WO2016165167A1 - 感应面板及其制作方法、感应压力和温度的方法 - Google Patents

感应面板及其制作方法、感应压力和温度的方法 Download PDF

Info

Publication number
WO2016165167A1
WO2016165167A1 PCT/CN2015/078062 CN2015078062W WO2016165167A1 WO 2016165167 A1 WO2016165167 A1 WO 2016165167A1 CN 2015078062 W CN2015078062 W CN 2015078062W WO 2016165167 A1 WO2016165167 A1 WO 2016165167A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
temperature
pressure
temperature sensing
sensing unit
Prior art date
Application number
PCT/CN2015/078062
Other languages
English (en)
French (fr)
Inventor
徐洪远
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/773,246 priority Critical patent/US10001862B2/en
Publication of WO2016165167A1 publication Critical patent/WO2016165167A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/186Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04146Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using pressure sensitive conductive elements delivering a boolean signal and located between crossing sensing lines, e.g. located between X and Y sensing line layers

Definitions

  • the present invention relates to the field of sensing technologies, and in particular, to an inductive panel, a method of fabricating the same, and a method of sensing pressure and temperature.
  • a conventional touch sensing panel (for example, a touch sensing panel applied to a screen of a mobile phone) is generally integrated with a display.
  • the conventional touch sensing panel is used to sense a touch applied to the touch sensing panel. Control the position of the pressure.
  • a conventional touch sensing panel cannot sense the strength of the touch pressure and cannot sense the temperature of the touch object.
  • An object of the present invention is to provide an inductive panel, a method of fabricating the same, and a method of sensing pressure and temperature, which can sense the touch pressure and realize the sensing of the temperature of the touch object.
  • An inductive panel includes: at least one scan line; at least one data line combination, the data line combination includes a first data line and a second data line; at least one signal detection line combination, the signal detection The line combination includes a first detection line and a second detection line; at least one sensing unit combination, wherein the sensing unit combination is combined with the scan line, the data line, and the signal detection line Connecting, the sensing unit combination includes: a pressure sensing unit, the pressure sensing unit includes a first thin film transistor switch and a pressure sensing device, the first thin film transistor switch and the scan line, the first a data line and the pressure sensing device are connected, the pressure sensing device is further connected to the first detecting line, and the pressure sensing device is configured to sense a pressure applied to the pressure sensing unit And generating a pressure sensing signal; and a temperature sensing unit, the temperature sensing unit comprising a second thin film transistor switch and a temperature sensing device, the second thin film transistor switch and the scan line, a second data line and the temperature sensing
  • the first thin film transistor switch includes a first gate, a first source, and a first drain, the first gate is connected to the scan line, and the first source is a first data line connection, the first drain is connected to one end of the pressure sensing device, the other end of the pressure sensing device is connected to the first detecting line; and the second thin film transistor switch a second gate, a second source and a second drain, the second gate is connected to the scan line, the second source is connected to the second data line, and the second drain Connected to one end of the temperature sensing device, the other end of the temperature sensing device is connected to the second detecting line.
  • the sensing panel further includes: a substrate, the scan line is disposed on the substrate; a first insulating layer, the first insulating layer is disposed on the substrate, and the An insulating layer covers the scan line; a semiconductor layer, the semiconductor layer is disposed on the first insulating layer; a source layer, the source layer is disposed on the first insulating layer, and the semiconductor a drain layer, the drain layer is disposed on the first insulating layer and the semiconductor layer; a second insulating layer, the second insulating layer is disposed on the first insulating layer, On the semiconductor layer, the source layer and the drain layer; a first electrode layer, the first electrode layer is disposed on the second insulating layer, and the first electrode layer passes the a via hole on the second insulating layer is connected to the drain layer; a dielectric layer, the dielectric layer is disposed on the first electrode layer; and a second electrode layer, the second electrode layer is disposed on the On the dielectric layer.
  • the dielectric layer in the pressure sensing unit, includes a rubber layer; and in the temperature sensing unit, the dielectric layer includes a heat sensitive metal layer.
  • the substrate is a plastic substrate
  • the first insulating layer is a first organic insulating layer
  • the semiconductor layer is an organic semiconductor layer
  • the second insulating layer is a second organic insulating layer.
  • An inductive panel includes: at least one scan line; at least one data line combination, the data line combination includes a first data line and a second data line; at least one signal detection line combination, the signal detection The line combination includes a first detection line and a second detection line; at least one sensing unit combination, wherein the sensing unit combination is combined with the scan line, the data line, and the signal detection line Connecting, the sensing unit combination includes: a pressure sensing unit, the pressure sensing unit includes a first thin film transistor switch and a pressure sensing device, the first thin film transistor switch and the scan line, the first a data line and the pressure sensing device are connected, the pressure sensing device is further connected to the first detecting line, and the pressure sensing device is configured to sense a pressure applied to the pressure sensing unit And generating a pressure sensing signal; and a temperature sensing unit, the temperature sensing unit comprising a second thin film transistor switch and a temperature sensing device, the second thin film transistor switch and the scan line, a second data line and the temperature sensing
  • the sensing panel further includes: a first calculating circuit, the first calculating circuit is connected to the first detecting line, and the first calculating circuit is configured to receive the pressure sensing signal And for calculating a velocity of the pressure according to the pressure sensing signal; and a second calculating circuit, the second calculating circuit is connected to the second detecting line, and the second calculating circuit is configured to receive the The temperature sensing signal is used to calculate a temperature sensed by the temperature sensing unit according to the temperature sensing signal.
  • the first calculating circuit is further configured to calculate an application position of the pressure according to the pressure sensing signal and a scan signal sent by the scan line; or the second calculating circuit is further used to Calculating a position of the object near the temperature sensing unit or in contact with the temperature sensing unit according to the temperature sensing signal and a scan signal sent by the scan line.
  • the start times of the scanning signals emitted by the adjacent two rows of scanning lines are different by a high level duration.
  • the first thin film transistor switch includes a first gate, a first source, and a first drain, the first gate is connected to the scan line, and the first source is a first data line connection, the first drain is connected to one end of the pressure sensing device, the other end of the pressure sensing device is connected to the first detecting line; and the second thin film transistor switch a second gate, a second source and a second drain, the second gate is connected to the scan line, the second source is connected to the second data line, and the second drain Connected to one end of the temperature sensing device, the other end of the temperature sensing device is connected to the second detecting line.
  • the sensing panel further includes: a substrate, the scan line is disposed on the substrate; a first insulating layer, the first insulating layer is disposed on the substrate, and the An insulating layer covers the scan line; a semiconductor layer, the semiconductor layer is disposed on the first insulating layer; a source layer, the source layer is disposed on the first insulating layer, and the semiconductor a drain layer, the drain layer is disposed on the first insulating layer and the semiconductor layer; a second insulating layer, the second insulating layer is disposed on the first insulating layer, On the semiconductor layer, the source layer and the drain layer; a first electrode layer, the first electrode layer is disposed on the second insulating layer, and the first electrode layer passes the a via hole on the second insulating layer is connected to the drain layer; a dielectric layer, the dielectric layer is disposed on the first electrode layer; and a second electrode layer, the second electrode layer is disposed on the On the dielectric layer.
  • the dielectric layer in the pressure sensing unit, includes a rubber layer; and in the temperature sensing unit, the dielectric layer includes a heat sensitive metal layer.
  • the substrate is a plastic substrate
  • the first insulating layer is a first organic insulating layer
  • the semiconductor layer is an organic semiconductor layer
  • the second insulating layer is a second organic insulating layer.
  • a method for fabricating the above-mentioned sensing panel comprising the steps of: A, disposing a scan line, a first insulating layer, a semiconductor layer, a source layer, a drain layer and a second insulating layer on a substrate; a through hole is disposed on the second insulating layer; C, a first electrode layer is disposed on the second insulating layer, wherein the first electrode layer is connected to the drain layer through the through hole; a dielectric layer is disposed on the first electrode layer; E, a second electrode layer is disposed on the dielectric layer; F, an integral body of the first electrode layer, the dielectric layer, and the second electrode layer Perform patterning.
  • the dielectric layer includes a rubber layer and a heat sensitive metal layer, wherein the rubber layer is located in the pressure sensing unit, and the temperature sensitive metal layer is located in the temperature sensing unit.
  • the step D includes the following steps: d1, disposing the rubber layer on a first electrode layer corresponding to the pressure sensing unit; and d2, a first electrode layer corresponding to the temperature sensing unit The heat sensitive metal layer is disposed thereon;
  • the step F includes the following steps: f1, patterning the whole of the first electrode layer, the rubber layer, and the second electrode layer; The entirety of the first electrode layer, the temperature-sensitive metal layer, and the second electrode layer is patterned.
  • a method for sensing pressure and temperature by the sensing panel comprising the steps of: G, the pressure sensing device senses a pressure applied to the pressure sensing unit, and generates a pressure sensing signal;
  • the temperature sensing device senses a temperature of an object close to the temperature sensing unit or in contact with the temperature sensing unit, and generates a temperature sensing signal; 1.
  • the first computing circuit receives the pressure sense Measuring a signal, and calculating a velocity of the pressure according to the pressure sensing signal; and J, the second calculating circuit receives the temperature sensing signal, and calculating the temperature sensing unit according to the temperature sensing signal The sensed temperature.
  • the method comprises the steps of: K, the first calculating circuit calculates the application of the pressure according to the pressure sensing signal and a scan signal sent by the scan line a position; or L, the second calculation circuit calculates the object that is in contact with or in contact with the temperature sensing unit according to the temperature sensing signal and a scan signal sent by the scan line Where it is.
  • the start times of the scanning signals emitted by the adjacent two rows of scanning lines are different by a high level duration.
  • a method for fabricating the above-mentioned sensing panel comprising the steps of: disposing a scan line, a first insulating layer, a semiconductor layer, a source layer, a drain layer and a second insulating layer on a substrate; a through hole is formed on the second insulating layer; O, a third metal layer is sputtered or evaporated on the second insulating layer, and the third metal layer is patterned to form the first electrode a layer; a dielectric material is coated on the first electrode layer, and the dielectric material is patterned to form the dielectric layer; Q, sputtering or vapor deposition on the dielectric layer A fourth metal layer is patterned and the fourth metal layer is patterned to form the second electrode layer.
  • the dielectric layer includes a rubber layer and a heat sensitive metal layer, wherein the rubber layer is located in the pressure sensing unit, and the temperature sensitive metal layer is located in the temperature sensing unit.
  • the step P includes the following steps: p1, disposing the rubber layer on a first electrode layer corresponding to the pressure sensing unit; and p2, a first electrode layer corresponding to the temperature sensing unit The heat sensitive metal layer is disposed thereon.
  • the present invention can achieve sensing of the pressure applied to the sensing panel and achieve sensing of the temperature of an object in proximity to or in contact with the sensing panel.
  • FIG. 1 is a circuit diagram of a first embodiment of an inductive panel of the present invention
  • FIG. 2 is a waveform diagram of a scan signal emitted by the scan line of FIG. 1;
  • FIG. 3 is a schematic view showing a cross section of a pressure sensing unit of the induction panel of the present invention.
  • FIG. 4 is a schematic view showing a cross section of a temperature sensing unit of the induction panel of the present invention.
  • FIG. 5 is a flow chart of a first embodiment of a method of fabricating an inductive panel of the present invention
  • FIG. 6 is a flow chart of a second embodiment of a method of fabricating an inductive panel of the present invention.
  • FIG. 7 is a flow chart of a first embodiment of a method for sensing pressure and temperature of an inductive panel of the present invention
  • FIG. 8 is a flow chart of a second embodiment of a method for sensing pressure and temperature of an inductive panel of the present invention.
  • FIG. 9 is a flow chart of a third embodiment of a method of sensing pressure and temperature of an inductive panel of the present invention.
  • the sensing panel of the present invention can be applied to the field of display.
  • the sensing panel of the present invention can be integrated with the display panel to sense the strength, temperature, position, and the like of the touch.
  • the sensing panel of the present invention can also be applied to other fields requiring the touch force, temperature, position, and the like.
  • the sensing panel of the present invention can be used as an electronic skin, and is applied to fields such as robots.
  • FIG. 1 is a circuit diagram of a first embodiment of an inductive panel of the present invention.
  • the sensing panel of this embodiment includes at least one scan line (101, 102, 103), at least one data line combination (104, 105), at least one signal detection line combination (106, 107), and at least one sensing unit combination ( 108, 109), a first calculation circuit 110 and a second calculation circuit 111.
  • the data line combination (104, 105) includes a first data line 104 and a second data line 105.
  • the signal detection line combination (106, 107) includes a first detection line 106 and a second detection line.
  • the sensing unit combination (108, 109) is connected to the scan line 101, the data line combination (104, 105), and the signal detection line combination (106, 107), the sensing unit
  • the combination (108, 109) includes a pressure sensing unit 108 and a temperature sensing unit 109.
  • the pressure sensing unit 108 includes a first thin film transistor switch 1081 and a pressure sensing device 1081, the first thin film transistor switch 1081 and the scan line 101, the first data line 104, and the pressure sensing device 1082 is connected, the pressure sensing device 1082 is further connected to the first detecting line 106, the pressure sensing device 1082 is used for sensing the pressure applied to the pressure sensing unit 108, and generating a pressure sense
  • the temperature sensing unit 109 includes a second thin film transistor switch 1091 and a temperature sensing device 1092, the second thin film transistor switch 1091 and the scan line 101, the second data line 105, and the temperature The sensing device 1092 is connected, the temperature sensing device 1092 is further connected to the second detecting line 107, and the temperature sensing device 1092 is configured to sense the temperature sensing unit 109 or the temperature sense The temperature of the object in contact with the unit 109 is measured, and a temperature sensing signal is generated.
  • the scan line 101 is used to provide a scan signal G1 for controlling the first thin film transistor switch 1081 and the second thin film transistor switch 1091 to be turned on or off.
  • the data line is for providing a data signal for causing the pressure sensing device 1082 to generate the pressure sensing signal under the action of the pressure, and for causing the temperature sensing device 1092 The temperature sensing signal is generated under the influence/action of the temperature/thermal force.
  • the first calculation circuit 110 is connected to the first detection line 106, and the first calculation circuit 110 is configured to receive the pressure sensing signal, and is configured to calculate the strength of the pressure according to the pressure sensing signal.
  • the second calculation circuit 111 is connected to the second detection line 107, and the second calculation circuit 111 is configured to receive the temperature sensing signal, and is configured to calculate the temperature sense according to the temperature sensing signal. The temperature sensed by the measuring unit 109.
  • the first thin film transistor switch 1081 includes a first gate, a first source, and a first drain, and the first gate is connected to the scan line 101, the first source The first drain is connected to one end of the pressure sensing device 1082, and the other end of the pressure sensing device 1082 is connected to the first detecting line 106.
  • the first thin film transistor switch 1081 is configured to receive a scan signal G1 on the scan line 101 through the first gate, and to turn the first source on or off according to the scan signal G1 a first current path between the first drains.
  • the second thin film transistor switch 1091 includes a second gate, a second source, and a second drain, the second gate is connected to the scan line 101, the second source and the second data
  • the line 105 is connected, the second drain is connected to one end of the temperature sensing device 1092, and the other end of the temperature sensing device 1092 is connected to the second detecting line 107.
  • the second thin film transistor switch 1091 is configured to receive the scan signal G1 on the scan line 101 through the second gate, and to turn on or off the second source according to the scan signal G1 a second current path between the second drains.
  • FIG. 3 is a schematic cross-sectional view of a pressure sensing unit 108 of the sensing panel of the present invention
  • FIG. 4 is a schematic cross-sectional view of the temperature sensing unit 109 of the sensing panel of the present invention.
  • the sensing panel further includes a substrate 301, a first insulating layer 302, a semiconductor layer 303, a source layer 304, a drain layer 305, a second insulating layer 306, and a first An electrode layer 308, a dielectric layer, and a second electrode layer 310.
  • the scan line 101 is disposed on the substrate 301; the first insulating layer 302 is disposed on the substrate 301, and the first insulating layer 302 covers the scan line 101; the semiconductor layer 303 is disposed on The first insulating layer 302 is disposed on the first insulating layer 302 and on the semiconductor layer 303; the drain layer 305 is disposed on the first insulating layer 302 and The second insulating layer 306 is disposed on the first insulating layer 302, the semiconductor layer 303, the source layer 304, and the drain layer 305; the first electrode The layer 308 is disposed on the second insulating layer 306, and the first electrode layer 308 is connected to the drain layer 305 through a via 307 on the second insulating layer 306; the dielectric layer is disposed on the The first electrode layer 308 is disposed on the dielectric layer.
  • the dielectric layer in the pressure sensing unit 108, includes a rubber layer 309; in the temperature sensing unit 109, the dielectric layer includes a heat sensitive metal layer 311, the thermal The metal layer 311 includes a heat sensitive metal such as Pt (platinum).
  • the scan line 101 is formed by sputtering or vapor-depositing a first metal layer on the substrate 301 and patterning the first metal layer; the first insulating layer 302 is passed Forming an insulating material on the substrate 301 and the scan line 101; the semiconductor layer 303 is coated with a semiconductor material on the first insulating layer 302, and coated Forming a semiconductor material; the source layer 304 and the drain layer 305 are formed by coating a second metal layer on the first insulating layer 302 and the semiconductor layer 303 The second metal layer is formed by patterning; the second insulating layer 306 is formed on the first insulating layer 302, the source layer 304, the drain layer 305, and the semiconductor layer 303 Forming an insulating material; the first electrode layer 308 is formed by sputtering or vapor-depositing a third metal layer on the second insulating layer 306, and patterning the third metal layer Forming the dielectric layer by coating a dielectric material on the first electrode layer 308, Forming the dielectric material by
  • the second embodiment of the inductive panel of the present invention is similar to the first embodiment described above, except that:
  • the first calculating circuit 110 is further configured to calculate the according to the pressure sensing signal and the scan signals (G1, G2, G3) sent by the scan lines (101, 102, 103). The location of the pressure applied.
  • the start times of the scan signals (G1, G2, G3) emitted by the adjacent two rows of scan lines (101, 102, 103) are different by a high level duration 201, and the scan lines (101, 102, 103)
  • the waveform diagram of the scanned signals (G1, G2, G3) is shown in Figure 2.
  • the second calculation circuit 111 is further configured to calculate proximity to the temperature sensing according to the temperature sensing signal and the scan signals (G1, G2, G3) sent by the scan lines (101, 102, 103). The location of the unit 109 or the object in contact with the temperature sensing unit 109.
  • the sensing panel in the first embodiment or the second embodiment may be non-flexible (non-bendable).
  • the substrate 301 is a non-flexible substrate such as a glass substrate
  • the first insulating layer 302 and the first The two insulating layers 306 are all non-flexible insulating layers
  • the semiconductor layer 303 is a non-flexible semiconductor layer.
  • the inductive panel can also be flexible (bendable), as discussed below.
  • the third embodiment of the inductive panel of the present invention is similar to the first embodiment or the second embodiment described above, except that:
  • the substrate 301 is a flexible substrate.
  • the substrate 301 is a plastic substrate, including PET (Polyethylene). Terephthalate, polyethylene terephthalate) or PEN (Polyethylene) Naphthalate, polyethylene naphthalate).
  • the first insulating layer 302 is a first organic insulating layer.
  • the semiconductor layer 303 is an organic semiconductor layer.
  • the second insulating layer 306 is a second organic insulating layer.
  • sensing of pressure (including force and position) applied to the sensing panel and sensing of temperature of an object close to or in contact with the sensing panel can be achieved.
  • FIG. 5 is a flowchart of a first embodiment of a method for fabricating an inductive panel of the present invention.
  • step 501 the scan line 101, the first insulating layer 302, the semiconductor layer 303, the source layer 304, the drain layer 305, and the second insulating layer 306 are provided on the substrate 301.
  • a first metal layer is sputtered or evaporated on the substrate 301, and the first metal layer is patterned to form the scan line 101; the substrate 301 and the scan line are formed.
  • An insulating material is coated on 101 to form the first insulating layer 302; a semiconductor material is coated on the first insulating layer 302, and the coated semiconductor material is patterned to form the a semiconductor layer 303; coating a second metal layer on the first insulating layer 302 and the semiconductor layer 303, and patterning the second metal layer to form the source layer 304 and the a drain layer 305; an insulating material is coated on the first insulating layer 302, the source layer 304, the drain layer 305, and the semiconductor layer 303 to form the second insulating layer 306.
  • a through hole 307 is formed in the second insulating layer 306.
  • a first electrode layer 308 is disposed on the second insulating layer 306, wherein the first electrode layer 308 is connected to the drain layer 305 through the via 307.
  • a dielectric layer is disposed on the first electrode layer 308.
  • step 505 providing a second electrode layer 310 on the dielectric layer.
  • step 506 patterning the entirety of the first electrode layer 308, the dielectric layer, and the second electrode layer 310.
  • FIG. 6 is a flowchart of a second embodiment of a method for fabricating an inductive panel of the present invention. This embodiment is similar to the first embodiment described above, except that:
  • the dielectric layer includes a rubber layer 309 and a heat sensitive metal layer 311, wherein the rubber layer 309 is located in the pressure sensing unit 108, and the temperature sensitive metal layer 311 is located in the temperature sense. In the measuring unit 109.
  • the step D includes the following steps:
  • the rubber layer 309 is disposed on the first electrode layer 308 corresponding to the pressure sensing unit 108.
  • the temperature-sensitive metal layer 311 is disposed on the first electrode layer 308 corresponding to the temperature sensing unit 109.
  • the step E includes the following steps:
  • the second electrode layer 310 is disposed on the rubber layer 309.
  • the second electrode layer 310 is disposed on the temperature-sensitive metal layer 311.
  • the step F includes the following steps:
  • step 5061 patterning the entirety of the first electrode layer 308, the rubber layer 309, and the second electrode layer 310.
  • step 5062 patterning the entirety of the first electrode layer 308, the temperature-sensitive metal layer 311, and the second electrode layer 310.
  • step C, the step D, the step E and the step F may also be implemented in the following manner:
  • a third metal layer is sputtered or evaporated on the second insulating layer 306, and the third metal layer is patterned to form the first electrode layer 308.
  • a dielectric material is coated on the first electrode layer 308, and the dielectric material is patterned to form the dielectric layer.
  • a fourth metal layer is sputtered or evaporated on the dielectric layer, and the fourth metal layer is patterned to form the second electrode layer 310.
  • Figure 7 is a flow chart of a first embodiment of a method of sensing pressure and temperature of an inductive panel of the present invention.
  • the pressure sensing device 1082 senses the pressure applied to the pressure sensing unit 108 and generates a pressure sensing signal.
  • the temperature sensing device 1092 senses a temperature of an object that is in proximity to the temperature sensing unit 109 or in contact with the temperature sensing unit 109, and generates a temperature sensing signal.
  • the first calculation circuit 110 receives the pressure sensing signal, and calculates the strength of the pressure according to the pressure sensing signal.
  • the second calculation circuit 111 receives the temperature sensing signal, and calculates a temperature sensed by the temperature sensing unit 109 according to the temperature sensing signal.
  • FIG. 8 is a flow chart of a second embodiment of a method for sensing pressure and temperature of an inductive panel of the present invention. This embodiment is similar to the first embodiment described above, except that:
  • the method includes the following steps:
  • the first calculation circuit 110 calculates the application of the pressure according to the pressure sensing signal and the scan signals (G1, G2, G3) sent by the scan lines (101, 102, 103) position.
  • Figure 9 is a flow chart of a third embodiment of a method of sensing pressure and temperature of an inductive panel of the present invention. This embodiment is similar to the first embodiment described above, except that:
  • the method includes the following steps:
  • the second calculation circuit 111 calculates the proximity to the temperature sense based on the temperature sensing signal and the scan signals (G1, G2, G3) transmitted by the scan lines (101, 102, 103) The location of the object 109 or the object in contact with the temperature sensing unit 109.
  • sensing of pressure (including force and position) applied to the sensing panel and sensing of temperature of an object close to or in contact with the sensing panel can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种感应面板及其制作方法、感应压力和温度的方法。感应面板包括扫描线,第一、第二数据线,第一、第二侦测线,压力感测单元,温度感测单元。压力感测单元用于感测施加到压力感测单元上的压力;温度感测单元用于感测靠近或接触温度感测单元的物件的温度。本发明能感测施加到感应面板上的压力和温度。

Description

感应面板及其制作方法、感应压力和温度的方法 技术领域
本发明涉及感应技术领域,特别涉及一种感应面板及其制作方法、感应压力和温度的方法。
背景技术
传统的触控感应面板(例如,应用于手机屏幕上的触控感应面板)一般与显示屏集成在一起使用,上述传统的触控感应面板用于感应施加于所述触控感应面板上的触控压力的位置。
传统的触控感应面板不能感应所述触控压力的力度,同时也不能感应触控物的温度。
故,有必要提出一种新的技术方案,以解决上述技术问题。
技术问题
本发明的目的在于提供一种感应面板及其制作方法、感应压力和温度的方法,其能实现对触控压力的感测,以及实现触控物的温度的感测。
技术解决方案
一种感应面板,所述感应面板包括:至少一扫描线;至少一数据线组合,所述数据线组合包括第一数据线和第二数据线;至少一信号侦测线组合,所述信号侦测线组合包括第一侦测线和第二侦测线;至少一感测单元组合,其中,所述感测单元组合与所述扫描线、所述数据线组合、所述信号侦测线组合连接,所述感测单元组合包括:一压力感测单元,所述压力感测单元包括第一薄膜晶体管开关和压力感测器件,所述第一薄膜晶体管开关与所述扫描线、所述第一数据线以及所述压力感测器件连接,所述压力感测器件还与所述第一侦测线连接,所述压力感测器件用于感测施加到所述压力感测单元上的压力,并生成压力感测信号;以及一温度感测单元,所述温度感测单元包括第二薄膜晶体管开关和温度感测器件,所述第二薄膜晶体管开关与所述扫描线、所述第二数据线以及所述温度感测器件连接,所述温度感测器件还与所述第二侦测线连接,所述温度感测器件用于感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号;所述感应面板还包括:一第一计算电路,所述第一计算电路与所述第一侦测线连接,所述第一计算电路用于接收所述压力感测信号,并用于根据所述压力感测信号计算所述压力的力度;以及一第二计算电路,所述第二计算电路与所述第二侦测线连接,所述第二计算电路用于接收所述温度感测信号,并用于根据所述温度感测信号计算所述温度感测单元所感测到的温度;其中,所述第一计算电路还用于根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置,或者所述第二计算电路还用于根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置;相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
在上述感应面板中,所述第一薄膜晶体管开关包括第一栅极、第一源极和第一漏极,所述第一栅极与所述扫描线连接,所述第一源极与所述第一数据线连接,所述第一漏极与所述压力感测器件的一端连接,所述压力感测器件的另一端与所述第一侦测线连接;所述第二薄膜晶体管开关包括第二栅极、第二源极和第二漏极,所述第二栅极与所述扫描线连接,所述第二源极与所述第二数据线连接,所述第二漏极与所述温度感测器件的一端连接,所述温度感测器件的另一端与所述第二侦测线连接。
在上述感应面板中,所述感应面板还包括:一基板,所述扫描线设置于所述基板上;一第一绝缘层,所述第一绝缘层设置于所述基板上,并且所述第一绝缘层覆盖所述扫描线;一半导体层,所述半导体层设置于所述第一绝缘层上;一源极层,所述源极层设置于所述第一绝缘层上以及所述半导体层上;一漏极层,所述漏极层设置于所述第一绝缘层上以及所述半导体层上;一第二绝缘层,所述第二绝缘层设置于所述第一绝缘层、所述半导体层、所述源极层以及所述漏极层上;一第一电极层,所述第一电极层设置于所述第二绝缘层上,所述第一电极层通过所述第二绝缘层上的通孔与所述漏极层连接;一介质层,所述介质层设置于所述第一电极层上;以及一第二电极层,所述第二电极层设置于所述介质层上。
在上述感应面板中,在所述压力感测单元中,所述介质层包括橡胶层;在所述温度感测单元中,所述介质层包括热敏金属层。
在上述感应面板中,所述基板为塑料基板,所述第一绝缘层为第一有机绝缘层,所述半导体层为有机半导体层,所述第二绝缘层为第二有机绝缘层。
一种感应面板,所述感应面板包括:至少一扫描线;至少一数据线组合,所述数据线组合包括第一数据线和第二数据线;至少一信号侦测线组合,所述信号侦测线组合包括第一侦测线和第二侦测线;至少一感测单元组合,其中,所述感测单元组合与所述扫描线、所述数据线组合、所述信号侦测线组合连接,所述感测单元组合包括:一压力感测单元,所述压力感测单元包括第一薄膜晶体管开关和压力感测器件,所述第一薄膜晶体管开关与所述扫描线、所述第一数据线以及所述压力感测器件连接,所述压力感测器件还与所述第一侦测线连接,所述压力感测器件用于感测施加到所述压力感测单元上的压力,并生成压力感测信号;以及一温度感测单元,所述温度感测单元包括第二薄膜晶体管开关和温度感测器件,所述第二薄膜晶体管开关与所述扫描线、所述第二数据线以及所述温度感测器件连接,所述温度感测器件还与所述第二侦测线连接,所述温度感测器件用于感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号。
在上述感应面板中,所述感应面板还包括:一第一计算电路,所述第一计算电路与所述第一侦测线连接,所述第一计算电路用于接收所述压力感测信号,并用于根据所述压力感测信号计算所述压力的力度;以及一第二计算电路,所述第二计算电路与所述第二侦测线连接,所述第二计算电路用于接收所述温度感测信号,并用于根据所述温度感测信号计算所述温度感测单元所感测到的温度。
在上述感应面板中,所述第一计算电路还用于根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置;或者所述第二计算电路还用于根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置。
在上述感应面板中,相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
在上述感应面板中,所述第一薄膜晶体管开关包括第一栅极、第一源极和第一漏极,所述第一栅极与所述扫描线连接,所述第一源极与所述第一数据线连接,所述第一漏极与所述压力感测器件的一端连接,所述压力感测器件的另一端与所述第一侦测线连接;所述第二薄膜晶体管开关包括第二栅极、第二源极和第二漏极,所述第二栅极与所述扫描线连接,所述第二源极与所述第二数据线连接,所述第二漏极与所述温度感测器件的一端连接,所述温度感测器件的另一端与所述第二侦测线连接。
在上述感应面板中,所述感应面板还包括:一基板,所述扫描线设置于所述基板上;一第一绝缘层,所述第一绝缘层设置于所述基板上,并且所述第一绝缘层覆盖所述扫描线;一半导体层,所述半导体层设置于所述第一绝缘层上;一源极层,所述源极层设置于所述第一绝缘层上以及所述半导体层上;一漏极层,所述漏极层设置于所述第一绝缘层上以及所述半导体层上;一第二绝缘层,所述第二绝缘层设置于所述第一绝缘层、所述半导体层、所述源极层以及所述漏极层上;一第一电极层,所述第一电极层设置于所述第二绝缘层上,所述第一电极层通过所述第二绝缘层上的通孔与所述漏极层连接;一介质层,所述介质层设置于所述第一电极层上;以及一第二电极层,所述第二电极层设置于所述介质层上。
在上述感应面板中,在所述压力感测单元中,所述介质层包括橡胶层;在所述温度感测单元中,所述介质层包括热敏金属层。
在上述感应面板中,所述基板为塑料基板,所述第一绝缘层为第一有机绝缘层,所述半导体层为有机半导体层,所述第二绝缘层为第二有机绝缘层。
一种上述感应面板的制作方法,所述方法包括以下步骤:A、在基板上设置扫描线、第一绝缘层、半导体层、源极层、漏极层以及第二绝缘层;B、在所述第二绝缘层上设置通孔;C、在所述第二绝缘层上设置第一电极层,其中,所述第一电极层通过所述通孔与所述漏极层连接;D、在所述第一电极层上设置介质层;E、在所述介质层上设置第二电极层;F、对所述第一电极层、所述介质层和所述第二电极层所构成的整体进行图案化处理。
在上述感应面板的制作方法中,所述介质层包括橡胶层和热敏金属层,其中,所述橡胶层位于所述压力感测单元中,所述热敏金属层位于所述温度感测单元中;所述步骤D包括以下步骤:d1、在所述压力感测单元所对应的第一电极层上设置所述橡胶层;以及d2、在所述温度感测单元所对应的第一电极层上设置所述热敏金属层;所述步骤F包括以下步骤:f1、对所述第一电极层、所述橡胶层和所述第二电极层所构成的整体进行图案化处理;f2、对所述第一电极层、所述热敏金属层和所述第二电极层所构成的整体进行图案化处理。
一种上述感应面板感应压力和温度的方法,所述方法包括以下步骤:G、所述压力感测器件感测施加到所述压力感测单元上的压力,并生成压力感测信号;H、所述温度感测器件感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号;I、所述第一计算电路接收所述压力感测信号,并根据所述压力感测信号计算所述压力的力度;以及J、所述第二计算电路接收所述温度感测信号,并根据所述温度感测信号计算所述温度感测单元所感测到的温度。
在上述感应面板感应压力和温度的方法中,所述方法包括以下步骤:K、所述第一计算电路根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置;或者L、所述第二计算电路根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置。
在上述感应面板感应压力和温度的方法中,相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
一种上述感应面板的制作方法,所述方法包括以下步骤:M、在基板上设置扫描线、第一绝缘层、半导体层、源极层、漏极层以及第二绝缘层;N、在所述第二绝缘层上设置通孔;O、在所述第二绝缘层上溅射或蒸镀一第三金属层,并对所述第三金属层进行图形化,以形成所述第一电极层;P、在所述第一电极层上涂布一介质材料,并对所述介质材料进行图案化,以形成所述介质层;Q、在所述介质层上溅射或蒸镀一第四金属层,并对所述第四金属层进行图形化,以形成所述第二电极层。
在上述感应面板的制作方法中,所述介质层包括橡胶层和热敏金属层,其中,所述橡胶层位于所述压力感测单元中,所述热敏金属层位于所述温度感测单元中;所述步骤P包括以下步骤:p1、在所述压力感测单元所对应的第一电极层上设置所述橡胶层;以及p2、在所述温度感测单元所对应的第一电极层上设置所述热敏金属层。
有益效果
相对现有技术,本发明可以实现对施加到所述感应面板上的压力的感测,以及实现对靠近所述感应面板或与所述感应面板相接触的物件的温度的感测。
附图说明
图1为本发明的感应面板的第一实施例的电路示意图;
图2为图1中的扫描线所发出的扫描信号的波形图;
图3为本发明的感应面板的压力感测单元的截面的示意图;
图4为本发明的感应面板的温度感测单元的截面的示意图;
图5为本发明的感应面板的制作方法的第一实施例的流程图;
图6为本发明的感应面板的制作方法的第二实施例的流程图;
图7为本发明的感应面板感应压力和温度的方法的第一实施例的流程图;
图8为本发明的感应面板感应压力和温度的方法的第二实施例的流程图;
图9为本发明的感应面板感应压力和温度的方法的第三实施例的流程图。
本发明的最佳实施方式
本说明书所使用的词语“实施例”意指实例、示例或例证。此外,本说明书和所附权利要求中所使用的冠词“一”一般地可以被解释为“一个或多个”,除非另外指定或从上下文可以清楚确定单数形式。
本发明的感应面板可以应用于显示领域,例如,本发明的感应面板可以与显示面板集成为一体,以感测触控的力度、温度、位置,等等。本发明的感应面板也可以应用于其它需要感应触控的力度、温度、位置等的领域,例如,本发明的感应面板可以用作电子皮肤,应用于机器人等领域。
参考图1,图1为本发明的感应面板的第一实施例的电路示意图。
本实施例的感应面板包括至少一扫描线(101、102、103)、至少一数据线组合(104、105)、至少一信号侦测线组合(106、107)、至少一感测单元组合(108、109)、一第一计算电路110以及一第二计算电路111。
其中,所述数据线组合(104、105)包括第一数据线104和第二数据线105;所述信号侦测线组合(106、107)包括第一侦测线106和第二侦测线107;所述感测单元组合(108、109)与所述扫描线101、所述数据线组合(104、105)、所述信号侦测线组合(106、107)连接,所述感测单元组合(108、109)包括一压力感测单元108以及一温度感测单元109。所述压力感测单元108包括第一薄膜晶体管开关1081和压力感测器件1082,所述第一薄膜晶体管开关1081与所述扫描线101、所述第一数据线104以及所述压力感测器件1082连接,所述压力感测器件1082还与所述第一侦测线106连接,所述压力感测器件1082用于感测施加到所述压力感测单元108上的压力,并生成压力感测信号;所述温度感测单元109包括第二薄膜晶体管开关1091和温度感测器件1092,所述第二薄膜晶体管开关1091与所述扫描线101、所述第二数据线105以及所述温度感测器件1092连接,所述温度感测器件1092还与所述第二侦测线107连接,所述温度感测器件1092用于感测靠近所述温度感测单元109或与所述温度感测单元109相接触的物件的温度,并生成温度感测信号。
所述扫描线101用于提供扫描信号G1,所述扫描信号G1用于控制所述第一薄膜晶体管开关1081、所述第二薄膜晶体管开关1091开启或关闭。所述数据线用于提供数据信号,所述数据信号用于使得所述压力感测器件1082在所述压力的作用下产生所述压力感测信号,以及用于使得所述温度感测器件1092在所述温度/热力的影响/作用下产生所述温度感测信号。
所述第一计算电路110与所述第一侦测线106连接,所述第一计算电路110用于接收所述压力感测信号,并用于根据所述压力感测信号计算所述压力的力度;所述第二计算电路111与所述第二侦测线107连接,所述第二计算电路111用于接收所述温度感测信号,并用于根据所述温度感测信号计算所述温度感测单元109所感测到的温度。
在本实施例中,所述第一薄膜晶体管开关1081包括第一栅极、第一源极和第一漏极,所述第一栅极与所述扫描线101连接,所述第一源极与所述第一数据线104连接,所述第一漏极与所述压力感测器件1082的一端连接,所述压力感测器件1082的另一端与所述第一侦测线106连接。所述第一薄膜晶体管开关1081用于通过所述第一栅极接收所述扫描线101上的扫描信号G1,以及用于根据所述扫描信号G1开启或关闭所述第一源极与所述第一漏极之间的第一电流通道。
所述第二薄膜晶体管开关1091包括第二栅极、第二源极和第二漏极,所述第二栅极与所述扫描线101连接,所述第二源极与所述第二数据线105连接,所述第二漏极与所述温度感测器件1092的一端连接,所述温度感测器件1092的另一端与所述第二侦测线107连接。所述第二薄膜晶体管开关1091用于通过所述第二栅极接收所述扫描线101上的扫描信号G1,以及用于根据所述扫描信号G1开启或关闭所述第二源极与所述第二漏极之间的第二电流通道。
参考图3和图4,图3为本发明的感应面板的压力感测单元108的截面的示意图,图4为本发明的感应面板的温度感测单元109的截面的示意图。
在本实施例中,所述感应面板还包括一基板301、一第一绝缘层302、一半导体层303、一源极层304、一漏极层305、一第二绝缘层306、一第一电极层308、一介质层以及一第二电极层310。
所述扫描线101设置于所述基板301上;所述第一绝缘层302设置于所述基板301上,并且所述第一绝缘层302覆盖所述扫描线101;所述半导体层303设置于所述第一绝缘层302上;所述源极层304设置于所述第一绝缘层302上以及所述半导体层303上;所述漏极层305设置于所述第一绝缘层302上以及所述半导体层303上;所述第二绝缘层306设置于所述第一绝缘层302、所述半导体层303、所述源极层304以及所述漏极层305上;所述第一电极层308设置于所述第二绝缘层306上,所述第一电极层308通过所述第二绝缘层306上的通孔307与所述漏极层305连接;所述介质层设置于所述第一电极层308上;所述第二电极层310设置于所述介质层上。
在本实施例中,在所述压力感测单元108中,所述介质层包括橡胶层309;在所述温度感测单元109中,所述介质层包括热敏金属层311,所述热敏金属层311包括热敏金属,例如,Pt(铂)。
其中,所述扫描线101是通过在所述基板301上溅射或蒸镀一第一金属层,并对所述第一金属层进行图形化来形成的;所述第一绝缘层302是通过在所述基板301和所述扫描线101上涂布一绝缘材料来形成的;所述半导体层303是通过在所述第一绝缘层302上涂布半导体材料,并对所涂布的所述半导体材料进行图案化来形成的;所述源极层304和所述漏极层305是通过在所述第一绝缘层302和所述半导体层303上涂布一第二金属层,并对所述第二金属层进行图案化来形成的;所述第二绝缘层306是通过在所述第一绝缘层302、所述源极层304、所述漏极层305和所述半导体层303上涂布一绝缘材料来形成的;所述第一电极层308是通过在所述第二绝缘层306上溅射或蒸镀一第三金属层,并对所述第三金属层进行图形化来形成的;所述介质层是通过在所述第一电极层308上涂布一介质材料,并对所述介质材料进行图案化来形成的;所述第二电极层310是通过在所述介质层上溅射或蒸镀一第四金属层,并对所述第四金属层进行图形化来形成的。
本发明的感应面板的第二实施例与上述第一实施例相似,不同之处在于:
在本实施例中,所述第一计算电路110还用于根据所述压力感测信号以及所述扫描线(101、102、103)所发送的扫描信号(G1、G2、G3)计算所述压力的施加位置。其中,相邻两行扫描线(101、102、103)所发出的扫描信号(G1、G2、G3)的起始时间相差一个高电平持续时间201,所述扫描线(101、102、103)所发出的扫描信号(G1、G2、G3)的波形图如图2所示。
或者,所述第二计算电路111还用于根据所述温度感测信号以及所述扫描线(101、102、103)所发送的扫描信号(G1、G2、G3)计算靠近所述温度感测单元109或与所述温度感测单元109相接触的所述物件所在的位置。
上述第一实施例或第二实施例中的感应面板可以是非可挠的(不可弯曲的),具体地,所述基板301为玻璃基板等非可挠基板,所述第一绝缘层302和第二绝缘层306均为非可挠的绝缘层,所述半导体层303为非可挠的半导体层。
相对应地,所述感应面板也可以是可挠的(可弯曲的),论述说明如下。
本发明的感应面板的第三实施例与上述第一实施例或第二实施例相似,不同之处在于:
所述基板301为柔性基板,例如,所述基板301为塑料基板,包括PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)或PEN(Polyethylene Naphthalate,聚萘二甲酸乙二醇酯)。所述第一绝缘层302为第一有机绝缘层。所述半导体层303为有机半导体层。所述第二绝缘层306为第二有机绝缘层。
通过上述技术方案,可以实现对施加到所述感应面板上的压力(包括力度和位置)的感测,以及实现对靠近所述感应面板或与所述感应面板相接触的物件的温度的感测。
参考图5,图5为本发明的感应面板的制作方法的第一实施例的流程图。
本实施例的感应面板的制作方法包括以下步骤:
A(步骤501)、在基板301上设置所述扫描线101、第一绝缘层302、半导体层303、源极层304、漏极层305以及第二绝缘层306。具体地,在所述基板301上溅射或蒸镀一第一金属层,并对所述第一金属层进行图形化,以形成所述扫描线101;在所述基板301和所述扫描线101上涂布一绝缘材料,以形成所述第一绝缘层302;在所述第一绝缘层302上涂布半导体材料,并对所涂布的所述半导体材料进行图案化,以形成所述半导体层303;在所述第一绝缘层302和所述半导体层303上涂布一第二金属层,并对所述第二金属层进行图案化,以形成所述源极层304和所述漏极层305;在所述第一绝缘层302、所述源极层304、所述漏极层305和所述半导体层303上涂布一绝缘材料,以形成所述第二绝缘层306。
B(步骤502)、在所述第二绝缘层306上设置通孔307。
C(步骤503)、在所述第二绝缘层306上设置第一电极层308,其中,所述第一电极层308通过所述通孔307与所述漏极层305连接。
D(步骤504)、在所述第一电极层308上设置介质层。
E(步骤505)、在所述介质层上设置第二电极层310。
F(步骤506)、对所述第一电极层308、所述介质层和所述第二电极层310所构成的整体进行图案化处理。
参考图6,图6为本发明的感应面板的制作方法的第二实施例的流程图。本实施例与上述第一实施例相似,不同之处在于:
在本实施例中,所述介质层包括橡胶层309和热敏金属层311,其中,所述橡胶层309位于所述压力感测单元108中,所述热敏金属层311位于所述温度感测单元109中。
所述步骤D(步骤504)包括以下步骤:
d1(步骤5041)、在所述压力感测单元108所对应的第一电极层308上设置所述橡胶层309。
d2(步骤5042)、在所述温度感测单元109所对应的第一电极层308上设置所述热敏金属层311。
所述步骤E(步骤505)包括以下步骤:
e1(步骤5051)、在所述橡胶层309上设置所述第二电极层310。
e2(步骤5052)、在所述热敏金属层311上设置所述第二电极层310。
所述步骤F(步骤506)包括以下步骤:
f1(步骤5061)、对所述第一电极层308、所述橡胶层309和所述第二电极层310所构成的整体进行图案化处理。
f2(步骤5062)、对所述第一电极层308、所述热敏金属层311和所述第二电极层310所构成的整体进行图案化处理。
在上述实施例中,所述步骤C、所述步骤D、所述步骤E和所述步骤F也可以通过以下方式实施:
在所述第二绝缘层306上溅射或蒸镀一第三金属层,并对所述第三金属层进行图形化,以形成所述第一电极层308。在所述第一电极层308上涂布一介质材料,并对所述介质材料进行图案化,以形成所述介质层。在所述介质层上溅射或蒸镀一第四金属层,并对所述第四金属层进行图形化,以形成所述第二电极层310。
参考图7,图7为本发明的感应面板感应压力和温度的方法的第一实施例的流程图。
本实施例的感应面板感应压力和温度的方法包括以下步骤:
G(步骤701)、所述压力感测器件1082感测施加到所述压力感测单元108上的压力,并生成压力感测信号。
H(步骤702)、所述温度感测器件1092感测靠近所述温度感测单元109或与所述温度感测单元109相接触的物件的温度,并生成温度感测信号。
I(步骤703)、所述第一计算电路110接收所述压力感测信号,并根据所述压力感测信号计算所述压力的力度。
J(步骤704)、所述第二计算电路111接收所述温度感测信号,并根据所述温度感测信号计算所述温度感测单元109所感测到的温度。
参考图8,图8为本发明的感应面板感应压力和温度的方法的第二实施例的流程图。本实施例与上述第一实施例相似,不同之处在于:
在本实施例中,所述方法包括以下步骤:
K(步骤801)、所述第一计算电路110根据所述压力感测信号以及所述扫描线(101、102、103)所发送的扫描信号(G1、G2、G3)计算所述压力的施加位置。
参考图9,图9为本发明的感应面板感应压力和温度的方法的第三实施例的流程图。本实施例与上述第一实施例相似,不同之处在于:
在本实施例中,所述方法包括以下步骤:
L(步骤901)、所述第二计算电路111根据所述温度感测信号以及所述扫描线(101、102、103)所发送的扫描信号(G1、G2、G3)计算靠近所述温度感测单元109或与所述温度感测单元109相接触的所述物件所在的位置。
通过上述技术方案,可以实现对施加到所述感应面板上的压力(包括力度和位置)的感测,以及实现对靠近所述感应面板或与所述感应面板相接触的物件的温度的感测。
尽管已经相对于一个或多个实现方式示出并描述了本发明,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本发明包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种感应面板,其中,所述感应面板包括:
    至少一扫描线;
    至少一数据线组合,所述数据线组合包括第一数据线和第二数据线;
    至少一信号侦测线组合,所述信号侦测线组合包括第一侦测线和第二侦测线;
    至少一感测单元组合,其中,所述感测单元组合与所述扫描线、所述数据线组合、所述信号侦测线组合连接,所述感测单元组合包括:
    一压力感测单元,所述压力感测单元包括第一薄膜晶体管开关和压力感测器件,所述第一薄膜晶体管开关与所述扫描线、所述第一数据线以及所述压力感测器件连接,所述压力感测器件还与所述第一侦测线连接,所述压力感测器件用于感测施加到所述压力感测单元上的压力,并生成压力感测信号;以及
    一温度感测单元,所述温度感测单元包括第二薄膜晶体管开关和温度感测器件,所述第二薄膜晶体管开关与所述扫描线、所述第二数据线以及所述温度感测器件连接,所述温度感测器件还与所述第二侦测线连接,所述温度感测器件用于感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号;
    所述感应面板还包括:
    一第一计算电路,所述第一计算电路与所述第一侦测线连接,所述第一计算电路用于接收所述压力感测信号,并用于根据所述压力感测信号计算所述压力的力度;以及
    一第二计算电路,所述第二计算电路与所述第二侦测线连接,所述第二计算电路用于接收所述温度感测信号,并用于根据所述温度感测信号计算所述温度感测单元所感测到的温度;
    其中,所述第一计算电路还用于根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置,或者所述第二计算电路还用于根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置;
    相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
  2. 根据权利要求1所述的感应面板,其中,所述第一薄膜晶体管开关包括第一栅极、第一源极和第一漏极,所述第一栅极与所述扫描线连接,所述第一源极与所述第一数据线连接,所述第一漏极与所述压力感测器件的一端连接,所述压力感测器件的另一端与所述第一侦测线连接;
    所述第二薄膜晶体管开关包括第二栅极、第二源极和第二漏极,所述第二栅极与所述扫描线连接,所述第二源极与所述第二数据线连接,所述第二漏极与所述温度感测器件的一端连接,所述温度感测器件的另一端与所述第二侦测线连接。
  3. 根据权利要求1所述的感应面板,其中,所述感应面板还包括:
    一基板,所述扫描线设置于所述基板上;
    一第一绝缘层,所述第一绝缘层设置于所述基板上,并且所述第一绝缘层覆盖所述扫描线;
    一半导体层,所述半导体层设置于所述第一绝缘层上;
    一源极层,所述源极层设置于所述第一绝缘层上以及所述半导体层上;
    一漏极层,所述漏极层设置于所述第一绝缘层上以及所述半导体层上;
    一第二绝缘层,所述第二绝缘层设置于所述第一绝缘层、所述半导体层、所述源极层以及所述漏极层上;
    一第一电极层,所述第一电极层设置于所述第二绝缘层上,所述第一电极层通过所述第二绝缘层上的通孔与所述漏极层连接;
    一介质层,所述介质层设置于所述第一电极层上;以及
    一第二电极层,所述第二电极层设置于所述介质层上。
  4. 根据权利要求3所述的感应面板,其中,在所述压力感测单元中,所述介质层包括橡胶层;
    在所述温度感测单元中,所述介质层包括热敏金属层。
  5. 根据权利要求3所述的感应面板,其中,所述基板为塑料基板,所述第一绝缘层为第一有机绝缘层,所述半导体层为有机半导体层,所述第二绝缘层为第二有机绝缘层。
  6. 一种感应面板,其中,所述感应面板包括:
    至少一扫描线;
    至少一数据线组合,所述数据线组合包括第一数据线和第二数据线;
    至少一信号侦测线组合,所述信号侦测线组合包括第一侦测线和第二侦测线;
    至少一感测单元组合,其中,所述感测单元组合与所述扫描线、所述数据线组合、所述信号侦测线组合连接,所述感测单元组合包括:
    一压力感测单元,所述压力感测单元包括第一薄膜晶体管开关和压力感测器件,所述第一薄膜晶体管开关与所述扫描线、所述第一数据线以及所述压力感测器件连接,所述压力感测器件还与所述第一侦测线连接,所述压力感测器件用于感测施加到所述压力感测单元上的压力,并生成压力感测信号;以及
    一温度感测单元,所述温度感测单元包括第二薄膜晶体管开关和温度感测器件,所述第二薄膜晶体管开关与所述扫描线、所述第二数据线以及所述温度感测器件连接,所述温度感测器件还与所述第二侦测线连接,所述温度感测器件用于感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号。
  7. 根据权利要求6所述的感应面板,其中,所述感应面板还包括:
    一第一计算电路,所述第一计算电路与所述第一侦测线连接,所述第一计算电路用于接收所述压力感测信号,并用于根据所述压力感测信号计算所述压力的力度;以及
    一第二计算电路,所述第二计算电路与所述第二侦测线连接,所述第二计算电路用于接收所述温度感测信号,并用于根据所述温度感测信号计算所述温度感测单元所感测到的温度。
  8. 根据权利要求7所述的感应面板,其中,所述第一计算电路还用于根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置;或者
    所述第二计算电路还用于根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置。
  9. 根据权利要求8所述的感应面板,其中,相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
  10. 根据权利要求6所述的感应面板,其中,所述第一薄膜晶体管开关包括第一栅极、第一源极和第一漏极,所述第一栅极与所述扫描线连接,所述第一源极与所述第一数据线连接,所述第一漏极与所述压力感测器件的一端连接,所述压力感测器件的另一端与所述第一侦测线连接;
    所述第二薄膜晶体管开关包括第二栅极、第二源极和第二漏极,所述第二栅极与所述扫描线连接,所述第二源极与所述第二数据线连接,所述第二漏极与所述温度感测器件的一端连接,所述温度感测器件的另一端与所述第二侦测线连接。
  11. 根据权利要求6所述的感应面板,其中,所述感应面板还包括:
    一基板,所述扫描线设置于所述基板上;
    一第一绝缘层,所述第一绝缘层设置于所述基板上,并且所述第一绝缘层覆盖所述扫描线;
    一半导体层,所述半导体层设置于所述第一绝缘层上;
    一源极层,所述源极层设置于所述第一绝缘层上以及所述半导体层上;
    一漏极层,所述漏极层设置于所述第一绝缘层上以及所述半导体层上;
    一第二绝缘层,所述第二绝缘层设置于所述第一绝缘层、所述半导体层、所述源极层以及所述漏极层上;
    一第一电极层,所述第一电极层设置于所述第二绝缘层上,所述第一电极层通过所述第二绝缘层上的通孔与所述漏极层连接;
    一介质层,所述介质层设置于所述第一电极层上;以及
    一第二电极层,所述第二电极层设置于所述介质层上。
  12. 根据权利要求11所述的感应面板,其中,在所述压力感测单元中,所述介质层包括橡胶层;
    在所述温度感测单元中,所述介质层包括热敏金属层。
  13. 根据权利要求11所述的感应面板,其中,所述基板为塑料基板,所述第一绝缘层为第一有机绝缘层,所述半导体层为有机半导体层,所述第二绝缘层为第二有机绝缘层。
  14. 一种如权利要求6所述的感应面板的制作方法,其中,所述方法包括以下步骤:
    A、在基板上设置扫描线、第一绝缘层、半导体层、源极层、漏极层以及第二绝缘层;
    B、在所述第二绝缘层上设置通孔;
    C、在所述第二绝缘层上设置第一电极层,其中,所述第一电极层通过所述通孔与所述漏极层连接;
    D、在所述第一电极层上设置介质层;
    E、在所述介质层上设置第二电极层;
    F、对所述第一电极层、所述介质层和所述第二电极层所构成的整体进行图案化处理。
  15. 根据权利要求14所述的感应面板的制作方法,其中,所述介质层包括橡胶层和热敏金属层,其中,所述橡胶层位于所述压力感测单元中,所述热敏金属层位于所述温度感测单元中;
    所述步骤D包括以下步骤:
    d1、在所述压力感测单元所对应的第一电极层上设置所述橡胶层;以及
    d2、在所述温度感测单元所对应的第一电极层上设置所述热敏金属层;
    所述步骤F包括以下步骤:
    f1、对所述第一电极层、所述橡胶层和所述第二电极层所构成的整体进行图案化处理;
    f2、对所述第一电极层、所述热敏金属层和所述第二电极层所构成的整体进行图案化处理。
  16. 一种如权利要求6所述的感应面板感应压力和温度的方法,其中,所述方法包括以下步骤:
    G、所述压力感测器件感测施加到所述压力感测单元上的压力,并生成压力感测信号;
    H、所述温度感测器件感测靠近所述温度感测单元或与所述温度感测单元相接触的物件的温度,并生成温度感测信号;
    I、所述第一计算电路接收所述压力感测信号,并根据所述压力感测信号计算所述压力的力度;以及
    J、所述第二计算电路接收所述温度感测信号,并根据所述温度感测信号计算所述温度感测单元所感测到的温度。
  17. 根据权利要求16所述的感应面板感应压力和温度的方法,其中,所述方法包括以下步骤:
    K、所述第一计算电路根据所述压力感测信号以及所述扫描线所发送的扫描信号计算所述压力的施加位置;或者
    L、所述第二计算电路根据所述温度感测信号以及所述扫描线所发送的扫描信号计算靠近所述温度感测单元或与所述温度感测单元相接触的所述物件所在的位置。
  18. 根据权利要求17所述的感应面板感应压力和温度的方法,其中,相邻两行扫描线所发出的扫描信号的起始时间相差一个高电平持续时间。
  19. 一种如权利要求6所述的感应面板的制作方法,其中,所述方法包括以下步骤:
    M、在基板上设置扫描线、第一绝缘层、半导体层、源极层、漏极层以及第二绝缘层;
    N、在所述第二绝缘层上设置通孔;
    O、在所述第二绝缘层上溅射或蒸镀一第三金属层,并对所述第三金属层进行图形化,以形成所述第一电极层;
    P、在所述第一电极层上涂布一介质材料,并对所述介质材料进行图案化,以形成所述介质层;
    Q、在所述介质层上溅射或蒸镀一第四金属层,并对所述第四金属层进行图形化,以形成所述第二电极层。
  20. 根据权利要求19所述的感应面板的制作方法,其中,所述介质层包括橡胶层和热敏金属层,其中,所述橡胶层位于所述压力感测单元中,所述热敏金属层位于所述温度感测单元中;
    所述步骤P包括以下步骤:
    p1、在所述压力感测单元所对应的第一电极层上设置所述橡胶层;以及
    p2、在所述温度感测单元所对应的第一电极层上设置所述热敏金属层。
PCT/CN2015/078062 2015-04-13 2015-04-30 感应面板及其制作方法、感应压力和温度的方法 WO2016165167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/773,246 US10001862B2 (en) 2015-04-13 2015-04-30 Sensing panel and manufacturing method of the same, method for pressure detection and temperature detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510170441.0A CN104777934B (zh) 2015-04-13 2015-04-13 感应面板及其制作方法、感应压力和温度的方法
CN201510170441.0 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016165167A1 true WO2016165167A1 (zh) 2016-10-20

Family

ID=53619444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078062 WO2016165167A1 (zh) 2015-04-13 2015-04-30 感应面板及其制作方法、感应压力和温度的方法

Country Status (3)

Country Link
US (1) US10001862B2 (zh)
CN (1) CN104777934B (zh)
WO (1) WO2016165167A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094306B (zh) * 2016-08-08 2019-11-26 深圳市华星光电技术有限公司 一种液晶显示面板、阵列基板及其驱动方法
JP6834547B2 (ja) * 2017-02-06 2021-02-24 大日本印刷株式会社 センサシートおよびセンサシステム
CN107561761B (zh) * 2017-09-20 2020-09-01 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN109794855B (zh) * 2017-11-17 2020-09-11 长鑫存储技术有限公司 对作用于基底上的压力的测量方法
CN108196716B (zh) * 2018-01-04 2020-08-28 厦门天马微电子有限公司 显示面板、显示装置和显示面板控制方法
CN108168734B (zh) * 2018-02-08 2020-01-07 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法
CN109917961B (zh) * 2019-02-28 2022-06-24 京东方科技集团股份有限公司 一种压力检测装置、显示面板以及显示装置
CN111337152B (zh) * 2020-02-26 2021-09-17 京东方科技集团股份有限公司 电子皮肤和电子设备
CN114420050A (zh) * 2022-01-29 2022-04-29 京东方科技集团股份有限公司 显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303465A (zh) * 2007-05-08 2008-11-12 精工爱普生株式会社 液晶装置及电子设备
CN201993732U (zh) * 2011-03-28 2011-09-28 昆山龙腾光电有限公司 一种触控显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610629A (en) * 1991-12-06 1997-03-11 Ncr Corporation Pen input to liquid crystal display
KR101018751B1 (ko) * 2004-09-24 2011-03-04 삼성전자주식회사 표시 장치 및 그 구동 방법
KR101163985B1 (ko) * 2009-05-05 2012-07-09 호서대학교 산학협력단 표시 장치의 온도 센서 및 이를 포함하는 표시 장치의 제조 방법
KR101663034B1 (ko) * 2009-08-26 2016-10-07 삼성디스플레이 주식회사 접촉 감지 기능이 있는 전기 영동 표시 장치
TW201214237A (en) * 2010-09-16 2012-04-01 Asustek Comp Inc Touch display device and control method thereof
EP2710582A4 (en) * 2011-05-17 2014-12-31 Cross Match Technologies Inc DIGITAL FOOTPRINT SENSORS
TWI452520B (zh) * 2011-12-27 2014-09-11 Ind Tech Res Inst 感測裝置及其驅動方法
KR101974579B1 (ko) * 2012-09-05 2019-08-26 삼성전자주식회사 압력 센서 및 압력 센싱 방법
TWI493402B (zh) * 2013-03-01 2015-07-21 Univ Chung Hua 觸控面板及其製備方法
US9606606B2 (en) * 2013-06-03 2017-03-28 Qualcomm Incorporated Multifunctional pixel and display
TWI541508B (zh) * 2013-09-09 2016-07-11 群創光電股份有限公司 指紋辨識裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303465A (zh) * 2007-05-08 2008-11-12 精工爱普生株式会社 液晶装置及电子设备
CN201993732U (zh) * 2011-03-28 2011-09-28 昆山龙腾光电有限公司 一种触控显示面板

Also Published As

Publication number Publication date
US20180024682A1 (en) 2018-01-25
CN104777934B (zh) 2017-10-03
CN104777934A (zh) 2015-07-15
US10001862B2 (en) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2016165167A1 (zh) 感应面板及其制作方法、感应压力和温度的方法
WO2014008681A1 (zh) 显示装置及其显示图像暨触摸感应的方法
WO2018196112A1 (zh) Ltps阵列基板及其制作方法
WO2009148214A2 (ko) 터치패널 장치 및 이의 접촉위치 검출방법
EP2737390A1 (en) Capacitive touch panel and a method of manufacturing the same
WO2018086201A1 (zh) 柔性触摸屏及柔性触摸显示屏
WO2019114063A1 (zh) Oled 触控显示面板及其制备方法
WO2016176889A1 (zh) 阵列基板及液晶显示面板
WO2014208897A1 (ko) 터치 검출 장치 및 방법
WO2016165170A1 (zh) 触控感应面板及其触控感应方法、制作方法
WO2018218711A1 (zh) Tft基板和液晶显示面板
WO2019037224A1 (zh) 显示屏及其制备方法
WO2014019453A1 (zh) 温感式触控面板及其制造方法与侦测方法
WO2019075813A1 (zh) 微型led显示面板及微型led显示器
WO2016058172A1 (zh) 一种coa基板及其制作方法
CN107340918B (zh) 一种阵列基板、触控显示面板及触控显示装置
WO2017016042A1 (zh) 有机薄膜晶体管阵列基板及其制作方法
WO2016123819A1 (zh) 触控显示面板的制作方法
WO2017063207A1 (zh) 阵列基板及其制造方法
WO2016149958A1 (zh) 液晶显示面板、阵列基板及其薄膜晶体管的制造方法
WO2016095252A1 (zh) Ffs阵列基板及液晶显示面板
WO2012177032A2 (ko) 정전용량 터치 패널의 제조 방법 및 이에 의해 제조되는 터치 패널
WO2019114065A1 (zh) 一种显示面板及其制备方法、显示装置
CN107389256A (zh) 用于检测压力的电子装置
WO2019071675A1 (zh) 一种薄膜晶体管及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14773246

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888871

Country of ref document: EP

Kind code of ref document: A1