JP4977806B2 - レーダイメージング装置、イメージング方法及びそのプログラム - Google Patents

レーダイメージング装置、イメージング方法及びそのプログラム Download PDF

Info

Publication number
JP4977806B2
JP4977806B2 JP2011551349A JP2011551349A JP4977806B2 JP 4977806 B2 JP4977806 B2 JP 4977806B2 JP 2011551349 A JP2011551349 A JP 2011551349A JP 2011551349 A JP2011551349 A JP 2011551349A JP 4977806 B2 JP4977806 B2 JP 4977806B2
Authority
JP
Japan
Prior art keywords
doppler frequency
delay
unit
signal
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011551349A
Other languages
English (en)
Other versions
JPWO2012020530A1 (ja
Inventor
健志 福田
謙一 井上
佐藤  亨
卓也 阪本
賢志 佐保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011551349A priority Critical patent/JP4977806B2/ja
Application granted granted Critical
Publication of JP4977806B2 publication Critical patent/JP4977806B2/ja
Publication of JPWO2012020530A1 publication Critical patent/JPWO2012020530A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/288Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses phase modulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/64Velocity measuring systems using range gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2886Coherent receivers using I/Q processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、送信信号を放射して目標の物体から反射した該送信信号の反射波を受信することによって該物体を検知するレーダイメージング装置及びイメージング方法等に関する。
近年、社会のあらゆる分野で安心及び安全を目的とした人体検知の要望が高まっている。世界中に広がるテロへの対策に加えて、老人介護又は災害救助においても、人の検知はもっとも重要な課題である。従来、赤外線装置及びカメラを用いて、人を検知する手段があった。しかしながら、赤外線を用いたシステムは、気温の高い場所において、人の体温と外部環境との識別が困難になるという問題がある。また、カメラを用いたシステムは、夜間又は悪天候など光が十分得られない環境では、感度が極端に落ちるという問題がある。近年、これらの問題を解決するために、レーダを用いたイメージングシステムが注目されている。
しかし、レーダを用いたイメージングは、形状を推定するのに十分なデータを得るために、多数のアンテナ又は受信器が必要になる場合が多い。例えば、フェーズドアレイレーダシステムは、多数の受信器(送信器)の位相を変え、かつ、電波の指向性及び方向を制御して、スキャンすることで物体の形状の情報を得る。しかし、このようなレーダを用いたイメージングは、そのシステムが大型になる、または、システムが複雑になるため、高価なシステムになってしまうという課題があった。
このような課題を解決し、単純な構成で物体とその方向を検知する従来手段としては、例えば非特許文献1に記載されたようなドップラ到来方向推定法(DDOA:Doppler and direction−of−arrival)と呼ばれる技術を用いる方法がある。
図16に、従来技術のレーダ装置の構成を示す。
図16に示すレーダ装置901は、送信器910と、受信器920及び930と、送信アンテナ911と、受信アンテナ912及び913とを備える。
レーダ装置901は、ターゲット931〜933を検知対象とする。レーダ装置901は、送信器910からある周波数の探知電波を出射し、ターゲット931〜933から反射されてきた電波を受信器920及び930で受信する。
レーダ装置901に対して、ターゲット931〜933がある視線方向速度で動いている場合、受信器920及び930で受信した反射波の周波数は、送信アンテナ911から放射された探知電波の周波数に対して、視線方向速度に対応する周波数だけシフトする。そのシフトした周波数から、ターゲット931〜933のそれぞれの視線方向速度を検出できる。
ここで、「視線方向速度」とは、ターゲット931〜933が持つ速度のうち、レーダ装置901からターゲットへの方向に沿った速度成分のことである。ここでは、レーダ装置901に対する、ターゲット931〜933の相対的な速度成分のことを言う。言い換えると、図16に示すように、ターゲット931〜933の速度をそれぞれV1、V2及びViとすると、ターゲット931〜933の視線方向速度とは、当該速度をレーダ装置901からターゲット931〜933への方向に沿って分解した速度であるV1f、V2f及びVifとなる。
つまり、レーダ装置901は、探知電波の周波数に対する、受信器920及び930で受信した反射波の周波数から、ターゲット931〜933の視線方向速度V1f、V2f及びVifを検出する。
ところで、レーダ装置901では、図16に示すように、受信アンテナ及びその受信アンテナに対応する受信器を含む受信系統が2系統ある。さらに、それぞれの受信アンテナ912及び913は、異なる場所に配置されている。
これにより、各ターゲット931〜933から受信アンテナ912までの距離と、当該ターゲット931〜933から受信アンテナ913までの距離とは、互いに異なる。
このようにターゲット931〜933から2つの受信アンテナ912及び913までの距離が異なることで、ターゲット931〜933の方向検出が可能になる。以下、方向検出の原理について具体的に説明する。
図16において、例えば、ターゲット933は、受信アンテナ912より受信アンテナ913に近い位置にあるので、ターゲット933からの反射波は受信アンテナ912より受信アンテナ913に早く到着する。受信アンテナ912で受信した反射波と受信アンテナ913で受信した反射波とを比較すると、受信アンテナ912で受信した反射波は受信アンテナ913で受信した反射波より位相が遅れることになる。ここで、ターゲット933が受信アンテナ912及び受信アンテナ913の正面からθiの方向にあり、2つの受信アンテナ912及び913が距離dだけ離れて配置されているとすると、受信アンテナ912で受信した反射波と受信アンテナ913で受信した反射波との位相差は式1で表される。なお、受信アンテナ912で受信した反射波の位相をφ1、受信アンテナ913で受信した反射波の位相をφ2、送信アンテナ911から出射された探知電波の波長をλとする。
φ2−φ1=2πd sinθ/λ ・・・(式1)
この式1を変形すると、下記の式2となり、2つの受信アンテナ912及び913で受信した反射波の位相差φ2−φ1からターゲット933の方向θを検出できる。
θ=sin−1{(φ2−φ1)λ/(2πd)} ・・・(式2)
これがDOA(direction−of−arrival)と呼ばれる技術である。
以上説明したように、図16に示す従来のレーダ装置901は、位相とドップラ周波数の両方を検知することで、複数のターゲットの識別が可能になるとともに、それぞれのターゲットの方向と速度を検知することができる。なお、図16ではレーダ装置901は、2つの受信アンテナ912及び913を有するので1次元方向しか検知できないが、例えば受信アンテナ912と受信アンテナ913とを含む直線上以外に、もう一つの受信アンテナを配置することで、水平/垂直の2次元方向を検知することができる。
このようなレーダ装置901は、例えば人体検知に対しては、人の各部位が異なる動きをすることを利用して人体を検知できる。具体的には、胴体に対して、頭、手、脚が異なる速度で動くため、その方向と速度から人体を検知することが可能になる。
ところで、物体とその方向を検知する従来技術として、例えば特許文献1に記載されたような、複数のアンテナのそれぞれのビームパターン特性と、拡散符号の遅延時間とから、物体の方向を検出する技術が開示されている。
国際公開第97/40400号
"Two−dimensional human tracking using a three−element Doppler and direction−of−arrival (DDOA) radar" Lin, A.; Ling, H., IEEE Radar Conference, April 2006, pp. 248−251.
しかしながら、従来の非特許文献1の構成ではドップラ周波数が近いとDOAが不安定になるという課題がある。なぜなら、レーダ装置はドップラ周波数で各物体を識別しているため、レーダ装置に対して同じ視線方向速度で動く物体は別のものとして識別できないからである。そのため到来方向も識別できないことになる。言い換えれば、探知電波の照射範囲内の物体は全て異なるドップラ周波数を持つこと、すなわち異なる視線方向速度で動いていることが必要となる。
ところが、実際の世界では多くのものが様々な動きをしているのが普通であり、検知したいターゲットとたまたま近い視線方向速度で動くものがどこかにある可能性は極めて高い。これらは全てターゲットを検知するための障害となる。
また、探知電波と同様の周波数帯の通信システム又は他のレーダシステムが近くにあった場合、従来のレーダ装置ではその影響を受け、ターゲットを検知できない。このように、従来のレーダ装置は、他システムの干渉に対して弱い構成となっている。
そこで、レーダ装置からの距離が互いに異なる距離範囲である探索レンジごとにターゲットを検知する構成が考えられる。
しかしながら、ドップラ周波数の分解能は解析時間の逆数に応じて決定されるので、探索レンジごとにターゲットを検知する場合、ドップラ周波数の分析に長い時間を要する。これにより、処理時間が長くなるという課題がある。このように処理時間が長くなることにより、移動しているターゲットの方向を検知できないことがある。
また、特許文献1の構成をドップラ周波数を検知する構成に適用しても、同様にドップラ周波数の分析に長い時間を要するので、処理時間が長くなる。つまり、移動しているターゲットの方向を検知できないことがある。
本願発明の目的は、上記従来の課題を解決するもので、処理時間を短縮することにより、移動しているターゲットの方向を検知する機能を向上できるレーダイメージング装置及びイメージング方法を提供することを目的とする。
本願発明の一態様に係るレーダイメージング装置は、送信拡散符号を用いて搬送波を拡散することで送信信号を生成する送信部と、前記送信信号を放射波として放射する送信アンテナと、前記放射波が物体により反射された反射波を受信する複数の受信アンテナと、前記レーダイメージング装置からの距離が異なるN(Nは2以上の整数)個の探索レンジを走査するための走査期間内に、前記送信拡散符号と同一の符号であって前記距離に対応するN個の遅延符号を順次発生する走査処理を、M(Mは2以上の整数)走査期間にわたって繰り返す遅延符号発生部と、前記複数の受信アンテナにそれぞれ対応し、各々が、前記N個の遅延符号を順次用いて対応する受信アンテナで受信された反射波を逆拡散する複数の逆拡散部と、前記複数の逆拡散部にそれぞれ対応し、各々が、前記搬送波を用いて対応する逆拡散部で逆拡散された反射波を直交検波することにより、対応する受信アンテナで受信された反射波に応じた検波信号Rij(iは1からNの整数、jは1からMの整数)を生成する複数の検波部と、前記遅延符号発生部における遅延時間及び走査期間に対応づけて、前記複数の検波部のそれぞれで生成された検波信号Rijを記憶する記憶部と、前記遅延符号発生部における前記N個の遅延符号に対応する互いに異なる前記距離及び1つの走査期間に対応するN個の前記検波信号R1j〜RNjを前記記憶部に前記M走査期間繰り返し書き込み、前記距離が同一かつ互いに異なる走査期間に対応するM個の検波信号Ri1〜RiMの組を前記記憶部から順次読み出す記憶制御部と、前記記憶制御部により読み出された前記距離が同一のM個の検波信号Ri1〜RiMを周波数分析することによって、各探索レンジにおける前記反射波と前記搬送波との差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、前記複数の検波部のそれぞれに対応して検出するドップラ周波数検出部と、検出された前記複数の検波部のそれぞれに対応する位相から前記複数の検波部間の位相差を算出し、算出した位相差から各探索レンジにおける前記反射波の到来方向を検出することにより前記物体の方向を推定する方向推定部とを備える。
これにより、複数回の遅延時間の掃引結果である検波信号Rijが記憶部に記憶される。また、当該レーダイメージング装置は、当該レーダイメージング装置からの距離が同一の検波信号Ri1〜RiMについて、ドップラ周波数弁別処理を行う。この構成により、検波信号Rijを、記憶部を介さずにドップラ周波数を弁別処理し、処理が完了する度に遅延時間の設定を変更するという単純な構成と比較し、当該レーダイメージング装置は、所望のドップラ周波数弁別処理の分解能を得つつ、距離範囲を掃引するために必要な時間を短縮できる。よって、当該レーダイメージング装置は、移動しているターゲットの方向を推定する機能を向上できる。
また、当該レーダイメージング装置は、当該レーダイメージング装置からの距離が、拡散符号の符号速度により決定される距離のk(kは0以上の整数)倍以上、かつk+1倍以下の領域である検知範囲として定義される探索レンジごとに、反射波に応じた検知信号Rijを処理することが可能となる。よって、当該レーダイメージング装置は、探索レンジ外に同じ視線方向速度を有する物体が存在する場合であっても、その物体からの反射波の影響を受けることなく、当該検知範囲からの反射波の周波数を弁別できる。つまり、当該レーダイメージング装置は、当該検知範囲において移動している物体が存在する場合は、当該検知範囲外に同じ視線方向速度を有する物体が存在する場合でも、当該検知範囲における物体からの反射波と搬送波との差分の周波数であるドップラ周波数を検出できる。また、当該レーダイメージング装置は、送信信号として、符号変調した信号を用いているために、他のレーダシステム等から発する電波の影響があっても符号により自らの発した信号を識別することが可能である。つまり、当該レーダイメージング装置は、他のレーダシステムによる影響を低減できる。その結果、ドップラ周波数の近い物体又は他システムの干渉の影響によりDOAが不定となる可能性が大きく減少するので、当該レーダイメージング装置は、簡易な構成で物体の方向を短時間に検出できる。
また、前記方向推定部は、前記ドップラ周波数検出部で検出された強度が所定の第1閾値以上となるドップラ周波数成分を含む前記反射波の到来方向を前記物体の方向と推定してもよい。
これにより、当該レーダイメージング装置は、物体の方向を推定できる。具体的には、当該レーダイメージング装置は、強度が所定の第1閾値以上となるドップラ周波数について、受信アンテナ間の位相差と、受信アンテナ間の物理的な距離とを用いて、物体の方向を知ることができる。
また、さらに、前記ドップラ周波数検出部で検出された強度が前記所定の第1閾値以上となるドップラ周波数成分が検出された探索レンジの前記距離を、前記レーダイメージング装置から前記物体までの距離として推定する距離推定部を備えてもよい。
これにより、当該レーダイメージング装置は、レーダイメージング装置から物体までの距離情報が得られるため、詳細な情報処理が可能になる。具体的には、受信アンテナで受信された信号は、遅延符号発生部で生成され、送信拡散符号に対して所定の遅延時間を有する遅延符号で逆拡散される。よって、信号が、送信アンテナから放射された後、物体で反射されて受信アンテナまで伝搬する際の往復遅延時間と、遅延符号の遅延時間とが一致する場合だけ、物体の視線方向速度に対応するドップラ周波数シフトを受けた搬送波が再生される。これにより、ドップラ周波数検出部により、視線移動速度に対応するドップラ周波数が出力される。しかし、往復遅延時間と遅延符号の遅延時間とが一致しない場合は、周波数スペクトルが送信拡散符号の符号速度に依存した広帯域に拡散された状態になるため、この影響がドップラ周波数検出部の検出結果にはほとんど寄与しない。従って、ある遅延時間においてドップラ周波数検出部のいずれかのドップラ周波数が所定の第1閾値以上の強度となる場合、その遅延時間の半分の時間に電磁波が進行する距離に、物体が存在すると判定することができる。
また、前記方向推定部は、さらに、前記ドップラ周波数検出部で検出された強度が前記所定の第1閾値以上となるドップラ周波数成分から、前記レーダイメージング装置から前記物体を見た速度である視線方向速度を推定してもよい。
これにより、当該レーダイメージング装置は、物体の視線方向速度を推定できるので、物体の接近を予測するなど、高度な判断が可能になる。
また、前記N個の遅延符号は、前記送信拡散符号に対して互いに異なる遅延時間を有し、前記遅延時間は、前記送信拡散符号の1ビットを与える時間であるビット時間の整数倍であってもよい。
これにより、遅延符号発生部の構成を簡単化しつつ、特定の距離範囲にある物体を、物体が反射する反射波がドップラ周波数検出部において識別可能な強度を有する限りにおいて、すべて検出することができる構成を実現できる。
また、前記遅延時間は、前記ビット時間のK(Kは整数)倍からK+N−1倍のいずれかであり、前記走査処理は、前記遅延時間を前記ビット時間のK倍からK+N−1倍まで前記ビット時間ずつ順次増加させる、又は、前記遅延時間を前記ビット時間のK+N−1倍からK倍まで前記ビット時間ずつ順次減少させることにより、前記N個の遅延符号を発生してもよい。
これにより、遅延符号発生部の構成をさらに簡単化でき、さらに複数の探索レンジ間の干渉を抑制できる。
また、前記距離推定部は、前記ドップラ周波数検出部で検出されたドップラ周波数成分毎の前記遅延時間に対する当該ドップラ周波数成分の強度の分布から、強度が極大となるピーク強度を特定し、特定したピーク強度と、特定したピーク強度に対応する遅延時間より前記ビット時間だけ短い遅延時間に対する強度であるピーク前強度と、特定したピーク強度に対応する遅延時間より前記ビット時間だけ長い遅延時間に対する強度であるピーク後強度とを用いて補間処理することにより、前記ビット時間に対応する距離よりも小さい距離を分解能として、前記レーダイメージング装置から前記物体までの距離を推定してもよい。
これにより、当該レーダイメージング装置は、抽出した物体について、その方向を探索レンジの長さより細かい分解能で高精度に検出することができる。
また、前記搬送波の周波数をf0、前記レーダイメージング装置から前記物体を見た速度である視線方向速度の想定される最大値をvmax、前記視線方向速度の検出可能な分解能をvresとすると、前記送信拡散符号及び前記遅延符号の符号速度CRは、CR≦2×f0×vres/vmaxを満たすことが望ましい。
これにより、当該レーダイメージング装置は、物体の距離を探索レンジの長さより細かい分解能で検出する際の誤差を低減できる。
また、前記レーダイメージング装置は、さらに、前記遅延符号発生部が前記走査処理をM回繰り返す第1動作モードと、同一の遅延符号を繰り返し発生する第2動作モードとを制御する制御部を備え、前記制御部は、前記第1動作モードにおいて、前記ドップラ周波数検出部で検出された強度が所定の第2閾値以上となるドップラ周波数成分があるか否かを判断し、前記所定の第2閾値以上となるドップラ周波数成分があると判断した場合に前記第2動作モードに切り替え、前記第2動作モードにおいて、前記遅延符号発生部は、前記所定の第2閾値以上となるドップラ周波数成分が検出された探索レンジに対応する前記遅延符号を繰り返し発生し、前記記憶部は、当該探索レンジに対応する前記遅延符号を用いて逆拡散及び検波された検波信号を記憶せず、前記ドップラ周波数検出部は、前記記憶部に記憶されない検波信号を前記走査期間よりも短い周期でサンプリングして周波数分析することによって、前記所定の第2閾値以上となるドップラ周波数成分が検出された探索レンジにおける当該ドップラ周波数成分の位相及び強度を再度検出してもよい。
これにより、当該レーダイメージング装置は、観測対象について、方向精度と距離精度とを向上することができる。
また、前記第2動作モードにおいて、前記ドップラ周波数検出部が前記周波数分析するために要した前記検波信号の観測時間は、前記走査期間をM回繰り返すために要した時間と同等であることが望ましい。
これにより、当該レーダイメージング装置は、全ての探索レンジについて物体の存在を判定する際の速度の分解能と、所定の第2閾値以上となるドップラ周波数成分が検出された探索レンジの物体について高精度に方向と距離の検出を行う際の速度の分解能とを等しくすることができるので、速度分解能の劣化を抑制できる。
また、前記所定の第2閾値は、前記強度が前記所定の第2閾値以上であると判断される前記探索レンジがN−2個以下となるような値であることが望ましい。
これにより、記憶部を介して全探索レンジに対してドップラ周波数を分析するのに要する時間と、全探索レンジのうち任意の探索レンジに対して記憶部を介さずドップラ周波数を分析するのに要する時間とは等しくなる。よって、記憶部を介さずにドップラ周波数を弁別処理し、処理が完了する度に遅延時間の設定を変更するという単純な構成と比較し、レーダイメージング装置全体の処理時間を短縮することができる。
なお、本発明は、このような特徴的な処理部を備えるレーダイメージング装置として実現することができるだけでなく、レーダイメージング装置に含まれる特徴的な処理をステップとするイメージング方法として実現してもよい。
また、本発明は、そのようなイメージング方法に含まれる特徴的なステップをレーダイメージング装置内の信号処理プロセッサに実行させるためのプログラムとして実現したりすることもできる。さらに、当該プログラムを記録したコンピュータ読み取り可能なCD−ROM(Compact Disc−Read Only Memory)などの記録媒体、又は、当該プログラムを示す情報、データ或いは信号として実現してもよい。そして、それらプログラム、情報、データ及び信号は、インターネットなどの通信ネットワークを介して配信してもよい。
以上、本発明によれば、移動しているターゲットの方向を検知する機能を向上できるレーダイメージング装置を提供できる。
図1は、本発明の実施の形態1におけるレーダ装置の構成を示すブロック図である。 図2は、本発明の実施の形態1におけるレーダ装置の送信部の詳細な構成を示すブロック図である。 図3は、本発明の実施の形態1におけるレーダ装置の受信部の詳細な構成を示すブロック図である。 図4は、本発明の実施の形態1におけるレーダ装置の制御部による遅延時間の制御について説明する図である。 図5は、本発明の実施の形態1におけるレーダ装置の信号記憶部の構成を示す図である。 図6Aは、本発明の実施の形態1におけるレーダ装置の信号記憶部に複素ベースバンド信号を記憶する順序を示す図である。 図6Bは、本発明の実施の形態1におけるレーダ装置の信号記憶部から複素ベースバンド信号を読み出す様子を示す図である。 図7は、本発明の実施の形態1におけるレーダ装置のドップラ周波数弁別部の構成と、入出力信号の構造とを示す図である。 図8は、本発明の実施の形態1におけるレーダ装置の物体検出部の出力信号の構造を示す図である。 図9は、本発明の実施の形態1におけるレーダ装置の動作を示すフローチャートである。 図10は、本発明の実施の形態1における、図9のベースバンド信号の書き込み処理の詳細な動作を示すフローチャートである。 図11Aは、本発明の実施の形態1におけるレーダ装置のドップラ周波数弁別部の特定のドップラ周波数成分の出力信号強度を示す図である。 図11Bは、本発明の実施の形態1における、隣接するレンジゲートの信号強度の比と距離オフセット値との関係を示す図である。 図12は、本発明の実施の形態2におけるレーダ装置の制御部と信号処理部との構成を示す図である。 図13は、本発明の実施の形態2におけるレーダ装置の動作を示すフローチャートである。 図14は、本発明の実施の形態2におけるレーダ装置の第1動作モードの具体的な動作を示すフローチャートである。 図15は、本発明の実施の形態2におけるレーダ装置の第2動作モードの具体的な動作を示すフローチャートである。 図16は、従来のレーダ装置の構成を示すブロック図である。
以下、本発明の各実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、実施の形態1に係るレーダ装置100の構成を示すブロック図である。なお、図1には、レーダ装置100が検知する対象であるターゲット(対象物)200a及び200bも併せて図示されている。
レーダ装置100は、本発明のレーダイメージング装置であり、ターゲット200a及び200bの視線方向速度及び方向を検出する機能と、拡散符号を用いてターゲット200a及び200bまでの距離を測定する機能とを備える。
具体的には、レーダ装置100は、発振器101、分配器102a及び102bと、拡散符号発生部103aと、遅延符号発生部103bと、送信部104と、送信アンテナ105と、受信アンテナ106a及び106bと、受信部107a及び107bと、信号処理部108と、アナログ・デジタル変換器109a、109b、109c及び109dと、制御部110とを備える。なお、ターゲット200a及び200bについて、特に区別する必要がない場合は、ターゲット200と記載する。また、レーダ装置100は、静止しているものとする。以下、各構成について詳細に説明する。
(発振器101)
発振器101は、周波数がf0の局部発振信号(搬送波とも言う)LOを生成する。搬送波LOの周波数f0としては、例えば60GHzの周波数帯を使用する。なお、発振器101は、搬送波LOの周波数f0を直接生成する構成であっても、外部で生成された信号を逓倍することにより所望の周波数f0の搬送波LOを生成する構成であってもよい。
(分配器102a及び102b)
分配器102a及び102bは、入力信号を分配することで、入力信号と同一の周波数を有する2つの信号を出力する。具体的には、分配器102aは、発振器101で生成された搬送波LOを分配することで、搬送波LOと同一の周波数f0を有する2つの信号を生成し、当該2つの信号の一方を送信部104に、他方を分配器102bに出力する。一方、分配器102bは、分配器102aから入力された信号を分配することで、当該入力された信号と同一の周波数、つまり搬送波LOと同一の周波数f0を有する2つの信号を生成し、当該2つの信号の一方を受信部107aに、他方を受信部107bに出力する。つまり、分配器102a及び102bは、送信部104、受信部107a及び107bに、発振器101で生成された、周波数f0の搬送波LOを出力する。
(拡散符号発生部103a及び遅延符号発生部103b)
拡散符号発生部103aは、スペクトラム拡散に使用する拡散符号を発生する。拡散符号は、例えばビットレート250MbpsのM系列符号の拡散符号(以下、M1と言う)である。なお、拡散符号発生部103aにより発生される拡散符号M1は、本発明の送信拡散符号に相当する。
具体的には、拡散符号発生部103aは、例えばデジタル回路であり、例えば拡散符号発生部103aの外部に設けた記憶装置(図示せず)に格納された拡散符号を逐次取り出すか、又は拡散符号発生部103aの内部或いは外部に記憶された規則(例えば、定式)に基づいて拡散符号を逐次生成する。拡散符号発生部103aは、発生した拡散符号を、送信部104に出力する。
遅延符号発生部103bは拡散符号M1に対し、遅延時間を有する遅延符号(以下、M2と言う)を発生する。具体的には、遅延符号発生部103bは、レーダ装置100からの距離が異なるN(Nは2以上の整数)個のレンジゲートを走査するための走査期間内に、送信符号M1と同一の符号であって、N個のレンジゲートのレーダ装置100からの距離に対応するN個の遅延符号M2を順次発生するレンジスキャン動作(走査処理とも言う)を、M(Mは2以上の整数)走査期間にわたって繰り返す。より具体的には、遅延符号発生部103bは、制御部110から指示される遅延時間C2だけ拡散符号M1に対して遅れた符号である遅延符号M2を発生する。また、制御部110は、拡散符号発生部103aへ遅延時間C1を指示する。この遅延時間C1は例えばゼロである。
ここで、遅延時間C2とは、拡散符号M1の時間波形に対する遅延符号M2の時間波形の遅れ時間であり、遅延時間C2がゼロの場合、拡散符号M1の時間波形と遅延符号M2の時間波形は同一となるが、遅延時間C2がゼロでない場合、遅延符号M2の時間波形は拡散符号M1の時間波形を遅延時間C2だけ遅らせた波形となる。
具体的には、遅延符号発生部103bは、例えばデジタル回路である。この遅延符号発生部103bは、制御部110の指示に従い、拡散符号発生部103aが参照する、拡散符号発生部103aの外部に設けた記憶装置に格納された符号を拡散符号M1に対して遅延した様態で逐次取り出すことにより遅延符号M2を発生する。あるいは、遅延符号発生部103bは、拡散符号M1を発生させるために用いた定式と同じ定式に基づいて、拡散符号M1に対して遅延した様態で拡散符号M1と同じ符号を発生することにより遅延符号M2を逐次生成する。
(送信部104)
送信部104は、拡散符号発生部103aで発生された拡散符号M1を用いて、局部発振信号LO(搬送波)を拡散することで、送信信号(以下、RF OUTと言う)を生成する。例えば、送信部104は、図2に示すような構成として実現され、搬送波LOと拡散符号M1とを乗算する拡散ミキサ141と、拡散ミキサ141で拡散された搬送波LOを増幅することにより送信信号RF OUTを生成する増幅器142とを備える。増幅器142は、例えば、レーダ装置100から放射される電波を法規制により定められた適切なレベルに設定するために、拡散ミキサ141で拡散された搬送波LOを当該適切なレベルに増幅する。
(送信アンテナ105)
図1において、送信アンテナ105は、送信部104で生成された送信信号RF OUTを放射波(以下、rad_wと言う)として放射する。
送信アンテナ105から放射された放射波rad_wは、ターゲット200で反射され、反射波(以下、ref_wと言う)として受信アンテナ106a及び106bで受信される。
(受信アンテナ106a及び106b)
受信アンテナ106a及び106bは、受信した反射波ref_wを入力信号(以下、RF INと言う)として対応する受信部107a及び107bへ出力する。言い換えると、受信アンテナ106aで受信された反射波ref_wは、受信部107aに入力信号RF INとして入力される。一方、受信アンテナ106bで受信された反射波ref_wは、受信部107bに入力信号RF INとして入力される。
(受信部107a及び107b)
受信部107aは、遅延符号発生部103bで発生された遅延符号M2を用いて、受信アンテナ106aで受信された反射波ref_wを逆拡散する。さらに、受信部107aは、逆拡散した反射波ref_wを搬送波LOを用いて直交復調(直交検波とも言う)することで、同相信号(Ia)及び直交信号(Qa)を生成する。この同相信号(Ia)は、受信部107aで逆拡散された反射波ref_wの、搬送波LOと同相の位相成分に対応する信号である。一方、直交信号(Qa)は、受信部107aで逆拡散された反射波ref_wの、搬送波LOと直交する位相成分に対応する信号である。これら同相信号(Ia)及び直交信号(Qa)は、受信アンテナ106aで受信された反射波ref_wの強度及び位相に対応する第1複素ベースバンド信号BBaを構成する。
受信部107bは、遅延符号発生部103bで発生された遅延符号M2を用いて、受信アンテナ106bで受信された反射波ref_wを逆拡散する。さらに、受信部107bは、逆拡散した反射波ref_wを搬送波LOを用いて直交復調することで、同相信号(Ib)及び直交信号(Qb)を生成する。この同相信号(Ib)は、受信部107bで逆拡散された反射波ref_wの、搬送波LOと同相の位相成分に対応する信号である。一方、直交信号(Qb)は、受信部107bで逆拡散された反射波ref_wの、搬送波LOと直交する位相成分に対応する信号である。これら同相信号(Ib)及び直交信号(Qb)は、受信アンテナ106bで受信された反射波ref_wの強度及び位相に対応する第2複素ベースバンド信号BBbを構成する。
なお、受信部107bは、受信部107aと同様の構成を有する。
ここで、図3を用いて、受信部107a及び受信部107bの構成を受信部107として説明する。なお、図3に示す受信部107に対応して設けられた受信アンテナ106a及び106bのそれぞれを、特に区別せず受信アンテナ106と記載する場合がある。また、同相信号(Ia)及び同相信号(Ib)を同相信号(I)、直交信号(Qa)及び直交信号(Qb)を直交信号(Q)、第1複素ベースバンド信号BBa及び第2複素ベースバンド信号BBbを複素ベースバンド信号BBとして記載する場合がある。また、単にベースバンド信号と記載する場合がある。
受信部107は、図3に示すように、受信アンプ175と、逆拡散ミキサ171と、分配器172a及び172bと、復調ミキサ173a及び173bと、移相器174とを備える。
受信アンプ175は、受信アンテナ106が受信した信号を増幅する増幅器である。つまり、受信アンプ175は入力信号RF INを増幅する。受信アンプ175は、微弱な受信信号(入力信号RF INと同義)を増幅する増幅器であり、特に増幅器自身が新たに付加する雑音を最小化するように注意深く設計された低雑音増幅器であることが望ましい。受信アンプ175は、その出力部において、新たに付加された雑音に対する入力信号の強度比を最大に保ちつつ受信信号の強度を増幅することによって、後段の回路で発生する雑音の影響を最小限に抑制する。
逆拡散ミキサ171は、本発明の逆拡散部に相当し、受信アンテナ106a又は受信アンテナ106bで受信された反射波ref_wを、拡散符号M1に対して遅延された遅延符号M2を用いて逆拡散する。具体的には、受信アンプ175で増幅された入力信号RF
INを逆拡散する。この逆拡散された信号を、「被逆拡散波」と呼ぶ。
送信アンテナ105より放射波rad_wが放射されてから、ターゲット200でその放射波rad_wが反射されて受信アンテナ106で受信されるまでの時間と、拡散符号M1に対する遅延符号M2の遅延時間とが一致する場合に、逆拡散ミキサ171の出力信号において、狭帯域の被逆拡散波が再生される。
このとき出力される被逆拡散波の周波数は、送信部104に供給する搬送波LOの周波数f0が、ターゲット200の視線方向速度によってドップラシフトを受けた周波数である。
分配器172aは、分配器102a及び102bと同様に、入力された信号を分配し、入力された信号と同一の周波数を有する信号を出力する。具体的には、分配器172aは、逆拡散ミキサ171により生成された被逆拡散波を分配し、分配した一方の被逆拡散波を復調ミキサ173aに出力し、分配した他方の被逆拡散波を復調ミキサ173bに出力する。同様に、分配器172bは、入力された搬送波LOを分配し、分配した一方の搬送波LOを復調ミキサ173aに出力し、分配した他方の搬送波LOを移相器174に出力する。移相器174は、入力された搬送波LOの位相を90°ずらして出力する。つまり、復調ミキサ173aに入力される搬送波LOの位相と、復調ミキサ173bに入力される搬送波LOの位相とは、90°異なる。
復調ミキサ173a及び173bは、本発明の検波部に相当し、分配器172aで分配された被逆拡散波を、搬送波LOを用いて直交復調し、同相信号(I)及び直交信号(Q)から構成される複素ベースバンド信号BBを生成する直交復調器である。具体的には、復調ミキサ173aは分配器172aで分配された被逆拡散波を、搬送波LOを用いて復調することで同相信号(I)を生成する。一方、復調ミキサ173bは分配器172aで分配された被逆拡散波を、移相器174で位相が90°ずらされた搬送波LOを用いて復調することで直交信号(Q)を生成する。
これにより、複素ベースバンド信号BBの周波数は、受信部107の入力信号RFINの周波数と、搬送波LOの周波数f0との差分の周波数を有する。つまり、受信アンテナ106に入力された、拡散符号M1に対する遅延符号M2の遅延時間と一致する往復遅延時間を有する反射波ref_wは、受信部107により、その反射波ref_wを生成したターゲット200の視線方向速度によって決定されるドップラ周波数を有する低周波信号であるベースバンド信号BBに変換される。これに対し、受信アンテナ106に入力された、拡散符号M1に対する遅延符号M2の遅延時間と一致しない往復遅延時間を有する反射波ref_wは、受信部107により、中心周波数がゼロで広帯域に拡散された信号に変換される。この中心周波数がゼロで広帯域に拡散された信号は、通常発生しうるドップラ周波数の範囲の低周波信号成分への寄与はほとんどない。
よって、レーダ装置100は、通常発生しうるドップラ周波数の範囲の信号成分だけを処理すれば、拡散符号M1に対する遅延符号M2の遅延時間で規定される距離の前後に、M1およびM2の符号速度で規定される長さをもった特定の距離範囲(以下、レンジゲートと言う)に位置するターゲット200からの反射波ref_wだけを選択的に検出することができる。
具体的には、搬送波の周波数がf0=60GHzであり、対象物の視線方向速度が最大vmax=200km/hであるとすると、ドップラ周波数の最大値fdmaxは光速cを用いてfdmax=2×vmax×f0/c=22.2kHzとなる。
また、拡散符号M1の符号速度CRとレンジゲートの長さRGとの関係はRG=c/(CR×2)である。つまり、CR=250MbpsのときRG=60cmである。
よって、レーダ装置100は、拡散符号M1に対する遅延符号M2の遅延時間として、ある遅延時間を設定した場合、当該遅延時間に対応する距離の前後60cmの区間に存在するターゲットだけを選択的に検出することができる。例えば、遅延時間を12nsとした場合、遅延時間12nsに対応する距離は180cmとなる。また、レーダ装置100は、レーダ装置100からの距離が120cm以上かつ240cm以下の区間に存在するターゲット200だけを選択的に検出することができる。
ターゲット200の検出範囲は、より詳しくは、拡散符号M1の自己相関特性に依存する。例えば、拡散符号M1がM系列符号の場合、遅延時間に対応する距離を含むレンジゲートに隣接するレンジゲートにまでターゲットの影響が及ぶ。しかしながら、その他のレンジゲートに位置するターゲットとは区別して選択的に検出が可能である。
受信部107aで生成された第1複素ベースバンド信号BBaは、拡散符号M1に対する遅延符号M2の遅延時間に対応する検知範囲におけるターゲット200によるドップラ周波数の1つ以上の周波数成分fk(kは、1以上の整数)が重畳された信号である。各周波数成分fkは位相φkと、振幅Akとを有している。よって、第1複素ベースバンド信号BBaは、拡散符号M1に対するM2の遅延時間に対応する検知範囲以外におけるターゲット200によるドップラ周波数の影響は受けない。なお、振幅Akは強度に相当し、振幅Akが大きいほど強度が高いことを意味する。
(制御部110)
制御部110は、拡散符号発生部103aが発生する拡散符号M1に対し、遅延符号発生部103bが発生する遅延符号M2の遅延時間をあらかじめ決められた順で設定する。この制御部110は、各レンジゲートに対応する遅延時間を決定し、当該遅延時間を遅延符号発生部103bに指示する。
これにより、第1複素ベースバンド信号BBaと第2複素ベースバンド信号BBbとは、当該レンジゲートに位置するターゲットからの反射信号となる。制御部110は、拡散符号M1に対する遅延符号M2の遅延時間を逐次設定することで、ターゲットの検知範囲をくまなく網羅するように、レンジゲートの中心位置を掃引する(以下、レンジスキャン動作と言う)。さらに制御部110はレンジスキャン動作を繰り返すことにより、すべてのレンジゲートについて、反射波ref_wの時系列波形を取得できるように遅延時間の制御を行う。
図4は、制御部110による遅延時間の制御について説明する図である。なお、ここでは一例として、レンジゲートの長さを0.6m、検知範囲を0.6×N[m]とする。
この場合、拡散符号発生部103aで発生される拡散符号M1はNより大きな値として設定可能なビット長Lを有し、拡散符号発生部103aはこの拡散符号M1を繰り返し発生する。拡散符号M1のビット長Lは、Lを大きな値に設定することにより、レンジゲート外の信号がレンジゲート内に漏洩する比率を低減できるが、結果として、計測時間が長くなるので、その点を考慮して決定すればよい。一方、制御部110は、ターゲットの検知範囲をくまなく網羅するために、拡散符号M1に対して遅延符号M2が0〜N−1チップまで昇順でずれるように、拡散符号M1に対する遅延符号M2の遅延時間を制御する。そして、制御部110は、拡散符号M1に対して遅延符号M2が0〜N−1チップまで昇順でずれるように遅延時間を設定した後、再度、拡散符号M1に対する遅延符号M2のずれが0チップとなるような遅延時間を設定し、上記動作を繰り返す。
上述したように、拡散符号M1に対する遅延符号M2の遅延時間は当該遅延時間に対応するレーダ装置100からの距離に対応する。よって、制御部110が遅延符号発生部103bにより発生される遅延符号M2の遅延時間を順次ずれるように設定することにより、レーダ装置100は、レーダ装置100からの距離が異なるN個のレンジゲートのそれぞれのターゲットを検知できる。つまり、拡散符号M1に対する遅延符号M2のずれが0チップの場合1番目のレンジゲートのターゲットを検知でき、拡散符号M1に対する遅延符号M2のずれがi−1チップの場合(1≦i≦N)、i番目のレンジゲートのターゲットを検知できる。
このように、拡散符号M1に対して遅延符号M2を0〜N−1チップまで順次ずらすことをレンジスキャン動作(走査処理とも言う)といい、1レンジスキャン動作を行うために要する期間を走査期間という。制御部110は、上記レンジスキャン動作をM走査期間にわたって繰り返す。なお、以降、i番目のレンジゲートをレンジゲート番号i、j回目のレンジスキャン動作をレンジスキャン番号jと記載する場合がある。
以上のような制御部110による遅延時間の制御により遅延符号発生部103bで発生される遅延符号M2は、拡散符号M1と同一の符号であって、拡散符号M1に対して互いに異なる遅延時間を有するN個の符号である。具体的には、N個の遅延符号M2は、図4に示すように、拡散符号M1を拡散符号M1の1ビットずつ順次ずらした符号である。言い換えると、遅延符号M2は、拡散符号M1に対して所定の時間ずつ順次ずらした符号である。この所定の時間とは、拡散符号M1の1ビットを与える時間であるビット時間である。例えば、拡散符号M1の符号速度CRが250Mbps(cpsと呼ぶ場合もある)の場合、この所定の時間は4nsである。つまり、N個の遅延符号M2は、拡散符号M1を4nsずつずらした符号である。
また、レンジゲートのレーダ装置100からの距離とは、レーダ装置100からレンジゲートに含まれるいずれか1点までの距離であり、好ましくは当該レンジゲートの中点までの距離である。例えば、レンジゲートの長さを0.6mとした場合、3番目のレンジゲートのレーダ装置100からの距離とは、好ましくは、3番目のレンジゲートのうちレーダ装置100からの距離がもっと近い1.5mと、3番目のレンジゲートのうちレーダ装置100からの距離がもっと近い2.1mとの中点である1.8mである。
(信号処理部108)
信号処理部108は、例えばDSP(Digital Signal Processor)である。この信号処理部108は、受信部107aで生成された同相信号(Ia)及び直交信号(Qa)から構成される第1複素ベースバンド信号BBaと、受信部107bで生成された同相信号(Ib)及び直交信号(Qb)から構成される第2複素ベースバンド信号BBbとを信号処理する。また、信号処理部108は、信号記憶部181a及び181bと、ドップラ周波数弁別部182a及び182bと、到来方向計算部183と、物体検出部184と、メモリ制御部185とを備える。
信号記憶部181aは、受信部107aで生成された同相信号(Ia)及び直交信号(Qa)から構成される第1複素ベースバンド信号BBaの時系列波形を、制御部110が逐次設定した、それぞれのレンジゲートを識別するために付与されたレンジゲート番号と関連付けて記憶する。
信号記憶部181bは、受信部107bで生成された同相信号(Ib)及び直交信号(Qb)から構成される第2複素ベースバンド信号BBbの時系列波形を、レンジゲート番号と関連付けて記憶する。なお、信号記憶部181bは、信号記憶部181aと同様の構成を有する。また、信号記憶部181a及び信号記憶部181bは、本発明の記憶部に相当する。
図5を用いて、信号記憶部181a及び181bの構成を信号記憶部181として説明する。
信号記憶部181は、制御部110が設定する遅延時間に対応するレンジゲート毎に、同相信号(I)と直交信号(Q)とから構成される複素ベースバンド信号BBをレンジスキャン毎に記憶できるように構成される。具体的には、信号記憶部181は、N個のレンジゲート番号とM個のレンジスキャン番号との組合せである(N×M)要素の2次元配列を格納する、メモリ回路として構成される。また、それぞれの要素には同相信号(I)と直交信号(Q)とを記憶することができる。つまり、信号記憶部181は、遅延符号発生部103bにおける遅延時間に対応するレンジゲートと、レンジスキャンとに対応づけて、同相信号(I)及び直交信号(Q)を保持する。言い換えると、信号記憶部181は、遅延符号発生部103bにおける遅延時間と、レンジスキャン番号とに対応付けて、受信部107a及び受信部107bのそれぞれで生成された複素ベースバンド信号BBを記憶する。
メモリ制御部185により、同相信号(I)と直交信号(Q)とから構成される複素ベースバンド信号BBの信号記憶部181への書き込み及び読み出しが制御される。
図6Aに、信号記憶部181に複素ベースバンド信号が記憶される様子を示す。つまり、図6Aは、メモリ制御部185による、受信部107から出力された複素ベースバンド信号の書き込みの様子を示す。図6Aにおいて、横軸はレンジゲート番号(1、2、3・・・N)を示し、縦軸は掃引番号(1、2、3・・・M)を示す。なお、掃引番号はレンジスキャン番号と同義である。また、以降、i番目(1≦i≦N)のレンジゲートかつj番目(1≦j≦M)のレンジスキャンにおける複素ベースバンド信号をRijと記載する。
メモリ制御部185は、制御部110がレンジゲートを切り替える度に、切り替え後のレンジゲート番号及びレンジスキャン番号に対応する、信号記憶部181の記憶位置に複素ベースバンド信号BB(同相信号(I)および直交信号(Q))を記憶させる。なお、レンジゲート番号及びレンジスキャン番号に対応する記憶位置は予め定められていても、動的に割り当てられてもよい。
また、メモリ制御部185は、1回のレンジスキャンが終わる毎にレンジスキャン番号を1つだけ進めながら記憶場所を順次変更していく。言い換えると、j番目のレンジスキャン番号のN個のレンジゲート番号に対応するN要素の同相信号(I)及び直交信号(Q)を信号記憶部181に書き終わった後、j+1番目のレンジスキャン番号の同相信号(I)及び直交信号(Q)を信号記憶部181に書き込む。これにより、信号記憶部181は、すべてのレンジゲートについて、時系列の同相信号(I)及び直交信号(Q)から構成される時系列の複素ベースバンド信号BBを記憶する。
信号記憶部181のすべての記憶場所にすでにベースバンド信号BBが記憶されている場合、メモリ制御部185は現在のレンジゲート番号及びレンジスキャン番号に対応する記憶場所に記憶されている古いベースバンド信号BBを上書きする。これにより、レンジスキャン方向に連続した、すなわち時系列の連続した最新のベースバンド信号BBが記憶された状態を常に保つことができる。この際、後述のドップラ周波数弁別部182a及び182bでの処理における区切りが信号記憶部181のどのレンジスキャン番号に相当するかを示すため、時系列の不連続点として、最新のレンジスキャン番号を記憶する場所を設けておくことが好ましい(図示せず)。
図6Bに、信号記憶部181に記憶された複素ベースバンド信号が読み出される様子を示す。つまり、メモリ制御部185による、複素ベースバンド信号の読み出しの様子を示す。
メモリ制御部185は、同一のレンジゲートかつ互いに異なるレンジスキャンに対応するM個のベースバンド信号BBを信号記憶部181から順次読み出す。なお、メモリ制御部185は、(N×M)要素の全てが記憶された後に同一のレンジゲート番号かつ互いに異なるレンジスキャン番号に対応して記憶されたM個のベースバンド信号を読み出してもよいし、あるレンジゲート番号のM番目のレンジスキャン番号に対応するベースバンド信号が記憶された時点で、当該レンジゲート番号に対応するM個のベースバンド信号を読み出してもよい。
このように、メモリ制御部185は、遅延符号発生部103bで発生されるN個の遅延符号に対応する、互いにレーダ装置100からの距離が異なるN個のレンジゲートまでの距離と、同一のレンジスキャンに対応するN個のベースバンド信号BBであるベースバンド信号R1j〜RNjとを信号記憶部181にM回のレンジスキャンで繰り返し書き込む。また、メモリ制御部185は、レンジゲートが同一かつ互いに異なるレンジスキャンに対応するM個のベースバンド信号であるベースバンド信号Ri1〜RiMの組を信号記憶部181から順次読み出す。
このようにして、メモリ制御部185により読み出されたレンジゲートが同一かつ互いに異なるレンジスキャンに対応するM個のベースバンド信号Ri1〜RiMは、ドップラ周波数弁別部182a及び182bにより周波数分析される。
なお、図1において、レーダ装置100は、受信部107aに対応して設けられた信号記憶部181aと、受信部107bに対応して設けられた信号記憶部181bとを備える。しかし、レーダ装置100は1つの記憶装置を有し、当該記憶装置の異なる領域を受信部107aに対応する信号記憶部181a及び受信部107bに対応する信号記憶部181bとして用いてもよい。
図1において、ドップラ周波数弁別部182a及び182bは、複素ベースバンド信号を周波数成分毎に弁別し、ドップラ周波数成分毎に受信信号の位相と強度を出力する。ドップラ周波数弁別部182a及び182bのそれぞれは、本発明のドップラ周波数検出部に相当し、メモリ制御部185により読み出されたレンジゲート番号が同一のM個のベースバンド信号Ri1〜RiMを周波数分析することによって、各レンジゲートにおける反射波ref_wの周波数と搬送波LOの周波数f0との差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、受信部107aの検波部及び受信部107bのそれぞれに対応して検出する。
図7を用いて、ドップラ周波数弁別部182a及び182bと、その入出力信号の構造を説明する。なお、ドップラ周波数弁別部182aとドップラ周波数弁別部182bとは、同様の構成を有するので、ここではドップラ周波数弁別部182として説明する。ドップラ周波数弁別部182a及び182bの入力信号は、対応する信号記憶部181に記憶された複素ベースバンド信号BB(複素ベースバンド信号Rij)である。ドップラ周波数弁別部182の内部はレンジゲート毎に独立した高速フーリエ変換器(Fast Fourier Transform,FFT)で構成される。
以上の構成を用い、信号記憶部181に受信信号を一旦記憶させることにより、ドップラ周波数弁別部で所望の周波数分解能を得るために必要な時系列信号の時間長に対し、その時間内にレンジスキャン動作を埋め込むことが可能になる。よって、当該構成は、信号記憶部を用いず、単純に受信部とドップラ周波数弁別部を直結し、ドップラ周波数弁別処理の実行完了を待って、順次レンジゲートを切り替える場合に比べて、全体の処理時間を大幅に短縮できる。
具体的には、視線方向速度vとドップラ周波数fdの関係は、fd=2×v/λである。波長λはc/f0(cは光速、f0は搬送波LOの周波数)であるから、ターゲットの視線方向速度の速度分解能0.1m/sを得るためにはドップラ周波数分解能fresは40Hzが要求される。よって、各レンジゲートの観測時間TはT=1/fres=25ms必要である。言い換えると、1回目のレンジスキャンにおいてi番目のレンジゲートのベースバンド信号Ri1をサンプリングした時間から、M回目のレンジスキャンにおいてi番目のレンジゲートのベースバンド信号RiMをサンプリングする時間までに、25ms必要である。
例えば、観測距離範囲(レーダ装置100の検知範囲)を0から20mとし、レンジゲートの長さを0.6mとした場合、レンジゲートの数は34になる。よって、メモリ制御部185を用いずに、上記ドップラ周波数分解能fresを満たすためにレンジゲート毎に観測時間Tを要してベースバンド信号RiMをサンプリングする場合、全レンジゲートの観測時間はT×34=850ms必要である。
これに対して、本実施の形態では、メモリ制御部185により、j回目のレンジスキャンにおけるi番目のレンジゲートのベースバンド信号Rijをサンプリングした後、j+1番目のレンジスキャンにおけるi番目のレンジゲートのベースバンド信号Rij+1をサンプリングするまでの期間に、i番目のレンジゲート以外のベースバンド信号をサンプリングすることができる。つまり、1つのレンジゲートに対して要求される観測時間25msの間に異なるレンジゲートのベースバンド信号をサンプリングすることができるため、全レンジゲートの観測時間も25msとなり、レンジゲート数の分だけ観測時間を短縮できる。すなわち、ドップラ周波数弁別部182a及びドップラ周波数弁別部182bでの信号処理を34倍高速にできる。
なお、ドップラ周波数弁別部182a及び182bは、高速フーリエ変換以外のアルゴリズムを用いてもよく、複素ベースバンド信号の時系列波形から強度と位相の周波数スペクトルを算出することができればよい。例えば、ドップラ周波数弁別部182a及び182bは、離散コサイン変換又はウェーブレット変換などのアルゴリズムを用いてもよい。
このように、ドップラ周波数弁別部182は、メモリ制御部185により読み出されたレンジゲート番号が同一のM個のベースバンド信号Ri1〜RiMを周波数分析することによって、各レンジゲートにおける反射波ref_wの周波数と搬送波LOの周波数f0との差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、受信部107aの検波部及び受信部107bの検波部のそれぞれに対応して検出する。
ドップラ周波数弁別部182により周波数分析されることによって求められたドップラ周波数成分は、P個の周波数帯域を含む。このP個の周波数帯域をドップラ周波数番号1〜Pで指定する。つまり、ドップラ周波数弁別部182からの出力信号は、レンジゲート番号及びドップラ周波数番号に対応付けられた、強度信号及び位相信号である。
再度、図1を参照する。物体検出部184は、本発明の距離推定部に相当し、ドップラ周波数弁別部182a及び182bで検出された強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートのレーダ装置100からの距離を、レーダ装置100からターゲット200までの距離として推定する。つまり、物体検出部184は、ドップラ周波数弁別部182a及び182bの強度信号出力を用い、何れかのドップラ周波数の強度信号出力に一定以上の強度の出力があるレンジゲートにターゲットが存在すると判定し、当該レンジゲートの当該ドップラ周波数における信号強度を算出する。
これにより、レーダ装置100からターゲットまでの距離情報が得られるため、詳細な情報処理が可能になる。具体的には、受信アンテナ106a及び106bで受信された反射波ref_wは、遅延符号発生部103bで生成され、送信符号M1に対して所定の遅延時間を有する遅延符号M2で逆拡散される。よって、信号が、送信アンテナ105から放射された後、ターゲットで反射されて受信アンテナ106a及び106bまで伝搬する際の往復遅延時間と、遅延符号M2の遅延時間とが一致する場合だけ、ターゲットの視線方向速度に対応するドップラ周波数シフトを受けた搬送波LOが再生される。これにより、ドップラ周波数弁別部182a及び182bにより、視線移動速度に対応するドップラ周波数が出力される。しかし、往復遅延時間と遅延符号M2の遅延時間とが一致しない場合は、周波数スペクトルが送信符号M1の符号速度に依存した広帯域に拡散された状態になるため、この影響はドップラ周波数弁別部182a及び182bの検出結果にはほとんど寄与しない。従って、ある遅延時間においてドップラ周波数弁別部182a及び182bのいずれかのドップラ周波数が所定の閾値以上の強度となる場合、その遅延時間の半分の時間に電磁波が進行する距離に、ターゲットが存在すると判定することができる。
ターゲットの存在を判定する方法の一例として、物体検出部184は、ドップラ周波数弁別部182aから出力された強度信号と、ドップラ周波数弁別部182bから出力された強度信号との、互いに等しいドップラ周波数番号において、ドップラ周波数弁別部182aの強度信号である強度aとドップラ周波数弁別部182bの強度信号である強度bとの両方が一定以上の強度である場合にターゲットが存在すると判定する。この方法によれば、誤った存在判定をする確率が減少するが、ターゲットの検出率も減少する。
また、ターゲットの存在を判定する方法の他の一例として、物体検出部184は、強度aと強度bとのいずれかが一定以上の強度である場合、ターゲットが存在すると判定する。この方法によれば、ターゲットの検出確率を高めることができるが、誤った存在判定をする確率も高まる。
よって、ターゲットの存在を判定する方法には、用途に応じて上記のいずれかの方法を用いればよい。なお、上記の例に限らず、強度aと強度bとに依存する別の方法を採用してもよい。例えば、物体検出部184は、ターゲットの存在の判定に用いる強度として、強度aと強度bとの平均値を用いてもよいし、両者のうち強度の大きいものを代表値として用いてもよいし、強度の小さいものを代表値として用いてもよい。また、物体検出部184は、用途に応じてこれらのいずれかの方法を用いてもよい。なお、強度aと強度bとに依存する他の計算方法を採用してもよい。また、注目する遅延時間に対応するレンジゲートから一定の距離範囲に存在するレンジゲートにおける強度aと強度bの値を考慮して、注目する遅延時間に対応するレンジゲートにおける物体の存在判定を行ってもよい。このような判定方法は、路面反射など、一定の距離範囲に連続的に存在する物体を背景として、人物又は車両などの検出を行う際に有用である。
また、物体検出部184は、到来方向計算部183に対し、ターゲットの存在するレンジゲートを示す信号とドップラ周波数を示す信号とを出力する。そして、物体検出部184は、到来方向計算部183で算出されたターゲットそれぞれの方向を各ターゲットのドップラ周波数とレンジゲートとに関連付けて記憶する。
到来方向計算部183は、本発明の方向推定部に相当し、ドップラ周波数弁別部182a及び182bで検出された、強度が所定の閾値以上であるドップラ周波数成分を含む反射波ref_wの到来方向をターゲットの方向と推定する。つまり、到来方向計算部183は、物体検出部184でターゲットが存在すると判定されたレンジゲート及びドップラ周波数において、ドップラ周波数弁別部182aで検出された位相とドップラ周波数弁別部182bで検出された位相との差から、当該レンジゲートの当該ドップラ周波数を有する反射波ref_wの到来方向を推定し、推定結果を物体検出部184に対して出力する。具体的には、強度が所定の閾値以上となるドップラ周波数について、受信アンテナ106aと受信アンテナ106bとの間の位相差と、受信アンテナ106aと受信アンテナ106bとの間の物理的な距離とを用いて、ターゲットの方向を知ることができる。
図8は、以上の処理による結果の信号構造を説明する図である。具体的には、図8は、物体検出部184に保持されている、ドップラ周波数弁別部182a及び182bにより検出された強度信号と、到来方向計算部183により推定された到来方向とからなるデータである信号を示す図である。
同図に示すように、物体検出部184には、レンジゲート番号とドップラ周波数番号とに対応する、強度信号及び到来方向が保持されている。この際、物体が存在すると判定されていないレンジゲートとドップラ周波数との組合せにおいては、到来方向は計算されていないので意味をなさない。
なお、物体検出部184は、図8に示すデータをレーダ装置100の外部へ出力してもよい。
また、レーダ装置100は、対象物の存在判定の基準となる信号強度(閾値)をゼロに設定することで、すべてのレンジゲートとドップラ周波数とに対応する、強度信号と到来方向とを計算してもよい。このような場合の出力信号の使用目的としては、例えば統計的な処理をすることで、ターゲットの存在判定が困難な極めて微弱な反射信号ref_wに対してターゲットの存在判定又は方向を決定することが考えられる。
次に、以上のように構成されたレーダ装置100の動作について説明する。
図9は、レーダ装置100の動作を示すフローチャートである。
まず、メモリ制御部185は、同じ走査期間におけるN個のベースバンド信号を信号記憶部181a及び181bに順次書き込む(ステップS101)。つまり、同一のレンジスキャン番号かつレンジゲート番号の異なるN個のベースバンド信号R1j〜RNjを信号記憶部181a及び181bに順次書き込む。
図10は、図9のステップS101の詳細な動作フローチャートである。
拡散符号発生部103aは、制御部110により指示されるタイミングで拡散符号M1を発生する(ステップS201)。
遅延符号発生部103bは、制御部110により指示される遅延時間で遅延符号M2を発生する。具体的には、遅延符号発生部103bは、最初のレンジゲート(例えば、1番目のレンジゲート)に対応する遅延符号M1を発生する(ステップS202)。
その後、拡散符号発生部103aにより発生された拡散符号M1を用いて、送信部104が搬送波LOを逆拡散することにより、送信信号RF OUTを生成する。送信アンテナ105は、送信部104で生成された送信信号RF OUTを、放射波rad_wとして放射する(ステップS203)。
次に受信アンテナ106a及び106bは、ターゲット200で反射された反射波ref_wを受信する(ステップS204)。そして、受信された反射波ref_wは、受信部107a及び107bにより逆拡散及び直交復調されて、ベースバンド信号Rijとして信号処理部108へ出力される。
メモリ制御部185は、受信部107a及び107bから出力されたベースバンド信号Rijを信号記憶部181a及び181bへ書き込む(ステップS205)。具体的には、メモリ制御部185は、レンジゲート番号とレンジスキャン番号とに対応付けて、受信部107aから出力されたベースバンド信号Rijを信号記憶部181aに書き込み、受信部107bから出力されたベースバンド信号Rijを信号記憶部181bに書き込む。
次にメモリ制御部185は、全レンジゲートのベースバンド信号R1j〜RNjの書き込みが終了したか否かを判定する(ステップS206)。書き込みが終了していない場合(ステップS206でNo)、遅延符号発生部103bは次のレンジゲートの遅延符号M2を発生し(ステップS207)、ステップS203へ戻る。
一方、全レンジゲートのベースバンド信号Rijの書き込みが終了している場合(ステップS206でYes)、ベースバンド信号の書き込み処理が終了する。
再度、図9を参照して説明する。メモリ制御部185は、信号記憶部181a及び181bへのベースバンド信号の書き込みが全走査期間完了したか否かを判定する(ステップS102)。つまり、メモリ制御部185は、M回目のレンジスキャンが完了しているか否かを判定する。完了していない場合(ステップS102でNo)、ベースバンド信号の書き込み処理(ステップS101)へと戻る。
一方、ベースバンド信号の書き込みが全走査期間完了している場合(ステップS102でYes)、メモリ制御部185は、レンジゲートが同一、かつ、互いに異なる走査期間のM個のベースバンド信号Ri1〜RiMを順次読み出す(ステップS103)。
ドップラ周波数弁別部182a及びドップラ周波数弁別部182bは、メモリ制御部185により信号記憶部181a及び181bから読み出されたM個のベースバンド信号Ri1〜RiMをレンジゲートごとに周波数分析する。つまり、ドップラ周波数弁別部182a及びドップラ周波数弁別部182bは、ドップラ周波数を弁別する(ステップS104)。
その後、到来方向計算部183は、反射波ref_wの到来方向を推定する(ステップS105)。
以上のように、本実施の形態に係るレーダ装置100は、拡散符号M1を用いて搬送波LOを拡散することで送信信号RF OUTを生成する送信部104と、送信信号RF OUTを放射波rad_wとして放射する送信アンテナ105と、放射波rad_wが物体200により反射された反射波ref_wを受信する受信アンテナ106a及び受信アンテナ106bと、レーダ装置100からの距離が異なるN個のレンジゲートを走査するための走査期間内に、拡散符号M1と同一の符号であってレーダ装置100からの距離が異なるN個の遅延符号M2を順次発生するレンジスキャンを、Mレンジスキャン期間にわたって繰り返す遅延符号発生部103bと、受信アンテナ106a及び受信アンテナ106bにそれぞれ対応し、各々が、N個の遅延符号M2を順次用いて対応する受信アンテナで受信された反射波ref_wを逆拡散する複数の逆拡散ミキサ171と、複数の逆拡散ミキサ171にそれぞれ対応し、各々が、搬送波LOを用いて対応する逆拡散ミキサ171で逆拡散された反射波ref_wを直交検波することにより、対応する受信アンテナで受信された反射波ref_wに応じたベースバンド信号Rij(iは1からNの整数、jは1からMの整数)を生成する複数の検波部と、遅延符号発生部103bにおける遅延時間及びレンジスキャン期間に対応づけて、前記複数の検波部のそれぞれで生成されたベースバンド信号Rijを記憶する信号記憶部181a及び信号記憶部181bと、遅延符号発生部103bにおけるN個の遅延符号M2に対応する互いに異なる距離及び1つの走査期間に対応するN個のベースバンド信号R1j〜RNjを信号記憶部181a及び信号記憶部181bにMレンジスキャン繰り返し書き込み、レーダ装置100からの距離が同一かつ互いに異なるレンジスキャンに対応するM個のベースバンド信号Ri1〜RiMの組を信号記憶部181a及び信号記憶部181bから順次読み出すメモリ制御部185と、メモリ制御部185により読み出された距離が同一のM個のベースバンド信号Ri1〜RiMを周波数分析することによって、各レンジゲートにおける反射波ref_wと搬送波LOとの差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、複数の検波部のそれぞれに対応して検出するドップラ周波数弁別部182a及びドップラ周波数弁別部182bと、検出された複数の検波部のそれぞれに対応する位相から複数の検波部間の位相差を算出し、算出した位相差から各レンジゲートにおける反射波ref_wの到来方向を検出することによりターゲット200の方向を推定する到来方向計算部183とを備える。
これにより、複数回の遅延時間のレンジスキャン結果であるベースバンド信号Rijが信号記憶部181a及び181bに記憶される。また、レーダ装置100は、遅延時間が同一のベースバンド信号Ri1〜RiMについて、レンジゲートごとにドップラ周波数弁別処理を行う。よって、ベースバンド信号Ri1〜RiMに、信号記憶部181a及び181bを介さずにドップラ周波数弁別処理を実行し、ドップラ周波数弁別処理が終了するたびに遅延時間の設定を変更するという構成と比較し、レーダ装置100は、検知範囲のターゲットを検知するために要する時間を短縮できる。よって、レーダ装置100は、移動しているターゲットの方向を検知する機能を向上できる。
また、本実施の形態に係るレーダ装置100は、当該レーダ装置100からの距離が拡散符号M1の符号速度により決定される距離のk(kは0以上の整数)倍と、k+1倍とで囲まれる領域である検知範囲として定義されるレンジゲートごとに、反射波ref_wに応じたベースバンド信号を処理する。よって、レーダ装置100は、レンジゲート外に同じ視線方向速度を有するターゲットが存在する場合であっても、そのターゲットからの反射波ref_wの影響を受けることなく、当該レンジゲートからの反射波ref_wの周波数を弁別できる。つまり、レーダ装置100は、当該レンジゲートにおいて移動しているターゲットが存在する場合は、当該レンジゲート外に同じ視線方向速度を有するレンジゲートが存在する場合でも、当該レンジゲートにおけるターゲットからの反射波ref_wと搬送波LOとの差分の周波数であるドップラ周波数を検出できる。
また、レーダ装置100は、拡散符号M1及び遅延符号M2としてM系列符号を用いている。ここで、M系列符号を用いている拡散符号M1及び遅延符号M2と、他の信号との相互相関が小さい。これにより、レーダ装置100は、他のレーダシステム等から発する電波の影響があっても符号により自らの発した信号を識別することが可能である。つまり、レーダ装置100は、他のレーダシステムによる影響を低減できる。その結果、ドップラ周波数の近いターゲット又は他システムの干渉の影響によりDOAが不定となる可能性が大きく減少するので、レーダ装置100は、簡易な構成で物体の方向を短時間に検出できる。
また、以上の処理において、遅延符号発生部103bは拡散符号M1の1ビットに相当するビット時間を単位として、拡散符号M1に対して遅延した符号M2を発生するように構成することが望ましい。言い換えると、N個の遅延符号M2は、送信符号M1に対して互いに異なる遅延時間を有し、遅延時間は、送信符号M1の1ビットを与える時間であるビット時間の整数倍である。
このような構成は、特定の距離範囲に存在する対象物を、その反射信号強度が受信可能な強度を有する限りにおいて、すべてもれなく検出するために最も効率的な構成である。すなわち、ビット時間よりも短い時間を単位として用いると、レンジゲートの数が増えることで、信号処理の負荷が大きくなるので、好ましくない。また、ビット時間よりも長い時間を単位として用いれば、レンジゲートが連続せず、対象物の検出ができない距離範囲が複数発生するので好ましくない。一方、ビット時間を単位として用いれば、遅延符号発生部103bの構成を簡単化することができるので、好ましい。すなわち、ビット時間をクロック周期とした同期回路を用いて、拡散符号発生部103aと遅延符号発生部103bとを構成することができる。ビット時間よりも短い時間を単位として用いるには、複雑な構成が必要になる。例えば、これらの回路に、周期がビット時間よりも短く、周波数の高いクロックを用いた同期回路を採用する方法がある。または、拡散符号発生部103aと遅延符号発生部103bとで周波数の異なる個別のクロックを用い、これらの回路を非同期回路として構成する方法がある。しかし、これらは、効率的な実現方法とは言い難い。
つまり、遅延符号発生部103bが拡散符号M1の1ビットに相当するビット時間を単位として、拡散符号M1に対して遅延した符号M2を発生することにより、遅延符号発生部103bの構成を簡単化しつつ、特定の距離範囲にある対象物を、ターゲットが反射する反射波ref_wを信号処理部108において識別可能な強度を有する限りにおいて、すべて検出することができる構成を実現できる。
また、制御部110は、遅延符号発生部103bに逐次設定する遅延時間を、対応するレンジゲートが連続するように、設定順に対して単調増加又は単調減少となるように制御することが望ましい。言い換えると、遅延時間は、送信符号M1のビット時間のK(Kは整数)倍からK+N−1倍のいずれかであり、制御部110は、走査処理において、遅延時間をビット時間のK倍からK+N−1倍までビット時間ずつ順次増加させる、又は、遅延時間をビット時間のK+N−1倍からK倍までビット時間ずつ順次減少させることにより、N個の遅延符号M2を発生させることが望ましい。
このように制御することで、対象物を検出しているレンジゲートの前後のレンジゲートに対し、レンジスキャン動作による受信信号の過渡応答が影響した場合において、その影響は、距離に対しても隣接した範囲だけに及ぶため、実用上の問題とならない。しかしながら、制御部110が遅延符号発生部103bに逐次設定する遅延時間が、対応するレンジゲートが連続しないような様態で制御された場合、受信信号の過渡応答の影響が、対象物の存在する距離と異なる位置に孤立して発生する。これにより、あたかもその位置にターゲットが存在するかのような誤った結果を引き起こす可能性が高くなるため、好ましくない。
つまり、遅延時間が、対応するレンジゲートが連続するように単調増加又は単調減少となるようにすることで、遅延符号発生部103bの構成をさらに簡単化でき、さらに複数のレンジゲート間の干渉を抑制できる。
また、本実施の形態において、受信アンテナは2つであるとして説明したが、3つ以上に拡張してもよい。
例えば、受信アンテナを直角三角形の頂点3箇所に配置することで、対象物を3次元空間上で検出することが可能になる。すなわち、2つのアンテナ間で、上記に説明した手順により、その2つのアンテナが成す第1の基線を含む面内での到来方向を求める。そして、第1の基線と直交する第2の基線を構成するように、別の2つのアンテナを選択して、上記に説明した手順により、第2の基線を含む面内で対象物の到来方向を推定する。そして、これらの結果を統合することで、対象物の方向を立体的に検出することが可能になる。さらに、この検出結果と、対象物の距離情報とあわせて、3次元空間上での対象物の検出が可能になる。
また、レーダ装置は、3つ以上のアンテナを用いてもよい。アンテナの数を増加させることで、1つの対象物に対して、重複して到来方向を求め、それらを平均化することで雑音の影響を抑制できる。また、不等間隔に複数のアンテナを配置し、アンテナ間の間隔と送信波の波長との関係によって発生しうる到来方向の不確定性を排除することが可能になる。
(実施の形態1の変形例)
また、実施の形態1の構成において、物体検出部184はレンジゲートを単位として離散的にターゲットの存在位置を検出することができるが、さらに物体検出部184は、拡散符号M1及び遅延符号M2の符号速度CRに対し、光速cを用いて計算されるレンジゲートの長さRG=c/(2×CR)よりも詳細に、すなわち、レンジゲートの中の詳細な存在位置を求めてもよい。
本変形例に係るレーダ装置は、実施の形態1に係るレーダ装置100とほぼ同じであるが、物体検出部184がドップラ周波数弁別部182a及び182bで検出されたドップラ周波数ごとの遅延時間に対する当該ドップラ周波数の強度の分布から、強度が極大となるピーク強度を特定し、特定したピーク強度と、特定したピーク強度に対応する遅延時間よりビット時間だけ短い遅延時間に対する強度であるピーク前強度と、特定したピーク強度に対応する遅延時間よりビット時間だけ遅い遅延時間に対する強度であるピーク後強度とを用いて補間処理することにより、ビット時間に対応する距離よりも小さい距離を分解能として、レーダ装置からターゲットまでの距離を推定する点が異なる。
具体的には図11A及び図11Bを用いて説明する。
物体検出部184は、ドップラ周波数毎にレンジゲート番号に対する強度値の変化から強度が極大となるピークを求める。そして、物体検出部184は、ピークそれぞれに対し、ピークの強度Paとその前後のレンジゲートの強度のうち、強度の大きいものPbを抽出する。物体検出部184は、Pbを与えるレンジゲートの距離RaがPaを与えるレンジゲートの距離Rbよりも短い場合、P1=Pb、R1=Rb、P2=Pa、R2=Raとし、逆にPbを与えるレンジゲートの距離RaがPaを与えるレンジゲートの距離Rbよりも長い場合、P1=Pa、R1=Ra、P2=Pb、R2=Rbとする。物体検出部184は、R1、R2、P1、P2を用いて、対象物の詳細な距離を求める。
図11Aは特定のドップラ周波数における、レンジゲートに対する信号強度を示した図であり、例として強度のピークが1つの場合を示している。また、図11Aの横軸はレンジゲート番号である。また、図11Aは、レンジゲートの長さが0.6mである場合の対応するレーダ装置からの距離も示している。
この強度変化は、拡散符号M1で変調された送信信号RF OUTがターゲットで反射して受信アンテナ106a及び106bで受信されるまでの往復伝搬遅延時間(往復遅延時間と同義)に対し、遅延符号M2の遅延時間を符号のビット時間を単位として変化させた際の相関波形となっている。よって、R1とR2の中間の位置を基準としてターゲットの距離のオフセット値を考えた場合、P1とP2の比は符号の自己相関特性から図11Bのように計算される。この関係を用いて、物体検出部184は、測定されたP1とP2の値から、ターゲットの距離オフセット値Roffを求め、ターゲットの詳細な距離を(RG1+RG2)/2+Roffとして求める。つまり、図11Aに示した強度の分布の真のピークの強度P0に対応するレーダ装置からの距離が求まる。
なお、実際には、P1及びP2は符号の自己相関特性に加えて、レンジスキャン動作による受信信号の過渡応答が隣接するレンジゲートに及ぶことによる影響を受ける可能性があるので、図11Bに示した曲線を、レーダ装置の前方に反射体を配置してあらかじめ測定しておくことが望ましい。
なお、上記説明では、レンジゲートごとに算出した強度を用いたが、各レンジゲートは拡散符号M1に対する遅延符号M2の遅延時間に1対1で対応するので、図11Aは、特定のドップラ周波数における遅延符号M2の遅延時間に対する信号強度と同義である。また、隣接するレンジゲート番号のそれぞれに対応する距離の距離間隔は、拡散符号M1の1ビットを与える時間であるビット時間に対応する。
よって、本変形例では、物体検出部184は、ドップラ周波数弁別部182a及び182bで検出されたドップラ周波数ごとに、拡散符号M1に対する遅延符号M2の遅延時間に対応する、当該ドップラ周波数成分の強度である分布を求める。そして、物体検出部184は、その分布から、強度が極大となるピークの強度Paを特定し、特定したピークの強度Paと、特定したピークの強度Paに対応する遅延符号M2の遅延時間よりビット時間だけ短い遅延時間に対する強度であるピーク前強度と、特定したピークの強度Paに対する遅延符号の遅延時間よりビット時間だけ遅い遅延時間に対する強度であるピーク後強度のうち、大きい強度Pbとを用いて補間処理を行う。これにより、物体検出部184は、ビット時間に対応する距離であるレンジゲート長よりも小さい距離を分解能として、レーダ装置からターゲットまでの距離を推定できる。
このように、物体検出部184は、ターゲットの方向をレンジゲートの長さより細かい分解能で高精度に検出することができる。
なお、この例では隣接する2つのレンジゲートにおける強度を用いてターゲットまでの詳細な距離を求めたが、さらに多くのレンジゲートにおける強度を用い、詳細な距離を求めることができる。これにより、強度のピークを与えるレンジゲートに隣接するレンジゲートの範囲を超えて過渡応答が影響する場合などに距離の精度を向上することができる。
また、以上の構成において、搬送波の周波数をf0、検出対象とする最大の視線方向速度をvmax、視線方向速度の検出分解能をvresとした場合、送信符号M1及び遅延符号M2の符号速度CRは式3を満たすことが望ましい。
CR≦2×f0×vres/vmax・・・(式3)
これにより、ターゲットの距離をレンジゲートの長さより細かい分解能で検出する際の誤差を低減できる。
なぜならば、視線方向速度vで移動する対象物からの反射波が有するドップラ周波数fdは搬送波の波長λに対し、fd=2×v/λで与えられる。よって、視線方向速度の検出分解能vresを実現するためには、ドップラ周波数の分解能fdresとしてfdres=2×vres/λが必要になる。そのためにはドップラ周波数弁別処理において、入力信号波形の継続時間Tfftとして、Tfft=1/fdres=λ/(2×vres)が必要になる。この間に、視線方向速度がvmaxである対象物は距離L=Tfft×vmax=λ×vmax/(2×vres)だけ視線方向つまり、レンジゲート方向に移動する。一方、レンジゲートの長さRGは、光速cと拡散符号の符号速度CRを用いてRG=c/(2×CR)と表せる。しかし、ドップラ周波数弁別処理の実行中に、対象物がレンジゲート方向にレンジゲートの長さの2倍より長い距離を移動すると、3つ以上のレンジゲートにわたって、1つの対象物の影響が発生する。これにより、図11A及び図11Bを用いて説明した詳細な距離の算出結果の誤差が大きくなるため好ましくない。よって、L≦2×RGの関係を満たすことが望ましい。上記の関係と、λ=c/f0の関係を用いると、式3が導かれる。
(実施の形態2)
次に、実施の形態2に係るレーダ装置について説明する。
本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置100とほぼ同じであるが、さらに、遅延符号発生部103bが走査処理をM回繰り返す第1動作モードと、同一の遅延符号M2を繰り返し発生する第2動作モードとを制御する制御部を備え、制御部は、第1動作モードにおいて、ドップラ周波数弁別部182a及び182bで検出された強度が所定の第2閾値以上となるドップラ周波数成分があるか否かを判断し、所定の第2閾値以上となるドップラ周波数成分があると判断した場合に第2動作モードに切り替え、第2動作モードにおいて、遅延符号発生部103bは、所定の第2閾値以上となるドップラ周波数成分が検出されたレンジゲートに対応する遅延符号M2を繰り返し発生し、信号記憶部181a及び181bは、当該レンジゲートに対応する遅延符号を用いて逆拡散及び検波された検波信号を記憶せず、ドップラ周波数弁別部182a及び182bは、信号記憶部181a及び181bに記憶されない検波信号を走査期間よりも短い周期でサンプリングして周波数分析することによって、所定の第2閾値以上となるドップラ周波数成分が検出されたレンジゲートにおける当該ドップラ周波数成分の位相及び強度を再度検出する。
図12は、実施の形態2における、制御部と信号処理部との構成を示すブロック図であり、レーダ装置のその他の図示していない部分は図1と同じである。図12に示すように、実施の形態2に係るレーダ装置は、図1における制御部110のかわりに制御部210を、信号処理部108のかわりに信号処理部208を用いる。また図12において、図1と同じ構成部分には図1と同じ記号を用いている。
本実施の形態において、信号処理部208は、信号処理部108と比較して新たにスイッチ286a、286b、286c及び286dと、ダウンサンプル部287a及び287bとを備える。また、信号処理部208は、物体検出部184のかわりに物体検出部284を備え、制御部210に抽出レンジゲート信号R’を出力する。
スイッチ286aは、受信部107aと、信号記憶部181a及びダウンサンプル部287bの一方とを選択的に接続する。同様に、スイッチ286bは、受信部107bと、信号記憶部181b及びダウンサンプル部287bの一方とを選択的に接続する。スイッチ286cは、信号記憶部181a及びダウンサンプル部287aの一方と、ドップラ周波数弁別部182aとを選択的に接続する。同様に、スイッチ286dは、信号記憶部181b及びダウンサンプル部287bの一方と、ドップラ周波数弁別部182bとを選択的に接続する。
これらのスイッチ286a〜286dは、制御部210から出力されるスイッチ制御信号Sに従って同じタイミングで切り替わる。例えば、スイッチ286aが受信部107aと信号記憶部181aとを接続している場合、つまり図中の上の経路がオンされている場合、スイッチ286bは受信部107aと信号記憶部181bとを接続し、スイッチ286cは信号記憶部181aとドップラ周波数弁別部182aとを接続し、スイッチ286dは信号記憶部181bとドップラ周波数弁別部182bとを接続する。
ダウンサンプル部287a及び287bは、P:1のダウンサンプラーであり、周波数帯域を1/Pにする低域通過フィルタと、P個サンプル毎に1個のサンプルを抽出する間引き処理部とで構成されている。この処理により、ダウンサンプル部287a及び287bの出力信号に含まれる雑音エネルギーは、入力信号の1/Pに低下する。つまり、信号対雑音比がP倍に向上する。
具体的には、第1動作モード時に、信号記憶部181に記憶される複素ベースバンド信号BBは、信号処理部208の複素ベースバンド信号BBの入力側でAD変換されることによりデジタル値に変換された信号である。このときAD変換のサンプリング周波数は、高速フーリエ変換のサンプリング周波数に、レンジゲート数を掛け合わせた周波数に応じて決定される第1のサンプリング周波数である。また、高速フーリエ変換のサンプリング周波数は、ドップラ周波数弁別部182a及び182bで分析するドップラ周波数の最大値から決定される。ここでAD変換において、サンプリング周波数の1/2の周波数として定義されるナイキスト周波数より高い周波数成分を有する入力信号は、AD変換後にナイキスト周波数以下に折返し、AD変換の入力信号に含まれるナイキスト周波数以下の周波数成分と加算されることで分離できない雑音が生じる(エイリアシングと言う)。従って、AD変換の入力部に、低域通過フィルタを設けることで、ナイキスト周波数以上の周波数成分を十分抑圧しておくことが好ましい。この低域通過フィルタをアンチエイリアスフィルタと言う。この際、第1動作モードでは、1レンジスキャン期間内に全てのレンジゲートに対応する複素ベースバンド信号BBをサンプリングする必要があるので、AD変換におけるナイキスト周波数を高く設定するとともに、アンチエイリアスフィルタのカットオフ周波数も高く設計する。つまりAD変換の入力信号は周波数帯域が広帯域であり、第1のサンプリング周波数が高く設計されている。
ところが、信号の周波数帯域が広いほど、AD変換後のデジタル信号のノイズが大きくなる。
そこで、第2動作モードでは、ダウンサンプル部287a及び287bは、ベースバンド信号BBを第1動作モードの走査期間よりも短い周期でサンプリングする。好ましくは、ダウンサンプル部287a及び287bは、第1動作モードにおける第1のサンプリング周波数と同じ周期でサンプリングする。これにより、第1動作モードと第2動作モードとにおいて共通のアンチエイリアスフィルタを用いることができる。次に、ダウンサンプル部287a及び287bは、当該ダウンサンプル部287a及び287bの内部でAD変換後のデジタル信号に対して、低域通過フィルタによって周波数帯域の制限を行う。ダウンサンプル部287a及び287bは、その出力信号として得られるP個のサンプル毎に1個のサンプルを抽出する。この操作によりサンプリング周波数が1/Pに変換される。よって、変換後のサンプリング周波数に対し、エイリアシングが発生しないよう、ダウンサンプル部287a及び287bの内部の低域通過フィルタが設計される。具体的には、この低域通過フィルタのカットオフ周波数は、ダウンサンプル後のサンプリングレートに対応するナイキスト周波数よりも低い周波数に設計される。これにより、ダウンサンプル部287a及び287bでダウンサンプルされたベースバンド信号のノイズを低減できる。
従って、ドップラ周波数弁別部182a及び182bで弁別されたドップラ周波数ごとの強度及び位相の精度が向上する。
制御部210は、実施の形態1における制御部110と比較して、さらに、信号処理部208から抽出レンジゲート信号R’が入力され、スイッチ286a〜286dにスイッチ制御信号Sを出力する点が異なる。この制御部210は、制御部110の機能に加えて、さらに、遅延符号発生部103bが走査処理をM回繰り返す第1モードと、同一の遅延符号M2を繰り返し発生する第2動作モードとを制御し、第1動作モードにおいて、ドップラ周波数弁別部182a及び182bで検出された強度が所定の閾値以上となるドップラ周波数成分があるか否かを判断し、所定の閾値以上となるドップラ周波数成分があると判断した場合に第2動作モードに切り替える機能を有する。
なお、第1動作モードにおいて、本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置100と同様に動作するので、詳細な説明を省略する。
第2動作モードでは、制御部210は、第1動作モードでドップラ周波数弁別部182a及び182bで検出された強度が所定の閾値以上となるドップラ周波数が検出されたレンジゲートに対応する遅延時間を遅延符号発生部103bに指示することにより当該レンジゲートに対応する遅延符号を繰り返し発生させる。また、第2動作モードでは、制御部210は、スイッチ制御信号Sにより、スイッチ286a及び286cをダウンサンプル部287a側に接続させ、スイッチ286b及び286dをダウンサンプル部287b側に接続させる。言い換えると、第2動作モードでは、信号記憶部181a及び181bは、複素ベースバンド信号BBを記憶しない。
よって、第2動作モードでは、ドップラ周波数弁別部182a及び182bは、信号記憶部181a及び181bに記憶されないベースバンド信号BBを走査期間よりも短い周期でサンプリングして周波数分析する。これにより、ドップラ周波数弁別部182a及び182bは、所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートにおける当該ドップラ周波数成分の位相及び強度を検出する。
次に、以上のように構成された実施の形態2に係るレーダ装置の動作について説明する。
図13は、本実施の形態に係るレーダ装置の動作を示すフローチャートである。
まず、レーダ装置は第1動作モードで動作する(ステップS301)。第1動作モードの具体的な動作を図14に示す。
まず、制御部210は、スイッチ286a、286b、286c及び286dを信号記憶部181a及び181b側に設定する(ステップS401)。
次に、メモリ制御部185は、観測対象の距離範囲を網羅するN個のレンジゲート全てに対しM回レンジスキャンした受信信号を信号記憶部181a及び181bに記憶する。つまり、メモリ制御部185は、同じ走査期間におけるN個のベースバンド信号R1j〜RNjを信号記憶部181a及び181bに書き込む(ステップS402)。その後、メモリ制御部185は、ベースバンド信号の書き込みが全走査期間完了したか否かを判定する(ステップS403)。完了していない場合(ステップS403でNo)、メモリ制御部185は、ベースバンド信号の書き込み処理(ステップS402)へと戻る。一方、ベースバンド信号の書き込みが全走査期間完了している場合(ステップS403でYes)、メモリ制御部185は、レンジゲートが同一、かつ、互いに異なる走査期間のM個のベースバンド信号Ri1〜RiMを順次読み出す(ステップS404)。ドップラ周波数弁別部182a及びドップラ周波数弁別部182bは、メモリ制御部185により信号記憶部181a及び181bから読み出されたM個のベースバンド信号Ri1〜RiMをレンジゲートごとに周波数分析する。つまり、ドップラ周波数弁別部182a及びドップラ周波数弁別部182bは、ドップラ周波数を弁別する(ステップS405)。
なお、ステップS402〜S405は、図9で説明したステップS101〜S104とそれぞれ同じであるので、詳しい説明を省略する。
次に、物体検出部284はターゲットの存在するレンジゲートを特定する。言い換えると、物体検出部284は、所定の閾値以上となる強度が検出されたドップラ周波数があるか否を判断する(ステップS302)。なお、ここまでの処理において、レーダ装置は、実施の形態1と同様の処理を行うことにより、ターゲットの方向についても求めておく。
物体検出部284により所定の閾値以上となる強度が検出されたドップラ周波数があると判断された場合(ステップS302でYes)、レーダ装置は第2動作モードで動作する(ステップS303)。一方、所定の閾値以上となる強度が検出されたドップラ周波数がないと判断された場合(ステップS302でNo)、レーダ装置は処理を終了する。
図15は、第2動作モードの動作(ステップS303)を詳細に示すフローチャートである。
まず、制御部210は、スイッチ286a、286b、286c及び286dをダウンサンプル部287a及び287b側に設定する(ステップS501)。
次に、ステップS302で検出された、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートをRi’とすると、制御部210は、レンジゲートRi’に対応する遅延符号M2を発生させる(ステップS502)。
その後、送信アンテナ105は、送信部104で生成された送信信号RF OUTを、放射波rad_wとして放射する(ステップS503)。そして、受信アンテナ106a及び106bにより、ターゲット200で反射された反射波ref_wが受信され(ステップS504)、受信された反射波ref_wは、受信部107a及び107bにより逆拡散及び直交復調されて、ベースバンド信号として信号処理部208へ出力される。
第2動作モードでは、スイッチ286a、286b、286c及び286dがダウンサンプル部287a及び287b側に設定されているので、信号処理部208へ入力されたベースバンド信号はダウンサンプル部287a及び287bへ入力される。ダウンサンプル部287a及び287bへ入力されたベースバンド信号は、ダウンサンプルされた後、ドップラ周波数弁別部182a及び182bへ出力される。つまり、第2動作モードでは、ドップラ周波数弁別部182a及び182bは、ダウンサンプルされたベースバンド信号のドップラ周波数を弁別する(ステップS505)。
その後、到来方向計算部183は、反射波ref_wの到来方向を推定する(ステップS506)。
制御部210は、ステップS302で検出された、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’の全てについて、到来方向の推定が完了したか否かを判定し(ステップS507)、完了している場合(ステップS507でYes)、第2動作モードの動作を終了する。
一方、完了していない場合(ステップS507でNo)、制御部210は、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’のうち、次のレンジゲートに対応する遅延符号M2を発生させ(ステップS508)、上記放射処理(ステップS503)以降を繰り返す。
つまり、第2動作モードでは、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’それぞれに対し、制御部210はレンジゲートを固定する。また、制御部210は、ドップラ周波数弁別部182a及び182bにそれぞれダウンサンプル部287a及び287bの出力信号を与える。ドップラ周波数弁別部182a及び182bは、ドップラ周波数弁別処理を実行し、信号強度を物体検出部284に、位相を到来方向計算部183に出力する。物体検出部284は現在設定されているレンジゲートに対応する到来方向情報を到来方向計算部183の出力信号に応じて更新する。
ここで、到来方向計算部183の計算結果はダウンサンプル部287a及び287bで雑音エネルギーが低減されているので、誤差の少ない高精度な計算結果となっている。よって、レーダ装置は、抽出したターゲットについて、高精度に到来方向を推定することができる。
また、レンジゲートの抽出点を、実施の形態1で説明した相関波形のピーク値を与えるレンジゲートと当該ピークに隣接するレンジゲートとを含むようにしてもよい。これにより、ターゲットの詳細距離を、実施の形態1の変形例で示した手順で求めることが可能となる。さらに、ダウンサンプル部287a及び287bの効果で雑音が低減されているから、より高精度な結果を得ることができる。
また、レーダ装置は、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’すべてに対して以上の処理が終了すれば、最初のステップに戻って以後これを繰り返す。
ここで、強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’の数は全てのレンジゲート数Nよりも2点以上少なくなるようにすることが望ましい。つまり、ステップS302における所定の閾値は、強度が当該閾値以上であると判断されるレンジゲートRi’がN−2個以下となるような値とすることが望ましい。具体的には、衝突防止を目的としたレーダの場合はターゲットの距離と視線方向速度とに基づき、最も衝突の可能性の高いターゲットから順に抽出することが望ましい。また、遠方のターゲットを詳細に観測することを目的とする場合には、遠方の注目するターゲットから抽出すればよい。
これにより、信号記憶部181a及び181を介して全レンジゲートに対してドップラ周波数弁別処理を実行するための時間と、全てのレンジゲートのうち任意の1つのレンジゲートに対してダウンサンプル部287a及び287bを介してドップラ周波数弁別処理を実行するための時間とは等しくなる。よって、この手順により全てのレンジゲートN個に対して、常にダウンサンプル部287a及び287bを介して処理する場合に比べて、レーダ装置全体の処理時間を短縮することができる。
また、第2動作モードにおいてドップラ周波数弁別部182a及び182bが周波数分析するために要したベースバンド信号の観測時間は、走査期間をM回繰り返すために要した時間と同等であってもよい。
これにより、全てのレンジゲートについてターゲットの存在を判定する際の速度の分解能と、所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートのターゲットについて高精度に方向と距離の検出を行う際の速度の分解能とを等しくすることができるので、速度分解能の劣化を抑制できる。
以上のように、本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置100とほぼ同じであるが、遅延符号発生部103bが走査処理をM回繰り返す第1動作モードと、同一の遅延符号M2を繰り返し発生する第2動作モードとを制御する制御部210を備え、制御部210は、第1動作モードにおいて、ドップラ周波数弁別部182a及び182bで検出された強度が所定の閾値以上となるドップラ周波数成分があるか否かを判断し、所定の閾値以上となるドップラ周波数成分があると判断した場合に第2動作モードに切り替え、第2動作モードにおいて、遅延符号発生部103bは、所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’に対応する遅延符号M2を繰り返し発生し、信号記憶部181a及び181bは、当該レンジゲートRi’に対応する遅延符号を用いて逆拡散及び検波された検波信号を記憶せず、ドップラ周波数弁別部182a及び182bは、信号記憶部181a及び181bに記憶されない検波信号を走査期間よりも短い周期でサンプリングして周波数分析することによって、所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートRi’における当該ドップラ周波数成分の位相及び強度を再度検出する。
これにより、本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置100と比較して、ターゲットの距離及び方向を、より高精度に測定できる。
以上、本発明の実施の形態に係るレーダ装置について説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、本発明は、上記レーダ装置として実現できるだけでなく、レーダ装置のベースバンド信号(検波信号とも言う)を処理する方法としても実現してもよい。また、本発明は、この方法をレーダ装置内の信号処理プロセッサに実行させるためのプログラムとして実現してもよい。
また、上記のレーダ装置の少なくとも一部は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクドライブ、ディスプレイユニット、キーボード及びマウスなどから構成されるコンピュータシステムとして構成されても良い。RAM又はハードディスクドライブには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
さらに、本発明は、上記コンピュータプログラムをコンピュータ読み取り可能な不揮発性の記録媒体、例えば、フレキシブルディスク、ハードディスク、CD−ROM、MO、DVD、DVD−ROM、DVD−RAM、BD(Blu−ray Disc(登録商標))、半導体メモリなどに記録したものとしても良い。また、本発明は、これらの不揮発性の記録媒体に記録されているデジタル信号であるとしてもよい。
また、本発明は、上記コンピュータプログラム又は上記デジタル信号を、電気通信回線、無線或いは有線通信回線、インターネットを代表とするネットワーク、又はデータ放送等を経由して伝送するものとしてもよい。
また、上記説明では、拡散符号M1及び遅延符号M2としてM系列符号を用いたが、拡散符号M1及び遅延符号M2としては、M系列符号を組み合わせたGold符号を用いてもよい。
また、上記各実施の形態に係るレーダ装置に、ターゲットの形状を推定する機能を設けてレーダイメージング装置として適用してもよい。
また、上記説明では、レーダ装置は静止しているとしたが、移動していてもよい。
また、レーダ装置は、さらに、ターゲットの視線方向速度を推定してもよい。具体的には、到来方向計算部183は、さらに、ドップラ周波数弁別部で検出された強度が所定の閾値以上となるドップラ周波数成分から、レーダ装置からターゲットを見た速度である視線方向速度を推定してもよい。これにより、レーダ装置は、ターゲットの視線方向速度を推定できるので、ターゲットの接近を予測するなど、高度な判断が可能になる。
また、上記実施の形態1では、レーダ装置100は、ドップラ周波数弁別部182a及び182bで検出された強度が所定の閾値以上となるドップラ周波数成分が検出されたレンジゲートのレーダ装置100からの距離を、レーダ装置100からターゲット200までの距離として推定していた。この閾値は、レーダ装置100からの距離によらず一定の値であってもよいし、レーダ装置100からの距離に従って伝搬損により反射信号の強度が小さくなることを考慮し、電力の単位で評価した強度の閾値として、距離の4乗で小さくなる値であってもよい。つまり、この閾値は、レンジゲートによらず一定の値でもよいし、レンジゲートに対応する距離の4乗で小さくなる値でもよい。
また、上記実施の形態2では、レーダ装置は、第1動作モードにおいて所定の閾値以上となるドップラ周波数成分があると判断した場合に第2動作モードに切り替えていた。この閾値も、上記実施の形態1での閾値と同様に、レーダ装置からの距離によらず一定の値でもよいし、レーダ装置からの距離の4乗で小さくなる値でもよい。
また、レーダ装置は、拡散符号のレンジゲートを、物体検出部184で検出されたターゲット200の視線方向速度が大きいほど長くしてもよい。言い換えると、レーダ装置は、拡散符号M1の符号速度をターゲット200の視線方向速度が大きいほど低くしてもよい。これにより、測距精度を落とすことなく、物体検出部184及び到来方向計算部183でのターゲット200の視線方向速度及び方向を検出できる。
また、送信部104と、受信部107a及び107bとは、発振器101からの搬送波LOを分配器102a及び102bで分配する構成とし、受信部107a及び107bは搬送波LOと同じ周波数f0で直交復調するダイレクトコンバージョン方式としたが、本発明はこの構成に限定されない。ベースバンド信号への変換手段が提供されていれば、当業者が考えうる別の構成でもよく、この場合も本発明の効果を発揮することができる。例えば、レンジゲートを分離する方法として符号変調波を用いてもよい。また、受信部107a及び107bでは、遅延した符号を用いた逆拡散と、スーパヘテロダイン方式、又はLow−IF方式などとを用いてもよい。また、複数のアンテナ間で、位相同期したコヒーレントな受信が必要となることは、アンテナ間の位相差を用いて対象物の方向推定を行う本発明の思想において、言うまでもないことである。
また上記実施の形態では、遅延符号発生部103bが発生するM個の遅延符号M2は、送信符号M1に対して1ビットずつ順次ずらした符号であったが、これに限らない。例えば、遅延符号M2は、送信符号M1に対して、1ビットの整数倍でランダムにずらした符号であってもよい。
また、上記レーダ装置は、車に搭載する車載用レーダ装置としても実現することができる。
本発明のレーダ装置は、自動車、船舶、航空機及びロボットなど、種々の機器に搭載する危険回避のための装置、及びセキュリティシステムにおける不審者発見のための装置などとして利用可能である。
100、901 レーダ装置
101 発振器
102a、102b、172a、172b 分配器
103a 拡散符号発生部
103b 遅延符号発生部
104 送信部
105、911 送信アンテナ
106、106a、106b、912、913 受信アンテナ
107a、107b、107 受信部
108、208 信号処理部
110、210 制御部
141 拡散ミキサ
142 増幅器
171 逆拡散ミキサ
173a、173b 復調ミキサ
174 移相器
175 受信アンプ
181、181a、181b 信号記憶部
182、182a、182b ドップラ周波数弁別部
183 到来方向計算部
184、284 物体検出部
185 メモリ制御部
200、200a、200b、931〜933、 ターゲット
287a、287b ダウンサンプル部
286a、286b、286c、286d スイッチ
910 送信器
920、930 受信器
rad_w 放射波
ref_w 反射波

Claims (13)

  1. レーダイメージング装置であって、
    送信拡散符号を用いて搬送波を拡散することで送信信号を生成する送信部と、
    前記送信信号を放射波として放射する送信アンテナと、
    前記放射波が物体により反射された反射波を受信する複数の受信アンテナと、
    前記レーダイメージング装置からの距離が異なるN(Nは2以上の整数)個の探索レンジを走査するための走査期間内に、前記送信拡散符号と同一の符号であって前記距離に対応するN個の遅延符号を順次発生する走査処理を、M(Mは2以上の整数)走査期間にわたって繰り返す遅延符号発生部と、
    前記複数の受信アンテナにそれぞれ対応し、各々が、前記N個の遅延符号を順次用いて対応する受信アンテナで受信された反射波を逆拡散する複数の逆拡散部と、
    前記複数の逆拡散部にそれぞれ対応し、各々が、前記搬送波を用いて対応する逆拡散部で逆拡散された反射波を直交検波することにより、対応する受信アンテナで受信された反射波に応じた検波信号Rij(iは1からNの整数、jは1からMの整数)を生成する複数の検波部と、
    前記遅延符号発生部における遅延時間及び走査期間に対応づけて、前記複数の検波部のそれぞれで生成された検波信号Rijを記憶する記憶部と、
    前記遅延符号発生部における前記N個の遅延符号に対応する互いに異なる前記距離及び1つの走査期間に対応するN個の前記検波信号R1j〜RNjを前記記憶部に前記M走査期間繰り返し書き込み、前記距離が同一かつ互いに異なる走査期間に対応するM個の検波信号Ri1〜RiMの組を前記記憶部から順次読み出す記憶制御部と、
    前記記憶制御部により読み出された前記距離が同一のM個の検波信号Ri1〜RiMを周波数分析することによって、各探索レンジにおける前記反射波と前記搬送波との差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、前記複数の検波部のそれぞれに対応して検出するドップラ周波数検出部と、
    検出された前記複数の検波部のそれぞれに対応する位相から前記複数の検波部間の位相差を算出し、算出した位相差から各探索レンジにおける前記反射波の到来方向を検出することにより前記物体の方向を推定する方向推定部とを備える
    レーダイメージング装置。
  2. 前記方向推定部は、前記ドップラ周波数検出部で検出された強度が所定の第1閾値以上となるドップラ周波数成分を含む前記反射波の到来方向を前記物体の方向と推定する
    請求項1記載のレーダイメージング装置。
  3. さらに、前記ドップラ周波数検出部で検出された強度が前記所定の第1閾値以上となるドップラ周波数成分が検出された探索レンジの前記距離を、前記レーダイメージング装置から前記物体までの距離として推定する距離推定部を備える
    請求項2記載のレーダイメージング装置。
  4. 前記方向推定部は、さらに、前記ドップラ周波数検出部で検出された強度が前記所定の第1閾値以上となるドップラ周波数成分から、前記レーダイメージング装置から前記物体を見た速度である視線方向速度を推定する
    請求項2又は3記載のレーダイメージング装置。
  5. 前記N個の遅延符号は、前記送信拡散符号に対して互いに異なる遅延時間を有し、
    前記遅延時間は、前記送信拡散符号の1ビットを与える時間であるビット時間の整数倍である
    請求項1〜4のいずれか1項に記載のレーダイメージング装置。
  6. 前記遅延時間は、前記ビット時間のK(Kは整数)倍からK+N−1倍のいずれかであり、
    前記走査処理は、前記遅延時間を前記ビット時間のK倍からK+N−1倍まで前記ビット時間ずつ順次増加させる、又は、前記遅延時間を前記ビット時間のK+N−1倍からK倍まで前記ビット時間ずつ順次減少させることにより、前記N個の遅延符号を発生する
    請求項5記載のレーダイメージング装置。
  7. 前記距離推定部は、
    前記ドップラ周波数検出部で検出されたドップラ周波数成分毎の前記遅延時間に対する当該ドップラ周波数成分の強度の分布から、強度が極大となるピーク強度を特定し、
    特定したピーク強度と、特定したピーク強度に対応する遅延時間より前記ビット時間だけ短い遅延時間に対する強度であるピーク前強度と、特定したピーク強度に対応する遅延時間より前記ビット時間だけ長い遅延時間に対する強度であるピーク後強度とを用いて補間処理することにより、前記ビット時間に対応する距離よりも小さい距離を分解能として、前記レーダイメージング装置から前記物体までの距離を推定する
    請求項5又は6記載のレーダイメージング装置。
  8. 前記搬送波の周波数をf0、前記レーダイメージング装置から前記物体を見た速度である視線方向速度の想定される最大値をvmax、前記視線方向速度の検出可能な分解能をvresとすると、前記送信拡散符号及び前記遅延符号の符号速度CRは、
    CR≦2×f0×vres/vmax
    を満たす
    請求項1〜6のいずれか1項に記載のレーダイメージング装置。
  9. 前記レーダイメージング装置は、さらに、
    前記遅延符号発生部が前記走査処理をM回繰り返す第1動作モードと、同一の遅延符号を繰り返し発生する第2動作モードとを制御する制御部を備え、
    前記制御部は、
    前記第1動作モードにおいて、前記ドップラ周波数検出部で検出された強度が所定の第2閾値以上となるドップラ周波数成分があるか否かを判断し、前記所定の第2閾値以上となるドップラ周波数成分があると判断した場合に前記第2動作モードに切り替え、
    前記第2動作モードにおいて、
    前記遅延符号発生部は、前記所定の第2閾値以上となるドップラ周波数成分が検出された探索レンジに対応する前記遅延符号を繰り返し発生し、
    前記記憶部は、当該探索レンジに対応する前記遅延符号を用いて逆拡散及び検波された検波信号を記憶せず、
    前記ドップラ周波数検出部は、前記記憶部に記憶されない検波信号を前記走査期間よりも短い周期でサンプリングして周波数分析することによって、前記所定の第2閾値以上となるドップラ周波数成分が検出された探索レンジにおける当該ドップラ周波数成分の位相及び強度を再度検出する
    請求項1〜7のいずれか1項に記載のレーダイメージング装置。
  10. 前記第2動作モードにおいて、前記ドップラ周波数検出部が前記周波数分析するために要した前記検波信号の観測時間は、前記走査期間をM回繰り返すために要した時間と同等である
    請求項9記載のレーダイメージング装置。
  11. 前記所定の第2閾値は、前記強度が前記所定の第2閾値以上であると判断される前記探索レンジがN−2個以下となるような値である
    請求項9又は10記載のレーダイメージング装置。
  12. 送信拡散符号を用いて搬送波を拡散することで送信信号を生成する送信部と、前記送信信号を放射波として放射する送信アンテナと、前記放射波が物体により反射された反射波を受信する複数の受信アンテナと、前記レーダイメージング装置からの距離が異なるN(Nは2以上の整数)個の探索レンジを走査するための走査期間内に前記送信拡散符号と同一の符号であって前記距離に対応するN個の遅延符号を順次発生する走査処理を、M(Mは2以上の整数)走査期間にわたって繰り返す遅延符号発生部と、前記複数の受信アンテナにそれぞれ対応し、各々が、前記N個の遅延符号を順次用いて対応する受信アンテナで受信された反射波を逆拡散する複数の逆拡散部と、前記複数の逆拡散部にそれぞれ対応し、各々が、前記搬送波を用いて対応する逆拡散部で逆拡散された反射波を直交検波することにより、対応する受信アンテナで受信された反射波に応じた検波信号Rij(iは1からNの整数、jは1からMの整数)を生成する複数の検波部とを備えるレーダイメージング装置のためのイメージング方法であって、
    前記遅延符号発生部における前記N個の遅延符号に対応する互いに異なる前記距離及び1つの走査期間に対応するN個の前記検波信号R1j〜RNjを記憶部に前記M走査期間繰り返し書き込む書き込みステップと、
    前記書き込みステップで書き込まれた前記記憶部から、前記距離が同一かつ互いに異なる走査期間に対応するM個の検波信号Ri1〜RiMの組を順次読み出す読み出しステップと、
    読み出された前記距離が同一のM個の検波信号Ri1〜RiMを周波数分析することによって、各探索レンジにおける前記反射波と前記搬送波との差分の周波数成分であるドップラ周波数成分と、当該ドップラ周波数成分に対応する位相及び強度を、前記複数の受信アンテナのそれぞれに対応して検出するドップラ周波数検出ステップと、
    検出された前記複数の受信アンテナのそれぞれに対応する位相から前記複数の受信アンテナ間の位相差を算出し、算出した位相差から各探索レンジにおける前記反射波の到来方向を検出することにより前記物体の方向を推定する方向推定ステップとを含む
    イメージング方法。
  13. 請求項12記載のイメージング方法を前記レーダイメージング装置内の信号処理プロセッサに実行させるためのプログラム。
JP2011551349A 2010-08-09 2011-06-27 レーダイメージング装置、イメージング方法及びそのプログラム Active JP4977806B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551349A JP4977806B2 (ja) 2010-08-09 2011-06-27 レーダイメージング装置、イメージング方法及びそのプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010178959 2010-08-09
JP2010178959 2010-08-09
PCT/JP2011/003657 WO2012020530A1 (ja) 2010-08-09 2011-06-27 レーダイメージング装置、イメージング方法及びそのプログラム
JP2011551349A JP4977806B2 (ja) 2010-08-09 2011-06-27 レーダイメージング装置、イメージング方法及びそのプログラム

Publications (2)

Publication Number Publication Date
JP4977806B2 true JP4977806B2 (ja) 2012-07-18
JPWO2012020530A1 JPWO2012020530A1 (ja) 2013-10-28

Family

ID=45567506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551349A Active JP4977806B2 (ja) 2010-08-09 2011-06-27 レーダイメージング装置、イメージング方法及びそのプログラム

Country Status (4)

Country Link
US (1) US8686894B2 (ja)
JP (1) JP4977806B2 (ja)
CN (1) CN102763001B (ja)
WO (1) WO2012020530A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600573C1 (ru) * 2015-11-23 2016-10-27 Общество С Ограниченной Ответственностью "Научно-Технический Центр "Версия" (Ооо "Нтц "Версия") Способ восстановления изображений объектов по разреженной матрице радиометрических наблюдений
RU2604720C1 (ru) * 2015-12-28 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Способ восстановления изображений при неизвестной аппаратной функции
RU2618088C1 (ru) * 2016-01-27 2017-05-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ оптимального восстановления изображений в радиолокационных системах дистанционного зондирования Земли в телескопическом режиме
RU2624460C1 (ru) * 2016-01-27 2017-07-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ оптимального восстановления изображений в радиолокационных системах дистанционного зондирования Земли
JP6567220B1 (ja) * 2018-09-13 2019-08-28 三菱電機株式会社 レーダ装置および目標距離計測方法
US11227475B2 (en) 2018-05-30 2022-01-18 Panasonic Intellectual Property Management Co., Ltd. Monitoring support apparatus and monitoring support method for supporting work of monitoring person who monitors plurality of subjects by sequentially visiting the plurality of subjects
WO2023152884A1 (ja) * 2022-02-10 2023-08-17 三菱電機株式会社 画像生成装置及びシステム

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552908B2 (en) * 2011-07-05 2013-10-08 Aai Corporation Method and apparatus for implementing high fidelity Doppler phase and time effects in advanced EW stimulus systems
CN102841341B (zh) * 2012-09-03 2014-08-27 深圳先进技术研究院 一种脉冲雷达动目标检测方法
US10393869B2 (en) 2012-11-05 2019-08-27 Technion Research & Development Foundation Ltd. Sub-Nyquist radar processing using doppler focusing
JP6035165B2 (ja) 2013-02-22 2016-11-30 パナソニック株式会社 レーダ装置
JP6260004B2 (ja) * 2013-08-29 2018-01-17 パナソニックIpマネジメント株式会社 レーダシステム及びターゲット検知方法
US10101438B2 (en) * 2015-04-15 2018-10-16 Texas Instruments Incorporated Noise mitigation in radar systems
US10575825B2 (en) * 2015-07-27 2020-03-03 Siemens Medical Solutions Usa, Inc. Doppler imaging
DE102015112392B3 (de) * 2015-07-29 2016-11-17 Infineon Technologies Ag Verfahren und Vorrichtung zum Kalibrieren eines IQ-Modulators
GB201514520D0 (en) * 2015-08-14 2015-09-30 Novelda As Coupled radar
JP6624601B2 (ja) * 2016-03-16 2019-12-25 パナソニック株式会社 レーダ装置および目標物体検出方法
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US9945935B2 (en) 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
WO2017187299A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Successive signal interference mitigation
CN109073741B (zh) 2016-04-25 2019-07-02 乌恩德股份有限公司 用于车辆的雷达感测系统及缓解其干扰的方法
WO2017187331A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
WO2017187242A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US9575160B1 (en) 2016-04-25 2017-02-21 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US11460572B2 (en) 2016-08-12 2022-10-04 University Of Washington Millimeter wave imaging systems and methods using direct conversion receivers and/or modulation techniques
WO2018051288A1 (en) 2016-09-16 2018-03-22 Uhnder, Inc. Virtual radar configuration for 2d array
JP2018054494A (ja) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 検知装置、検知方法および検知プログラム
US10884113B2 (en) * 2016-12-08 2021-01-05 Iee International Electronics & Engineering S.A. Direction of arrival estimation for automotive spread radar systems
EP3552041B1 (en) 2016-12-08 2023-06-21 University of Washington Millimeter wave and/or microwave imaging systems and methods
WO2018146632A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Radar data buffering
WO2018146530A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Reduced complexity fft-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US10116396B1 (en) * 2017-04-28 2018-10-30 Huawei Technologies Canada Co., Ltd. Millimeter-wave sourceless receiver
US11029187B2 (en) 2017-06-21 2021-06-08 Vega Grieshaber Kg Fill level reflectometer having a variable measurement sequence
US10594541B2 (en) 2017-09-04 2020-03-17 Comcast Cable Communications, Llc Remote evaluation of content delivery service
US11163059B2 (en) * 2017-09-22 2021-11-02 Bsh Home Appliances Corporation System and method for radar based mapping for autonomous robotic devices
LU100528B1 (en) * 2017-12-01 2019-06-12 Iee Sa Radar System Operating Method and Radar System Having Improved Range Resolution by Mutually Delayed Orthogonal Codes
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
EP3499731B1 (en) * 2017-12-18 2021-07-14 NXP USA, Inc. Interference cancellation of expected interference signal
KR102628655B1 (ko) * 2018-06-29 2024-01-24 삼성전자주식회사 레이더 구동 장치 및 방법
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
WO2020183392A1 (en) 2019-03-12 2020-09-17 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
US11428776B2 (en) * 2019-03-18 2022-08-30 Rohde & Schwarz Gmbh & Co. Kg System for measuring phase coherence as well as method of measuring phase coherence
CN110007284B (zh) * 2019-04-10 2023-01-31 南京航空航天大学 一种脉冲体制1-比特雷达非线性目标重构问题降维方法
CN112114541B (zh) * 2019-06-21 2022-09-23 华为技术有限公司 传感器的控制方法、装置和传感器
US20210184350A1 (en) * 2019-12-12 2021-06-17 Mano D. Judd Passive beam mechanics to reduce grating lobes
WO2021144711A2 (en) 2020-01-13 2021-07-22 Uhnder, Inc. Method and system for intefrence management for digital radars
EP4016127A1 (en) 2020-12-16 2022-06-22 Provizio Limited Multiple input multiple steered output (mimso) radar
US20220268919A1 (en) * 2021-02-24 2022-08-25 Amazon Technologies, Inc. Techniques for providing motion information with videos
EP4331048A1 (en) 2021-04-30 2024-03-06 Provizio Limited Mimo radar using a frequency scanning antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058570A (ja) * 1983-09-12 1985-04-04 Mitsubishi Electric Corp 追尾レ−ダのデイジタル信号処理装置
WO1997040400A1 (fr) * 1996-04-22 1997-10-30 The Furukawa Electric Co., Ltd. Radar
WO2006106774A1 (ja) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. スペクトル拡散型レーダ装置
JP2009031165A (ja) * 2007-07-27 2009-02-12 Toyota Motor Corp パルスレーダ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717916A (en) * 1986-05-16 1988-01-05 Holodyne Ltd., 1986 High resolution imaging doppler interferometer
RU2004130473A (ru) 2002-03-13 2005-05-10 Рейтеон Кэнэдэ Лимитид (CA) Устройство и способ подавления внешних помех в радиолокационных данных
DE60301564T2 (de) 2002-03-13 2006-06-14 Raytheon Canada Ltd Adaptives system und verfahren zur radardetektion
BR0308342A (pt) * 2002-03-13 2005-01-11 Raytheon Canada Ltd Gerador espectral para radar, método de geração espectral para radar, módulo de supressão de ruìdo e método de suprimir interferência externa
CN101059563B (zh) * 2006-04-20 2010-10-13 中国科学院电子学研究所 合成孔径雷达脉间移相方法
CN101581779B (zh) * 2008-05-14 2012-02-22 中国科学院电子学研究所 一种层析合成孔径雷达三维成像原始回波信号生成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058570A (ja) * 1983-09-12 1985-04-04 Mitsubishi Electric Corp 追尾レ−ダのデイジタル信号処理装置
WO1997040400A1 (fr) * 1996-04-22 1997-10-30 The Furukawa Electric Co., Ltd. Radar
WO2006106774A1 (ja) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. スペクトル拡散型レーダ装置
JP2009031165A (ja) * 2007-07-27 2009-02-12 Toyota Motor Corp パルスレーダ装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600573C1 (ru) * 2015-11-23 2016-10-27 Общество С Ограниченной Ответственностью "Научно-Технический Центр "Версия" (Ооо "Нтц "Версия") Способ восстановления изображений объектов по разреженной матрице радиометрических наблюдений
RU2604720C1 (ru) * 2015-12-28 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Способ восстановления изображений при неизвестной аппаратной функции
RU2618088C1 (ru) * 2016-01-27 2017-05-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ оптимального восстановления изображений в радиолокационных системах дистанционного зондирования Земли в телескопическом режиме
RU2624460C1 (ru) * 2016-01-27 2017-07-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ оптимального восстановления изображений в радиолокационных системах дистанционного зондирования Земли
US11227475B2 (en) 2018-05-30 2022-01-18 Panasonic Intellectual Property Management Co., Ltd. Monitoring support apparatus and monitoring support method for supporting work of monitoring person who monitors plurality of subjects by sequentially visiting the plurality of subjects
US11615686B2 (en) 2018-05-30 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Monitoring support apparatus and monitoring support method for supporting work of monitoring person who monitors plurality of subjects by sequentially visiting the plurality of subjects
JP6567220B1 (ja) * 2018-09-13 2019-08-28 三菱電機株式会社 レーダ装置および目標距離計測方法
WO2020054031A1 (ja) * 2018-09-13 2020-03-19 三菱電機株式会社 レーダ装置および目標距離計測方法
GB2590303A (en) * 2018-09-13 2021-06-23 Mitsubishi Electric Corp Radar device and target distance measurement method
GB2590303B (en) * 2018-09-13 2022-06-22 Mitsubishi Electric Corp Radar device and target distance measurement method
WO2023152884A1 (ja) * 2022-02-10 2023-08-17 三菱電機株式会社 画像生成装置及びシステム

Also Published As

Publication number Publication date
US8686894B2 (en) 2014-04-01
CN102763001B (zh) 2014-08-20
US20120293359A1 (en) 2012-11-22
CN102763001A (zh) 2012-10-31
WO2012020530A1 (ja) 2012-02-16
JPWO2012020530A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP4977806B2 (ja) レーダイメージング装置、イメージング方法及びそのプログラム
US9921305B2 (en) Radar apparatus and object sensing method
KR100826530B1 (ko) 도달 시간차 및 다중 주파수를 이용한 무선 발신기 위치계산 장치 및 방법
US7466262B2 (en) Positioning system with a sparse antenna array
Holm Ultrasound positioning based on time-of-flight and signal strength
US9958526B2 (en) Localization with non-synchronous emission and multipath transmission
KR100778309B1 (ko) 수신 신호 세기 및 다중 주파수를 이용한 무선 발신기위치 계산 장치 및 방법
JP5601881B2 (ja) パッシブレーダシステムおよびパッシブレーダ方法
US8400357B2 (en) Radio arrival direction estimation device and radio arrival direction estimation method
JP2017098960A (ja) セルラー通信ネットワークにおける範囲測定の計算
WO2010106747A1 (ja) 測位システム及び測位方法
US20190383930A1 (en) Method and device for radar determination of the coordinates and speed of objects
JP2010515920A (ja) 到着時間推定器の最適帯域幅選択方法
KR100824552B1 (ko) 수동 코히어런트 위치 확인 애플리케이션에서 특징을 검출 및 추출하는 시스템 및 방법
JP6230750B1 (ja) 物体検出装置、物体検出方法及びセンサ装置
KR20170004900A (ko) 서브캐리어 트래킹 모호성을 해결하기 위해 비모호 판별기를 계산하는 gnss 수신기
JP2013096887A (ja) レーダ装置
JP5163765B2 (ja) 測角装置、レーダ装置、測角方法及び測角プログラム
JP2005172760A (ja) 方位探知装置
JP2005062058A (ja) 捜索レーダ装置
JP2006507750A (ja) マルチパス緩和
JP2019138760A (ja) 超音波人検出装置、超音波人検出方法及び超音波人検出プログラム
JP2019120613A (ja) レーダ装置、レーダ装置の制御方法、およびプログラム
JP2013024844A (ja) 侵入検知装置、侵入検知システム、侵入検知方法および侵入検知プログラム
JP2021196233A (ja) 到来方向推定装置、到来方向推定方法及び到来方向推定プログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3