WO2019123877A1 - 遮熱ガラス - Google Patents

遮熱ガラス Download PDF

Info

Publication number
WO2019123877A1
WO2019123877A1 PCT/JP2018/041471 JP2018041471W WO2019123877A1 WO 2019123877 A1 WO2019123877 A1 WO 2019123877A1 JP 2018041471 W JP2018041471 W JP 2018041471W WO 2019123877 A1 WO2019123877 A1 WO 2019123877A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shield
layer
glass
laminated film
shield glass
Prior art date
Application number
PCT/JP2018/041471
Other languages
English (en)
French (fr)
Inventor
弘朋 河原
啓明 岩岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019560858A priority Critical patent/JP7156312B2/ja
Publication of WO2019123877A1 publication Critical patent/WO2019123877A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • the present invention relates to a heat shield glass.
  • the heat shield glass is also referred to as heat ray reflective glass, and is configured, for example, by providing a laminated film having heat ray reflective characteristics on the surface of a glass substrate (for example, Patent Document 1).
  • the heat rays from the outside are incident from the outside (first surface) of the glass substrate, and then pass through the inside of the glass substrate, and the lamination provided on the inside (second surface) of the glass substrate It is reflected by the film and emitted to the outside.
  • the heat rays pass through the inside of the glass substrate twice (one round trip). Therefore, a part of heat wire is absorbed by the glass substrate, and thereby the temperature of the glass substrate locally rises.
  • a temperature difference may occur in the glass substrate, and as a result, a problem of thermal cracking may occur.
  • the laminated film contains a metal nitride having high heat ray absorbability, the temperature difference is more likely to occur in the glass substrate than the laminated film containing the metal oxide, and the risk of thermal cracking increases.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a heat shielding glass which has good heat shielding properties and is less likely to cause thermal cracking.
  • the heat insulating glass is A glass substrate having a first surface; A laminated film disposed on the first surface; Have The glass substrate has an energy transmittance Te 0 of less than 70%,
  • the laminated film has a conductive layer and an outermost layer in order of proximity to the glass substrate,
  • the conductive layer comprises metal nitride,
  • the outermost layer is composed of an oxide containing Si and Zr,
  • the heat shield glass is provided, wherein the laminated film is disposed on the outer side of the heat shield glass.
  • FIG. 1 is a cross-sectional view schematically showing a heat insulating glass according to an embodiment of the present invention. It is sectional drawing which showed typically another heat-insulation glass by one Embodiment of this invention. It is sectional drawing which showed typically another heat shielding glass by one Embodiment of this invention.
  • the thickness of the glass substrate and the thickness of each layer constituting the laminated film are geometrical thicknesses. Further, “-” indicating a numerical range means that numerical values described before and after that are included as the lower limit value and the upper limit value.
  • thermal cracking tends to occur. There is a concern that.
  • the present inventors have diligently studied to address such problems. As a result, the inventors of the present invention have found that the problem of thermal cracking is improved by using the heat shielding glass in such a manner that the laminated film is on the outdoor side. This is because when the laminated film is outside the room, the heat rays incident on the heat insulating glass from outside are reflected by the laminated film before entering the glass substrate.
  • the heat shielding glass can not obtain a good heat shielding property, and the environmental resistance may be further reduced.
  • the inventors of the present invention have intensively promoted research and development and found a heat shield glass which has a heat shield characteristic comparable to conventional heat shield glass and which is more environmentally resistant.
  • the present invention has been achieved.
  • Heat shield glass A glass substrate having a first surface; A laminated film disposed on the first surface; Have The glass substrate has an energy transmittance Te 0 of less than 70%,
  • the laminated film has a conductive layer and an outermost layer in order of proximity to the glass substrate,
  • the conductive layer comprises metal nitride,
  • the outermost layer is composed of an oxide containing Si and Zr,
  • the heat shield glass is provided, wherein the laminated film is disposed on the outer side of the heat shield glass.
  • thermo barrier glass Although energy transmittance Te 0 laminated film comprising a glass substrate and heat-absorbing highly metal nitride of less than 70% is used, it is configured such laminated film is outdoor side Therefore, the risk of thermal cracking can be significantly reduced.
  • the laminated film has a conductive layer containing metal nitride and an outermost layer made of an oxide containing Si and Zr. According to the inventors of the present invention, it has been confirmed that such a laminated film exhibits a good shielding property against heat rays.
  • the outermost layer of the laminated film is made of an oxide containing Si and Zr. Our experiments show that such oxides have good environmental resistance. Furthermore, the heat shield glass has excellent heat resistance. Specifically, physical strengthening treatment such as air cooling reinforcement (for example, treatment for holding for 20 minutes in the atmosphere at 680 ° C.), curing treatment for laminated film (for example, treatment for holding for 20 minutes in the atmosphere of 500 ° C.), etc.
  • the thermal barrier glass can maintain good thermal barrier properties and durability even after heat treatment. Therefore, in the heat shield glass according to the embodiment of the present invention, the deterioration can be significantly suppressed even if the laminated film is disposed on the outdoor side.
  • Heat shield glass according to one embodiment of the present invention Hereinafter, a heat shield glass according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 schematically shows a cross section of a heat shield glass (hereinafter, referred to as “first heat shield glass”) according to an embodiment of the present invention.
  • the first heat shield glass 100 has a glass substrate 110 and a laminated film 120.
  • the glass substrate 110 has an energy transmittance Te 0 of less than 70%.
  • energy transmittance means energy transmittance measured in accordance with ISO 9050: 2003.
  • the glass substrate 110 has a first surface 112 and a second surface 114, and the laminated film 120 is disposed on the first surface 112 of the glass substrate 110.
  • the laminated film 120 has at least two layers of the conductive layer 130 and the outermost layer 150. Among these, the conductive layer 130 is disposed closer to the glass substrate 110, and the outermost layer 150 is disposed on the conductive layer 130.
  • the conductive layer 130 constituting the laminated film 120 is made of, for example, metal nitride such as chromium nitride (CrN).
  • the outermost layer 150 is made of an oxide containing silicon (Si) and zirconium (Zr).
  • the first heat shield glass 100 has a first side 102 and a second side 104, and the laminated film 120 is disposed on the first side 102.
  • the first heat shield glass 100 when the first heat shield glass 100 is applied as a window glass, the first side 102 corresponds to the outdoor side, and the second side 104 corresponds to the indoor side. Therefore, in the actual use mode, the laminated film 120 is arranged to be the outdoor side. On the other hand, the second surface 114 of the glass substrate 110 is disposed on the indoor side.
  • the laminated film 120 is disposed on the first side 102. Therefore, in the first heat shield glass 100, the risk of thermal cracking can be significantly reduced. Furthermore, in the first heat shield glass 100, the reflection color when viewed from the outdoor side can be easily adjusted by the laminated film.
  • the first heat shield glass 100 includes the laminated film 120 including the conductive layer 130 and the outermost layer 150 configured as described above.
  • a laminated film 120 exhibits good shielding properties against heat rays.
  • the outermost layer 150 exhibits good environmental resistance and heat resistance.
  • the first heat shield glass 100 is thermally cracked despite the use of a glass substrate 110 having a low energy transmittance Te 0 and a laminated film containing a metal nitride having high heat ray absorption. Can significantly reduce the risk of In addition, it is possible to easily adjust the reflection color when viewed from the outdoor side. Further, the first heat shield glass 100 can exhibit good heat shield characteristics and durability.
  • each component of heat shield glass As each component included in the first heat shield glass 100 will be described in more detail.
  • the glass substrate 110 has an energy transmittance Te 0 of less than 70%.
  • the energy transmittance Te 0 is preferably 60% or less, more preferably 50% or less.
  • the glass substrate 110 having such low energy transmittance Te 0 can be properly used.
  • the energy transmittance Te 0 is preferably 10% or more, and more preferably 20% or more.
  • Te 0 is a glass substrate of less than 70%, it is possible to widen the first adjustment range of the reflected color of the thermal barrier glass 100 when viewed from the outdoor side.
  • the thickness of the glass substrate 110 is preferably 0.5 to 12 mm.
  • the thickness is more preferably 1 mm or more, further preferably 2 mm or more.
  • the thickness is more preferably 10 mm or less, still more preferably 9 mm or less.
  • the glass substrate 110 may be colored.
  • the glass substrate 110 may or may not have been subjected to a strengthening treatment such as air cooling reinforcement.
  • the conductive layer 130 contains metal nitride, as described above.
  • the metal contained in the metal nitride may be, for example, at least one of chromium (Cr), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), and hafnium (Hf).
  • the metal contained in the metal nitride is preferably at least one of chromium, titanium and zirconium.
  • the conductive layer 130 is preferably made of, in particular, chromium nitride (CrN), titanium nitride (TiN), or zirconium nitride (ZrN).
  • CrN chromium nitride
  • TiN titanium nitride
  • ZrN zirconium nitride
  • the conductive layer 130 preferably has an extinction coefficient k of 0.5 or more at a wavelength of 1000 nm.
  • the extinction coefficient k is more preferably 1 or more, further preferably 2 or more.
  • the extinction coefficient k is preferably 10 or less, more preferably 8 or less.
  • the thickness of the conductive layer 130 is preferably in the range of 5 nm to 50 nm.
  • the thickness of the conductive layer 130 is 5 nm or more, the heat shielding properties of the first heat shielding glass 100 can be easily enhanced.
  • the thickness of the conductive layer 130 is 50 nm or less, the outdoor reflection color of the first heat shield glass 100 can be easily adjusted to a pale blue color.
  • the thickness is more preferably in the range of 5 nm to 30 nm, and still more preferably in the range of 5 nm to 25 nm.
  • the method for forming the conductive layer 130 is not particularly limited.
  • the conductive layer 130 can be formed, for example, by vacuum evaporation, ion plating, sputtering, chemical vapor deposition (CVD) (thermal CVD, plasma CVD, photo CVD), ion beam sputtering, or the like. It may be formed.
  • the outermost layer 150 is formed of an oxide containing Si and Zr as described above.
  • the content of ZrO 2 in the outermost layer 150 is preferably in the range of 10 mol% to 90 mol%.
  • the content of ZrO 2 is more preferably in the range of 20 mol% to 50 mol%, and still more preferably in the range of 25 mol% to 35 mol%.
  • the content of SiO 2 in the outermost layer 150 is preferably in the range of 10 mol% to 90 mol%.
  • the content of SiO 2 is more preferably in the range of 50 mol% to 80 mol%, and still more preferably in the range of 65 mol% to 75 mol%.
  • the content of carbon in the outermost layer 150 is preferably 1 at% or less.
  • the carbon content in the outermost layer 150 can be measured by XPS. Physical strengthening treatment such as air cooling reinforcement (for example, treatment for holding for 20 minutes in air atmosphere at 680 ° C.) or curing treatment of laminated film (for example, 500 ° C.) if the carbon content in the outermost layer 150 is 1 at% or less
  • the heat shielding glass can maintain good heat shielding properties and durability even after heat treatment such as holding in the air atmosphere for 20 minutes).
  • the carbon content in the outermost layer 150 is more preferably 0.5 at% or less, particularly preferably 0.3 at% or less.
  • the thickness of the outermost layer 150 is preferably in the range of 5 nm to 60 nm. When the thickness of the outermost layer 150 is in the range of 5 nm to 60 nm, the reflection color of the first heat shielding glass 100 can be easily adjusted.
  • the thickness of the outermost layer 150 is more preferably in the range of 8 nm to 40 nm, and still more preferably in the range of 10 nm to 30 nm.
  • the outermost layer 150 may have a refractive index of 1.55 to 2.20 for light with a wavelength of 632 nm.
  • the refractive index of the outermost layer 150 is preferably in the range of 1.60 to 1.90, and more preferably in the range of 1.65 to 1.80.
  • the method of forming the outermost layer 150 is not particularly limited.
  • the outermost layer 150 may be formed, for example, by vacuum evaporation, ion plating, sputtering, chemical vapor deposition (CVD) (thermal CVD, plasma CVD, and photo CVD), ion beam sputtering, or the like. It may be formed.
  • the first heat shield glass 100 may have the following characteristics: (1) Shielding coefficient SC ⁇ 0.4, (2) Selectivity Se 0.9 0.9, (3) Energy absorption rate Ae ⁇ 65%, (4) Outdoor reflectance Rv ⁇ 30%, (5) Color of the outside reflection color a * ⁇ 5, b * ⁇ 5, (6) Yellowness index YI ⁇ 5 of transmitted light.
  • g (%) is also called a solar heat gain rate
  • the indoor side with respect to the total solar heat incident from the outdoor side of the heat shield glass in the case of the first heat shield glass 100, the first side 102) (Sum of heat transmitted directly to the second side 104 in the case of the first heat shield glass 100) and heat absorbed inside the heat shield glass and then released to the indoor side Expressed as a percentage.
  • the shielding coefficient SC is an index indicating the heat shielding performance of the heat shielding glass, and the smaller the value, the higher the heat shielding performance of the heat shielding glass. In the first heat shielding glass 100, when the shielding coefficient SC is 0.4 or less, good heat shielding characteristics can be exhibited.
  • the heat shielding coefficient SC is more preferably 0.38 or less, and still more preferably 0.36 or less.
  • Tv (%) is the visible light transmittance (%) from the outdoor side of the heat shield glass.
  • the selectivity Se is more preferably more than 100%, still more preferably more than 110%.
  • Te is the energy transmittance of the heat shield glass from the outside
  • Re is the energy reflectance of the heat shield glass at the outside.
  • the energy absorption rate Ae when the energy absorption rate Ae is 65% or less, absorption of heat to the inside is suppressed, and heat cracking can be further suppressed.
  • the energy absorption rate Ae is more preferably 60% or less, still more preferably 55% or less, and particularly preferably 50% or less.
  • the outdoor reflectance Rv represents the reflectance of visible light reflected on the outdoor side of the heat shield glass.
  • the outdoor reflectance Rv is more preferably 28% or less, and still more preferably 26% or less.
  • a * and b * which are indices of the external reflection color, are obtained when the reflected light at the outdoor side of the heat shield glass is represented by CIE 1976 L * a * b * chromaticity coordinates, a * and a * It means the value of b * .
  • the light blue color is preferred as the outside reflection color of the heat shield glass, and the reddish to yellowish color tends to be avoided.
  • the first heat shielding glass 100 in which a * and b * are in the above-mentioned range it is possible to make the outdoor reflection color a light blue-based area.
  • the a * is more preferably 3 or less, and still more preferably 1 or less.
  • the b * is more preferably 3 or less, and still more preferably 1 or less.
  • the yellowness index YI is an index that digitizes the yellowness of visible light transmitted through the heat shield glass. When the outside is visually recognized from inside the room through the heat shield glass, a color tone in which much yellowishness is emphasized is not preferable. In the first heat shielding glass 100, when the yellowness index YI is less than 5, transmitted light with less yellowing can be obtained.
  • the yellowness index YI is more preferably 1 or less, further preferably -5 or less.
  • the yellowness index YI can be determined by converting the chromaticity of the transmitted light obtained in accordance with JIS Z7701: 1990 by a method in accordance with the ASTM E131 standard.
  • FIG. 2 schematically shows a cross section of another heat shield glass (hereinafter, referred to as “second heat shield glass”) according to an embodiment of the present invention.
  • the second heat shield glass 200 has a glass substrate 210 and a laminated film 220.
  • the glass substrate 210 has the same features as the glass substrate 110 in the first heat shield glass 100 described above. Therefore, it will not be described further here.
  • the laminated film 220 has the conductive layer 230, the outermost layer 250, and the color tone correction layer.
  • the laminated film 220 includes the first color tone correction layer 260, the conductive layer 230, the second color tone correction layer 265, and the outermost layer 250 from the side close to the glass substrate 210.
  • the first color tone correction layer 260 and the second color tone correction layer 265 are provided to adjust the reflected light and / or the transmitted light generated in the second heat shielding glass 200 to a desired color.
  • a bluish color is generally preferred for the outdoor reflection color of the window glass.
  • Such tint can be easily expressed by using the first tone correction layer 260 and the second tone correction layer 265.
  • the first color tone correction layer 260 is an insulating layer, and is made of, for example, a nitride containing silicon (SiN).
  • the first color tone correction layer 260 may be made of nitride containing silicon and aluminum (SiAlN).
  • the first color tone correction layer 260 may be made of a nitride containing silicon and zirconium (SiZrN).
  • the content of AlN is preferably in the range of 1 mol% to 20 mol%, more preferably in the range of 2 mol% to 18 mol%, and 2 mol% It is more preferable that the amount is -16 mol%.
  • the content of ZrN is preferably in the range of 1 mol% to 40 mol%, and more preferably in the range of 2 mol% to 35 mol%. More preferably, it is 2 mol% to 30 mol%.
  • the thickness of the first color tone correction layer 260 is preferably in the range of 5 nm to 100 nm, more preferably in the range of 5 nm to 80 nm, and still more preferably in the range of 5 nm to 60 nm.
  • the first color tone correction layer 260 and the second color tone correction layer 265 may be made of the same material or different materials.
  • the first color tone correction layer 260 and the second color tone correction layer 265 can be formed by, for example, a sputtering method.
  • the second heat shield glass 200 has a first side 202 and a second side 204, and the laminated film 220 is disposed on the first side 202.
  • the first side 202 corresponds to the outdoor side
  • the second side 204 corresponds to the indoor side.
  • the effects as described above can be obtained. That is, although the second heat shield glass 200 uses the glass substrate 210 having low energy transmittance Te 0 and the laminated film 220 including metal nitride having high heat ray absorption, the risk of thermal cracking is increased. It can be suppressed significantly. Further, in the second heat shield glass 200, it is possible to easily adjust the reflection color when viewed from the outdoor side. Furthermore, the second heat shield glass 200 can exhibit good heat shield characteristics and durability.
  • FIG. 3 schematically shows a cross section of still another heat shield glass (hereinafter, referred to as “third heat shield glass”) according to an embodiment of the present invention.
  • the third heat shield glass 300 has a glass substrate 310 and a laminated film 320.
  • the glass substrate 310 has the same features as the glass substrate 110 in the first heat shield glass 100 described above. Therefore, it will not be described further here.
  • the laminated film 320 has a first conductive layer 330, an outermost layer 350, a color tone correction layer, and a second conductive layer 370, unlike the laminated film 120 in the first heat shielding glass 100 described above.
  • the first color tone correction layer 360, the first conductive layer 330, the second color tone correction layer 365, the second conductive layer 370, and the third color tone correction are provided from the side close to the glass substrate 310. It has a layer 375 and an outermost layer 350.
  • the first color tone correction layer 360, the second color tone correction layer 365, and the third color tone correction layer 375 adjust the reflected light and / or the transmitted light generated in the third heat shielding glass 300 to a desired color. To be installed.
  • Each of the color tone correction layers 360, 365, 375 is an insulating layer.
  • the first color tone correction layer 360 is made of nitride containing silicon (SiN), nitride containing silicon and aluminum (SiAlN), or nitride containing silicon and zirconium (SiZrN), etc. Also good.
  • the thickness of the first color tone correction layer 360 is preferably in the range of 5 nm to 100 nm, more preferably in the range of 5 nm to 80 nm, and still more preferably in the range of 5 nm to 60 nm.
  • Each color tone correction layer 360, 365, 375 may be composed of the same material, or may be composed of mutually different materials.
  • the second conductive layer 370 contains metal nitride.
  • the metal contained in the metal nitride may be, for example, at least one of chromium (Cr), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), and hafnium (Hf).
  • the metal contained in the metal nitride is preferably at least one of chromium, titanium and zirconium.
  • the second conductive layer 370 is preferably made of, in particular, chromium nitride (CrN), titanium nitride (TiN), or zirconium nitride (ZrN).
  • the second conductive layer 370 preferably has an extinction coefficient k at a wavelength of 1000 nm of 0.5 or more, more preferably 1 or more, and still more preferably 2 or more.
  • the extinction coefficient k at a wavelength of 1000 nm is 0.5 or more, the heat ray absorptivity is enhanced, so that excellent heat shielding properties can be obtained.
  • the extinction coefficient k is preferably 10 or less, more preferably 8 or less.
  • the thickness of the second conductive layer 370 is preferably in the range of 5 nm to 50 nm. When the thickness of the second conductive layer 370 is 5 nm or more, the heat shielding properties of the third heat shielding glass 300 can be easily enhanced. When the thickness of the second conductive layer 370 is 50 nm or less, the outdoor reflection color of the third heat shielding glass 300 can be easily adjusted to a light blue color.
  • the thickness is more preferably in the range of 5 nm to 30 nm, and still more preferably in the range of 5 nm to 25 nm.
  • the method for forming the second conductive layer 370 is not particularly limited.
  • the second conductive layer 370 may be, for example, a vacuum evaporation method, an ion plating method, a sputtering method, a chemical vapor deposition (CVD) method (thermal CVD method, plasma CVD method, and photo CVD method), and ion beam sputtering. It may be formed by a method or the like.
  • the second conductive layer 370 may be made of the same material as the first conductive layer 330 or may be made of a different material. In addition, the second conductive layer 370 may have the same thickness as the first conductive layer 330 or a different thickness.
  • the third heat shield glass 300 has a first side 302 and a second side 304, and the laminated film 320 is disposed on the first side 302.
  • the first side 302 corresponds to the outdoor side
  • the second side 304 corresponds to the indoor side.
  • the effects as described above can be obtained. That is, in the third heat shield glass 300, the risk of thermal cracking despite the use of the glass substrate 310 with low energy transmittance Te 0 and the laminated film 320 containing metal nitride with high heat ray absorbability Can be significantly suppressed. Further, in the third heat shield glass 300, it is possible to easily adjust the reflection color when viewed from the outdoor side. Further, the third heat shield glass 300 can exhibit good heat shield characteristics and durability.
  • the conductive layer 130 may be formed of a multilayer film.
  • the laminated film 320 is configured of six layers.
  • the laminated film may be composed of more layers. Various other changes are possible.
  • Examples 1 to 6 are Examples, and Examples 11 to 17 are Comparative Examples.
  • Example 1 The heat shielding glass was produced by the following method.
  • a green colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) of 25 mm long ⁇ 50 mm wide ⁇ 6 mm thick was prepared.
  • the energy transmittance Te 0 of this glass substrate is 41%.
  • a spectrophotometer (U4100: manufactured by Hitachi, Ltd.) was used for the measurement of the energy transmittance Te 0 of the glass substrate, and the wavelength of light was in the range of 300 nm to 2500 nm. The measurement was performed in accordance with ISO 9050: 2003.
  • a laminated film consisting of a total of four layers of a first color tone correction layer, a conductive layer, a second color tone correction layer, and an outermost layer on one surface (first surface) of this glass substrate by sputtering.
  • the laminated film has the following layer configuration from the side close to the glass substrate: First color tone correction layer: 67 mol% SiN-33 mol% ZrN layer, 14 nm thick Conductive layer: CrN layer with a thickness of 7.6 nm, Second color tone correction layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 2.5 nm Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 15 nm.
  • the sputtering pressure was 0.3 Pa.
  • the sputtering pressure was 0.2 Pa.
  • the sputtering pressure was 0.3 Pa.
  • the sputtering pressure was 0.3 Pa.
  • heat shield glass according to example 1 a heat shield glass (hereinafter, referred to as “heat shield glass according to example 1”) was manufactured.
  • the laminated film is an outdoor side.
  • Example 2 In the same manner as in Example 1, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 2”) was produced.
  • the laminated film has the following configuration in order from the glass substrate: First color tone correction layer: 67 mol% SiN-33 mol% ZrN layer with a thickness of 22 nm Conductive layer: TiN layer 22 nm thick, Second color tone correction layer: 90 mol% SiN-10 mol% AlN layer of 5 nm thickness Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 16.5 nm.
  • the sputtering pressure was 0.2 Pa.
  • the laminated film is on the outdoor side.
  • Example 3 In the same manner as in Example 1, a heat shielding glass (hereinafter, referred to as “heat shielding glass according to Example 3”) was produced.
  • the laminated film has the following configuration in order from the glass substrate: First color tone correction layer: 67 mol% SiN-33 mol% ZrN layer of 28.5 nm thickness Conductive layer: ZrN layer with a thickness of 15 nm, Second color tone correction layer: 90 mol% SiN-10 mol% AlN layer of 5 nm thickness Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer having a thickness of 19.2 nm.
  • the sputtering pressure was 0.2 Pa.
  • the laminated film is on the outdoor side.
  • Example 4 In the same manner as in Example 1, a heat shielding glass (hereinafter, referred to as “heat shielding glass according to Example 4”) was produced.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 2 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 67%.
  • the laminated film has the following configuration in order from the glass substrate: First color tone correction layer: 67 mol% SiN-33 mol% ZrN layer with a thickness of 24 nm Conductive layer: TiN layer 24 nm thick, Second color tone correction layer: 90 mol% SiN-10 mol% AlN layer of 5 nm thickness Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 12.5 nm.
  • the laminated film is the outdoor side.
  • Example 5 In the same manner as in Example 1, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 5”) was produced.
  • a blue colored glass substrate (DHFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 44.5%.
  • the laminated film has the following configuration in order from the glass substrate: First color tone correction layer: 67 mol% SiN-33 mol% ZrN layer with a thickness of 22 nm Conductive layer: TiN layer 22 nm thick, Second color tone correction layer: 90 mol% SiN-10 mol% AlN layer of 5 nm thickness Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 16.5 nm.
  • the laminated film is on the outdoor side.
  • Example 6 In the same manner as in Example 1, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 6”) was produced.
  • the laminated film has the following six-layer structure in the order from the glass substrate: First color tone correction layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 56 nm, First conductive layer: TiN layer of 7 nm thickness, Second color tone correction layer: 67 mol% SiN-33 mol% ZrN layer with a thickness of 70 nm Second conductive layer: TiN layer 16 nm in thickness, Third color tone correction layer: 90 mol% SiN-10 mol% AlN layer of 5 nm thickness Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 15 nm.
  • the laminated film is the outdoor side.
  • the content of carbon in the outermost layer was 0.5 at%.
  • the carbon content of the outermost layer was measured using XPS (PHI 5000 Versa Probe II, manufactured by ULVAC-PHI, Inc.).
  • the heat shielding glass was produced by the following method.
  • a transparent glass substrate (Clear: manufactured by Asahi Glass Co., Ltd.) of 25 mm long ⁇ 50 mm wide ⁇ 6 mm thick was prepared.
  • the energy transmittance Te 0 of this glass substrate is 82%.
  • a laminated film consisting of a total of three layers of a first layer, a second layer, and an outermost layer was formed on one surface (first surface) of the glass substrate by sputtering.
  • the laminated film has the following layer configuration from the side close to the glass substrate: First layer: 67 mol% SiN-33 mol% ZrN layer with a thickness of 20 nm Second layer: 10 nm thick CrN layer, Outermost layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 20 nm.
  • heat shield glass (hereinafter referred to as "heat shield glass according to Example 11") was manufactured.
  • the laminated film is on the outdoor side.
  • Example 12 In the same manner as in Example 11, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 12”) was produced.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 41%.
  • the laminated film has the following configuration in order from the glass substrate: First layer: 67 mol% SiN-33 mol% ZrN layer, 14 nm thick Second layer: 7.6 nm thick CrN layer, Outermost layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 14 nm.
  • the laminated film is on the outdoor side.
  • heat shield glass according to example 13 A heat shield glass (hereinafter, referred to as “heat shield glass according to example 13”) was produced in the same manner as in example 11.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 41%.
  • the laminated film has the following configuration in order from the glass substrate: First layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 10 nm, Second layer: 15 nm thick CrN layer, Outermost layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 20 nm.
  • the laminated film is on the indoor side.
  • Example 14 In the same manner as in Example 11, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 14”) was produced.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 1.2 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 76%.
  • the laminated film has the following four-layer structure in the order from the glass substrate: First layer: 67 mol% SiN-33 mol% ZrN layer, 24 nm thick Second layer: TiN layer 24 nm thick, Third layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 5 nm, Outermost layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer with a thickness of 12.5 nm.
  • the laminated film is the outdoor side.
  • Example 15 In the same manner as in Example 11, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 15”) was produced.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 41%.
  • the laminated film has the following four-layer structure in the order from the glass substrate: First layer: 67 mol% SiN-33 mol% ZrN layer, 14 nm thick Second layer: a 7.6 nm thick TiN layer, Third layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 2.5 nm, Outermost layer: SiO 2 layer with a thickness of 16 nm.
  • the laminated film is the outdoor side.
  • Example 16 In the same manner as in Example 11, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 16”) was produced.
  • a green-colored glass substrate (GNFL: manufactured by Asahi Glass Co., Ltd.) having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 41%.
  • the laminated film has the following four-layer structure in the order from the glass substrate: First layer: 67 mol% SiN-33 mol% ZrN layer, 24 nm thick Second layer: TiN layer 24 nm thick, Third layer: 90 mol% SiN-10 mol% AlN layer with a thickness of 5 nm, Outermost layer: 9 nm thick TiO 2 layer.
  • the laminated film is the outdoor side.
  • Example 17 In the same manner as in Example 11, a heat shield glass (hereinafter, referred to as “heat shield glass according to example 17”) was produced.
  • a glass substrate (Evergreen) colored in green having a thickness of 6 mm was used as the glass substrate.
  • the energy transmittance Te 0 of this glass substrate is 34.5%.
  • the laminated film has the following four-layer structure in the order from the glass substrate: First layer: 27 nm thick SnO 2 layer, Second layer: 17 nm thick SiO 2 layer, Third layer: 210 nm thick fluorine (F) doped SnO 2 layer, Outermost layer: 30 nm thick TiO 2 layer.
  • the laminated film was formed sequentially by the on-line CVD method.
  • on-line means a method of forming a film on the surface of glass during the process of manufacturing glass. More specifically, in the production of glass, the glass ribbon is moved on the molten tin bath and then gradually cooled to continuously produce the glass. In ”)", a film is formed on the upper surface of the glass ribbon. That is, in the “on-line (film-forming method)”, the glass manufacturing process and the film-forming process are continuously performed.
  • the laminated film is on the outdoor side.
  • Table 1 below summarizes the schematic configuration of the heat shield glass according to each example.
  • the shielding coefficient SC and the selectivity Se were respectively calculated from the above-mentioned equations (1) and (2).
  • the energy absorption rate Ae was calculated from the above-mentioned (3) Formula.
  • the measurement was performed in the direction from the laminated film side toward the exposed surface (second surface) of the glass substrate.
  • the measurement was performed in the direction from the side of the exposed surface of the glass substrate to the side of the laminated film.
  • a chromaticity meter was used to evaluate the chromaticity of the outdoor reflection color.
  • the reflected light from the outdoor side of the heat shield glass was displayed in CIE 1976 L * a * b * chromaticity coordinates, and values of a * and b * were respectively calculated.
  • the yellowness index YI was calculated by converting the chromaticity of the visible light transmitted from the indoor side to the outdoor side of the heat shield glass according to the method in accordance with the ASTM E131 standard.
  • Durability was evaluated using each heat shielding glass.
  • the durability of the heat shielding glass was evaluated by the following method.
  • the transmittance of the heat shield glass (hereinafter referred to as “initial transmittance T initial ”) in the direction from the outdoor side to the indoor side is measured in each visible light wavelength range.
  • the heat shield glass is immersed in an aqueous solution of NaOH having a concentration of 0.1 kmol / m 3 heated to 90 ° C.
  • the immersion time is 2 hours.
  • the heat shield glass is taken out, washed and dried.
  • the transmittance (hereinafter, referred to as “post-treatment transmittance T treated ”) is measured again by the above-mentioned method.
  • the shielding coefficient SC is 0.4 or less, the selectivity Se is 0.9 or more, and good heat shielding performance and heat insulating performance are exhibited. Recognize. Further, in the heat shield glass according to Examples 1 to 6, the energy absorption rate Ae is 65% or less, and the risk of thermal cracking can be significantly reduced.
  • the shielding coefficient SC exceeds 0.4 and does not exhibit very good heat shielding performance.
  • the thermal insulation glass which concerns on Example 11 and Example 13 Selectivity Se becomes less than 0.9, and it turns out that it does not show very favorable heat insulation performance.
  • the heat shielding glass according to Example 13 has a high energy absorption rate Ae and has a risk of thermal cracking.
  • the outdoor reflectance Rv is suppressed to 30% or less, whichever is lower.
  • the a * and b * of the reflected light is less than 5. Therefore, in the heat shield glass according to Example 1 to Example 6, it is expected that a good color tone close to blue can be obtained for the reflected light. Furthermore, in the heat insulating glass according to Examples 1 to 6, the yellowness index YI is less than 5 in all cases. Therefore, in the heat shield glass according to Examples 1 to 6, it can be significantly suppressed that the transmitted light looks yellowish.
  • the heat shielding glass according to Example 1 to Example 6 can obtain good durability.
  • the heat shield glasses according to Examples 1 to 6 have good heat shield properties and durability, and the risk of thermal cracking is significantly reduced.
  • first heat shield glass 102 first side 104 second side 110 glass substrate 112 first surface 114 second surface 120 laminated film 130 conductive layer 150 outermost layer 200 second heat shield glass 202 first Side 204 Second side 210 Glass substrate 212 First surface 214 Second surface 220 Laminated film 230 Conductive layer 250 Outermost layer 260 First color tone correction layer 265 Second color tone correction layer 300 Third heat shielding glass 302 First side 304 Second side 310 Glass substrate 312 First surface 314 Second surface 320 Laminated film 330 First conductive layer 350 Outermost layer 360 First color tone correction layer 365 Second color tone correction layer 370 Second color tone correction layer 370 Second conductive layer 375 third color tone correction layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

遮熱ガラスであって、第1の表面を有するガラス基板と、前記第1の表面に設置された積層膜と、を有し、前記ガラス基板は、エネルギー透過率Teが70%未満であり、前記積層膜は、前記ガラス基板に近い順に、導電層および最外層を有し、前記導電層は、金属窒化物を含み、前記最外層は、SiおよびZrを含む酸化物で構成され、前記積層膜は、当該遮熱ガラスの室外側に設置されていることを特徴とする遮熱ガラス。

Description

遮熱ガラス
 本発明は、遮熱ガラスに関する。
 近年の省エネルギー意識の高まりから、建物の窓ガラス等において、遮熱ガラスを適用する例が増えている。
 遮熱ガラスは、熱線反射ガラスとも呼ばれ、例えば、ガラス基板の表面に、熱線反射特性を有する積層膜を設置することにより構成される(例えば特許文献1)。
 そのような遮熱ガラスを、積層膜の側が室内側になるようにして窓ガラスに適用した場合、室外から遮熱ガラスに照射される熱線は、積層膜で反射される。このため、熱線が室内に入射されることが抑制され、窓ガラスの遮熱特性を高めることができる。
国際公開第2016/060082号
 従来の遮熱ガラスでは、室外からの熱線は、ガラス基板の外側(第1の表面)から入射した後、ガラス基板内を透過し、ガラス基板の内側(第2の表面)に設けられた積層膜で反射されて、室外に放射される。
 この場合、熱線は、ガラス基板の内部を2回(一往復分)、通過することになる。そのため、ガラス基板によって熱線の一部が吸収され、これにより、ガラス基板の温度が局部的に上昇する。このようなガラス基板による熱線の吸収傾向が高まると、ガラス基板に温度差が生じ、その結果、熱割れが生じるという問題が生じ得る。一方、積層膜が熱線吸収性の高い金属窒化物を含む場合も、金属酸化物を含む積層膜と比べ、ガラス基板に温度差が生じやすくなり、熱割れが生じるというリスクが高まる。
 特に、今後は、よりいっそうの遮熱特性を実現するため、遮熱ガラスにおいて、エネルギー透過率Teの低いガラス基板と熱線吸収性の高い金属窒化物を含む積層膜とを組み合わせる傾向が高まると予想される。しかしながら、そのような遮熱ガラスを使用した場合、より多くの熱がガラス基板に吸収されるようになり、その結果、熱割れのリスクがより顕著になる可能性がある。
 本発明は、このような背景に鑑みなされたものであり、本発明では、良好な遮熱特性を有する上、熱割れが生じ難い遮熱ガラスを提供することを目的とする。
 本発明では、遮熱ガラスであって、
 第1の表面を有するガラス基板と、
 前記第1の表面に設置された積層膜と、
 を有し、
 前記ガラス基板は、エネルギー透過率Teが70%未満であり、
 前記積層膜は、前記ガラス基板に近い順に、導電層および最外層を有し、
 前記導電層は、金属窒化物を含み、
 前記最外層は、SiおよびZrを含む酸化物で構成され、
 前記積層膜は、当該遮熱ガラスの室外側に設置されていることを特徴とする遮熱ガラスが提供される。
 本発明では、良好な遮熱特性を有する上、熱割れが生じ難い遮熱ガラスを提供することができる。
本発明の一実施形態による遮熱ガラスを模式的に示した断面図である。 本発明の一実施形態による別の遮熱ガラスを模式的に示した断面図である。 本発明の一実施形態によるさらに別の遮熱ガラスを模式的に示した断面図である。
 本発明において、ガラス基板の厚さ及び積層膜を構成する各層の厚さは、幾何学的厚さである。また、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 以下、本発明の一実施形態について、より詳しく説明する。
 前述のように、従来の遮熱ガラスでは、特に、エネルギー透過率Teの低いガラス基板と熱線吸収性の高い金属窒化物を含む積層膜とを組み合わせて使用した場合、熱割れが生じやすくなるという懸念がある。
 本願発明者らは、このような問題に対処するため、鋭意検討を行ってきた。その結果、本願発明者らは、積層膜が室外側となるような態様で、遮熱ガラスを使用することにより、熱割れの問題が改善されることを見出した。これは、積層膜を室外側とした場合、室外から遮熱ガラスに入射される熱線は、ガラス基板に進入する前に、積層膜によって反射されるからである。
 しかしながら、従来の遮熱ガラスにおいて、単に積層膜を室外側とする対応だけでは、実用的な遮熱ガラスを提供することは難しい。そのような使用態様では、遮熱ガラスに良好な遮熱特性が得られず、さらに耐環境性が低下する可能性があるからである。
 このような考察の下、本願発明者らは、鋭意研究開発を推し進め、従来の遮熱ガラスに比べて遜色のない遮熱特性を有し、さらに耐環境性の良好な遮熱ガラスを見出し、本願発明に至った。
 すなわち、本発明の一実施形態では、
 遮熱ガラスであって、
 第1の表面を有するガラス基板と、
 前記第1の表面に設置された積層膜と、
 を有し、
 前記ガラス基板は、エネルギー透過率Teが70%未満であり、
 前記積層膜は、前記ガラス基板に近い順に、導電層および最外層を有し、
 前記導電層は、金属窒化物を含み、
 前記最外層は、SiおよびZrを含む酸化物で構成され、
 前記積層膜は、当該遮熱ガラスの室外側に設置されていることを特徴とする遮熱ガラスが提供される。
 このような遮熱ガラスでは、エネルギー透過率Teが70%未満のガラス基板および熱線吸収性の高い金属窒化物を含む積層膜が用いられるものの、積層膜が室外側となるように構成されているため、熱割れのリスクを有意に軽減することができる。
 また、本発明の一実施形態による遮熱ガラスでは、積層膜は、金属窒化物を含む導電層と、SiおよびZrを含む酸化物で構成された最外層とを有する。本願発明者らによれば、このような積層膜は、熱線に対して良好な遮蔽特性を発揮することが確認されている。
 さらに、本発明の一実施形態による遮熱ガラスでは、積層膜の最外層がSiおよびZrを含む酸化物で構成されている。本願発明者らの実験によれば、このような酸化物は、良好な耐環境性を有することが示されている。さらに、遮熱ガラスは優れた耐熱性を有する。具体的には、風冷強化などの物理強化処理(例えば、680℃の大気雰囲気に20分間保持する処理)や積層膜の硬化処理(例えば、500℃の大気雰囲気に20分間保持する処理)などの熱処理を行った後でも、遮熱ガラスが、良好な遮熱特性および耐久性を維持できる。従って、本発明の一実施形態による遮熱ガラスでは、積層膜を室外側に設置しても、劣化を有意に抑制することができる。
 このような特徴により、本発明の一実施形態では、比較的熱線を吸収し易いガラス基板および積層膜を採用しているにも関わらず、良好な遮熱特性および耐久性を有する上、熱割れが生じ難い遮熱ガラスを提供することができる。
 (本発明の一実施形態による遮熱ガラス)
 以下、図面を参照して、本発明の一実施形態による遮熱ガラスについて説明する。
 図1には、本発明の一実施形態による遮熱ガラス(以下、「第1の遮熱ガラス」と称する)の断面を概略的に示す。
 図1に示すように、第1の遮熱ガラス100は、ガラス基板110と、積層膜120とを有する。
 ガラス基板110は、70%未満のエネルギー透過率Teを有する。ここで、エネルギー透過率は、ISO9050:2003に準拠して測定されるエネルギー透過率を意味する。
 ガラス基板110は、第1の表面112および第2の表面114を有し、積層膜120は、ガラス基板110の第1の表面112に設置される。
 積層膜120は、導電層130および最外層150の少なくとも2層を有する。このうち、導電層130は、ガラス基板110からより近い位置に設置され、最外層150は、導電層130の上に設置される。
 積層膜120を構成する導電層130は、例えば窒化クロム(CrN)のような、金属窒化物で構成される。また、最外層150は、ケイ素(Si)およびジルコニウム(Zr)を含む酸化物で構成される。
 第1の遮熱ガラス100は、第1の側102および第2の側104を有し、積層膜120は、第1の側102に設置される。
 ここで、第1の遮熱ガラス100が窓ガラスとして適用された場合、第1の側102は、室外側に対応し、第2の側104は、室内側に対応する。従って、実際の使用態様では、積層膜120は、室外側となるように配置される。一方、ガラス基板110の第2の表面114は、室内側になるように配置される。
 このような構成の第1の遮熱ガラス100では、積層膜120が第1の側102に配置されている。このため、第1の遮熱ガラス100では、熱割れのリスクを有意に軽減することができる。さらに、第1の遮熱ガラス100において、室外側から視認したときの反射色を、積層膜により容易に調整することができる。
 また、第1の遮熱ガラス100は、前述のような構成の導電層130および最外層150を有する積層膜120を備える。このような積層膜120は、熱線に対して良好な遮蔽特性を示す。また、最外層150は、良好な耐環境性および耐熱性を示す。
 このような特徴により、第1の遮熱ガラス100では、エネルギー透過率Teの低いガラス基板110および熱線吸収性の高い金属窒化物を含む積層膜が使用されているにも関わらず、熱割れのリスクを有意に抑制することができる。また、室外側から視認したときの反射色を容易に調整することができる。さらに、第1の遮熱ガラス100では、良好な遮熱特性および耐久性を発揮することができる。
 (本発明の一実施形態による遮熱ガラスの各構成部材)
 ここで、第1の遮熱ガラス100に含まれる各構成部材について、より詳しく説明する。
 (ガラス基板110)
 前述のように、ガラス基板110は、70%未満のエネルギー透過率Teを有する。エネルギー透過率Teは、60%以下であることが好ましく、50%以下であることがより好ましい。第1の遮熱ガラス100では、熱割れのリスクが軽減されるため、このような低いエネルギー透過率Teを有するガラス基板110でも、適正に使用することができる。エネルギー透過率Teは、10%以上であることが好ましく、20%以上であることがより好ましい。
 また、Teが70%未満のガラス基板を用いることで、室外側から視認したときの第1の遮熱ガラス100の反射色の調整幅を広げることができる。
 ガラス基板110の厚さは、0.5~12mmであることが好ましい。厚さは、1mm以上であることがより好ましく、2mm以上であることがさらに好ましい。厚さは、10mm以下であることがより好ましく、9mm以下であることがさらに好ましい。
 ガラス基板110は、着色されていても良い。
 また、ガラス基板110は、風冷強化などの強化処理が実施されていても、されていなくても良い。
 (導電層130)
 導電層130は、前述のように、金属窒化物を含む。金属窒化物に含まれる金属は、例えば、クロム(Cr)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、およびハフニウム(Hf)の少なくとも一つであっても良い。金属窒化物に含まれる金属は、クロム、チタンおよびジルコニウムの少なくとも一つであることが好ましい。
 導電層130は、特に、窒化クロム(CrN)、窒化チタン(TiN)、または窒化ジルコニウム(ZrN)で構成されることが好ましい。これらの材料で導電層130を構成した場合、第1の遮熱ガラス100の遮熱特性を容易に高めることができる。
 導電層130は、波長1000nmにおける消衰係数kが0.5以上であることが好ましい。波長1000nmにおける導電層130の消衰係数kが0.5以上であると、熱線吸収性が高まるため、優れた遮熱特性を有することができる。消衰係数kは、1以上であることがより好ましく、2以上であることがさらに好ましい。消衰係数kは、10以下であることが好ましく、8以下であることがより好ましい。導電層130の消衰係数kが10以下であると、熱線が過度に吸収されないため、熱割れのリスクを軽減できる。第1の遮熱ガラス100では、熱割れのリスクが軽減されるため、このような熱線吸収性の高い積層膜が設置されたガラス基板でも、適正に使用することができる。
 導電層130の厚さは、5nm~50nmの範囲であることが好ましい。導電層130の厚さが5nm以上であると、第1の遮熱ガラス100の遮熱特性を容易に高めることができる。導電層130の厚さが50nm以下であると、第1の遮熱ガラス100の室外反射色を薄い青色系に容易に調整できる。厚さは、5nm~30nmの範囲であることがより好ましく、5nm~25nmの範囲であることがさらに好ましい。
 導電層130の形成方法は、特に限られない。導電層130は、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相成膜(CVD)法(熱CVD法、プラズマCVD法、および光CVD法)、およびイオンビームスパッタリング法などで形成されても良い。
 (最外層150)
 最外層150は、前述のように、SiおよびZrを含む酸化物で形成される。
 最外層150中のZrOの含有量は、10mol%~90mol%の範囲であることが好ましい。ZrOの含有量は、20mol%~50mol%の範囲がより好ましく、25mol%~35mol%の範囲がさらに好ましい。
 一方、最外層150中のSiOの含有量は、10mol%~90mol%の範囲であることが好ましい。SiOの含有量は、50mol%~80mol%の範囲がより好ましく、65mol%~75mol%の範囲がさらに好ましい。
 最外層150中の炭素の含有量は、1at%以下であることが好ましい。最外層150中の炭素含有量は、XPSにより測定できる。最外層150中の炭素含有量が1at%以下であると、風冷強化などの物理強化処理(例えば、680℃の大気雰囲気に20分間保持する処理)や積層膜の硬化処理(例えば、500℃の大気雰囲気に20分間保持する処理)などの熱処理を行った後でも、遮熱ガラスが、良好な遮熱特性および耐久性を維持できる。最外層150中の炭素含有量は、0.5at%以下であることがより好ましく、0.3at%以下であることが特に好ましい。
 最外層150の厚さは、5nm~60nmの範囲であることが好ましい。最外層150の厚さが5nm~60nmの範囲であると、第1の遮熱ガラス100の反射色を調整しやすくなる。最外層150の厚さは、8nm~40nmの範囲であることがより好ましく、10nm~30nmの範囲であることがさらに好ましい。
 最外層150は、波長632nmの光に対する屈折率が、1.55~2.20の範囲であっても良い。最外層150の屈折率が1.55~2.20の範囲であると、第1の遮熱ガラス100の反射色を調整しやすくなる。最外層150の屈折率は、1.60~1.90の範囲であることが好ましく、1.65~1.80の範囲であることがより好ましい。
 最外層150の形成方法は、特に限られない。最外層150は、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相成膜(CVD)法(熱CVD法、プラズマCVD法、および光CVD法)、およびイオンビームスパッタリング法などで形成されても良い。
 (第1の遮熱ガラス100の特性)
 第1の遮熱ガラス100は、以下の特性を有しても良い:
  (1)遮蔽係数SC≦0.4、
  (2)セレクティビティSe≧0.9、
  (3)エネルギー吸収率Ae≦65%、
  (4)室外反射率Rv≦30%、
  (5)室外反射色の色味a<5、b<5、
  (6)透過光のイエローネスインデックスYI<5。
 このうち、遮蔽係数SCは、ISO9050:2003に準拠して、以下の(1)式から求めることができる:
 
   SC=(g/100)/0.88   (1)式
 
ここで、g(%)は、日射熱取得率とも呼ばれ、遮熱ガラスの室外側(第1の遮熱ガラス100の場合、第1の側102)から入射される全太陽熱に対する、室内側(第1の遮熱ガラス100の場合、第2の側104)まで直接透過される熱(透過熱)と、遮熱ガラスの内部で吸収され、その後室内側に放出される熱との総和の割合で表される。
 遮蔽係数SCは、遮熱ガラスの遮熱性能を表す一指標であり、この値が小さいほど、遮熱ガラスの遮熱性能は高いと言える。第1の遮熱ガラス100において、遮蔽係数SCが0.4以下の場合、良好な遮熱特性を発揮することができる。遮熱係数SCは、0.38以下であることがより好ましく、0.36以下であることがさらに好ましい。
 一方、セレクティビティSeは、断熱性に関する指標であり、以下の(2)式で表される:
 
   Se=Tv/g   (2)式
 
ここで、Tv(%)は、遮熱ガラスの室外側からの可視光透過率(%)である。
 遮熱ガラスにおいて、可視光透過率Tv(%)が高く、日射熱取得率g(%)が低いほど、すなわちセレクティビティSeが大きいほど、その遮熱ガラスは、断熱性が高いと言える。
 従って、第1の遮熱ガラス100において、セレクティビティSeが90%を超える場合、良好な断熱性を発揮することができる。セレクティビティSeは、100%超であることがより好ましく、110%超であることがさらに好ましい。
 また、エネルギー吸収率Aeは、遮熱ガラスにおける熱線の吸収率に関する指標であり、以下の(3)式で表される:
 
   Ae=100(%)-Te(%)-Re(%)   (3)式
 
ここで、Teは、遮熱ガラスの室外側からのエネルギー透過率であり、Reは、遮熱ガラスの室外側でのエネルギー反射率である。
 第1の遮熱ガラス100において、エネルギー吸収率Aeが65%以下の場合、内部への熱の吸収が抑制され、熱割れをより抑制することができる。エネルギー吸収率Aeは、60%以下であることがより好ましく、55%以下であることがさらに好ましく、50%以下であることが特に好ましい。
 また、室外反射率Rvは、遮熱ガラスの室外側で反射される可視光の反射率を表す。第1の遮熱ガラス100において、室外反射率Rvが30%以下の場合、反射光による眩しさを有意に抑制することができる。室外反射率Rvは、28%以下であることがより好ましく、26%以下であることがさらに好ましい。
 また、室外反射色の色味の指標であるaおよびbは、遮熱ガラスの室外側における反射光を、CIE1976L色度座標で表した際に得られる、aおよびbの値を意味する。
 一般に、美的観点から、遮熱ガラスの室外反射色としては、薄い青色系が好まれ、赤色系~黄色系は避けられる傾向にある。aおよびbが前述の範囲にある第1の遮熱ガラス100では、室外反射色を薄い青色系の領域にすることができる。aは、3以下であることがより好ましく、1以下であることがさらに好ましい。bは、3以下であることがより好ましく、1以下であることがさらに好ましい。
 また、イエローネスインデックスYIは、遮熱ガラスを透過した可視光の黄色みを数値化した指標である。室内から遮熱ガラスを介して室外を視認した際に、余り黄色みが強調されるような色調は、好ましくない。第1の遮熱ガラス100において、イエローネスインデックスYIが5未満の場合、黄色みの少ない透過光を得ることができる。イエローネスインデックスYIは、1以下であることがより好ましく、-5以下であることがさらに好ましい。
 なお、イエローネスインデックスYIは、JIS Z7701:1990に準拠して得られる透過光の色度を、ASTM E131規格に準拠した方法で変換することにより、求めることができる。
 なお、図1に示した遮熱ガラスの構成では、前記(1)~(6)のうち、1または2以上の特性を発揮することが難しい場合がある。しかしながら、以降に示すような遮熱ガラスの構成では、前記(1)~(6)の特性を、より容易に発現させることができる。
 (本発明の一実施形態による別の遮熱ガラス)
 次に、図2を参照して、本発明の一実施形態による別の遮熱ガラスについて説明する。
 図2には、本発明の一実施形態による別の遮熱ガラス(以下、「第2の遮熱ガラス」と称する)の断面を概略的に示す。
 図2に示すように、第2の遮熱ガラス200は、ガラス基板210と、積層膜220とを有する。
 ガラス基板210は、前述の第1の遮熱ガラス100におけるガラス基板110と同様の特徴を有する。従って、ここではこれ以上説明しない。
 一方、積層膜220は、前述の第1の遮熱ガラス100における積層膜120とは異なり、導電層230、最外層250および色調補正層を有する。例えば、積層膜220は、ガラス基板210に近い側から、第1の色調補正層260、導電層230、第2の色調補正層265、および最外層250を有する。
 第1の色調補正層260および第2の色調補正層265は、第2の遮熱ガラス200において生じる反射光および/または透過光を、所望の色味に調整するために設置される。例えば、一般に窓ガラスの室外反射色には、青っぽい色味が好まれる。第1の色調補正層260および第2の色調補正層265を用いることにより、このような色味を容易に発現させることができる。
 第1の色調補正層260は、絶縁層であり、例えばケイ素を含む窒化物(SiN)で構成される。第1の色調補正層260は、ケイ素とアルミニウムを含む窒化物(SiAlN)で構成されても良い。あるいは、第1の色調補正層260は、ケイ素とジルコニウムを含む窒化物(SiZrN)で構成されても良い。第1の色調補正層260がSiAlNで構成される場合、AlNの含有量は、1mol%~20mol%の範囲であることが好ましく、2mol%~18mol%の範囲であることがより好ましく、2mol%~16mol%であることがさらに好ましい。一方、第1の色調補正層260がSiZrNで構成される場合、ZrNの含有量は、1mol%~40mol%の範囲であることが好ましく、2mol%~35mol%の範囲であることがより好ましく、2mol%~30mol%であることがさらに好ましい。
 第1の色調補正層260の厚さは、5nm~100nmの範囲であることが好ましく、5nm~80nmの範囲であることがより好ましく、5nm~60nmの範囲であることがさらに好ましい。
 第2の色調補正層265についても、同様のことが言える。なお、第1の色調補正層260と第2の色調補正層265とは、同一の材料で構成されても、異なる材料で構成されても良い。
 第1の色調補正層260および第2の色調補正層265は、例えば、スパッタリング法などにより、形成することができる。
 なお、積層膜220に含まれる導電層230と最外層250の構成および特徴は、前述の通りである。従って、ここではこれ以上説明しない。
 第2の遮熱ガラス200は、第1の側202および第2の側204を有し、積層膜220は、第1の側202に設置される。また、第2の遮熱ガラス200が使用される際には、第1の側202は、室外側に対応し、第2の側204は、室内側に対応する。
 このような構成の第2の遮熱ガラス200においても、前述のような効果を得ることができる。すなわち、第2の遮熱ガラス200では、エネルギー透過率Teの低いガラス基板210および熱線吸収性の高い金属窒化物を含む積層膜220が使用されているにも関わらず、熱割れのリスクを有意に抑制することができる。また、第2の遮熱ガラス200では、室外側から視認した時の反射色を容易に調整することができる。さらに、第2の遮熱ガラス200では、良好な遮熱特性および耐久性を発揮することができる。
 (本発明の一実施形態によるさらに別の遮熱ガラス)
 次に、図3を参照して、本発明の一実施形態によるさらに別の遮熱ガラスについて説明する。
 図3には、本発明の一実施形態によるさらに別の遮熱ガラス(以下、「第3の遮熱ガラス」と称する)の断面を概略的に示す。
 図3に示すように、第3の遮熱ガラス300は、ガラス基板310と、積層膜320とを有する。
 ガラス基板310は、前述の第1の遮熱ガラス100におけるガラス基板110と同様の特徴を有する。従って、ここではこれ以上説明しない。
 一方、積層膜320は、前述の第1の遮熱ガラス100における積層膜120とは異なり、第1の導電層330、最外層350、色調補正層および第2の導電層370を有する。例えば、積層膜320は、ガラス基板310に近い側から、第1の色調補正層360、第1の導電層330、第2の色調補正層365、第2の導電層370、第3の色調補正層375、および最外層350を有する。
 第1の色調補正層360、第2の色調補正層365、および第3の色調補正層375は、第3の遮熱ガラス300において生じる反射光および/または透過光を、所望の色味に調整するために設置される。
 各色調補正層360、365、375は、いずれも絶縁層である。
 前述のように、第1の色調補正層360は、ケイ素を含む窒化物(SiN)、ケイ素とアルミニウムを含む窒化物(SiAlN)、またはケイ素とジルコニウムを含む窒化物(SiZrN)などで構成されても良い。第1の色調補正層360の厚さは、5nm~100nmの範囲であることが好ましく、5nm~80nmの範囲であることがより好ましく、5nm~60nmの範囲であることがさらに好ましい。
 第2の色調補正層365および第3の色調補正層375についても、同様のことが言える。
 各色調補正層360、365、375は、同一の材料で構成されても良く、あるいは、相互に異なる材料で構成されても良い。
 一方、第2の導電層370は、金属窒化物を含む。金属窒化物に含まれる金属は、例えば、クロム(Cr)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、およびハフニウム(Hf)の少なくとも一つであっても良い。金属窒化物に含まれる金属は、クロム、チタンおよびジルコニウムの少なくとも一つであることが好ましい。
 第2の導電層370は、特に、窒化クロム(CrN)、窒化チタン(TiN)、または窒化ジルコニウム(ZrN)で構成されることが好ましい。
 第2の導電層370は、波長1000nmにおける消衰係数kが0.5以上であることが好ましく、1以上であることがより好ましく、2以上であることがさらに好ましい。波長1000nmにおける消衰係数kが0.5以上であると、熱線吸収性が高まるため、優れた遮熱特性を有することができる。消衰係数kは、10以下であることが好ましく、8以下であることがより好ましい。
 第2の導電層370の厚さは、5nm~50nmの範囲であることが好ましい。第2の導電層370の厚さが5nm以上であると、第3の遮熱ガラス300の遮熱特性を容易に高めることができる。第2の導電層370の厚さが50nm以下であると、第3の遮熱ガラス300の室外反射色を薄い青色系に容易に調整できる。厚さは、5nm~30nmの範囲であることがより好ましく、5nm~25nmの範囲であることがさらに好ましい。
 第2の導電層370の形成方法は、特に限られない。第2の導電層370は、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相成膜(CVD)法(熱CVD法、プラズマCVD法、および光CVD法)、およびイオンビームスパッタリング法などで形成されても良い。
 第2の導電層370は、第1の導電層330と同じ材料で構成されても、異なる材料で構成されても良い。また、第2の導電層370は、第1の導電層330と同じ厚さであっても、異なる厚さであっても良い。
 なお、積層膜320に含まれる最外層350の構成および特徴は、前述の通りである。従って、ここではこれ以上説明しない。
 第3の遮熱ガラス300は、第1の側302および第2の側304を有し、積層膜320は、第1の側302に設置される。また、第3の遮熱ガラス300が使用される際には、第1の側302は、室外側に対応し、第2の側304は、室内側に対応する。
 このような構成の第3の遮熱ガラス300においても、前述のような効果を得ることができる。すなわち、第3の遮熱ガラス300では、エネルギー透過率Teの低いガラス基板310および熱線吸収性の高い金属窒化物を含む積層膜320が使用有されているにも関わらず、熱割れのリスクを有意に抑制することができる。また、第3の遮熱ガラス300では、室外側から視認した時の反射色を容易に調整することができる。さらに、第3の遮熱ガラス300では、良好な遮熱特性および耐久性を発揮することができる。
 以上、図1~図3を参照して、本発明の一実施形態による遮熱ガラスの構成例について説明した。しかしながら、これらは単なる一例であって、本発明の遮熱ガラスがその他の構成を有しても良いことは当業者には明らかである。
 例えば、第1の遮熱ガラス100において、導電層130は、多層膜で構成されても良い。第2の遮熱ガラス200および第3の遮熱ガラス300においても同様である。また、第3の遮熱ガラス300において、積層膜320は、6層で構成されている。しかしながら、積層膜は、より多くの層で構成されても良い。この他にも、各種変更が可能である。
 次に、本発明の実施例について説明する。なお、以下の説明において、例1~例6は、実施例であり、例11~例17は、比較例である。
 (例1)
 以下の方法で、遮熱ガラスを作製した。
 まず、縦25mm×横50mm×厚さ6mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を準備した。
 このガラス基板のエネルギー透過率Teは、41%である。なお、ガラス基板のエネルギー透過率Teの測定には、分光光度計(U4100:日立製作所製)を使用し、光の波長は、300nm~2500nmの範囲とした。測定は、ISO9050:2003に準拠して実施した。
 次に、スパッタリング法により、このガラス基板の一方の表面(第1の表面)に、第1の色調補正層、導電層、第2の色調補正層、および最外層の合計4層からなる積層膜を形成した。積層膜は、ガラス基板に近い側から、以下の層構成を有する:
 第1の色調補正層:厚さ14nmの67mol%SiN-33mol%ZrN層、
 導電層:厚さ7.6nmのCrN層、
 第2の色調補正層:厚さ2.5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ15nmの67mol%SiO-33mol%ZrO層。
 このうち、第1の色調補正層は、ターゲットとして67at%Si-33at%Zr(AGCセラミックス株式会社製)を使用し、Ar+N雰囲気(N=40体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.3Paとした。
 導電層は、ターゲットとしてCrターゲットを使用し、Ar+N雰囲気(N=11体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.2Paとした。
 第2の色調補正層は、ターゲットとして10at%Al-90at%Siを使用し、Ar+N雰囲気(N=40体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.3Paとした。
 最外層は、ターゲットとして67at%Si-33at%Zr(AGCセラミックス株式会社製)を使用し、Ar+O雰囲気(O=60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.3Paとした。
 これにより、遮熱ガラス(以下、「例1に係る遮熱ガラス」という)が製造された。
 なお、例1に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例2)
 例1と同様の方法により、遮熱ガラス(以下、「例2に係る遮熱ガラス」という)を作製した。
 ただし、この例2では、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の色調補正層:厚さ22nmの67mol%SiN-33mol%ZrN層、
 導電層:厚さ22nmのTiN層、
 第2の色調補正層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ16.5nmの67mol%SiO-33mol%ZrO層。
 なお、導電層は、ターゲットとしてTiターゲットを使用し、Ar+N雰囲気(N=11体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.2Paとした。
 なお、例2に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例3)
 例1と同様の方法により、遮熱ガラス(以下、「例3に係る遮熱ガラス」という)を作製した。
 ただし、この例3では、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の色調補正層:厚さ28.5nmの67mol%SiN-33mol%ZrN層、
 導電層:厚さ15nmのZrN層、
 第2の色調補正層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ19.2nmの67mol%SiO-33mol%ZrO層。
 なお、導電層は、ターゲットとしてZrターゲットを使用し、Ar+N雰囲気(N=11体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.2Paとした。
 なお、例3に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例4)
 例1と同様の方法により、遮熱ガラス(以下、「例4に係る遮熱ガラス」という)を作製した。
 ただし、この例4では、ガラス基板として、厚さが2mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、67%である。
 また、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の色調補正層:厚さ24nmの67mol%SiN-33mol%ZrN層、
 導電層:厚さ24nmのTiN層、
 第2の色調補正層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ12.5nmの67mol%SiO-33mol%ZrO層。
 なお、例4に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例5)
 例1と同様の方法により、遮熱ガラス(以下、「例5に係る遮熱ガラス」という)を作製した。
 ただし、この例5では、ガラス基板として、厚さが6mmの青色に着色されたガラス基板(DHFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、44.5%である。
 また、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の色調補正層:厚さ22nmの67mol%SiN-33mol%ZrN層、
 導電層:厚さ22nmのTiN層、
 第2の色調補正層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ16.5nmの67mol%SiO-33mol%ZrO層。
 なお、例5に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例6)
 例1と同様の方法により、遮熱ガラス(以下、「例6に係る遮熱ガラス」という)を作製した。
 ただし、この例6では、積層膜は、ガラス基板から近い順に、以下の6層構成とした:
 第1の色調補正層:厚さ56nmの90mol%SiN-10mol%AlN層、
 第1の導電層:厚さ7nmのTiN層、
 第2の色調補正層:厚さ70nmの67mol%SiN-33mol%ZrN層、
 第2の導電層:厚さ16nmのTiN層、
 第3の色調補正層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ15nmの67mol%SiO-33mol%ZrO層。
 なお、例6に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 また、最外層の炭素の含有量は、0.5at%であった。最外層の炭素の含有量は、XPS(PHI 5000 VersaProbe II、アルバックファイ社製)を用いて測定した。
 (例11)
 以下の方法で、遮熱ガラスを作製した。
 まず、縦25mm×横50mm×厚さ6mmの透明なガラス基板(Clear:旭硝子社製)を準備した。
 このガラス基板のエネルギー透過率Teは、82%である。
 次に、スパッタリング法により、このガラス基板の一方の表面(第1の表面)に、第1の層、第2の層、および最外層の合計3層からなる積層膜を形成した。積層膜は、ガラス基板に近い側から、以下の層構成を有する:
 第1の層:厚さ20nmの67mol%SiN-33mol%ZrN層、
 第2の層:厚さ10nmのCrN層、
 最外層:厚さ20nmの90mol%SiN-10mol%AlN層。
 これにより、遮熱ガラス(以下、「例11に係る遮熱ガラス」という)が製造された。
 なお、例11に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例12)
 例11と同様の方法により、遮熱ガラス(以下、「例12に係る遮熱ガラス」という)を作製した。
 ただし、この例12では、ガラス基板として、厚さが6mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、41%である。
 また、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の層:厚さ14nmの67mol%SiN-33mol%ZrN層、
 第2の層:厚さ7.6nmのCrN層、
 最外層:厚さ14nmの90mol%SiN-10mol%AlN層。
 なお、例12に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例13)
 例11と同様の方法により、遮熱ガラス(以下、「例13に係る遮熱ガラス」という)を作製した。
 ただし、この例12では、ガラス基板として、厚さが6mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、41%である。
 また、積層膜は、ガラス基板から近い順に、以下の構成とした:
 第1の層:厚さ10nmの90mol%SiN-10mol%AlN層、
 第2の層:厚さ15nmのCrN層、
 最外層:厚さ20nmの90mol%SiN-10mol%AlN層。
 なお、例13に係る遮熱ガラスにおいて、積層膜は、室内側となる。
 (例14)
 例11と同様の方法により、遮熱ガラス(以下、「例14に係る遮熱ガラス」という)を作製した。
 ただし、この例14では、ガラス基板として、厚さが1.2mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、76%である。
 また、積層膜は、ガラス基板から近い順に、以下の4層構成とした:
 第1の層:厚さ24nmの67mol%SiN-33mol%ZrN層、
 第2の層:厚さ24nmのTiN層、
 第3の層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ12.5nmの67mol%SiO-33mol%ZrO層。
 なお、例14に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例15)
 例11と同様の方法により、遮熱ガラス(以下、「例15に係る遮熱ガラス」という)を作製した。
 ただし、この例15では、ガラス基板として、厚さが6mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、41%である。
 また、積層膜は、ガラス基板から近い順に、以下の4層構成とした:
 第1の層:厚さ14nmの67mol%SiN-33mol%ZrN層、
 第2の層:厚さ7.6nmのTiN層、
 第3の層:厚さ2.5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ16nmのSiO層。
 なお、例15に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例16)
 例11と同様の方法により、遮熱ガラス(以下、「例16に係る遮熱ガラス」という)を作製した。
 ただし、この例16では、ガラス基板として、厚さが6mmの緑色に着色されたガラス基板(GNFL:旭硝子社製)を使用した。このガラス基板のエネルギー透過率Teは、41%である。
 また、積層膜は、ガラス基板から近い順に、以下の4層構成とした:
 第1の層:厚さ24nmの67mol%SiN-33mol%ZrN層、
 第2の層:厚さ24nmのTiN層、
 第3の層:厚さ5nmの90mol%SiN-10mol%AlN層、
 最外層:厚さ9nmのTiO層。
 なお、例16に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 (例17)
 例11と同様の方法により、遮熱ガラス(以下、「例17に係る遮熱ガラス」という)を作製した。
 ただし、この例17では、ガラス基板として、厚さが6mmの緑色に着色されたガラス基板(Evergreen)を使用した。このガラス基板のエネルギー透過率Teは、34.5%である。
 また、積層膜は、ガラス基板から近い順に、以下の4層構成とした:
 第1の層:厚さ27nmのSnO層、
 第2の層:厚さ17nmのSiO層、
 第3の層:厚さ210nmのフッ素(F)ドープされたSnO層、
 最外層:厚さ30nmのTiO層。
 積層膜は、オンラインのCVD法により順次成膜した。
 ここで、「オンライン(の成膜法)」とは、ガラスの製造過程中にガラスの表面に膜を成膜する方法を意味する。より具体的には、ガラスの製造の際には、ガラスリボンが溶融スズ浴の上を移動した後、徐冷されることで連続的にガラスが製造されるが、「オンライン(の成膜方法)」ではガラスリボンの上面に膜が成膜される。すなわち、「オンライン(の成膜法)」では、ガラスの製造工程と膜の成膜工程が連続的に実施される。
 なお、例17に係る遮熱ガラスにおいて、積層膜は、室外側となる。
 以下の表1には、各例に係る遮熱ガラスの概略的な構成をまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 
 (評価)
 得られた遮熱ガラスを用いて、以下の評価を実施した。
 (遮熱性能の評価)
 遮熱ガラスを用いて、遮蔽係数SC、セレクティビティSe、エネルギー吸収率Ae、および室外反射率Rvの評価を実施した。
 このうち、遮蔽係数SCおよびセレクティビティSeは、それぞれ、前述の(1)式および(2)式から算出した。
 なお、遮熱ガラスの室外側からの可視光透過率Tv(%)、室外反射率Rv(%)、エネルギー透過率Te、遮熱ガラスの室外側でのエネルギー反射率Re、および日射熱取得率g(%)の測定には、分光光度計(U4100:日立製作所製)を使用し、光の波長は、300nm~2500nmの範囲とした。測定は、ISO9050:2003に準拠して実施した。
 また、エネルギー吸収率Aeは、前述の(3)式から算出した。
 なお、例13に係る遮熱ガラス以外の遮熱ガラスでは、積層膜の側からガラス基板の露出面(第2の表面)に向かう方向において、測定を行った。一方、例13に係る遮熱ガラスでは、ガラス基板の露出面の側から積層膜の側に向かう方向において、測定を行った。
 (色調の評価)
 遮熱ガラスを用いて、室外反射色の色度測定を行った。また透過光のイエローネスインデックスYIの評価を実施した。
 室外反射色の色度評価には、色度計を用いた。遮熱ガラスの室外側における反射光を、CIE1976L色度座標で表示させ、aおよびbの値をそれぞれ算定した。
 また、イエローネスインデックスYIは、前述のように、遮熱ガラスの室内側から室外側に向かう透過可視光の色度を、ASTM E131規格に準拠した方法で変換することにより算定した。
 (耐久性の評価)
 それぞれの遮熱ガラスを用いて、耐久性を評価した。遮熱ガラスの耐久性は、以下の方法で評価した。
 まず、分光光度計を用いて、各可視光の波長域において、室外側から室内側に向かう方向における遮熱ガラスの透過率(以下、「初期透過率Tinitial」と称する)を測定する。
 次に、遮熱ガラスを、90℃に加熱した濃度0.1kmol/mのNaOH水溶液中に浸漬させる。浸漬時間は、2時間である。その後、遮熱ガラスを取り出し、洗浄、乾燥させる。この浸漬処理後の遮熱ガラスに対して、前述の方法で、再度透過率(以下、「処理後透過率Ttreated」と称する)を測定する。
 得られた結果から、以下の(4)式により、透過率差ΔT(%)を求める:
 
   透過率差ΔT(%)=|Ttreated-Tinitial|     (4)式
 
 透過率差ΔT(%)が1%以下の遮熱ガラスを、耐久性が良好である(○)と判定し、透過率差ΔT(%)が1%超の遮熱ガラスを、耐久性が良好でない(×)と判定した。
 (結果)
 各遮熱ガラスにおいて得られた評価結果をまとめて以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 この結果から、例1~例6に係る遮熱ガラスでは、遮蔽係数SCが0.4以下、セレクティビティSeが0.9以上となっており、良好な遮熱性能および断熱性能を示すことがわかる。また、例1~例6に係る遮熱ガラスでは、エネルギー吸収率Aeは、65%以下となっており、熱割れのリスクを有意に軽減できる。
 これに対して、例11、例14、および例17に係る遮熱ガラスでは、遮蔽係数SCが0.4を超えており、あまり良好な遮熱性能を示さないことがわかる。また、例11および例13に係る遮熱ガラスでは、セレクティビティSeが0.9未満となっており、あまり良好な断熱性能を示さないことがわかる。また、例13に係る遮熱ガラスは、エネルギー吸収率Aeが高く、熱割れのリスクがあると言える。
 また、例1~例6に係る遮熱ガラスでは、室外反射率Rvがいずれも30%以下と低く抑えられている。
 また、例1~例6に係る遮熱ガラスでは、反射光のaおよびbは、5未満となっている。従って、例1~例6に係る遮熱ガラスでは、反射光に、青に近い良好な色味が得られると予想される。さらに、例1~例6に係る遮熱ガラスでは、イエローネスインデックスYIは、いずれも5未満になっている。従って、例1~例6に係る遮熱ガラスでは、透過光が黄色っぽく見えることを有意に抑制することができる。
 さらに、例1~例6に係る遮熱ガラスでは、良好な耐久性が得られることがわかる。
 このように、例1~例6に係る遮熱ガラスでは、良好な遮熱特性および耐久性を有する上、熱割れのリスクが有意に軽減されることが確認された。
 また、本願は、2017年12月20日に出願した日本国特許出願2017-244163号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100   第1の遮熱ガラス
 102   第1の側
 104   第2の側
 110   ガラス基板
 112   第1の表面
 114   第2の表面
 120   積層膜
 130   導電層
 150   最外層
 200   第2の遮熱ガラス
 202   第1の側
 204   第2の側
 210   ガラス基板
 212   第1の表面
 214   第2の表面
 220   積層膜
 230   導電層
 250   最外層
 260   第1の色調補正層
 265   第2の色調補正層
 300   第3の遮熱ガラス
 302   第1の側
 304   第2の側
 310   ガラス基板
 312   第1の表面
 314   第2の表面
 320   積層膜
 330   第1の導電層
 350   最外層
 360   第1の色調補正層
 365   第2の色調補正層
 370   第2の導電層
 375   第3の色調補正層

Claims (10)

  1.  遮熱ガラスであって、
     第1の表面を有するガラス基板と、
     前記第1の表面に設置された積層膜と、
     を有し、
     前記ガラス基板は、エネルギー透過率Teが70%未満であり、
     前記積層膜は、前記ガラス基板に近い順に、導電層および最外層を有し、
     前記導電層は、金属窒化物を含み、
     前記最外層は、SiおよびZrを含む酸化物で構成され、
     前記積層膜は、当該遮熱ガラスの室外側に設置されていることを特徴とする遮熱ガラス。
  2.  前記金属窒化物は、Cr、Ti、Zr、Nb、Ta、およびHfの少なくとも一つを含む窒化物である、請求項1に記載の遮熱ガラス。
  3.  前記最外層は、波長632nmの光に対する屈折率が1.55~2.20の範囲である、請求項1または2に記載の遮熱ガラス。
  4.  前記最外層は、10mol%~90mol%のZrOを含む、請求項1乃至3のいずれか一つに記載の遮熱ガラス。
  5.  前記最外層は、炭素の含有量が1at%以下である、請求項1乃至4のいずれか一つに記載の遮熱ガラス。
  6.  前記積層膜は、さらに、色調補正層を有する、請求項1乃至5のいずれか一つに記載の遮熱ガラス。
  7.  前記ガラス基板と前記導電層との間には、第1の色調補正層があり、
     前記導電層と前記最外層との間には、第2の色調補正層があり、
     前記第1および第2の色調補正層は、いずれもSiを含む金属窒化物で構成される、請求項6に記載の遮熱ガラス。
  8.  当該遮熱ガラスにおいて、前記積層膜の側から測定される遮蔽係数SCは、0.4以下である、請求項1乃至7のいずれか一つに記載の遮熱ガラス。
  9.  当該遮熱ガラスにおいて、前記積層膜の側から測定されるエネルギー吸収率Aeは、65%以下である、請求項1乃至8のいずれか一つに記載の遮熱ガラス。
  10.  当該遮熱ガラスにおいて、前記積層膜の側から測定される可視光反射率Rvは、30%以下である、請求項1乃至9のいずれか一つに記載の遮熱ガラス。
PCT/JP2018/041471 2017-12-20 2018-11-08 遮熱ガラス WO2019123877A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560858A JP7156312B2 (ja) 2017-12-20 2018-11-08 遮熱ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017244163 2017-12-20
JP2017-244163 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019123877A1 true WO2019123877A1 (ja) 2019-06-27

Family

ID=66993335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041471 WO2019123877A1 (ja) 2017-12-20 2018-11-08 遮熱ガラス

Country Status (2)

Country Link
JP (1) JP7156312B2 (ja)
WO (1) WO2019123877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128169A1 (ja) * 2022-12-14 2024-06-20 Agc株式会社 ガラス物品およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707725B2 (ja) * 1989-06-05 1998-02-04 日本電気株式会社 光記憶体
JP2003119048A (ja) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd ガラス組成物
JP2013503812A (ja) * 2009-09-08 2013-02-04 サン−ゴバン グラス フランス 材料及び当該材料を含むグレージング
JP2016079051A (ja) * 2014-10-14 2016-05-16 旭硝子株式会社 積層膜付き透明基板およびその製造方法
WO2016181740A1 (ja) * 2015-05-11 2016-11-17 旭硝子株式会社 車両用の断熱ガラスユニットおよびその製造方法
WO2016204003A1 (ja) * 2015-06-18 2016-12-22 旭硝子株式会社 ガラス物品およびその製造方法
WO2018003619A1 (ja) * 2016-06-29 2018-01-04 旭硝子株式会社 遮熱ガラス部材および遮熱ガラス部材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576662B2 (ja) * 1989-03-07 1997-01-29 旭硝子株式会社 熱線遮断ガラス
JPH0818849B2 (ja) * 1991-08-29 1996-02-28 日本板硝子株式会社 熱線遮蔽ガラス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707725B2 (ja) * 1989-06-05 1998-02-04 日本電気株式会社 光記憶体
JP2003119048A (ja) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd ガラス組成物
JP2013503812A (ja) * 2009-09-08 2013-02-04 サン−ゴバン グラス フランス 材料及び当該材料を含むグレージング
JP2016079051A (ja) * 2014-10-14 2016-05-16 旭硝子株式会社 積層膜付き透明基板およびその製造方法
WO2016181740A1 (ja) * 2015-05-11 2016-11-17 旭硝子株式会社 車両用の断熱ガラスユニットおよびその製造方法
WO2016204003A1 (ja) * 2015-06-18 2016-12-22 旭硝子株式会社 ガラス物品およびその製造方法
WO2018003619A1 (ja) * 2016-06-29 2018-01-04 旭硝子株式会社 遮熱ガラス部材および遮熱ガラス部材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128169A1 (ja) * 2022-12-14 2024-06-20 Agc株式会社 ガラス物品およびその製造方法

Also Published As

Publication number Publication date
JPWO2019123877A1 (ja) 2021-01-14
JP7156312B2 (ja) 2022-10-19

Similar Documents

Publication Publication Date Title
JP6034360B2 (ja) 多層薄膜を有する透明基材
JP6459373B2 (ja) 積層膜付き透明基板およびその製造方法
JP6408565B2 (ja) 低放射率および抗日射グレイジング
JP2020514240A (ja) ガラス基板用の低放射率コーティング
WO2014191474A2 (en) Low-emissivity and anti-solar glazing
KR101768257B1 (ko) 저방사 코팅 및 이를 포함하는 창호용 건축 자재
JP7237957B2 (ja) 熱的特性を有する積層体を備えた基材
JP6299755B2 (ja) 保護膜、反射性部材、および保護膜の製造方法
JP6853486B2 (ja) 日射遮蔽部材
JP6495903B2 (ja) 銀製の機能性層とTiOx製の厚いブロッキング下層とを含む積重体で被覆された基材を含むグレージング
KR20160144373A (ko) 열적 특성이 있는 스택을 갖는 기판
TW202020071A (zh) 含有光吸收材料之以塗層塗覆的物件
US11402558B2 (en) Transparent substrate provided with multi-layered coating and insulation glazing unit including the same
JP6767661B2 (ja) グレー色調低放射ガラス
JP7267254B2 (ja) 熱的特性を有する積層体を含む材料
WO2016121752A1 (ja) 積層膜付きガラス板および複層ガラス
WO2019123877A1 (ja) 遮熱ガラス
KR20200082791A (ko) 다층 박막이 구비된 투명 기판 및 이를 포함하는 다중 글레이징 유닛
US11332406B2 (en) Material comprising a stack having thermal and esthetic properties
WO2016060083A1 (ja) 窓ガラスおよび積層膜付き透明基板
JP6631686B2 (ja) 積層膜付き透明基板および窓ガラス
WO2018003619A1 (ja) 遮熱ガラス部材および遮熱ガラス部材の製造方法
JP6940597B2 (ja) 低放射コーティングを含む窓戸用機能性建材
WO2016189992A1 (ja) 合わせガラス
US11306023B2 (en) Material comprising a stack having thermal and esthetic properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892201

Country of ref document: EP

Kind code of ref document: A1