WO2016170942A1 - 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法 - Google Patents

化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法 Download PDF

Info

Publication number
WO2016170942A1
WO2016170942A1 PCT/JP2016/060449 JP2016060449W WO2016170942A1 WO 2016170942 A1 WO2016170942 A1 WO 2016170942A1 JP 2016060449 W JP2016060449 W JP 2016060449W WO 2016170942 A1 WO2016170942 A1 WO 2016170942A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
group
treatment composition
polishing treatment
Prior art date
Application number
PCT/JP2016/060449
Other languages
English (en)
French (fr)
Inventor
清孝 三ツ元
達慶 河本
達也 山中
愛 荒川
英一郎 國谷
雅史 飯田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020167030226A priority Critical patent/KR101731523B1/ko
Priority to US15/568,285 priority patent/US10507563B2/en
Publication of WO2016170942A1 publication Critical patent/WO2016170942A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/08Polycarboxylic acids containing no nitrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0047Other compounding ingredients characterised by their effect pH regulated compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/14Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3245Aminoacids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3281Heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to a chemical mechanical polishing treatment composition, a chemical mechanical polishing method, and a cleaning method.
  • CMP chemical mechanical polishing
  • tungsten which has excellent embedding properties, is used as a material such as a plug for electrically connecting the wirings in the vertical and vertical directions.
  • a first polishing process for mainly polishing the tungsten layer provided on the insulating film, and a second polishing for polishing the tungsten plug, a barrier metal film such as titanium, and the insulating film. Processing steps are performed in sequence.
  • Patent Document 2 discloses a semiconductor used in a stage prior to final polishing corresponding to the first polishing process.
  • a polishing composition such as colloidal silica for the purpose of preventing surface roughness after polishing due to a high polishing rate and high reactivity between an amine compound as a polishing accelerator and silicon.
  • a semiconductor polishing composition comprising abrasive grains, a basic low-molecular compound such as an amine compound, and a water-soluble polymer compound containing a nitrogen-containing group such as polyethyleneimine is disclosed.
  • Patent Document 3 discloses a chemical mechanical polishing composition containing a tungsten etching agent such as an oxidizing agent, a tungsten etching inhibitor such as a specific polymer containing a nitrogen atom present in an amount of 1 to 1,000 ppm, and water.
  • a chemical mechanical polishing method for a substrate containing tungsten that is polished using an object is disclosed.
  • the chemical mechanical polishing composition used in this polishing method includes, as optional components, a polishing agent such as colloidal silica, monopersulfate (SO 5 2 ⁇ ), dipersulfate (S 2 O 8 2 ⁇ ) And the like.
  • the number of particles of 0.2 ⁇ m or more counts 10,000 or more, but it is required to remove several to tens of particles by cleaning.
  • the surface concentration of metal impurities is 1 ⁇ 10 11 to 1 ⁇ 10 12 or more, but it is required to be removed to 1 ⁇ 10 10 or less by washing. For this reason, when CMP is introduced into the manufacture of a semiconductor device, cleaning after CMP is an inevitable process.
  • the width and diameter of the wiring and plug are about tens to hundreds of tungsten atoms. Even if a fine Pit is generated at the atomic level with a diameter of a minute, a serious electric characteristic failure is caused. For this reason, corrosion control technology to prevent the tungsten film from eluting at the atomic level in any of the recent finish polishing process (so-called polishing process), the cleaning process on the platen after polishing, and the post-cleaning process in the cleaning apparatus. (For example, see Patent Document 4).
  • the above technique is insufficient as a tungsten film polishing composition capable of reducing the corrosion of the surface to be polished while maintaining a high polishing rate. Moreover, it was insufficient as a composition for cleaning a tungsten film capable of achieving both removal of foreign matters on the surface to be cleaned and reduction of corrosion.
  • a target object such as a semiconductor wafer provided with a wiring layer containing a metal such as tungsten, particularly the target object.
  • a chemical mechanical polishing composition for polishing a surface to be processed in which a tungsten film and an insulating film such as a silicon oxide film coexist while reducing corrosion of the tungsten film surface without reducing the polishing rate, and A chemical mechanical polishing method is provided.
  • cleaning that can efficiently remove metal oxide films and organic residues on the surface to be processed while reducing the corrosion of the surface to be processed obtained by chemical mechanical polishing using the chemical mechanical polishing treatment composition. And a method for cleaning a substrate using the same.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • a chemical mechanical polishing treatment composition for treating a workpiece provided with a wiring layer containing a metal (A) a nitrogen-containing compound; (B) at least one compound selected from the group consisting of a surfactant and polyacrylic acid; (D) a pH adjuster, Electrode charge transfer resistance value obtained by AC impedance measurement using the metal as an electrode (1 ⁇ 1 cm of the central portion of the metal wafer cut into 1 ⁇ 3 cm is affixed with insulating tape on the exposed area of 1 ⁇ 1 cm above Attach an electrode clip and connect it to a measuring device with controlled AC voltage, immerse the exposed area of the lower 1 ⁇ 1 cm in aqueous solution for 5 minutes, and apply AC voltage with amplitude 5mV and frequency 1500-0.5Hz from high frequency to low frequency Obtained by obtaining the real and imaginary part of the resistance value, and analyzing the semicircular plot obtained by taking the imaginary part on the vertical axis and the
  • Electrode charge transfer resistance (RA) in an aqueous solution containing the component (A) and the (D) pH adjusting agent, and an electrode charge in an aqueous solution containing the (B) component and the (D) pH adjusting agent A value (RA + RB) that is a combination of the transfer resistance value (RB), an electrode charge transfer resistance value (RC) in an aqueous solution containing the component (A), the component (B), and the pH adjuster (D) The relationship is RC / (RA + RB)> 1.
  • the (A) nitrogen-containing compound may be at least one selected from the group consisting of compounds represented by the following general formulas (1) to (3).
  • R 1 and R 2 each independently represents a hydrogen atom or a functional group selected from organic groups having 1 to 10 carbon atoms.
  • R 3 is any one selected from the group consisting of a hydrogen atom, a C 2-10 organic group containing a nitrogen atom, and a C 1-10 organic group having a carboxyl group.
  • Represents a functional group of In the above general formula (3), at least one of R 4 to R 7 is a C 1-3 organic group having a carboxyl group, and the others represent hydrogen atoms.
  • (A) is a compound represented by the general formula (1)
  • the (B) may be an anionic surfactant or polyacrylic acid.
  • the anionic surfactant may be at least one selected from the group consisting of potassium dodecylbenzenesulfonate, dipotassium alkenyl succinate and octyl phosphate.
  • (A) is a compound represented by the general formula (2), wherein R 3 is a C 2-10 organic group containing a nitrogen atom,
  • the (B) may be a surfactant having a sulfo group.
  • the surfactant having a sulfo group may be an alkylbenzene sulfonic acid or a salt thereof.
  • (A) is a compound in which R 3 is a C 1-10 organic group having a carboxyl group, or represented by the general formula (3).
  • a compound to be The (B) may be a betaine surfactant having a carboxyl group.
  • the (B) may be at least one selected from the group consisting of compounds represented by the following general formulas (4), (5) and (6).
  • R 8 to R 10 each independently represents any functional group selected from the group consisting of hydrocarbon groups having 1 to 15 carbon atoms, and R 11 represents 1 to 5 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom, a hydrocarbon group having 5 to 20 carbon atoms, an organic group having 5 to 20 carbon atoms having an amide group, or a carbon having an amino group.
  • R 15 and R 16 are each independently selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms and an organic group having 1 to 10 carbon atoms having a hydroxyl group.
  • R 17 represents a hydrocarbon group having 1 to 5 carbon atoms.
  • (A) is at least one selected from the group consisting of quinolinic acid, histidine, arginine and aspartic acid
  • (B) is at least one selected from the group consisting of lauryldimethylaminoacetic acid betaine, laurylaminodipropionic acid betaine, and 2-lauryl-N-carboxymethyl-N-hydroxyetherimidazolinium betaine. it can.
  • the electrode charge transfer resistance value (RC) can be higher than 100 k ⁇ / cm 2 .
  • the metal can be tungsten.
  • the (C) oxidizing agent may be hydrogen peroxide or ammonium persulfate.
  • the chemical mechanical polishing treatment composition may be a cleaning composition for cleaning the workpiece.
  • the chemical mechanical polishing treatment composition may be a chemical mechanical polishing composition for polishing the workpiece.
  • One aspect of the chemical mechanical polishing method according to the present invention is: Using the chemical mechanical polishing treatment composition described in Application Example 14, the object to be processed provided with the wiring layer containing metal is polished.
  • Application Example 18 One aspect of the cleaning method according to the present invention is: The treatment object is cleaned using the chemical mechanical polishing treatment composition described in Application Example 12.
  • a chemical mechanical polishing treatment composition for treating a workpiece provided with a wiring layer containing a metal (A) a nitrogen-containing compound; (B) at least one compound selected from the group consisting of a surfactant and polyacrylic acid; (D) a pH adjuster.
  • an object to be processed such as a semiconductor wafer provided with a wiring layer containing a metal such as tungsten, particularly a tungsten film of the object to be processed
  • a surface to be processed in which an insulating film such as a silicon oxide film coexists can be polished while reducing the corrosion of the tungsten film surface without reducing the polishing rate.
  • the metal oxide film and organic residue on the surface to be processed can be efficiently removed while reducing the corrosion on the surface to be processed.
  • FIG. 1 is a cross-sectional view schematically showing a target object suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • FIG. 2 is a perspective view schematically showing a chemical mechanical polishing apparatus suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • a chemical mechanical polishing treatment composition according to an embodiment of the present invention is a chemical mechanical polishing treatment composition for treating a target object provided with a wiring layer containing a metal.
  • A a nitrogen-containing compound
  • B at least one compound selected from the group consisting of a surfactant and polyacrylic acid
  • D a pH adjuster. Further, the present invention is characterized by satisfying the following specific conditions.
  • the chemical mechanical polishing treatment composition according to the embodiment of the present invention can be suitably used as a “chemical mechanical polishing composition” for polishing a workpiece using a chemical mechanical polishing method, It can also be suitably used as a “cleaning composition” for cleaning an object to be processed after chemical mechanical polishing.
  • the chemical mechanical polishing treatment composition according to the embodiment of the present invention has both the functions of “chemical mechanical polishing composition” and “cleaning composition”, and has specific conditions as shown below. It is characterized by satisfying.
  • each component contained in the chemical mechanical polishing composition according to the present embodiment will be described.
  • the chemical mechanical polishing treatment composition according to the present embodiment contains a nitrogen atom-containing compound as the component (A).
  • the component (A) acts as a complexing agent, and a wiring layer containing a metal such as tungsten is provided by interaction with the component (B) described later.
  • the inventors infer that a multilayer anticorrosion film is formed on the treated surface. For this reason, when used as a chemical mechanical polishing composition during chemical mechanical polishing, the processed surface can be polished while reducing the corrosion of the processed surface without reducing the polishing rate. It is done.
  • a cleaning composition after chemical mechanical polishing it is considered that metal oxide films and organic residues on the surface to be processed can be efficiently removed while reducing corrosion on the surface to be processed. .
  • the nitrogen-containing compound is preferably at least one selected from the group consisting of compounds represented by the following general formulas (1) to (3).
  • R 1 and R 2 each independently represents a hydrogen atom or a functional group selected from organic groups having 1 to 10 carbon atoms.
  • R 3 is any one selected from the group consisting of a hydrogen atom, a C 2-10 organic group containing a nitrogen atom, and a C 1-10 organic group having a carboxyl group.
  • Represents a functional group of In the above general formula (3), at least one of R 4 to R 7 is a C 1-3 organic group having a carboxyl group, and the others represent hydrogen atoms.
  • component (A) is at least one selected from the group consisting of the compounds represented by the above general formulas (1) to (3), in combination with a specific component (B) described later, The action as a complexing agent is improved. For this reason, the higher corrosion reduction effect is acquired.
  • the organic group having 1 to 10 carbon atoms in R 1 and R 2 in the general formula (1) is not particularly limited, but specific examples thereof include a carbon group having a hydrocarbon group and amide group having 1 to 10 carbon atoms. Examples thereof include an organic group having 1 to 10 carbon atoms, an organic group having 1 to 10 carbon atoms having an amino group, and an organic group having 1 to 10 carbon atoms having a heterocyclic group. Among these, hydrocarbons having 1 to 10 carbon atoms An organic group having 1 to 10 carbon atoms and an amino group is preferred.
  • the compound represented by the general formula (1) is not particularly limited, but specific examples include piperazine, N- (2-aminoethyl) piperazine, N, N′-bis (3-propylamino) piperazine, phenyl Piperazine, diphenylpiperazine, pyridinylpiperazine, pyrimidylpiperazine and the like can be mentioned. Among these, piperazine, N- (2-aminoethyl) piperazine, N, N′-bis (3-propylamino) piperazine Preferably there is.
  • the compounds exemplified above may be used alone or in combination of two or more.
  • the organic group having 2 to 10 carbon atoms is not particularly limited, and specific examples thereof include an organic group having 2 to 10 carbon atoms having an amide group, an organic group having 2 to 10 carbon atoms having an amino group, and an imide group.
  • the organic group having 2 to 10 carbon atoms and the organic group having 2 to 10 carbon atoms having a nitrogen-containing heterocyclic group are preferable.
  • the specific component (B) it is possible to polish or clean the surface to be processed while reducing the corrosion of the surface to be processed without lowering the polishing rate.
  • the nitrogen atom-containing compound is an amino acid represented by the above general formula (2)
  • R 3 is a compound having 2 to 10 carbon atoms containing a nitrogen atom
  • (B) component is alkylbenzene
  • the nitrogen atom-containing compound is an amino acid represented by the above general formula (2)
  • R 3 is a compound having 1 to 10 carbon atoms having a carboxyl group
  • component By selecting at least one selected from the group consisting of compounds represented by the general formulas (4), (5) and (6) described later, the surface to be processed without further reducing the polishing rate The surface to be treated can be polished or cleaned while reducing the corrosion of the substrate.
  • the surface to be processed can be polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the compounds exemplified above may be used alone or in combination of two or more.
  • the organic group having 1 to 3 carbon atoms having a carboxyl group is preferably a carboxyethyl group or a carboxymethyl group.
  • the surface to be processed can be polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the content ratio of the component (A) is the chemical mechanical polishing composition. Is 0.0001% by mass or more and 1% by mass or less, preferably 0.0005% by mass or more and 0.5% by mass or less, more preferably 0.001% by mass or more and 0.1% by mass or less. .
  • the content ratio of the component (A) is within the above range, the surface to be processed can be more effectively polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the content ratio of the component (A) is the cleaning composition. 0.0001 mass% or more and 1 mass% or less, preferably 0.0005 mass% or more and 0.5 mass% or less, more preferably 0.001 mass% or more and 0.05 mass% or less with respect to the total mass of the product. is there.
  • the content ratio of the component (A) is in the above range, the metal oxide film and the organic residue on the wiring board can be more efficiently removed while reducing the corrosion of the surface to be processed.
  • the chemical mechanical polishing treatment composition according to the present embodiment contains at least one compound selected from the group consisting of a surfactant and polyacrylic acid as the (B) component.
  • a multilayer structure is formed on the surface to be processed provided with a wiring layer containing a metal such as tungsten by the interaction between the component (B) and the component (A) described above.
  • the inventor presumes that an anticorrosive film is formed. Therefore, for example, when a chemical mechanical polishing composition is used as a chemical mechanical polishing composition, the surface to be processed is polished while reducing the corrosion of the surface to be processed without reducing the polishing rate. It is thought that you can.
  • component (B) is an anionic surfactant or polyacrylic acid.
  • anionic surfactant or polyacrylic acid it becomes easy to form a multilayer anticorrosion film by the interaction with the component (A) described above, and suppresses corrosion of the surface to be processed. can do.
  • the inventor speculates as follows. That is, since the compound represented by the general formula (1) as the component (A) forms a complex on the surface to be treated and becomes cationic under acidic conditions, the anionic component (B) is It is attracted to and adsorbed to the component (A) by the action. Furthermore, the substituted alkyl carbon chains in the component (B) self-assemble on the surface to be treated by hydrophobic interaction, thereby increasing the thickness of the adsorption layer. As a result, for example, when chemical mechanical polishing is performed on a surface to be processed such as tungsten using a chemical mechanical polishing treatment composition, the surface to be processed is prevented from being corroded more than necessary by an oxidizing agent as an etching agent. I think that.
  • the chemical mechanical polishing treatment composition according to the present embodiment is dramatically increased in comparison with the case where the component (A) and the component (B) are each used alone as a corrosion inhibitor. Corrosion suppression effect on the treated surface is increased.
  • the coexistence of the component (A) which is a complexing agent and the component (B) which is an anionic compound realizes corrosion inhibition of the surface to be treated. It is thought that it is done.
  • the anionic surfactant used as the component (B) is not particularly limited, but specific examples include carboxylate, sulfonate, succinate, sulfate ester salt, phosphate ester salt and the like. .
  • carboxylate A fatty acid soap, alkyl ether carboxylate, etc. are mentioned as a specific example.
  • the sulfonate is not particularly limited, and specific examples include alkylbenzene sulfonate, alkyl naphthalene sulfonate, ⁇ -olefin sulfonate, and the like.
  • succinate An alkenyl succinate is mentioned as a specific example.
  • a sulfate ester salt As a specific example, a higher alcohol sulfate ester salt, an alkyl sulfate ester salt, etc. are mentioned. Although it does not specifically limit as phosphate ester, As an example, alkyl phosphate ester etc. are mentioned. Among these, potassium dodecylbenzenesulfonate, dipotassium alkenyl succinate, and octyl phosphate are particularly preferable.
  • the compounds exemplified above may be used alone or in combination of two or more.
  • the component (B) is preferably a surfactant having a sulfo group.
  • a surfactant having a sulfo group is selected as the component (B)
  • a chemical mechanical polishing treatment composition is used.
  • the surface to be processed can be polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the inventor speculates as follows. That is, since the compound represented by the general formula (2) as the component (A) becomes cationic under acidic conditions sufficiently lower than the isoelectric point, the component (B) that is anionic is electrostatically reciprocal. Adsorbs to component (A) by action. Further, the alkyl carbon chains substituted with the component (B) self-assemble on the surface to be treated by hydrophobic interaction, thereby increasing the thickness of the adsorption layer. As a result, for example, when chemical mechanical polishing is performed on a surface to be processed such as tungsten using a chemical mechanical polishing treatment composition, the surface to be processed is prevented from being corroded more than necessary by an oxidizing agent as an etching agent. I think that.
  • the chemical mechanical polishing treatment composition according to the present embodiment is dramatically increased in comparison with the case where the component (A) and the component (B) are each used alone as a corrosion inhibitor. Corrosion suppression effect on the treated surface is increased.
  • the coexistence of the component (A) that is a complexing agent and the component (B) that is a surfactant having a sulfo group It is thought that corrosion inhibition is realized.
  • the surfactant having a sulfo group used as the component (B) is not particularly limited, but specific examples include alkylbenzene sulfonate, alkyl naphthalene sulfonate, ⁇ -olefin sulfonate, sulfate ester salt and the like. . Although it does not specifically limit as a sulfate ester salt, As a specific example, a higher alcohol sulfate ester salt, an alkyl sulfate ester salt, etc. are mentioned. Among these, alkylbenzenesulfonic acid or a salt thereof is preferable, and dodecylbenzenesulfonic acid or a salt thereof is particularly preferable.
  • the betaine surfactant having a carboxyl group (A) is a compound in which R 3 is a C 1-10 organic group having a carboxyl group, or
  • the component (B) is at least selected from the group consisting of compounds represented by the following general formulas (4), (5) and (6). It is preferable to select one type. In this case, it becomes easy to form a multilayer anticorrosion film due to the interaction with the component (A). For example, when a chemical mechanical polishing treatment composition is used as the chemical mechanical polishing composition, the polishing rate is increased. The surface to be processed can be polished while reducing the corrosion of the surface to be processed without lowering the thickness.
  • component (A) which is a complex-forming agent, forms a complex on the tungsten surface
  • component (B) that also has a carboxyl group has a complementary hydrogen bond with respect to the carboxyl group that component (A) has.
  • component (A) and component (B) are formed on the surface to be processed.
  • the thickness of the adsorbing layer is increased by the alkyl carbon chains of the component (B) self-assembling on the surface to be treated by hydrophobic interaction.
  • the chemical mechanical polishing treatment composition according to the present embodiment is dramatically increased in comparison with the case where the component (A) and the component (B) are each used alone as a corrosion inhibitor. Corrosion suppression effect on the treated surface is increased. As described above, in the chemical mechanical polishing treatment composition according to the embodiment of the present invention, the corrosion of the surface to be treated is suppressed by the coexistence of the component (A) which is a complexing agent and the component (B) which is a betaine surfactant. Is considered to be realized.
  • (B) Although it does not specifically limit as a betaine-type surfactant which has a carboxyl group used as a component, As a specific example, the group which consists of a compound represented by following formula (3), Formula (4), and Formula (5) It is preferable that it is at least 1 type selected from.
  • R 8 to R 10 each independently represents any functional group selected from the group consisting of hydrocarbon groups having 1 to 15 carbon atoms, and R 11 represents 1 to 5 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom, a hydrocarbon group having 5 to 20 carbon atoms, an organic group having 5 to 20 carbon atoms having an amide group, or a carbon having an amino group. From the group consisting of an organic group having 5 to 20 carbon atoms, an organic group having 5 to 20 carbon atoms having an imide group, an organic group having 1 to 10 carbon atoms having a carboxyl group, and an organic group having 1 to 10 carbon atoms having a hydroxyl group.
  • R 14 represents a hydrocarbon group having 1 to 5 carbon atoms.
  • R 15 and R 16 are each independently selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms and an organic group having 1 to 10 carbon atoms having a hydroxyl group.
  • R 17 represents a hydrocarbon group having 1 to 5 carbon atoms.
  • the hydrocarbon group having 1 to 15 carbon atoms in R 8 to R 10 in the general formula (4) is not particularly limited, but as a specific example, a linear or branched alkyl group having 1 to 15 carbon atoms may be used.
  • the organic group having 1 to 10 carbon atoms having a carboxyl group is preferably a carboxyethyl group or a carboxymethyl group.
  • the component (B) is at least one selected from the group consisting of lauryldimethylaminoacetic acid betaine, laurylaminodipropionic acid betaine, and 2-lauryl-N-carboxymethyl-N-hydroxyetherimidazolium betaine.
  • the component (B) is at least one selected from the group consisting of lauryldimethylaminoacetic acid betaine, laurylaminodipropionic acid betaine, and 2-lauryl-N-carboxymethyl-N-hydroxyetherimidazolium betaine.
  • corrosion suppression of the surface to be processed is realized.
  • the content ratio of the component (B) is the chemical mechanical polishing composition. Is 0.0001% by mass or more and 1% by mass or less, preferably 0.0005% by mass or more and 0.5% by mass or less, more preferably 0.001% by mass or more and 0.1% by mass or less. .
  • the content ratio of the component (B) is within the above range, the surface to be processed can be more effectively polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the ratio of the component (A) to the component (B) is preferably 1:20 to 40: 1, and more preferably 1:10 to 20: 1.
  • the ratio of the component (A) to the component (B) is within the above range, the surface to be processed can be more effectively polished while reducing the corrosion of the surface to be processed without reducing the polishing rate. .
  • the content ratio of the component (B) is the cleaning composition. 0.0001 mass% or more and 1 mass% or less, preferably 0.0005 mass% or more and 0.5 mass% or less, more preferably 0.001 mass% or more and 0.05 mass% or less with respect to the total mass of the product. is there.
  • the content ratio of the component (A) is in the above range, the metal oxide film and the organic residue on the wiring board can be more efficiently removed while reducing the corrosion of the surface to be processed.
  • the ratio of the component (A) to the component (B) is preferably 1:20 to 40: 1, and more preferably 1:10 to 20: 1.
  • the ratio of the component (A) to the component (B) is within the above range, the metal oxide film and the organic residue on the wiring board can be more efficiently removed while reducing the corrosion of the surface to be processed. .
  • (C) Oxidizing agent When the chemical mechanical polishing treatment composition according to the present embodiment is used as a chemical mechanical polishing composition for polishing an object to be processed, it further contains (C) an oxidizing agent. May be.
  • (C) by containing an oxidizing agent the surface to be treated provided with a wiring layer containing a metal such as tungsten is oxidized to form a complex with the polishing liquid component. It is thought that there is an effect of facilitating the polishing reaction, creating a fragile modified layer on the surface to be treated, and facilitating polishing.
  • (C) Although it does not specifically limit as an oxidizing agent, As a specific example, ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, diammonium cerium nitrate, iron sulfate, hypochlorous acid, ozone, periodate Examples include potassium acid and peracetic acid. These (C) oxidizing agents may be used individually by 1 type, and may be used in combination of 2 or more type. Of these (C) oxidizing agents, ammonium persulfate and hydrogen peroxide are preferred in view of oxidizing power, compatibility with the protective film, ease of handling, and the like.
  • the content ratio of the oxidizing agent is 0.01% by mass or more and 10% by mass or less, preferably 0.0% by mass with respect to the total mass of the chemical mechanical polishing composition. It is 05 mass% or more and 8 mass% or less, More preferably, it is 0.1 mass% or more and 5 mass% or less.
  • the content of (C) the oxidizing agent is It is 0 mass% or more and 1 mass% or less with respect to the total mass of a composition, Preferably it is 0 mass% or more and 0.05 mass% or less, More preferably, it is 0 mass% or more and 0.01 mass% or less.
  • the chemical mechanical polishing treatment composition according to the present embodiment includes a pH adjuster. Although it does not specifically limit as a pH adjuster, Acidic compounds, such as maleic acid, nitric acid, and phosphoric acid, are mentioned as a specific example.
  • the pH of the chemical mechanical polishing treatment composition according to the present embodiment is not particularly limited, but is preferably 1 or more and 6 or less, more preferably 1 or more and 5 or less. When the pH is in the above range, the storage stability of the chemical mechanical polishing treatment composition becomes good.
  • the chemical mechanical polishing treatment composition according to the present embodiment when used as a chemical mechanical polishing composition for polishing a workpiece, an insulating film such as a tungsten film and a silicon oxide film;
  • the surface to be processed can be polished while reducing the corrosion of the surface to be processed without reducing the polishing rate.
  • the content of the pH adjusting agent may be appropriately adjusted so as to be the above pH, but is preferably 0.1% by mass or more and 3% by mass or less with respect to the total mass of the chemical mechanical polishing treatment composition, More preferably, it is 0.2 mass% or more and 2 mass% or less, Most preferably, it is 0.3 mass% or more and 1 mass% or less.
  • the treatment composition can further contain (E) abrasive grains.
  • E Although it does not specifically limit as an abrasive grain, As an example, inorganic particles, such as a silica, a ceria, an alumina, a zirconia, a titania, are mentioned.
  • the silica particles are not particularly limited, but specific examples include colloidal silica and fumed silica. Among these, colloidal silica is preferable. Colloidal silica is preferably used from the viewpoint of reducing polishing defects such as scratches. For example, colloidal silica produced by the method described in JP-A No. 2003-109921 can be used. Also, JP 2010-269985A, J. Org. Ind. Eng. Chem. , Vol. 12, no. 6, (2006) 911-917 and the like, surface-modified colloidal silica may be used.
  • sulfonic acid-modified colloidal silica in which a sulfo group is introduced on the surface of colloidal silica is excellent in stability under acidic conditions, and thus is preferably used in the present invention.
  • a silane coupling agent having a functional group that can be chemically converted to a sulfo group is modified on the surface of colloidal silica, and then the functional group is converted into a sulfo group. A method is mentioned.
  • silane coupling agents examples include silane coupling agents having a mercapto group such as 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane; bis (3-triethoxy And silane coupling agents having a sulfide group such as (silylpropyl) disulfide. It can be converted into a sulfo group by oxidizing the mercapto group or sulfide group of the silane coupling agent modified on the surface of colloidal silica.
  • silane coupling agents having a mercapto group such as 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane
  • bis (3-triethoxy And silane coupling agents having a sulfide group such as (silylpropyl) disulf
  • the content ratio of the abrasive grains is 0.1% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 8% by mass or less, more preferably with respect to the total mass of the chemical mechanical polishing treatment composition. Is 0.1 mass% or more and 7 mass% or less.
  • a practical polishing rate for the tungsten film can be obtained.
  • the chemical mechanical polishing treatment composition according to the present embodiment contains an aqueous medium.
  • an aqueous medium it is more preferable to use water.
  • the chemical mechanical polishing treatment composition according to the present embodiment may further contain additives other than the above surfactants, such as surfactants, water-soluble polymers, and anticorrosives, as necessary. Good. Hereinafter, each additive will be described.
  • the chemical mechanical polishing treatment composition according to the present embodiment may further contain a surfactant as long as the combination of the component (A) and the component (B) does not overlap as necessary. Good.
  • the surfactant has an effect of imparting an appropriate viscosity to the chemical mechanical polishing treatment composition.
  • the viscosity of the chemical mechanical polishing treatment composition is preferably adjusted to be 0.5 mPa ⁇ s or more and 2 mPa ⁇ s or less at 25 ° C.
  • the surfactant is not particularly limited, and examples thereof include a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and an anionic surfactant.
  • the cationic surfactant is not particularly limited, but specific examples include aliphatic amine salts and aliphatic ammonium salts.
  • the nonionic surfactant is not particularly limited, and specific examples include ether surfactants, ether ester surfactants, ester surfactants, acetylene surfactants, and the like. Although it does not specifically limit as an ether ester type surfactant, As a specific example, polyoxyethylene ether of glycerol ester etc. are mentioned. Although it does not specifically limit as ester type surfactant, As a specific example, polyethyleneglycol fatty acid ester, glycerol ester, sorbitan ester, etc. are mentioned. Although it does not specifically limit as an acetylene type surfactant, As an example, ethylene oxide adduct of acetylene alcohol, acetylene glycol, acetylene diol, etc. are mentioned.
  • amphoteric surfactant is not particularly limited, and specific examples include betaine surfactants.
  • the anionic surfactant is not particularly limited, and specific examples include carboxylate, sulfonate, sulfate ester salt, phosphate ester salt and the like. Although it does not specifically limit as carboxylate, A fatty acid soap, alkyl ether carboxylate, etc. are mentioned as a specific example.
  • the sulfonate include alkyl benzene sulfonate, alkyl naphthalene sulfonate, ⁇ -olefin sulfonate, and the like.
  • a sulfate ester salt As a specific example, a higher alcohol sulfate ester salt, an alkyl sulfate ester salt, etc. are mentioned.
  • phosphate ester As an example, alkyl phosphate ester etc. are mentioned.
  • surfactants may be used singly or in combination of two or more.
  • the content of the surfactant is the chemical mechanical polishing composition. Is 0.001% by mass or more and 1% by mass or less, preferably 0.002% by mass or more and 0.8% by mass or less, more preferably 0.003 to 0.5% by mass. is there.
  • the addition amount of the surfactant is within the above range, a smooth polished surface can be obtained more effectively after the silicon oxide film is removed by polishing.
  • the content of the surfactant is the cleaning composition. 0.001% by mass or more and 1% by mass or less, preferably 0.002% by mass or more and 0.8% by mass or less, more preferably 0.003 to 0.5% by mass with respect to the total mass of the product. It is.
  • the addition amount of the surfactant is within the above range, the organic residue can be efficiently removed while reducing the corrosion of the surface to be processed after polishing and removing the silicon oxide film.
  • the chemical mechanical polishing treatment composition according to the present embodiment may further contain a water-soluble polymer, if necessary.
  • the water-soluble polymer is considered to have a function of adsorbing to the surface of the surface to be polished and reducing polishing friction. Accordingly, when the chemical mechanical polishing treatment composition according to the present embodiment is used as a chemical mechanical polishing composition for polishing an object to be processed, by adding a water-soluble polymer, dishing or In some cases, the occurrence of corrosion can be suppressed.
  • the water-soluble polymer is not particularly limited, but specific examples include polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxyethyl cellulose and the like. However, polyacrylic acid is excluded.
  • the addition amount of the water-soluble polymer can be adjusted so that the viscosity of the chemical mechanical polishing treatment composition is 2 mPa ⁇ s or less.
  • the viscosity of the chemical mechanical polishing treatment composition is 2 mPa ⁇ s or less
  • the chemical mechanical polishing treatment composition can be supplied more effectively and stably on the polishing cloth.
  • the temperature of the polishing cloth and the unevenness of polishing are less likely to occur, and variations in the polishing rate and dishing may be less likely to occur.
  • the chemical mechanical polishing treatment composition according to this embodiment may further contain an anticorrosive agent as necessary.
  • an anticorrosive agent As a specific example, a benzotriazole and its derivative (s) are mentioned.
  • the benzotriazole derivative means one obtained by substituting one or more hydrogen atoms of benzotriazole with, for example, a carboxyl group, a methyl group, an amino group, a hydroxyl group or the like.
  • benzotriazole derivatives examples include 4-carboxylbenzotriazole and its salt, 7-carboxybenzotriazole and its salt, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole and the like.
  • the chemical mechanical polishing treatment composition according to the present embodiment is used as a chemical mechanical polishing composition for polishing the object to be processed, the amount of the anticorrosive is added, or the object to be processed after chemical mechanical polishing is used.
  • the cleaning composition for cleaning it is 0.001% by mass or more and 1% by mass or less, preferably 0.002% by mass or more and 0.8% by mass or less, based on the total mass. More preferably, it is 0.003 mass% or more and 0.5 mass% or less.
  • Electrode charge transfer resistance value The chemical mechanical polishing treatment composition according to the present embodiment is the electrode charge transfer resistance value obtained by alternating current impedance measurement using a metal as an electrode.
  • the relationship between the electrode charge transfer resistance (RC) in the aqueous solution containing the components (A), (B), and (D) the pH adjuster is RC / (RA + RB)> 1.
  • the charge transfer resistance value is a resistance component that appears when an AC impedance measuring device, a metal and a solution are electrically connected to form a circuit, and the metal is caused by corrosion at the interface between the metal and the solution. Yes, it is the reciprocal value of metal corrosion rate. That is, a large charge transfer resistance value is an index indicating that the metal corrosion rate is low. When the anticorrosion film formed on the metal surface is thick, erosion of an oxidizing agent, an etching component, or the like, which is a cause of corrosion, is hindered, so that the charge transfer resistance value increases. Thus, obtaining a large charge transfer resistance value is generally recognized as an effort to form a thick anticorrosion film on the metal surface.
  • the resistance value of the electrode charge transfer resistance value (RC) of the chemical mechanical polishing treatment composition containing both the component (A) and the component (B) is higher than the sum of the resistance values (RA, RB) (RA + RB). It is high. That is, as described above, the chemical machine in which the component (A) and the component (B) do not have a corrosion-inhibiting action independently, but a multilayer anticorrosion film is formed by the interaction of two compounds.
  • a charge transfer resistance value (RC) can be obtained, and the corrosion can be greatly suppressed as compared with the case where the component (A) or the component (B) is used alone as a metal corrosion inhibitor.
  • the electrode charge transfer resistance value obtained by AC impedance measurement using the above metal as an electrode is obtained by attaching an insulating tape to a central portion of 1 ⁇ 1 cm of a metal wafer cut into 1 ⁇ 3 cm, and an exposed area of 1 ⁇ 1 cm above the portion. Attach an electrode clip to a measuring device with controlled AC voltage, immerse the exposed area of 1 x 1 cm in the lower part of the aqueous solution for 5 minutes, and change the AC voltage with an amplitude of 5 mV and a frequency of 1500-0.5 Hz from high frequency to low frequency. To obtain the real and imaginary part of the resistance value, and analyze the semicircular plot obtained by taking the imaginary part on the vertical axis and the real part on the horizontal axis using AC impedance analysis software.
  • an electrode charge transfer resistance measuring device for example, a potentio / galvanostat (manufactured by Solartron, SI 1287) is connected to a frequency response analyzer (manufactured by Solartron, 1252A type FRA). More specifically, a measuring device in which an AC tape is controlled by attaching an insulating tape to a 1 ⁇ 1 cm central portion of a tungsten cut wafer cut to 1 ⁇ 3 cm and attaching an electrode clip to an exposed region of the upper 1 ⁇ 1 cm. And immersed in a chemical mechanical polishing treatment composition that measures the exposed area of the lower 1 ⁇ 1 cm.
  • the chemical mechanical polishing treatment composition containing both the component (A) and the component (B) preferably has an electrode charge transfer resistance (RC) higher than 100 k ⁇ / cm 2 .
  • RC electrode charge transfer resistance
  • the corrosion suppression effect of the surface to be processed containing tungsten or the like is increased.
  • the electrode charge transfer resistance value (RC) is 100 k ⁇ / cm 2 or less, the oxidation rate of the surface to be processed is high, and therefore it is difficult to obtain the effect of inhibiting the corrosion of the surface to be processed.
  • the chemical mechanical polishing treatment composition according to the present embodiment can be suitably used as a chemical mechanical polishing composition when polishing a wiring substrate as an object to be processed in CMP.
  • the chemical mechanical polishing treatment composition according to the present embodiment is used in a semiconductor device manufacturing process, such as a semiconductor wafer provided with a wiring layer containing a metal such as tungsten. It is suitable as a polishing material for polishing a surface to be processed in which a tungsten film and an insulating film such as a silicon oxide film coexist while reducing the corrosion of the tungsten film surface without reducing the polishing rate.
  • the chemical mechanical polishing treatment composition according to the present embodiment can be suitably used as a cleaning composition for cleaning a wiring board after completion of CMP.
  • the chemical mechanical polishing treatment composition according to the present embodiment reduces the corrosion of the tungsten film surface on the surface to be processed after chemical mechanical polishing, and efficiently removes oxide films and organic residues on the wiring board. It is suitable as a cleaning agent to be removed.
  • the chemical mechanical polishing treatment composition according to the present embodiment can be prepared by dissolving or dispersing each component described above in an aqueous medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of the components described above are not particularly limited.
  • the chemical mechanical polishing treatment composition according to the present embodiment can be diluted with a dispersion medium such as water when used.
  • a processing method according to the present embodiment uses a chemical mechanical polishing processing composition according to the present invention described above, and a target object provided with a wiring layer containing a metal such as tungsten constituting a semiconductor device. It is characterized by chemical mechanical polishing or cleaning treatment.
  • chemical mechanical polishing method and the cleaning method according to the present embodiment are not particularly limited, one specific example will be described in detail below with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing a target object suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • the target object 100 is formed through the following steps (1) to (4).
  • a silicon oxide film 12 is formed on the silicon substrate 10 by using a CVD method or a thermal oxidation method.
  • the silicon oxide film 12 is patterned. Using this as a mask, for example, an etching method is applied to form the recess 20 for wiring in the silicon oxide film 12.
  • the tungsten film 14 is deposited by sputtering so as to fill the recess 20 for wiring, the object 100 is obtained.
  • polishing Step of the chemical mechanical polishing composition described above the tungsten film 14 deposited on the silicon oxide film 12 of the object 100 is polished and removed using, for example, the chemical mechanical polishing composition described above. Then, a tungsten plug, a barrier metal film such as titanium, and an insulating film are polished.
  • the chemical mechanical polishing method according to the present embodiment by using the chemical mechanical polishing treatment composition described above as the chemical mechanical polishing composition, the tungsten film and the insulating film such as a silicon oxide film coexist. The treated surface can be polished while reducing the corrosion of the tungsten film surface without reducing the polishing rate.
  • FIG. 2 is a perspective view schematically showing the chemical mechanical polishing apparatus 200.
  • the carrier head that holds the semiconductor substrate 50 while supplying the slurry (chemical mechanical polishing composition) 44 from the slurry supply nozzle 42 and rotating the turntable 48 to which the polishing cloth 46 is attached. This is done by bringing 52 into contact.
  • the water supply nozzle 54 and the dresser 56 are also shown.
  • the pressing pressure of the carrier head 52 can be selected within a range of 10 to 1,000 hPa, and preferably 30 to 500 hPa. Further, the rotational speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm.
  • the flow rate of the slurry (chemical mechanical polishing composition) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and preferably 50 to 400 mL / min.
  • polishing apparatus for example, manufactured by Ebara Manufacturing Co., Ltd., types “EPO-112”, “EPO-222”; manufactured by Lapmaster SFT, model “LGP-510”, “LGP-552”; manufactured by Applied Materials , “Mirra”, “Reflexion” and the like.
  • the obtained surface to be processed is cleaned using the above-described cleaning composition.
  • the cleaning method according to the present embodiment the wiring material after CMP and the surface to be processed on which the tungsten film and the insulating film such as the silicon oxide film coexist are suppressed on the wiring material and the tungsten film while the wiring surface and the tungsten film are not corroded. An oxide film and organic residues on the substrate can be efficiently removed.
  • the cleaning method is not particularly limited, but is performed by a method in which the above-described cleaning composition is brought into direct contact with the surface to be processed.
  • a method of bringing the cleaning composition into direct contact with the surface to be treated a dip method in which the cleaning tank is filled with the cleaning composition and the wiring board is immersed; the wiring board while flowing the cleaning composition from the nozzle onto the wiring board And a spin type method in which the cleaning composition is sprayed and cleaned on the wiring board.
  • a batch type cleaning apparatus that simultaneously cleans a plurality of wiring boards accommodated in a cassette, a single wafer cleaning that attaches and cleans one wiring board to a holder Examples thereof include an apparatus.
  • a platen cleaning method in which a cleaning composition is developed on another platen of the polishing apparatus after the CMP process, and the semiconductor substrate is cleaned on the platen.
  • the temperature of the cleaning composition is usually room temperature, but it may be heated within a range that does not impair the performance, for example, by heating to about 40 to 70 ° C. Can do.
  • cleaning with ultrapure water or pure water may be performed before and / or after the cleaning by the cleaning method according to the present embodiment.
  • Comparative Example 102-119 Based on Comparative Example 101, as shown in Table 1, the chemical mechanical polishing composition containing only component (A) was used as Comparative Example 102-109, and the chemical mechanical polishing composition containing only component (B) was used. Comparative Examples 110 to 119 were used.
  • Examples 101 to 118 Based on Comparative Example 101, a chemical mechanical polishing composition containing the components (A) and (B) shown in Table 2 was prepared, and Examples 101 to 118 were obtained.
  • Comparative Example 120-125 Based on Comparative Example 101, a chemical mechanical polishing composition containing the components (A) and (B) shown in Table 2 was prepared and used as Comparative Examples 120-125.
  • Example 119-132> Next, based on Example 108, various chemical machines were prepared by changing the amount of component (A) and component (B), the amount of hydrogen peroxide as an oxidizing agent, the type of pH adjuster, and the value of pH.
  • a polishing composition was prepared. That is, N- (2-aminoethyl) piperazine is used as the component (A), octyl phosphate is used as the component (B), and the addition amount of the components (A) and (B) is as shown in Table 3.
  • Various chemical mechanical polishing compositions were prepared by changing the amount of hydrogen peroxide as an oxidizing agent, the type of pH adjuster, and the pH value, and were designated as Examples 119-132.
  • a measuring device in which an AC tape is controlled by attaching an insulating tape to a 1 ⁇ 1 cm central portion of a tungsten cut wafer cut to 1 ⁇ 3 cm and attaching an electrode clip to an exposed region of the upper 1 ⁇ 1 cm. And exposed to a chemical mechanical polishing treatment composition at 25 ° C., where an exposed area of 1 ⁇ 1 cm in the lower part was obtained. After 5 minutes of immersion, an AC voltage with an amplitude of 5 mV and a frequency of 1500-0.5 Hz was From low to high frequencies, the resistance values were obtained as real and imaginary parts.
  • the semicircular plot obtained by taking the imaginary part on the vertical axis and the real part on the horizontal axis is analyzed by the AC impedance analysis software “ZView” manufactured by Solartron, and the charge transfer resistance ( ⁇ / cm 2 ) is calculated. Calculated.
  • the reciprocal of the obtained charge transfer resistance is a value proportional to the corrosion rate of tungsten.
  • the obtained chemical mechanical polishing composition was kept at 25 ° C., a tungsten cut wafer (1 ⁇ 1 cm) was immersed for 1 hour, washed with running water for 10 seconds, dried, and then magnified by a scanning electron microscope. The surface corrosion was observed at 50000 times.
  • the evaluation criteria for corrosion are as follows. ⁇ : A case where no change in the shape of the surface due to corrosion was observed as compared with that before immersion was judged as a particularly good result. (Triangle
  • a lapping master SFT, model “LM-15C” is used as a polishing device, and Rodel Nitta, “IC1000 / K-Groove” is used as a polishing pad, a platen rotation speed 90 rpm, a head rotation speed 90 rpm, a head pressing pressure
  • the chemical mechanical polishing treatment was performed for 1 minute on the tungsten wafer specimen under polishing conditions of 3 psi and a chemical mechanical polishing composition supply rate of 100 mL / min.
  • the thickness of the test specimen after polishing was measured in the same manner, and the difference in film thickness before and after polishing, that is, the thickness decreased by the chemical mechanical polishing treatment was calculated.
  • the polishing rate was calculated from the reduced film thickness and polishing time.
  • Comparative Examples 202-214 Based on Comparative Example 201, as shown in Table 4, the chemical mechanical polishing composition containing only the component (A) was used as Comparative Example 202-208, and the chemical mechanical polishing composition containing only the component (B) was used. Comparative Examples 209-214 were used.
  • Examples 201 to 212 Based on Comparative Example 201, a chemical mechanical polishing composition containing the components (A) and (B) shown in Table 5 was prepared, and Examples 201 to 212 were obtained.
  • Comparative Example 215-221 Based on Comparative Example 201, a chemical mechanical polishing composition containing the components (A) and (B) shown in Table 5 was prepared and used as Comparative Examples 215-221.
  • Example 213-226 Next, on the basis of Example 201, various chemical machines were prepared by changing the addition amount of component (A) and component (B), the amount of hydrogen peroxide as an oxidizing agent, the type of pH adjuster, and the pH value.
  • a polishing composition was prepared. That is, histidine is used as the component (A), potassium dodecylbenzenesulfonate is used as the component (B), and the addition amount of the components (A) and (B) and the peroxide as an oxidizing agent are as shown in Table 6.
  • Various chemical mechanical polishing compositions were prepared by changing the amount of hydrogen, the type of pH adjuster, and the pH value, and were designated as Examples 213-226.
  • Examples 301-324 Based on Comparative Example 301, a chemical mechanical polishing composition containing the components (A) and (B) shown in Table 8 was prepared and designated as Examples 301-324.
  • Example 325-338 Next, on the basis of Example 305, various chemical machines were prepared by changing the addition amount of component (A) and component (B), the amount of hydrogen peroxide as an oxidizing agent, the type of pH adjuster, and the pH value.
  • a polishing composition was prepared. That is, using arginine as the component (A), betaine lauryldimethylaminoacetate as the component (B), and adding amounts of the components (A) and (B) and the peroxide as an oxidizing agent as shown in Table 9
  • Various chemical mechanical polishing compositions were prepared by changing the amount of hydrogen, the type of pH adjusting agent, and the pH value, and were designated as Examples 325-338.
  • the chemical mechanical polishing composition prepared by using the component (A) or the component (B) alone is good except for the comparative examples 313-320 and 358-362. It was not possible to suppress corrosion. This is presumably because the charge transfer resistance value is 100 k ⁇ / cm 2 or less and the oxidation rate is high. Also, in Comparative Examples 323-334, satisfactory corrosion inhibition could not be achieved. This is considered to be because the cooperative effect does not work between the component (A) and the component (B) because the relational expression RC / (RA + RB) of the charge transfer resistance is 1 or less.
  • Comparative Example 420-440 Based on Comparative Example 401, a cleaning composition containing the components (A) and (B) described in Table 11 was prepared, and Comparative Examples 420 to 440 were obtained.
  • Examples 401-425 Based on Comparative Example 401, a cleaning composition containing the components (A) and (B) shown in Table 12 was prepared, and Examples 401-425 were obtained.
  • tungsten cut wafer prepared by chemical mechanical polishing using the chemical mechanical polishing composition of Comparative Example 119 by the method of 3.1.2.3 was prepared.
  • the cut wafer was observed at five locations at a frame size of 10 ⁇ m using a Dimension FastScan, which is a scanning atomic force microscope (AFM) manufactured by Bluker Corporation, and the average value of the arithmetic average roughness at the five locations was 0.00. Only tungsten cut wafers that were confirmed to be flat surfaces of 1 nm or less were used for defect evaluation.
  • AFM scanning atomic force microscope
  • the cut wafer was dipped in the cleaning composition in the same manner as in 3.4.2.2 above, and was observed at five locations with a frame size of 10 ⁇ m using AFM.
  • the total number of deposits having a height of 2.0 nm or more was defined as the number of defects using image analysis software.
  • the evaluation criteria are as follows. ⁇ : Less than 500 defects are judged as good results. X: A defect number of 500 or more is judged as a bad result.
  • Examples 426 to 435 all were able to suppress corrosion well. This is because the relational expression RC / (RA + RB) using the charge transfer resistances RA, RB, RC defined in claim 1 is 1 or more, and a cooperative effect works between the components (A) and (B). This is considered to be because the charge transfer resistance value became 1000 k ⁇ / cm 2 or more. As described above, in Examples 426 to 435, it was shown that good tungsten corrosion inhibiting ability was exhibited regardless of the concentration, pH, and type of pH adjuster of the components (A) and (B).
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention includes a configuration that achieves the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.
  • SYMBOLS 10 Silicon substrate, 12 ... Silicon oxide film, 14 ... Tungsten film, 20 ... Recess for wiring, 42 ... Slurry supply nozzle, 44 ... Slurry (chemical mechanical polishing treatment composition), 46 ... Polishing cloth, 48 ... Turntable DESCRIPTION OF SYMBOLS 50 ... Semiconductor substrate 52 ... Carrier head 54 ... Water supply nozzle 56 ... Dresser 100 ... Object to be processed 200 ... Chemical mechanical polishing apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、(A)窒素含有化合物と、(B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、(D)pH調整剤と、を含有し、金属を電極に用いた交流インピーダンス測定で得られる電極電荷移動抵抗値において、(A)または(B)と、(D)とを含む水溶液中の電極電荷移動抵抗値の和RA+RBと、(A)、(B)および(D)とを含む水溶液中の電極電荷移動抵抗値RCの関係が、RC/(RA+RB)>1となる。

Description

化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法
 本発明は、化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法に関する。
 近年、半導体装置の高精細化に伴い、半導体装置内に形成される配線およびプラグ等からなる配線層の微細化が進んでいる。これに伴い、配線層を化学機械研磨(以下、「CMP」ともいう。)により平坦化する手法が用いられている。この手法としては、たとえば、半導体基板上の酸化シリコン等の絶縁膜に設けられた微細な溝や孔に、アルミニウム、銅、タングステン等の導電体金属を、スパッタリング、メッキ等の方法により堆積させた後、余剰に積層された金属膜をCMPにより除去し、微細な溝や孔の部分にのみ金属を残すダマシンプロセスが知られている(たとえば、特許文献1参照)。
 このプロセスにおいて、特に、配線間を上下縦方向に電気的に接合するプラグ等の材料には、埋め込み性に優れたタングステンが使用される。タングステンプラグを形成する化学機械研磨では、主に絶縁膜上に設けられたタングステン層を研磨する第1研磨処理工程と、タングステンプラグ、チタンなどのバリアメタル膜、および絶縁膜を研磨する第2研磨処理工程が順に実施される。
 このようなタングステン層およびタングステンプラグ(以下、「タングステン膜」ともいう。)の化学機械研磨に関し、たとえば特許文献2には、上記第1研磨処理工程に相当する仕上げ研磨の前段階に使用する半導体研磨用組成物として、高い研磨レート、および、研磨促進剤であるアミン化合物とシリコンとの高い反応性に起因する、研磨後のウエハ表面の面粗れの防止を目的とした、コロイダルシリカ等の砥粒、アミン化合物等の塩基性低分子化合物、およびポリエチレンイミン等の窒素含有基を含む水溶性高分子化合物を含む半導体研磨用組成物が開示されている。
 また、特許文献3には、酸化剤等のタングステンのエッチング剤、1~1,000ppmの量で存在する窒素原子を含む特定のポリマー等のタングステンのエッチング抑制剤、および水を含む化学機械研磨組成物を用いて研磨を行うタングステンを含む基材の化学機械研磨方法が開示されている。この研磨方法で用いられる化学機械研磨組成物は、任意成分として、コロイド状のシリカ等の研磨剤、および、モノ過硫酸塩(SO 2-)、ジ過硫酸塩(S 2-)等の化合物を含んでいても良い。
 一方、近年の半導体装置の著しい高集積化に伴い、極微量の不純物による汚染であっても装置の性能、ひいては製品の歩留まりに大きく影響するようになってきた。例えば、CMPを終えた未洗浄の8インチウエハの表面上では、0.2μm以上のパーティクル数は1万個以上を数えるが、洗浄によりパーティクルを数個から数十個まで除去することが要求されている。また、金属不純物の表面濃度(1平方センチメートル当たりの不純物原子の数)は1×1011から1×1012以上であるが、洗浄により1×1010以下まで除去することが要求されている。このため、CMPを半導体装置の製造へ導入することにおいて、CMP後の洗浄は避けて通れない、必須の工程となっている。
 さらに、タングステン層およびタングステンプラグが微細化された先端ノードの半導体基板においては、配線やプラグの幅や直径がタングステン原子数十個から百数十個程度のサイズになるため、タングステン原子数十個分の直径をもつ原子レベルでの微細なPitが発生するだけでも深刻な電気特性不良を引き起こす。このため、最近の仕上げ研磨工程(いわゆる、研磨工程)、研磨後のプラテン上での洗浄工程、洗浄装置内における後洗浄工程のいずれにおいても、タングステン膜を原子レベルで溶出させないための腐食抑制技術が要求され始めている(たとえば、特許文献4参照)。
特表2002-518845号公報 特開2007-19093号公報 特表2008-503875号公報 国際公開第2013-162020号公報
 しかしながら、上記技術では、高い研磨速度を維持しながら、被研磨面の腐食の低減を達成することができるタングステン膜研磨用組成物としては不十分であった。また、被洗浄面の異物の除去と腐食の低減の両立を達成することができるタングステン膜洗浄用組成物としては不十分であった。
 そこで、本発明に係る幾つかの態様は、上記課題を解決することで、半導体装置製造工程において、タングステン等の金属を含む配線層が設けられた半導体ウエハなどの被処理体、特に該被処理体のタングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、研磨速度を低下させることなく、タングステン膜表面の腐食を低減しながら研磨するための、化学機械研磨用組成物および化学機械研磨方法を提供するものである。
 また、化学機械研磨用処理組成物を用いた化学機械研磨により得られた被処理面の腐食を低減しながら、被処理面上の金属酸化膜や有機残渣を効率的に除去することができる洗浄用組成物、およびこれらを用いた基板の洗浄方法を提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る化学機械研磨用処理組成物の一態様は、
 金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、
 (A)窒素含有化合物と、
 (B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、
 (D)pH調整剤と、を含有し、
 前記金属を電極に用いた交流インピーダンス測定で得られる電極電荷移動抵抗値(1×3cmにカットした金属ウエハの中央部1×1cmの部位に絶縁テープを貼り、その上部1×1cmの露出領域に電極クリップを取り付けて交流電圧が制御された測定装置に接続し、下部1×1cmの露出領域を水溶液に5分間浸漬し、振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加して抵抗値の実部と虚部の値を得て、縦軸に虚部、横軸に実部を取ることにより得られる半円状のプロットを交流インピーダンス解析ソフトにより解析して得られる値(Ω/cm)。)において、
 前記(A)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RA)と、前記(B)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RB)とを合わせた値(RA+RB)と、前記(A)成分と前記(B)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RC)との関係が、RC/(RA+RB)>1となることを特徴とする。
 [適用例2]
 上記適用例において、
 前記(A)窒素含有化合物が、下記一般式(1)~(3)で表される化合物よりなる群から選択される少なくとも1種であることができる。
Figure JPOXMLDOC01-appb-C000007
(上記一般式(1)中、RとRは各々独立して、水素原子、または、炭素数1~10の有機基から選ばれる官能基を表す。)
Figure JPOXMLDOC01-appb-C000008
(上記一般式(2)中、Rは、水素原子、窒素原子を含む炭素数2~10の有機基およびカルボキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表す。)
Figure JPOXMLDOC01-appb-C000009
(上記一般式(3)中、R~Rのうち一つ以上がカルボキシル基を有する炭素数1~3の有機基であり、それ以外が水素原子を表す。)
 [適用例3]
 上記適用例において、
 前記(A)が、前記一般式(1)で表される化合物であり、
 前記(B)が、アニオン性界面活性剤またはポリアクリル酸であることができる。
 [適用例4]
 上記適用例において、
 前記アニオン性界面活性剤が、ドデシルベンゼンスルホン酸カリウム、アルケニルコハク酸ジカリウムおよびオクチルリン酸エステルよりなる群から選択される少なくとも1種であることができる。
 [適用例5]
 上記適用例において、
 前記(A)が、前記一般式(2)で表される化合物のうち、Rが窒素原子を含む炭素数2~10の有機基である化合物であり、
 前記(B)が、スルホ基を有する界面活性剤であることができる。
 [適用例6]
 上記適用例において、
 前記スルホ基を有する界面活性剤が、アルキルベンゼンスルホン酸またはその塩であることができる。
 [適用例7]
 上記適用例において、
 前記(A)が、前記一般式(2)で表される化合物のうち、Rがカルボキシル基を有する炭素数1~10の有機基である化合物か、または、前記一般式(3)で表される化合物であり、
 前記(B)が、カルボキシル基を有するベタイン系界面活性剤であることができる。
 [適用例8]
 上記適用例において、
 前記(B)が、下記一般式(4)、(5)および(6)で表される化合物よりなる群から選択される少なくとも1種であることができる。
Figure JPOXMLDOC01-appb-C000010
(上記一般式(4)中、R~R10はそれぞれ独立に炭素数1~15の炭化水素基からなる群から選択されるいずれかの官能基を表し、R11は炭素数1~5の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000011
(上記一般式(5)中、R12とR13はそれぞれ独立に、水素原子、炭素数5~20の炭化水素基、アミド基を有する炭素数5~20の有機基、アミノ基を有する炭素数5~20の有機基、イミド基を有する炭素数5~20の有機基、カルボキシル基を有する炭素数1~10の有機基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R14は炭素数1~5の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000012
(上記一般式(6)中、R15、R16はそれぞれ独立に、炭素数1~20の炭化水素基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R17は炭素数1~5の炭化水素基を表す。)
 [適用例9]
 上記適用例において、
 前記(A)が、キノリン酸、ヒスチジン、アルギニンおよびアスパラギン酸よりなる群から選択される少なくとも1種であり、
 前記(B)が、ラウリルジメチルアミノ酢酸ベタイン、ラウリルアミノジプロピオン酸ベタインおよび2-ラウリル-N-カルボキシメチル-N-ヒドロキシエテルイミダゾリニウムベタインよりなる群から選択される少なくとも1種であることができる。
 [適用例10]
 上記適用例において、
 前記電極電荷移動抵抗値(RC)を100kΩ/cmより高くすることができる。
 [適用例11]
 上記適用例において、
 前記金属がタングステンであることができる。
 [適用例12]
 上記適用例において、
 さらに、(C)酸化剤を含有することができる。
 [適用例13]
 上記適用例において、
 前記(C)酸化剤が、過酸化水素または過硫酸アンモニウムであることができる。
 [適用例14]
 上記適用例において、
 前記化学機械研磨用処理組成物が、前記被処理体を洗浄するための洗浄用組成物であることができる。
 [適用例15]
 上記適用例において、
 さらに、(E)砥粒を含有することができる。
 [適用例16]
 上記適用例において、
 前記化学機械研磨用処理組成物が、前記被処理体を研磨するための化学機械研磨用組成物であることができる。
 [適用例17]
 本発明に係る化学機械研磨方法の一態様は、
 適用例14に記載の化学機械研磨用処理組成物を用いて、金属を含む配線層が設けられた被処理体を研磨することを特徴とする。
 [適用例18]
 本発明に係る洗浄方法の一態様は、
 適用例12に記載の化学機械研磨用処理組成物を用いて、前記被処理体を洗浄することを特徴とする。
 [適用例19]
 本発明に係る化学機械研磨用処理組成物の他の一態様は、
 金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、
 (A)窒素含有化合物と、
 (B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、
 (D)pH調整剤と、を含有することを特徴とする。
 本発明に係る化学機械研磨用処理組成物によれば、半導体装置製造工程において、タングステン等の金属を含む配線層が設けられた半導体ウエハなどの被処理体、特に該被処理体のタングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、研磨速度を低下させることなく、タングステン膜表面の腐食を低減しながら研磨することができる。また、被処理面の腐食を低減しながら、被処理面上の金属酸化膜や有機残渣を効率的に除去することができる。
図1は、本実施の形態に係る化学機械研磨方法の使用に適した被処理体を模式的に示した断面図である。 図2は、本実施の形態に係る化学機械研磨方法の使用に適した化学機械研磨装置を模式的に示した斜視図である。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。
 1.化学機械研磨用処理組成物
 本発明の一実施形態に係る化学機械研磨用処理組成物は、金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、(A)窒素含有化合物と、(B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、(D)pH調整剤とを含有する。また、下記に示すような特定の条件を満たすことを特徴とする。
 本発明の実施形態に係る化学機械研磨用処理組成物は、化学機械研磨方法を用いて被処理体を研磨するための「化学機械研磨用組成物」として好適に使用することができるだけでなく、化学機械研磨後の被処理体の洗浄のための「洗浄用組成物」としても、好適に使用することができる。
 つまり、本発明の実施形態に係る化学機械研磨用処理組成物は、「化学機械研磨用組成物」と「洗浄用組成物」の両方の機能を備えており、下記に示すような特定の条件を満たすことを特徴とする。以下、本実施の形態に係る化学機械研磨用処理組成物に含まれる各成分等について説明する。
 1.1.(A)成分
 本実施の形態に係る化学機械研磨用処理組成物は、(A)成分として、窒素原子含有化合物を含有する。
 本実施の形態に係る化学機械研磨用処理組成物において、(A)成分は錯形成剤として作用し、後述する(B)成分との相互作用によって、タングステン等の金属を含む配線層が設けられた被処理面に多層構造の防食膜を形成すると発明者は推測する。このため、化学機械研磨の際に化学機械研磨用組成物として使用した場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができると考えられる。また、化学機械研磨後に洗浄用組成物として使用した場合には、被処理面の腐食を低減しながら、被処理面上の金属酸化膜や有機残渣を効率的に除去することができると考えられる。
 (A)窒素含有化合物は、下記一般式(1)~(3)で表される化合物よりなる群から選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(上記一般式(1)中、RとRは各々独立して、水素原子、または、炭素数1~10の有機基から選ばれる官能基を表す。)
Figure JPOXMLDOC01-appb-C000014
(上記一般式(2)中、Rは、水素原子、窒素原子を含む炭素数2~10の有機基およびカルボキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表す。)
Figure JPOXMLDOC01-appb-C000015
(上記一般式(3)中、R~Rのうち一つ以上がカルボキシル基を有する炭素数1~3の有機基であり、それ以外が水素原子を表す。)
 (A)成分として、上記一般式(1)~(3)で表される化合物よりなる群から選択される少なくとも1種である場合には、後述する特定の(B)成分との組み合わせにより、錯形成剤としての作用が向上する。このため、より高い腐食低減効果が得られる。
 1.1.1.一般式(1)で表される化合物
 (A)窒素原子含有化合物が上記一般式(1)で表されるピペラジン骨格を有する化合物の場合には、(B)成分としてアニオン性界面活性剤またはポリアクリル酸を選択することにより、さらに、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨または洗浄することができる。
 上記一般式(1)中のRとRにおける炭素数1~10の有機基としては特に限定されないが、具体例としては、炭素数1~10の炭化水素基、アミド基を有する炭素数1~10の有機基、アミノ基を有する炭素数1~10の有機基、複素環基を有する炭素数1~10の有機基等を挙げることができ、この中でも炭素数1~10の炭化水素基、アミノ基を有する炭素数1~10の有機基が好ましい。
 上記一般式(1)で表される化合物としては特に限定されないが、具体例としては、ピペラジン、N-(2-アミノエチル)ピペラジン、N,N‘-ビス(3-プロピルアミノ)ピペラジン、フェニルピペラジン、ジフェニルピペラジン、ピリジニルピペラジン、ピリミジルピペラジン等を挙げることができ、これらのうちピペラジン、N-(2-アミノエチル)ピペラジン、N,N‘-ビス(3-プロピルアミノ)ピペラジンであることが好ましい。上記例示した化合物は、1種単独で用いてもよく、2種以上組み合わせて用いても良い。
 1.1.2.一般式(2)で表される化合物
 (A)窒素原子含有化合物として、上記一般式(2)で表される化合物を用いる場合には、一般式(2)中のRにおける窒素原子を含む炭素数2~10の有機基としては特に限定されないが、具体例としては、アミド基を有する炭素数2~10の有機基、アミノ基を有する炭素数2~10の有機基、イミド基を有する炭素数2~10の有機基、含窒素複素環基を有する炭素数2~10の有機基等を挙げることができ、この中でも、アミド基を有する炭素数2~10の有機基、アミノ基を有する炭素数2~10の有機基、含窒素複素環基を有する炭素数2~10の有機基が好ましい。この場合には、特定の(B)成分を選択することにより、さらに、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨または洗浄することができる。
 (A)窒素原子含有化合物が上記一般式(2)で表されるアミノ酸であり、Rが窒素原子を含む炭素数2~10の有機基である化合物であり、(B)成分として、アルキルベンゼンスルホン酸またはその塩を選択することにより、さらに、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨または洗浄することができる。
 また、(A)窒素原子含有化合物が上記一般式(2)で表されるアミノ酸であり、Rがカルボキシル基を有する炭素数1~10の有機基である化合物であり、(B)成分として、後述する一般式(4)、(5)および(6)で表される化合物よりなる群から選択される少なくとも1種を選択することにより、さらに、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨または洗浄することができる。
 上記一般式(2)で表される化合物としては特に限定されないが、具体例としては、ヒスチジン、アルギニンおよびアスパラギン酸、グリシン、アラニン、リシンよりなる群から選択される少なくとも1種であることが好ましい。この場合には、特に、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができる。上述例示した化合物は、1種単独で用いてもよく、2種以上組み合わせて用いても良い。
 1.1.3.一般式(3)で表される化合物
 (A)窒素原子含有化合物として、上記一般式(3)で表される化合物を用いる場合には、(B)成分として、後述する一般式(4)、(5)および(6)で表される化合物よりなる群から選択される少なくとも1種を選択することにより、さらに、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨または洗浄することができる。
 上記一般式(3)中のR~Rにおける、カルボキシル基を有する炭素数1~3の有機基としては、カルボキシエチル基、カルボキシメチル基が好ましい。中でも特に、上記一般式(3)で表される化合物としては、キノリン酸であることが好ましい。この場合には、特に、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができる。
 本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、(A)成分の含有割合は、化学機械研磨用組成物の全質量に対して、0.0001質量%以上1質量%以下、好ましくは0.0005質量%以上0.5質量%以下、より好ましくは0.001質量%以上0.1質量%以下である。(A)成分の含有割合が前記範囲である場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながらより効果的に被処理面を研磨することができる。
 本実施の形態に係る化学機械研磨用処理組成物を、化学機械研磨後の被処理体を洗浄するための洗浄用組成物として用いる場合には、(A)成分の含有割合は、洗浄用組成物の全質量に対して、0.0001質量%以上1質量%以下、好ましくは0.0005質量%以上0.5質量%以下、より好ましくは0.001質量%以上0.05質量%以下である。(A)成分の含有割合が前記範囲である場合には、被処理面の腐食を低減しながら、配線基板上の金属酸化膜や有機残渣をより効率的に除去することができる。
 1.2.(B)成分
 本実施の形態に係る化学機械研磨用処理組成物は、(B)成分として、界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物を含有する。本実施の形態に係る化学機械研磨用処理組成物では、(B)成分と上述した(A)成分との相互作用によって、タングステン等の金属を含む配線層が設けられた被処理面に多層構造の防食膜を形成すると発明者は推測する。このため、例えば、化学機械研磨用処理組成物を化学機械研磨用組成物として用いた場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができると考えられる。
 1.2.1.アニオン性界面活性剤およびポリアクリル酸
 (A)成分が上記一般式(1)で表されるピペラジン骨格を有する化合物の場合には、(B)成分は、アニオン性界面活性剤またはポリアクリル酸であることが好ましい。(B)成分としてアニオン性界面活性剤またはポリアクリル酸を選択した場合には、上述した(A)成分との相互作用による多層構造の防食膜が形成しやすくなり、被処理面の腐食を抑制することができる。
 より詳細には、発明者は次のように推測する。すなわち、(A)成分である一般式(1)で表される化合物が被処理面に錯体を形成し、酸性条件下でカチオン性となるため、アニオン性の(B)成分が静電的相互作用によって(A)成分に引き寄せられ、吸着する。更に、(B)成分に、置換したアルキル炭素鎖同士が疎水性相互作用で被処理面に自己集合することにより、吸着層の厚みが増す。この結果、例えば、化学機械研磨用処理組成物を用いてタングステン等の被処理面を化学機械研磨する際に、エッチング剤である酸化剤により、被処理面が必要以上に腐食されることを抑制すると考えられる。
 このような発現機構により、本実施の形態に係る化学機械研磨用処理組成物では、(A)成分および(B)成分をそれぞれ単独で腐食抑制剤として用いる場合と比較して、飛躍的に被処理面の腐食抑制効果が大きくなる。このように、本発明の実施形態による化学機械研磨用処理組成物では、錯形成剤である(A)成分およびアニオン性化合物である(B)成分の共存により、被処理面の腐食抑制が実現されると考えられる。
 この際、(B)成分として用いるアニオン性界面活性剤としては特に限定されないが、具体例としては、カルボン酸塩、スルホン酸塩、コハク酸塩、硫酸エステル塩、リン酸エステル塩等が挙げられる。カルボン酸塩としては特に限定されないが、具体例としては、脂肪酸石鹸、アルキルエーテルカルボン酸塩等が挙げられる。スルホン酸塩としては特に限定されないが、具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等が挙げられる。コハク酸塩としては特に限定されないが、具体例として、アルケニルコハク酸塩が挙げられる。硫酸エステル塩としては特に限定されないが、具体例としては、高級アルコール硫酸エステル塩、アルキル硫酸エステル塩等が挙げられる。リン酸エステルとしては特に限定されないが、具体例としては、アルキルリン酸エステル等が挙げられる。これらの中でも、特に、ドデシルベンゼンスルホン酸カリウム、アルケニルコハク酸ジカリウム、オクチルリン酸エステルが好ましい。上記例示した化合物は、1種単独で用いてもよく、2種以上組み合わせて用いても良い。
 1.2.2.スルホ基を有する界面活性剤
 (A)成分が上記一般式(2)で表される化合物のうち、Rが窒素原子を含む炭素数2~10の有機基である化合物である場合には、(B)成分は、スルホ基を有する界面活性剤であることが好ましい。(B)成分として、スルホ基を有する界面活性剤を選択した場合には、(A)成分との相互作用による多層構造の防食膜が形成しやすくなり、例えば、化学機械研磨用処理組成物を化学機械研磨用組成物として用いた場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができる。
 より詳細には、発明者は次のように推測する。すなわち、(A)成分である一般式(2)で表される化合物が、等電点より十分に低い酸性条件下でカチオン性となるため、アニオン性である(B)成分が静電的相互作用によって(A)成分に吸着する。更に、(B)成分に置換したアルキル炭素鎖同士が疎水性相互作用により被処理面に自己集合することにより、吸着層の厚みが増す。この結果、例えば、化学機械研磨用処理組成物を用いてタングステン等の被処理面を化学機械研磨する際に、エッチング剤である酸化剤により、被処理面が必要以上に腐食されることを抑制すると考えられる。
 このような発現機構により、本実施の形態に係る化学機械研磨用処理組成物では、(A)成分および(B)成分をそれぞれ単独で腐食抑制剤として用いる場合と比較して、飛躍的に被処理面の腐食抑制効果が大きくなる。このように、本発明の実施形態による化学機械研磨用処理組成物では、錯形成剤である(A)成分およびスルホ基を有する界面活性剤である(B)成分の共存により、被処理面の腐食抑制が実現されると考えられる。
 (B)成分として用いるスルホ基を有する界面活性剤としては特に限定されないが、具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩、硫酸エステル塩等が挙げられる。硫酸エステル塩としては特に限定されないが、具体例としては、高級アルコール硫酸エステル塩、アルキル硫酸エステル塩等が挙げられる。これらの中でも、アルキルベンゼンスルホン酸またはその塩が好ましく、ドデシルベンゼンスルホン酸またはその塩が特に好ましい。
 1.2.3.カルボキシル基を有するベタイン系界面活性剤
 (A)成分が上記一般式(2)で表される化合物のうち、Rがカルボキシル基を有する炭素数1~10の有機基である化合物か、または、上記一般式(3)で表される化合物である場合には、(B)成分として、下記一般式(4)、(5)および(6)で表される化合物よりなる群から選択される少なくとも1種を選択することが好ましい。この場合には、(A)成分との相互作用による多層構造の防食膜が形成しやすくなり、例えば、化学機械研磨用処理組成物を化学機械研磨用組成物として用いた場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができる。
 より詳細には、発明者は次のように推測する。すなわち、まず、錯形成剤である(A)成分がタングステン表面に錯体を形成し、(A)成分が有するカルボキシル基に対して、同じくカルボキシル基を有する(B)成分が相補的な水素結合を形成する事で、(A)成分と(B)成分による二層膜が被処理面に形成される。更に、(B)成分が有するアルキル炭素鎖同士が疎水性相互作用により被処理面に自己集合することによって、吸着層の厚みが増す。この結果、例えば、化学機械研磨用処理組成物を用いてタングステン等の被処理面を化学機械研磨する際に、エッチング剤である酸化剤により、被処理面が必要以上に腐食されることを抑制すると考えられる。
 このような発現機構により、本実施の形態に係る化学機械研磨用処理組成物では、(A)成分および(B)成分をそれぞれ単独で腐食抑制剤として用いる場合と比較して、飛躍的に被処理面の腐食抑制効果が大きくなる。このように、本発明の実施形態による化学機械研磨用処理組成物では、錯形成剤である(A)成分およびベタイン系界面活性剤である(B)成分の共存により、被処理面の腐食抑制が実現されると考えられる。
 (B)成分として用いるカルボキシル基を有するベタイン系界面活性剤としては特に限定されないが、具体例としては、下記式(3)、式(4)および式(5)で表される化合物よりなる群から選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
(上記一般式(4)中、R~R10はそれぞれ独立に炭素数1~15の炭化水素基からなる群から選択されるいずれかの官能基を表し、R11は炭素数1~5の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000017
(上記一般式(5)中、R12とR13はそれぞれ独立に、水素原子、炭素数5~20の炭化水素基、アミド基を有する炭素数5~20の有機基、アミノ基を有する炭素数5~20の有機基、イミド基を有する炭素数5~20の有機基、カルボキシル基を有する炭素数1~10の有機基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R14は炭素数1~5の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000018
(上記一般式(6)中、R15、R16はそれぞれ独立に、炭素数1~20の炭化水素基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R17は炭素数1~5の炭化水素基を表す。)
 上記一般式(4)中のR~R10における、炭素数1~15の炭化水素基としては特に限定されないが、具体例としはて、炭素数1~15の直鎖でも分岐でもよいアルキル基、炭素数3~15の環状炭化水素基挙げることができ、この中でも炭素数1~15の直鎖でも分岐でもよいアルキル基が好ましく、R~R10のうち1つは炭素数5~15の直鎖アルキル基であることが特に好ましい。
 上記一般式(5)中における、カルボキシル基を有する炭素数1~10の有機基としては、カルボキシエチル基、カルボキシメチル基が好ましい。
 中でも特に、(B)成分は、ラウリルジメチルアミノ酢酸ベタイン、ラウリルアミノジプロピオン酸ベタインおよび2-ラウリル-N-カルボキシメチル-N-ヒドロキシエテルイミダゾリニウムベタインよりなる群から選択される少なくとも1種であることが好ましい。この場合には、特に、被処理面の腐食抑制が実現される。
 本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、(B)成分の含有割合は、化学機械研磨用組成物の全質量に対して、0.0001質量%以上1質量%以下、好ましくは0.0005質量%以上0.5質量%以下、より好ましくは0.001質量%以上0.1質量%以下である。(B)成分の含有割合が前記範囲である場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面をより効果的に研磨することができる。
 上記(A)成分と(B)成分の比は、1:20~40:1であることが好ましく、1:10~20:1であることがより好ましい。(A)成分と(B)成分の比が前記範囲である場合には、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面をより効果的に研磨することができる。
 本実施の形態に係る化学機械研磨用処理組成物を、化学機械研磨後の被処理体を洗浄するための洗浄用組成物として用いる場合には、(B)成分の含有割合は、洗浄用組成物の全質量に対して、0.0001質量%以上1質量%以下、好ましくは0.0005質量%以上0.5質量%以下、より好ましくは0.001質量%以上0.05質量%以下である。(A)成分の含有割合が前記範囲である場合には、被処理面の腐食を低減しながら、配線基板上の金属酸化膜や有機残渣をより効率的に除去することができる。
 上記(A)成分と(B)成分の比は、1:20~40:1であることが好ましく、1:10~20:1であることがより好ましい。(A)成分と(B)成分の比が前記範囲である場合には、被処理面の腐食を低減しながら、配線基板上の金属酸化膜や有機残渣をより効率的に除去することができる。
 1.3.(C)酸化剤
 本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、さらに、(C)酸化剤を含有してもよい。本実施の形態に係る化学機械研磨用組成物では、(C)酸化剤を含有することにより、タングステン等の金属を含む配線層が設けられた被処理面を酸化して研磨液成分との錯化反応を促し、被処理面に脆弱な改質層を作り出し、研磨しやすくする効果があると考えられる。
 (C)酸化剤としては特に限定されないが、具体例としては、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、硝酸二アンモニウムセリウム、硫酸鉄、次亜塩素酸、オゾン、過ヨウ素酸カリウムおよび過酢酸等が挙げられる。これらの(C)酸化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、これらの(C)酸化剤のうち、酸化力、保護膜との相性および取扱いやすさ等を考慮すると、過硫酸アンモニウム、過酸化水素が好ましい。
 (C)酸化剤の含有割合は、化学機械研磨用組成物として用いる場合には、化学機械研磨用組成物の全質量に対して、0.01質量%以上10質量%以下、好ましくは0.05質量%以上8質量%以下、より好ましくは0.1質量%以上5質量%以下である。
 本実施の形態に係る化学機械研磨用処理組成物を、化学機械研磨後の被処理体を洗浄するための洗浄用組成物として用いる場合には、(C)酸化剤の含有割合は、洗浄用組成物の全質量に対して、0質量%以上1質量%以下、好ましくは0質量%以上0.05質量%以下、より好ましくは0質量%以上0.01質量%以下である。
 1.4.(D)pH調整剤
 本実施の形態に係る化学機械研磨用処理組成物は、pH調整剤を含む。pH調整剤としては特に限定されないが、具体例としては、マレイン酸、硝酸、リン酸等の酸性化合物が挙げられる。本実施の形態に係る化学機械研磨用処理組成物のpHは、特に制限されないが、好ましくは1以上6以下であり、より好ましくは1以上5以下である。pHが前記範囲にあると、化学機械研磨用処理組成物の保存安定性が良好となる。また、例えば、本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、タングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、研磨速度を低下させることなく、被処理面の腐食を低減しながら被処理面を研磨することができる。pH調整剤の含有量は、上記pHとなるように適宜調整すればよいが、化学機械研磨用処理組成物の全質量に対して、好ましくは0.1質量%以上3質量%以下であり、より好ましくは0.2質量%以上2質量%以下であり、特に好ましくは0.3質量%以上1質量%以下である。
 1.5.(E)砥粒
 本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、本実施の形態に係る化学機械研磨用処理組成物は、さらに(E)砥粒を含有することができる。(E)砥粒としては特に限定されないが、具体例としては、シリカ、セリア、アルミナ、ジルコニア、チタニア等の無機粒子が挙げられる。
 シリカ粒子としては特に限定されないが、具体例としては、コロイダルシリカ、ヒュームドシリカ等が挙げられ、これらのうちコロイダルシリカであることが好ましい。コロイダルシリカは、スクラッチ等の研磨欠陥を低減する観点から好ましく用いられるものであり、例えば、特開2003-109921号公報等に記載されている方法で製造されたものを使用することができる。また、特開2010-269985号公報や、J.Ind.Eng.Chem.,Vol.12,No.6,(2006)911-917等に記載されているような方法で表面修飾されたコロイダルシリカを使用してもよい。
 特に、コロイダルシリカの表面にスルホ基が導入されたスルホン酸修飾コロイダルシリカは、酸性条件下での安定性に優れているため、本発明において好適に用いられる。コロイダルシリカの表面にスルホ基を導入する方法としては、コロイダルシリカの表面に、化学的にスルホ基に変換できる官能基を有するシランカップリング剤を修飾した後、該官能基をスルホ基に変換する方法が挙げられる。このようなシランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト基を有するシランカップリング剤;ビス(3-トリエトキシシリルプロピル)ジスルフィド等のスルフィド基を有するシランカップリング剤が挙げられる。コロイダルシリカの表面に修飾されたシランカップリング剤のメルカプト基やスルフィド基を酸化させることでスルホ基に変換することができる。
 (E)砥粒の含有割合は、化学機械研磨用処理組成物の全質量に対して、0.1質量%以上10質量%以下、好ましくは0.1質量%以上8質量%以下、より好ましくは0.1質量%以上7質量%以下である。(E)砥粒の含有割合が前記範囲である場合には、タングステン膜に対する実用的な研磨速度を得ることができる。
 1.6.水系媒体
 本実施の形態に係る化学機械研磨用処理組成物は、水系媒体を含有する。水系媒体としては、水を用いることがより好ましい。
 1.7.その他の添加剤
 本実施の形態に係る化学機械研磨用処理組成物は、さらに必要に応じて上記界面活性剤以外の界面活性剤、水溶性高分子、防蝕剤等の添加剤を添加してもよい。以下、各添加剤について説明する。
 1.7.1.界面活性剤
 本実施の形態に係る化学機械研磨用処理組成物は、さらに必要に応じて、(A)成分と(B)成分との組合せが重複しない限りで、界面活性剤を添加してもよい。界面活性剤には、化学機械研磨用処理組成物に適度な粘性を付与する効果がある。化学機械研磨用処理組成物の粘度は、25℃において0.5mPa・s以上2mPa・s以下となるように調製することが好ましい。
 界面活性剤としては、特に制限されず、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、アニオン性界面活性剤等が挙げられる。
 カチオン性界面活性剤としては特に限定されないが、具体例としては、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。
 非イオン性界面活性剤としては特に限定されないが、具体例としては、エーテル型界面活性剤、エーテルエステル型界面活性剤、エステル型界面活性剤、アセチレン系界面活性剤等が挙げられる。エーテルエステル型界面活性剤としては特に限定されないが、具体例としては、グリセリンエステルのポリオキシエチレンエーテル等が挙げられる。エステル型界面活性剤としては特に限定されないが、具体例としては、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等が挙げられる。アセチレン系界面活性剤としては特に限定されないが、具体例としては、アセチレンアルコール、アセチレングリコール、アセチレンジオールのエチレンオキサイド付加物等が挙げられる。
 両性界面活性剤としては特に限定されないが、具体例としては、ベタイン系界面活性剤等が挙げられる。
 アニオン性界面活性剤としては特に限定されないが、具体例としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等が挙げられる。カルボン酸塩としては特に限定されないが、具体例としては、脂肪酸石鹸、アルキルエーテルカルボン酸塩等が挙げられる。スルホン酸塩としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等が挙げられる。硫酸エステル塩としては特に限定されないが、具体例としては、高級アルコール硫酸エステル塩、アルキル硫酸エステル塩等が挙げられる。リン酸エステルとしては特に限定されないが、具体例としては、アルキルリン酸エステル等が挙げられる。
 これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、上記界面活性剤の含有量は、化学機械研磨用組成物の全質量に対して、0.001質量%以上1質量%以下であり、好ましくは0.002質量%以上0.8質量%以下であり、より好ましくは0.003~0.5質量%である。界面活性剤の添加量が上記の範囲内にあると、シリコン酸化膜を研磨除去した後に、平滑な被研磨面をより効果的に得ることができる。
 本実施の形態に係る化学機械研磨用処理組成物を、化学機械研磨後の被処理体を洗浄するための洗浄用組成物として用いる場合には、上記界面活性剤の含有量は、洗浄用組成物の全質量に対して、0.001質量%以上1質量%以下であり、好ましくは0.002質量%以上0.8質量%以下であり、より好ましくは0.003~0.5質量%である。界面活性剤の添加量が上記の範囲内にあると、シリコン酸化膜を研磨除去した後に、被処理面の腐食を低減しながら、有機残渣を効率的に除去することができる。
 1.7.2.水溶性高分子
 本実施の形態に係る化学機械研磨用処理組成物は、さらに必要に応じて水溶性高分子を添加してもよい。水溶性高分子は、被研磨面の表面に吸着し研磨摩擦を低減させる機能を有すると考えられる。これにより、本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合には、水溶性高分子を添加することにより、ディッシングやコロージョンの発生を抑制できる場合がある。
 水溶性高分子としては特に限定されないが、具体例としては、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース等が挙げられる。ただし、ポリアクリル酸は除く。
 水溶性高分子の添加量は、化学機械研磨用処理組成物の粘度が2mPa・s以下となるように調整することができる。化学機械研磨用処理組成物の粘度が2mPa・s以下であると、研磨布上により効果的に安定して化学機械研磨用処理組成物を供給できる。その結果、研磨布の温度上昇や研磨むら(面内均一性の劣化)等が生じにくく、研磨速度やディッシングのばらつきが発生にくくなることがある。
 1.7.3.防蝕剤
 本実施の形態に係る化学機械研磨用処理組成物は、さらに必要に応じて防蝕剤を添加してもよい。防蝕剤としては特に限定されないが、具体例としては、ベンゾトリアゾールおよびその誘導体が挙げられる。ここで、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールの有する1個または2個以上の水素原子を、例えば、カルボキシル基、メチル基、アミノ基、ヒドロキシル基等で置換したものをいう。ベンゾトリアゾール誘導体としては、4-カルボキシルベンゾトリアゾールおよびその塩、7-カルボキシベンゾトリアゾールおよびその塩、ベンゾトリアゾールブチルエステル、1-ヒドロキシメチルベンゾトリアゾールまたは1-ヒドロキシベンゾトリアゾール等が挙げられる。
 防蝕剤の添加量は、本実施の形態に係る化学機械研磨用処理組成物を、被処理体を研磨するための化学機械研磨用組成物として用いる場合、また、化学機械研磨後の被処理体を洗浄するための洗浄用組成物として用いる場合のいずれにおいても、全質量に対して、0.001質量%以上1質量%以下であり、好ましくは0.002質量%以上0.8質量%以下であり、より好ましくは0.003質量%以上0.5質量%以下である。
 1.8.電極電荷移動抵抗値
 本実施の形態に係る化学機械研磨用処理組成物は、金属を電極に用いた交流インピーダンス測定で得られる電極電荷移動抵抗値において、上記(A)成分と(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RA)と、(B)成分と(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RB)とを合わせた値(RA+RB)と、(A)成分と(B)成分と(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RC)との関係が、RC/(RA+RB)>1となる。電荷移動抵抗値とは、交流インピーダンス測定装置と金属と溶液とを電気的に導通して回路を形成した際に現れる抵抗成分のうち、金属と溶液の界面で金属が腐食に由来する抵抗成分であり、金属の腐食速度の逆数値にあたる。即ち、電荷移動抵抗値が大きいという事は、金属の腐食速度が遅い事を示す指標である。金属表面に形成される防食膜が厚くなる場合、腐食の発生要因である酸化剤やエッチング成分等の浸食が阻害されるため、電荷移動抵抗値は大きくなる。この事から、大きな電荷移動抵抗値を得る事は、厚膜の防食膜を金属表面に形成する取り組みとして一般に認識されている。
 電極電荷移動抵抗値の関係がRC/(RA+RB)>1を満たしている場合とは、(A)成分または(B)成分を単独で含有している化学機械研磨用処理組成物の電極電荷移動抵抗値(RA、RB)の和(RA+RB)よりも、(A)成分と(B)成分の両方を含む化学機械研磨用処理組成物の電極電荷移動抵抗値(RC)の方が抵抗値が高いことを示している。つまり、上述したように、(A)成分と(B)成分とが、それぞれ単独で腐食抑制作用を持つのではなく、2つの化合物の相互作用によって多層構造の防食膜が形成されている化学機械研磨用処理組成物では、(A)成分または(B)成分を単独で含有している化学機械研磨用処理組成物の電極電荷移動抵抗値(RA、RB)の和(RA+RB)よりも高い電極電荷移動抵抗値(RC)が得られ、(A)成分または(B)成分を単独で金属の腐食抑制剤に用いた場合よりも飛躍的に腐食抑制が可能となる。
 上記金属を電極に用いた交流インピーダンス測定で得られる電極電荷移動抵抗値は、1×3cmにカットした金属ウエハの中央部1×1cmの部位に絶縁テープを貼り、その上部1×1cmの露出領域に電極クリップを取り付けて交流電圧が制御された測定装置に接続し、下部1×1cmの露出領域を水溶液に5分間浸漬し、振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加して抵抗値の実部と虚部の値を得て、縦軸に虚部、横軸に実部を取ることにより得られる半円状のプロットを交流インピーダンス解析ソフトにより解析して得られる値(Ω/cm)である。電極電荷移動抵抗の測定装置としては、例えば、ポテンショ/ガルバノスタット(ソーラトロン社製、SI 1287)に周波数応答アナライザ(ソーラトロン社製、1252A型FRA)を接続して用いる。より詳細には、1×3cmにカットしたタングステンカットウエハの中央部1×1cmの部位に絶縁テープを貼り、その上部1×1cmの露出領域に電極クリップを取り付けて交流電圧が制御された測定装置に接続し、下部1×1cmの露出領域を測定する化学機械研磨用処理組成物に浸漬する。浸漬5分経過した後に、振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加し、抵抗値の実部と虚部の値を得て、縦軸に虚部、横軸に実部を取ることにより得られた半円状のプロットを、ソーラトロン社製の交流インピーダンス解析ソフト「ZView」により解析し、電極電荷移動抵抗値(Ω/cm)を算出することができる。
 なお、(A)成分と(B)成分の両方を含む化学機械研磨用処理組成物の電極電荷移動抵抗値(RC)は、100kΩ/cmより高くなることが好ましい。この場合には、タングステン等を含む被処理面の腐食抑制効果が大きくなる。電極電荷移動抵抗値(RC)が100kΩ/cm以下の場合には、被処理面の酸化速度が速いため、被処理面の腐食抑制効果が得られにくくなる。
 1.9.用途
 本実施の形態に係る化学機械研磨用処理組成物は、CMPにおいて被処理体である配線基板を研磨する際の化学機械研磨用組成物として好適に用いることができる。上述したように、(A)成分と(B)成分の両方を用いることにより、飛躍的に被処理面の腐食抑制効果が大きくなる。このため、本実施の形態に係る化学機械研磨用処理組成物は、半導体装置の製造工程において、タングステン等の金属を含む配線層が設けられた半導体ウエハなどの被処理体、特に該被処理体のタングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、研磨速度を低下させることなく、タングステン膜表面の腐食を低減しながら研磨するための研磨材として好適である。
 また、本実施の形態に係る化学機械研磨用処理組成物は、CMP終了後の配線基板を洗浄する際の洗浄用組成物として好適に用いることができる。上述したように、(A)成分と(B)成分の両方を用いることにより、飛躍的に被処理面の腐食抑制効果が大きくなる。このため、本実施の形態に係る化学機械研磨用処理組成物は、化学機械研磨後の被処理面を、タングステン膜表面の腐食を低減するとともに、配線基板上の酸化膜や有機残渣を効率的に除去する洗浄剤として好適である。
 1.10.化学機械研磨用処理組成物の調製方法
 本実施の形態に係る化学機械研磨用処理組成物は、水等の水系媒体に前述した各成分を溶解または分散させることにより調製することができる。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、前述した各成分の混合順序や混合方法についても特に制限されない。
 また、本実施の形態に係る化学機械研磨用処理組成物は、使用時に水等の分散媒で希釈して使用することもできる。
 2.処理方法
 本実施の形態に係る処理方法は、前述した本発明に係る化学機械研磨用処理組成物を用いて、半導体装置を構成するタングステン等の金属を含む配線層が設けられた被処理体を化学機械研磨または洗浄処理することを特徴とする。本実施の形態に係る化学機械研磨方法および洗浄方法は特に限定されないが、一具体例について、図面を用いて以下詳細に説明する。
 2.1.被処理体
 図1は、本実施の形態に係る化学機械研磨方法の使用に適した被処理体を模式的に示した断面図である。被処理体100は、以下の工程(1)ないし(4)を経ることにより形成される。
(1)まず、シリコン基板10を用意する。シリコン基板10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。
(2)次に、シリコン基板10の上に、CVD法または熱酸化法を用いてシリコン酸化膜12を形成する。
(3)次に、シリコン酸化膜12をパターニングする。それをマスクとして、例えばエッチング法を適用して酸化シリコン膜12に配線用凹部20を形成する。
(4)次に、配線用凹部20を充填するように、タングステン膜14をスパッタ法により堆積させると、被処理体100が得られる。
 2.2.研磨工程
 上述の化学機械研磨用処理組成物のうち、例えば、上述の化学機械研磨用組成物を用いて、被処理体100のシリコン酸化膜12上に堆積したタングステン膜14を研磨除去し、次に、タングステンプラグ、チタンなどのバリアメタル膜、および絶縁膜を研磨する。本実施の形態に係る化学機械研磨方法によれば、上述した化学機械研磨用処理組成物を化学機械研磨用組成物として用いることで、タングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、研磨速度を低下させることなく、タングステン膜表面の腐食を低減しながら研磨することができる。
 上述の研磨工程には、例えば、図2に示すような化学機械研磨装置200を用いることができる。図2は、化学機械研磨装置200を模式的に示した斜視図である。上述の研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ、研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図2には、水供給ノズル54およびドレッサー56も併せて示してある。
 キャリアーヘッド52の押し付け圧は、10~1,000hPaの範囲内で選択することができ、好ましくは30~500hPaである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用組成物)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。
 市販の研磨装置として、例えば、株式会社荏原製作所製、形式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」等が挙げられる。
 2.3.洗浄工程
 次いで、得られた被処理面を、上述の洗浄用組成物を用いて洗浄する。本実施形態に係る洗浄方法によれば、CMP終了後の配線材料およびタングステン膜と酸化シリコン膜等の絶縁膜とが共存する被処理面を、配線材料およびタングステン膜の腐食を抑制すると共に、配線基板上の酸化膜や有機残渣を効率的に除去することができる。
 洗浄方法としては、特に制限されないが、被処理面に上述の洗浄用組成物を直接接触させる方法により行われる。洗浄用組成物を被処理面に直接接触させる方法としては、洗浄槽に洗浄用組成物を満たして配線基板を浸漬させるディップ式;ノズルから配線基板上に洗浄用組成物を流下しながら配線基板を高速回転させるスピン式;配線基板に洗浄用組成物を噴霧して洗浄するスプレー式等の方法が挙げられる。また、このような方法を行うための装置としては、カセットに収容された複数枚の配線基板を同時に洗浄するバッチ式洗浄装置、1枚の配線基板をホルダーに装着して洗浄する枚葉式洗浄装置等が挙げられる。また、CMP処理後に研磨装置の別のプラテン上に洗浄用組成物を展開し、半導体基板をプラテン上で洗浄処理するプラテン洗浄方式も挙げられる。
 本実施形態に係る洗浄方法において、洗浄用組成物の温度は、通常室温とされるが、性能を損なわない範囲で加温してもよく、例えば40~70℃程度に加温して行うことができる。
 さらに、本実施形態に係る洗浄方法による洗浄の前および/または後に、超純水または純水による洗浄を行ってもよい。
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
 3.1.(B)がアニオン性界面活性剤またはポリアクリル酸である化学機械研磨用組成物
 3.1.1.化学機械研磨用組成物の調製
<比較例101>
 コロイダルシリカ水分散体PL-3(扶桑化学工業株式会社製)をシリカに換算して1質量%に相当する量になるようにポリエチレン製容器に投入し、全構成成分が100質量%となるようにイオン交換水、およびpH調整剤としてマレイン酸を加え、pHを3に調整した。さらに、酸化剤として35質量%過酸化水素水を、過酸化水素に換算して1質量%となるように加えて15分間撹拌し、比較例101の化学機械研磨用組成物を得た。
<比較例102-119>
 比較例101を基に、表1に記載の組成の通り、(A)成分のみを含む化学機械研磨用組成物を比較例102-109、(B)成分のみを含む化学機械研磨用組成物を比較例110-119とした。
<実施例101-118>
 比較例101を基に、表2に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、実施例101-118とした。
<比較例120-125>
 比較例101を基に、表2に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、比較例120-125とした。
<実施例119-132>
 次に、実施例108を基に、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製した。すなわち、(A)成分としてN-(2-アミノエチル)ピペラジン、(B)成分としてオクチルリン酸エステルを用い、表3に記載の組成の通り、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製し、実施例119-132とした。
<比較例126-153>
 表3に記載の組成の通り、実施例119-132において(B)成分を用いないものを比較例126-139とし、実施例119-132において(A)成分を用いないものを比較例140-153として化学機械研磨用組成物を得た。
 3.1.2.評価方法
 3.1.2.1.電荷移動抵抗の評価
 測定装置として、ポテンショ/ガルバノスタット(ソーラトロン社製、SI 1287)に周波数応答アナライザ(ソーラトロン社製、1252A型FRA)を接続して用い、一端を水溶液に浸漬した金属ウエハに振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加し、抵抗値を得た。より詳細には、1×3cmにカットしたタングステンカットウエハの中央部1×1cmの部位に絶縁テープを貼り、その上部1×1cmの露出領域に電極クリップを取り付けて交流電圧が制御された測定装置に接続し、下部1×1cmの露出領域を得られた25℃の化学機械研磨用処理組成物に浸漬し、浸漬5分経過した後に、振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加し、抵抗値の実部と虚部の値を得た。縦軸に虚部、横軸に実部を取ることにより得られた半円状のプロットを、ソーラトロン社製の交流インピーダンス解析ソフト「ZView」により解析し、電荷移動抵抗(Ω/cm)を算出した。なお、得られた電荷移動抵抗の逆数は、タングステンの腐食速度に比例する値である。
 3.1.2.2.腐食観察の評価
 得られた化学機械研磨用組成物を25℃に保ち、タングステンカットウエハ(1×1cm)を1時間浸漬し、流水で10秒洗浄し乾燥させた後、走査型電子顕微鏡により倍率50000倍にて表面の腐食を観察した。
 腐食の評価基準は次の通りである。
 ○:浸漬前と比較して腐食による表面の形状変化が認められなかった場合を特に良好な結果と判断する。
 △:浸漬前と比較して腐食している箇所と腐食していない箇所とが混在している場合を良好な結果と判断する。
 ×:浸漬前と比較して全面が腐食している場合を悪い結果と判断する。
 3.1.2.3.研磨速度の評価
 被研磨体である3×3cmにカットしたタングステンウエハ試験片について、NPS株式会社製、金属膜厚計「RG-5」を用いて予め膜厚を測定した。研磨装置としてラップマスターSFT社製、型式「LM-15C」、研磨パッドとしてロデール・ニッタ株式会社製、「IC1000/K-Groove」を用い、定盤回転数90rpm、ヘッド回転数90rpm、ヘッド押し付け圧3psi、化学機械研磨用組成物供給速度100mL/分の研磨条件で、タングステンウエハ試験片について化学機械研磨処理を1分間実施した。研磨後の試験片について同様に膜厚を測定し、研磨前後の膜厚の差、すなわち化学機械研磨処理により減少した膜厚を算出した。減少した膜厚および研磨時間から研磨速度を算出した。
 3.1.3.評価結果
 比較例101-119で得られた化学機械研磨用組成物の組成、および評価結果を下表1に示し、実施例101-118、比較例120-125で得られた化学機械研磨用組成物の組成、および評価結果を下表2に示し、実施例119-132、比較例126-153で得られた化学機械研磨用組成物の組成、および評価結果を下表3に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 なお、表1、2、および下記表4、5、10~12におけるにおける下記成分について補足する。
・ポリアクリル酸(東亜合成社製、商品名「ジュリマーAC-10L」、Mw=55,000)
・ポリアクリル酸(東亜合成社製、商品名「ジュリマーAC-10H」、Mw=700,000)
 比較例102-119および126-153より、(A)成分または(B)成分を単独で用いて調製された化学機械研磨用組成物では、いずれも良好な腐食抑制ができなかった。また、比較例120-125においても、良好な腐食抑制ができなかった。これは、電荷移動抵抗の関係式RC/(RA+RB)が1以下であることから、(A)成分と(B)成分との間に協働効果が働いていないためであると考えられる。
 これに対し、表2からわかるように、実施例101-118ではいずれも良好な腐食抑制ができていた。これは、いずれも電荷移動抵抗の関係式RC/(RA+RB)が1より高くなっており、(A)成分と(B)成分との間に協働効果が働いているためであると考えられる。
 また、表3からわかるように、実施例119-132では、いずれも良好な腐食抑制ができた。これは、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関係なく、電荷移動抵抗の関係式RC/(RA+RB)が1より高い場合には、(A)成分と(B)成分との間に協働効果が働いているためであると考えられる。このように、電荷移動抵抗の関係式RC/(RA+RB)が1より高い場合には、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関わらず、良好なタングステン腐食抑制能が発現する事が示された。
 3.2.(B)がスルホ基を有する界面活性剤である化学機械研磨用組成物
 3.2.1.化学機械研磨用組成物の調製
<比較例201>
 コロイダルシリカ水分散体PL-3(扶桑化学工業株式会社製)をシリカに換算して1質量%に相当する量になるようにポリエチレン製容器に投入し、全構成成分が100質量%となるようにイオン交換水、およびpH調整剤としてマレイン酸を加え、pHを3に調整した。さらに、酸化剤として35質量%過酸化水素水を、過酸化水素に換算して1質量%となるように加えて15分間撹拌し、比較例201の化学機械研磨用組成物を得た。
<比較例202-214>
 比較例201を基に、表4に記載の組成の通り、(A)成分のみを含む化学機械研磨用組成物を比較例202-208、(B)成分のみを含む化学機械研磨用組成物を比較例209-214とした。
<実施例201-212>
 比較例201を基に、表5に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、実施例201-212とした。
<比較例215-221>
 比較例201を基に、表5に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、比較例215-221とした。
<実施例213-226>
 次に、実施例201を基に、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製した。すなわち、(A)成分としてヒスチジン、(B)成分としてドデシルベンゼンスルホン酸カリウムを用い、表6に記載の組成の通り、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製し、実施例213-226とした。
<比較例222-249>
 表6に記載の組成の通り、実施例213-226において(B)成分を用いないものを比較例222-235とし、実施例213-226において(A)成分を用いないものを比較例236-249として化学機械研磨用組成物を得た。
 3.2.2.評価方法
 上記3.1.2.評価方法と同様に評価した。
 3.2.3.評価結果
 比較例201-214で得られた化学機械研磨用組成物の組成、および評価結果を下表4に示し、実施例201-212、比較例215-221で得られた化学機械研磨用組成物の組成、および評価結果を下表5に示し、実施例213-226、比較例222-249で得られた化学機械研磨用組成物の組成、および評価結果を下表6に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 比較例202-214および222-249より、(A)成分または(B)成分を単独で用いて調製された化学機械研磨用組成物では、いずれも良好な腐食抑制ができなかった。これは、電荷移動抵抗値が100kΩ/cm以下であり、酸化速度が速いためであると考えられる。また、比較例215-221においても、良好な腐食抑制ができなかった。これは、電荷移動抵抗の関係式RC/(RA+RB)が1以下であることから、(A)成分と(B)成分との間に協働効果が働いていないためであると考えられる。
 これに対し、実施例211-212では、いずれも良好な腐食抑制ができていた。これは、いずれも電荷移動抵抗の関係式RC/(RA+RB)が1より高くなっており、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が100kΩ/cmより高くなったためであると考えられる。
 また、表6からわかるように、実施例213-226では、いずれも良好な腐食抑制ができた。これは、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関係なく、電荷移動抵抗の関係式RC/(RA+RB)が1より高く、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が100kΩ/cmより高くなったためであると考えられる。このように、電荷移動抵抗の関係式RC/(RA+RB)が1より高い場合には、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関わらず、良好なタングステン腐食抑制能が発現する事が示された。
 3.3.(B)がカルボキシル基を有するベタイン系界面活性剤である化学機械研磨用組成物
 3.3.1.化学機械研磨用組成物の調製
<比較例301>
 コロイダルシリカ水分散体PL-3(扶桑化学工業株式会社製)をシリカに換算して1質量%に相当する量になるようにポリエチレン製容器に投入し、全構成成分が100質量%となるようにイオン交換水、およびpH調整剤としてマレイン酸を加え、pHを3に調製した。さらに、酸化剤として35質量%過酸化水素水を、過酸化水素に換算して1質量%となるように加えて15分間撹拌し、比較例301の化学機械研磨用組成物を得た。
<比較例302-322>
 比較例301を基に、表7に記載の組成の通り、(A)成分のみを含む化学機械研磨用組成物を比較例302-311、(B)成分のみを含む化学機械研磨用組成物を比較例312-322とした。
<実施例301-324>
 比較例301を基に、表8に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、実施例301-324とした。
<比較例323-334>
 比較例301を基に、表8に記載の(A)成分、(B)成分を含む化学機械研磨用組成物を調製し、比較例323-334とした。
<実施例325-338>
 次に、実施例305を基に、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製した。すなわち、(A)成分としてアルギニン、(B)成分としてラウリルジメチルアミノ酢酸ベタインを用い、表9に記載の組成の通り、(A)成分および(B)成分の添加量、酸化剤である過酸化水素の量、pH調整剤の種類、およびpHの値を変更して各種化学機械研磨用組成物を調製し、実施例325-338とした。
<比較例335-362>
 表9に記載の組成の通り、実施例325-338において(B)成分を用いないものを比較例335-348とし、実施例325-338において(A)成分を用いないものを比較例349-362として化学機械研磨用組成物を得た。
 3.3.2.評価方法
 上記3.1.2.評価方法と同様に評価した。
 3.3.3.評価結果
 比較例301-322で得られた化学機械研磨用組成物の組成、および評価結果を下表7に示し、実施例301-324、比較例323-334で得られた化学機械研磨用組成物の組成、および評価結果を下表8に示し、実施例325-338、比較例335-362で得られた化学機械研磨用組成物の組成、および評価結果を下表9に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 比較例302-322および335-362より、(A)成分または(B)成分を単独で用いて調製された化学機械研磨用組成物では、比較例313-320、358-362を除いて、良好な腐食抑制ができなかった。これは、電荷移動抵抗値が100kΩ/cm以下であり、酸化速度が速いためであると考えられる。また、比較例323-334においても、良好な腐食抑制ができなかった。これは、電荷移動抵抗の関係式RC/(RA+RB)が1以下であることから、(A)成分と(B)成分との間に協働効果が働いていないためであると考えられる。
 なお、(B)成分としてラウリルジメチルアミノ酢酸ベタインを単独で用いる場合は、添加量が0.01質量%以上で酸化剤の量が1質量%の場合には良好な腐食抑制ができるが、添加量が0.01質量%未満の場合や酸化剤濃度の増加により、その効果が弱まることが推察される。
 これに対し、実施例301-324では、いずれも良好な腐食抑制ができていた。これは、いずれも電荷移動抵抗の関係式RC/(RA+RB)が1より高くなっており、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が100kΩ/cmより高くなったためであると考えられる。
 また、表9からわかるように、実施例325-338においても、いずれも良好な腐食抑制ができていた。これは、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関係なく、電荷移動抵抗の関係式RC/(RA+RB)が1より高く、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が100kΩ/cmより高くなったためであると考えられる。このように、電荷移動抵抗の関係式RC/(RA+RB)が1より高い場合には、添加剤の添加量、酸化剤の添加量、pH調整剤の種類、およびpHの値に関わらず、良好なタングステン腐食抑制能が発現する事が示された。特に、比較例356、357に示されるように、ラウリル ジメチルアミノ酢酸ベタインを単独で用いる場合には、酸化剤の増量に対して腐食抑制効果が落ちる結果であったが、実施例325、326、332、333に示されるように、(A)成分であるアルギニンと併用することで、酸化剤を増量しても腐食抑制が可能であることが示された。
 3.4.洗浄用組成物の例
 3.4.1.洗浄用組成物の調製
<比較例401>
 ポリエチレン製容器に表10に記載の成分を投入し、全構成成分が100質量%となるようにイオン交換水、およびpH調整剤としてマレイン酸を加え、pHを3に調整し15分間撹拌することで、比較例401の洗浄用組成物を得た。
<比較例402-419>
 比較例401を基に、表10に記載の(A)成分または(B)成分を含む洗浄用組成物を調製し、比較例402-419とした。
<比較例420-440>
 比較例401を基に、表11に記載の(A)成分、(B)成分を含む洗浄用組成物を調製し、比較例420-440とした。
<実施例401-425>
 比較例401を基に、表12に記載の(A)成分、(B)成分を含む洗浄用組成物を調製し、実施例401-425とした。
<比較例441-454、実施例426-435>
 次に、表13に記載の組成の通り、実施例410、412、419を基に、(A)成分および(B)成分の添加量、pH調整剤の種類、およびpHの値を変更して各種洗浄用組成物を調製し、比較例441-454および実施例426-435とした。
 3.4.2.評価方法
 3.4.2.1.電荷移動抵抗の評価
 得られた洗浄剤組成物を用い45℃で評価を行った以外は、上記3.1.2.1.と同様にして電荷移動抵抗を評価した。
 3.4.2.2.腐食観察の評価
 得られた洗浄剤組成物を用い45℃で評価を行った以外は、上記3.1.2.2と同様にして腐食を観察した。腐食の評価基準は次の通りである。
 ○:浸漬前と比較して腐食による表面の形状変化が認められなかった場合を特に良好な結果と判断する。
 △:浸漬前と比較して腐食している箇所と腐食していない箇所とが混在している場合を良好な結果と判断する。
 ×:浸漬前と比較して全面が腐食している場合を悪い結果と判断する。
 3.4.2.3.欠陥評価
 予め、比較例119の化学機械研磨用組成物を用いて上記3.1.2.3の方法で化学機械研磨処理した3cm x 3cmサイズのタングステンカットウエハを用意した。該カットウエハを、Bluker Corpoation製の走査型原子間力顕微鏡(AFM)であるDimension FastScanを用いてフレームサイズ10μmにて5か所観察し、5か所の算術平均粗さの平均値が0.1 nm以下の平坦な表面である事が確認できたタングステンカットウエハのみを欠陥評価に用いた。該カットウエハを、上記3.4.2.2と同様に洗浄剤組成物に浸漬処理し、AFMを用いてフレームサイズ10μmにて5か所観察した。得られた5枚の画像について画像解析ソフトを用いて2.0nm以上の高さをもつ付着物の合計を欠陥数とした。評価基準は次の通りである。
 ○:欠陥数500個未満を良好な結果と判断する。
 ×:欠陥数500個以上を悪い結果と判断する。
 3.4.3.評価結果
 比較例401-419で得られた洗浄用組成物の組成、および評価結果を下表10に示し、比較例420-440で得られた洗浄用組成物の組成、および評価結果を下表11に示し、実施例401-425で得られた洗浄用組成物の組成、および評価結果を下表12に示し、比較例441-454および実施例426-435で得られた洗浄用組成物の組成、および評価結果を下表13に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 比較例401-419より、(A)成分または(B)成分を単独で用いて調製された組成物を用いてのタングステン腐食評価結果は、比較例404および411-413以外はいずれも良好な腐食抑制ができなかった。これはタングステンの電荷移動抵抗値が1000kΩ/cm以下であり、酸化速度が速いためであると考えられる。
 また、比較例420-440、比較例441-454により、(A)成分と(B)成分の両方を含む組成物を用いた場合にも、いずれも良好な腐食抑制ができなかった。これは請求項1で規定した電荷移動抵抗の関係式RC/(RA+RB)が1以下となり、(A)成分と(B)成分との間に協働効果が働いていないためであると考えられる。
 これに対し、実施例401-425により、(A)成分と(B)成分との両方を含む場合には、いずれも良好な腐食抑制ができた。これは、請求項1で規定した電荷移動抵抗の関係式RC/(RA+RB)が1以上となったためであると考えられる。このように、実施例401-425により、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が1000kΩ/cm以上となることで、タングステン腐食抑制が可能であることが示された。
 また、実施例426-435においても、いずれも良好な腐食抑制ができた。これは請求項1で規定した電荷移動抵抗RA、RB、RCを用いた関係式RC/(RA+RB)が1以上となり、(A)成分と(B)成分との間に協働効果が働くことによって電荷移動抵抗値が1000kΩ/cm以上となったためであると考えられる。このように、実施例426-435では、(A)成分、(B)成分の濃度、pH、pH調整剤の種類に関わらず、良好なタングステン腐食抑制能が発現する事が示された。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
10…シリコン基板、12…シリコン酸化膜、14…タングステン膜、20…配線用凹部、42…スラリー供給ノズル、44…スラリー(化学機械研磨用処理組成物)、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…化学機械研磨装置

Claims (19)

  1.  金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、
     (A)窒素含有化合物と、
     (B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、
     (D)pH調整剤と、を含有し、
     前記金属を電極に用いた交流インピーダンス測定で得られる電極電荷移動抵抗値(1×3cmにカットした金属ウエハの中央部1×1cmの部位に絶縁テープを貼り、その上部1×1cmの露出領域に電極クリップを取り付けて交流電圧が制御された測定装置に接続し、下部1×1cmの露出領域を水溶液に5分間浸漬し、振幅5mV、周波数1500-0.5Hzの交流電圧を高周波から低周波にかけて印加して抵抗値の実部と虚部の値を得て、縦軸に虚部、横軸に実部を取ることにより得られる半円状のプロットを交流インピーダンス解析ソフトにより解析して得られる値(Ω/cm)。)において、
     前記(A)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RA)と、前記(B)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RB)とを合わせた値(RA+RB)と、前記(A)成分と前記(B)成分と前記(D)pH調整剤とを含む水溶液中の電極電荷移動抵抗値(RC)との関係が、RC/(RA+RB)>1となる化学機械研磨用処理組成物。
  2.  前記(A)窒素含有化合物が、下記一般式(1)~(3)で表される化合物よりなる群から選択される少なくとも1種である、請求項1に記載の化学機械研磨用処理組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、RとRは各々独立して、水素原子、または、炭素数1~10の有機基から選ばれる官能基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、Rは、水素原子、窒素原子を含む炭素数2~10の有機基および炭素数1~10のカルボキシル基からなる群から選択されるいずれかの官能基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(3)中、R~Rのうち一つ以上が炭素数1~3のカルボキシル基であり、それ以外が水素原子を表す。)
  3.  前記(A)が、前記一般式(1)で表される化合物であり、
     前記(B)が、アニオン性界面活性剤またはポリアクリル酸である、請求項2に記載の化学機械研磨用処理組成物。
  4.  前記アニオン性界面活性剤が、ドデシルベンゼンスルホン酸カリウム、アルケニルコハク酸ジカリウムおよびオクチルリン酸エステルよりなる群から選択される少なくとも1種である、請求項3に記載の化学機械研磨用処理組成物。
  5.  前記(A)が、前記一般式(2)で表される化合物のうち、Rが窒素原子を含む炭素数2~10の有機基である化合物であり、
     前記(B)が、スルホ基を有する界面活性剤である、請求項2に記載の化学機械研磨用処理組成物。
  6.  前記スルホ基を有する界面活性剤が、アルキルベンゼンスルホン酸またはその塩である、請求項5に記載の化学機械研磨用処理組成物。
  7.  前記(A)が、前記一般式(2)で表される化合物または、前記一般式(3)で表される化合物であり、
     前記(B)が、カルボキシル基を有するベタイン系界面活性剤である、請求項2に記載の化学機械研磨用処理組成物。
  8.  前記カルボキシル基を有するベタイン系界面活性剤が、下記一般式(4)、(5)および(6)で表される化合物よりなる群から選択される少なくとも1種である、請求項7に記載の化学機械研磨用処理組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記一般式(4)中、R~R10はそれぞれ独立に炭素数1~15の炭化水素基からなる群から選択されるいずれかの官能基を表し、R11は炭素数1~5の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(5)中、R12とR13はそれぞれ独立に、水素原子、炭素数5~20の炭化水素基、アミド基を有する炭素数5~20の有機基、アミノ基を有する炭素数5~20の有機基、イミド基を有する炭素数5~20の有機基、カルボキシル基を有する炭素数1~10の有機基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R14は炭素数1~5の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(6)中、R15、R16はそれぞれ独立に、炭素数1~20の炭化水素基、ヒドロキシル基を有する炭素数1~10の有機基からなる群から選択されるいずれかの官能基を表し、R17は炭素数1~5の炭化水素基を表す。)
  9.  前記(A)が、キノリン酸、ヒスチジン、アルギニンおよびアスパラギン酸よりなる群から選択される少なくとも1種であり、
     前記(B)が、ラウリルジメチルアミノ酢酸ベタイン、ラウリルアミノジプロピオン酸ベタインおよび2-ラウリル-N-カルボキシメチル-N-ヒドロキシエテルイミダゾリニウムベタインよりなる群から選択される少なくとも1種である、請求項8に記載の化学機械研磨用処理組成物。
  10.  前記電極電荷移動抵抗値(RC)が100kΩ/cmより高い、請求項1ないし請求項9のいずれか一項に記載の化学機械研磨用処理組成物。
  11.  前記金属がタングステンである、請求項1ないし請求項10のいずれか一項に記載の化学機械研磨用処理組成物。
  12.  さらに、(C)酸化剤を含有する、請求項1ないし請求項11のいずれか一項に記載の化学機械研磨用処理組成物。
  13.  前記(C)酸化剤が、過酸化水素または過硫酸アンモニウムである、請求項12に記載の化学機械研磨用処理組成物。
  14.  前記化学機械研磨用処理組成物が、前記被処理体を洗浄するための洗浄用組成物である、請求項1ないし請求項11のいずれか一項に記載の化学機械研磨用処理組成物。
  15.  さらに、(E)砥粒を含有する、請求項1ないし請求項13のいずれか一項に記載の化学機械研磨用処理組成物。
  16.  前記化学機械研磨用処理組成物が、前記被処理体を研磨するための化学機械研磨用組成物である、請求項15に記載の化学機械研磨用処理組成物。
  17.  請求項16に記載の化学機械研磨用処理組成物を用いて、前記被処理体を研磨する、化学機械研磨方法。
  18.  請求項14に記載の化学機械研磨用処理組成物を用いて、前記被処理体を洗浄する、洗浄方法。
  19.  金属を含む配線層が設けられた被処理体を処理するための化学機械研磨用処理組成物であって、
     (A)窒素含有化合物と、
     (B)界面活性剤およびポリアクリル酸よりなる群から選択される少なくとも1種の化合物と、
     (D)pH調整剤と、を含有する、化学機械研磨用処理組成物。
PCT/JP2016/060449 2015-04-22 2016-03-30 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法 WO2016170942A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167030226A KR101731523B1 (ko) 2015-04-22 2016-03-30 화학 기계 연마용 처리 조성물, 화학 기계 연마 방법 및 세정 방법
US15/568,285 US10507563B2 (en) 2015-04-22 2016-03-30 Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015087697 2015-04-22
JP2015-087695 2015-04-22
JP2015087695 2015-04-22
JP2015-087697 2015-04-22
JP2015-087696 2015-04-22
JP2015087696 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016170942A1 true WO2016170942A1 (ja) 2016-10-27

Family

ID=57144328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060449 WO2016170942A1 (ja) 2015-04-22 2016-03-30 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法

Country Status (4)

Country Link
US (1) US10507563B2 (ja)
KR (1) KR101731523B1 (ja)
TW (1) TWI619806B (ja)
WO (1) WO2016170942A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117428A1 (ja) * 2019-12-12 2021-06-17 Jsr株式会社 化学機械研磨用組成物及び研磨方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209620B2 (ja) * 2017-03-14 2023-01-20 株式会社フジミインコーポレーテッド 研磨用組成物、その製造方法ならびにこれを用いた研磨方法および基板の製造方法
US10777423B2 (en) 2017-11-22 2020-09-15 Taiwan Semiconductor Manufacturing Company Ltd. Chemical mechanical polishing method
US10647887B2 (en) * 2018-01-08 2020-05-12 Cabot Microelectronics Corporation Tungsten buff polishing compositions with improved topography
US20190211228A1 (en) * 2018-01-09 2019-07-11 Cabot Microelectronics Corporation Tungsten bulk polishing method with improved topography
JP7120846B2 (ja) * 2018-08-10 2022-08-17 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法並びに研磨方法並びに基板の製造方法
CN113122141A (zh) * 2019-12-30 2021-07-16 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
KR102367056B1 (ko) * 2020-02-27 2022-02-25 주식회사 케이씨텍 화학적 기계적 연마용 슬러리 조성물
KR20210118396A (ko) 2020-03-19 2021-09-30 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. 세정 조성물과 이를 사용하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093195A1 (ja) * 2010-01-27 2011-08-04 Jsr株式会社 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法、ならびに化学機械研磨用水系分散体調製用キット
JP2015043371A (ja) * 2013-08-26 2015-03-05 日立化成株式会社 金属用研磨液及び研磨方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162368A (en) 1998-06-13 2000-12-19 Applied Materials, Inc. Technique for chemical mechanical polishing silicon
JP3804009B2 (ja) 2001-10-01 2006-08-02 触媒化成工業株式会社 研磨用シリカ粒子分散液、その製造方法および研磨材
US20040262168A1 (en) * 2003-06-25 2004-12-30 Jinshan Huo Methods of electopolishing patterned substrates
US7247567B2 (en) 2004-06-16 2007-07-24 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US7582127B2 (en) 2004-06-16 2009-09-01 Cabot Microelectronics Corporation Polishing composition for a tungsten-containing substrate
KR101275964B1 (ko) 2005-02-23 2013-06-14 제이에스알 가부시끼가이샤 화학 기계 연마방법
EP1700893B1 (en) 2005-03-09 2008-10-01 JSR Corporation Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP2007019093A (ja) 2005-07-05 2007-01-25 Nitta Haas Inc 半導体研磨用組成物
JP4868840B2 (ja) 2005-11-30 2012-02-01 Jsr株式会社 半導体装置の製造方法
JP5182483B2 (ja) 2005-12-16 2013-04-17 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット
JP4143872B2 (ja) 2006-10-06 2008-09-03 Jsr株式会社 化学機械研磨用水系分散体および半導体装置の化学機械研磨方法
JP5403262B2 (ja) 2007-03-26 2014-01-29 Jsr株式会社 化学機械研磨用水系分散体、および半導体装置の化学機械研磨方法
JP5327427B2 (ja) * 2007-06-19 2013-10-30 Jsr株式会社 化学機械研磨用水系分散体調製用セット、化学機械研磨用水系分散体の調製方法、化学機械研磨用水系分散体および化学機械研磨方法
CN101933124B (zh) 2008-02-06 2012-07-04 Jsr株式会社 化学机械研磨用水系分散体以及化学机械研磨方法
KR101461261B1 (ko) 2008-02-18 2014-11-12 제이에스알 가부시끼가이샤 화학 기계 연마용 수계 분산체 및 화학 기계 연마 방법
US8652350B2 (en) 2008-02-27 2014-02-18 Jsr Corporation Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method using the same, and method of recycling chemical mechanical polishing aqueous dispersion
JP5472585B2 (ja) 2008-05-22 2014-04-16 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
JP5361306B2 (ja) 2008-09-19 2013-12-04 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
US8480920B2 (en) 2009-04-02 2013-07-09 Jsr Corporation Chemical mechanical polishing aqueous dispersion, method of preparing the same, chemical mechanical polishing aqueous dispersion preparation kit, and chemical mechanical polishing method
JP2010269985A (ja) 2009-05-22 2010-12-02 Fuso Chemical Co Ltd スルホン酸修飾水性アニオンシリカゾル及びその製造方法
SG11201406961PA (en) 2012-04-27 2014-11-27 Wako Pure Chem Ind Ltd Cleaning agent for semiconductor substrates and method for processing semiconductor substrate surface
WO2014103725A1 (ja) * 2012-12-25 2014-07-03 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
WO2015129342A1 (ja) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド 研磨用組成物
JPWO2016158648A1 (ja) * 2015-03-30 2018-03-01 Jsr株式会社 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093195A1 (ja) * 2010-01-27 2011-08-04 Jsr株式会社 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法、ならびに化学機械研磨用水系分散体調製用キット
JP2015043371A (ja) * 2013-08-26 2015-03-05 日立化成株式会社 金属用研磨液及び研磨方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117428A1 (ja) * 2019-12-12 2021-06-17 Jsr株式会社 化学機械研磨用組成物及び研磨方法

Also Published As

Publication number Publication date
KR20160133565A (ko) 2016-11-22
US10507563B2 (en) 2019-12-17
TW201704441A (zh) 2017-02-01
TWI619806B (zh) 2018-04-01
KR101731523B1 (ko) 2017-04-28
US20180111248A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2016170942A1 (ja) 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法
CN107586517B (zh) 用于屏障化学机械平面化的添加剂
US6803353B2 (en) Copper chemical mechanical polishing solutions using sulfonated amphiprotic agents
Pandija et al. Achievement of high planarization efficiency in CMP of copper at a reduced down pressure
TWI751969B (zh) 化學機械研磨用處理組成物、化學機械研磨方法及洗淨方法
JP5176077B2 (ja) 金属用研磨液及びこれを用いた研磨方法
KR102314305B1 (ko) 세정용 조성물 및 세정 방법
TW201336977A (zh) 用於鈷應用之漿料
US6884338B2 (en) Methods for polishing and/or cleaning copper interconnects and/or film and compositions therefor
CN113186539A (zh) 一种化学机械抛光后清洗液及其制备方法
CN113201742B (zh) 一种化学机械抛光后清洗液的应用
WO2016158795A1 (ja) 化学機械研磨用処理組成物、化学機械研磨方法および洗浄方法
JP2017061612A (ja) 化学機械研磨用組成物および化学機械研磨方法
TW202038325A (zh) 化學機械研磨用水系分散體以及化學機械研磨方法
KR20200115329A (ko) 코발트 제거율이 높고 코발트 부식이 감소된 코발트의 화학적 기계적 폴리싱 방법
JP7375483B2 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP2006066851A (ja) 化学的機械研磨用組成物
JP2008118099A (ja) 金属用研磨液及びこの研磨液を用いた被研磨膜の研磨方法
JP2006287002A (ja) 化学機械研磨用水系分散体及び化学機械研磨方法
Zhong Interfacial chemistry in chemical mechanical planarization (cmp) and post-cmp cleaning of surfaces for microelectronic applications
JP2023093850A (ja) 化学機械研磨用組成物および研磨方法
JPWO2021095412A1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
KR20110036184A (ko) 구리 화학적 기계적 연마 후 세정 공정용 세정액

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167030226

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15568285

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP