JP2006111099A - 車両用操舵制御装置 - Google Patents

車両用操舵制御装置 Download PDF

Info

Publication number
JP2006111099A
JP2006111099A JP2004299339A JP2004299339A JP2006111099A JP 2006111099 A JP2006111099 A JP 2006111099A JP 2004299339 A JP2004299339 A JP 2004299339A JP 2004299339 A JP2004299339 A JP 2004299339A JP 2006111099 A JP2006111099 A JP 2006111099A
Authority
JP
Japan
Prior art keywords
steering
value
angle
turning
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004299339A
Other languages
English (en)
Other versions
JP4517810B2 (ja
Inventor
Toshiaki Kasahara
敏明 笠原
Kazutaka Adachi
和孝 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004299339A priority Critical patent/JP4517810B2/ja
Priority to KR1020050095902A priority patent/KR100656328B1/ko
Priority to US11/248,617 priority patent/US7092805B2/en
Priority to DE102005049042.5A priority patent/DE102005049042B4/de
Priority to CNB2005101083591A priority patent/CN100395141C/zh
Publication of JP2006111099A publication Critical patent/JP2006111099A/ja
Application granted granted Critical
Publication of JP4517810B2 publication Critical patent/JP4517810B2/ja
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】 操向タイヤに外力が加わる走行時、操舵側と転舵側との間の捩れ分を精度良く模擬することで、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成することができる車両用操舵制御装置を提供すること。
【解決手段】 操向タイヤ4,5を転舵する転舵用アクチュエータ6と、実操舵角θsを検出する操舵反力用モータ角センサ9と、実操舵角θsに応じた転舵角になるように指令転舵角θtaを設定し、指令転舵角θtaを得る駆動力指令値を前記転舵用アクチュエータ6へ出力する転舵装置用コントローラ16と、を備えた車両用操舵制御装置において、前記操向タイヤ4,5に加わる外力相当値を検出する外力相当値検出手段を設け、前記転舵装置用コントローラ16は、前記外力相当値が大きな値であるほど、前記転舵用アクチュエータ6への駆動力指令値を小さな値とする補正制御を行う手段とした。
【選択図】 図5

Description

本発明は、操舵ハンドルを有する操舵側と、操向タイヤを有する転舵側と、の間に機械的なつながりが無いステアバイワイヤシステム等に採用される車両用操舵制御装置の技術分野に属する。
操舵ハンドルを有する操舵側と、操向タイヤを有する転舵側と、の間に機械的なつながりが無い、いわゆるステアバイワイヤシステムで操舵角検出手段および転舵角検出手段を有し、操舵反力アクチュエータを動作させるモータおよび転舵アクチュエータを動作させるモータを有し、操舵反力指令値を算出するコントローラおよび転舵指令値を算出するコントローラを有し、前記操舵反力指令値および転舵指令値に基づいて各モータを駆動させるシステムにおいて、従来は目標転舵位置と実転舵位置との偏差および転舵負荷に基づき、さらに前記目標転舵位置と実転舵位置との偏差をゼロにするように転舵量を演算し、制御を行っていた(例えば、特許文献1参照)。
特開平10−310074号公報
しかしながら、従来の車両用操舵制御装置にあっては、目標転舵位置と実転舵位置との偏差および転舵負荷に基づき、さらに前記目標転舵位置と実転舵位置との偏差をゼロにするように転舵量を演算し、制御を行なう構成となっていたため、操舵側からの指令転舵角に対する追従性が高く、ステアリング剛性が無限に高いものと等価になり、定常状態における指令転舵角と実転舵角とが常に一致することになる。
このため、転舵側の負荷となるような外乱に対する操舵側と転舵側での捩れ分を精度良く模擬できず、カーブ路において、車両がオーバーステア傾向となりやすいし、凹凸路面走行時や轍の乗り越え時等において、車両に大きなショックが伝わってしまうと共に、操舵に対する車両の動きが不自然となり、運転者に違和感を与えてしまう、という問題があった。
本発明は、上記問題に着目してなされたもので、操向タイヤに外力が加わる走行時、操舵側と転舵側との間の捩れ分を精度良く模擬することで、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成することができる車両用操舵制御装置を提供することを目的とする。
上記目的を達成するため、本発明では、操向タイヤを転舵する転舵アクチュエータと、
操舵角を検出する操舵角検出手段と、操舵角に応じた転舵角になるように指令転舵角を設定し、指令転舵角を得る駆動力指令値を前記転舵アクチュエータへ出力する転舵制御手段と、を備えた車両用操舵制御装置において、
前記操向タイヤに加わる外力相当値を検出する外力相当値検出手段を設け、
前記転舵制御手段は、前記外力相当値が大きな値であるほど、前記転舵アクチュエータへの駆動力指令値を小さな値とする補正制御を行うことを特徴とする。
よって、本発明の車両用操舵制御装置にあっては、転舵制御手段において、操向タイヤに加わる外力相当値が大きな値であるほど、転舵アクチュエータへの駆動力指令値を小さな値とする補正制御が行われる。つまり、操向タイヤに加わる外力相当値に応じて転舵アクチュエータの駆動力を小さくする補正が行われることで、指令転舵角に対する実転舵角の動作応答が遅れ、指令転舵角と実転舵角との間には外力により与えられた偏差が残ることになる。言い換えると、操向タイヤに加わる外力によって生じる操舵側と転舵側との間の捩れ分が、意図的に与えられた定常的な偏差によって精度良く模擬されることになる。この結果、操向タイヤに外力が加わる走行時、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成することができる。
以下、本発明の車両用操舵制御装置を実施するための最良の形態を、図面に示す実施例1〜実施例4に基づいて説明する。
まず、構成を説明する。
図1は実施例1の車両用操舵制御装置が適用されたステアバイワイヤシステムを示す全体図、図2は実施例1の車両用操舵制御装置の操舵反力制御系および転舵角制御系の全体構成を示す図である。
実施例1の車両用操舵制御装置が適用されたステアバイワイヤシステムは、図1に示すように、操舵ハンドル1(=ステアリングホイール)および操舵反力用アクチュエータ2を有する操舵反力装置3による操舵側と、操向タイヤ4,5および転舵用アクチュエータ6を有する転舵装置7による転舵側と、の間に機械的なつながりが無い構成としている。
前記操舵反力装置3は、操舵ハンドル1と、ステアリングコラムシャフト8と、該ステアリングコラムシャフト8に設けられた操舵反力用アクチュエータ2と、を有する。
前記操舵反力用アクチュエータ2は、減速ギヤ機構とモータを有し、該モータには、モータ軸の回転数を検出する操舵反力用モータ角検出手段としての操舵反力用モータ角センサ9が付設されている。この操舵反力用モータ角センサ9は、実操舵角θsを検出する操舵角検出手段として用いられる。
前記操舵反力用アクチュエータ2を制御する電子制御手段として、操舵反力装置用コントローラ10(操舵反力制御手段)が設けられ、該操舵反力装置用コントローラ10には、操舵反力用モータ角センサ9と、車速検出手段としての車速センサ11と、から入力情報が供給される。
前記操舵反力装置用コントローラ10には、実操舵角θsと車速Vから指令転舵角θtaを算出する指令転舵角算出手段と、操舵入力相当分制御指令値Isと転舵出力相当分制御指令値Itsとを加えたモータ制御指令値Isaにリミッター処理を施すことでモータ制御指令値Tmsを算出するモータ制御指令値算出手段と(図3)、モータ制御指令値Tmsを操舵反力用アクチュエータ2のモータへの指令電流に変換するモータ駆動回路によるモータ駆動手段と、を有する。
前記転舵装置7は、転舵用アクチュエータ6と、該転舵用アクチュエータ6により駆動されるステアリングギヤ機構12と、該ステアリングギヤ機構12の両端部に設けられた動作変換機構13,14を介して連結された操向タイヤ4,5と、を有する。
前記転舵用アクチュエータ6は、操舵反力用アクチュエータ2と同様に、減速ギヤ機構とモータを有し、該モータには、モータ軸の回転数を検出する転舵用モータ角検出手段としての転舵用モータ角センサ15が付設されている。この転舵用モータ角センサ15は、実転舵角θtを検出する転舵角検出手段として用いられる。
前記転舵用アクチュエータ6を制御する電子制御手段として、転舵装置用コントローラ16(転舵角制御手段)が設けられ、該転舵装置用コントローラ16と前記操舵反力装置用コントローラ10とは、互いに情報を交換し合う双方向通信線17により連結されている。この転舵装置用コントローラ16には、前記車速センサ11と、実転舵角情報を得る転舵用モータ角検出手段としての転舵用モータ角センサ15と、スリップ角検出手段としてのスリップ角センサ18(例えば、実スリップ角βを求めるために必要情報を得る横加速度センサとヨーレートセンサ)と、外力検出手段としての外力センサ19(例えば、ステアリングラック軸の軸力センサ)と、から入力情報が供給される。
前記転舵装置用コントローラ16は、縁石等の障害物に接触していると判定する障害物接触判定手段と、基本的には、モデルマッチング補償器の出力からロバスト補償器の出力を差し引いた値に最大値制限を加えることによりモータ制御指令値を算出するモータ制御指令値算出手段と、モータ制御指令値を転舵用アクチュエータ6のモータへの指令電流Itaに変換するモータ駆動回路によるモータ駆動手段と、を有する(図4)。
図3は実施例1の操舵反力装置用コントローラ10におけるモータ制御指令値算出手段を示す操舵反力制御系ブロック図である。
まず、操舵反力装置用コントローラ10は、操舵入力相当分制御指令値Isの算出部と、転舵出力相当分制御指令値Itsの算出部と、リミッター処理部10kと、を有して構成されている。
前記操舵入力相当分トルクIsの算出部は、実操舵角θsに車速Vに応じたゲインKaを乗じて指令値(Ka×θs)を得るゲイン設定器10aと、実操舵角度θsの時間微分値ωs(=dθs/dt)を得る微分器10bと、実操舵角度θsの時間微分値ωsに車速Vに応じたゲインKsを乗じて指令値(Ks×ωs)を得るゲイン設定器10cと、指令値(Ka×θs)と指令値(Ks×ωs)とを加算して操舵入力相当分制御指令値Isを算出する加算器10dと、を有する(Is=Ka×θs+Ks×ωs)。
ここで、ゲインKaは、例えば、図4(a)に示すように、操舵開始頻度の高い車速でゲイン1.0であり、その車速より低車速側、および、高車速側でゲイン1.0以上の値により与えられる。また、ゲインKsは、例えば、図4(b)に示すように、ゲインKaと同様に、操舵開始頻度の高い車速でゲイン1.0であり、その車速より低車速側、および、高車速側でゲイン1.0以上の値により与えられる。
前記転舵出力相当分制御指令値Itsの算出部は、指令転舵角θtaと実転舵角θtとの偏差(θta−θt)を算出する差分器10eと、偏差(θta−θt)に車速Vに応じたゲインKfaを乗じて指令値(Kfa×(θta−θt))を得るゲイン設定器10fと、偏差(θta−θt)の時間微分値ωts(=d(θta−θt)/dt)を得る微分器10gと、時間微分値ωtsに車速Vに応じたゲインKfsを乗じて指令値(=Kfs×ωts)を得るゲイン設定器10hと、指令値(Kfa×(θta−θt))と指令値(=Kfs×ωts)とを加算して転舵出力相当分制御指令値Itsを算出する加算器10iと、を有する(Its=Kfa×(θta−θt)+Kfs×ωts)。
なお、ゲインKfaとゲインKfsは、図4の(a),(b)に示す上記ゲインKa,Ksと同様に、車速Vに応じて設定される。
前記リミッター処理部10kは、加算器10jにより操舵入力相当分制御指令値Isと転舵出力相当分制御指令値Itsとを加え合わせたものを加算値Isa(=Is+Its)とし、これに車速Vやヨーレートψや横加速度YG等から推定した路面μから求められたリミット値Lsでリミッター処理を施したものをモータ制御指令値Tmsとする。
ここで、「リミット値Ls」は、図4(c)に示すように、路面μが高くなるほど大きな値となるように設定されるものである。これにより、操舵角や操舵角速度が大きくなった時に反力が大きくなり過ぎることを防止し、操舵ハンドル1を切り増しできなくなる、または、切り増しづらくなることを防止し、推定した路面μに応じて最適な操舵反力にすることが可能となる。
図5は実施例1におけるロバストモデルマッチング手法を採用した転舵角制御系ブロック図である。ここで、「ロバストモデルマッチング手法」とは、制御対象である車両の動特性を規範モデル(例えば、ヨーレートと横加速度の操舵応答特性)にて予め設定し、モデル化誤差や外乱の影響を最小限に抑制しながら、予め設定された規範モデルに一致するように制御する手法をいう。
まず、転舵装置用コントローラ16は、モデルマッチング補償器16aと、ロバスト補償器16b(外乱補償器)と、外乱補償出力リミッター16cと、差分器16dと、電流リミッター16eと、障害物接触判定部16fと、切替器16gと、を有して構成されている。
前記モデルマッチング補償器16aは、指令転舵角θtaと実転舵角θtを入力し、予め与えた所望の応答特性に一致させるモータ指令電流を出力するフィードフォワード補償器である。
前記ロバスト補償器16bは、制御対象への入力である指令電流Itaと制御対象からの出力である実転舵角θtを取り込み、モデル化誤差を含む制御阻害要因を外乱として推定した外乱推定値を出力する外乱補償器である。なお、ロバスト補償器16bからの外乱補償分の出力は、実施例1の転舵制御での指令電流Ita(駆動力指令値)を補正するための出力として使用される。
前記外乱補償出力リミッター16cは、車両のスリップ角の目標値β*と実スリップ角βとのスリップ角偏差△βを外力相当値とし、スリップ角偏差△βが大きな値であるほどロバスト補償器16bからの外乱補償分の出力を小さな値とするように制限する。
前記差分器16dは、前記モデルマッチング補償器18aからの指令電流から、前記外乱補償出力リミッター16cからの外乱補償分の出力制限値を差し引いて指令電流Itaを演算する。
前記電流リミッタ16eは、転舵用アクチュエータ6のモータに対する過電流防止のための電流制限器である。前記差分器16dからの指令電流がリミット電流以下の場合は指令電流を制御対象の転舵用アクチュエータ6のモータに対し指令電流Itaとして出力し、リミット電流を超える場合にはリミット電流を制御対象の転舵用アクチュエータ6のモータに対し指令電流Itaとして出力する。
前記障害物接触判定部16fは、操向タイヤ4,5が縁石等の障害物に接触しているか否かを判定するもので、例えば、転舵用アクチュエータ6のモータを指令電流Itaにより駆動しているにもかかわらず、実転舵角θtが保舵されている状態(例えば、±1°以内を保つ状態)が設定時間(例えば、1秒間)以上継続した場合、操向タイヤ4,5が縁石等の障害物に接触していると判定する。
前記切替器16gは、前記障害物接触判定部16fにおいて、操向タイヤ4,5が縁石等の障害物に接触していないと判定された場合には、OFFとしロバストモデルマッチング手法により指令転舵角θtaと実転舵角θtを用い、転舵用アクチュエータ6のモータに対する指令電流Itaが演算される。また、操向タイヤ4,5が縁石等の障害物に接触していると判定された場合には、ONとし指令転舵角θtaを実転舵角θtに一致する値に設定し、転舵用アクチュエータ6のモータに対する指令電流Itaを低く抑える。
次に、作用を説明する。
[転舵制御処理]
図6は実施例1の転舵装置用コントローラ16にて実行される転舵制御処理の流れを示すフローチャートで、以下、各ステップについて説明する(転舵制御手段)。
ステップS1では、車速センサ11からの車速Vと、操舵反力用モータ角センサ9からの実操舵角θsに応じて設定される指令転舵角θtaと、転舵用モータ角センサ15からの実転舵角θtと、図外のモータ駆動回路に設けられる転舵電流検出手段からの実転舵電流Itと、を読み込み、ステップS2へ移行する。
ここで、「指令転舵角θta」は、ギア比を可変とする場合も考慮すると、
θta=θs×Rst 但し、Rst:操舵/転舵間ギア比
により求められる。
ステップS2では、ステップS1の入力情報の読み込みに続き、操向タイヤ4,5が縁石等の障害物に接触しているか否かを判定し、YESの場合はステップS3へ移行し、NOの場合にはステップS4へ移行する。
ここで、「障害物」とは、縁石等のように操向タイヤ4,5の接触により物理的に転舵の切り増しが困難なものをいう。
「障害物接触判定」は、例えば、指令転舵角θtaと実転舵角θtとの偏差の絶対値θtsaが、操舵側/転舵側間の通信による遅れ,指令に対する応答遅れおよび転舵角制御精度等を考慮して決定された判定値θa以上、かつ、実転舵角θtが前回値と比べて変化していない時間がTit以上(例えば、±1°以内の保舵状態が1秒間以上)、かつ、実転舵電流ItがItt以上である時間がTt以上である場合に、操向タイヤ4,5が縁石等の障害物に接触していると判定する(特願2003−422289参照)。
ステップS3では、ステップS2での障害物接触判定に基づき、指令転舵角θtaを実転舵角θtに一致するように設定し、ステップS1へ戻る。
ステップS4では、ステップS2での障害物非接触判定に続き、車体の実スリップ角βを下記の式、
β=∫{(YG/V)−ψ}dt …(1)
但し、YG:横加速度、V:車速、ψ:ヨーレート
により算出し、ステップS5へ移行する。
ステップS5では、ステップS4での実スリップ角βの算出に続き、車速Vおよび指令転舵角θta(実操舵角θsに応じた値)から車体のスリップ角の目標値β*を算出し、ステップS6へ移行する。
ステップS6では、ステップS4での車体のスリップ角目標値β*の算出に続き、スリップ角目標値β*から実スリップ角βを差し引いてスリップ角偏差△βを算出し、ステップS7へ移行する(外乱相当値検出手段)。
ステップS7では、ステップS6でのスリップ角偏差△βの算出に続き、スリップ角偏差△βと車両特性により予め決められたゲインKcsから、スリップ角偏差△βが大きいときには外乱補償分の出力の制限値を小さく設定し、スリップ角偏差△βが小さいときには外乱補償分の出力の制限値を大きく設定し、さらに、設定した制限値にゲインKcsを乗じることで最終制限値を決定し、ステップS1へ戻る。
よって、スリップ角偏差△βの発生が無いときは、差分器16dにおいて、ロバスト補償器16bによる全ての外乱を補償するべく高い指令電流Itaを演算する。一方、スリップ角偏差△βの発生があると、外乱補償出力リミッター16cにより外乱補償分の出力に制限が加えられることで、差分器16dにおいて、スリップ角偏差△βの発生が無いときよりも低い値による指令電流Itaを演算する。しかも、外乱補償出力リミッター16cによる制限は、スリップ角偏差△βが大きいほど制限を強くする、つまり、外乱補償分の出力を小さく制限するため、指令電流Itaはスリップ角偏差△βが大きいほどより低い値による指令電流Itaを演算する。
また、「ゲインKcs」は、例えば、ステアリング剛性の高いスポーツタイプの車両の場合は、セダンタイプの車両に比べてゲインKcsを大きな値とする(ゲイン設定手段)。
[技術背景]
従来のステアリングバイワイヤシステムでは、特開平10−310074号公報に記載されているように、目標転舵位置と実転舵位置との偏差および転舵負荷に基づき、さらに前記目標転舵位置と実転舵位置との偏差をゼロにするように転舵量を演算し、制御を行なう構成となっていた。
このため、操舵側からの指令転舵角に対する追従性が高く、転舵側の負荷となるような外乱に対する操舵側と転舵側での捩れ分と発生すべき操舵反力を精度良く模擬できない。そして、操舵側と転舵側での捩れ分を模擬しないと、相応の外乱補償分が働くので、指令転舵角に対して実転舵角が定常的には常に一致する。これはステアリング剛性が非常に高い車両と等価である。
従来のステアリングバイワイヤシステムのように、ステアリング剛性が非常に高い車両と等価である場合、カーブ路において操舵ハンドルを少し大きめに切り込むと高応答に実転舵角が与えられるため、車両はオーバーステア傾向になりやすい。なぜなら、カーブ路における運転者は、操舵ハンドルを多少大きめに切り込み、その後、戻し操舵や少しずつ切り込む修正操舵を行うことで、旋回開始時の回頭性を得た上で、車両の挙動がカーブ路に沿ったものとなるようにコントロールすることによる。このため、カーブ路では、車体のスリップ角が増大し、旋回挙動安定性の低下となる。
また、轍やうねり路において、ステアリング剛性が非常に高い車両と等価である場合、操向タイヤに外力が加わった場合、操向タイヤの実転舵角を変えないように、操向タイヤへの外力を転舵アクチュエータで受ける。よって、操向タイヤに外力が加わると、転舵アクチュエータで受ける反力(ショック)がそのまま車体に伝達されることになるため、乗り心地の低下となる。
さらに、ステアリング剛性が非常に高い車両と等価である場合、操舵ハンドルへの操作に対し応答遅れなく操向タイヤが転舵してヨーレートが発生する等、操舵に対する車両の動きが、操舵ハンドルと操向タイヤとが機械的に連結された操舵装置を搭載した車両と比較して不自然となるため、運転者が違和感を持ち、操舵感の低下につながる。
加えて、操向タイヤに大きな外力が入力された場合、転舵側ではこれに打ち勝って操向タイヤの転舵を確保するように大きな電流を一気に流すため、転舵アクチュエータのモータは高負荷となり、過熱状態となってしまう。
[操向タイヤへの外力付加時の転舵制御作用]
実施例1の車両用操舵制御装置は、転舵装置用コントローラ16において、スリップ角偏差△βが大きな値であるほど、転舵用アクチュエータ6のモータへの指令電流Itaを小さな値とする補正を行い、指令転舵角θtaと実転舵角θtとの間に意図的に定常的な偏差が生じるようにすることで、操向タイヤ4,5に外力が加わる走行時、操舵側と転舵側との間の捩れ分を前記偏差により精度良く模擬し、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成したものである。
すなわち、カーブ路や轍やうねり路等を走行している時であって、操向タイヤ4,5が縁石等の障害物に接触していないとき、図6のフローチャートにおいて、ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7へと進み、ステップS7では、スリップ角偏差△βが大きいほど外乱補償器分の出力の制限値を小さな値に設定し、さらに、設定した制限値にゲインKcsを乗じることで外乱補償器分の出力を制限する最終制限値が決定される。
ここで、実施例1において、スリップ角偏差△βを外力相当値として用いた理由を述べる。例えば、直進走行時において操向タイヤ4,5が凹凸路等からの外力により一方に切れたら、車体のスリップ角目標値β*はゼロであるにもかかわらず、横加速度YGやヨーレートψが出ることにより実スリップ角βが発生する(上記(1)式参照)。つまり、直進走行時にスリップ角偏差△βが出るとこのスリップ角偏差△βの分は外力相当値とみなすことができる。また、旋回走行時においてスリップ角偏差△βが出るということは、車体のスリップ角目標値β*と実スリップ角βとが一致するニュートラルステア状態から外れていることを意味し、操向タイヤ4,5に加わる横力のうち、ニュートラルステア状態から外れたオーバーステア量あるいはアンダーステア量を生じる横力分、つまり、スリップ角偏差△βの分は外力相当値とみなすことができる。よって、スリップ角偏差△βを外力相当値として用いることで、カーブ路走行時を含む様々な路面走行時において、車両挙動にあらわれる外力影響分を精度良く検知できることによる。
上記のように、スリップ角偏差△βによって外乱補償器分の出力を制限するという意図的な処理によって、指令転舵角θtaと実転舵角θtとの間に定常的な偏差が出るため、操舵ハンドルと操向タイヤとが機械的に連結されている操舵装置を備えた車両で生じる操舵側と転舵側との間の捩れ分を精度良く模擬することができる。
つまり、図7は操向タイヤへ外力(外乱)を加えた時の指令転舵角に対する実転舵角の応答特性であり、従来は点線特性に示すように、操向タイヤへの外乱入力に対して外乱補償分が働くので、外乱入力があっても実転舵角は応答良く指令転舵角に一致する作用を示す(外乱に対するロバスト補償作用)。
しかし、実施例1(発明)の場合は、実線特性(外乱入力時に外乱補償出力リミッター16cからの制限値がゼロの特性)に示すように、外乱入力に対して捩れ分の模擬により外乱補償分が制限されることで、外乱入力があっても実転舵角θtは指令転舵角θtaから外れる。そして、外乱入力後、モデルマッチング補償器16aにおいて、実転舵角θtと指令転舵角θtaとが一致するように指令電流Itaの演算を行うし、外乱補償出力リミッター16cによる制限も徐々に緩和されることで、応答遅れを持ちながら実転舵角θtが指令転舵角θtaに対し次第に収束していくという作用を示す。
よって、カーブ路において操舵ハンドル1を少し大きめに切り込んだ場合、切り込み開始域では、指令電流Itaと実転舵角θtとの間で偏差を生じ、この偏差分が外乱とみなされ、ロバスト補償器16bにおいて、外乱補償分の出力がある。しかし、カーブ路における操舵ハンドル1の切り込み開始域では、スリップ角偏差△βが発生することから、外乱補償出力リミッター16cにより外乱補償分の出力に制限を加えられることになる。この結果、カーブ路においては、応答遅れを持ちながら実転舵角が指令転舵角に対し次第に収束するという作用を示し、ステアリング剛性が非常に高い車両と等価である場合に生じる車両のオーバーステア傾向が解消される。つまり、カーブ路では、車体のスリップ角の増大が抑えられ、旋回挙動の安定性が確保される。
また、轍やうねり路において、操向タイヤ4,5に外力が加わった場合、指令電流Itaと実転舵角θtとの間で偏差を生じ、この偏差分が外乱とみなされ、ロバスト補償器16bにおいて、外乱補償分の出力がある。しかし、操向タイヤ4,5に対し凹凸路による外力が加わった場合、操向タイヤ4,5の向きが変化し、車体にスリップ角偏差△βが発生することから、外乱補償出力リミッター16cにより外乱補償分の出力に制限を加えられることになる。この結果、轍やうねり路において、操向タイヤ4,5の実転舵角の変化が許容され、操向タイヤ4,5に外力が加わっても、ステアリング剛性が非常に高い車両と等価である場合のように、転舵用アクチュエータ6で受ける反力がそのまま車体に伝達されることが無く、乗り心地が向上する。
さらに、ロバスト補償器16bからの外乱補償分の出力に制限を加える制御を行った場合には、ステアリング剛性が操舵ハンドルと操向タイヤとが機械的に連結されている操舵装置を搭載した車両とほぼ等価となるため、操舵ハンドルへの操作に対し多少の応答遅れを持って操向タイヤが転舵してヨーレートが発生する等、操舵に対する車両の動きが自然となる。このため、ステアリング剛性が非常に高い車両と等価である場合のような運転者の持つ違和感が解消され、良好な操舵感が得られることになる。例えば、指令転舵角θtaと実転舵角θtとの間に偏差が出るため、運転者が実転舵角θtの切れ角不足を感じても、さらに操舵ハンドル1を切り増しした場合には、これに応じて実転舵角θtを切り増しすることも可能である。
加えて、操向タイヤ4,5に大きな外力が入力された場合、ロバスト補償器16bからの外乱補償分の出力に制限を加える制御が行われることで、指令電流Itaの変化は緩やかなものとなる。大きな外力に対し、転舵側で操向タイヤの転舵を確保するように大きな電流を一気に流すことが無いため、転舵用アクチュエータ6のモータ負荷が軽減され、モータ過熱状態となってしまうことを防止することができる。
[障害物接触時の転舵制御作用]
操向タイヤ4,5が縁石等の障害物に接触したときは、図6のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、ステップS3では、指令転舵角θtaを実転舵角θtに一致させる設定、つまり、指令転舵角θtaと実転舵角θtとの偏差をゼロにする設定とされる。
このように、転舵側モータの指令電流値を直接ある値に変更するのではなく、転舵側の指令転舵角θtaを通常時における実操舵角θsに応じたものから、指令転舵角θtaと実転舵角θtの偏差がゼロになるところ、つまり、運転者が操舵ハンドル1を切り増ししても転舵側がそれ以上動かなくなるところに変更することで、転舵側の電流は指令転舵角θtaと実転舵角θtとの偏差を打ち消そうとする分が不要となり、その位置にとどまろうとする分のみで良くなるため、電流を抑制させることが可能となり、モータ過熱保護となる。
加えて、転舵側モータの指令電流値を直接ある値に変更するのではなく、転舵側の指令転舵角θtaを変更しているため、縁石等の障害物に接触していると判定されている時の制御から通常の角度制御に戻るときの切り替えがスムーズになる。
[操向タイヤへの外力付加時の操舵反力制御作用]
上記のように、転舵制御側でスリップ角偏差△βによって外乱補償器分の出力を制限するという意図的な処理によって、指令転舵角θtaと実転舵角θtとの間に定常的な偏差を持たせる場合において、実施例1では、図3に示すように、指令転舵角θtaと実転舵角θtとに偏差に応じて操舵反力を生成させるようにしている。
したがって、操向タイヤ4,5に加わる外力により、指令転舵角θtaと実転舵角θtとに偏差を生じるが、外力無しの時に比べ、前記偏差分に応じて操舵反力が変わることになるので、運転者に対し操向タイヤ4,5に外力をが加わっていることを操舵反力の変化により知らせることが可能となる。
実施例1の操舵反力制御では、図3に示すように、実操舵角θsや操舵角速度dθs/dtが大きくなったときに操舵反力が大きくなり過ぎることを抑えているため、操舵ハンドル1を切り増しできなくなる、または、切り増しが困難になることを防止し、車両特性に応じた操舵反力特性にすることが可能になる。
さらに、路面μの推定により、路面状況も加味してリミット値Lsが可変値で与えられるため、低μ路で操舵反力が重くなりすぎることを防止し、高μ路ではある程度操舵反力が重くなることを許容するというように、路面μに応じて操舵反力を得ることが可能である。
次に、効果を説明する。
実施例1の車両用操舵制御装置にあっては、下記に列挙する効果を得ることができる。
(1) 操向タイヤ4,5を転舵する転舵用アクチュエータ6と、実操舵角θsを検出する操舵反力用モータ角センサ9と、実操舵角θsに応じた転舵角になるように指令転舵角θtaを設定し、指令転舵角θtaを得る駆動力指令値を前記転舵用アクチュエータ6へ出力する転舵装置用コントローラ16と、を備えた車両用操舵制御装置において、前記操向タイヤ4,5に加わる外力相当値を検出する外力相当値検出手段を設け、前記転舵装置用コントローラ16は、前記外力相当値が大きな値であるほど、前記転舵用アクチュエータ6への駆動力指令値を小さな値とする補正制御を行うため、操向タイヤ4,5に外力が加わる走行時、操舵側と転舵側との間の捩れ分を精度良く模擬することで、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成することができる。
(2) ステアリング剛性の高い車両であるほどゲインを大きな値に設定するゲイン設定手段を設け、前記転舵装置用コントローラ16の補正制御は、前記外力相当値に応じて設定された制限値と前記ゲインとを乗算し、駆動力指令値である指令電流Itaを小さな値とする最終制限値を決めるため、ステアリング剛性が異なる車種(スポーツタイプの車やセダンタイプの車など)に応じ、操舵側と転舵側との間の捩れ分を精度良く模擬することができる。
(3) 前記操向タイヤ4,5が障害物に接触しているか否かを判定する障害物接触判定部16fを設け、前記転舵装置用コントローラ16は、障害物と接触していると判定されると、転舵用アクチュエータ6への駆動力指令値の前記補正制御に代え、指令転舵角θtsを実転舵角θtに一致させる制御を実行するため、障害物接触判定時、転舵用アクチュエータ6のモータ電流を抑制してモータ過熱保護を達成できると共に、モータへの指令電流Itaを直接変更するのではなく、指令転舵角θtsを変更しているので、障害物接触判定時制御から通常の角度制御へ戻る時の切り替えをスムーズに行うことができる。
(4) 操舵ハンドル1に反力を与える操舵反力用アクチュエータ2と、前記転舵装置用コントローラ16からの指令転舵角θtaと実転舵角θtとの転舵角偏差に応じた操舵反力指令値を、前記操舵反力用アクチュエータ2に出力する操舵反力装置用コントローラ10と、を備えたため、操向タイヤ4,5に加わる外力に基づきモータ駆動力を低下させる転舵制御が行われ、指令転舵角θtaと実転舵角θtとの間に偏差が生じた場合、操舵反力の変化により操向タイヤ4,5に外力の入力があることを知らせることができる。
(5) 前記外力相当値検出手段は、車両のスリップ角目標値β*と実スリップ角βとのスリップ角偏差Δβを外力相当値として検出するため、旋回挙動や路面外乱による車体の振れ等のように、車両挙動に影響を与える操向タイヤ4,5への外力を精度良く検出することができる。
(6) 前記転舵装置用コントローラ16に、実転舵角θtと転舵用アクチュエータ6への指令電流Itaとに基づき演算された指令電流Itaの外乱補償分を出力するロバスト補償器16bを設け、前記転舵装置用コントローラ16の補正制御は、外力相当値が大きな値であるほど、前記ロバスト補償器16bからの指令電流Itaの外乱補償分を小さくするため、転舵装置用コントローラ16に予めロバスト補償器16bを有する場合、外力相当値に応じて外乱補償分の出力に制限を加える外乱補償出力リミッター16cを追加するだけで、外力相当値に応じ意図的に指令転舵角θtaと実転舵角θtとに定常的な偏差を持たせる制御系を容易に構成することができる。
実施例2は、操向タイヤ4,5を転舵する軸力を外力相当値として検出するようにした例である。
まず、構成を説明すると、図8は実施例2におけるロバストモデルマッチング手法を採用した転舵角制御系ブロック図である。転舵装置用コントローラ16は、モデルマッチング補償器16aと、ロバスト補償器16b(外乱補償器)と、外乱補償出力リミッター16cと、差分器16dと、電流リミッター16eと、障害物接触判定部16fと、切替器16gと、を有して構成されていて、外乱補償出力リミッター16cを除き、実施例1と同様の構成である。
前記外乱補償出力リミッター16cは、操向タイヤ4,5に作用している外力Tfを外力相当値とし、外力Tfが大きな値であるほどロバスト補償器16bからの外乱補償分の出力を小さな値とするように制限する。なお、他の構成は実施例1と同様であるので、図示並びに説明を省略する。
次に、作用を説明する。
[障害物当接判定制御処理]
[転舵制御処理]
図9は実施例2の転舵装置用コントローラ16にて実行される転舵制御処理の流れを示すフローチャートで、以下、各ステップについて説明する(転舵制御手段)。
ステップS24では、ステップS22での障害物非接触判定に続き、外力センサ19からのセンサ信号に基づき、操向タイヤ4,5に作用している外力Tfを算出し、ステップS25へ移行する(外乱相当値検出手段)。
ステップS25では、ステップS24での外力Tfの算出に続き、外力Tfと車両特性により予め決められたゲインKcsから、外力Tfが大きいときには外乱補償分の出力の制限値を小さく設定し、外力Tfが小さいときには外乱補償分の出力の制限値を大きく設定し、さらに、設定した制限値にゲインKcsを乗じることで最終制限値を決定し、ステップS21へ戻る。ここで、「ゲインKcs」は、例えば、ステアリング剛性の高いスポーツタイプの車両の場合は、セダンタイプの車両に比べてゲインKcsを大きな値とする(ゲイン設定手段)。なお、ステップS21,S22,S23は、実施例1の図6のフローチャートのステップS1,S2,S3と同様の処理であるので、説明を省略する。
[操向タイヤへの外力付加時の転舵制御作用]
実施例2の車両用操舵制御装置は、転舵装置用コントローラ16において、外力Tfが大きな値であるほど、転舵用アクチュエータ6のモータへの指令電流Itaを小さな値とする補正を行い、指令転舵角θtaと実転舵角θtとの間に意図的に定常的な偏差が生じるようにすることで、操向タイヤ4,5に外力が加わる走行時、操舵側と転舵側との間の捩れ分を前記偏差により精度良く模擬し、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成したものである。
すなわち、カーブ路や轍やうねり路等を走行している時であって、操向タイヤ4,5が縁石等の障害物に接触していないとき、図9のフローチャートにおいて、ステップS21→ステップS22→ステップS24→ステップS25へと進み、ステップS25では、外力Tfが大きいほど外乱補償器分の出力の制限値を小さな値に設定し、さらに、設定した制限値にゲインKcsを乗じることで外乱補償器分の出力を制限する最終制限値が決定される。
ここで、実施例2において、ラック軸トルクによる外力Tfを外力相当値として用いた理由を述べる。まず、ラック軸にトルクセンサが予め設定されている車両では、トルクセンサ情報をそのまま利用できる。また、転舵制御は、指令転舵角θtaに対し実転舵角θtを一致させる角度制御を行うが、本発明は、モータへの駆動指令値である指令電流Itaを小さな値に補正する制御、つまり、モータに加わるトルクを外力相当値に応じて低減制御するものである。よって、外力相当値としては、制御出力と同様に、トルク相当の値を用いた方が、指令電流Itaの補正制御において、応答性が高い効果的な制御となることによる。なお、他の作用は実施例1と同様であるので説明を省略する。
次に、効果を説明する。
実施例2の車両用操舵制御装置にあっては、実施例1の(1),(2),(3),(4),(6)の効果に加えて、下記の効果を得ることができる。
(7) 前記外力相当値検出手段は、操向タイヤ4,5を転舵する軸力を外力相当値として検出するため、精度の高い外力相当値情報を得ることができると共に、応答性が高く効果的な指令電流Itaの補正制御を行うことができる。
実施例3は、転舵制御系を二自由度制御系(フィードフォワード補償器およびフィードバック補償器)とし、フィードバック補償器の出力に対し制限をかけるようにした例である。
まず、構成を説明すると、図10及び図11に示すように、転舵装置用コントローラ16は、ロバスト補償器16bと、外乱補償出力リミッター16cと、電流リミッター16eと、障害物接触判定部16fと、切替器16gと、フィードフォワード補償器16hと、規範モデル16iと、差分器16jと、フィードバック補償器16kと、加算器16mと、を有して構成されている。
前記フィードフォワード補償器16hは、指令転舵角θtaに基づき演算された指令電流フィードフォワード分Iffを加算器16mへ出力する。
前記規範モデル16iは、指令転舵角θtaを入力し、規範モデルGm(s)を通して指令転舵角基準値θta_refを生成する。
前記差分器16jは、規範モデル16iから出力された指令転舵角基準値θta_refと実転舵角θtとの偏差を算出する。
前記フィードバック補償器16kは、差分器16jからの転舵角偏差を入力し、指令電流フィードバック分Ifbを外乱補償出力リミッター16cへ出力する。
前記外乱補償出力リミッター16cは、外力相当値が大きな値であるほど、前記フィードバック補償器16kからの指令電流フィードバック分Ifbを小さくする制限を行い、指令電流フィードバック分制限値Ifblimを加算器16mに出力する。
ここで、図10の場合は、実施例1と同様に、スリップ角偏差△βが大きな値であるほど、前記フィードバック補償器16kからの駆動指令値フィードバック分Ifbを小さくする制限を行う。また、図11の場合は、実施例2と同様に、外力Tfが大きな値であるほど、前記フィードバック補償器16kからの駆動指令値フィードバック分Ifbを小さくする制限を行う。
前記加算器16mは、フィードフォワード補償器16hからの指令電流フィードフォワード分Iffと、外乱補償出力リミッター16cからの指令電流フィードバック分制限値Ifblimと、ロバスト補償器16bからの外乱補償分の出力Irbstと、を加算してリミッター処理前の指令電流Itaを算出する。なお、他の構成は、実施例1,2と同様であるので、図示並びに説明を省略する。
次に、作用を説明すると、実施例3の車両用操舵制御装置は、転舵装置用コントローラ16におけるフィードバック補償器16kの出力部において、スリップ角偏差Δβまたは外力Tfが大きな値であるほど、転舵用アクチュエータ6のモータへの指令電流Itaを小さな値とする補正を行い、指令転舵角θtaと実転舵角θtとの間に意図的に定常的な偏差が生じるようにすることで、操向タイヤ4,5に外力が加わる走行時、操舵側と転舵側との間の捩れ分を前記偏差により精度良く模擬し、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成したものである。
このフィードフォワード補償器16hとフィードバック補償器16kを持つ二自由度制御系では、フィードバック補償器16kによって規範モデル16iとの誤差も補償することが可能となり、操舵側からの指令転舵角θtaに対する追従性が、実施例1,2に比べより高くなる。
よって、実施例3において、操向タイヤ4,5に外力が加わる走行時、操舵側と転舵側との間の捩れ分を模擬しない場合には、ステアリング剛性が捩れ分を模擬しない実施例1,2よりも高くなることで、旋回挙動の安定性や乗り心地や操舵感の問題が大きく発生するのに対し、操舵側と転舵側との間の捩れ分を精度良く模擬することで、旋回挙動の安定性や乗り心地や操舵感に対する効果代がより大きくなる。なお、他の作用については、実施例1,2と同様であるであるであるので、説明を省略する。
次に、効果を説明する。
実施例3の車両用操舵制御装置にあっては、実施例1,2の効果(実施例1の(6)の効果を除く)に加え、下記の効果を得ることができる。
(8) 前記転舵装置用コントローラ16に、指令転舵角θtaに基づき演算された指令電流フィードフォワード分Iffを出力するフィードフォワード補償器16hと、規範モデル16iから出力された指令転舵角基準値θta_refと実転舵角θtとの偏差に基づき演算された指令電流フィードバック分Ifbを出力するフィードバック補償器16kと、を設け、前記転舵装置用コントローラ16の補正制御は、スリップ角偏差Δβと外力Tfによる外力相当値が大きな値であるほど、前記フィードバック補償器16kからの指令電流フィードバック分Ifbを小さくするため、二自由度制御系の構成としたことにより操舵側からの指令転舵角θtaに対する追従性を高くして機敏な転舵制御システムとしながらも、操向タイヤ4,5への外力作用時には、捩れ分を模擬する指令電流Itaの補正制御により、旋回挙動の安定性確保や乗り心地の向上や操舵感の向上を併せて達成することができる。
以上、本発明の車両用操舵制御装置を実施例1〜実施例3に基づき説明してきたが、具体的な構成については、これら実施例1〜実施例3に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
実施例1〜実施例3では、外力相当値検出手段として、スリップ角偏差Δβを算出する手段と外力Tfを算出する手段の例を示したが、要するに、操向タイヤ4,5に加わる外力相当値を検出することができる手段であれば、実施例1〜3に記載した手段に限られるとはない。例えば、
・車体スリップ角
・転舵モータのトルク検出値と指令電流値から算出した想定トルクとの偏差
・転舵モータの電流検出値と指令電流値の偏差から算出した外乱トルク
・ラック軸力検出値と転舵モータへの指令電流値から算出した想定トルクとの偏差
等を外力相当値として検出するものであっても良い。
実施例1,2では、転舵制御手段として、ロバスト補償器からの外乱補償分の出力を制限する例を示し、実施例3では、転舵制御手段として、フィードバック補償器からの出力を制限する例を示したが、要するに、外力相当値が大きな値であるほど、転舵アクチュエータへの駆動力指令値を小さな値とする補正を行うものであれば、実施例に示した転舵制御手段に限定されない。例えば、転舵アクチュエータへの最終的な駆動力指令値(指令電流)に制限を加えるような例としても良いし、また、ロバスト補償器からの出力の制限値とフィードバック補償器からの出力の制限値とを外力相当値により決定するような例としても良い。
実施例1〜3では、操舵側と転舵側とが機械的に完全に切り離されたステアバイワイヤシステムに適用した車両用操舵制御装置を示したが、操舵側と転舵側とが故障対策として機械的に連結されていても正常時には操舵反力が操舵ハンドルに伝達されないシステムや、操舵側と転舵側とが機械的に連結されていても、操舵角と転舵角の非であるステアリングギヤ比を可変にする制御システムで、操向タイヤを転舵する転舵アクチュエータと、操舵角に応じた転舵角になるように指令転舵角を設定し、指令転舵角を得る駆動力指令値を転舵アクチュエータへ出力する転舵制御手段と、を備えた車両であれば適用することができる。
実施例1の車両用操舵制御装置が適用されたステアバイワイヤシステムを示す全体図である。 実施例1の車両用操舵制御装置の操舵反力制御系および転舵角制御系の全体構成を示す図である。 実施例1における操舵反力装置用コントローラのモータ制御指令値算出手段を示す操舵反力制御系ブロック図である。 操舵反力制御における各ゲインKa,Ksの車速Vに応じた設定例とリミット値Lsの推定路面μに応じた設定例を示す図である。 実施例1におけるロバストモデルマッチング手法を採用した転舵角制御系ブロック図である。 実施例1の転舵装置用コントローラにて実行される転舵制御処理の流れを示すフローチャートである。 操向タイヤに外乱が入力した場合の指令転舵角特性に対する実施例1の実転舵角特性と従来例の実転舵角特性との比較図である。 実施例2におけるロバストモデルマッチング手法を採用した転舵角制御系ブロック図である。 実施例2の転舵装置用コントローラにて実行される転舵制御処理の流れを示すフローチャートである。 実施例3におけるフィードフォワード補償器とフィードバック補償器を持つ二自由度制御系を採用した転舵角制御系ブロック図の第1例である。 実施例3におけるフィードフォワード補償器とフィードバック補償器を持つ二自由度制御系を採用した転舵角制御系ブロック図の第2例である。
符号の説明
1 操舵ハンドル
2 操舵反力用アクチュエータ(操舵反力アクチュエータ)
3 操舵反力装置
4,5 操向タイヤ
6 転舵用アクチュエータ(転舵アクチュエータ)
7 転舵装置
8 ステアリングコラムシャフト
9 操舵反力用モータ角センサ(操舵角検出手段)
10 操舵反力装置用コントローラ(操舵反力制御手段)
11 車速センサ
12 ステアリングギヤ機構
13,14 動作変換機構
15 転舵用モータ角センサ
16 転舵装置用コントローラ(転舵制御手段)
16a モデルマッチング補償器
16b ロバスト補償器(外乱補償器)
16c 外乱補償出力リミッター
16d 差分器
16e 電流リミッター
16f 障害物接触判定部(障害物接触判定手段)
16g 切替器
16h フィードフォワード補償器
16i 規範モデル
16j 差分器
16k フィードバック補償器
16m加算器
17 双方向通信線
18 スリップ角センサ
19 外力センサ

Claims (8)

  1. 操向タイヤを転舵する転舵アクチュエータと、
    操舵角を検出する操舵角検出手段と、
    操舵角に応じた転舵角になるように指令転舵角を設定し、指令転舵角を得る駆動力指令値を前記転舵アクチュエータへ出力する転舵制御手段と、
    を備えた車両用操舵制御装置において、
    前記操向タイヤに加わる外力相当値を検出する外力相当値検出手段を設け、
    前記転舵制御手段は、前記外力相当値が大きな値であるほど、前記転舵アクチュエータへの駆動力指令値を小さな値とする補正制御を行うことを特徴とする車両用操舵制御装置。
  2. 請求項1に記載された車両用操舵制御装置において、
    ステアリング剛性の高い車両であるほどゲインを大きな値に設定するゲイン設定手段を設け、
    前記補正制御は、前記外力相当値に応じて設定された制限値と前記ゲインとを乗算し、駆動力指令値を小さな値とする最終制限値を決めることを特徴とする車両用操舵制御装置。
  3. 請求項1または請求項2に記載された車両用操舵制御装置において、
    前記操向タイヤが障害物に接触しているか否かを判定する障害物接触判定手段を設け、
    前記転舵制御手段は、障害物と接触していると判定されると、転舵アクチュエータへの駆動力指令値の前記補正制御に代え、指令転舵角を実転舵角に一致させる制御を実行することを特徴とする車両用操舵制御装置。
  4. 請求項1乃至3の何れか1項に記載された車両用操舵制御装置において、
    操舵ハンドルに反力を与える操舵反力アクチュエータと、
    前記転舵制御手段からの指令転舵角と実転舵角との転舵角偏差に応じた操舵反力指令値を、前記操舵反力アクチュエータに出力する操舵反力制御手段と、
    を備えたことを特徴とする車両用操舵制御装置。
  5. 請求項1乃至4の何れか1項に記載された車両用操舵制御装置において、
    前記外力相当値検出手段は、車両のスリップ角目標値と実スリップ角とのスリップ角偏差を外力相当値として検出することを特徴とする車両用操舵制御装置。
  6. 請求項1乃至4の何れか1項に記載された車両用操舵制御装置において、
    前記外力相当値検出手段は、操向タイヤを転舵する軸力を外力相当値として検出することを特徴とする車両用操舵制御装置。
  7. 請求項1乃至6の何れか1項に記載された車両用操舵制御装置において、
    前記転舵制御手段に、実転舵角と転舵アクチュエータへの駆動指令値とに基づき演算された駆動指令値の外乱補償分を出力する外乱補償器を設け、
    前記補正制御は、外力相当値が大きな値であるほど、前記外乱補償器からの駆動指令値の外乱補償分を小さくすることを特徴とする車両用操舵制御装置。
  8. 請求項1乃至6の何れか1項に記載された車両用操舵制御装置において、
    前記転舵制御手段に、指令転舵角に基づき演算された駆動指令値フィードフォワード分を前記転舵アクチュエータへ出力するフィードフォワード補償器と、モデル出力の指令転舵角基準値と実転舵角との偏差に基づき演算された駆動指令値フィードバック分を前記転舵アクチュエータへ出力するフィードバック補償器と、を設け、
    前記補正制御は、外力相当値が大きな値であるほど、前記フィードバック補償器からの駆動指令値のフィードバック分を小さくすることを特徴とする車両用操舵制御装置。
JP2004299339A 2004-10-13 2004-10-13 車両用操舵制御装置 Active JP4517810B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004299339A JP4517810B2 (ja) 2004-10-13 2004-10-13 車両用操舵制御装置
KR1020050095902A KR100656328B1 (ko) 2004-10-13 2005-10-12 조향 가능한 차량을 위한 조향 장치
US11/248,617 US7092805B2 (en) 2004-10-13 2005-10-13 Steering apparatus for steerable vehicle
DE102005049042.5A DE102005049042B4 (de) 2004-10-13 2005-10-13 Lenkungsvorrichtung und Verfahren zum Steuern/Regeln eines lenkbaren Fahrzeugs
CNB2005101083591A CN100395141C (zh) 2004-10-13 2005-10-13 用于车辆的转向装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299339A JP4517810B2 (ja) 2004-10-13 2004-10-13 車両用操舵制御装置

Publications (2)

Publication Number Publication Date
JP2006111099A true JP2006111099A (ja) 2006-04-27
JP4517810B2 JP4517810B2 (ja) 2010-08-04

Family

ID=36379981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299339A Active JP4517810B2 (ja) 2004-10-13 2004-10-13 車両用操舵制御装置

Country Status (1)

Country Link
JP (1) JP4517810B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656328B1 (ko) 2004-10-13 2006-12-13 닛산 지도우샤 가부시키가이샤 조향 가능한 차량을 위한 조향 장치
WO2010103810A1 (ja) * 2009-03-10 2010-09-16 本田技研工業株式会社 車両の後輪トー角制御装置
JP2010228484A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd 車両挙動制御装置
KR101279162B1 (ko) 2006-09-22 2013-06-26 현대모비스 주식회사 차량의 조향 제어 방법
WO2014108984A1 (ja) * 2013-01-11 2014-07-17 日産自動車株式会社 操舵制御装置
CN103963832A (zh) * 2014-05-10 2014-08-06 福建万润新能源科技有限公司 大型客车电机直驱助力转向器及其驱动方法
JP6055525B1 (ja) * 2015-09-02 2016-12-27 富士重工業株式会社 車両の走行制御装置
KR20190001043A (ko) * 2017-06-26 2019-01-04 주식회사 만도 조향 제어 장치 및 방법
EP3702245A1 (en) 2019-02-27 2020-09-02 Jtekt Corporation Steering system
JP2020138621A (ja) * 2019-02-27 2020-09-03 株式会社ジェイテクト 操舵制御装置
EP3712036A1 (en) 2019-03-19 2020-09-23 Jtekt Corporation Steering device
EP3715216A1 (en) 2019-03-28 2020-09-30 Jtekt Corporation Steering apparatus
CN114867652A (zh) * 2019-12-18 2022-08-05 日本精工株式会社 车辆用转向装置
WO2023228455A1 (ja) * 2022-05-23 2023-11-30 日本精工株式会社 車両用操向システムの制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226341A (ja) * 1997-02-12 1998-08-25 Koyo Seiko Co Ltd 車両用操舵装置
JPH10310074A (ja) * 1997-05-12 1998-11-24 Toyota Motor Corp 操舵制御装置
JP2003252227A (ja) * 2002-03-04 2003-09-10 Koyo Seiko Co Ltd 車両用操舵装置
JP2004149068A (ja) * 2002-10-31 2004-05-27 Koyo Seiko Co Ltd 車両用操舵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226341A (ja) * 1997-02-12 1998-08-25 Koyo Seiko Co Ltd 車両用操舵装置
JPH10310074A (ja) * 1997-05-12 1998-11-24 Toyota Motor Corp 操舵制御装置
JP2003252227A (ja) * 2002-03-04 2003-09-10 Koyo Seiko Co Ltd 車両用操舵装置
JP2004149068A (ja) * 2002-10-31 2004-05-27 Koyo Seiko Co Ltd 車両用操舵装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656328B1 (ko) 2004-10-13 2006-12-13 닛산 지도우샤 가부시키가이샤 조향 가능한 차량을 위한 조향 장치
KR101279162B1 (ko) 2006-09-22 2013-06-26 현대모비스 주식회사 차량의 조향 제어 방법
WO2010103810A1 (ja) * 2009-03-10 2010-09-16 本田技研工業株式会社 車両の後輪トー角制御装置
US8463506B2 (en) 2009-03-10 2013-06-11 Honda Motor Co., Ltd. Rear wheel toe angle control system
JP2010228484A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd 車両挙動制御装置
WO2014108984A1 (ja) * 2013-01-11 2014-07-17 日産自動車株式会社 操舵制御装置
JP5949948B2 (ja) * 2013-01-11 2016-07-13 日産自動車株式会社 操舵制御装置
US9505428B2 (en) 2013-01-11 2016-11-29 Nissan Motor Co., Ltd. Steering control device
CN103963832A (zh) * 2014-05-10 2014-08-06 福建万润新能源科技有限公司 大型客车电机直驱助力转向器及其驱动方法
JP6055525B1 (ja) * 2015-09-02 2016-12-27 富士重工業株式会社 車両の走行制御装置
US9789905B2 (en) 2015-09-02 2017-10-17 Subaru Corporation Vehicle traveling control apparatus
KR102004344B1 (ko) * 2017-06-26 2019-07-29 주식회사 만도 조향 제어 장치 및 방법
KR20190001043A (ko) * 2017-06-26 2019-01-04 주식회사 만도 조향 제어 장치 및 방법
JP7323301B2 (ja) 2019-02-27 2023-08-08 株式会社ジェイテクト 操舵制御装置
EP3702245A1 (en) 2019-02-27 2020-09-02 Jtekt Corporation Steering system
JP2020138606A (ja) * 2019-02-27 2020-09-03 株式会社ジェイテクト 操舵制御装置
JP2020138621A (ja) * 2019-02-27 2020-09-03 株式会社ジェイテクト 操舵制御装置
CN111619656A (zh) * 2019-02-27 2020-09-04 株式会社捷太格特 转向系统
JP7445387B2 (ja) 2019-02-27 2024-03-07 株式会社ジェイテクト 操舵制御装置
US11400970B2 (en) 2019-02-27 2022-08-02 Jtekt Corporation Steering system
CN111619656B (zh) * 2019-02-27 2023-10-13 株式会社捷太格特 转向系统
EP3712036A1 (en) 2019-03-19 2020-09-23 Jtekt Corporation Steering device
US11702128B2 (en) 2019-03-19 2023-07-18 Jtekt Corporation Steering device
EP3715216A1 (en) 2019-03-28 2020-09-30 Jtekt Corporation Steering apparatus
US11325642B2 (en) 2019-03-28 2022-05-10 Jtekt Corporation Steering apparatus
CN114867652A (zh) * 2019-12-18 2022-08-05 日本精工株式会社 车辆用转向装置
WO2023228455A1 (ja) * 2022-05-23 2023-11-30 日本精工株式会社 車両用操向システムの制御装置

Also Published As

Publication number Publication date
JP4517810B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
JP5126357B2 (ja) 車両の操舵装置
US9669866B2 (en) Steering intention determination device, vehicle control device, steering assist device, and steering assist system
JP5327331B2 (ja) 車両の電動パワーステアリング装置
KR100656328B1 (ko) 조향 가능한 차량을 위한 조향 장치
JP4670161B2 (ja) 自動車の電動パワーステアリング装置
EP1577194B1 (en) Steering apparatus for vehicle and method for controlling the same
JP7383384B2 (ja) 操舵制御装置
US7832522B2 (en) Vehicle steering system, vehicle including the same and method for turning wheel of vehicle
JP4517810B2 (ja) 車両用操舵制御装置
JP5206170B2 (ja) 車両用操舵制御装置及び方法
JP2009023542A (ja) 車両用操舵装置
JP2009023608A (ja) 車両用操舵装置
JP4997478B2 (ja) 車両用操舵装置
JP4094597B2 (ja) 操舵装置
JP2018047827A (ja) 操舵制御装置
JP7243045B2 (ja) 操舵制御装置
JP7322461B2 (ja) 操舵制御装置
JP2006282067A (ja) 車両用操舵制御装置
JP4595519B2 (ja) 車両用操舵制御装置およびその転舵角制御方法
JP4687233B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP4692087B2 (ja) 車両用操舵装置
JP4715314B2 (ja) 車両用操舵装置
JP2007283954A (ja) 操舵装置
JP4661342B2 (ja) 車両用操舵装置
JP4544025B2 (ja) 車両用操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4