WO2016167256A1 - ステアリング装置 - Google Patents
ステアリング装置 Download PDFInfo
- Publication number
- WO2016167256A1 WO2016167256A1 PCT/JP2016/061827 JP2016061827W WO2016167256A1 WO 2016167256 A1 WO2016167256 A1 WO 2016167256A1 JP 2016061827 W JP2016061827 W JP 2016061827W WO 2016167256 A1 WO2016167256 A1 WO 2016167256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- control
- angle
- automatic
- assist
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0472—Controlling the motor for damping vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
- B62D15/0265—Automatic obstacle avoidance by steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/008—Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/008—Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/08—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
Definitions
- the present invention relates to a steering device.
- Patent Document 1 As a vehicle steering apparatus equipped with an electric power steering apparatus, there is a technique disclosed in Patent Document 1, for example.
- the steering mechanism is provided with a gear ratio variable mechanism that can change the relative relationship between the steering angle of the steering wheel and the turning angle of the steered wheels.
- active steering that changes the turning angle of a wheel via a gear ratio variable mechanism without depending on steering wheel operation, and steering reaction force that acts on the driver from the steering wheel when active steering is performed, It has been proposed to control the system via a power steering device.
- Patent Document 2 proposes a travel support device that performs lane keeping travel using a gear ratio variable mechanism and an electric power steering device.
- the active steering is such that the gear ratio variable mechanism is actively moved, and the driver is the main body, Active steering is performed for the purpose of correcting a person's steering. Therefore, when the vehicle steering apparatus is used for automatic steering mainly based on steering control by the electric power steering apparatus, the driver is mainly used for the vehicle steering apparatus mainly for the steering control. Since it is used as a steering device, the method of compensating for the uncomfortable feeling given to the driver when the active steering is executed is different, and as a result, the driver may feel uncomfortable.
- a steering angle ratio variable mechanism provided in a steering mechanism and capable of changing a steering angle ratio between a steering angle of a steering wheel and a steering angle of a steered wheel, and a steering angle ratio variable Detected by a steering assist mechanism that is provided on the steered wheel side of the mechanism and applies steering assist force to the steering mechanism, a steering torque detector that detects steering torque input from the steering wheel to the steering mechanism, and a steering torque detector Steering assist control is performed to drive and control the steering assist mechanism so that a steering assist force corresponding to the steering torque generated is generated.
- the steering specified by the input target turning angle information is input.
- a steering assist control unit that switches to an automatic steering control that drives and controls the steering assist mechanism to travel at a corner, and a steering wheel that accompanies automatic steering control And the steering angle ratio controller for adjusting the steering angle ratio so as to suppress the reaction force is reached, a steering device provided is provided.
- the steering angle ratio of the steering angle ratio variable mechanism is adjusted so that the reaction force transmitted to the steering wheel is suppressed in accordance with the automatic steering control. Even when the turning angle is suddenly largely controlled, the sense of discomfort given to the driver can be reduced by transmitting the reaction force accompanying the turning operation to the steering wheel.
- a steering device is mounted on a vehicle, and as a steering mechanism, a steering wheel 1, a first steering shaft 2, a universal joint 3, and a second steering shaft 4, as shown in FIG. And a universal joint 5.
- the third steering shaft 6, the torque angle sensor 7, the variable actuator 8, the pinion shaft 9, the steering gear 10, and the tie rod 11 are further provided.
- the steering assist mechanism 12 is connected to the vehicle.
- the third steering shaft 6 has an input shaft 6 a and an output shaft 6 b, one end of the input shaft 6 a is connected to the universal joint 5, and the other end of the input shaft 6 a is the torque angle sensor 7. Is connected to one end of the output shaft 6b.
- the steering force transmitted to the output shaft 6 b is transmitted to the pinion shaft 9 via the variable actuator 8.
- the steering force transmitted to the pinion shaft 9 is transmitted to the tie rod 11 via the steering gear 10 to steer the steered wheels 13.
- the torque angle sensor 7 detects a steering torque and a rotation angle that are applied to the steering wheel 1 and transmitted to the third steering shaft 6. From the viewpoint of easily detecting the driver's intention to operate the steering wheel 1, the torque angle sensor 7 is provided closer to the steering wheel 1 than the variable actuator 8.
- Torque information T including the steering torque and the rotation angle detected by the torque angle sensor 7 is input to a controller (hereinafter also referred to as an EPS side controller) 20 for controlling the electric power steering apparatus.
- the variable actuator 8 includes a differential mechanism 8a and a variable motor 8b.
- the differential mechanism 8a is a mechanism that changes the rotation angle difference between the rotation angle of the pinion shaft 9 and the rotation angle of the output shaft 6b.
- the rotation angle difference is controlled to control the gear ratio of the differential mechanism 8a.
- the variable actuator 8 can behave as if the steering angle ratio between the steering angle and the steering angle of the steering wheel 1 is changed. Thereby, not only the change of the steering angle ratio but also active steering intervention is possible.
- the steering gear 10 is configured in a rack and pinion type having a pinion gear 10a connected to the pinion shaft 9 and a rack shaft 10b meshing with the pinion gear 10a, and the rotational motion transmitted to the pinion gear 10a is linearly moved by the rack shaft 10b.
- the steering assist mechanism 12 is connected to the rack shaft 10b and is connected to the position adjusting mechanism 12a and a position adjusting mechanism 12a corresponding to a ball screw nut capable of adjusting the position of the rack shaft 10b in the axial direction.
- EPS motor electric motor
- the rotational movement of the EPS motor 12b is transmitted to the position adjustment mechanism 12a via the power transmission mechanism 12c, and the transmitted rotation movement is converted into the straight movement of the rack shaft 10b by the position adjustment mechanism 12a, whereby the position adjustment mechanism 12a. And the rack shaft 10b change in relative position, whereby the turning angle of the steered wheels changes.
- the EPS motor 12b is controlled by the EPS-side controller 20.
- the steering assist mechanism 12 is not limited to the above-described steering assist mechanism 12, and a dual pinion type or single pinion type steering assist mechanism can be used, and the steering assisting force is applied to a position closer to the tire than the variable actuator 8. Any auxiliary mechanism can be applied.
- the EPS controller 20 is supplied with electric power from a battery (not shown) and receives an ignition key signal via an ignition key (not shown).
- the EPS-side controller 20 is a normal electric power steering device when an avoidance command for instructing execution of automatic steering for obstacle avoidance is not input from a vehicle control controller (hereinafter also referred to as a vehicle-side controller) 22. The same operation is performed.
- the EPS-side controller 20 performs steering assist control for assisting the driver's steering operation based on the torque information T detected by the torque angle sensor 7 and the vehicle speed V detected by the vehicle speed sensor 21.
- the current supplied to the EPS motor 12b is controlled.
- the EPS-side controller 20 allows the driver's steering wheel 1 so that the rotation angle ratio (steering angle ratio) between the output shaft 6b and the pinion shaft 9 becomes an appropriate steering angle ratio corresponding to the steering torque and the vehicle speed V.
- the variable motor 8b is controlled in accordance with the operation of the steering wheel 1 to change the ratio between the steering angle and the turning angle of the steering wheel 1 so that the vehicle can stably travel in accordance with the driver's steering operation.
- the EPS-side controller 20 inputs a steering position command for controlling the position of the rack shaft 10b, which is input together with the avoidance command. Based on the driving control of the EPS motor 12b and the position control of the rack shaft 10b, automatic steering is performed regardless of the operation of the steering wheel 1 to avoid obstacles. Further, when the EPS-side controller 20 performs obstacle avoidance, the variable motor 8b transmits the rotation angle difference between the rotation angle of the output shaft 6b and the rotation angle of the pinion shaft 9 to the steering wheel 1 along with automatic steering. It is changed so as to suppress the force, and a large reaction force accompanying automatic steering for avoiding an obstacle is prevented from being transmitted to the driver.
- the EPS-side controller 20 when an avoidance command is input, the EPS-side controller 20 normally performs automatic steering for obstacle avoidance using the steering assist mechanism 12 that is used as an electric power steering device, and usually the stability of the vehicle.
- the variable actuator 8 By using the variable actuator 8 for realizing traveling, a large reaction force accompanying automatic steering for avoiding an obstacle is prevented from being transmitted to the driver.
- the vehicle-side controller 22 includes a vehicle operation controller 22a and a steering position command generation unit 22b.
- the vehicle operation controller 22a determines the presence or absence of an obstacle around the host vehicle based on the outside world information from various outside world recognition sensors (not shown) such as an in-vehicle camera or a distance sensor. For example, the obstacle suddenly pops out.
- an avoidance command is output to the steering position command generation unit 22b together with external environment information.
- the steering position command generation unit 22b estimates the track of the host vehicle for avoiding the obstacle based on the outside world information. Further, the steering position command generation unit 22b is configured to provide an angular waveform indicating a change state of the rotation angle of the EPS motor 12b for turning control or a change state of the position of the rack shaft 10b with the passage of time for realizing the estimated trajectory. The position waveform representing is calculated while being updated sequentially at appropriate time intervals up to several seconds ahead.
- the calculated angular waveform of the EPS motor 12b or the position waveform of the rack shaft 10b that is, the waveform of the turning angle necessary for avoiding the obstacle is used as the steering position command, and is output to the EPS controller 20 together with the avoidance command. To do. Next, a specific configuration of the EPS side controller 20 will be described.
- the EPS-side controller 20 includes a steering assist control unit (hereinafter referred to as an EPS unit) 31 that drives and controls the steering assist mechanism 12 and a variable actuator control unit (hereinafter referred to as an EPS unit) that controls the variable actuator 8. 32).
- the steering assist mechanism 12 and the EPS unit 31 constitute a so-called electric power steering device.
- the EPS unit 31, the variable unit 32, and the vehicle operation controller 22a of the vehicle-side controller 22 can communicate with each other by CAN (ControllerCAArea Network) communication.
- Various parameters such as a target current at the normal time described later or a target current at the time of avoidance used for controlling the EPS motor 12b in the EPS unit 31, and a normal time described later used for controlling the variable motor 8b in the variable unit 32.
- Steering information such as various parameters such as a target variable motor angle or a target variable motor angle at the time of avoidance is transmitted to the vehicle operation controller 22a by CAN communication.
- the EPS unit 31 includes a position control unit 31a, a reaction force adjustment unit 31b, an addition unit 31c, an EPS assist control unit 31d, a transition control unit 31e, and a current control unit 31f.
- the position control unit 31a is activated when an avoidance command is input, and a target current for changing the variable motor 8b with an angle waveform according to the steering position command, or a position waveform of the rack shaft 10b with a position waveform according to the steering position command.
- the target current to be changed is calculated, and the calculated target current is output to the adding unit 31c.
- the reaction force adjusting unit 31b is activated when an avoidance command is input, and when the EPS motor 12b is controlled based on the steering position command based on the steering position command and the torque information T from the torque angle sensor 7, the steering wheel is adjusted.
- the target current for suppressing the reaction force predicted to be transmitted to 1 is adjusted by adjusting the control amount of the EPS motor 12b, and the calculated target current is output to the adder 31c.
- the adding unit 31c outputs the sum of the target current from the position control unit 31a and the target current from the reaction force adjusting unit 31b to the transition control unit 31e as a current target value for avoidance.
- the EPS assist control unit 31d calculates a steering assist command value for assisting the driver's steering operation based on the torque information T from the torque angle sensor 7 and the vehicle speed V detected by the vehicle speed sensor 21, A target current corresponding to the calculated steering assist command value is calculated and output to the transition control unit 31e as a normal current target value.
- the transition control unit 31e inputs the current target value at the time of avoidance from the adder 31c and the current target value at the normal time from the EPS assist control unit 31d, and when the avoidance command is not input from the steering position command generation unit 22b. Select the current target value for normal operation.
- the transition control unit 31e selects the current target value at the time of avoidance until the automatic steering is avoided, and uses the selected current target value as the current command to the current control unit 31f. Output.
- the transition control unit 31e receives a torque greater than a preset threshold value from the torque information T from the torque angle sensor 7 and a change in angle by a predetermined value or more in a state where automatic steering is performed.
- the transition control unit 31e switches to the normal current target value selection and switches to the normal steering assist operation.
- the transition control unit 31e performs transition control so as to gradually switch to the normal steering assist operation. That is, the transition control unit 31e controls the current supplied to the EPS motor 12b so that the ratio of the output of the EPS motor 12b contributing to the control of the turning angle of the steered wheels gradually decreases from 100%. Perform the process.
- the current control unit 31f controls the supply current to the EPS motor 12b so that the detected motor current value of the EPS motor 12b becomes the notified normal current target value or avoidance current target value.
- the EPS unit 31 controls the steering assist mechanism 12 in the same manner as a normal electric power steering device, and applies the steering assist force according to the steering torque and the vehicle speed to the pinion gear 10a. And assisting the driver in steering the steering wheel 1.
- the EPS unit 31 performs automatic steering to automatically control the turning angle of the steered wheels, and automatically avoids obstacles by controlling the turning angle and automatically
- the reaction force is adjusted so as to reduce the reaction force transmitted to the steering wheel 1 as the steering is performed, and the current supplied to the EPS motor 12b is controlled.
- the reaction force transmitted to the steering wheel 1 as a result of automatic steering is controlled by adjusting the reaction force of the EPS unit 31 and controlling the gear ratio of the differential mechanism 8a in the variable unit 32, which will be described later, and the rack shaft 10b.
- the reaction force transmitted to the steering wheel 1 is appropriately maintained while achieving convergence to the target position based on the steering position command.
- FIG. 3 is a diagram for explaining a simplified physical model of the rack shaft 10b and a reaction force control method.
- the external force F acting on the rack shaft 10b is derived from the road surface reaction force f1 from the tire, the steering assist force f2 accompanying the position control of the rack shaft 10b by the EPS motor 12b, and the pinion shaft 9.
- This is the sum of the force f3 acting on the rack shaft 10b and the resistance force f4 due to friction.
- the force f3 acting on the rack shaft 10b by the pinion shaft 9 can be regarded as equivalent to the steering torque applied by the driver.
- the speed of the rack shaft 10b is obtained by integrating the acceleration of the rack shaft 10b obtained by dividing the external force F acting on the rack shaft 10b by the mass m, and the position of the rack shaft 10b can be obtained by further integration. it can. Therefore, when controlling the position of the rack shaft 10b, as shown in FIG. 3, it is only necessary to control the sum of the forces acting on the rack shaft 10b. Therefore, the magnitude of the steering assist force f2 by the EPS motor 12b is adjusted. Thus, the steering torque applied by the driver can be adjusted.
- the steering wheel 1 In a steering device configured so that the steering angle of the steering wheel 1 and the turning angle of the steered wheels have a predetermined rudder angle ratio ⁇ according to the steering torque and the vehicle speed as in the prior art, the steering wheel The reaction force acting on 1 cannot be controlled arbitrarily. For example, when the driver holds the steering wheel 1 and resists strongly against the force acting on the steering wheel 1 by automatic steering by the EPS motor 12b, the driver acts on the driver as it is.
- the reaction force is appropriately set by the reaction force adjusting unit 31b.
- the steering angle of the steering wheel 1 and the reaction force transmitted to the steering wheel 1 can be reduced. Can be maintained at an appropriate value.
- the variable unit 32 includes a steering action reduction unit 32a, a steering angle ratio control unit 32b, an addition unit 32c, and a motor position control unit 32d.
- the steering action reduction unit 32a is activated when an avoidance command is input from the steering position command generation unit 22b, and based on the steering position command input together with the avoidance command, the fluctuation of the steering wheel 1 during automatic steering, that is, the rotational speed.
- the movement of the steering wheel 1 is suppressed so that the absolute value of is not too large.
- the rotation angle of the variable motor 8b is set so that the 4/5 value of the turning angle when the EPS motor 12b is controlled according to the steering position command is the rotation angle difference between the output shaft 6b and the pinion shaft 9.
- the steering wheel 1 is suppressed to a movement of 1/5 of the turning angle specified by the steering position command.
- the steering action reduction unit 32a outputs zero.
- the steering angle ratio control unit 32b represents a relative relationship between the steering angle of the steering wheel 1 and the turning angle of the steered wheel based on the torque information T from the torque angle sensor 7 and the vehicle speed V from the vehicle speed sensor 21.
- the steering angle ratio ⁇ is calculated.
- achieves the steering angle ratio (alpha) is calculated, and this is output to the addition part 32c.
- the addition unit 32c adds the rotation angle calculated by the steering action reduction unit 32a and the rotation angle calculated by the steering angle ratio control unit 32b, and outputs the addition result to the motor position control unit 32d as a target variable motor angle.
- variable unit 32 calculates the steering angle ratio ⁇ based on the torque information T and the vehicle speed V, so that the steering wheel 1 and the pinion shaft 9 are equivalent to the steering angle ratio ⁇ .
- the angle of the variable motor 8b of the variable actuator 8 is controlled as if the gear ratio differential mechanism 8a is connected.
- the variable unit 32 controls the angle of the variable motor 8b when an avoidance command is input, and a large reaction force is generated, for example, the steering wheel 1 suddenly rotates by automatic steering by the EPS unit 31 according to the steering position command.
- the angle control of the variable motor 8b is performed so as not to occur.
- the torque angle sensor 7 corresponds to the steering torque detector
- the steering position command corresponds to the target turning angle information
- the EPS unit 31 corresponds to the steering assist controller
- the variable unit 32 corresponds to the steering angle ratio controller. It corresponds.
- FIG. 4 is an example of a simulation result at the time of obstacle avoidance. As shown in FIG. 5, the steering angle (shown by a one-dot chain line) and the steering angular speed (shown by a solid line) when a double lane change is performed. Is shown.
- the rudder angle represents the rotation angle of the pinion shaft 9, and the rudder angular speed represents the rotation speed of the pinion shaft 9.
- the steering angle of the steered wheels is an angle at which obstacle avoidance is possible by adjusting the gear ratio of the differential mechanism 8 a by the variable unit 32 along with automatic steering by the EPS unit 31.
- the reaction force to the steering wheel 1 and suppressing the reaction force generated in the steering wheel 1 as the turning angle changes it is possible to reliably avoid obstacles and to transmit the reaction force transmitted to the steering wheel 1 during automatic steering.
- automatically performing a steering operation for avoiding an obstacle is a situation in which quick avoidance steering is necessary, that is, often accompanied by large fluctuations in the turning angle to alternate left and right at high speed.
- the torque angle sensor 7 since the torque angle sensor 7 is provided on the steering wheel 1 side with respect to the variable actuator 8, it can output the torque information T reflecting the torque generated in the steering wheel 1 with high accuracy. Therefore, the EPS unit 31 and the variable unit 32 can perform control with high accuracy based on the torque information T reflecting the driver's steering intention.
- the torque angle sensor 7 is provided on the steered wheel 13 side with respect to the variable actuator 8, when automatic steering for obstacle avoidance is not performed, that is, when operating as a normal electric power steering apparatus. There is no problem.
- the variable actuator 8 is driven at a large angular velocity, and a rotational force corresponding to the driver's steering operation is transmitted to the steered wheel 13 side from the variable actuator 8. Not. Therefore, the torque angle sensor 7 needs to be provided closer to the steering wheel 1 than the variable actuator 8.
- FIG. 6 is a flowchart illustrating an example of a processing procedure of the EPS-side controller 20.
- the EPS controller 20 first determines whether an avoidance command has been input from the vehicle controller 22 (step S1).
- the EPS controller 20 operates in the same manner as a normal electric power steering device unless an avoidance command is input.
- torque information T from the torque angle sensor 7 and vehicle speed V from the vehicle speed sensor 21 are displayed.
- a current target value for EPS assist according to the above is calculated (step S2).
- a target variable motor angle for realizing a gear ratio corresponding to the steering angle ratio ⁇ for EPS assist according to the torque information T from the torque angle sensor 7 and the vehicle speed V from the vehicle speed sensor 21 is set. Calculation is performed (step S3).
- the supply current to the variable motor 8b and the EPS motor 12b is controlled to drive these motors.
- the steering assist force is applied by controlling the position of the rack shaft 10b of the steering assist mechanism 12, and the steering angle ratio of the variable actuator 8 is controlled to be equivalent to ⁇ .
- the steering position command generator 22b Estimate the trajectory of the vehicle to avoid obstacles.
- the steering position command generation unit 22b represents an angle waveform representing a change state of the EPS motor 12b for turning control or a change state of the position of the rack shaft 10b with the passage of time for realizing the estimated trajectory.
- the position waveform is calculated and used as a steering position command, which is output to the EPS controller 20 together with the avoidance command.
- the EPS-side controller 20 proceeds from step S1 to step S11, and based on the steering position command, the rack shaft 10b for traveling along the track of the host vehicle for obstacle avoidance is provided. Get position waveform. Then, the EPS side controller 20 calculates a current target value for controlling the position of the rack shaft 10b along the position waveform of the rack shaft 10b (step 12), and follows the position waveform of the rack shaft 10b. A reaction force adjustment current target value for suppressing the reaction force transmitted to the steering wheel 1 accompanying the position control of the rack shaft 10b is calculated (step S13). The sum of these current target values is set as the current target value of the EPS motor 12b (step S14).
- the target variable motor angle of the variable actuator 8 is calculated (step S15), and based on these, the EPS motor 12b and the variable motor 8b are driven and controlled. (Step S16).
- the vehicle travels so as to avoid obstacles by automatic steering.
- the differential mechanism 8a is adjusted and the EPS motor 12b is made to react. Since it is adjusted and driven, it is suppressed that a large reaction force is transmitted to the steering wheel 1.
- step S17 when the driver has overridden to avoid the obstacle during the automatic steering, or when the automatic steering for a predetermined time for avoiding the obstacle is finished, the process proceeds from step S17 to step S18, and the automatic Transition control for shifting from steering to steering by a driver's steering operation is executed, and the transition gradually proceeds from automatic steering to steering by a steering operation. Then, the process proceeds from step S1 to step S2, and the steering assist of the driver's steering operation is performed in the same manner as in a normal electric power steering apparatus.
- EPS motor Electric motor
- EPS side controller Controller for controlling electric power steering system
- Vehicle speed sensor Controller for vehicle control (vehicle side controller) 22a Vehicle operation controller 22b Steering position command generator 31 Steering assist control unit (EPS unit) (steering assist controller) 32 Variable actuator control unit (variable unit)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
自動操舵制御の実行に伴いステアリングホイールに伝達される反力を抑制する。そのために、ステアリングホイール(1)の操舵角と転舵輪(13)の転舵角との舵角比率を変化させることの可能な可変アクチュエータ(8)と、可変アクチュエータ(8)よりも転舵輪(13)側に設けられステアリング機構に操舵補助力を付与する操舵補助機構(12)と、ステアリング機構に入力される操舵トルクを検出するトルクアングルセンサ(7)とを設け、操舵トルクに応じた操舵補助力を発生するように操舵補助制御を行って操舵補助機構(12)を駆動制御すると共に、回避指令が入力されたときには自動操舵制御を行い、入力されるステアリング位置指令で指定される転舵角で走行するように操舵補助機構(12)を駆動制御する。さらに、可変アクチュエータ(8)の舵角比率を調整し、自動操舵制御を行うことに伴いステアリングホイール(1)に伝達される反力を抑制する。
Description
本発明は、ステアリング装置に関する。
電動パワーステアリング装置を備えた車両用操舵装置として、例えば特許文献1に開示された技術がある。この技術は、ステアリング機構に、ステアリングホイールの操舵角と転舵輪の転舵角との相対関係を変化させることの可能なギヤ比可変機構を備えたものである。そして、この技術ではステアリングホイール操作に依存しないでギヤ比可変機構を介して車輪の転舵角を変化させるアクティブ操舵と、アクティブ操舵実行時に、ステアリングホイールから運転者に作用する操舵反力を、電動パワーステアリング装置を介して制御するようにしたものとが提案されている。
また、例えば特許文献2には、ギヤ比可変機構と電動パワーステアリング装置とを使用してレーンキープ走行を行う走行支援装置が提案されている。
しかしながら、上述のギヤ比可変機構及び電動パワーステアリング装置を備えた車両用操舵装置では、アクティブ操舵は、ギヤ比可変機構をアクティブに動かすようにしたものであり、あくまで運転者が主体であり、運転者の操舵を修正することを目的としてアクティブ操舵を行うものである。
そのため、この車両用操舵装置を用いて、電動パワーステアリング装置による転舵制御を主体として自動操舵を行う場合には、運転者が主体の車両用操舵装置を、転舵制御を主体とする車両用操舵装置として用いるため、アクティブ操舵実行時に運転者に与える違和感の補償の仕方も異なることになり、結果的に、運転者に違和感を与える可能性がある。
そのため、この車両用操舵装置を用いて、電動パワーステアリング装置による転舵制御を主体として自動操舵を行う場合には、運転者が主体の車両用操舵装置を、転舵制御を主体とする車両用操舵装置として用いるため、アクティブ操舵実行時に運転者に与える違和感の補償の仕方も異なることになり、結果的に、運転者に違和感を与える可能性がある。
本発明の一態様によれば、ステアリング機構に設けられ、ステアリングホイールの操舵角と転舵輪の転舵角との舵角比率を変化させることの可能な舵角比率可変機構と、舵角比率可変機構よりも転舵輪側に設けられ、ステアリング機構に操舵補助力を付与する操舵補助機構と、ステアリングホイールからステアリング機構に入力される操舵トルクを検出する操舵トルク検出部と、操舵トルク検出部で検出される操舵トルクに応じた操舵補助力が発生するように操舵補助機構を駆動制御する操舵補助制御を行い、自動操舵が指示されたときには、入力される目標転舵角情報で指定される転舵角で走行するように操舵補助機構を駆動制御する自動操舵制御に切り替える操舵補助制御部と、自動操舵制御を行うことに伴いステアリングホイールに伝達される反力を抑制するように舵角比率を調整する舵角比率制御部と、を備えるステアリング装置が提供される。
本発明の一態様によれば、自動操舵制御を行うことに伴いステアリングホイールに伝達される反力が抑制されるように舵角比率可変機構の舵角比率が調整されるため、自動操舵制御により転舵角が急に大きく制御された場合等であっても、この転舵操作に伴う反力がステアリングホイールに伝達されることにより運転者に与える違和感を低減することができる。
以下、本発明の実施の形態を、図面に基づいて説明する。
以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、寸法の関係や比率等は現実のものとは異なることに留意すべきである。
また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、寸法の関係や比率等は現実のものとは異なることに留意すべきである。
また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
本発明の一実施形態におけるステアリング装置は、車両に搭載され、ステアリング機構として、図1に示すように、ステアリングホイール1と、第1ステアリングシャフト2と、ユニバーサルジョイント3と、第2ステアリングシャフト4と、ユニバーサルジョイント5と、を備える。さらに、第3ステアリングシャフト6と、トルクアングルセンサ7と、可変アクチュエータ8と、ピニオンシャフト9と、ステアリングギヤ10と、タイロッド11と、を備え、ステアリングギヤ10には、操舵補助力をステアリングギヤ10に伝達する操舵補助機構12が連結されている。
ステアリングホイール1に運転者から作用される操舵力は、第1ステアリングシャフト2、ユニバーサルジョイント3、第2ステアリングシャフト4、ユニバーサルジョイント5を介して、第3ステアリングシャフト6に伝達される。第3ステアリングシャフト6は、図1に示すように、入力軸6aと出力軸6bとを有し、入力軸6aの一端がユニバーサルジョイント5に連結され、入力軸6aの他端がトルクアングルセンサ7を介して出力軸6bの一端に連結されている。
出力軸6bに伝達された操舵力は、可変アクチュエータ8を介してピニオンシャフト9に伝達される。ピニオンシャフト9に伝達された操舵力はステアリングギヤ10を介してタイロッド11に伝達され、転舵輪13を転舵する。
ここで、トルクアングルセンサ7は、ステアリングホイール1に付与されて第3ステアリングシャフト6に伝達された操舵トルク及び回転角度を検出するものである。運転者のステアリングホイール1を操作する意志を検知しやすくする観点から、トルクアングルセンサ7は、可変アクチュエータ8よりもステアリングホイール1側に設けられる。
ここで、トルクアングルセンサ7は、ステアリングホイール1に付与されて第3ステアリングシャフト6に伝達された操舵トルク及び回転角度を検出するものである。運転者のステアリングホイール1を操作する意志を検知しやすくする観点から、トルクアングルセンサ7は、可変アクチュエータ8よりもステアリングホイール1側に設けられる。
トルクアングルセンサ7で検出された操舵トルク及び回転角度を含むトルク情報Tは、電動パワーステアリング装置制御用のコントローラ(以下、EPS側コントローラともいう。)20に入力される。
可変アクチュエータ8は、差動機構8aと可変モータ8bと、を備える。差動機構8aは、ピニオンシャフト9の回転角度と出力軸6bの回転角度との回転角度差を変更する機構である。可変モータ8bを回転させることにより、回転角度差を制御して差動機構8aのギヤ比を制御する。その結果、可変アクチュエータ8は、ステアリングホイール1の操舵角と転舵角との舵角比率を変更したかのごとくふるまうことができる。これにより、舵角比率の変更だけでなく、アクティブな操舵介入も可能となる。
可変アクチュエータ8は、差動機構8aと可変モータ8bと、を備える。差動機構8aは、ピニオンシャフト9の回転角度と出力軸6bの回転角度との回転角度差を変更する機構である。可変モータ8bを回転させることにより、回転角度差を制御して差動機構8aのギヤ比を制御する。その結果、可変アクチュエータ8は、ステアリングホイール1の操舵角と転舵角との舵角比率を変更したかのごとくふるまうことができる。これにより、舵角比率の変更だけでなく、アクティブな操舵介入も可能となる。
ステアリングギヤ10は、ピニオンシャフト9に連結されたピニオンギヤ10aとこのピニオンギヤ10aに噛合するラック軸10bとを有するラックアンドピニオン形式に構成され、ピニオンギヤ10aに伝達された回転運動をラック軸10bで直進運動に変換している。
操舵補助機構12は、ラック軸10bに連結され、且つこのラック軸10bの軸方向の位置調整を行うことの可能なボールねじのナットに相当する位置調整機構12aと、この位置調整機構12aに連結される電動モータ(以下、EPSモータという。)12bと、電動モータ12bの回転運動を位置調整機構12aのナットに伝達するベルト式の動力伝達機構12cと、を含む。EPSモータ12bの回転運動が動力伝達機構12cを介して位置調整機構12aに伝達され、伝達された回転運動が位置調整機構12aによりラック軸10bの直進運動に変換されることにより、位置調整機構12aとラック軸10bとの相対位置が変化し、これにより転舵輪の転舵角が変化するようになっている。EPSモータ12bは、EPS側コントローラ20により制御される。
操舵補助機構12は、ラック軸10bに連結され、且つこのラック軸10bの軸方向の位置調整を行うことの可能なボールねじのナットに相当する位置調整機構12aと、この位置調整機構12aに連結される電動モータ(以下、EPSモータという。)12bと、電動モータ12bの回転運動を位置調整機構12aのナットに伝達するベルト式の動力伝達機構12cと、を含む。EPSモータ12bの回転運動が動力伝達機構12cを介して位置調整機構12aに伝達され、伝達された回転運動が位置調整機構12aによりラック軸10bの直進運動に変換されることにより、位置調整機構12aとラック軸10bとの相対位置が変化し、これにより転舵輪の転舵角が変化するようになっている。EPSモータ12bは、EPS側コントローラ20により制御される。
なお、上述の操舵補助機構12に限るものではなく、デュアルピニオン式或いはシングルピニオン式の操舵補助機構を用いることも可能であり、可変アクチュエータ8よりもタイヤに近い位置に操舵補助力を付与する操舵補助機構であれば適用することができる。
EPS側コントローラ20には、図示しないバッテリから電力が供給されると共に、図示しないイグニッションキーを経てイグニッションキー信号が入力される。EPS側コントローラ20は、車両制御用のコントローラ(以下、車両側コントローラともいう。)22から、障害物回避のための自動操舵の実行を指示する回避指令が入力されないときには、通常の電動パワーステアリング装置と同様の動作を行う。すなわち、EPS側コントローラ20は、トルクアングルセンサ7で検出されたトルク情報Tと車速センサ21で検出された車速Vとに基づいて、運転者の操舵操作をアシストするための操舵補助制御を行い、EPSモータ12bに供給する電流を制御する。また、EPS側コントローラ20は、出力軸6bとピニオンシャフト9との回転角度比(舵角比)が操舵トルクと車速Vとに応じた適切な舵角比となるように運転者のステアリングホイール1の動作に応じて可変モータ8bを制御し、ステアリングホイール1の操舵角と転舵角との比を変化させて、運転者の操舵操作に応じて車両の安定走行を図る。
EPS側コントローラ20には、図示しないバッテリから電力が供給されると共に、図示しないイグニッションキーを経てイグニッションキー信号が入力される。EPS側コントローラ20は、車両制御用のコントローラ(以下、車両側コントローラともいう。)22から、障害物回避のための自動操舵の実行を指示する回避指令が入力されないときには、通常の電動パワーステアリング装置と同様の動作を行う。すなわち、EPS側コントローラ20は、トルクアングルセンサ7で検出されたトルク情報Tと車速センサ21で検出された車速Vとに基づいて、運転者の操舵操作をアシストするための操舵補助制御を行い、EPSモータ12bに供給する電流を制御する。また、EPS側コントローラ20は、出力軸6bとピニオンシャフト9との回転角度比(舵角比)が操舵トルクと車速Vとに応じた適切な舵角比となるように運転者のステアリングホイール1の動作に応じて可変モータ8bを制御し、ステアリングホイール1の操舵角と転舵角との比を変化させて、運転者の操舵操作に応じて車両の安定走行を図る。
一方、EPS側コントローラ20は、車両側コントローラ22から回避指令が入力されたときには、回避指令と共に入力される、ラック軸10bの位置制御を行うためのステアリング位置指令を入力し、このステアリング位置指令に基づき、EPSモータ12bを駆動制御し、ラック軸10bの位置制御を行うことにより、ステアリングホイール1の操作に関係なく自動操舵を行って障害物回避を図る。また、EPS側コントローラ20は、障害物回避を行う際に、可変モータ8bにより出力軸6bの回転角度とピニオンシャフト9の回転角度との回転角度差を、自動操舵に伴いステアリングホイール1に伝わる反力を抑制するように変更し、障害物回避のための自動操舵に伴う大きな反力が運転者に伝達されることを回避する。つまり、EPS側コントローラ20は、回避指令が入力されたときには、通常は、電動パワーステアリング装置として用いられる操舵補助機構12を用いて障害物回避のための自動操舵を行うと共に、通常は車両の安定走行を実現するための可変アクチュエータ8を用いて、障害物回避のための自動操舵に伴う大きな反力が運転者に伝達されることを回避するようになっている。
車両側コントローラ22は、車両運転コントローラ22aと、ステアリング位置指令生成部22bと、を備える。車両運転コントローラ22aは、車載カメラ或いは距離センサ等の各種外界認識センサ(図示せず)からの外界情報をもとに、自車両周囲の障害物の有無を判断し、例えば、突然障害物が飛び出してくる等、運転者の操舵操作によらない転舵による回避操作が必要と判断される場合には、外界情報と共に回避指令をステアリング位置指令生成部22bに出力する。
ステアリング位置指令生成部22bは、回避指令及び外界情報が入力されると、外界情報に基づき障害物を回避するための自車両の軌道を推測する。さらにステアリング位置指令生成部22bは、推測した軌道を実現するための時間経過に伴う転舵制御用のEPSモータ12bの回転角度の変化状況を表す角度波形、又は、ラック軸10bの位置の変化状況を表す位置波形を、数秒先まで適切な時間間隔で逐次更新しながら演算する。そして、演算したEPSモータ12bの角度波形、或いはラック軸10bの位置波形、つまり、障害物を回避するために必要な転舵角の波形をステアリング位置指令とし、回避指令と共にEPS側コントローラ20に出力する。
次に、EPS側コントローラ20の具体的構成について説明する。
次に、EPS側コントローラ20の具体的構成について説明する。
EPS側コントローラ20は、図2に示すように、操舵補助機構12を駆動制御する操舵補助制御ユニット(以下、EPSユニットという。)31と、可変アクチュエータ8を駆動制御する可変アクチュエータ制御ユニット(以下、可変ユニットという。)32と、を備える。操舵補助機構12とEPSユニット31とで、いわゆる電動パワーステアリング装置を構成する。
EPSユニット31と可変ユニット32と車両側コントローラ22の車両運転コントローラ22aとは、CAN(Controller Area Network)通信により相互に通信可能となっている。EPSユニット31においてEPSモータ12bの制御に用いた、後述の通常時の目標電流或いは回避時の目標電流等の各種パラメータや、可変ユニット32において可変モータ8bの制御に用いた、後述の通常時の目標可変モータ角或いは回避時の目標可変モータ角等の各種パラメータ等のステアリング情報は、CAN通信により、車両運転コントローラ22aに送信される。
EPSユニット31は、位置制御部31aと、反力調整部31bと、加算部31cと、EPSアシスト制御部31dと、移行制御部31eと、電流制御部31fと、を備える。
位置制御部31aは、回避指令が入力されたとき起動され、可変モータ8bをステアリング位置指令に応じた角度波形で変化させる目標電流、又はラック軸10bの位置をステアリング位置指令に応じた位置波形で変化させる目標電流を演算し、演算した目標電流を加算部31cに出力する。
位置制御部31aは、回避指令が入力されたとき起動され、可変モータ8bをステアリング位置指令に応じた角度波形で変化させる目標電流、又はラック軸10bの位置をステアリング位置指令に応じた位置波形で変化させる目標電流を演算し、演算した目標電流を加算部31cに出力する。
反力調整部31bは、回避指令が入力されたとき起動され、ステアリング位置指令と、トルクアングルセンサ7からのトルク情報Tとに基づき、ステアリング位置指令に基づきEPSモータ12bを制御した場合にステアリングホイール1に伝達されると予測される反力を、EPSモータ12bの制御量を調整することで抑制するための目標電流を演算し、演算した目標電流を加算部31cに出力する。
加算部31cは、位置制御部31aによる目標電流と反力調整部31bによる目標電流との和を回避時の電流目標値として移行制御部31eに出力する。
EPSアシスト制御部31dは、トルクアングルセンサ7からのトルク情報Tと車速センサ21で検出した車速Vとをもとに、運転者の操舵操作をアシストするための操舵補助指令値の演算を行い、演算された操舵補助指令値相当の目標電流を演算し、通常時の電流目標値として移行制御部31eに出力する。
EPSアシスト制御部31dは、トルクアングルセンサ7からのトルク情報Tと車速センサ21で検出した車速Vとをもとに、運転者の操舵操作をアシストするための操舵補助指令値の演算を行い、演算された操舵補助指令値相当の目標電流を演算し、通常時の電流目標値として移行制御部31eに出力する。
移行制御部31eは、加算部31cからの回避時の電流目標値と、EPSアシスト制御部31dからの通常時の電流目標値とを入力し、ステアリング位置指令生成部22bから回避指令が入力されないときには通常時の電流目標値を選択する。移行制御部31eは、回避指令が入力されたときには、以後、自動操舵が回避されるまでの間、回避時の電流目標値を選択し、選択した電流目標値を電流指令として電流制御部31fに出力する。
また、移行制御部31eは、自動操舵が行われている状態で、トルクアングルセンサ7からのトルク情報Tから、予め設定したしきい値以上のトルクが入力され且つ所定値以上角度変化が生じたと判定されるとき、つまり運転者が自動操舵をオーバーライドしたと判断されるとき、また、ステアリング位置指令で指定されるラック軸10bの目標位置に基づき所定時間自動操舵を行ったとき等、には、自動操舵を終了する。そして、移行制御部31eは、通常時の電流目標値の選択に切り替えて通常の操舵アシスト動作に切り替わるが、このとき通常の操舵アシスト動作に徐々に切り替わるように移行制御を行う。すなわち、移行制御部31eは、転舵輪の転舵角の制御に、EPSモータ12bの出力が寄与する割合が100%の状態から徐々に小さくなるようにEPSモータ12bへの供給電流を制御する等の処理を行う。
なお、ここでは、トルクアングルセンサ7からのトルク情報Tに基づき、運転者がオーバーライドしたことを検出しているが、これに限るものではなく、例えばステアリングホイール1の角度変化等に基づき検出するようにしてもよく、オーバーライドしたことを検出することができればどのような方法であってもよい。
電流制御部31fは、EPSモータ12bのモータ電流検出値が、通知された通常時の電流目標値又は回避時の電流目標値となるように、EPSモータ12bへの供給電流を制御する。
電流制御部31fは、EPSモータ12bのモータ電流検出値が、通知された通常時の電流目標値又は回避時の電流目標値となるように、EPSモータ12bへの供給電流を制御する。
以上説明したように、EPSユニット31は、回避指令が入力されないときには、通常の電動パワーステアリング装置と同様に操舵補助機構12を制御し、操舵トルクと車速とに応じた操舵補助力をピニオンギヤ10aに付与し、運転者のステアリングホイール1の操舵補助を行う。
一方、EPSユニット31は、回避指令が入力されたときには、自動的に転舵輪の転舵角を制御する自動操舵を行い、転舵角を制御して自動的に障害物回避を図ると共に、自動操舵を行うことに伴いステアリングホイール1に伝わる反力を低減するように反力調整を行い、EPSモータ12bへの供給電流を制御する。つまり、自動操舵を行うことに伴いステアリングホイール1に伝わる反力の制御を、EPSユニット31の反力調整と後述の可変ユニット32における差動機構8aのギヤ比の制御とにより行い、ラック軸10bの、ステアリング位置指令に基づく目標位置への収斂を達成しつつ、ステアリングホイール1に伝達される反力を適正に保つ。
一方、EPSユニット31は、回避指令が入力されたときには、自動的に転舵輪の転舵角を制御する自動操舵を行い、転舵角を制御して自動的に障害物回避を図ると共に、自動操舵を行うことに伴いステアリングホイール1に伝わる反力を低減するように反力調整を行い、EPSモータ12bへの供給電流を制御する。つまり、自動操舵を行うことに伴いステアリングホイール1に伝わる反力の制御を、EPSユニット31の反力調整と後述の可変ユニット32における差動機構8aのギヤ比の制御とにより行い、ラック軸10bの、ステアリング位置指令に基づく目標位置への収斂を達成しつつ、ステアリングホイール1に伝達される反力を適正に保つ。
図3は、ラック軸10bの簡易物理モデルと反力の制御方法とを説明するための図である。
ラック軸10bの簡易物理モデルにおいて、ラック軸10bに作用する外力Fは、タイヤからの路面反力f1と、EPSモータ12bによるラック軸10bの位置制御に伴う操舵補助力f2と、ピニオンシャフト9からラック軸10bに作用する力f3と、摩擦による抵抗力f4との和となる。また、ピニオンシャフト9によりラック軸10bに作用する力f3は運転者により付与される操舵トルクと同等とみなすことができる。
ラック軸10bの簡易物理モデルにおいて、ラック軸10bに作用する外力Fは、タイヤからの路面反力f1と、EPSモータ12bによるラック軸10bの位置制御に伴う操舵補助力f2と、ピニオンシャフト9からラック軸10bに作用する力f3と、摩擦による抵抗力f4との和となる。また、ピニオンシャフト9によりラック軸10bに作用する力f3は運転者により付与される操舵トルクと同等とみなすことができる。
そして、ラック軸10bに作用する外力Fを、質量mで割り算したラック軸10bの加速度を積分することでラック軸10bの速度が求められ、さらに積分することでラック軸10bの位置を求めることができる。
したがって、ラック軸10bの位置を制御する場合、図3に示すように、ラック軸10bに作用する力の総和を制御すればよいから、EPSモータ12bによる操舵補助力f2の大きさを調整することで、運転者により付与される操舵トルクを調整することができることになる。
したがって、ラック軸10bの位置を制御する場合、図3に示すように、ラック軸10bに作用する力の総和を制御すればよいから、EPSモータ12bによる操舵補助力f2の大きさを調整することで、運転者により付与される操舵トルクを調整することができることになる。
しかしながら、従来のように、ステアリングホイール1の操舵角と転舵輪の転舵角とが、操舵トルクと車速に応じた所定の舵角比率αとなるように構成されたステアリング装置においては、ステアリングホイール1に作用する反力を任意に制御できるものではない。例えば運転者がステアリングホイール1を保舵し、EPSモータ12bによる自動操舵によりステアリングホイール1に作用する力に反して強く抵抗した場合等には、そのまま反力として運転者に作用する。
そこで、差動機構8aによりステアリングホイール1の操舵角とピニオンシャフト9の回転角度との回転角度差を調整しつつ、反力調整部31bで反力を適切に設定する。これによって、EPSモータ12bにより、回避動作のために、ラック軸10bを大きく急速に動かすような位置制御を行った場合でも、ステアリングホイール1の操舵角と、ステアリングホイール1に伝達される反力とを適正な値に保つことができる。
可変ユニット32は、ステアリングアクション軽減部32aと、舵角比率制御部32bと、加算部32cと、モータ位置制御部32dと、を備える。
ステアリングアクション軽減部32aは、ステアリング位置指令生成部22bから回避指令が入力されると起動し、回避指令と共に入力されるステアリング位置指令に基づき、自動転舵中のステアリングホイール1の変動、すなわち回転速度の絶対値が大きくなり過ぎないように、ステアリングホイール1の動きを抑制する。例えば、ステアリング位置指令に応じてEPSモータ12bを制御した場合の転舵角の4/5の値が、出力軸6bとピニオンシャフト9の回転角度差となるように、可変モータ8bの回転角を制御すると、ステアリングホイール1はステアリング位置指令で指定される転舵角の1/5の動きに抑制される。なお、回避指令が入力されないときには、ステアリングアクション軽減部32aは、零を出力する。
ステアリングアクション軽減部32aは、ステアリング位置指令生成部22bから回避指令が入力されると起動し、回避指令と共に入力されるステアリング位置指令に基づき、自動転舵中のステアリングホイール1の変動、すなわち回転速度の絶対値が大きくなり過ぎないように、ステアリングホイール1の動きを抑制する。例えば、ステアリング位置指令に応じてEPSモータ12bを制御した場合の転舵角の4/5の値が、出力軸6bとピニオンシャフト9の回転角度差となるように、可変モータ8bの回転角を制御すると、ステアリングホイール1はステアリング位置指令で指定される転舵角の1/5の動きに抑制される。なお、回避指令が入力されないときには、ステアリングアクション軽減部32aは、零を出力する。
舵角比率制御部32bは、トルクアングルセンサ7からのトルク情報Tと車速センサ21からの車速Vとをもとに、ステアリングホイール1の操舵角と転舵輪の転舵角との相対関係を表す舵角比率αを演算する。そして、舵角比率αを実現する可変モータ8bの回転角度を演算し、これを加算部32cに出力する。
加算部32cは、ステアリングアクション軽減部32aで演算した回転角度と舵角比率制御部32bで演算した回転角度とを加算し、加算結果を目標可変モータ角としてモータ位置制御部32dに出力する。
加算部32cは、ステアリングアクション軽減部32aで演算した回転角度と舵角比率制御部32bで演算した回転角度とを加算し、加算結果を目標可変モータ角としてモータ位置制御部32dに出力する。
つまり、可変ユニット32は、回避指令が入力されないときには、トルク情報Tと車速Vとをもとに舵角比率αを演算して、あたかもステアリングホイール1とピニオンシャフト9とが、舵角比率α相当のギヤ比の差動機構8aで連結されているかのごとく、可変アクチュエータ8の可変モータ8bの角度を制御する。一方、可変ユニット32は、回避指令が入力されるときには可変モータ8bの角度制御を行い、ステアリング位置指令に応じてEPSユニット31による自動操舵によりステアリングホイール1が急回転する等、大きな反力が生じないように、可変モータ8bの角度制御を行う。
なお、トルクアングルセンサ7が操舵トルク検出部に対応し、ステアリング位置指令が目標転舵角情報に対応し、EPSユニット31が操舵補助制御部に対応し、可変ユニット32が舵角比率制御部に対応している。
図4は、障害物回避時のシミュレーション結果の一例であり、図5に示すように、ダブルレーンチェンジを行う場合の、舵角(一点鎖線で示す。)と、舵角速度(実線で示す。)を示したものである。舵角は、ピニオンシャフト9の回転角度を表し、舵角速度は、ピニオンシャフト9の回転速度を表す。
図4は、障害物回避時のシミュレーション結果の一例であり、図5に示すように、ダブルレーンチェンジを行う場合の、舵角(一点鎖線で示す。)と、舵角速度(実線で示す。)を示したものである。舵角は、ピニオンシャフト9の回転角度を表し、舵角速度は、ピニオンシャフト9の回転速度を表す。
図4に示すように、ダブルレーンチェンジを行う場合、操舵角が±180°以上、操舵速度の絶対値が100deg/s程度の、大きく高速な操舵が必要となる。
通常の電動パワーステアリング装置では、ピニオンシャフト9の回転角はステアリングホイール1の回転角とほぼ同一であることから、ダブルレーンチェンジを抜けるには、ほぼ図4に示す操舵操作が必要となる。
通常の電動パワーステアリング装置では、ピニオンシャフト9の回転角はステアリングホイール1の回転角とほぼ同一であることから、ダブルレーンチェンジを抜けるには、ほぼ図4に示す操舵操作が必要となる。
このような高速動作を運転者が高精度に行うことは困難であり、自動での回避操作が望まれる。
ただし、このような回避操作を自動操舵で行うと、運転者によるステアリングホイール1の把持と、自動操舵により生じるステアリングホイール1の動きとが、ステアリングホイール1に作用することになり、大きな動きがステアリングホイール1にダイレクトに伝達されることになる。そのため、自動操舵により生じるステアリングホイール1の動きに反して、運転者がステアリングホイール1を保舵しようとすることから、自動操舵を行っても転舵輪を十分に転舵することができないという状態になるか、又は、ステアリングホイール1が大きく回転する等、運転者の意図しない動きをして運転者に強い違和感を与える、等が生じる可能性がある。
ただし、このような回避操作を自動操舵で行うと、運転者によるステアリングホイール1の把持と、自動操舵により生じるステアリングホイール1の動きとが、ステアリングホイール1に作用することになり、大きな動きがステアリングホイール1にダイレクトに伝達されることになる。そのため、自動操舵により生じるステアリングホイール1の動きに反して、運転者がステアリングホイール1を保舵しようとすることから、自動操舵を行っても転舵輪を十分に転舵することができないという状態になるか、又は、ステアリングホイール1が大きく回転する等、運転者の意図しない動きをして運転者に強い違和感を与える、等が生じる可能性がある。
図1に示すEPS側コントローラ20では、EPSユニット31による自動操舵と共に、可変ユニット32による差動機構8aのギヤ比の調整を行うことで、転舵輪の転舵角は障害物回避を可能な角度に制御し、且つ転舵角が変化することに伴いステアリングホイール1に生じる反力を抑制することによって、障害物回避を確実に行うことができると共に、自動操舵に伴いステアリングホイール1に伝わる反力が運転者に与える違和感を軽減することができる。特に、障害物回避のための操舵操作を自動で行うということは、速やかな回避操舵が必要な状況でありすなわち高速での左右交互への大きな転舵角変動を伴うことが多い。このような、大きな転舵角変動がそのままステアリングホイール1に反力として伝わると、前述のように運転者に強い違和感等を与えることになるため、差動機構8aによる角度変更や、EPSモータ12bの制御量を反力調整し、ステアリングホイール1に伝わる反力を低減することは、効果的である。
また、トルクアングルセンサ7は、可変アクチュエータ8よりもステアリングホイール1側に設けられているため、ステアリングホイール1に生じるトルクを高精度に反映したトルク情報Tを出力することができる。したがって、運転者の操舵意志を反映したトルク情報Tに基づきEPSユニット31及び可変ユニット32では高精度に制御を行うことができる。
ここで、トルクアングルセンサ7が可変アクチュエータ8よりも転舵輪13側に設けられていたとしても、障害物回避のための自動操舵を行わない場合、つまり通常の電動パワーステアリング装置として動作する場合には問題はない。しかしながら、障害物回避のための自動操舵を行う場合には、可変アクチュエータ8が大きな角速度で駆動され、可変アクチュエータ8よりも転舵輪13側には、運転者の操舵操作に応じた回転力が伝達されない。そのため、トルクアングルセンサ7は、可変アクチュエータ8よりもステアリングホイール1側に設ける必要がある。
図6は、EPS側コントローラ20の処理手順の一例を示すフローチャートである。
EPS側コントローラ20は、まず、車両側コントローラ22から回避指令を入力したかを判断する(ステップS1)。そして、EPS側コントローラ20は、回避指令が入力されていなければ通常の電動パワーステアリング装置と同様に動作し、EPSユニット31では、トルクアングルセンサ7からのトルク情報T及び車速センサ21からの車速Vに応じた、EPSアシスト用の電流目標値を演算する(ステップS2)。また、可変ユニット32では、トルクアングルセンサ7からのトルク情報T及び車速センサ21からの車速Vに応じた、EPSアシスト用の舵角比率α相当のギヤ比を実現するための目標可変モータ角を演算する(ステップS3)。
EPS側コントローラ20は、まず、車両側コントローラ22から回避指令を入力したかを判断する(ステップS1)。そして、EPS側コントローラ20は、回避指令が入力されていなければ通常の電動パワーステアリング装置と同様に動作し、EPSユニット31では、トルクアングルセンサ7からのトルク情報T及び車速センサ21からの車速Vに応じた、EPSアシスト用の電流目標値を演算する(ステップS2)。また、可変ユニット32では、トルクアングルセンサ7からのトルク情報T及び車速センサ21からの車速Vに応じた、EPSアシスト用の舵角比率α相当のギヤ比を実現するための目標可変モータ角を演算する(ステップS3)。
そして、演算した目標電流及びモータ角に応じて、可変モータ8b及びEPSモータ12bへの供給電流を制御しこれらモータを駆動する。これによって、操舵補助機構12のラック軸10bの位置制御が行われることにより操舵補助力が付与されると共に、可変アクチュエータ8の舵角比率がα相当に制御される。
この状態から、車両側コントローラ22の車両運転コントローラ22aにおいて、外界認識センサの情報等に基づき、障害物が検出され自動操舵による障害物回避が必要と判断されると、ステアリング位置指令生成部22bでは、障害物を回避するための自車両の軌道を推測する。さらに、ステアリング位置指令生成部22bは、推測した軌道を実現するための時間経過に伴う転舵制御用のEPSモータ12bの変化状況を表す角度波形、又は、ラック軸10bの位置の変化状況を表す位置波形を演算し、ステアリング位置指令とし、回避指令と共にEPS側コントローラ20に出力する。
この状態から、車両側コントローラ22の車両運転コントローラ22aにおいて、外界認識センサの情報等に基づき、障害物が検出され自動操舵による障害物回避が必要と判断されると、ステアリング位置指令生成部22bでは、障害物を回避するための自車両の軌道を推測する。さらに、ステアリング位置指令生成部22bは、推測した軌道を実現するための時間経過に伴う転舵制御用のEPSモータ12bの変化状況を表す角度波形、又は、ラック軸10bの位置の変化状況を表す位置波形を演算し、ステアリング位置指令とし、回避指令と共にEPS側コントローラ20に出力する。
EPS側コントローラ20では、回避指令が入力されると、ステップS1からステップS11に移行し、ステアリング位置指令に基づき、障害物回避のための自車両の軌道に沿って走行するためのラック軸10bの位置波形を得る。
そして、EPS側コントローラ20では、このラック軸10bの位置波形に沿ってラック軸10bの位置制御を行うための電流目標値を演算し(ステップ12)、このラック軸10bの位置波形に沿うようにラック軸10bの位置制御を行うことに伴いステアリングホイール1に伝わる反力を抑制するための反力調整用の電流目標値を演算する(ステップS13)。そして、これら電流目標値の和を、EPSモータ12bの電流目標値とする(ステップS14)。
そして、EPS側コントローラ20では、このラック軸10bの位置波形に沿ってラック軸10bの位置制御を行うための電流目標値を演算し(ステップ12)、このラック軸10bの位置波形に沿うようにラック軸10bの位置制御を行うことに伴いステアリングホイール1に伝わる反力を抑制するための反力調整用の電流目標値を演算する(ステップS13)。そして、これら電流目標値の和を、EPSモータ12bの電流目標値とする(ステップS14)。
さらにこの反力調整と共に、ステアリングホイール1に伝わる反力を抑制するために、可変アクチュエータ8の目標可変モータ角を演算し(ステップS15)、これらに基づき、EPSモータ12b及び可変モータ8bを駆動制御する(ステップS16)。
その結果、自動操舵により障害物を回避するよう走行し、このとき、自動操舵により比較的大きく転舵角が制御されたとしても、差動機構8aの調整を行うと共に、EPSモータ12bを反力調整して駆動しているため、ステアリングホイール1に大きな反力が伝わることが抑制される。
その結果、自動操舵により障害物を回避するよう走行し、このとき、自動操舵により比較的大きく転舵角が制御されたとしても、差動機構8aの調整を行うと共に、EPSモータ12bを反力調整して駆動しているため、ステアリングホイール1に大きな反力が伝わることが抑制される。
そして、自動操舵の途中で運転者が障害物を回避するべくオーバーライドした場合、或いは、障害物回避のための所定時間の自動操舵が終了した場合には、ステップS17からステップS18に移行し、自動操舵から運転者の操舵操作による転舵に移行するための移行制御を実行し、自動操舵から操舵操作による転舵に徐々に移行する。
そして、ステップS1からステップS2に移行し、通常の電動パワーステアリング装置と同様に、運転者の操舵操作の操舵アシストを行う。
そして、ステップS1からステップS2に移行し、通常の電動パワーステアリング装置と同様に、運転者の操舵操作の操舵アシストを行う。
以上、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。
1 ステアリングホイール
6 ステアリングシャフト
7 トルクアングルセンサ(操舵トルク検出部)
8 可変アクチュエータ
8a 差動機構(舵角比率可変機構)
8b 可変モータ
9 ピニオンシャフト
10 ステアリングギヤ
12 操舵補助機構
12a 位置調整機構
12b 電動モータ(EPSモータ)
20 電動パワーステアリング装置制御用のコントローラ(EPS側コントローラ)
21 車速センサ
22 車両制御用のコントローラ(車両側コントローラ)
22a 車両運転コントローラ
22b ステアリング位置指令生成部
31 操舵補助制御ユニット(EPSユニット)(操舵補助制御部)
32 可変アクチュエータ制御ユニット(可変ユニット)
6 ステアリングシャフト
7 トルクアングルセンサ(操舵トルク検出部)
8 可変アクチュエータ
8a 差動機構(舵角比率可変機構)
8b 可変モータ
9 ピニオンシャフト
10 ステアリングギヤ
12 操舵補助機構
12a 位置調整機構
12b 電動モータ(EPSモータ)
20 電動パワーステアリング装置制御用のコントローラ(EPS側コントローラ)
21 車速センサ
22 車両制御用のコントローラ(車両側コントローラ)
22a 車両運転コントローラ
22b ステアリング位置指令生成部
31 操舵補助制御ユニット(EPSユニット)(操舵補助制御部)
32 可変アクチュエータ制御ユニット(可変ユニット)
Claims (6)
- ステアリング機構に設けられ、ステアリングホイールの操舵角と転舵輪の転舵角との舵角比率を変化させることの可能な舵角比率可変機構と、
当該舵角比率可変機構よりも前記転舵輪側に設けられ、前記ステアリング機構に操舵補助力を付与する操舵補助機構と、
前記ステアリングホイールから前記ステアリング機構に入力される操舵トルクを検出する操舵トルク検出部と、
当該操舵トルク検出部で検出される操舵トルクに応じた操舵補助力が発生するように前記操舵補助機構を駆動制御する操舵補助制御を行い、自動操舵が指示されたときには、入力される目標転舵角情報で指定される転舵角で走行するように前記操舵補助機構を駆動制御する自動操舵制御に切り替える操舵補助制御部と、
前記自動操舵制御を行うことに伴い前記ステアリングホイールに伝達される反力を抑制するように前記舵角比率を調整する舵角比率制御部と、
を備えることを特徴とするステアリング装置。 - 前記操舵補助制御部は、
前記自動操舵制御を行うことに伴い前記ステアリングホイールに伝達される反力を抑制するように前記自動操舵制御における制御量を調整する反力調整部を備えることを特徴とする請求項1に記載のステアリング装置。 - 前記自動操舵は、障害物回避のための操舵操作が必要なときに指示され、
前記操舵補助制御部は、前記目標転舵角情報にしたがって前記障害物回避のための自動操舵を行うことを特徴とする請求項1又は請求項2に記載のステアリング装置。 - 前記操舵補助制御部は、
前記ステアリングホイールが操作されたと判断されるときには、
前記自動操舵制御から前記操舵補助制御に切り替えることを特徴とする請求項1から請求項3のいずれか1項に記載のステアリング装置。 - 前記操舵補助制御部は、
前記自動操舵制御から前記操舵補助制御に切り替えるとき、前記自動操舵制御から前記操舵補助制御に徐々に切り替える移行制御を行うことを特徴とする請求項4に記載のステアリング装置。 - 前記操舵トルク検出部は、前記ステアリング機構の、前記ステアリングホイールと前記舵角比率可変機構との間に設けられることを特徴とする請求項1から請求項5のいずれか1項に記載のステアリング装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680016101.5A CN107428368A (zh) | 2015-04-15 | 2016-04-12 | 转向装置 |
EP16780047.3A EP3263423A4 (en) | 2015-04-15 | 2016-04-12 | Steering apparatus |
US15/561,664 US20180072343A1 (en) | 2015-04-15 | 2016-04-12 | Steering Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-083624 | 2015-04-15 | ||
JP2015083624A JP2016203668A (ja) | 2015-04-15 | 2015-04-15 | ステアリング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167256A1 true WO2016167256A1 (ja) | 2016-10-20 |
Family
ID=57126765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061827 WO2016167256A1 (ja) | 2015-04-15 | 2016-04-12 | ステアリング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180072343A1 (ja) |
EP (1) | EP3263423A4 (ja) |
JP (1) | JP2016203668A (ja) |
CN (1) | CN107428368A (ja) |
WO (1) | WO2016167256A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103713A (ja) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | 車両走行制御装置及び自動運転制御方法 |
JP2018103732A (ja) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | 車両走行制御装置及び自動運転制御方法 |
WO2019025066A1 (de) * | 2017-08-02 | 2019-02-07 | Audi Ag | Verfahren zum lenken eines fahrzeugs |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10315693B2 (en) * | 2016-02-12 | 2019-06-11 | Nsk Ltd. | Vehicle steering control device |
DE102017220929B4 (de) * | 2017-11-23 | 2020-02-27 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Lenksystems und Lenksystem |
US11377140B2 (en) * | 2017-12-07 | 2022-07-05 | Steering Solutions Ip Holding Corporation | Notification for rack limiting conditions for steer by wire steering systems |
US10939216B2 (en) | 2018-02-28 | 2021-03-02 | Starkey Laboratories, Inc. | Health monitoring with ear-wearable devices and accessory devices |
US11716580B2 (en) | 2018-02-28 | 2023-08-01 | Starkey Laboratories, Inc. | Health monitoring with ear-wearable devices and accessory devices |
US10676129B2 (en) * | 2018-06-25 | 2020-06-09 | Steering Solutions Ip Holding Corporation | Driver notification using handwheel actuators in steer-by-wire systems |
US10911878B2 (en) | 2018-12-21 | 2021-02-02 | Starkey Laboratories, Inc. | Modularization of components of an ear-wearable device |
JP7294814B2 (ja) * | 2019-01-10 | 2023-06-20 | 株式会社ジェイテクト | 転舵制御装置 |
JP7376242B2 (ja) * | 2019-03-19 | 2023-11-08 | 株式会社ジェイテクト | 操舵制御装置 |
JP7426804B2 (ja) * | 2019-10-31 | 2024-02-02 | 日立Astemo株式会社 | 操舵装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030093206A1 (en) * | 2001-10-17 | 2003-05-15 | Patrick Pallot | Method and system for regulating a stability control system of a vehicle |
JP2003261054A (ja) * | 2002-03-06 | 2003-09-16 | Toyota Motor Corp | 車輌用自動操舵装置 |
JP2014015118A (ja) * | 2012-07-09 | 2014-01-30 | Jtekt Corp | 車両用操舵装置 |
WO2014128832A1 (ja) * | 2013-02-19 | 2014-08-28 | トヨタ自動車株式会社 | 衝突回避支援装置及び衝突回避支援方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3185623B2 (ja) * | 1995-08-30 | 2001-07-11 | 三菱自動車工業株式会社 | 車両用自動走行装置 |
JP5206170B2 (ja) * | 2007-08-02 | 2013-06-12 | 日産自動車株式会社 | 車両用操舵制御装置及び方法 |
CN102264593B (zh) * | 2008-12-26 | 2015-01-07 | 丰田自动车株式会社 | 车辆的行驶辅助设备 |
-
2015
- 2015-04-15 JP JP2015083624A patent/JP2016203668A/ja active Pending
-
2016
- 2016-04-12 EP EP16780047.3A patent/EP3263423A4/en not_active Withdrawn
- 2016-04-12 WO PCT/JP2016/061827 patent/WO2016167256A1/ja active Application Filing
- 2016-04-12 US US15/561,664 patent/US20180072343A1/en not_active Abandoned
- 2016-04-12 CN CN201680016101.5A patent/CN107428368A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030093206A1 (en) * | 2001-10-17 | 2003-05-15 | Patrick Pallot | Method and system for regulating a stability control system of a vehicle |
JP2003261054A (ja) * | 2002-03-06 | 2003-09-16 | Toyota Motor Corp | 車輌用自動操舵装置 |
JP2014015118A (ja) * | 2012-07-09 | 2014-01-30 | Jtekt Corp | 車両用操舵装置 |
WO2014128832A1 (ja) * | 2013-02-19 | 2014-08-28 | トヨタ自動車株式会社 | 衝突回避支援装置及び衝突回避支援方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3263423A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103713A (ja) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | 車両走行制御装置及び自動運転制御方法 |
JP2018103732A (ja) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | 車両走行制御装置及び自動運転制御方法 |
WO2019025066A1 (de) * | 2017-08-02 | 2019-02-07 | Audi Ag | Verfahren zum lenken eines fahrzeugs |
CN110997453A (zh) * | 2017-08-02 | 2020-04-10 | 奥迪股份公司 | 用于车辆转向的方法 |
US11192580B2 (en) | 2017-08-02 | 2021-12-07 | Audi Ag | Method for steering a vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP3263423A4 (en) | 2018-04-04 |
CN107428368A (zh) | 2017-12-01 |
US20180072343A1 (en) | 2018-03-15 |
JP2016203668A (ja) | 2016-12-08 |
EP3263423A1 (en) | 2018-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016167256A1 (ja) | ステアリング装置 | |
JP5971426B2 (ja) | 電動パワーステアリング装置 | |
US10315693B2 (en) | Vehicle steering control device | |
JP6264338B2 (ja) | 車線維持支援装置 | |
JP6760569B2 (ja) | 車両制御装置、車両制御方法および電動パワーステアリング装置 | |
JP4617946B2 (ja) | 車両用操舵装置 | |
US9802645B2 (en) | Steering reaction force control apparatus for vehicle | |
WO2014128818A1 (ja) | 車両用操舵制御装置及び車両用操舵制御方法 | |
US9937954B2 (en) | Steering reaction force control apparatus for vehicle | |
WO2014167629A1 (ja) | 操舵制御装置および操舵制御方法 | |
JPH10217998A (ja) | 操舵制御装置 | |
JP2020168918A (ja) | 操舵装置 | |
JP6652742B2 (ja) | 電動パワーステアリング装置 | |
KR102440693B1 (ko) | 전동식 조향 시스템의 캐치업 저감을 위한 제어 장치 및 방법 | |
JP5531455B2 (ja) | 車両の走行制御装置および車両の走行制御方法 | |
JP2006111099A (ja) | 車両用操舵制御装置 | |
WO2018096897A1 (ja) | 操舵制御装置 | |
JP5347499B2 (ja) | 車両制御装置及び車両制御方法 | |
JP6377971B2 (ja) | 車両の挙動制御装置及び車両の挙動制御方法 | |
JP5003068B2 (ja) | 車両の操舵装置 | |
WO2013132807A1 (ja) | 車両用操舵制御装置及び車両用操舵制御方法 | |
JP2017081250A (ja) | 車両の操舵反力制御装置 | |
JP2017024467A (ja) | 操舵制御装置 | |
JP2007015529A (ja) | 車両用操舵装置及び車両用操舵方法 | |
JP7489021B2 (ja) | 操舵装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16780047 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15561664 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016780047 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |