JPH1134216A (ja) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd 積層体および窓用ガラス積層体
JP2013533202A (ja) * 2010-07-28 2013-08-22 サン−ゴバン グラス フランス グレージングパネル
WO2013132176A2 (fr) * 2012-03-05 2013-09-12 Saint-Gobain Glass France Vitrage anticondensation
WO2015033067A1 (fr) * 2013-09-05 2015-03-12 Saint-Gobain Glass France Procede de fabrication d'un materiau comprenant un substrat muni d'une couche fonctionnelle a base d'oxyde d'etain et d'indium

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881043A (en) * 1971-06-21 1975-04-29 Ppg Industries Inc Laminated safety windshields
EP0486475B1 (en) * 1988-03-03 1997-12-03 Asahi Glass Company Ltd. Amorphous oxide film and article having such film thereon
JPH03187736A (ja) * 1989-03-07 1991-08-15 Asahi Glass Co Ltd 熱線遮断ガラス
US5318830A (en) * 1991-05-29 1994-06-07 Central Glass Company, Limited Glass pane with reflectance reducing coating
US5667880A (en) * 1992-07-20 1997-09-16 Fuji Photo Optical Co., Ltd. Electroconductive antireflection film
JPH07210085A (ja) * 1994-01-18 1995-08-11 Toppan Printing Co Ltd シール
GB2324098A (en) * 1997-04-08 1998-10-14 Pilkington Plc Solar control coated glass
US6165598A (en) * 1998-08-14 2000-12-26 Libbey-Owens-Ford Co. Color suppressed anti-reflective glass
US6309753B1 (en) * 1998-08-31 2001-10-30 Corning Incorporated Coated ultraviolet absorbing glass
FR2787440B1 (fr) * 1998-12-21 2001-12-07 Saint Gobain Vitrage Substrat transparent comportant un revetement antireflet
US6797388B1 (en) * 1999-03-18 2004-09-28 Ppg Industries Ohio, Inc. Methods of making low haze coatings and the coatings and coated articles made thereby
FR2800998B1 (fr) * 1999-11-17 2002-04-26 Saint Gobain Vitrage Substrat transparent comportant un revetement antireflet
US20040005482A1 (en) * 2001-04-17 2004-01-08 Tomio Kobayashi Antireflection film and antireflection layer-affixed plastic substrate
US20030035939A1 (en) * 2001-08-06 2003-02-20 Nippon Sheet Glass Co., Ltd. Windowpane for head up display and method for manufacturing the same
JP2004013081A (ja) * 2002-06-11 2004-01-15 Nikon Corp 複合型光学素子、複合型光学素子の製造方法、及び光学装置
GB0216787D0 (en) * 2002-07-19 2002-08-28 Pilkington Plc Laminated glazing panel
JP2004149400A (ja) 2002-09-02 2004-05-27 Asahi Glass Co Ltd 断熱ガラスとその製造方法
US20050196623A1 (en) * 2004-03-03 2005-09-08 Mckown Clem S.Jr. Solar control coated glass composition
KR101224731B1 (ko) * 2004-05-20 2013-01-21 후지필름 가부시키가이샤 반사 방지 기능이 있는 편광판, 그 제조 방법, 및 그것을이용한 화상 표시 장치
CN102432203B (zh) * 2005-02-03 2016-03-30 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
US20070108043A1 (en) * 2005-11-14 2007-05-17 Guardian Industries Corp. Sputtering target including titanium silicon oxide and method of making coated article using the same
US8679302B2 (en) * 2005-11-14 2014-03-25 Guardian Industries Corp. Silicon titanium oxide coating, coated article including silicon titanium oxide coating, and method of making the same
US20070113881A1 (en) * 2005-11-22 2007-05-24 Guardian Industries Corp. Method of making solar cell with antireflective coating using combustion chemical vapor deposition (CCVD) and corresponding product
FR2898295B1 (fr) * 2006-03-10 2013-08-09 Saint Gobain Substrat transparent antireflet presentant une couleur neutre en reflexion
JPWO2008123553A1 (ja) * 2007-04-04 2010-07-15 旭硝子株式会社 防汚性物品およびこれを用いる合わせガラス
JP2011502285A (ja) * 2007-10-30 2011-01-20 スリーエム イノベイティブ プロパティズ カンパニー 光学ディスプレイフィルタ用の電磁波干渉遮蔽を備えた多積層光学帯域通過フィルム
US8350451B2 (en) * 2008-06-05 2013-01-08 3M Innovative Properties Company Ultrathin transparent EMI shielding film comprising a polymer basecoat and crosslinked polymer transparent dielectric layer
US7998586B2 (en) * 2008-11-19 2011-08-16 Ppg Industries Ohio, Inc. Undercoating layers providing improved topcoat functionality
US9366783B2 (en) * 2009-12-21 2016-06-14 Ppg Industries Ohio, Inc. Silicon thin film solar cell having improved underlayer coating
US20110146768A1 (en) * 2009-12-21 2011-06-23 Ppg Industries Ohio, Inc. Silicon thin film solar cell having improved underlayer coating
FR2956659B1 (fr) * 2010-02-22 2014-10-10 Saint Gobain Substrat verrier revetu de couches a tenue mecanique amelioree
JP2011191338A (ja) * 2010-03-11 2011-09-29 Etsumi Kogaku:Kk 透明着色品
FR2968774B1 (fr) * 2010-12-10 2013-02-08 Essilor Int Article d'optique comportant un revetement antireflet a faible reflexion dans le domaine ultraviolet et le domaine visible
FR2973023B1 (fr) * 2011-03-25 2019-08-02 Saint-Gobain Glass France Vitrage multiple isolant comprenant deux empilements bas emissifs
EP2693839A4 (en) * 2011-03-31 2014-11-26 Asahi Glass Co Ltd ORGANIC LED ELEMENT, TRANSLUCENT SUBSTRATE AND METHOD FOR PRODUCING THE LIGHT TRACEABLE SUBSTRATE
BE1019988A3 (fr) * 2011-05-24 2013-03-05 Agc Glass Europe Substrat verrier transparent portant un revetement de couches successives.
BE1020051A3 (fr) * 2011-07-04 2013-04-02 Agc Glass Europe Vitrage automobile.
KR101676233B1 (ko) 2012-03-05 2016-11-14 쌩-고벵 글래스 프랑스 열 복사선을 반사하는 코팅을 갖는 시트
EP2831708B1 (en) * 2012-03-30 2017-10-18 Applied Materials, Inc. Transparent body for use in a touch panel and its manufacturing method and apparatus
JP5885595B2 (ja) * 2012-06-12 2016-03-15 キヤノン株式会社 反射防止膜、および、それを有する光学素子、光学系、光学機器
ES2804299T3 (es) * 2012-08-01 2021-02-05 Saint Gobain Cristal compuesto con puesta en contacto eléctrico
US20140113120A1 (en) * 2012-10-19 2014-04-24 Ppg Industries Ohio, Inc. Anti-color banding topcoat for coated articles
KR101820219B1 (ko) * 2013-02-20 2018-01-18 쌩-고벵 글래스 프랑스 열 복사선 반사 코팅을 갖는 패널
FR3002534B1 (fr) * 2013-02-27 2018-04-13 Saint-Gobain Glass France Substrat revetu d'un empilement bas-emissif.
US9703011B2 (en) * 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9359261B2 (en) * 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) * 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
WO2015000534A1 (en) * 2013-07-05 2015-01-08 Essilor International (Compagnie Generale D'optique) Optical article comprising an antireflective coating with a very low reflection in the visible region
FR3012133B1 (fr) * 2013-10-17 2021-01-01 Saint Gobain Procede d'obtention d'un substrat revetu par un empilement comprenant une couche d'oxyde transparent conducteur
FR3019173B1 (fr) * 2014-03-28 2016-03-25 Saint Gobain Vitrage muni d'un empilement de couches minces pour la protection solaire
CN109336410B (zh) * 2014-06-11 2021-09-21 日本板硝子株式会社 多层玻璃单元以及多层玻璃单元用玻璃板
CN104310798B (zh) * 2014-10-10 2017-01-11 武汉理工大学 一种热致反射红外线镀膜玻璃的制备方法
US10604442B2 (en) * 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188547A (ja) * 1996-01-05 1997-07-22 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JPH1134216A (ja) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd 積層体および窓用ガラス積層体
JP2013533202A (ja) * 2010-07-28 2013-08-22 サン−ゴバン グラス フランス グレージングパネル
WO2013132176A2 (fr) * 2012-03-05 2013-09-12 Saint-Gobain Glass France Vitrage anticondensation
WO2015033067A1 (fr) * 2013-09-05 2015-03-12 Saint-Gobain Glass France Procede de fabrication d'un materiau comprenant un substrat muni d'une couche fonctionnelle a base d'oxyde d'etain et d'indium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296277A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546114A (zh) * 2017-04-26 2019-12-06 佳殿玻璃有限公司 包括具有邻近车辆或建筑物内部的低e涂层的不同玻璃基板的层压窗和/或其制备方法
CN110546114B (zh) * 2017-04-26 2022-06-21 佳殿玻璃有限公司 包括具有邻近车辆或建筑物内部的低e涂层的不同玻璃基板的层压窗和/或其制备方法
JP2020529385A (ja) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー 透明導電性酸化物で被覆された物品のシート抵抗を低下させる方法
WO2019123877A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 遮熱ガラス
WO2019203142A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用ドアガラス
JPWO2019203142A1 (ja) * 2018-04-19 2021-05-13 Agc株式会社 車両用ドアガラス

Also Published As

Publication number Publication date
US10576713B2 (en) 2020-03-03
EP3296277A1 (en) 2018-03-21
EP3296277B1 (en) 2021-01-13
EP3296277A4 (en) 2019-02-06
JPWO2016181740A1 (ja) 2018-03-01
US20180043658A1 (en) 2018-02-15
CN107531566A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2016181740A1 (ja) 車両用の断熱ガラスユニットおよびその製造方法
JP7303873B2 (ja) p-偏光放射を用いるヘッドアップディスプレイ(HUD)のための投影設備
JP7174847B2 (ja) p-偏光放射を用いるヘッドアップディスプレイ(HUD)のための投影設備
KR102464962B1 (ko) P-편광 광선 부분들을 갖는 헤드-업 디스플레이(hud)를 위한 프로젝션 어레인지먼트
US20220179208A1 (en) Projection assembly for a head-up display (hud) with p-polarised radiation
JP5666128B2 (ja) 窓ガラス
US8025957B2 (en) Vehicle transparency
EP2183102B1 (en) Vehicle transparency
US20080206533A1 (en) Laminated glass for vehicle window
US20200308045A1 (en) Article Having a High Visible Light Reflectance and a Neutral Color
JP7458401B2 (ja) 窒化チタンベースの2層を含む太陽光制御グレージング
CN111356949A (zh) 用于车辆的投影装置,包含侧玻璃
JP6760273B2 (ja) 車両用の断熱ガラスユニット
JP2009536607A (ja) 美的透明部品
US20180304589A1 (en) Vehicle glazing
US20240009967A1 (en) Projection assembly for a head-up display (hud) with p-polarized radiation
US20230176374A1 (en) Projection arrangement for a head-up display (hud) with p-polarised radiation
US20240083146A1 (en) Composite pane with an electrically conductive coating and at least one layer comprising selectively absorbing nanoparticles
WO2023092262A1 (zh) 抬头显示车窗及车辆
US20230415571A1 (en) Projection assembly for a head-up display (hud) with p-polarized radiation
KR20230070250A (ko) P-편광 복사선을 갖는 헤드업 디스플레이(hud)용 프로젝션 어셈블리
CN114667476A (zh) 具有p偏振辐射的用于平视显示器(HUD)的投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE