WO2016173352A1 - 一种蒸发源、蒸镀装置以及蒸镀方法 - Google Patents

一种蒸发源、蒸镀装置以及蒸镀方法 Download PDF

Info

Publication number
WO2016173352A1
WO2016173352A1 PCT/CN2016/077509 CN2016077509W WO2016173352A1 WO 2016173352 A1 WO2016173352 A1 WO 2016173352A1 CN 2016077509 W CN2016077509 W CN 2016077509W WO 2016173352 A1 WO2016173352 A1 WO 2016173352A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation source
clogging
nozzle
crucible
heater
Prior art date
Application number
PCT/CN2016/077509
Other languages
English (en)
French (fr)
Inventor
胡海兵
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/129,284 priority Critical patent/US20170175250A1/en
Priority to US15/291,723 priority patent/US20170029938A1/en
Publication of WO2016173352A1 publication Critical patent/WO2016173352A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the invention belongs to the technical field of vapor deposition equipment, and in particular relates to an evaporation source, an evaporation device and an evaporation method.
  • OLED Organic Light-Emitting Diode
  • OLED has self-luminous, no backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, wide temperature range, and simple structure. Excellent characteristics such as easy manufacture. Therefore, organic light emitting diodes are considered to be emerging application technologies for next generation flat panel displays.
  • OLEDs are mainly prepared by using an evaporation device.
  • the evaporation apparatus is provided with a plurality of organic evaporation chambers, and an evaporation source is provided in each of the organic evaporation chambers.
  • the evaporation source includes a helium and neon nozzle. After the organic vapor deposition material is heated, it is ejected from the crucible nozzle, and the substrate is vapor-deposited.
  • the organic vapor deposition material is first heated by the ruthenium provided in the evaporation source, and then after the organic evaporation material molecules are uniformly heated, the organic solvent is heated by the sputum nozzle of the evaporation source. The vapor deposition material molecules are evaporated onto the substrate.
  • the evaporation source 1 includes a crucible 11, a dome cover 12 for storing and heating the organic vapor deposition material, and a crucible nozzle 12 for sealing the crucible 11 for ejecting gas from the crucible. Sprayed out in 11.
  • the organic vapor deposition material is first heated by the crucible 11 provided in the evaporation source 1, and then the organic vapor deposition material molecules are heated and homogenized, and then the heated organic vapor is evaporated from the crucible nozzle 13 of the evaporation source 1.
  • the plating material is evaporated onto the substrate.
  • the evaporated organic vapor-deposited material may be solidified at the crucible nozzle 13, thereby causing the crucible nozzle 13 to clog.
  • the clogged nozzle 13 causes a change in the internal pressure of the crucible 11, which deteriorates the uniformity of the thickness of the vapor-deposited organic vapor-deposited material. Blockage of the sputum nozzle 13 in the existing evaporation source 1 The rate is around 10% to 15%.
  • the existing vapor deposition equipment is a vacuum apparatus and usually has 10 organic evaporation chambers (including multiple evaporation sources).
  • the present invention provides an evaporation source capable of avoiding nozzle clogging to improve throughput and equipment performance.
  • An evaporation source includes: a crucible for generating an evaporation gas; a dome cover, the dome cover being disposed on the crucible to seal the crucible; and a plurality of crucible nozzles, A plurality of weir nozzles are disposed on the dome cover and are used to eject the vapor deposition gas from the crucible. Further, the evaporation source further includes a plugging heater for heating the crucible nozzle.
  • the occlusion heater is disposed on the dome cover.
  • the evaporation source includes a plurality of plugging heaters such that each of the helium nozzles corresponds to one of the plugging heaters.
  • the clogging heater surrounds the plurality of weir nozzles.
  • the evaporation source has a plurality of plugging heaters that surround the plurality of weir nozzles in a stacked manner.
  • the clogging heater comprises a heating wire wound around the sputum nozzle.
  • the evaporation source further includes a driving device, and the driving device is provided with a clogging sensor for detecting whether the sputum nozzle is blocked, and the driving The device is capable of driving the occlusion sensor to move.
  • the evaporation source further includes a driving device, the clogging heater is disposed on the driving device, and the driving device is capable of driving the clogging heater to move.
  • a clogging sensor for detecting whether the sputum nozzle is clogged is provided on the driving device, and the driving device is capable of driving the clogging sensor to move.
  • the occlusion sensor is configured to detect whether the sputum nozzle is clogged according to a rate or temperature of a gas ejected by the sputum nozzle.
  • the evaporation source is a linear evaporation source, and the plurality of helium nozzles are distributed along the length direction of the crucible of the evaporation source.
  • the present invention provides a vapor deposition apparatus comprising the evaporation source according to any one of the above.
  • the present invention provides a vapor deposition method comprising: performing vapor deposition using the vapor deposition device, and vaporizing the blocked nozzle by a clogging heater when the nozzle is clogged.
  • a clogging heater is provided in the evaporation source according to the present invention.
  • the clogging heater can heat the clogged sputum nozzle to evaporate the solidified organic vapor deposition material.
  • the inside of the crucible can maintain a constant pressure, thereby ensuring a uniform thickness of the organic vapor-deposited material layer of the product.
  • the evaporation source of the present invention can also be separately heated for the clogged sputum nozzles so that all of the organic evaporation chambers (including the organic evaporation chamber in which the clogging nozzles are located) can continue to be used. Therefore, waste of the organic vapor deposition material can be avoided. Furthermore, it does not affect the output of the product and the performance of the equipment.
  • FIG. 1 is a schematic structural view of a prior art evaporation source
  • Figure 2 is a schematic view showing the structure of an evaporation source according to a first embodiment of the present invention
  • Figure 3 is a side elevational view of an evaporation source in accordance with a first embodiment of the present invention
  • Figure 4 is a top plan view of a clogging heater of an evaporation source in accordance with a second embodiment of the present invention.
  • Figure 5 is a front elevational view of a clogging heater of an evaporation source in accordance with a third embodiment of the present invention.
  • Figure 6 is a top plan view showing a clogging heater of an evaporation source according to a fourth embodiment of the present invention.
  • Figure 7 is a schematic structural view of an evaporation source according to a fifth embodiment of the present invention.
  • Figure 8 is a schematic structural view of an evaporation source according to a sixth embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of an evaporation source according to a seventh embodiment of the present invention.
  • Fig. 2 is a schematic structural view of an evaporation source according to a first embodiment of the present invention.
  • a first embodiment of the present invention provides an evaporation source 1, comprising: a crucible 11 for generating an evaporation gas; a dome cover 12, the dome cover 12 being disposed at The crucible 11 is sealed to seal the crucible 11; and a plurality of crucible nozzles 13 are disposed on the dome cover 12 and used to vaporize the vapor deposition gas from the crucible 11 Sprayed out.
  • the evaporation source 1 according to the first embodiment of the present invention further includes a clogging heater 14 for performing heat treatment on the sputum nozzle 13.
  • the clogging heater 14 is disposed in the dome cover 12 or on the dome cover 12.
  • the dome cover 12 may be disposed on the crucible 11 that holds and heats the organic vapor deposition material, and the crucible nozzle 13 is disposed on the dome cover 12.
  • the plugging heater 14 may be disposed in the crucible. A position inside the top cover 12 corresponding to the weir nozzle 13.
  • the evaporation source 1 has a plurality of clogging heaters 14 such that each of the sputum nozzles 13 corresponds to one clogging heater 14. Thus, it can be ensured that any one of the weir nozzles 13 can be heat-treated in the event of clogging.
  • the occlusion heater 14 is disposed in the dome cover 12.
  • the plugging heater 14 can directly heat the crucible nozzle 13 to evaporate the solidified organic vapor deposition material.
  • the inside of the crucible 11 can maintain a constant pressure, thereby ensuring uniform thickness of the organic vapor-deposited material layer of the product and avoiding waste of the organic evaporation material. Furthermore, it does not affect the output of the product and the performance of the equipment.
  • the evaporation source 1 is a linear evaporation source, and a plurality of helium nozzles 13 are distributed along the longitudinal direction of the crucible 11 of the evaporation source 1.
  • the evaporation source is not limited to a linear evaporation source.
  • the plurality of helium nozzles 13 may also be distributed in other ways, such as an interleaved distribution.
  • FIG. 4 is a top plan view of a clogging heater of an evaporation source in accordance with a second embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the first embodiment in that the clogging heater 14 is disposed around the boring nozzle 13 on the dome cover 12. That is, the clogging heater 14 can enclose a plurality of sputum nozzles 13 located on the dome cover 12.
  • the clogging heater 14 may surround all of the weir nozzles 13 and may also surround some of the weir nozzles 13. Therefore, regardless of which of the weir nozzles 13 is clogged, the blocked weir nozzle 13 can be heated to evaporate the solidified organic vapor deposition material. ⁇ along the evaporation source 1 at a plurality of helium nozzles 13 In the case where the length direction of the crucible 11 is distributed, the clogging heater 14 according to the present embodiment can provide relatively uniform heating with a simple structure.
  • Fig. 5 is a front elevational view showing a clogging heater of an evaporation source according to a third embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the second embodiment in that the evaporation source 1 has a plurality of clogging heaters 14 that surround the dome cover 12 in a stacked manner.
  • a plurality of weir nozzles 13 are provided.
  • the plurality of clogging heaters 14 are arranged in a stacked manner, so that the effect of heating the sputum nozzle 13 can be enhanced.
  • the number of plugging heaters 14 can be selected depending on the height of the helium nozzle 13 and the particular application.
  • FIG. 6 is a top plan view of a clogging heater of an evaporation source in accordance with a fourth embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the first embodiment in that the clogging heater 14 includes a heating wire which can be wound around the sputum nozzle 13.
  • the number of turns of the heating wire wound around the weir nozzle 13 can be selected depending on the height of the weir nozzle 13 and the specific application. It is easily understood that the number of turns of the heating wire may be different or the same for the plurality of weir nozzles 13. In this manner, clogging the heater 14 can heat the helium nozzle 13 more efficiently.
  • Fig. 7 is a schematic structural view of an evaporation source according to a fifth embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the first to fourth embodiments in that the evaporation source 1 further includes a driving device 16, and the clogging heater 14 is disposed on the driving device 16, and The drive unit 16 is capable of driving the clogging heater 14 to move.
  • the driving device 16 is disposed above the crucible 11, the blocking heater 14 is disposed on the driving device 16, and the driving device 16 can drive the blocking heater 14 mobile.
  • the driving device 16 drives the plugging heater 14 to move to the blocked helium nozzle 13.
  • the clogging heater 14 directly heats the sputum nozzle 13 to evaporate the blocked organic vapor deposition material.
  • the inside of the crucible 11 can maintain a constant pressure, thereby ensuring uniform thickness of the organic vapor-deposited material layer of the product and avoiding waste of the organic evaporation material. In turn, it does not affect the output of the product and the performance of the equipment.
  • a plurality of helium nozzles 13 can be heated using a plugging heater 14.
  • FIG. 8 is a schematic view showing the structure of an evaporation source according to a sixth embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the first to fourth embodiments in that the evaporation source 1 further includes a driving device 16 on which a clogging sensor 15 for detecting whether the sputum nozzle 13 is clogged is provided, and The drive device 16 is capable of driving the occlusion sensor 15 to move.
  • the clogging sensor 15 is capable of detecting whether the sputum nozzle 13 is clogged based on the rate or temperature of the gas ejected from the sputum nozzle 13.
  • the clogging sensor 15 is not limited to detecting the clogging of the sputum nozzle 13 by the rate or temperature of the gas ejected through the sputum nozzle 13, and it is also possible to detect clogging based on other parameters.
  • the occlusion sensor 15 can be a clogging probe or other type of sensor capable of detecting clogging of the sputum nozzle 13.
  • the clogging sensor 15 is also provided on the driving device 16, and the driving device 16 is capable of driving the clogging sensor 15 to move.
  • the clogging sensor 15 is capable of detecting whether or not the sputum nozzle 13 is clogged according to the rate or temperature of the gas ejected from the sputum nozzle 13.
  • the heat treatment can be performed by the plugging heater 14 corresponding to the blocked helium nozzle 13.
  • the clogging sensor 15 can detect the clogging of the sputum nozzle 13 every time interval to detect the blocked sputum nozzle 13 in time. Excellent It is selected that the clogging sensor 15 provided on the driving device 16 moves only above the sputum nozzle 13 when detecting the clogging of the sputum nozzle 13, and is removed when not detecting.
  • the clogging sensor 15 provided in this embodiment can directly determine the blocked sputum nozzle 13. Therefore, the clogging heater 14 can heat the blocked sputum nozzle 13. In this way, it is not necessary to heat all of the helium nozzles 13, but only the helium nozzles 13 where the clogging occurs are heated. Therefore, the normal operation of the sputum nozzle 13 in which clogging has not occurred is not affected, and the total heating amount is saved.
  • FIG. 9 is a schematic view showing the structure of an evaporation source according to a seventh embodiment of the present invention.
  • the evaporation source of the present embodiment is different from the fifth embodiment in that a clogging sensor 15 for detecting whether the sputum nozzle 13 is clogged is provided on the driving device 16, and the driving device 16 is capable of driving the clogging sensor 15 moves.
  • a clogging heater 14 and a clogging sensor 15 for detecting whether the sputum nozzle 13 is clogged are provided on the driving device 16, and the driving device 16 is capable of driving the clogging heating.
  • the device 14 and the occlusion sensor 15 move.
  • the clogging sensor 15 can detect the clogging condition; if the clogging cocking nozzle 13 is found, the driving device 16 moves the corresponding clogging heater 14 to the position of the clogging cocking nozzle 13 to heat it. .
  • the present invention provides an evaporation apparatus comprising one of the evaporation sources according to the first to seventh embodiments of the present invention.
  • the vapor deposition device provided by the present invention is provided with a clogging heater.
  • the clogging heater can heat the clogged sputum nozzle to evaporate the solidified organic vapor deposition material.
  • the inside of the crucible can maintain a constant pressure, thereby ensuring a uniform thickness of the organic vapor-deposited material layer of the product.
  • the vapor deposition apparatus of the present invention can also perform separate heat treatment for the clogged sputum nozzles, so that all of the organic vapor deposition chambers (including the organic vapor deposition chamber in which the clogging nozzles are located) can be used continuously. Therefore, waste of the organic vapor deposition material can be avoided. Enter However, it does not affect the output of the product and the performance of the equipment.
  • the present invention provides an evaporation method, which comprises performing vapor deposition using the above-described vapor deposition device, and heating the clogged sputum nozzle with a clogging heater when the sputum nozzle is clogged.
  • clogging the heater can always heat the helium nozzle. In this case, clogging of the sputum nozzle can be effectively avoided.
  • the clogging sensor is moved above the sputum nozzle, and the rate or temperature of the gas ejected from the sputum nozzle is detected by clogging the sensor to determine whether the sputum nozzle is clogged and the position of the clogged sputum nozzle is determined;
  • the clogging heater of the corresponding ⁇ nozzle is used for heating.
  • the clogging sensor can detect the clogging of the sputum nozzle every time interval to detect the blocked sputum nozzle in time.
  • the occlusion sensor is not limited to detecting the clogging of the sputum nozzle by the rate or temperature of the gas ejected through the sputum nozzle, and it is also possible to detect clogging based on other parameters.
  • the blocked spur nozzle can be directly determined according to the clogging sensor, and the squirting nozzle can be heated. In this way, it is not necessary to heat all of the helium nozzles, but only the helium nozzles that are clogged. Therefore, the normal operation of the sputum nozzle 13 in which clogging has not occurred is not affected, and the total heating amount is saved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种蒸发源(1),包括:坩埚(11),用于产生蒸镀气体;坩埚顶盖(12),设置在坩埚上以将坩埚密封;以及多个坩埚喷嘴(13),设置在坩埚顶盖上并且用于使蒸镀气体从坩埚(11)中喷出。蒸发源还包括堵塞加热器(14),用于对坩埚喷嘴(13)进行加热处理。堵塞加热器(14)可直接对坩埚喷嘴(13)进行加热,使凝固的有机蒸镀材料蒸发。还涉及一种蒸镀装置和蒸镀方法。

Description

一种蒸发源、蒸镀装置以及蒸镀方法 技术领域
本发明属于蒸镀设备技术领域,具体涉及一种蒸发源、蒸镀装置以及蒸镀方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)具备自发光、不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、适用温度范围广、构造较简以及容易制造等优异特性。因此,有机发光二极管被认为是下一代平面显示器的新兴应用技术。
目前,主要采用蒸镀设备制备OLED。通常情况下,蒸镀设备设置有多个有机蒸镀腔室,在每个有机蒸镀腔室中均设置有蒸发源。蒸发源包括坩埚和坩埚喷嘴。有机蒸镀材料在被加热后从坩埚喷嘴中喷出,进而对基板进行蒸镀。具体地说,在OLED的制备过程中,先由蒸发源中设置的坩埚将有机蒸镀材料加热,然后在有机蒸镀材料分子在受热均一化后,由蒸发源的坩埚喷嘴将受热后的有机蒸镀材料分子蒸镀到基板上。
图1为现有技术中蒸发源的结构示意图。蒸发源1包括坩埚11、坩埚顶盖12和坩埚喷嘴13,坩埚11用于存放并加热有机蒸镀材料,坩埚顶盖12用于将坩埚11密封,坩埚喷嘴13用于使蒸镀气体从坩埚11中喷出。在进行蒸镀时,先由蒸发源1中设置的坩埚11将有机蒸镀材料加热,然后在有机蒸镀材料分子在受热均一化后,由蒸发源1的坩埚喷嘴13将受热后的有机蒸镀材料分子蒸镀到基板上。由于喷嘴13与受热的有机蒸镀材料之间形成的温度差,或者由于喷嘴内壁附着的有异物,可能会导致蒸发的有机蒸镀材料在坩埚喷嘴13处凝固,进而导致坩埚喷嘴13堵塞。堵塞的喷嘴13会导致坩埚11内部压强变化,使蒸镀出去的有机蒸镀材料的厚度均一性变差。现有的蒸发源1中坩埚喷嘴13的堵塞 率在10%~15%左右。而现有的蒸镀设备为真空设备并且通常具有10个有机蒸镀腔室(含多个蒸发源)。多个有机蒸镀腔室需要同时进行抽真空处理。若其中一个蒸发源1发生坩埚喷嘴13堵塞,将导致所有有机蒸镀腔室停止使用。而操作人员必须花费大量的时间来解决坩埚喷嘴13堵塞的问题。一般来说,至少需要7个小时才能解决坩埚喷嘴13堵塞的问题(降温需要2个小时,解除真空需要1个小时,处理喷嘴13的堵塞需要1个hr,抽真空处理需要1个小时,重新加热需要2个小时)。结果,导致其他有机蒸镀腔室内的有机蒸镀材料浪费严重,进而会影响产量与设备的性能。
发明内容
为了解决上述问题,本发明提供了一种能够避免喷嘴堵塞以提高产量和设备性能的蒸发源。
根据本发明的蒸发源包括:坩埚,所述坩埚用于产生蒸镀气体;坩埚顶盖,所述坩埚顶盖设置在所述坩埚上以将所述坩埚密封;以及多个坩埚喷嘴,所述多个坩埚喷嘴设置在所述坩埚顶盖上并且用于使所述蒸镀气体从所述坩埚中喷出。此外,所述蒸发源还包括堵塞加热器,所述塞加热器用于对所述坩埚喷嘴进行加热处理。
优选的是,所述堵塞加热器设置在所述坩埚顶盖上。
优选的是,所述蒸发源包括多个堵塞加热器,使得每个坩埚喷嘴均对应一个堵塞加热器。
优选的是,所述堵塞加热器包围所述多个坩埚喷嘴。
优选的是,所述蒸发源具有多个堵塞加热器,所述多个堵塞加热器以堆叠的方式包围所述多个坩埚喷嘴。
优选的是,所述堵塞加热器包括加热丝,所述加热丝缠绕在所述坩埚喷嘴的周围。
优选的是,所述蒸发源还包括驱动装置,在所述驱动装置上设置有用于探测坩埚喷嘴是否堵塞的堵塞感应器,并且所述驱动 装置能够驱动所述堵塞感应器移动。
优选的是,所述蒸发源还包括驱动装置,所述堵塞加热器设置在所述驱动装置上,并且所述驱动装置能够驱动所述堵塞加热器移动。
优选的是,在所述驱动装置上设置有用于探测坩埚喷嘴是否堵塞的堵塞感应器,并且所述驱动装置能够驱动所述堵塞感应器移动。
更进一步优选的是,所述堵塞感应器用于根据所述坩埚喷嘴喷出的气体的速率或温度探测所述坩埚喷嘴是否堵塞。
优选的是,所述蒸发源为线性蒸发源,所述多个坩埚喷嘴沿着所述蒸发源的坩埚的长度方向分布。
另外,本发明还提供一种蒸镀装置,包括上述任意一项所述的蒸发源。
另外,本发明还提供一种蒸镀方法,包括:使用上述蒸镀装置进行蒸镀,蒸镀当坩埚喷嘴堵塞时,利用堵塞加热器对堵塞的坩埚喷嘴进行加热。
根据本发明的蒸发源中设置有堵塞加热器。当坩埚喷嘴出现堵塞情况时,堵塞加热器能够对堵塞的坩埚喷嘴进行加热处理,使凝固的有机蒸镀材料蒸发。按照这种方式,坩埚的内部可以保持压强恒定,从而确保产品的有机蒸镀材料层的厚度均匀。另外,本发明的蒸发源还可以针对堵塞的坩埚喷嘴进行单独加热处理,使得所有有机蒸镀腔室(包括堵塞的坩埚喷嘴所在的有机蒸镀腔室)都可继续使用。因此,可以避免有机蒸镀材料浪费。进而,不会影响产品的产量和设备的性能。
附图说明
图1为现有技术的蒸发源的结构示意图;
图2为根据本发明的第一实施例的蒸发源的结构示意图;
图3为根据本发明的第一实施例的蒸发源的侧面示意图;
图4为根据本发明的第二实施例的蒸发源的堵塞加热器的的俯视示意图;
图5为根据本发明的第三实施例的蒸发源的堵塞加热器的正面示意图;
图6为根据本发明的第四实施例的蒸发源的堵塞加热器的的俯视示意图;
图7为根据本发明的第五实施例的蒸发源的结构示意图;
图8为根据本发明的第六实施例的蒸发源的结构示意图;
图9为根据本发明的第七实施例的蒸发源的结构示意图。
附图标记列表如下:1、蒸发源;11、坩埚;12、坩埚顶盖;13、坩埚喷嘴;14、堵塞加热器;15、堵塞感应器;16、驱动装置。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。在下面的描述中,使用相同的附图标记表示相同的部件。
第一实施例:
图2为根据本发明的第一实施例的蒸发源的结构示意图。如图2所示,本发明的第一实施例提供了一种蒸发源1,包括:坩埚11,所述坩埚11用于产生蒸镀气体;坩埚顶盖12,所述坩埚顶盖12设置在所述坩埚11上以将所述坩埚11密封;以及多个坩埚喷嘴13,所述多个坩埚喷嘴13设置在所述坩埚顶盖12上并且用于使所述蒸镀气体从所述坩埚11中喷出。根据本发明的第一实施例的蒸发源1还包括堵塞加热器14,所述塞加热器14用于对所述坩埚喷嘴13进行加热处理。
优选的是,所述堵塞加热器14设置在所述坩埚顶盖12中或者设置在所述坩埚顶盖12上。
也就是说,在承装并加热有机蒸镀材料的坩埚11上可设置坩埚顶盖12,而坩埚喷嘴13设置在坩埚顶盖12上在这种情况下,可将堵塞加热器14设置在坩埚顶盖12内部的与坩埚喷嘴13相对应的位置。
在本实施例中,所述蒸发源1具有多个堵塞加热器14,使得每个坩埚喷嘴13均对应一个堵塞加热器14。这样,可以保证任何一个坩埚喷嘴13在出现堵塞时均可进行加热处理。
由图3可以看出,堵塞加热器14设置在坩埚顶盖12中。当需要蒸发的有机蒸镀材料在某一个坩埚喷嘴13中凝固时,堵塞加热器14可直接对该坩埚喷嘴13进行加热,使凝固的有机蒸镀材料蒸发。按照这种方式,坩埚11的内部可以保持压强恒定,从而确保产品的有机蒸镀材料层的厚度均匀,避免有机蒸镀材料浪费。进而,不会影响产品的产量和设备的性能。
在本实施例中,蒸发源1为线性蒸发源,多个坩埚喷嘴13沿着蒸发源1的坩埚11的长度方向分布。
当然,蒸发源并不局限于线性蒸发源。在其他实施例中,多个坩埚喷嘴13也可以按照其他方式分布,例如交错式分布。
第二实施例:
图4为根据本发明的第二实施例的蒸发源的堵塞加热器的的俯视示意图。本实施例的蒸发源与第一实施例的区别在于,堵塞加热器14设置在坩埚顶盖12上的坩埚喷嘴13的周围。也就是说,所述堵塞加热器14可以包围位于所述坩埚顶盖12上的多个坩埚喷嘴13。
在本实施例中,所述堵塞加热器14可以包围所有坩埚喷嘴13,也可以包围其中的一些坩埚喷嘴13。因此,不论哪个坩埚喷嘴13发生堵塞,都可以对堵塞的坩埚喷嘴13进行加热,从而使凝固的有机蒸镀材料蒸发。在多个坩埚喷嘴13沿着蒸发源1的坩 埚11的长度方向分布的情况下,根据本实施例的堵塞加热器14可以以简单的结构提供比较均匀的加热。
第三实施例:图5为根据本发明的第三实施例的蒸发源的堵塞加热器的正面示意图。本实施例的蒸发源与第二实施例的区别在于,所述蒸发源1具有多个堵塞加热器14,所述多个堵塞加热器14以堆叠的方式包围位于所述坩埚顶盖12上的多个坩埚喷嘴13。
在本实施例中,多个堵塞加热器14以堆叠的方式排列,从而可以增强对坩埚喷嘴13加热的效果。堵塞加热器14的数量可以根据坩埚喷嘴13的高度以及具体应用进行选择。
第四实施例:
图6为根据本发明的第四实施例的蒸发源的堵塞加热器的的俯视示意图。本实施例的蒸发源与第一实施例的区别在于,堵塞加热器14包括加热丝,所述加热丝可以缠绕在坩埚喷嘴13的周围。在本实施例中,加热丝缠绕在坩埚喷嘴13周围的圈数可以根据坩埚喷嘴13的高度以及具体应用进行选择。容易理解的是,对于多个坩埚喷嘴13来说,加热丝的圈数可以不相同,也可以相同。按照这种方式,堵塞加热器14可以更高效地对坩埚喷嘴13进行加热。
第五实施例:
图7为根据本发明的第五实施例的蒸发源的结构示意图。如图7所示,本实施例的蒸发源与第一至第四实施例的区别在于,蒸发源1还包括驱动装置16,所述堵塞加热器14设置在所述驱动装置16上,并且所述驱动装置16能够驱动所述堵塞加热器14移动。
如上文所述,驱动装置16设置在坩埚11的上方,堵塞加热器14设置在驱动装置16上,驱动装置16可以驱动堵塞加热器14 移动。当需要蒸发的有机蒸镀材料在坩埚喷嘴13中凝固时,驱动装置16会驱动堵塞加热器14移动到堵塞的坩埚喷嘴13处。当到达堵塞的坩埚喷嘴13上方时,堵塞加热器14直接对坩埚喷嘴13进行加热,以使堵塞的有机蒸镀材料蒸发。按照这种方式,坩埚11内部可以保持压强恒定,从而确保产品的有机蒸镀材料层的厚度均匀,避免有机蒸镀材料浪费。,进而,不会影响产品的产量和设备的性能。
容易理解的是,在本实施例中,可以使用一个堵塞加热器14对多个坩埚喷嘴13进行加热。
第六实施例:
图8为根据本发明的第六实施例的蒸发源的结构示意图。本实施例的蒸发源与第一至第四实施例的区别在于,蒸发源1还包括驱动装置16,在所述驱动装置16上设置有用于探测坩埚喷嘴13是否堵塞的堵塞感应器15,并且所述驱动装置16能够驱动所述堵塞感应器15移动。
优选的是,堵塞感应器15能够根据坩埚喷嘴13喷出的气体的速率或温度探测坩埚喷嘴13是否堵塞。
当然,堵塞感应器15并不仅限于通过坩埚喷嘴13喷出的气体的速率或温度探测坩埚喷嘴13是否堵塞,还可以根据其他参数探测是否堵塞。
具体的,堵塞感应器15可为堵塞探针或其他类型的能够对坩埚喷嘴13进行堵塞探测的感应器。
如上文所述,在驱动装置16上还设置有堵塞感应器15,并且驱动装置16能够驱动堵塞感应器15移动。堵塞感应器15能够根据坩埚喷嘴13喷出的气体的速率或温度探测坩埚喷嘴13是否堵塞。当探测到堵塞的坩埚喷嘴13时,可以由与堵塞的坩埚喷嘴13相对应的堵塞加热器14进行加热处理。
例如,堵塞感应器15可以每过一段时间间隔对坩埚喷嘴13的堵塞情况进行一次探测,以便及时发现堵塞的坩埚喷嘴13。优 选的是,设置在驱动装置16上的堵塞感应器15只有在对坩埚喷嘴13的堵塞情况进行探测时才移动到坩埚喷嘴13的上方,而在不探测的时候则被移开。
在本实施列中设置的堵塞感应器15可以直接确定堵塞的坩埚喷口13。因此,堵塞加热器14可以对堵塞的坩埚喷口13进行加热。按照这种方式,不需要对所有的坩埚喷嘴13进行加热,而是仅对发生堵塞的坩埚喷嘴13进行加热。因此,不会影响未发生堵塞的坩埚喷嘴13的正常工作,节省了总加热量。
第七实施例:
图9为根据本发明的第七实施例的蒸发源的结构示意图。本实施例的蒸发源与第五实施例的区别在于,在所述驱动装置16上设置有用于探测坩埚喷嘴13是否堵塞的堵塞感应器15,并且所述驱动装置16能够驱动所述堵塞感应器15移动。
也就是说,如图9所示,在所述驱动装置16上设置有堵塞加热器14和用于探测坩埚喷嘴13是否堵塞的堵塞感应器15,并且所述驱动装置16能够驱动所述堵塞加热器14和所述堵塞感应器15移动。在本实施例中,堵塞感应器15可以对堵塞情况进行探测;若发现堵塞的坩埚喷嘴13,则驱动装置16将相应的堵塞加热器14移动至堵塞的坩埚喷嘴13的位置处以对其进行加热。
另外,本发明还提供了一种蒸镀装置,该蒸镀装置包括根据本发明第一至第七实施例的蒸发源之一。
本发明提供的蒸镀装置中设置有堵塞加热器。当坩埚喷嘴出现堵塞情况时,堵塞加热器能够对堵塞的坩埚喷嘴进行加热处理,使凝固的有机蒸镀材料蒸发。按照这种方式,坩埚的内部可以保持压强恒定,从而确保产品的有机蒸镀材料层的厚度均匀。另外,本发明的蒸镀装置还可以针对堵塞的坩埚喷嘴进行单独加热处理,使得所有有机蒸镀腔室(包括堵塞的坩埚喷嘴所在的有机蒸镀腔室)都可继续使用。因此,可以避免有机蒸镀材料浪费。进 而,不会影响产品的产量和设备的性能。
另外,本发明还提供了一种蒸镀方法,所述方法包括使用上述蒸镀装置进行蒸镀,并且当坩埚喷嘴堵塞时,利用堵塞加热器对堵塞的坩埚喷嘴进行加热。
事实上,堵塞加热器可以始终对坩埚喷嘴进行加热。在这种情况下,可以有效避免坩埚喷嘴的堵塞。
但为了节约成本,优选的是,在蒸镀过程中,使用设置在蒸发源中的堵塞感应器对坩埚喷嘴的堵塞情况进行探测。具体地说,将堵塞感应器移动到坩埚喷嘴上方,并且通过堵塞感应器对坩埚喷嘴喷出的气体的速率或温度进行探测,以判断坩埚喷嘴是否堵塞并确定堵塞的坩埚喷嘴的位置;
若根据堵塞感应器的检测结果确定坩埚喷嘴堵塞,则用相应的坩埚喷嘴的堵塞加热器进行加热。
设置堵塞感应器可以每过一段时间间隔对坩埚喷嘴的堵塞情况进行一次探测,以便及时发现堵塞的坩埚喷嘴。当然,堵塞感应器并不仅限于通过坩埚喷嘴喷出的气体的速率或温度探测坩埚喷嘴是否堵塞,还可以根据其他参数探测是否堵塞。
在本发明的实施列中,可以根据堵塞感应器直接确定堵塞的坩埚喷口,进而对发生堵塞的坩埚喷口进行加热。按照这种方式,不需要对所有的坩埚喷嘴进行加热,而是仅对发生堵塞的坩埚喷嘴进行加热。因此,不会影响未发生堵塞的坩埚喷嘴13的正常工作,节省了总加热量。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种蒸发源,包括:坩埚,所述坩埚用于产生蒸镀气体;坩埚顶盖,所述坩埚顶盖设置在所述坩埚上以将所述坩埚密封;以及多个坩埚喷嘴,所述多个坩埚喷嘴设置在所述坩埚顶盖上并且用于使所述蒸镀气体从所述坩埚中喷出,其特征在于,
    所述蒸发源还包括堵塞加热器,所述堵塞加热器用于对所述坩埚喷嘴进行加热处理。
  2. 根据权利要求1所述的蒸发源,其特征在于,
    所述堵塞加热器设置在所述坩埚顶盖上。
  3. 根据权利要求2所述的蒸发源,其特征在于,
    所述蒸发源包括多个堵塞加热器,使得每个坩埚喷嘴均对应一个堵塞加热器。
  4. 根据权利要求2所述的蒸发源,其特征在于,
    所述堵塞加热器包围所述多个坩埚喷嘴。
  5. 根据权利要求4所述的蒸发源,其特征在于,
    所述蒸发源具有多个堵塞加热器,所述多个堵塞加热器以堆叠的方式包围所述多个坩埚喷嘴。
  6. 根据权利要求2所述的蒸发源,其特征在于,
    所述堵塞加热器包括加热丝,所述加热丝缠绕在所述坩埚喷嘴的周围。
  7. 根据权利要求1-6中任一项所述的蒸发源,其特征在于,
    所述蒸发源还包括驱动装置,在所述驱动装置上设置有用于探测坩埚喷嘴是否堵塞的堵塞感应器,并且所述驱动装置能够驱 动所述堵塞感应器移动。
  8. 根据权利要求1所述的蒸发源,其特征在于,
    所述蒸发源还包括驱动装置,所述堵塞加热器设置在所述驱动装置上,并且所述驱动装置能够驱动所述堵塞加热器移动。
  9. 根据权利要求8所述的蒸发源,其特征在于,
    在所述驱动装置上设置有用于探测坩埚喷嘴是否堵塞的堵塞感应器,并且所述驱动装置能够驱动所述堵塞感应器移动。
  10. 根据权利要求7或9所述的蒸发源,其特征在于,
    所述堵塞感应器用于根据所述坩埚喷嘴喷出的气体的速率或温度探测所述坩埚喷嘴是否堵塞。
  11. 根据权利要求1所述的蒸发源,其特征在于,
    所述蒸发源为线性蒸发源,所述多个坩埚喷嘴沿着所述蒸发源的坩埚的长度方向分布。
  12. 一种蒸镀装置,包括权利要求1-11中任一项所述的蒸发源。
  13. 一种蒸镀方法,其特征在于,所述方法包括:
    使用根据权利要求10所述的蒸镀装置进行蒸镀,并且
    当坩埚喷嘴堵塞时,利用堵塞加热器对堵塞的坩埚喷嘴进行加热。
PCT/CN2016/077509 2015-04-30 2016-03-28 一种蒸发源、蒸镀装置以及蒸镀方法 WO2016173352A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/129,284 US20170175250A1 (en) 2015-04-30 2016-03-28 Evaporation source, evaporation-deposition device and evaporation-deposition method
US15/291,723 US20170029938A1 (en) 2015-04-30 2016-10-12 Evaporation source, evaporation-deposition device and evaporation-deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510217702.XA CN104762601A (zh) 2015-04-30 2015-04-30 一种蒸发源、蒸镀装置、蒸镀方法
CN201510217702.X 2015-04-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/129,284 A-371-Of-International US20170175250A1 (en) 2015-04-30 2016-03-28 Evaporation source, evaporation-deposition device and evaporation-deposition method
US15/291,723 Continuation-In-Part US20170029938A1 (en) 2015-04-30 2016-10-12 Evaporation source, evaporation-deposition device and evaporation-deposition method

Publications (1)

Publication Number Publication Date
WO2016173352A1 true WO2016173352A1 (zh) 2016-11-03

Family

ID=53644684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077509 WO2016173352A1 (zh) 2015-04-30 2016-03-28 一种蒸发源、蒸镀装置以及蒸镀方法

Country Status (3)

Country Link
US (1) US20170175250A1 (zh)
CN (2) CN104762601A (zh)
WO (1) WO2016173352A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762601A (zh) * 2015-04-30 2015-07-08 京东方科技集团股份有限公司 一种蒸发源、蒸镀装置、蒸镀方法
CN105296934B (zh) * 2015-11-09 2018-06-19 合肥欣奕华智能机器有限公司 一种线形蒸发源及蒸镀设备
CN105483620B (zh) * 2015-11-27 2018-03-30 京东方科技集团股份有限公司 喷嘴部件、蒸镀装置及制作有机发光二极管器件的方法
CN107365960B (zh) * 2016-05-13 2019-04-30 合肥欣奕华智能机器有限公司 蒸发源检测系统以及检测方法、蒸镀设备
CN106756807B (zh) * 2017-01-23 2019-07-05 京东方科技集团股份有限公司 一种蒸镀源、蒸镀装置及其蒸镀方法
CN110191976B (zh) * 2017-07-18 2021-12-10 京东方科技集团股份有限公司 蒸发坩埚和蒸发设备
CN107604318B (zh) * 2017-09-27 2019-10-15 京东方科技集团股份有限公司 坩埚加热装置
CN107805783B (zh) * 2017-11-30 2023-12-19 京东方科技集团股份有限公司 蒸发源、蒸镀设备及蒸镀控制方法
CN109930113A (zh) * 2017-12-15 2019-06-25 合肥鑫晟光电科技有限公司 蒸镀装置
CN108048797A (zh) * 2017-12-29 2018-05-18 上海升翕光电科技有限公司 一种三t型oled蒸镀线源
EP3743539A1 (en) * 2018-01-23 2020-12-02 Applied Materials, Inc. Evaporator for evaporating a source material, material deposition source, deposition apparatus and methods therefor
CN108359941B (zh) * 2018-05-11 2019-08-23 京东方科技集团股份有限公司 坩埚盖、坩埚盖组件、蒸发源、蒸镀方法
CN108823535B (zh) * 2018-07-10 2020-04-14 京东方科技集团股份有限公司 一种蒸镀设备
CN109136855B (zh) * 2018-09-05 2021-03-02 京东方科技集团股份有限公司 一种蒸发源及蒸镀装置
WO2021107224A1 (ko) * 2019-11-29 2021-06-03 엘지전자 주식회사 증착 장치
KR20220123245A (ko) * 2020-02-21 2022-09-06 엘지전자 주식회사 증착 장치 시스템
CN112680698B (zh) * 2021-03-15 2021-06-29 苏州盟萤电子科技有限公司 真空蒸镀用加热坩埚及真空蒸镀装置
CN113416932A (zh) * 2021-06-10 2021-09-21 合肥联顿恪智能科技有限公司 一种蒸发源装置
CN113943924A (zh) * 2021-09-22 2022-01-18 信利(惠州)智能显示有限公司 一种蒸镀装置以及蒸镀方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082820A (ko) * 2010-01-12 2011-07-20 주식회사 에스에프에이 유기전계발광 디스플레이 패널 제조용 증발원 및 이를 포함하는 증착장치
JP2011162867A (ja) * 2010-02-15 2011-08-25 Mitsubishi Heavy Ind Ltd 真空蒸発装置
JP2012216374A (ja) * 2011-03-31 2012-11-08 Hitachi High-Technologies Corp 真空蒸着装置、真空蒸着方法、および、有機el表示装置の製造方法
CN104762601A (zh) * 2015-04-30 2015-07-08 京东方科技集团股份有限公司 一种蒸发源、蒸镀装置、蒸镀方法
CN104762600A (zh) * 2015-04-20 2015-07-08 京东方科技集团股份有限公司 蒸镀坩埚和蒸镀装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889758B1 (ko) * 2002-09-03 2009-03-20 삼성모바일디스플레이주식회사 유기박막 형성장치의 가열용기
TWI252706B (en) * 2002-09-05 2006-04-01 Sanyo Electric Co Manufacturing method of organic electroluminescent display device
JP4442558B2 (ja) * 2005-01-06 2010-03-31 三星モバイルディスプレイ株式會社 蒸発源の加熱制御方法,蒸発源の冷却制御方法および蒸発源の制御方法
US8490282B2 (en) * 2009-05-19 2013-07-23 Eastman Kodak Company Method of manufacturing a porous catcher
FR2956411B1 (fr) * 2010-02-16 2012-04-06 Astron Fiamm Safety Systeme de chauffage d'une source de depot en phase vapeur
CN103415645B (zh) * 2011-03-14 2015-04-01 夏普株式会社 蒸镀颗粒射出装置和蒸镀装置以及蒸镀方法
CN203451609U (zh) * 2013-09-26 2014-02-26 京东方科技集团股份有限公司 一种蒸镀坩埚
CN103757590B (zh) * 2013-12-31 2016-04-20 深圳市华星光电技术有限公司 一种镀膜机坩埚设备
CN104561905B (zh) * 2014-12-29 2017-07-14 昆山国显光电有限公司 一种线性蒸发源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082820A (ko) * 2010-01-12 2011-07-20 주식회사 에스에프에이 유기전계발광 디스플레이 패널 제조용 증발원 및 이를 포함하는 증착장치
JP2011162867A (ja) * 2010-02-15 2011-08-25 Mitsubishi Heavy Ind Ltd 真空蒸発装置
JP2012216374A (ja) * 2011-03-31 2012-11-08 Hitachi High-Technologies Corp 真空蒸着装置、真空蒸着方法、および、有機el表示装置の製造方法
CN104762600A (zh) * 2015-04-20 2015-07-08 京东方科技集团股份有限公司 蒸镀坩埚和蒸镀装置
CN104762601A (zh) * 2015-04-30 2015-07-08 京东方科技集团股份有限公司 一种蒸发源、蒸镀装置、蒸镀方法

Also Published As

Publication number Publication date
US20170175250A1 (en) 2017-06-22
CN105112856A (zh) 2015-12-02
CN104762601A (zh) 2015-07-08
CN105112856B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2016173352A1 (zh) 一种蒸发源、蒸镀装置以及蒸镀方法
KR101084234B1 (ko) 증착원, 이를 구비하는 증착 장치 및 박막 형성 방법
KR101942471B1 (ko) 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조방법
JP2008274322A (ja) 蒸着装置
CN102061445A (zh) 真空蒸镀装置、真空蒸镀方法及有机el显示装置的制造方法
KR101108152B1 (ko) 증착 소스
WO2016107431A1 (zh) 一种线性蒸发源
JP2014072005A (ja) 蒸発源、真空蒸着装置及び有機el表示装置製造方法
US20130323868A1 (en) Deposition Apparatus and Method for Manufacturing Organic Light Emitting Diode Display Using the Same
WO2019019237A1 (zh) 蒸发源装置及蒸镀机
TW201335399A (zh) 沉積裝置及使用其製造有機發光二極體顯示器之方法
US20170029938A1 (en) Evaporation source, evaporation-deposition device and evaporation-deposition method
JP2011162846A (ja) 真空蒸発源
JP2013185252A (ja) 蒸発源装置及び真空蒸着装置及び有機el表示装置の製造方法
CN205662590U (zh) 一种蒸镀装置
CN207405228U (zh) 一种蒸发源系统
KR101549116B1 (ko) 화학 기상 증착 장치 및 화학 기상 증착 방법
KR101599505B1 (ko) 증착장치용 증발원
KR101741806B1 (ko) 리니어 분사체 및 이를 포함하는 증착장치
US10590526B2 (en) Pressurized spray deposition device and method for an organic material steam
KR102144790B1 (ko) 리니어 증착유닛 및 이를 포함하는 리니어 증착장치
KR20170038288A (ko) 여러 유기물 기체 혼합 증발원
JP5836759B2 (ja) 除膜方法
KR101125556B1 (ko) 유기물 증착 장치
KR20140136650A (ko) 박막 증착 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15129284

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16785783

Country of ref document: EP

Kind code of ref document: A1