WO2014019453A1 - 温感式触控面板及其制造方法与侦测方法 - Google Patents

温感式触控面板及其制造方法与侦测方法 Download PDF

Info

Publication number
WO2014019453A1
WO2014019453A1 PCT/CN2013/079481 CN2013079481W WO2014019453A1 WO 2014019453 A1 WO2014019453 A1 WO 2014019453A1 CN 2013079481 W CN2013079481 W CN 2013079481W WO 2014019453 A1 WO2014019453 A1 WO 2014019453A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
temperature sensing
temperature
substrate
block
Prior art date
Application number
PCT/CN2013/079481
Other languages
English (en)
French (fr)
Inventor
贝拉默戈鲁·戈卡尔普
Original Assignee
宸鸿科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鸿科技(厦门)有限公司 filed Critical 宸鸿科技(厦门)有限公司
Publication of WO2014019453A1 publication Critical patent/WO2014019453A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a temperature sensitive touch panel, a method for fabricating the same, and a method for detecting the same.
  • Touch Panel It has been widely used in consumer, communication, computer and other electronic products, such as game consoles, smart phones, tablets, etc., which are widely used today, as an input interface for many electronic products.
  • the display part of these electronic products is generally integrated by the touch panel and the display panel, and the user can select the action to be performed by using a finger or a stylus according to the function options on the display screen, thereby eliminating the need for Other traditional types of input devices (For example, buttons, keyboard, or joystick) Inputs under operation greatly improve the convenience of input.
  • the working principle of the capacitive inductive touch panel is to utilize the capacitance change generated by the electrostatic combination between the arranged transparent electrodes and the human body, thereby generating an induced current to detect the coordinates of the touch position. Since capacitive sensing touch panels have obvious advantages in terms of accuracy, reaction time and service life, they are currently widely used.
  • a temperature sensitive touch panel includes a substrate and a sensing layer disposed on the substrate, wherein the sensing layer comprises: a temperature sensing block, the temperature sensing block is made of a heat sensitive material and is disposed at And a wire disposed on the substrate and electrically connected to the temperature sensitive block.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks staggered, and the plurality of first axial temperature sensing blocks and the plurality of second axial directions The temperature sensing blocks are insulated from each other.
  • first axial temperature sensing block and the second axial temperature sensing block are located on both sides of the substrate and are insulated from each other by the substrate.
  • the substrate includes a first substrate and a second substrate, the first axial temperature sensing block is disposed on a lower surface of the first substrate, and the second axial temperature sensing block is disposed on the substrate a lower surface of the second substrate, the second substrate being located between the first axial temperature sensing block and the second axial temperature sensing block.
  • the method further includes an insulating layer, the first axial temperature sensing block is disposed on the substrate, the second axial temperature sensing block is disposed on the insulating layer, and the insulating layer is disposed on the first layer An axial temperature sensing block and the second axial temperature sensing block.
  • the substrate includes a first substrate and a second substrate, the first axial temperature sensing block is disposed on a lower surface of the first substrate, and the second axial temperature sensing block is disposed on the An upper surface of the second substrate, a sealing gas layer is formed between the lower surface of the first substrate and the upper surface of the second substrate, the plurality of first axial temperature sensing blocks and the plurality of second axial directions
  • the temperature sensing blocks are insulated from each other.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks disposed on the same surface of the substrate, the wires including a plurality of first axial wires parallel to each other and a plurality of mutually parallel second axial wires, the sensing layer further comprising a plurality of insulating spacers disposed on the first axial wires; the first axial temperature sensing block disposed on the insulating spacers a side, but connected in series by the first axial wire, the second axial temperature sensing block is disposed on both sides of the first axial wire, and the second axial wire spans the insulating partition The second axial temperature sensing block is connected in series and in series.
  • the substrate is a cover.
  • the wire input includes a wire and an output wire
  • each of the temperature sensing blocks is electrically connected to the corresponding input wire and the output wire.
  • a shielding layer disposed on the sensing layer to prevent a capacitive object from generating a capacitive effect on the sensing layer is further included.
  • the temperature sensing block is in the form of a sheet made of a transparent or non-transparent material.
  • the temperature sensitive mass is made by doping a dopant in a polyethylene dioxythiophene: poly(p-styrenesulfonate) anion.
  • the dopant is one or more of sorbitol, ethylene glycol, N-methylpyrrolidone, and carbon nanotubes.
  • a method for manufacturing a temperature sensitive touch panel comprising the steps of disposing a sensing layer on a substrate, the sensing layer comprising: a temperature sensing block, the temperature sensing block being made of a heat sensitive material. And formed on the substrate; and a wire disposed on the substrate and electrically connected to the temperature sensitive block.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a second axial temperature sensing block disposed on the same surface of the substrate
  • the wire includes a plurality of first axial wires parallel to each other and a plurality of mutually parallel second axial wires
  • the step of disposing the sensing layer on the substrate comprises: arranging the first axial wires on the substrate; and laying a plurality of insulating spacers on the first axial wires
  • the first axial temperature sensing block, the second axial temperature sensing block and the second axial wire are formed at the same time, and the first axial temperature sensing block is disposed on both sides of the insulating spacer, and is The first axial wires are serially connected
  • the second axial temperature sensing block is disposed on both sides of the first axial wire
  • the second axial wire is spanned across the insulating spacer and connected in series The second axial temperature sensing block.
  • each temperature sensing block is electrically connected to the corresponding wire.
  • the method further includes the step of disposing a shielding layer on the sensing layer to prevent a capacitive object from generating a capacitive effect on the sensing layer.
  • a method for detecting a temperature sensitive touch panel comprising the steps of: driving a temperature sensing block; detecting an output signal of the temperature sensing block; and determining, according to the output signal, whether the temperature sensing block has a temperature. The change; and the position of the temperature sensing block that outputs the temperature change is the touch position.
  • the step of determining whether the temperature sensing block has a temperature change according to the output signal comprises: determining, by the temperature sensing block whose output signal changes satisfy a predetermined range, a temperature sensing block in which a temperature change occurs.
  • the step of driving the temperature sensitive block includes driving only the temperature sensitive block of the area that can respond to the touch operation.
  • the manufacturing method and the detecting method thereof if a finger or a dedicated thermal stylus touches the touch panel, the resistance of the temperature sensing block changes correspondingly, so that the output signal is in touch.
  • the position of the touch can be finally determined.
  • the detection method of the temperature sensitive touch panel determines the position of the touch according to the temperature change of the temperature sensing block, and can detect the conductive object and the touch position of the non-conductive object on the touch panel.
  • 1a is a schematic view showing the front structure of a temperature sensitive touch panel of the first embodiment
  • FIG. 1b is a cross-sectional view of the temperature sensitive touch panel illustrated along the section line I-I' of the embodiment of FIG. 1a;
  • 1c is a schematic cross-sectional view of a temperature sensitive touch panel of a second embodiment
  • 2a is a schematic front view of a temperature sensitive touch panel of a third embodiment
  • FIG. 2b is a cross-sectional view of the temperature sensitive touch panel of the embodiment of FIG. 2a along the section line A-A';
  • 2c is a schematic cross-sectional view of a temperature sensitive touch panel of a fourth embodiment
  • 3a is a schematic front view of a temperature sensitive touch panel of a fifth embodiment
  • 3b is a cross-sectional view of the temperature sensitive touch panel of the embodiment of FIG. 3a along the broken line B-B';
  • 3c is a schematic cross-sectional structural view of a temperature sensitive touch panel of a sixth embodiment
  • FIG. 4a is a schematic cross-sectional structural view of a temperature sensitive touch panel of a seventh embodiment
  • 4b is a schematic cross-sectional structural view of a temperature sensitive touch panel of an eighth embodiment
  • FIG. 5 is a schematic cross-sectional structural view of a temperature sensitive touch panel of a ninth embodiment
  • FIG. 6 is a schematic side view showing the structure of a temperature sensitive touch panel according to a tenth embodiment
  • FIG. 7 is a schematic side view showing the structure of a temperature sensitive touch panel according to an eleventh embodiment.
  • FIG. 8 is a flowchart of a method for detecting a temperature sensitive touch panel according to an embodiment of the present invention.
  • the following embodiments provide a temperature sensitive touch panel including a substrate and a sensing layer disposed on the substrate.
  • the sensing layer is disposed on the substrate, and all of the sensing layers may be disposed on the substrate, or a portion of the sensing layer may be disposed on the substrate (eg, another portion may be disposed on the insulating layer, etc.).
  • the sensing layer includes a temperature sensing block and a wire.
  • the temperature sensitive block is made of a heat sensitive material and is disposed on the substrate, and the wire is disposed on the substrate and electrically connected to the temperature sensitive block.
  • the temperature sensitive touch panel determines the position of the touch according to the temperature change of the temperature sensing block, and can detect the conductive object and the touch position of the non-conductive object on the touch panel.
  • FIG. 1a is a schematic view showing the front structure of a temperature sensitive touch panel of the first embodiment.
  • FIG. 1b is a cross-sectional view of the temperature sensitive touch panel taken along line I-I' of the embodiment of FIG. 1a.
  • the temperature sensitive touch panel 100 of the present embodiment includes a substrate 110 and a sensing layer 120 disposed on the substrate 110 .
  • the sensing layer 120 includes a temperature sensing block 122 and a wire 124.
  • the temperature sensing blocks 122 are made of a heat sensitive material and are disposed on the substrate 110 in an array.
  • a wire 124 is disposed on the substrate 110 and electrically connected to the temperature sensing block 122, wherein the wire 124 includes an input wire 124a and an output wire 124b.
  • the input wire 124a is for inputting a drive signal
  • the output wire 124b is for outputting a sense signal.
  • Each of the temperature sensing blocks 122 is connected to at least one input wire 124a and one input wire 124b.
  • the wire 124 also electrically connects the temperature sensing block 122 to a controller (not shown), and the wire 124 transmits a signal generated by the temperature sensing block 122 to the controller, and the touch position coordinates are obtained by the operation of the controller.
  • the temperature sensitive touch panel 100 first inputs a driving signal through the input wire 124a, drives the temperature sensing block 122 disposed on the substrate 110, and detects an output signal of the output wire 124b connected to the temperature sensing block 122. Then, it is determined whether the temperature sensing block 122 has a temperature change according to the output signal, and the position of the temperature sensing block 122 that outputs the temperature change is the touch position. Since the temperature sensing block 122 is made of a heat sensitive material having a high temperature coefficient of resistance, if a finger or a dedicated thermal stylus touches the temperature sensitive touch panel 100, the resistance of the temperature sensing block 122 changes accordingly. The output signal is made different from when it is touched by a finger or a dedicated thermal stylus.
  • the contact area is large, and the temperature sensing block 122 that detects the temperature change is also large, and the position of the touch can be finally determined by calculation.
  • the center of the temperature sensing block 122 of a plurality of temperature changes is calculated, and the center is taken as the position of the touch.
  • the temperature sensitive touch panel 100 of the above embodiment determines the position of the touch according to the temperature change of the temperature sensing block 122, and can detect both the conductive object and the touch position of the non-conductive object on the touch panel.
  • each of the temperature sensing blocks 122 is electrically connected to the controller through the corresponding input wire 124a and the output wire 124b.
  • This structure is simple, and is relatively simple in performing contact detection, and only needs to be detected separately for each temperature sensing block 122.
  • each of the temperature sensing blocks 122 is independent of each other, and multi-touch detection can be realized.
  • FIG. 1c is a schematic cross-sectional view of a temperature sensitive touch panel of a second embodiment.
  • the substrate is a cover (cover The glass-sensing touch panel includes a cover plate 130c and a sensing layer 120c disposed on the cover plate 130c. Since the touch panel is as shown in FIG. 1a and FIG. 1b, it is generally required to further provide a cover plate (not shown in FIGS. 1a and 1b) on the sensing layer 120 to protect the sensing layer 120 from the environment.
  • the sensing layer 120c is directly disposed on the cover plate 130c, so that the cover plate 130c serves as the substrate carrying the sensing layer 120c and the cover plate of the protection sensing layer 120c, so that the ones in FIG. 1a and FIG. 1b can be omitted.
  • the substrate 110 simplifies structure and saves cost.
  • the structure of the sensing layer 120c in this embodiment is the same as that of the sensing layer 120 in FIG. 1a and FIG. 1b, and details are not described herein again.
  • the temperature sensitive touch panel 200 includes a substrate 210 and a sensing layer 220 disposed on the substrate 210.
  • the sensing layer 220 includes a temperature sensing block 222 and a wire 224.
  • the temperature sensing block 222 is made of a heat sensitive material and is disposed on the substrate 210.
  • the temperature sensing block 222 includes a plurality of first axial temperature sensing blocks 222a and a plurality of second axial temperature sensing blocks 222b, and the plurality of first axial temperature sensing blocks 222a and the plurality of second axial temperature sensing blocks 222b are disposed on the substrate 210. On the surface.
  • the wire 224 is disposed on the substrate 210 and electrically connected to the temperature sensing block 222.
  • the wire 224 includes a plurality of first axial wires 224a parallel to each other and a plurality of second axial wires 224b parallel to each other.
  • the wire 224 also electrically connects the temperature sensing block 222 with a controller (not shown), and the wire 224 transmits a signal generated by the temperature sensing block 122 to the controller, and the touch position coordinates are obtained by the operation of the controller.
  • the sensing layer 220 further includes a plurality of insulating spacers 226 disposed on the first axial wires 224a.
  • the first axial temperature sensing block 222a is disposed on both sides of the insulating spacer 226 and is connected in series by the first axial wire 224a, and the second axial temperature sensing block 222b is divided into the first axial direction.
  • the wire 224a is double-sided, and the second axial wire 224b spans the insulating spacer 226 and is connected in series with the second axial temperature sensing block 222b.
  • the first axial wires 224a are perpendicular to the second axial wires 224b, or are distributed at an angle, but are not limited thereto.
  • FIG. 2c is a schematic cross-sectional view of the temperature sensitive touch panel of the fourth embodiment.
  • the substrate is a cover plate 230c. Since the touch panel is as shown in FIG. 2a and FIG. 2b, it is generally required to provide a cover plate on the sensing layer 220 (not shown in FIG. 2a and FIG. 2b).
  • the sensing layer 220 is directly disposed on the cover plate 230c, and the cover plate 230c serves as the substrate carrying the sensing layer 220 and the protective sensing layer.
  • the cover plate thereby eliminating the substrate 210 of Figures 2a and 2b, simplifies the structure and saves cost.
  • the structure of the sensing layer in this embodiment is the same as that in FIGS. 2a and 2b and will not be described again.
  • the structures of the third embodiment and the fourth embodiment are more complicated than the structure of the embodiment shown in FIG. 1a, it is advantageous to reduce the number of ports of the controller, increase the layout density of the temperature sensing block 222, and thereby improve the temperature sensing touch.
  • the touch resolution of the panel 200 is advantageous to reduce the number of ports of the controller, increase the layout density of the temperature sensing block 222, and thereby improve the temperature sensing touch.
  • the touch resolution of the panel 200 is advantageous to reduce the number of ports of the controller, increase the layout density of the temperature sensing block 222, and thereby improve the temperature sensing touch.
  • the touch resolution of the panel 200 is advantageous to reduce the number of ports of the controller, increase the layout density of the temperature sensing block 222, and thereby improve the temperature sensing touch.
  • FIG. 3 is a schematic front view of a temperature sensitive touch panel of a fifth embodiment.
  • FIG. Figure 3b is a cross-sectional view of the temperature sensitive touch panel along the line B-B' of the embodiment of Figure 3a.
  • the temperature sensitive touch panel 300 includes a substrate 310, a plurality of first axial temperature sensing blocks 322a and a plurality of second axial temperature sensing blocks 322b, a plurality of first axial wires 324a, and a plurality of Two axial wires 324b.
  • the first axial temperature sensing block 322a and the second axial temperature sensing block 322b are respectively staggered on both sides of the substrate 310 and are separated from each other by the substrate 310 to be electrically insulated from each other.
  • the first axial wire 324a is disposed on the substrate 310 and electrically connected to the first axial temperature sensing block 322a.
  • the second axial wire 324b is disposed on the substrate 310 and electrically connected to the second axial temperature sensing block 322b.
  • the first axial temperature sensing block 322a may also be formed by connecting the first axial temperature sensing block 222a shown in FIG. 2a through the first wire 224a
  • the second axial temperature sensing block 322b may also be The second axial temperature sensing block 222b shown in Fig. 2a is connected by a second wire 224b.
  • 3c is a schematic cross-sectional structural view of a temperature sensitive touch panel of a sixth embodiment.
  • another substrate is added to the first axial temperature sensing block 322a in the embodiment shown in FIG. 3a, that is, the temperature sensitive touch panel in the embodiment includes the first A substrate 310a and a second substrate 310b.
  • the first axial temperature sensing block 322a may be directly disposed on the lower surface of the first substrate 310a, and the second axial temperature sensing block 322b is disposed on the lower surface of the second substrate 310b, the first axial temperature sensing block 322a and the second axis
  • the temperature sensing blocks 322b are separated from each other by the second substrate 310b to be electrically insulated from each other.
  • the first substrate 310a may be a cover plate, that is, a plate body that can be directly contacted by the touch object when touched, as described in the second embodiment and the fourth embodiment, so that the FIG. 3b can be omitted.
  • the substrate 310 simplifies structure and saves cost.
  • the temperature sensitive touch panel 400 includes a substrate 410, an insulating layer 440, a plurality of first axial temperature sensing blocks 422a disposed on the substrate 410, and a plurality of second axial temperatures disposed on the insulating layer 440.
  • Sense block 422b Compared with the embodiment shown in FIG. 3a, the difference is that the insulating layer 440 is disposed between the plurality of first axial temperature sensing blocks 422a and the plurality of second axial temperature sensing blocks 422b and is separated from each other by the insulating layer 440 to be electrically connected to each other. insulation.
  • the insulating layer 440 is designed as a whole layer, the first axial temperature sensing block 422a is disposed on one side of the insulating layer 440, and the second axial temperature sensing block 422b is disposed on the other side of the insulating layer 440.
  • FIG. 4b is a cross-sectional structural view of the temperature sensitive touch panel of the eighth embodiment. As shown in FIG. 4b, the embodiment is different from the embodiment shown in FIG. 4a in that the second axial temperature sensing block 422a is directly disposed on the cover. On the board 430, as described in the second embodiment and the fourth embodiment described above, the substrate 410 of FIG. 4b can be omitted to save the substrate 410.
  • the first axial temperature sensing block 422a and the second axial temperature sensing block 422b are electrically insulated from each other by being separated by an insulating layer 440.
  • FIG. 5 is a schematic cross-sectional structural view of a temperature sensitive touch panel of a ninth embodiment.
  • the temperature sensitive touch panel 500 includes a first substrate 510a, a plurality of first axial temperature sensing blocks 522a, a sealed gas layer 540, and a plurality of second axial temperature sensing blocks 522b.
  • the first axial temperature sensing block 522a is disposed on the lower surface of the first substrate 510a
  • the second axial temperature sensing block 522b is disposed on the upper surface of the second substrate 510b
  • the sealed gas layer 540 is formed on the first substrate 510a.
  • the plurality of first axial temperature sensing blocks 522a and the plurality of second axial temperature sensing blocks 522b are insulated from each other.
  • the arrangement of the plurality of first axial temperature sensing blocks 522a and the plurality of second axial temperature sensing blocks 522b is the same as that of FIG. 3a.
  • the first substrate 510a may also be a cover.
  • the temperature sensing touch panel When the temperature sensing touch panel is in operation, it may be column by row or column by column, or may be row by column and row by row first, or row by row at the same time, or all the rows and columns may be detected at the same time.
  • the method of detection depends on the processing capabilities of the controller, and multi-touch detection can also be implemented. By detecting the output signal of the wire 224 connected to the temperature sensing block 222, it is determined whether the temperature sensing block 222 of the row or the column changes temperature according to the output signal, and the plurality of temperature sensing blocks 222 around the touch point are simultaneously caused by the touch.
  • the temperature change that is, the temperature change of the temperature sensing block 222 on the adjacent rows and columns is simultaneously caused, and the position at which the row and column in which the temperature change is detected is recognized as the touch position.
  • the temperature sense block 222 of the same row or column is equivalent to being connected in series by the wire 224.
  • the voltage of the input terminal is V1
  • the resistance of each temperature sensing block 222 is Rn
  • a total of n temperature sensing blocks in the same row or column are flow.
  • the output voltage V2 is V1-i* (R1+R2+R3+...+Rn).
  • a temperature sensing block 222 changes the resistance due to a temperature change, which may cause a change in the row or column output voltage of the temperature sensing block 222.
  • Each row or column is scanned to determine the row and column where the temperature change occurs, and the touch location can be determined based on the intersection of the row and column.
  • FIG. 6 is a schematic side view showing the structure of a temperature sensitive touch panel according to a tenth embodiment.
  • the temperature sensitive touch panel 600 includes a substrate 610 and a sensing layer 620 disposed on the substrate 610 .
  • the structure of the substrate 610 and the sensing layer 620 is the same as that of the embodiment shown in FIGS. 1a to 5.
  • the temperature sensitive touch panel 600 further includes a shielding layer 630 disposed on the sensing layer 620 to prevent a capacitive object from generating a capacitive effect on the sensing layer 620.
  • a coupling capacitance is generated between the touch object and the temperature sensing block of the sensing layer 620, and the resistance of the temperature sensing block is also
  • a shielding layer 630 needs to be added to the sensing layer 620 of the embodiment shown in FIG. 1a and FIG. 2a, and the shielding layer 630 can be reduced or The influence of the coupling capacitance formed between the touch object and the temperature sensing block on the detection signal is eliminated, thereby improving the accuracy of detection.
  • FIG. 7 is a schematic side view showing the structure of the temperature sensitive touch panel of the eleventh embodiment.
  • the temperature sensitive touch panel 700 includes a substrate 710 , a sensing layer 720 disposed on the substrate 710 , and a pair of touch avoiding objects disposed on the sensing layer 720 .
  • the sensing layer 720 generates a shielding layer 730 with a change in capacitance, an adhesive layer 740 for bonding, a protective layer 750 for protecting the sensing layer 720, and an anti-reflective coating 760 for preventing reflection of the temperature sensitive touch panel 700.
  • the structure of the sensing layer 720 is the same as that of the embodiment shown in FIG. 1a or 2a.
  • a method for manufacturing a temperature sensitive touch panel comprising the step of disposing a sensing layer on a substrate, the sensing layer comprising a temperature sensing block and a wire, the temperature sensing block being made of a heat sensitive material and Formed on the substrate, the wires are disposed on the substrate and electrically connected to the temperature sensitive block.
  • the temperature-sensing touch panel obtained by the above-described method of manufacturing the touch-sensitive touch panel is made of a heat-sensitive material having a high temperature coefficient, and if a finger or a dedicated thermal stylus touches the touch panel, The resistance of the temperature sensitive block changes accordingly, so that when the output signal is different from being untouched when touched by a finger or a dedicated thermal stylus, the position of the touch can be finally determined.
  • the detection method of the temperature sensitive touch panel determines the position of the touch according to the temperature change of the temperature sensing block, and can detect the conductive object and the touch position of the non-conductive object on the touch panel.
  • the method for manufacturing the temperature sensitive touch panel further includes the step of disposing a shielding layer (shown in FIG. 6) on the sensing layer to prevent a capacitive effect on the sensing layer by the touch object.
  • a shielding layer shown in FIG. 6
  • no capacitive coupling is generated between the touch object and the temperature sensing block, thereby avoiding interference of the capacitive coupling on the influence of the temperature change of the thermistor on the electrical signal, and eliminating interference, Further avoiding misuse.
  • the temperature sensitive masses are made of a heat sensitive material and are distributed over the substrate in an array.
  • Each of the temperature sensing blocks is directly electrically connected to the controller (not shown) through corresponding wires (as shown in FIGS. 1a and 1b).
  • the step of disposing the sensing layer on the substrate includes: simultaneously forming the temperature sensing block and the wire at a time.
  • the temperature sensing block and the wire may also be formed in different steps.
  • the temperature-sensing touch panel obtained by the method has a simple structure and is relatively simple in performing contact detection, and only needs to detect each temperature sensing block separately.
  • the substrate is a cover plate (as shown in FIG. 1c)
  • the steps of forming the sensing layer are substantially the same as the embodiment, and thus will not be described again.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks disposed on the same surface of the substrate, the wires including a plurality of mutually parallel first An axial wire and a plurality of mutually parallel second axial wires (as shown in FIG. 2a and FIG.
  • the step of arranging the sensing layer on the substrate comprises: arranging the first axial wire on the substrate Providing a plurality of insulating spacers on the first axial wire; forming a first axial temperature sensing block, a second axial temperature sensing block and a second axial wire simultaneously in one arrangement, the first axial temperature
  • the sensing block is disposed on both sides of the insulating spacer and is connected in series by the first axial wire
  • the second axial temperature sensing block is disposed on both sides of the first axial wire, the second axis A wire is spanned across the insulating spacer and is in series with the second axial temperature sensitive mass.
  • the first axial temperature sensing block, the second axial temperature sensing block, and the first axial wire or the second axial wire may be formed at the same time. If the first axial temperature sensing block, the second axial temperature sensing block and the first axial wire are simultaneously formed, wherein the first axial wire is connected in series with the first axial temperature sensing block, then in the first axial direction A plurality of insulating spacers are formed on the wires, and a second axial wire is connected to the insulating spacers to connect the second axial temperature sensing blocks.
  • the structure of the temperature-sensing touch panel formed by the present embodiment is relatively complicated, it is advantageous for reducing the number of ports of the controller and increasing the layout density of the temperature-sensitive block, thereby improving the touch resolution of the temperature-sensitive touch panel.
  • the substrate is a cover plate (as shown in FIG. 2c)
  • the steps of forming the sensing layer are substantially the same as the embodiment, and thus will not be described again.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks.
  • the first axial temperature sensing block and the second axial temperature sensing block are respectively staggered on both sides of the substrate, and are electrically insulated from each other by the substrates (as shown in FIGS. 3a and 3b).
  • Forming a sensing layer on the substrate includes: forming a first axial temperature sensing block on one side of the substrate; forming a second axial temperature sensing block on the other side of the substrate, wherein the first axial temperature sensing block and The second axial temperature sensing blocks are staggered on opposite sides of the substrate, respectively.
  • the substrate includes a first substrate and a second substrate.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks (shown in FIG. 3c) staggered, and the step of laying the sensing layer on the substrate comprises: forming a first The axial temperature sensing block is on the lower surface of the first substrate; and the second axial temperature sensing block is formed on the lower surface of the second substrate, and the first axial temperature sensing block and the second axial temperature sensing block are separated by the second substrate It is electrically insulated from each other.
  • the second substrate can be a cover.
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks (shown in FIG. 4a), and a sensing layer is disposed on the substrate.
  • the step of forming forming the first axial temperature sensing block on the substrate; forming an insulating layer on the first axial temperature sensing block; and forming the second axial direction on the insulating layer Warm feeling block.
  • the substrate includes a first substrate and a second substrate
  • the temperature sensing block includes a plurality of first axial temperature sensing blocks and a plurality of second axial temperature sensing blocks staggered (as shown in FIG. 5
  • the step of disposing the sensing layer on the substrate includes: forming the first axial temperature sensing block on a lower surface of the first substrate; forming the second surface on an upper surface of the second substrate An axial temperature sensing block; and bonding a lower surface of the first substrate to an upper surface of the second substrate to form a sealed gas layer between the first substrate and the second substrate.
  • the first substrate may be a cover.
  • FIG. 8 is a flowchart of a method for detecting a temperature sensitive touch panel according to an embodiment of the present invention. As shown in FIG. 8 , the present invention further provides a method for detecting a temperature sensitive touch panel, comprising the following steps:
  • Step S810 driving the temperature sensing block.
  • the driving method may be to apply a voltage or current signal to the temperature sensing block, and the temperature sensing block may be arranged on the substrate in any one of the arrangement of FIG. 1a to FIG. 5.
  • Step S820 detecting an output signal of the temperature sensing block.
  • This step can be implemented by receiving the signal generated by the temperature sensing block through the input port of the controller, and further performing analog digital conversion on the signal.
  • Step S830 determining, according to the output signal, whether the temperature sensing block has a temperature change.
  • the output signal of the temperature sensing block can be compared with a preset value, or the analog digital converted value can be compared with a pre-stored value.
  • the step of determining, according to the output signal, whether the temperature sensing block has a temperature change comprises: determining, by the temperature sensing block whose output signal changes satisfy a predetermined range, a temperature sensing block whose temperature change occurs, for example, the change is too small Or too large to ignore, to avoid misuse.
  • Step S840 outputting the position of the temperature sensing block where the temperature change occurs is the touch position. Since the temperature sensing block is made of a heat sensitive material, a finger or other object that satisfies the required temperature touches the touch panel, which causes the resistance of the temperature sensing block made of the heat sensitive material to change, and the change of the resistance will have a corresponding influence on the signal. According to the influence, it is possible to determine whether there is a temperature change, and the position of the temperature-sensing block of the temperature change is the touch position.
  • the method for detecting the temperature sensitive touch panel if a finger or a dedicated thermal stylus touches the touch panel, the resistance of the temperature sensing block changes correspondingly, so that the output signal is touched by a finger or a dedicated hot touch.
  • the detection method of the temperature sensitive touch panel determines the position of the touch according to the temperature change of the temperature sensing block, and can detect the conductive object and the touch position of the non-conductive object on the touch panel, and only meet the required temperature.
  • the touch object reports the contact, and the touch object that does not meet the requirements does not respond, which can avoid misoperation.
  • the step of driving the temperature sensing block is: driving only the temperature sensing block of the area that can respond to the touch operation.
  • the setting can make the controller only respond to the touch operation of the two buttons in the current display interface, and the controller does not respond to the other positions even if the touch panel reports the contact.
  • only the temperature sensing block that can respond to the touch operation area can be driven, which can save the power consumption of the driving or increase the frequency of detection.
  • the substrate and the cover material may be selected from the group consisting of glass, acrylic (PMMA), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET).
  • Transparent materials such as polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS) or other non-transparent insulating materials.
  • the temperature sensing block may be in the form of a sheet made of a transparent material or a non-transparent.
  • the shape of the temperature sensing block may be a diamond shape, a regular hexagon, a square, a circle or a rectangle.
  • the material of the temperature sensitive block may be made by doping a dopant in polyethylene dioxythiophene: poly(p-styrenesulfonate) anion (PEDOT:PSS).
  • the dopant may be one or more selected from the group consisting of sorbitol, ethylene glycol, N-methylpyrrolidone, and carbon nanotubes.
  • the wires may be made of materials such as metal, indium tin oxide or carbon nanotubes.
  • the insulating layer in the above embodiment needs to have good thermal conductivity, and polyphenylene sulfide (PPS), polysulfone (PSF), boron nitride (BN), aluminum nitride (AlN), and nitrogen can be used. Silicon (Si3N4), silica gel and its modified materials, inorganic and organic materials composite materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Central Heating Systems (AREA)

Abstract

本发明提供一种温感式触控面板,包括基板及设置在所述基板上的感测层,所述感测层包括温感块和导线。所述温感块由热敏材料制成并设置在所述基板上。导线设置在基板上且电性连接于所述温感块。如果有手指或专用的热触控笔触摸温感式触控面板,温感块的电阻会发生相应的变化,从而使得输出信号在被手指或专用的热触控笔触摸时不同于未被触摸时,最终可确定触摸的位置。本发明还提供一种温感式触控面板的制造方法与侦测方法。温感式触控面板根据温感块的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置。

Description

温感式触控面板及其制造方法与侦测方法 技术领域
本发明涉及触控技术领域,尤其涉及一种温感式触控面板及其制造方法与侦测方法。
背景技术
触控面板 (Touch Panel) 已大量运用于消费、通讯、电脑等电子产品上,例如目前广泛使用的游戏机、智慧手机、平板电脑等,作为众多电子产品的输入介面。这些电子产品的显示部分一般都是由触控面板与显示面板整合而成,可供使用者用手指或触控笔依照显示画面上的功能选项点选输入所要执行的动作,藉此可在无需其他传统类型的输入装置 ( 如,按钮、键盘、或操作杆 ) 操作下进行输入,极大的提高了输入的便利性。
目前所常采用的电容感应式触控面板的工作原理是利用排列的透明电极与人体之间的静电结合所产生的电容变化,从而产生的诱导电流来检测其触摸位置的坐标。由于电容感应式触控面板在准确率、反应时间及使用寿命方面都具有明显的优点,所以目前大量采用。
然而,由于电容感应式的触控原理,只能侦测导电物体在触控面板上的触摸位置,而不能侦测非导电物体在触控面板上的触摸位置。
发明内容
基于此,有必要提供一种温感式触控面板,通过温感块的温度变化来侦测触摸位置,既能侦测导电物体也能侦测非导电物体在触控面板上的触摸位置。
一种温感式触控面板,包括基板及设置在所述基板上的感测层,其中,所述感测层包括:温感块,所述温感块由热敏材料制成并设置在所述基板上;及导线,所述导线设置在所述基板上且电性连接于所述温感块。
进一步地,所述温感块包括交错分布的复数第一轴向温感块和复数个第二轴向温感块,且所述复数个第一轴向温感块和复数个第二轴向温感块之间相互绝缘。
进一步地,所述第一轴向温感块和第二轴向温感块位于所述基板的两侧并通过所述基板相互绝缘。
进一步地,所述基板包括一第一基板和一第二基板,所述第一轴向温感块布设在所述第一基板的下表面,所述第二轴向温感块布设在所述第二基板的下表面,所述第二基板位于所述第一轴向温感块与所述第二轴向温感块之间。
进一步地,还包括绝缘层,所述第一轴向温感块布设在所述基板上,所述第二轴向温感块布设在所述绝缘层上,所述绝缘层设置于所述第一轴向温感块和所述第二轴向温感块之间。
进一步地,所述基板包括一第一基板和一第二基板,所述第一轴向温感块设置于所述第一基板的下表面,所述第二轴向温感块设置于所述第二基板的上表面,所述第一基板的下表面与所述第二基板的上表面之间形成有一密闭气体层将所述复数第一轴向温感块和所述复数第二轴向温感块之间绝缘隔开。
进一步地,所述温感块包括设置于所述基板同一表面上的复数第一轴向温感块和复数第二轴向温感块,所述导线包括复数相互平行的第一轴向导线及复数相互平行的第二轴向导线,所述感测层还包括设置于所述第一轴向导线上的复数绝缘隔片;所述第一轴向温感块设置于所述绝缘隔片双侧,而被所述第一轴向导线串接,所述第二轴向温感块分置于所述第一轴向导线双侧,所述第二轴向导线横跨于所述绝缘隔片上并串接所述第二轴向温感块。
进一步地,所述基板为一盖板。
进一步地,所述导线输入包括导线和输出导线,每一温感块都与相应的输入导线和输出导线电连接。
进一步地,还包括设置在所述感测层上的避免触摸物体对所述感测层产生电容效应的屏蔽层。
进一步地,其中所述温感块整块为由透明或非透明材料制成的薄片状。
进一步地,所述温感块由在聚乙撑二氧噻吩:聚(对苯乙烯磺酸)根阴离子中掺杂掺杂剂制成。
进一步地,其中所述掺杂剂为山梨醇、乙二醇、N-甲基吡咯烷酮、碳纳米管中的一种或两种以上。
另外,还有必要提供一种温感式触控面板的制造方法,包括在基板上布设感测层的步骤,所述感测层包括:温感块,所述温感块由热敏材料制成并形成在所述基板上;及导线,所述导线设置在所述基板上且电性连接于所述温感块。
进一步地,所述温感块包括设置于所述基板同一表面上的复数第一轴向温感块和第二轴向温感块,所述导线包括多个相互平行的第一轴向导线及多个相互平行的第二轴向导线,在所述基板上布设感测层的步骤包括:在基板上布设所述第一轴向导线;在所述第一轴向导线上布设多个绝缘隔片;及一次布设同时形成第一轴向温感块、第二轴向温感块和第二轴向导线,所述第一轴向温感块设置于所述绝缘隔片双侧,而被所述第一轴向导线串接,所述第二轴向温感块分置于所述第一轴向导线双侧,所述第二轴向导线横跨于所述绝缘隔片上并串接所述第二轴向温感块。
进一步地,其中所述温感块与所述导线一次布设同时形成,每一温感块都与相应的导线电连接。
进一步地,还包括在所述感测层上布设避免触摸物体对所述感测层产生电容效应的屏蔽层的步骤。
另外,还有必要提供一种温感式触控面板的侦测方法,包括如下步骤:驱动温感块;检测温感块的输出信号;根据所述输出信号判断所述温感块是否发生温度变化;及输出发生温度变化的温感块的位置为触摸位置。
进一步地,其中根据所述输出信号判断所述温感块是否发生温度变化的步骤包括:将输出信号变化满足一预设范围的温感块判断为发生温度变化的温感块。
进一步地,其中驱动温感块的步骤包括:仅驱动可回应触摸操作的区域的温感块。
上述温感式触控面板及其制造方法与侦测方法中,如果有手指或专用的热触控笔触摸触控面板,温感块的电阻会发生相应的变化,从而使得输出信号在触控面板被手指或专用的热触控笔触摸时不同于未被触摸时,最终可确定触摸的位置。温感式触控面板的侦测方法根据温感块的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置。
附图说明
图1a为第一实施方式的温感式触控面板正面结构示意图;
图1b为图1a实施方式沿剖面线I-I’所绘示的温感式触控面板剖面示意图;
图1c为第二实施方式的温感式触控面板剖面示意图;
图2a为第三实施方式的温感式触控面板正面结构示意图;
图2b为图2a实施方式沿剖面线A-A’所绘示的温感式触控面板剖面示意图;
图2c为第四实施方式的温感式触控面板剖面示意图;
图3a为第五实施方式的温感式触控面板正面结构示意图;
图3b为图3a实施方式沿虚线B-B’所绘示的温感式触控面板剖面示意图;
图3c为第六实施方式的温感式触控面板剖面结构示意图;
图4a为第七实施方式的温感式触控面板剖面结构示意图;
图4b为第八实施方式的温感式触控面板剖面结构示意图;
图5为第九实施方式的温感式触控面板剖面结构示意图;
图6为第十实施方式的温感式触控面板侧面结构示意图;
图7为第十一实施方式的温感式触控面板侧面结构示意图;及
图8为本发明实施方式温感式触控面板的侦测方法的流程图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
以下之实施方式提供了一种温感式触控面板,包括基板及设置在基板上的感测层。感测层设置在基板上,可以是全部的感测层设置在基板上,也可以是部分的感测层设置在基板上(例如,另一部分可以设置在绝缘层上等)。感测层包括温感块及导线。温感块由热敏材料制成并设置在所述基板上,导线设置在所述基板上且电性连接于所述温感块。
如果有手指或专用的热触控笔触摸触控面板,温感块的电阻会发生相应的变化,从而使得输出信号在触控面板被手指或专用的热触控笔触摸时不同于未被触摸时,最终可确定触摸的位置。温感式触控面板根据温感块的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置。以下将详细介绍本发明各实施方式的温感式触控面板的具体结构。
图1a为第一实施方式的温感式触控面板正面结构示意图。图1b为图1a实施方式沿剖面线I-I’所绘示的温感式触控面板剖面示意图。如图1a及图1b所示,本实施方式提供的温感式触控面板100包括基板110及设置在所述基板110上的感测层120。
感测层120包括温感块122及导线124。温感块122由热敏材料制成并以阵列形式分布设置在所述基板110上。导线124设置在所述基板110上且电性连接于所述温感块122,其中导线124包括输入导线124a与输出导线124b。输入导线124a用于输入驱动信号,输出导线124b用于输出感测信号。每一温感块122至少连接一条输入导线124a和一条输入导线124b。另外,导线124还将所述温感块122与控制器(图未示)电连接,导线124传输温感块122产生的信号至控制器,通过控制器的运算得出触摸位置坐标。
上述温感式触控面板100在工作时,首先通过输入导线124a输入驱动信号,驱动设置在基板110上的温感块122,再检测连接到所述温感块122的输出导线124b的输出信号,然后根据输出信号判断所述温感块122是否发生温度变化,输出发生温度变化的温感块122的位置为触摸位置。由于温感块122采用具有高电阻温度系数的热敏材料制成,如果有手指或专用的热触控笔触摸温感式触控面板100,温感块122的电阻会发生相应的变化,从而使得输出信号在被手指或专用的热触控笔触摸时不同于未被触摸时。通常的触点面积较大,检测到温度变化的温感块122也较多,通过计算,最终可确定触摸的位置。例如计算多个温度变化的温感块122的中心,将中心作为触摸的位置。上述实施方式的温感式触控面板100根据温感块122的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置。
本实施方式中,每一温感块122都通过相应的输入导线124a与输出导线124b与控制器电连接。这种结构简单,在进行触点侦测时也相对简单,只需单独对每个温感块122侦测即可。并且每个温感块122都相互独立,可实现多点触控的检测。
图1c为第二实施方式的温感式触控面板剖面示意图。如图1c所示,本实施方式中,基板为一盖板(cover glass)130c,即温感式触控面板包括盖板130c及设置在盖板130c上的感测层120c。由于触控面板如图1a和图1b,通常需要在感测层120上另设置盖板(图1a和图1b中未示),以保护感测层120免受环境的侵蚀。本实施方式将感测层120c直接设置于盖板130c上,让盖板130c同时作为承载感测层120c的基板以及保护感测层120c的盖板,从而可以省去图1a和图1b中的基板110,简化结构和节省成本。本实施方式中的感测层120c结构与图1a和图1b中的感测层120相同,在此不再赘述。
图2a为第三实施方式的温感式触控面板正面结构示意图。图2b为依据图2a实施方式沿剖面线A-A’所绘示的温感式触控面板剖面示意图。如图2a及图2b所示,在该实施方式中,温感式触控面板200包括基板210及设置在所述基板210上的感测层220。
感测层220包括温感块222及导线224。
温感块222由热敏材料制成并设置在所述基板210上。温感块222包括复数第一轴向温感块222a和复数第二轴向温感块222b,复数第一轴向温感块222a和复数个第二轴向温感块222b设置于基板210同一表面上。
导线224设置在所述基板210上且电性连接于所述温感块222,导线224包括多个相互平行的第一轴向导线224a及多个相互平行的第二轴向导线224b。另外,导线224还将所述温感块222与控制器(图未示)电连接,导线224传输温感块122产生的信号至控制器,通过控制器的运算得出触摸位置坐标。
本实施方式中,感测层220还包括设置于所述第一轴向导线224a上的多个绝缘隔片226。第一轴向温感块222a设置于所述绝缘隔片226双侧而被所述第一轴向导线224a串接,所述第二轴向温感块222b分置于所述第一轴向导线224a双侧,所述第二轴向导线224b横跨于所述绝缘隔片226上并串接所述第二轴向温感块222b。进一步地,第一轴向导线224a与第二轴向导线224b垂直,或以一角度交叉分布,但不以此为限。
图2c为第四实施方式的温感式触控面板剖面示意图。如图2c所示,在本实施方式中,基板为一盖板230c,由于触控面板如图2a和图2b,通常需要在感测层220上另设置盖板(图2a和图2b中未示),以保护感测层220免受环境的侵蚀,本实施方式将感测层220直接设置于盖板230c上,利用盖板230c同时作为承载感测层220的基板以及保护感测层的盖板,从而可以省去图2a和图2b中的基板210,简化结构和节省成本。本实施方式中的感测层结构与图2a和图2b中的相同,不再赘述。
上述第三、第四实施方式的结构虽然相对图1a所示的实施方式的结构更复杂,但是有利于减少控制器的端口数,提高温感块222的布设密度,从而提高温感式触控面板200的触控分辨率。
图3a为第五实施方式的温感式触控面板正面结构示意图。图3b为图3a实施方式沿B-B’虚线的温感式触控面板剖面示意图。如图3a及图3b所示,温感式触控面板300包括基板310、复数第一轴向温感块322a和复数第二轴向温感块322b、复数第一轴向导线324a和复数第二轴向导线324b。第一轴向温感块322a和第二轴向温感块322b分别交错分布于基板310的两侧并通过基板310相互隔开进而相互电性绝缘。第一轴向导线324a设置于基板310上,且电性连接于第一轴向温感块322a。第二轴向导线324b设置于基板310上,且电性连接于第二轴向温感块322b。在其它实施方式中,第一轴向温感块322a还可以为图2a所示的第一轴向温感块222a通过第一导线224a连接而成,第二轴向温感块322b还可以为图2a所示的第二轴向温感块222b通过第二导线224b连接而成。
图3c为第六实施方式的温感式触控面板剖面结构示意图。如图3c所示,本实施方式中,在图3a所示的实施方式中的第一轴向温感块322a上增加了另一基板,即本实施方式中的温感式触控面板包括第一基板310a和第二基板310b。第一轴向温感块322a可直接设置于第一基板310a的下表面,第二轴向温感块322b设置于第二基板310b的下表面,第一轴向温感块322a和第二轴向温感块322b通过第二基板310b隔开进而相互电性绝缘。在其他实施方式中,该第一基板310a可以为一盖板,即触摸时触摸物体可直接接触的板体,如上述第二实施方式与第四实施方式所述,从而可以省去图3b的基板310,简化结构和节省成本。
图4a为第七实施方式的温感式触控面板剖面结构示意图。如图4a所示,温感式触控面板400包括基板410、绝缘层440、布设在基板410上的复数第一轴向温感块422a及布设在绝缘层440上的复数第二轴向温感块422b。与图3a所示实施方式相比,区别在于,复数第一轴向温感块422a与复数第二轴向温感块422b之间设置绝缘层440且通过绝缘层440相互隔开进而相互电性绝缘。也就是说,绝缘层440作为一整层设计,第一轴向温感块422a设置在绝缘层440的一侧,第二轴向温感块422b设置在绝缘层440另一侧。
图4b为第八实施方式的温感式触控面板剖面结构示意图,如图4b所示,本实施方式与图4a所示实施方式的区别在于,第二轴向温感块422a直接设置于盖板430上,如上述第二实施方式与第四实施方式所述,从而可以省去图4b的基板410,以节省基板410。第一轴向温感块422a和第二轴向温感块422b通过绝缘层440隔开而相互电性绝缘。
图5为第九实施方式的温感式触控面板剖面结构示意图。如图5所示,在该实施方式中,温感式触控面板500包括第一基板510a、复数第一轴向温感块522a、密闭气体层540、复数第二轴向温感块522b及第二基板510b。第一轴向温感块522a设置在所述第一基板510a下表面,第二轴向温感块522b设置于所述第二基板510b的上表面,密闭气体层540形成在第一基板510a的下表面与第二基板510b的上表面之间,将复数第一轴向温感块522a和复数第二轴向温感块522b之间绝缘隔开。本实施方式中复数第一轴向温感块522a和复数第二轴向温感块522b的排布方式与图3a相同。在其它实施方式中,该第一基板510a也可以是一盖板。
上述温感式触控面板在工作时,可以先逐行再逐列,也可以先逐列再逐行,还可以同时逐行逐列,也可以同时全部检测所有的行和列上的温感块222,检测的方法取决于控制器的处理能力,同样可以实现多点触控的检测。通过检测连接到温感块222的导线224的输出信号,根据输出信号判断该行或该列的温感块222是否发生温度变化,由于触摸时会同时引起触摸点周边多个温感块222的温度变化,也就是会同时引起相邻的行和列上的温感块222的温度变化,将检测到温度变化的行和列交叉的位置识别为触摸位置。具体来说,同一行或列的温感块222相当于被导线224串联,如输入端的电压为V1,每个温感块222的电阻为Rn,同一行或列总共n个温感块,流经同一行的电流为i,则输出电压V2为V1-i*(R1+R2+R3+…+Rn)。某个温感块222因温度变化而使得电阻发生变化,会导致温感块222所在的行或列输出电压变化。对每个行或列扫描确定发生温度变化的行和列,根据行和列的交叉即可确定触摸位置。
图6为第十实施方式的温感式触控面板侧面结构示意图。如图6所示,在该实施方式中,温感式触控面板600包括基板610及设置在所述基板610上的感测层620。基板610和感测层620的结构与图1a至图5所示的实施方式相同。本实施方式中,温感式触控面板600还包括设置在所述感测层620上的避免触摸物体对所述感测层620产生电容效应的屏蔽层630。当触摸物体为导体时,且驱动信号为交流信号时,例如脉冲讯号、正弦波讯号,触摸物体与感测层620的温感块之间会产生耦合电容,同时该温感块的电阻也会因触摸物体的温度而改变,为避免前者对后者的干扰,此时需要在图1a和图2a所示的实施方式的感测层620上增加一屏蔽层630,通过屏蔽层630可以减少或消除触摸物体与温感块之间形成的耦合电容对检测信号的影响,从而提高侦测的准确度。
图7为第十一实施方式的温感式触控面板侧面结构示意图。如图7所示,在该实施方式中,温感式触控面板700包括基板710、设置在所述基板710上的感测层720、设置在所述感测层720上的避免触摸物体对所述感测层720产生电容变化的屏蔽层730、起粘贴作用的粘贴层740、保护感测层720的保护层750及防止温感式触控面板700反光的防反光涂层760。其中,感测层720的结构与图1a或图2a所示的实施方式相同。
此外,还提供了一种温感式触控面板的制造方法,包括在基板上布设感测层的步骤,感测层包括温感块和导线,所述温感块由热敏材料制成并形成在所述基板上,所述导线设置在所述基板上且电性连接于所述温感块。
上述温感式触控面板的制造方法获得的温感式触控面板,由于温感块采用具有高温度系数的热敏材料制成,如果有手指或专用的热触控笔触摸触控面板,温感块的电阻会发生相应的变化,从而使得输出信号在被手指或专用的热触控笔触摸时不同于未被触摸时,最终可确定触摸的位置。温感式触控面板的侦测方法根据温感块的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置。
进一步地,上述温感式触控面板的制造方法还包括在所述感测层上布设避免触摸物体对所述感测层产生电容效应的屏蔽层(如图6所示)的步骤。通过在感测层上设置屏蔽层,使得触摸物体与温感块之间不会产生电容耦合,避免电容耦合对热敏电阻因温度变化而变化对电讯号影响产生的干扰,消除干扰后,可以进一步避免产生误操作。
在一具体实施方式中,温感块由热敏材料制成并以阵列形式分布设置在所述基板上。每一温感块都通过相应的导线与所述控制器(未绘示)直接电连接(如图1a与图1b所示)。在所述基板上布设感测层的步骤包括:一次布设同时形成所述温感块和所述导线。在其他实施方式中,所述温感块和所述导线也可以在不同步骤中形成。采用这种方法获得的温感式触控面板结构简单,在进行触点侦测时也相对简单,只需单独对每个温感块侦测即可。当所述基板为盖板时(如图1c所示),形成感测层的步骤与该实施方式基本相同,故不再赘述。
在一具体实施方式中,所述温感块包括设置于所述基板同一表面上的复数第一轴向温感块和复数第二轴向温感块,所述导线包括多个相互平行的第一轴向导线及多个相互平行的第二轴向导线(如图2a与图2b所示),在所述基板上布设感测层的步骤包括:在基板上布设所述第一轴向导线;在所述第一轴向导线上布设多个绝缘隔片;一次布设同时形成第一轴向温感块、第二轴向温感块和第二轴向导线,所述第一轴向温感块设置于所述绝缘隔片双侧而被所述第一轴向导线串接,所述第二轴向温感块分置于所述第一轴向导线双侧,所述第二轴向导线横跨于所述绝缘隔片上并串接所述第二轴向温感块。此外,在另一实施方式中,可以先一次布设同时形成第一轴向温感块、第二轴向温感块及第一轴向导线或第二轴向导线。如果同时形成所述第一轴向温感块、第二轴向温感块与第一轴向导线,其中第一轴向导线串接第一轴向温感块,则接着在第一轴向导线上间隔形成多个绝缘隔片,再在绝缘隔片上形成第二轴向导线连接第二轴向温感块。本实施方式形成的温感式触控面板的结构虽然相对复杂,但是有利于减少控制器的端口数,提高温感块的布设密度,从而提高温感式触控面板的触控分辨率。当所述基板为盖板时(如图2c所示),形成感测层的步骤与该实施方式基本相同,故不再赘述。
在一具体实施方式中,所述温感块包括复数第一轴向温感块和复数第二轴向温感块。第一轴向温感块和第二轴向温感块分别交错分布于基板的两侧,并通过基板相互隔开进而相互电性绝缘(如图3a与3b所示)。在所述基板上形成感测层的步骤包括:形成第一轴向温感块于基板的一侧;形成第二轴向温感块于基板另一侧,其中第一轴向温感块和第二轴向温感块分别交错分布于基板的相对两侧。
在一具体实施方式中,所述基板包括第一基板和第二基板。所述温感块包括交错分布的复数第一轴向温感块和复数第二轴向温感块(如图3c所示),所述在基板上布设感测层的步骤包括:形成第一轴向温感块于第一基板的下表面;及形成第二轴向温感块于第二基板的下表面,第一轴向温感块和第二轴向温感块通过第二基板隔开进而相互电性绝缘。在另一实施方式中,该第二基板可以为一盖板。
在一具体实施方式中,所述温感块包括交错分布的复数第一轴向温感块和复数第二轴向温感块(如图4a所示),在所述基板上布设感测层的步骤包括:在所述基板上形成所述第一轴向温感块;在所述第一轴向温感块上形成一绝缘层;及在所述绝缘层上形成所述第二轴向温感块。
在一具体实施方式中,所述基板包括第一基板和第二基板,所述温感块包括交错分布的复数第一轴向温感块和复数第二轴向温感块(如图5所示),所述在基板上布设感测层的步骤包括:在所述第一基板的下表面形成所述第一轴向温感块;在所述第二基板的上表面形成所述第二轴向温感块;及将所述第一基板的下表面与所述第二基板的上表面贴合,使所述第一基板与所述第二基板之间形成一密闭气体层。在一实施例中中,该第一基板可以为一盖板。
图8为本发明实施方式温感式触控面板的侦测方法的流程图。如图8所示,本发明还提供了一种温感式触控面板的侦测方法,包括如下步骤:
步骤S810,驱动温感块。驱动的方式可以是施加电压或电流讯号至温感块,温感块可以以图1a至图5中任何一种排列方式布设在基板上。
步骤S820,检测温感块的输出信号。该步骤可以通过控制器的输入端口接收温感块产生的讯号来实现,进一步地还可以对该讯号进行类比数位转换等。
步骤S830,根据所述输出信号判断所述温感块是否发生温度变化。例如可以将温感块的输出讯号与预设值进行比较,或者将类比数位转换后的值与预存储值进行比较等。进一步地,根据所述输出信号判断所述温感块是否发生温度变化的步骤包括:将输出信号变化满足一预设范围的温感块判断为发生温度变化的温感块,例如对变化过小或过大都忽略,可避免误操作。
步骤S840,输出发生温度变化的温感块的位置为触摸位置。由于温感块由热敏材料制成,手指或其他满足要求温度的物体触摸触控面板,将导致热敏材料制成的温感块电阻发生变化,电阻的变化将对讯号产生相应的影响,根据该影响即可确定是否有温度变化,而温度变化的温感块的位置即为触摸位置。
上述温感式触控面板的侦测方法,如果有手指或专用的热触控笔触摸触控面板,温感块的电阻会发生相应的变化,从而使得输出信号在被手指或专用的热触控笔触摸时不同于未被触摸时,最终可确定触摸的位置。温感式触控面板的侦测方法根据温感块的温度变化确定触摸的位置,既能侦测导电物体也能侦测非导电物体在触控面板的触摸位置,且只对满足要求的温度的触控物体报告触点,而不满足要求的触摸物体不会作出回应,可以避免产生误操作。
进一步地,上述温感式触控面板的侦测方法中,所述驱动温感块的步骤为:仅驱动可回应触摸操作的区域的温感块。例如,在整个显示界面中,通过设置可使得控制器只会对当前显示界面中的两个按钮的触摸操作进行回应,而其他位置即便触控面板报告触点,控制器也不会进行回应,此时,仅驱动可回应触摸操作的区域的温感块,可以节省驱动耗费的电量或者提高侦测的频率。
上述实施方式中,所述基板与盖板材料可选自玻璃、压克力(PMMA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚苯乙烯(PS)等透明材料或其它非透明的绝缘材料。所述温感块整块可以由透明材料或非透明制成的薄片状。温感块的形状可以是菱形、正六边形、正方形、圆形或长方形等。温感块的材料可以是由在聚乙撑二氧噻吩:聚(对苯乙烯磺酸)根阴离子(PEDOT:PSS)中掺杂掺杂剂制成。掺杂剂可以选用山梨醇、乙二醇、N-甲基吡咯烷酮、碳纳米管中的一种或两种以上。导线可以采用金属、氧化铟锡或碳纳米管等材料。一般而言,上述实施方式中的绝缘层需要有较好的热传导性,可以采用聚苯硫醚(PPS)、聚砜(PSF)、氮化硼(BN),氮化铝(AlN)、氮化硅(Si3N4)、硅胶及其改性材料,无机及有机材料复合材料等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (20)

  1. 一种温感式触控面板,包括基板及设置在所述基板上的感测层,其特征在于,所述感测层包括:
    温感块,所述温感块由热敏材料制成并设置在所述基板上;及
    导线,所述导线设置在所述基板上,且电性连接于所述温感块。
  2. 根据权利要求1所述的温感式触控面板,其特征在于,所述温感块包括交错分布的复数第一轴向温感块和复数第二轴向温感块,且所述复数第一轴向温感块和复数第二轴向温感块之间相互绝缘。
  3. 根据权利要求2所述的温感式触控面板,其特征在于,所述第一轴向温感块和第二轴向温感块位于所述基板的两侧并通过所述基板相互绝缘。
  4. 根据权利要求2所述的温感式触控面板,其特征在于,所述基板包括第一基板和第二基板,所述第一轴向温感块布设在所述第一基板的下表面,所述第二轴向温感块布设在所述第二基板的下表面,所述第二基板位于所述第一轴向温感块与所述第二轴向温感块之间。
  5. 根据权利要求2所述的温感式触控面板,其特征在于,还包括绝缘层,所述第一轴向温感块布设在所述基板上,所述第二轴向温感块位布设在所述绝缘层上,所述绝缘层设置于所述第一轴向温感块和所述第二轴向温感块之间。
  6. 根据权利要求2所述的温感式触控面板,其特征在于,所述基板包括一第一基板和一第二基板,所述第一轴向温感块设置于所述第一基板的下表面,所述第二轴向温感块设置于所述第二基板的上表面,所述第一基板的下表面与所述第二基板的上表面之间形成有一密闭气体层将所述第一轴向温感块和所述第二轴向温感块之间绝缘隔开。
  7. 根据权利要求1所述的温感式触控面板,其特征在于,所述温感块包括设置于所述基板同一表面上的复数第一轴向温感块和复数第二轴向温感块,所述导线包括复数相互平行的第一轴向导线及复数相互平行的第二轴向导线,所述感测层还包括设置于所述第一轴向导线上的复数绝缘隔片;所述第一轴向温感块设置于所述绝缘隔片双侧,而被所述第一轴向导线串接,所述第二轴向温感块分置于所述第一轴向导线双侧,所述第二轴向导线横跨于所述绝缘隔片上并串接所述第二轴向温感块。
  8. 根据权利要求1、5或7任意一项所述的温感式触控面板,其特征在于,所述基板为一盖板。
  9. 根据权利要求1所述的温感式触控面板,其特征在于,所述导线包括输入导线和输出导线,每一温感块都与相应的输入导线和输出导线电连接。
  10. 根据权利要求1所述的温感式触控面板,其特征在于,还包括设置在该感测层上的避免触摸物体对该感测层产生电容效应的屏蔽层。
  11. 根据权利要求1所述的温感式触控面板,其特征在于,所述温感块整块为由透明或非透明材料制成的薄片状。
  12. 根据权利要求1所述的温感式触控面板,其特征在于,所述温感块由在聚乙撑二氧噻吩:聚(对苯乙烯磺酸)根阴离子中掺杂掺杂剂制成。
  13. 根据权利要求12所述的温感式触控面板,其特征在于,所述掺杂剂为山梨醇、乙二醇、N-甲基吡咯烷酮、碳纳米管中的一种或两种以上。
  14. 一种温感式触控面板的制造方法,其特征在于,包括在基板上布设感测层的步骤,所述感测层包括:
    温感块,所述温感块由热敏材料制成并形成在所述基板上;及
    导线,所述导线设置在所述基板上且电性连接于所述温感块。
  15. 根据权利要求14所述的温感式触控面板之制造方法,其特征在于,所述温感块包括设置于所述基板同一表面上的复数第一轴向温感块和第二轴向温感块,所述导线包括多个相互平行的第一轴向导线及多个相互平行的第二轴向导线,在所述基板上布设感测层的步骤包括:
    在基板上布设所述第一轴向导线;
    在所述第一轴向导线上布设多个绝缘隔片;及
    一次布设同时形成第一轴向温感块、第二轴向温感块和第二轴向导线,所述第一轴向温感块设置于所述绝缘隔片双侧,而被所述第一轴向导线串接,所述第二轴向温感块分置于所述第一轴向导线双侧,所述第二轴向导线横跨于所述绝缘隔片上并串接所述第二轴向温感块。
  16. 根据权利要求14所述的温感式触控面板之制造方法,其特征在于,所述温感块与所述导线一次布设同时形成,每一温感块都与相应的导线电连接。
  17. 根据权利要求14所述的温感式触控面板之制造方法,其特征在于,还包括在所述感测层上布设避免触摸物体对该感测层产生电容效应的屏蔽层的步骤。
  18. 一种温感式触控面板的侦测方法,其特征在于,包括如下步骤:
    驱动温感块;
    检测温感块的输出信号;
    根据所述输出信号判断所述温感块是否发生温度变化;及
    输出发生温度变化的温感块的位置为触摸位置。
  19. 根据权利要求18所述的温感式触控面板之侦测方法,其特征在于,根据所述输出信号判断所述温感块是否发生温度变化的步骤包括:将输出信号变化满足一预设范围的温感块判断为发生温度变化的温感块。
  20. 根据权利要求18所述的温感式触控面板之侦测方法,其特征在于,所述驱动温感块的步骤包括:仅驱动可回应触摸操作的区域的温感块。
PCT/CN2013/079481 2012-07-31 2013-07-16 温感式触控面板及其制造方法与侦测方法 WO2014019453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210269393.7A CN103576956B (zh) 2012-07-31 2012-07-31 温感式触控面板及其制造方法与侦测方法
CN201210269393.7 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014019453A1 true WO2014019453A1 (zh) 2014-02-06

Family

ID=49031889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079481 WO2014019453A1 (zh) 2012-07-31 2013-07-16 温感式触控面板及其制造方法与侦测方法

Country Status (4)

Country Link
US (1) US9207791B2 (zh)
CN (1) CN103576956B (zh)
TW (2) TWM455922U (zh)
WO (1) WO2014019453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003820A (ko) * 2015-06-30 2017-01-10 엘지디스플레이 주식회사 유기발광표시장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576956B (zh) * 2012-07-31 2016-08-24 宸鸿科技(厦门)有限公司 温感式触控面板及其制造方法与侦测方法
CN105302348A (zh) * 2014-07-22 2016-02-03 中兴通讯股份有限公司 热感应式触摸屏及基于该触摸屏的触控方法和终端设备
CN104991676A (zh) * 2015-07-28 2015-10-21 张家港保税区佰昂特种玻璃有限公司 一种热敏电视触屏加工工艺
CN105762172B (zh) * 2016-05-16 2019-03-15 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板及其驱动方法
CN109828676B (zh) * 2018-12-29 2024-04-05 安庆市恒怡多精彩科技有限公司 一种使用接触式热敏传感器做为按键的键盘
US11211433B2 (en) * 2020-05-04 2021-12-28 Intel Corporation In-display sensors and viewing angle adjustment microassemblies
CN113867522A (zh) * 2021-08-31 2021-12-31 歌尔科技有限公司 一种互动投影控制方法及装置、感应垫、互动投影仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241358A (ja) * 2003-02-10 2004-08-26 Denso Corp 基板組込型タッチセンサ及びその製造方法
US20060274055A1 (en) * 2005-06-01 2006-12-07 Synaptics Incorporated Touch pad with flexible substrate
CN202904518U (zh) * 2012-07-31 2013-04-24 宸鸿科技(厦门)有限公司 温感式触控面板
CN103294233A (zh) * 2012-02-27 2013-09-11 富泰华工业(深圳)有限公司 触摸屏和具有该触摸屏的触摸显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164923A (ja) * 1989-11-24 1991-07-16 Nec Corp 座標出力装置
DE9411235U1 (de) 1994-07-12 1994-09-08 Murata Elektronik GmbH, 90441 Nürnberg Sensor zum Erfassen einer Temperatur und/oder einer Strömung
TWM246788U (en) * 2003-12-12 2004-10-11 Mitac Technology Corp Thermal-sensitive text input device and input key unit
CN2874617Y (zh) * 2005-12-14 2007-02-28 上海环达计算机科技有限公司 热感应式文字符号输入装置及其输入按键单元
TWI337318B (en) 2007-05-15 2011-02-11 Htc Corp Electronic device operated by using touch display
CN101430629A (zh) * 2007-11-06 2009-05-13 深圳华为通信技术有限公司 一种触摸屏、触摸屏触发装置及触摸屏系统
TWI334152B (en) * 2007-11-30 2010-12-01 Inventec Appliances Corp Keypad structure of electronic apparatus and utilization method thereof
US8237677B2 (en) * 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
KR20100022747A (ko) * 2008-08-20 2010-03-03 주식회사 센플러스 압전저항층을 포함하는 터치센서와 이를 포함하는 입력장치및 입력감지방법
CN201412049Y (zh) * 2009-06-16 2010-02-24 黄晨曦 一种常开常闭两用式防火门
KR101663034B1 (ko) * 2009-08-26 2016-10-07 삼성디스플레이 주식회사 접촉 감지 기능이 있는 전기 영동 표시 장치
CN102103438A (zh) * 2009-12-18 2011-06-22 鸿富锦精密工业(深圳)有限公司 触控面板
US20120068952A1 (en) * 2010-05-25 2012-03-22 Motorola Mobility, Inc. User computer device with temperature sensing capabilities and method of operating same
CN102221924A (zh) * 2011-04-12 2011-10-19 北京新岸线软件科技有限公司 显示屏、电子设备
CN103576956B (zh) * 2012-07-31 2016-08-24 宸鸿科技(厦门)有限公司 温感式触控面板及其制造方法与侦测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241358A (ja) * 2003-02-10 2004-08-26 Denso Corp 基板組込型タッチセンサ及びその製造方法
US20060274055A1 (en) * 2005-06-01 2006-12-07 Synaptics Incorporated Touch pad with flexible substrate
CN103294233A (zh) * 2012-02-27 2013-09-11 富泰华工业(深圳)有限公司 触摸屏和具有该触摸屏的触摸显示装置
CN202904518U (zh) * 2012-07-31 2013-04-24 宸鸿科技(厦门)有限公司 温感式触控面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003820A (ko) * 2015-06-30 2017-01-10 엘지디스플레이 주식회사 유기발광표시장치
KR102172929B1 (ko) 2015-06-30 2020-11-03 엘지디스플레이 주식회사 유기발광표시장치

Also Published As

Publication number Publication date
CN103576956A (zh) 2014-02-12
CN103576956B (zh) 2016-08-24
TWM455922U (zh) 2013-06-21
TWI493403B (zh) 2015-07-21
US20140169399A1 (en) 2014-06-19
TW201405393A (zh) 2014-02-01
US9207791B2 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
WO2014019453A1 (zh) 温感式触控面板及其制造方法与侦测方法
KR200483031Y1 (ko) 일종 정전용량식 터치 센서와 터치 감지 장치 및 터치 단말
WO2013185534A1 (zh) 触控装置及其静电屏蔽方法
TWI615744B (zh) 觸控面板及其製作方法
WO2012070834A2 (ko) 터치 스크린 패널 및 이를 포함한 영상 표시 장치
TWI530849B (zh) 電容式觸碰面板的佈局結構
WO2012022053A1 (en) Touch panel, touch input device and method for determining real coordinates of multiple touch points
CN102981664B (zh) 触控电极结构及其应用的触控面板
CN101819483A (zh) 多频道触控面板
US9194901B2 (en) Sensing structure of touch panel
KR101814656B1 (ko) 전기 장치 및 그에 따른 단일 층 상호 정전용량 터치 스크린
EP3252575B1 (en) Touch panel, display apparatus, and touch driving method
TW201120717A (en) Touch display device and touch sensing device
WO2013137561A1 (ko) 단일 적층 구조를 갖는 개량된 접촉 위치 감지 패널
WO2017023108A1 (ko) 터치 검출기, 터치 검출 칩 및 터치 입력 장치
WO2011025294A2 (ko) 멀티 터치 패널
TW201443732A (zh) 觸控面板
CN105808029A (zh) 一种显示基板、触摸屏及显示装置
WO2014054878A2 (ko) 간섭 없이 감도가 향상되는 단일 적층 구조를 갖는 터치스크린 패널
KR101114416B1 (ko) 정전용량 방식 터치패널 및 그 제조방법
WO2014114212A1 (zh) 触控单元及触控面板
CN202904518U (zh) 温感式触控面板
CN107678217B (zh) 一种液晶显示面板及液晶显示装置
JP3182005U (ja) タッチパネル
WO2014163374A1 (ko) 정전용량 방식 터치패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824960

Country of ref document: EP

Kind code of ref document: A1