WO2016168334A1 - Noise mitigation in radar systems - Google Patents
Noise mitigation in radar systems Download PDFInfo
- Publication number
- WO2016168334A1 WO2016168334A1 PCT/US2016/027338 US2016027338W WO2016168334A1 WO 2016168334 A1 WO2016168334 A1 WO 2016168334A1 US 2016027338 W US2016027338 W US 2016027338W WO 2016168334 A1 WO2016168334 A1 WO 2016168334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- interferer
- frequency
- phase
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/038—Feedthrough nulling circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/003—Bistatic radar systems; Multistatic radar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
- G01S13/343—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/354—Extracting wanted echo-signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/04—Systems determining presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/356—Receivers involving particularities of FFT processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/358—Receivers using I/Q processing
Definitions
- the storage 114 (which can be memory such as on-processor cache, off-processor cache, RAM, flash memory, or disk storage) stores one or more software applications 130 (e.g., embedded applications) that, when executed by the CPU 112, perform any suitable function associated with the computing system 100.
- software applications 130 e.g., embedded applications
- the estimator 282 is used to determine the value of the frequency and phase of an interferer signal at the ADC output.
- the interferer signal results from direct coupling of a signal transmitted by the transmission antenna 230 and received (e.g., directly) at the receiver antenna 240.
- the direct coupling results from electromagnetic coupling between the two antennas.
- the interferer signal may also refer to (a) strong reflection(s) (or near-object reflections) of the transmitted signal to the receiver antenna by known objects that are relatively close to the radar apparatus, such as the vehicle chassis behind (or in) which the radar apparatus is mounted.
- the ADC (complex) output is coupled to the multiplexer 286 via the digital signal shifter 284 (if present and enabled).
- the digital signal shifter 284 is programmed with a signal shift value that is one of a frequency shift col (e.g., COANT), a phase shift ⁇ (e.g., ⁇ ANT), or both.
- the digital signal shifter 284 is operable to perform frequency and phase shifting in accordance with:
- the output of the digital signal shifter 284 is also a complex signal with real and imaginary portions (e.g., respectively having a signal shifted ADC I 270 output and a signal shifted ADC Q 272 output, in which the complex output signal is shifted in frequency and/or phase).
- the output of the multiplexer controller 292 is forwarded to the signal shifter 288, which operates similarly to the signal shifter 284, except that any initial signal shifting performed by the signal shifters 212 and/or 284 is substantially negated by performing a correctional signal shift that is substantially equal and opposite to the initial signal shifting.
- the output of the signal shifter 288 is coupled to the radar FFT processor 290 during operation to identify the presence and position of reflective objects around the radar apparatus.
- the correctional signal shifting allows the radar FFT processor 290 to correctly identify the presence and position of reflective objects that would otherwise be skewed when processing a signal-shifted signal without the correctional signal shifting.
- the estimation of relative distance to the object will have an offset and estimation of angle of the object would be erroneous if no correctional signal shifting were performed.
- FIG. 3a illustrates the frequency of transmitted and received signals associated with one reflector for one FMCW chirp, whose duration is Tc 330.
- FIG. 3b is a frequency waveform diagram of the periodicity and frequency range of FMCW radar system signals in accordance with embodiments.
- waveform diagram 300 includes a transmitted signal 306.
- the transmitted signal 306 is a signal transmitted by a radar transmitter (such as the transmitter 202 of the noise-mitigated FMCW radar system 200).
- the transmitted signal has an instantaneous frequency that cycles (e.g., modulates) from 80 GHz to 81 GHz over a period of around 100 microseconds ( ⁇ ).
- the uncorrected phase noise (jyt) and the skirt ( (t)) substantially affect the receiver noise level in the signal received through the LNA 250 at the mixer 260 in accordance with:
- the dominant interferer (e.g., the highest portions of the reflected signal spectrum envelope) 522 contains frequency components from the low frequency tone 410 and the tail-off components of skirt 420.
- the dominant interferer 520 is offset (e.g., having a frequency separation) from the y-axis at the DC (e.g., "zero") frequency point by a frequency offset 530.
- the frequency offset 530 is also referred to as the interferer offset frequency, which has a phase offset (e.g., the phase of the interference signal with respect to a sinusoid of the interferer offset frequency).
- the frequency and phase offsets depend on the FMCW slope and the interferer round trip delay.
- the beat signal (e.g., baseband output signal) at the mixer (e.g., 260) output, corresponding to the dominant interferer is of the form:
- r(t) is the beat signal at the mixer output corresponding to the dominant interferer
- 0mt is the phase of the dominant interferer (interferer offset phase)
- (Dint is the frequency of the dominant interferer (interferer offset frequency)
- (t) is time
- AN is amplitude noise introduced in PA 220 and LNA 250 associated with the dominant interferer
- PN is the phase noise introduced in PA 220 and LNA 250 associated with the dominant interferer.
- the quantities 0mt and (Dint vary instantaneously in response to the FMCW slope, the start frequency, and the round trip distance to the interferer.
- the resulting signal (e.g., de-rotated baseband signal) has amplitude noise associated with to the dominant interferer in a real part and phase noise associated with the dominant interferer predominantly in an imaginary part:
- the radar FFT processor 290 is operable to signal shift (e.g., "de-rotate") the received signal by the amount of the offset 530 (e.g., the frequency and phase of the dominant interferer 520), and operable to create a de-rotated signal.
- the created de-rotated signal is centered having a dominant reflector portion of the spectrum baseband version around DC, such that the amplitude noise of the de-rotated signal is contained in the amplitude leakage positive frequency portion 526 (e.g., real part) and the amplitude leakage negative frequency portion 524 (imaginary part).
- signal shifting is optionally performed by: (a) signal shifters 212 and/or 284 (with signal shifter 288 bypassed; or (b) the FFT processor 290 (with signal shifters 212, 284, and 288 bypassed).
- FIG. 6 is a process flow diagram using software-assisted signal shifting in accordance with example embodiments.
- the radar apparatus does not require all components described with reference to FIG. 2.
- the signal shifter 212 is absent and ADC (e.g., 270 and 272) outputs go directly to the FFT processor 290.
- the FFT processor's software or firmware is coded in a way to achieve noise mitigation in accordance with process flow 600.
- FIG. 8. an embodiment where hardware is operable to perform signal shifting is described below with respect to FIG. 8.
- Process flow 600 begins in terminal 602 where process flow proceeds to operation 610.
- operation 610 the frequency and phase of a dominant interferer is determined. Initially, an FMCW chirp is transmitted and the return signal containing the dominant interferer is received and processed similar to the processing described above for the estimator 282. The frequency and phase of a dominant interferer is determined by performing an FFT of the ADC output to determine which FFT output bin (e.g., peak bin) corresponds to the frequency of the dominant reflection.
- FFT output bin e.g., peak bin
- the value of the FFT output bin corresponding to the dominant interferer is denoted as M (where M is optionally a fractional number when the dominant interferer frequency is determined substantially accurately using interpolation of neighboring FFT values) and the value of the phase of the dominant interferer is denoted as P.
- M is optionally a fractional number when the dominant interferer frequency is determined substantially accurately using interpolation of neighboring FFT values
- P the value of the phase of the dominant interferer
- the processing for finding the frequency and phase of the dominant interferer is primarily coded in software and/or firmware
- the processing is similar to the processing performed by the estimator 282.
- the operations are performed by hardware circuits and blocks in the hardware embodiment (various combinations of hardware-assisted and software assisted signal shifting are possible).
- Program flow proceeds to operation 620.
- Program flow proceeds to operation 630.
- an image spectrum subtraction operation is performed.
- the amplitude and uncorrected noise associated with the dominant interferer are real quantities, and accordingly have a conjugate symmetric spectrum.
- noise from the positive portion of the frequency spectrum is suppressed in response to the noise estimate of the negative portion of the frequency spectrum, such that the desired object tones are primarily present (and/or substantially enhanced) in the spectrum after the subtraction.
- Program flow proceeds to operation 640.
- This processing is referred to as "extracting the conjugate even component around the interferer bin, M.”
- the extracted values have a suppressed amount of amplitude or uncorrelated phase noise, which allows enhanced identification of reflecting objects as compared against conventional radar processing.
- the distance information of the objects of interest is optionally displayed having range information, such that a user can quickly determine the presence of an object and the range of the object.
- Program flow proceeds to terminal 699 where the program flow terminates.
- FIG. 7 is a frequency waveform diagram of an input baseband signal and a processed baseband signal of a simulation of a noise-mitigated FMCW radar system in accordance with embodiments.
- waveform diagram 700 includes an input baseband signal 702 and a processed (e.g., enhanced) baseband signal 704.
- the input baseband signal 702 includes the dominant interferer 710.
- the input baseband signal has apparent noise levels predominantly around 35 dB (decibels) to 20 dB and an apparent average noise level around 30 dB.
- the FMCW waveform frequency increases from 77GHz to 81 GHz over a 40 micro-second duration (e.g., the "chirp” or "FMCW chirp") yielding a slope of lOOMHz/micro-second.
- the transmit output power has a power of approximately 10 through approximately 13 dBm, which results in a reflection or antenna coupling of approximately -10 dBm.
- the receiver noise is approximately 11 dB, which results in a thermal noise level of approximately -163 dBm/Hz.
- the receiver phase noise is approximately -147 dBc/Hz.
- the antenna coupling interference has a propagation delay of 100 pico-seconds, which results in an interference frequency (e.g., interferer signal) of lOKHz at the ADC output.
- the signal shifter 284 is programmed with -lOKHz frequency shift and signal shifter 288 is programmed with a lOKHz frequency shift.
- the signal shifters 212 and 284 are each programmed with -5 KHz frequency shift and the signal shifter 288 is programmed with lOKHz frequency shift.
- the interference resulting from vehicle chassis reflections has a round trip propagation delay of 333 pico-second (when the chassis to radar antenna distance is 5cm). Accordingly, an interference frequency of 33.33 KHz is determined at the ADC output.
- the signal shifters are programmed.
- the estimator 282 programs the signal shifters 212, 284, 288, in such a way that the summation of shifts programmed on signal shifters 212 and 284 equals the negative of the frequency and phase of the dominant interferer, and in such a way that the summation of the shifts programmed on signal shifters 212 and 284 equals the negative of the shifts programmed on 288.
- Program flow proceeds to step 830.
- the operations 820 and 830 are slightly modified. For example, a set of various values of signal shift are used to program a signal shifter in the transmitter (such that one configuration after another is evaluated).
- the FFT processor 290 is used to determine which configuration gives the lowest noise level at the output of ADC I 270. The configuration that provides the lowest noise level is selected as the optimum configuration and is forwarded as the selected optimum configuration to operation 840.
- portions of the frequency or phase shifting can be achieved in part with the digital circuits and the remaining part in the processor, (e.g., such that the same signal processing effects are substantially performed when the FMCW noise-mitigation system is viewed in totality).
- the functions explained as being done by the processor e.g., FFT
- the elements such as the signal shifter 284, multiplexer 286 and signal shifter 288 can be implemented as digital circuits, processor functions, and/or algorithms executed in the form of firmware or software.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201680033886.7A CN107636484B (zh) | 2015-04-15 | 2016-04-13 | 雷达系统中的减噪 |
| EP16780653.8A EP3283900B1 (en) | 2015-04-15 | 2016-04-13 | Noise mitigation in radar systems |
| JP2017554402A JP6745282B2 (ja) | 2015-04-15 | 2016-04-13 | レーダシステムにおける雑音軽減 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/687,617 US10101438B2 (en) | 2015-04-15 | 2015-04-15 | Noise mitigation in radar systems |
| US14/687,617 | 2015-04-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016168334A1 true WO2016168334A1 (en) | 2016-10-20 |
Family
ID=57126053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/027338 Ceased WO2016168334A1 (en) | 2015-04-15 | 2016-04-13 | Noise mitigation in radar systems |
Country Status (5)
| Country | Link |
|---|---|
| US (3) | US10101438B2 (enExample) |
| EP (1) | EP3283900B1 (enExample) |
| JP (3) | JP6745282B2 (enExample) |
| CN (1) | CN107636484B (enExample) |
| WO (1) | WO2016168334A1 (enExample) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018123204A1 (ja) * | 2016-12-27 | 2018-07-05 | 株式会社ソシオネクスト | レーダー装置 |
| WO2018138725A1 (en) * | 2017-01-24 | 2018-08-02 | Arbe Robotics Ltd | Method for separating targets and clutter from noise, in radar signals |
| WO2019032752A1 (en) | 2017-08-08 | 2019-02-14 | Texas Instruments Incorporated | MEASUREMENT OF NOISE IN A RADAR SYSTEM |
| WO2019057480A1 (de) * | 2017-09-25 | 2019-03-28 | Robert Bosch Gmbh | Verfahren und radarsensor zur reduktion des einflusses von störungen bei der auswertung mindestens eines empfangssignals |
| CN110622026A (zh) * | 2017-03-02 | 2019-12-27 | 西梅奥有限公司 | 用于环境检测的方法和装置 |
| WO2020102342A1 (en) | 2018-11-13 | 2020-05-22 | Texas Instruments Incorporated | Radar transceiver |
| JP2020519890A (ja) * | 2017-05-12 | 2020-07-02 | シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 位相雑音を補償するための方法及び装置 |
| CN115632718A (zh) * | 2022-09-15 | 2023-01-20 | 华北电力大学(保定) | 光纤射频信号稳定传输系统 |
| EP4206734A4 (en) * | 2020-09-27 | 2023-11-01 | Huawei Technologies Co., Ltd. | RADAR DETECTION METHOD AND APPARATUS |
| CN118191775A (zh) * | 2024-03-14 | 2024-06-14 | 中国工程物理研究院应用电子学研究所 | 一种高功率微波后门强耦合参数提取方法及装置 |
Families Citing this family (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10101438B2 (en) * | 2015-04-15 | 2018-10-16 | Texas Instruments Incorporated | Noise mitigation in radar systems |
| US10274596B2 (en) * | 2016-02-19 | 2019-04-30 | Honeywell International Inc. | Method and system for FMCW radar altimeter system height measurement resolution improvement |
| US10403960B2 (en) * | 2016-03-31 | 2019-09-03 | Dell Products L.P. | System and method for antenna optimization |
| US9846228B2 (en) | 2016-04-07 | 2017-12-19 | Uhnder, Inc. | Software defined automotive radar systems |
| US10261179B2 (en) | 2016-04-07 | 2019-04-16 | Uhnder, Inc. | Software defined automotive radar |
| US9753121B1 (en) | 2016-06-20 | 2017-09-05 | Uhnder, Inc. | Power control for improved near-far performance of radar systems |
| US11454697B2 (en) | 2017-02-10 | 2022-09-27 | Uhnder, Inc. | Increasing performance of a receive pipeline of a radar with memory optimization |
| WO2018146530A1 (en) | 2017-02-10 | 2018-08-16 | Uhnder, Inc. | Reduced complexity fft-based correlation for automotive radar |
| WO2018146634A1 (en) | 2017-02-10 | 2018-08-16 | Uhnder, Inc. | Increasing performance of a receive pipeline of a radar with memory optimization |
| DE102017105783B4 (de) * | 2017-03-17 | 2020-06-10 | S.M.S Smart Microwave Sensors Gmbh | Verfahren zum Bestimmen eines Abstandes und einer Geschwindigkeit eines Objektes |
| CN116545488A (zh) * | 2017-03-28 | 2023-08-04 | 高通股份有限公司 | 基于距离的传输参数调节 |
| DE102017119624A1 (de) * | 2017-08-28 | 2019-04-18 | HELLA GmbH & Co. KGaA | Verfahren zum Betrieb eines Radarsystems eines Fahrzeuges |
| US11105890B2 (en) | 2017-12-14 | 2021-08-31 | Uhnder, Inc. | Frequency modulated signal cancellation in variable power mode for radar applications |
| US10305611B1 (en) * | 2018-03-28 | 2019-05-28 | Qualcomm Incorporated | Proximity detection using a hybrid transceiver |
| IL260695A (en) | 2018-07-19 | 2019-01-31 | Arbe Robotics Ltd | Method and device for eliminating waiting times in a radar system |
| IL260694A (en) | 2018-07-19 | 2019-01-31 | Arbe Robotics Ltd | Method and device for two-stage signal processing in a radar system |
| IL260696A (en) | 2018-07-19 | 2019-01-31 | Arbe Robotics Ltd | Method and device for structured self-testing of radio frequencies in a radar system |
| US10943461B2 (en) * | 2018-08-24 | 2021-03-09 | Digital Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time |
| EP3620810B1 (en) * | 2018-09-05 | 2022-07-13 | Nxp B.V. | Radar interference detection |
| IL261636A (en) | 2018-09-05 | 2018-10-31 | Arbe Robotics Ltd | Deflected MIMO antenna array for vehicle imaging radars |
| KR102090880B1 (ko) * | 2018-10-11 | 2020-03-18 | 한국과학기술원 | Fmcw 레이더에서의 누설 신호 감쇄 방법 및 그 레이더 시스템 |
| EP3637127B1 (en) * | 2018-10-12 | 2024-11-27 | Axis AB | Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit |
| DE102018126034A1 (de) * | 2018-10-19 | 2020-04-23 | Infineon Technologies Ag | Fmcw radar mit störsignalunterdrückung |
| US11474225B2 (en) | 2018-11-09 | 2022-10-18 | Uhnder, Inc. | Pulse digital mimo radar system |
| US11047952B2 (en) * | 2018-12-28 | 2021-06-29 | Qualcomm Incorporated | Mitigating mutual coupling leakage in small form factor devices |
| US11204410B2 (en) * | 2019-02-11 | 2021-12-21 | Nxp B.V. | Radar-based communication |
| WO2020183392A1 (en) * | 2019-03-12 | 2020-09-17 | Uhnder, Inc. | Method and apparatus for mitigation of low frequency noise in radar systems |
| US11448721B2 (en) * | 2019-06-25 | 2022-09-20 | Infineon Technologies Ag | In device interference mitigation using sensor fusion |
| DE102019119974B4 (de) * | 2019-07-24 | 2021-07-08 | Infineon Technologies Ag | Phasen-kalibrierung eines radarsystems mit übersprech-unterdrückung |
| US11555908B2 (en) * | 2019-09-06 | 2023-01-17 | International Business Machines Corporation | Multi range radar system |
| DE102019124850B4 (de) * | 2019-09-16 | 2021-08-12 | Infineon Technologies Ag | Phasenoptimierung für die verbesserte Detektion von Radarzielen |
| US20210149018A1 (en) * | 2019-11-18 | 2021-05-20 | Semiconductor Components Industries, Llc | Minimizing phase noise in fmcw radar and detecting radar housing coating |
| US11726174B1 (en) * | 2019-12-30 | 2023-08-15 | Waymo Llc | Methods and systems for removing transmit phase noise |
| US11899126B2 (en) | 2020-01-13 | 2024-02-13 | Uhnder, Inc. | Method and system for multi-chip operation of radar systems |
| US11960000B2 (en) | 2020-02-18 | 2024-04-16 | HG Partners, LLC | Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments |
| US12210092B1 (en) | 2020-02-18 | 2025-01-28 | HG Partners, LLC | Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments |
| US11150341B2 (en) | 2020-02-18 | 2021-10-19 | HG Partners, LLC | Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments |
| US11686839B1 (en) | 2020-02-18 | 2023-06-27 | HG Partners, LLC | Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments |
| US11550027B2 (en) | 2020-05-04 | 2023-01-10 | Nxp B.V. | Predistortion technique for joint radar/communication systems |
| US12013484B2 (en) * | 2020-05-20 | 2024-06-18 | Infineon Technologies Ag | Radar receiving system and method for compensating a phase error between radar receiving circuits |
| JP2022019391A (ja) * | 2020-07-17 | 2022-01-27 | 株式会社村田製作所 | レーダ装置 |
| US11709221B2 (en) * | 2020-09-08 | 2023-07-25 | Texas Instruments Incorporated | Noise-mitigated radar system |
| US11899095B2 (en) * | 2020-09-17 | 2024-02-13 | Texas Instruments Incorporated | Doppler processing in frequency-modulated continuous wave radar systems using dither |
| IL278587A (en) | 2020-11-09 | 2022-06-01 | Arbe Robotics Ltd | Estimating an efficient direction of arrival using a low degree approximation |
| CN113009429B (zh) * | 2021-03-16 | 2024-03-08 | 苏州锐武微电子有限公司 | 一种减轻fmcw雷达互干扰的设备 |
| JP7433528B2 (ja) * | 2021-06-21 | 2024-02-19 | 三菱電機株式会社 | レーダ装置および干渉波抑圧装置 |
| US12111411B1 (en) | 2021-07-06 | 2024-10-08 | Waymo Llc | Automated generation of radar interference reduction training data for autonomous vehicle systems |
| US12189051B2 (en) * | 2021-08-20 | 2025-01-07 | Src Inc | Discrete time adaptive notch filter |
| US12007465B2 (en) | 2021-10-19 | 2024-06-11 | Nxp B.V. | Radar apparatus and method with content embedded in the radar signal |
| US20230124956A1 (en) * | 2021-10-20 | 2023-04-20 | AyDeeKay LLC dba Indie Semiconductor | Signal-Adaptive and Time-Dependent Analog-to-Digital Conversion Rate in a Ranging Receiver |
| CN114355328B (zh) * | 2021-12-29 | 2024-04-09 | 加特兰微电子科技(上海)有限公司 | 雷达信号处理方法、无线电信号处理方法及应用装置 |
| US12248089B2 (en) * | 2022-02-02 | 2025-03-11 | Qualcomm Incorporated | Frequency modulated continuous wave radar detection in the presence of phase noise |
| KR102864770B1 (ko) | 2022-05-03 | 2025-09-25 | 성균관대학교산학협력단 | 차량용 레이다의 간섭 신호 처리 장치 및 방법 |
| US12306338B2 (en) * | 2022-06-06 | 2025-05-20 | Kabushiki Kaisha Toshiba | Full duplex radar positional feedback and update |
| CN114966701A (zh) * | 2022-06-08 | 2022-08-30 | 苏州毫感科技有限公司 | 雷达检测系统和干扰消除方法 |
| CN115267684B (zh) * | 2022-08-04 | 2025-11-04 | 上海交通大学 | 复杂环境下的未知信号辨识方法和系统 |
| WO2024116398A1 (ja) * | 2022-12-02 | 2024-06-06 | 三菱電機株式会社 | レーダ装置 |
| US20240183935A1 (en) * | 2022-12-05 | 2024-06-06 | Qualcomm Incorporated | Joint fmcw sensing and ofdm communications |
| US20250076460A1 (en) * | 2023-09-06 | 2025-03-06 | Intelligent Fusion Technology, Inc. | Systems and methods for linear frequency-modulated continuous-wave (lfmcw) radar |
| TWI898972B (zh) * | 2024-08-26 | 2025-09-21 | 瑞昱半導體股份有限公司 | 雷達裝置及估計方法 |
| CN119853730B (zh) * | 2024-12-25 | 2025-11-11 | 南京理工大学 | 一种基于噪声调频信号正交循环移位扩频通信方法 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050179585A1 (en) * | 2003-05-22 | 2005-08-18 | General Atomics | Ultra-wideband radar system using sub-band coded pulses |
| EP1681578A1 (de) | 2005-01-14 | 2006-07-19 | Siemens Aktiengesellschaft | Rauschunterdrückung für Radarsystem |
| US20070247351A1 (en) * | 2004-10-13 | 2007-10-25 | Kent Falk | Wideband Radar |
| US20090033538A1 (en) * | 2007-08-01 | 2009-02-05 | Volker Winkler | Ramp Linearization for FMCW Radar Using Digital Down-Conversion of a Sampled VCO Signal |
| US20100204867A1 (en) * | 2007-05-04 | 2010-08-12 | Teledyne Australia Pty Ltd | Collision avoidance system and method |
| US20110037642A1 (en) * | 2009-08-12 | 2011-02-17 | Thales Holdings Uk Plc | Continuous wave radar |
| US20130322362A1 (en) * | 2007-03-16 | 2013-12-05 | Ntt Docomo, Inc. | Communication System, Transmitting Device, Receiving Device, and Communication Method |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2938764A1 (de) * | 1978-09-26 | 1980-04-10 | Hitachi Ltd | Montageaufbau und schlitzstrahlersystem fuer radargeraete zum erfassen der geschwindigkeit von damit ausgeruesteten kraftfahrzeugen |
| FR2603385B1 (fr) * | 1986-08-27 | 1988-11-10 | Trt Telecom Radio Electr | Radar a onde continue modulee en frequence pour mesure de distance |
| US5600675A (en) * | 1994-09-07 | 1997-02-04 | General Electric Company | Ultrasonic imager having improved bandwidth |
| JPH08262126A (ja) * | 1995-03-22 | 1996-10-11 | Mitsubishi Electric Corp | レーダ受信機 |
| US6525609B1 (en) * | 1998-11-12 | 2003-02-25 | Broadcom Corporation | Large gain range, high linearity, low noise MOS VGA |
| JP2001091639A (ja) * | 1999-09-27 | 2001-04-06 | Toyota Central Res & Dev Lab Inc | Fm−cwレーダ装置 |
| JP3944130B2 (ja) * | 2003-07-08 | 2007-07-11 | 三菱電機株式会社 | 移動体のレ−ダ方式、レ−ダ装置、レーダ信号処理方法、及びレーダ信号処理装置 |
| US7671720B1 (en) | 2004-09-01 | 2010-03-02 | Alien Technology Corporation | Method and appratus for removing distortion in radio frequency signals |
| CN101142758B (zh) * | 2005-03-09 | 2011-04-27 | 欧姆龙株式会社 | 距离测量装置、距离测量方法及通信系统 |
| JP4846481B2 (ja) * | 2006-08-02 | 2011-12-28 | 株式会社豊田中央研究所 | レーダ装置 |
| US7304601B1 (en) * | 2006-09-07 | 2007-12-04 | Rosemount Tank Radar Ab | Device and a method for accurate radar level gauging |
| JP2008199411A (ja) * | 2007-02-14 | 2008-08-28 | Omron Corp | 周波数切替装置装置及びこれを利用したrfidシステム、距離測定装置 |
| JP5478010B2 (ja) * | 2007-11-12 | 2014-04-23 | 株式会社デンソーアイティーラボラトリ | 電子走査式レーダ装置 |
| JP5410779B2 (ja) * | 2009-02-17 | 2014-02-05 | 富士フイルム株式会社 | 超音波診断装置及び受信フォーカス処理方法 |
| US8219059B2 (en) * | 2009-11-13 | 2012-07-10 | Ubiquiti Networks, Inc. | Adjacent channel optimized receiver |
| EP2546675B1 (en) * | 2010-03-09 | 2018-05-02 | Furukawa Electric Co., Ltd. | Pulse radar apparatus and control method thereof |
| IL206008A0 (en) * | 2010-05-27 | 2011-02-28 | Amir Meir Zilbershtain | Transmit receive interference cancellation |
| JP4977806B2 (ja) * | 2010-08-09 | 2012-07-18 | パナソニック株式会社 | レーダイメージング装置、イメージング方法及びそのプログラム |
| JP5267538B2 (ja) * | 2010-11-05 | 2013-08-21 | 株式会社デンソー | ピーク検出閾値の設定方法、物標情報生成装置、プログラム |
| DE102012017669A1 (de) * | 2012-09-07 | 2014-03-13 | Valeo Schalter Und Sensoren Gmbh | Anordnung mit einem Verkleidungsteil und einem Radarsensor, Kraftfahrzeug und Verfahren zum Herstellen einer Anordnung |
| DE102013104485B4 (de) * | 2013-05-02 | 2025-02-13 | Infineon Technologies Ag | Eine vorrichtung und ein verfahren zum bearbeiten eines empfangssignals und eine mischereinheit |
| US10101438B2 (en) * | 2015-04-15 | 2018-10-16 | Texas Instruments Incorporated | Noise mitigation in radar systems |
| DE102016120185B4 (de) * | 2016-10-24 | 2018-05-30 | Infineon Technologies Ag | Radar-Transceiver mit Kompensation von Phasenrauschen |
| JP6917735B2 (ja) * | 2017-03-07 | 2021-08-11 | パナソニック株式会社 | レーダ装置及びレーダ方法 |
| JP6909023B2 (ja) * | 2017-03-14 | 2021-07-28 | パナソニック株式会社 | レーダ装置及びレーダ方法 |
| DE102018112092A1 (de) * | 2018-01-10 | 2019-07-11 | Infineon Technologies Ag | Integrierte mehrkanal-hf-schaltung mit phasenerfassung |
| CN109239708A (zh) * | 2018-09-19 | 2019-01-18 | 天津大学 | 一种实现生命体征探测和短距离定位的双频电路结构 |
-
2015
- 2015-04-15 US US14/687,617 patent/US10101438B2/en active Active
-
2016
- 2016-04-13 WO PCT/US2016/027338 patent/WO2016168334A1/en not_active Ceased
- 2016-04-13 EP EP16780653.8A patent/EP3283900B1/en active Active
- 2016-04-13 CN CN201680033886.7A patent/CN107636484B/zh active Active
- 2016-04-13 JP JP2017554402A patent/JP6745282B2/ja active Active
-
2018
- 2018-08-28 US US16/114,490 patent/US10809353B2/en active Active
-
2020
- 2020-08-03 JP JP2020131380A patent/JP6948101B2/ja active Active
- 2020-09-15 US US17/020,931 patent/US11747436B2/en active Active
-
2021
- 2021-09-13 JP JP2021148229A patent/JP7327880B2/ja active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050179585A1 (en) * | 2003-05-22 | 2005-08-18 | General Atomics | Ultra-wideband radar system using sub-band coded pulses |
| US20070247351A1 (en) * | 2004-10-13 | 2007-10-25 | Kent Falk | Wideband Radar |
| EP1681578A1 (de) | 2005-01-14 | 2006-07-19 | Siemens Aktiengesellschaft | Rauschunterdrückung für Radarsystem |
| US20130322362A1 (en) * | 2007-03-16 | 2013-12-05 | Ntt Docomo, Inc. | Communication System, Transmitting Device, Receiving Device, and Communication Method |
| US20100204867A1 (en) * | 2007-05-04 | 2010-08-12 | Teledyne Australia Pty Ltd | Collision avoidance system and method |
| US20090033538A1 (en) * | 2007-08-01 | 2009-02-05 | Volker Winkler | Ramp Linearization for FMCW Radar Using Digital Down-Conversion of a Sampled VCO Signal |
| US20110037642A1 (en) * | 2009-08-12 | 2011-02-17 | Thales Holdings Uk Plc | Continuous wave radar |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3283900A4 |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11112486B2 (en) | 2016-12-27 | 2021-09-07 | Socionext Inc. | Radar apparatus |
| WO2018123204A1 (ja) * | 2016-12-27 | 2018-07-05 | 株式会社ソシオネクスト | レーダー装置 |
| WO2018138725A1 (en) * | 2017-01-24 | 2018-08-02 | Arbe Robotics Ltd | Method for separating targets and clutter from noise, in radar signals |
| US11650286B2 (en) | 2017-01-24 | 2023-05-16 | Arbe Robotics Ltd. | Method for separating targets and clutter from noise, in radar signals |
| IL250253B (en) * | 2017-01-24 | 2021-10-31 | Arbe Robotics Ltd | A method for separating targets and echoes from noise, in radar signals |
| CN110622026B (zh) * | 2017-03-02 | 2024-03-08 | 西梅奥有限公司 | 用于环境检测的方法和装置 |
| US11906655B2 (en) | 2017-03-02 | 2024-02-20 | Symeo Gmbh | Method and apparatus for capturing the surroundings |
| CN110622026A (zh) * | 2017-03-02 | 2019-12-27 | 西梅奥有限公司 | 用于环境检测的方法和装置 |
| JP7262399B2 (ja) | 2017-05-12 | 2023-04-21 | シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 位相雑音を補償するための方法及び装置 |
| JP2020519890A (ja) * | 2017-05-12 | 2020-07-02 | シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 位相雑音を補償するための方法及び装置 |
| CN110998362B (zh) * | 2017-08-08 | 2023-11-14 | 德克萨斯仪器股份有限公司 | 雷达系统和测量雷达系统中的噪声的方法 |
| CN110998362A (zh) * | 2017-08-08 | 2020-04-10 | 德克萨斯仪器股份有限公司 | 雷达系统中的噪声测量 |
| US11054500B2 (en) | 2017-08-08 | 2021-07-06 | Texas Instruments Incorporated | Noise measurement in a radar system |
| WO2019032752A1 (en) | 2017-08-08 | 2019-02-14 | Texas Instruments Incorporated | MEASUREMENT OF NOISE IN A RADAR SYSTEM |
| JP2020530566A (ja) * | 2017-08-08 | 2020-10-22 | 日本テキサス・インスツルメンツ合同会社 | レーダーシステムにおけるノイズ測定 |
| US11555883B2 (en) | 2017-08-08 | 2023-01-17 | Texas Instmments Incorporated | Noise measurement in a radar system |
| EP3665499A4 (en) * | 2017-08-08 | 2020-08-19 | Texas Instruments Incorporated | NOISE MEASUREMENT IN A RADAR SYSTEM |
| JP7212217B2 (ja) | 2017-08-08 | 2023-01-25 | テキサス インスツルメンツ インコーポレイテッド | レーダーシステムにおけるノイズ測定 |
| US11269053B2 (en) | 2017-09-25 | 2022-03-08 | Robert Bosch Gmbh | Method and radar sensor for reducing the influence of interference in the evaluation of at least one received signal |
| WO2019057480A1 (de) * | 2017-09-25 | 2019-03-28 | Robert Bosch Gmbh | Verfahren und radarsensor zur reduktion des einflusses von störungen bei der auswertung mindestens eines empfangssignals |
| WO2020102342A1 (en) | 2018-11-13 | 2020-05-22 | Texas Instruments Incorporated | Radar transceiver |
| EP3881092A4 (en) * | 2018-11-13 | 2021-12-29 | Texas Instruments Incorporated | Radar transceiver |
| EP4206734A4 (en) * | 2020-09-27 | 2023-11-01 | Huawei Technologies Co., Ltd. | RADAR DETECTION METHOD AND APPARATUS |
| CN115632718A (zh) * | 2022-09-15 | 2023-01-20 | 华北电力大学(保定) | 光纤射频信号稳定传输系统 |
| CN118191775A (zh) * | 2024-03-14 | 2024-06-14 | 中国工程物理研究院应用电子学研究所 | 一种高功率微波后门强耦合参数提取方法及装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7327880B2 (ja) | 2023-08-16 |
| CN107636484A (zh) | 2018-01-26 |
| EP3283900B1 (en) | 2025-09-17 |
| US20180074168A1 (en) | 2018-03-15 |
| US20210011118A1 (en) | 2021-01-14 |
| US10809353B2 (en) | 2020-10-20 |
| JP2020180991A (ja) | 2020-11-05 |
| JP6745282B2 (ja) | 2020-08-26 |
| US10101438B2 (en) | 2018-10-16 |
| JP2018516364A (ja) | 2018-06-21 |
| EP3283900A1 (en) | 2018-02-21 |
| CN107636484B (zh) | 2022-05-03 |
| US20200025871A1 (en) | 2020-01-23 |
| EP3283900A4 (en) | 2018-05-02 |
| JP2021192057A (ja) | 2021-12-16 |
| US11747436B2 (en) | 2023-09-05 |
| JP6948101B2 (ja) | 2021-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11747436B2 (en) | Noise mitigation in radar systems | |
| US11754667B2 (en) | System and method for determining interference in a radar system | |
| US10976431B2 (en) | Adaptive filtering for FMCW interference mitigation in PMCW radar systems | |
| CN106574967B (zh) | 在雷达中用于使振荡器信号同步的回送技术 | |
| EP3588126B1 (en) | Doppler signal processing device and method thereof for interference spectrum tracking and suppression | |
| US20180011181A1 (en) | Radar systems and methods thereof | |
| JP7212217B2 (ja) | レーダーシステムにおけるノイズ測定 | |
| US20080238761A1 (en) | In-vehicle pulse radar device | |
| CN111656216A (zh) | 雷达装置以及雷达装置的对象物检测方法 | |
| US8188909B2 (en) | Observation signal processing apparatus | |
| TWI737259B (zh) | 物體檢測方法及裝置 | |
| JP5460638B2 (ja) | パルスレーダ装置及びその制御方法 | |
| CN116804739A (zh) | 用于雷达系统的自适应tx-rx串扰消除 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16780653 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017554402 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2016780653 Country of ref document: EP |