WO2016163425A1 - ポリアミド系熱可塑性エラストマー及びタイヤ - Google Patents

ポリアミド系熱可塑性エラストマー及びタイヤ Download PDF

Info

Publication number
WO2016163425A1
WO2016163425A1 PCT/JP2016/061307 JP2016061307W WO2016163425A1 WO 2016163425 A1 WO2016163425 A1 WO 2016163425A1 JP 2016061307 W JP2016061307 W JP 2016061307W WO 2016163425 A1 WO2016163425 A1 WO 2016163425A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
polyamide
thermoplastic elastomer
rubber
based thermoplastic
Prior art date
Application number
PCT/JP2016/061307
Other languages
English (en)
French (fr)
Inventor
泰典 樽谷
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP16776591.6A priority Critical patent/EP3281966B1/en
Priority to US15/564,046 priority patent/US10766304B2/en
Priority to CN201680020953.1A priority patent/CN107428933B/zh
Publication of WO2016163425A1 publication Critical patent/WO2016163425A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers

Definitions

  • the present disclosure relates to a polyamide-based thermoplastic elastomer and a tire that can be suitably used for a tire mounted on a rim.
  • thermoplastic polymer materials have many advantages from the viewpoint of improving productivity, such as being capable of injection molding.
  • thermoplastic resin material For example, it has been proposed to form a tire skeleton in a tire with a thermoplastic resin material and use a polyamide-based thermoplastic elastomer as the thermoplastic resin material (see Japanese Patent Application Laid-Open No. 2012-046030).
  • thermoplastic elastomer used for the production of a resin molded body such as a tire may be required to have high heat resistance and wet heat deterioration resistance.
  • polyamide-based thermoplastic elastomers it has not been easy for polyamide-based thermoplastic elastomers to achieve both the heat resistance and the resistance to moist heat deterioration with high quality.
  • the present disclosure is intended to provide a polyamide-based thermoplastic elastomer and a tire that are compatible with both high heat resistance and wet heat resistance.
  • a polyamide-based thermoplastic elastomer having a hard segment and a soft segment, wherein the hard segment includes polyamide 612 and the soft segment includes a polyamine.
  • the polyamide-based thermoplastic elastomer of the present disclosure is a thermoplastic elastomer having a hard segment and a soft segment, wherein the hard segment includes a polyamide 612 and the soft segment includes a polyamine.
  • the “polyamide-based thermoplastic elastomer” refers to a copolymer having a crystalline hard polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature and a soft segment. Which has an amide bond (—CONH—) in the main chain of the polymer constituting the hard segment.
  • the hard segment includes the polyamide 612, that is, the hard segment has a structure derived from the polyamide 612.
  • the soft segment includes a polyamine, that is, the soft segment has a structure derived from the polyamine.
  • polyamide 612 can be represented by ⁇ HN— (CH 2 ) 6 —NHCO— (CH 2 ) 10 —CO ⁇ n (n represents an arbitrary number of repeating units), for example, n Is preferably 2 to 100, more preferably 3 to 50.
  • Polyamide 612 includes, for example, hexamethylenediamine (HMDA, structure: H 2 N— (CH 2 ) 6 —NH 2 ) and dodecanedioic acid (DDA, structure: HOOC— (CH 2 ) 10 —COOH). It is polymerized.
  • HMDA hexamethylenediamine
  • DDA dodecanedioic acid
  • TPA ThermoPlastic Amid Elastomer
  • thermoplastic elastomer used for the production of a resin molded body may be required to have high heat resistance and moist heat resistance.
  • the heat resistance specifically refers to the property that the thermoplastic elastomer exhibits a high melting point, and the occurrence of plastic deformation under a high temperature environment can be suppressed by having high heat resistance.
  • the resistance to moist heat resistance is due to changes in molecular weight even when the thermoplastic elastomer is exposed to a high humidity environment (for example, when it is left in an environment such as 80 ° C. and 95 RH% for 1000 hours). It refers to the property of suppressing deterioration, and by having high heat and heat resistance, deterioration of the resin molded body (for example, decrease in durability) in a high humidity environment can be suppressed.
  • polyamide-based thermoplastic elastomer it is not easy to achieve both the heat resistance and the resistance to moist heat deterioration with high quality.
  • a composition using polyamine as a soft segment and polyamide 6 as a hard segment is considered as a polyamide-based thermoplastic elastomer.
  • Polyamide 6 is a polyamide obtained by polycondensation of 6-aminohexanoic acid and has excellent heat resistance, but deteriorates when exposed to a high-temperature and high-humidity environment, that is, there is room for improvement in resistance to moist heat resistance.
  • polyamide 12 is a polyamide obtained by polycondensation of 12-aminododecanoic acid and has excellent resistance to moist heat, while having a low melting point, that is, there is room for improvement in heat resistance.
  • a polyamide-based thermoplastic elastomer a composition using a polyamine as a soft segment and a polyamide 610 as a hard segment is also conceivable.
  • the polyamide 610 is a polyamide obtained by polycondensation of hexamethylenediamine and sebacic acid (decanedioic acid). While having excellent heat resistance, there is still room for improvement in wet heat resistance. Thus, it is not easy to obtain a polyamide-based thermoplastic elastomer that has both high heat resistance and resistance to moist heat degradation.
  • the present disclosure has found that, as a polyamide-based thermoplastic elastomer, the hard segment includes polyamide 612 and the soft segment includes polyamine, so that both high heat resistance and wet heat resistance can be achieved.
  • the polyamide-based thermoplastic elastomer in which a hard segment containing polyamide 612 is combined with a soft segment containing polyamine, the polyamide 12 having excellent heat resistance as the polyamide-based thermoplastic elastomer containing polyamide 6 has, The present inventors have found that both the excellent heat and heat resistance resistance as included in the polyamide-based thermoplastic elastomer contained can be achieved at a higher quality than expected.
  • the present disclosure also relates to a polyamide-based thermoplastic elastomer in which a hard segment containing polyamide 610 is combined with a soft segment containing polyamine, a polyamide-based thermoplastic elastomer having a soft segment made only of a polymer other than polyamine (for example, polyol), and the like. Then, it has been found that it is possible to achieve both high heat resistance and wet heat deterioration resistance, which is not easy to realize.
  • the polyamide-type thermoplastic elastomer which concerns on this indication can be used suitably for a tire, for example.
  • a tire using a thermoplastic polymer material has an advantage that it is easier to manufacture and lower in cost than a conventional tire made of rubber, and further relates to the present disclosure as a polymer material in this tire.
  • the polyamide-based thermoplastic elastomer By using the polyamide-based thermoplastic elastomer, a tire having high heat resistance and high wet heat deterioration resistance can be obtained.
  • the tire including the polyamide-based thermoplastic elastomer according to the present disclosure is further excellent in durability and has characteristics of being capable of suppressing the occurrence of cracks (crack resistance).
  • a tire may be provided with the rubber member formed with the rubber composition as members, such as a tread part.
  • a rubber member and a resin member formed of a polymer material containing a thermoplastic elastomer may be bonded through an adhesive layer, and a resorcinol-formalin-latex-based adhesive ( RFL adhesive) is used.
  • RFL adhesive resorcinol-formalin-latex-based adhesive
  • the polyamide-based thermoplastic elastomer according to the present disclosure is excellent in adhesiveness with the RFL adhesive by having the above configuration.
  • the polyamide-based thermoplastic elastomer (TPA) has a hard segment and a soft segment, the hard segment includes a polyamide 612, and the soft segment includes a polyamine.
  • a chain extender such as dicarboxylic acid may be used for forming a hard segment and a soft segment bond in the polyamide-based thermoplastic elastomer.
  • the hard segment includes at least polyamide 612, that is, has a structure represented by ⁇ HN— (CH 2 ) 6 —NHCO— (CH 2 ) 10 —CO ⁇ n (n represents an arbitrary number of repeating units).
  • the polyamide 612 can be synthesized by copolymerization of hexamethylenediamine (HMDA) and dodecanedioic acid (DDA).
  • DDA / HMDA ratio In the polyamide-based thermoplastic elastomer according to the present disclosure, a portion derived from dodecanedioic acid (OC— (CH 2 ) 10 —CO) (part derived from DDA) and a portion derived from hexamethylenediamine (HN— The molar ratio (DDA / HMDA ratio) to (CH 2 ) 6 —NH) (HMDA-derived part) is preferably in the range of 73/27 to 52/48, more preferably 57/43 to 53/47. Range.
  • the amount of dodecanedioic acid-derived part is By being 73 mol or less (the amount of the hexamethylenediamine-derived part is 27 mol or more), an effect of suppressing a decrease in heat resistance of the polyamide-based thermoplastic elastomer is exhibited.
  • the amount of the dodecanedioic acid-derived part is 52 mol or more (the amount of the hexamethylenediamine-derived part is 48 mol or less), thereby suppressing the hygroscopicity of the polyamide-based thermoplastic elastomer and improving the heat and moisture resistance. Then, the effect is produced.
  • the DDA / HMDA ratio is a molar ratio between a portion derived from dodecanedioic acid (DDA) contained in a molecular chain of a polyamide-based thermoplastic elastomer and a portion derived from hexamethylenediamine (HMDA).
  • DDA dodecanedioic acid
  • HMDA hexamethylenediamine
  • the DDA / HMDA ratio can be adjusted to a desired range by setting the amounts of dodecanedioic acid (DDA) and hexamethylenediamine (HMDA).
  • the DDA / HMDA ratio can be measured by using 1 H-NMR and 13 C-NMR for a polyamide-based thermoplastic elastomer.
  • the polyamide-based thermoplastic elastomer may contain a resin other than the polyamide 612 as a hard segment, but even in that case, the ratio (mass ratio) of the polyamide 612 in all the hard segments is 50% by mass or more. It is preferable that it is 70 mass% or more, and it is still more preferable that it is 100 mass%.
  • resins that can be used in combination as a hard segment include, for example, polyamide (polyamide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (polyamide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam.
  • the weight average molecular weight of the polyamide 612 contained in the hard segment is preferably 50,000 to 200,000, more preferably 80,000 to 160,000, from the viewpoint of crack resistance and injection moldability.
  • the soft segment includes at least a polyamine. That is, the polyamide-based thermoplastic elastomer has a structure derived from polyamine as a soft segment.
  • a polyamine refers to a compound having a plurality of amino groups (—NH 2 ) in the molecule.
  • polyamines may be used alone or in combination of two or more. Although it does not specifically limit as a polyamine, For example, the polyether diamine etc. which are obtained by making ammonia etc. react with the terminal of polyether are mentioned. As the polyether diamine, for example, ABA type triblock polyether diamine can be used.
  • Examples of the “ABA type triblock polyether diamine” include polyether diamines represented by the following general formula (N).
  • X N and Z N each independently represent an integer of 1 to 20.
  • Y N represents an integer of 4 to 50.
  • X N and Z N are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and an integer of 1 to 12 Most preferred.
  • Y N is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30.
  • polyamine that can be contained as a soft segment include compounds having a terminal diamine such as polyester and polyether, such as polyethylene glycol, polypropylene glycol (PPG), polytetramethylene ether glycol (PTMG), Examples thereof include polyethers such as polyester polyols and polyesters, and compounds obtained by dimerizing terminals such as ABA type triblock polyether diols (for example, PPG / PTMG / PPG triblock polyether diols).
  • the polyamide-based thermoplastic elastomer may contain other components other than polyamine as a soft segment, but even in that case, the proportion (mass ratio) of polyamine in all soft segments is 80% by mass or more. Preferably, it is more preferably 90% by mass or more, and further preferably 100% by mass.
  • polyesters and polyethers include, for example, polyesters and polyethers.
  • PPG polypropylene glycol
  • PTMG polytetramethylene ether glycol
  • polyester polyol polyester polyol
  • ethers and polyesters include ethers and polyesters, ABA-type triblock polyether diols (for example, PPG / PTMG / PPG triblock polyether diols) and the like.
  • the polymer forming the soft segment may contain a diamine such as a branched saturated diamine having 6 to 22 carbon atoms, a branched alicyclic diamine having 6 to 16 carbon atoms, or norbornane diamine as a monomer unit.
  • a diamine such as a branched saturated diamine having 6 to 22 carbon atoms, a branched alicyclic diamine having 6 to 16 carbon atoms, or norbornane diamine as a monomer unit.
  • branched saturated diamines having 6 to 22 carbon atoms, branched alicyclic diamines having 6 to 16 carbon atoms, or norbornane diamines may be used alone or in combination. .
  • Examples of the branched saturated diamine having 6 to 22 carbon atoms include 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, and 1,2- Examples include diaminopropane, 1,3-diaminopentane, 2-methyl-1,5-diaminopentane, and 2-methyl-1,8-diaminooctane.
  • Examples of the branched alicyclic diamine having 6 to 16 carbon atoms include 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine and 5-amino-1,3,3-trimethylcyclohexanemethylamine. Etc. These diamines may be either cis isomers or trans isomers, or may be a mixture of these isomers.
  • norbornane diamine examples include 2,5-norbornane dimethylamine, 2,6-norbornane dimethylamine, and mixtures thereof.
  • the polymer which comprises the said soft segment may contain other diamine compounds other than the above as a monomer unit.
  • diamine compounds include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, Aliphatic diamines such as 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentanemethylenediamine, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, Alicyclic diamines such as 1,3-bisaminomethylcyclohexane and 1,4-bisaminomethylcyclohexane, aromatic diamines such as metaxylylenediamine and paraxylylenediamine, etc. And the like.
  • the above diamine
  • the number average molecular weight of the polyamine contained in the soft segment is preferably 400 to 6,000, more preferably 600 to 3,000, from the viewpoint of toughness and low temperature impact resistance.
  • the polyamide-based thermoplastic elastomer may have a portion (bonding portion) derived from a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • dicarboxylic acid at least 1 type chosen from aliphatic, alicyclic, and aromatic dicarboxylic acid, or these derivatives can be used, for example.
  • dicarboxylic acid examples include straight chain having 2 to 25 carbon atoms such as adipic acid, decanedicarboxylic acid, oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • Aliphatic dicarboxylic acids dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms obtained by dimerizing unsaturated fatty acids obtained by fractionation of triglycerides, and aliphatic dicarboxylic acids such as hydrogenated products thereof, 1,4-cyclohexanedicarboxylic acid Mention may be made of alicyclic dicarboxylic acids such as acids and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • the polyamide thermoplastic elastomer in the present disclosure preferably has a mass ratio (HS / SS ratio) of a hard segment (HS) and a soft segment (SS) of 30/70 to 85/15, More preferably, it is 55/45 to 75/25.
  • HS hard segment
  • SS soft segment
  • the mass ratio of the hard segment (HS) is 30 or more, the effect of maintaining an appropriate elastic modulus without the crystallinity of the polyamide-based thermoplastic elastomer being too low is exhibited.
  • the mass ratio of the hard segments (HS) is 50 or more, the elastic modulus is increased and shape retention is obtained, and particularly when used in a tire, good rim assemblability is obtained.
  • the mass ratio of the hard segment (HS) is 85 or less, the crystallinity of the polyamide-based thermoplastic elastomer does not become too high, and there is an effect that an appropriate elastic modulus can be maintained.
  • the mass ratio of the hard segment (HS) is 85 or less, the elastic modulus does not become too high, and particularly when used in a tire, a good rim assembly property can be obtained.
  • the HS / SS ratio can be adjusted to a desired range by setting the amount of the raw material constituting the hard segment and the raw material constituting the soft segment.
  • the HS / SS ratio can be measured by using 1 H-NMR and 13 C-NMR for the polyamide-based thermoplastic elastomer.
  • the content of the hard segment and the soft segment in the polyamide-based thermoplastic elastomer is preferably set as appropriate so that the HS / SS ratio is in the above range.
  • the content is set so that the amino group (or hydroxyl group and amino group) of the monomer constituting the soft segment and the carboxyl group of the chain extender are approximately equimolar. It is preferred that The hard segment, the soft segment and the content of the chain extender used as necessary in the polyamide-based thermoplastic elastomer are appropriately selected so that the HS / SS ratio is within the above range. By setting the amount, the desired content can be obtained.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer according to the present disclosure is not particularly limited, but is preferably 20,000 to 250,000, more preferably 50,000 to 200,000, still more preferably. 80,000 to 160,000.
  • weight average molecular weight is 20,000 or more, there is an effect that excellent crack resistance can be obtained by entanglement of molecular chains.
  • weight average molecular weight is 250,000 or less, the melt viscosity does not become too high and an excellent injection moldability can be obtained.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HEC gel permeation chromatography
  • HMDA hexamethylenediamine
  • DDA dodecanedioic acid
  • the amino group of hexamethylenediamine (HMDA) reacts with the carboxy group of dodecanedioic acid (DDA).
  • the amino group of the polyamine constituting the soft segment reacts with the carboxy group of dodecanedioic acid (DDA) in the case of the above method 1, and the dodecanedioic acid (in the case of the above method 2) that the polyamide 612 has ( Reacts with carboxy group derived from DDA). Therefore, the ratio (molar ratio) of hexamethylenediamine (HMDA), dodecanedioic acid (DDA) and polyamine used in the synthesis can be adjusted to be 1/1 at a ratio of (DDA) / (HMDA + polyamine). preferable.
  • examples of the polymerization method include normal pressure melt polymerization, a method of performing synthesis under reduced pressure melt polymerization after normal pressure melt polymerization, and the like. These synthesis reactions may be carried out either batchwise or continuously. In the above synthesis reaction, a batch type reaction vessel, a single tank type or multi-tank type continuous reaction apparatus, a tubular continuous reaction apparatus, or the like may be used alone or in appropriate combination.
  • the polymerization temperature is preferably 150 to 300 ° C., more preferably 200 to 280 ° C.
  • the polymerization time can be appropriately determined depending on the relationship between the polymerization average molecular weight of the polyamide-based thermoplastic elastomer to be synthesized and the polymerization temperature. For example, it is preferably 0.5 to 30 hours, and more preferably 3 to 20 hours.
  • polyamide-based thermoplastic elastomer In the production of the above-mentioned polyamide-based thermoplastic elastomer, monoamines or diamines such as laurylamine, stearylamine, and metaxylylenediamine, acetic acid, benzoic acid are used for the purpose of adjusting the molecular weight and stabilizing the melt viscosity at the time of molding as necessary.
  • An additive such as acid, stearic acid, adipic acid, monocarboxylic acid such as sebacic acid, or dicarboxylic acid may be added. These additives can be appropriately selected in relation to the molecular weight and viscosity of the resulting polyamide-based thermoplastic elastomer within a range that does not adversely affect the effects of the present disclosure.
  • a catalyst can be used as necessary.
  • the catalyst includes at least one selected from the group consisting of P, Ti, Ge, Zn, Fe, Sn, Mn, Co, Zr, V, Ir, La, Ce, Li, Ca, and Hf.
  • Compounds include inorganic phosphorus compounds, organic titanium compounds, organic zirconium compounds, and organic tin compounds.
  • examples of the inorganic phosphorus compound include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid and other phosphorus-containing acids, phosphorus-containing acid alkali metal salts, and phosphorus-containing acid alkaline earths. A metal salt etc.
  • Examples of the organic titanium compound include titanium alkoxide [titanium tetrabutoxide, titanium tetraisopropoxide, and the like].
  • Examples of the organic zirconium compound include zirconium alkoxide (zirconium tetrabutoxide (also referred to as “Zr (OBu) 4 ” or “Zr (OC 4 H 9 ) 4 )”).
  • Examples of organotin compounds include distannoxane compounds [1-hydroxy-3-isothiocyanate-1,1,3,3-tetrabutyl distanoxane, etc.], tin acetate, dibutyltin dilaurate, butyltin hydroxide oxide hydrate, and the like. Can be mentioned.
  • the catalyst addition amount and the catalyst addition timing are not particularly limited as long as the target product can be obtained quickly.
  • the use of the polyamide-based thermoplastic elastomer according to the present disclosure includes, for example, a tire, and specifically includes a tire frame body, a reinforcing cord layer, and the like. It can also be used as a compounding agent for rubber members used in tires. In addition to tires, tubes, hoses, wire coating materials, shoe materials, electrical parts, automobile parts, and the like can be given.
  • the tire according to the present disclosure includes at least the polyamide-based thermoplastic elastomer according to the present disclosure.
  • the resin material constituting the tire frame includes the polyamide-based thermoplastic elastomer described above, or the resin material constituting the reinforcing cord layer wound in the circumferential direction around the outer periphery of the tire frame is the polyamide-based resin described above.
  • the aspect etc. which contain a thermoplastic elastomer are mentioned.
  • the melting point (or softening point) of the resin material is usually 100 ° C. to 350 ° C., preferably about 100 ° C. to 250 ° C., but is preferably about 120 ° C. to 250 ° C. from the viewpoint of tire productivity. More preferably, the temperature is ⁇ 230 ° C. In this way, by using a resin material having a melting point of 120 ° C.
  • the heating temperature is preferably 10 ° C to 150 ° C higher than the melting point (or softening point) of the resin material forming the tire frame piece, and more preferably 10 ° C to 100 ° C higher.
  • the tensile yield strength specified in JIS K7113: 1995 of the resin material is preferably 5 MPa or more, preferably 5 MPa to 20 MPa, and more preferably 5 MPa to 17 MPa.
  • the resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the resin material is preferably 10% or more, preferably 10% to 70%, and more preferably 15% to 60%.
  • the tensile yield elongation of the resin material is 10% or more, the elastic region is large, and the rim assembly property can be improved.
  • the tensile elongation at break specified in JIS K7113: 1995 of the resin material is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and particularly preferably 200% or more.
  • the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (at 0.45 MPa load) specified in ISO 75-2 or ASTM D648 of the resin material is preferably 50 ° C. or higher, preferably 50 ° C. to 150 ° C., and more preferably 50 ° C. to 130 ° C.
  • the deflection temperature under load of the resin material is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the resin material can be obtained by adding various additives as necessary and mixing them appropriately by a known method (for example, melt mixing).
  • the resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the resin material may contain a thermoplastic elastomer other than the polyamide-based thermoplastic elastomer or an optional component (additive), but the content of the polyamide-based thermoplastic elastomer in the present disclosure relative to the total amount of the resin material is 30. It is preferably at least mass%, more preferably at least 50 mass%, particularly preferably at least 70 mass%.
  • “resin” is a concept including a thermoplastic resin and a thermosetting resin, but does not include natural rubber.
  • additives such as rubber, various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, and reinforcing materials are added to the resin material as desired. You may make it contain.
  • the content of the additive in the resin material is not particularly limited, and can be appropriately used as long as the effects of the present disclosure are not impaired.
  • the content of the resin component in the resin material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the resin material.
  • the content of the resin component in the resin material is the balance obtained by subtracting the total content of various additives from the total amount of the resin material.
  • the rubber member further includes a rubber member, and the rubber member is a layer formed of a composition containing a resorcinol-formalin-latex (RFL) adhesive (hereinafter also referred to as “RFL layer”). ) May be bonded to the resin member via
  • the resin member containing the polyamide-based thermoplastic elastomer and the rubber member can be directly and strongly bonded to each other by the RFL layer. For this reason, it can suppress that it peels between this resin member and a rubber member (interface), and can provide the tire to which the members fully adhered.
  • the RFL adhesive is a water-based adhesive
  • the tire can be provided by an adhesive method that suppresses environmental load.
  • the tire of the said structure should just contain the layer structure to which the rubber member, the RFL layer, and the resin member were adhere
  • Each member is laminated in the order of a resin member, an RFL layer, and a rubber member.
  • the rubber member in the present disclosure include outer rubber such as a tread portion and a base, a ply, a cushion rubber, and a rubber cement.
  • the resin member in the present disclosure is not particularly limited as long as it is a member using a polyamide-based thermoplastic elastomer, and examples thereof include a tire skeleton.
  • the RFL layer and the rubber member are preferably laminated on the crown portion of the tire frame body.
  • the reinforcing cord layer disposed on the surface of the tire frame is also a resin member in the present disclosure. It can be.
  • the RFL layer and the rubber member are preferably laminated on the reinforcing cord layer.
  • FIGS. 1A to 1E show a specific example (layer configuration) of a laminated structure in the tire of the present disclosure.
  • the layer configurations shown in FIGS. 1A to 1E indicate that they are laminated and bonded in this order. Note that the layer configuration of the tire of the present disclosure is not limited to the layer configuration shown in FIGS. 1A to 1E.
  • the RFL layer 4 and the outer rubber layer 6A are laminated on the tire frame body 2 in this order.
  • the resin member in the present disclosure is the tire frame body 2.
  • the outer rubber layer 6A may be, for example, cement rubber or cushion rubber, or the tread portion may be directly bonded.
  • a rubber cement layer 6B and an outer rubber layer 6A (for example, a tread member) can be laminated on the RFL layer 4.
  • the reinforcing cord layer 8 is disposed on the tire skeleton 2
  • the RFL layer 4 is disposed on the surface thereof, and the layer structure is combined with the outer rubber layer 6A.
  • the tire frame 2 is a resin member in the present disclosure.
  • the reinforcing cord member forming the reinforcing cord layer 8 includes a polyamide-based thermoplastic elastomer, not only the tire frame 2 but also the reinforcing cord member corresponds to the resin member in the present disclosure.
  • the RFL layer 4 is bonded to the surface of the tire frame 2 and the surface of the reinforcing cord layer 8.
  • the reinforcing cord layer 8 does not contain a polyamide-based thermoplastic elastomer and the tire frame body 2 is bonded to the RFL layer 4, the tire frame body 2 is a resin member in the present disclosure. There may be. Also in the layer configuration of FIG.
  • the outer rubber layer 6A may be, for example, cement rubber or cushion rubber, or the tread portion may be directly bonded.
  • a cushion rubber layer 6C and an outer rubber layer 6A may be laminated on the RFL layer 4.
  • a rubber cement layer 6B and an outer rubber layer 6A can be laminated on the RFL layer 4.
  • the rubber member in the present disclosure is a member formed of a rubber composition (for example, a rubber composition containing a diene rubber).
  • the rubber contained in the rubber composition is preferably an unvulcanized rubber.
  • the rubber is not particularly limited.
  • natural rubber NR
  • various polybutadiene rubbers BR
  • polyisoprene rubber IR
  • styrene-butadiene copolymer rubber SBR
  • NBR acrylonitrile-butadiene copolymer rubber
  • the rubber member is generally used for tires such as carbon black, vulcanizing agents, vulcanization accelerators, various oils, anti-aging agents, plasticizers, and other rubber compositions.
  • Various additives that are blended can be blended.
  • the rubber composition containing these can be kneaded and vulcanized by a general method.
  • the shape of the rubber member in the present disclosure is not particularly limited as long as it is a member formed of a rubber composition containing rubber.
  • the rubber member include skin rubber, ply, cushion rubber, rubber cement, and the like.
  • the outer rubber include a tread portion and a base.
  • a ply and cushion rubber if it is a member formed with the composition containing rubber
  • rubber cement may be included as a rubber member constituting the tire of the present disclosure.
  • rubber cement when a plurality of rubber members (for example, outer rubber) are bonded to each other, sufficient adhesive force and adhesive force between the rubber members can be ensured, for example, before the vulcanization step.
  • the rubber cement is not particularly limited as long as it is a member formed of a composition containing a diene rubber, for example. From the viewpoint of sufficiently exerting the effect of rubber cement, it is preferable to select appropriately according to the material such as outer rubber, and for example, rubber cement described in JP 2011-241363 A can be used.
  • a butadiene rubber when used as the outer rubber, it is preferable to use a butadiene splice cement as the rubber cement composition. Further, in this case, it is preferable to use a butadiene-based splice cement blended with butadiene rubber.
  • the rubber cement composition it is possible to use a solventless cement containing a liquid elastomer such as liquid butadiene rubber, or a cement mainly composed of a blend of isoprene rubber (IR) -butadiene rubber (SBR). .
  • the resin member constituting the tire according to the present disclosure includes one of the components including the above-described polyamide-based thermoplastic elastomer according to the present disclosure. Since the resin member includes the polyamide-based thermoplastic elastomer of the present disclosure, the adhesiveness with the RFL-based adhesive is particularly high, and as a result, the adhesive force between the rubber member and the resin member can be increased.
  • the reinforcing cord layer including the reinforcing cord member and the resin material is provided on the tire frame body, the reinforcing cord layer is also preferably the resin member in the present disclosure.
  • RFL adhesive for forming the RFL layer is an adhesive mainly composed of RFL.
  • RFL is a solution of a composition consisting of a resorcinol-formaldehyde condensate obtained by a resolation reaction and a latex.
  • the resorcinol-formaldehyde condensate is a reaction product obtained by subjecting resorcinol and formaldehyde or a relatively low molecular weight resorcinol-formaldehyde condensate and formaldehyde to a resorcinol-formaldehyde condensation reaction by a so-called resole reaction.
  • the latex examples include acrylic rubber latex, acrylonitrile-butadiene rubber latex, isoprene rubber latex, urethane rubber latex, ethylene-propylene rubber latex, butyl rubber latex, chloroprene rubber latex, silicone rubber latex, styrene-butadiene rubber latex, and natural rubber latex.
  • vinylpyridine-styrene-butadiene rubber latex is preferable from the viewpoint of adhesion to a rubber member.
  • a copolymer rubber latex having a double structure composed of two-stage polymerization of vinylpyridine, styrene and butadiene is more preferable. These may be used alone or as a mixture of two or more thereof, or may be allowed to coexist in the reaction system for reacting resorcinol and formaldehyde before the reaction.
  • the copolymer rubber latex having a double structure consisting of two-stage polymerization of vinylpyridine, styrene and butadiene is a copolymer rubber latex of vinylpyridine, styrene and butadiene, and (i) the styrene content is 10% by mass to 60% by mass.
  • the RFL adhesive has a structure in which a polymer in which resorcinol-formaldehyde condensate has been resolated and latex are sufficiently entangled three-dimensionally. For this reason, in the preparation of the RFL adhesive, the resolation reaction is performed in a solution in which latex is dispersed.
  • the solution used in this case acidic, neutral or alkaline water, or an organic solvent such as acetone or alcohol can be used, but the latex has low water solubility in the neutral region, and resorcinol in aging
  • alkaline or neutral water In order to sufficiently perform the formaldehyde condensation reaction (resolation reaction), it is preferable to use alkaline or neutral water. This resolation reaction is usually carried out at a pH of 8.0 or more, preferably 8.5 to 10.0.
  • alkaline water is obtained by dissolving sodium hydroxide, lithium hydroxide, potassium hydroxide, animmonium hydroxide, or an organic amine such as monomethylamine or ammonia in water.
  • any anionic surfactant can be used by being dispersed in neutral water by a ball mill or a sand mill. In this case, in order to effectively develop the adhesive force, it is preferable to reduce the amount of the surfactant so that the dispersed state does not deteriorate.
  • the molar ratio (F / R) between formaldehyde (F) and resorcinol (R) in the RFL solution and the ratio of resorcinol and formaldehyde total mass (RF) to the solid content mass (L) of the total latex (RF / L) Etc. can be appropriately selected according to the purpose.
  • Examples of the method of reacting the resorcinol-formaldehyde condensate obtained by resorching in a mixture with latex include, for example, a raw material of resorcinol-formaldehyde condensate (resorcinol, a relatively low molecular weight resorcinol-formaldehyde in an alkaline liquid) Condensate, formaldehyde) and latex are mixed, and at the beginning of the reaction, the resolation reaction is started with the raw material of resorcinol-formaldehyde condensate in an alkaline solution without mixing with latex. And a method in which a reaction intermediate having a low condensation degree is mixed with latex and the reaction is continued.
  • a raw material of resorcinol-formaldehyde condensate resorcinol, a relatively low molecular weight resorcinol-formaldehyde in an alkaline liquid
  • the adhesion of the resin member and the rubber member with the RFL adhesive is performed by, for example, applying the RFL adhesive to an unvulcanized rubber member or resin member, and sticking them, and then performing a heat treatment or the like as necessary. Can be done and completed.
  • the pretreatment performed on each member before applying the RFL adhesive is preferably selected as appropriate.
  • the adhesive force can be strengthened by pre-treating the adhesive surfaces of the resin member and the rubber member in advance before applying the RFL adhesive. Examples of such pretreatment methods include electron beam, microwave, corona discharge, plasma discharge, and degreasing treatment. It is also possible to pre-process using simply buffing or file.
  • the place where the pretreatment is performed is preferably either a reinforcing cord layer or a tire frame body from the viewpoint of sufficient adhesion.
  • an adhesive treatment (priming treatment) other than the resorcinol-formalin-latex adhesive may be performed.
  • the undercoating agent used for the undercoating treatment is not particularly limited as long as it is used when the resin member is more sufficiently bonded to the rubber member with the RFL adhesive, but for example, described in JP-A-2009-191395.
  • an undercoat composition containing a vinyl chloride plastisol polymer described in JP-A-11-001658.
  • the undercoating agent and the resorcinol-formalin-latex adhesive may be mixed in the application process.
  • the layer thickness of the undercoat layer formed by the undercoat treatment agent is preferably 1 ⁇ m to 15 ⁇ m.
  • the adhesion strength after adhesion can be further increased.
  • arithmetic mean roughness (Ra) is preferably 0.1 ⁇ m or more.
  • the thickness is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • Ra is preferably 10 ⁇ m or less from the viewpoint of increasing the adhesive strength.
  • Examples of the application method of the RFL adhesive include a dipping method, a bar coating method, a kneader coating method, a curtain coating method, a roller coating method, and a spin coating method.
  • the adhesive strength can be obtained by preparing a test piece in which each member of a tire is bonded with an RFL adhesive and by a method based on JIS-K6854-3: (1999).
  • a test method a sample having a structure in which a rubber piece corresponding to a rubber member and a resin piece corresponding to a resin member are simply bonded by an RFL adhesive is not used as a test piece.
  • Adhesive strength (kN / m) can be obtained by performing a peel test using a test piece that is obtained by bonding both side surfaces of a rubber piece with an RFL adhesive so as to be sandwiched between two resin pieces. .
  • the adhesive is preferably 20 kN / m or more from the viewpoint of imparting good adhesive force. When sufficient adhesive strength is obtained, cohesive failure occurs and interfacial peeling is suppressed.
  • the vulcanization treatment in this case may be performed by a known method, and examples thereof include methods described in JP-A Nos. 11-048264, 11-029658, and 2003-238744.
  • a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an anti-aging agent is added to the unvulcanized rubber.
  • Etc. can be appropriately blended, kneaded using a Banbury mixer, and then heated.
  • the tire of the present disclosure may include a reinforcing cord member and a resin material that are wound in the circumferential direction on the outer peripheral portion of the tire frame body to form a reinforcing cord layer.
  • a resin material the resin material containing the polyamide-type thermoplastic elastomer which concerns on the above-mentioned this indication is preferable.
  • the polyamide-based thermoplastic elastomer of the present disclosure is included in the reinforcing cord layer, not only the adhesion of the reinforcing cord layer and the rubber member by the RFL-based adhesive is improved, but also the reinforcing cord is attached to the rubber member. Since the difference in hardness between the tire and the reinforcing cord layer can be reduced as compared with the case of fixing with (cushion rubber), the reinforcing cord member can be fixed in close contact with the tire frame body.
  • the reinforcement cord is a steel cord
  • the vulcanized rubber is difficult to separate from the reinforcement cord only by heating
  • the polyamide-based thermoplastic elastomer material is It can be separated from the reinforcing cord only by heating. This is advantageous in terms of tire recyclability.
  • the polyamide-based thermoplastic elastomer material generally has a low loss factor (Tan ⁇ ) as compared with vulcanized rubber. For this reason, if the reinforcing cord layer contains a large amount of resin material, the rolling property of the tire can be improved.
  • the polyamide-based thermoplastic elastomer material which has a relatively high elastic modulus compared to vulcanized rubber, has the advantages of high in-plane shear rigidity and excellent handling and wear resistance during tire running. .
  • the elastic modulus (tensile elastic modulus defined in JIS K7113: 1995) of the polyamide-based thermoplastic elastomer material used for the reinforcing cord layer is 0.1 to 10 times the elastic modulus of the thermoplastic resin forming the tire frame body. It is preferable to set within the range.
  • the elastic modulus of the polyamide-based thermoplastic elastomer material is 10 times or less than the elastic modulus of the polyamide-based thermoplastic elastomer material forming the tire skeleton, the crown portion is not too hard and rim assembly is facilitated.
  • the resin constituting the reinforcing cord layer is not too soft and the belt surface Excellent internal shear rigidity and improved cornering force.
  • the surface of the reinforcing cord member is 20% or more of the polyamide-based thermoplastic elastomer from the viewpoint of improving the pullability (hardness of being pulled out) of the reinforcing cord. It is preferably covered with a material, more preferably 50% or more. Further, the content of the polyamide-based thermoplastic elastomer material in the reinforcing cord layer is 20% by mass from the viewpoint of improving the pullability of the reinforcing cord with respect to the total amount of the material constituting the reinforcing cord layer excluding the reinforcing cord. The above is preferable, and 50% by mass or more is more preferable.
  • the reinforcing cord is formed on the outer peripheral portion of the tire frame body formed of the polyamide-based thermoplastic elastomer material in a cross-sectional view along the axial direction of the tire frame body. It can be configured and formed such that at least a part of the member is embedded.
  • the resin material containing the polyamide-based thermoplastic elastomer on the outer periphery of the tire frame body in which the reinforcing cord member is embedded corresponds to the resin material constituting the reinforcing cord layer, and the polyamide-based thermoplastic elastomer forming the tire frame body
  • the reinforcing cord layer is composed of the material and the reinforcing cord member.
  • the reinforcing cord layer is configured to include a resin material
  • a coated cord member in which the reinforcing cord is covered with the same or different resin material as the resin material forming the tire frame body is used as the tire frame body. You may wind in the circumferential direction.
  • the same kind of resin material refers to forms such as amides, urethanes, and styrenes.
  • FIG. 2A is a perspective view illustrating a partial cross section of a tire according to an embodiment of the present disclosure.
  • FIG. 2B is a cross-sectional view of the bead portion attached to the rim.
  • the tire 10 of the present embodiment has a cross-sectional shape that is substantially the same as that of a conventional general rubber pneumatic tire.
  • the tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20 shown in FIG. 2B, and side portions 14 that extend outward from the bead portion 12 in the tire radial direction.
  • a tire case 17 is provided that includes a crown portion 16 (outer peripheral portion) that connects an outer end in the tire radial direction of one side portion 14 and an outer end in the tire radial direction of the other side portion 14.
  • the RFL layer is located between the crown portion 16 (outer peripheral portion) of FIG. 2A and the tread 30 that is a rubber member, and is formed along the outer periphery of the crown portion 16.
  • an RFL layer may be formed between the rubber member and the side portion 14. Furthermore, the RFL layer may have a different layer thickness depending on the location, such as a thicker location where the reinforcing cord 26 exists and a thinner portion near the side portion 14.
  • the tire case 17 is formed of a single resin material, that is, a polyamide-based thermoplastic elastomer material.
  • a polyamide-based thermoplastic elastomer material which has a different characteristic for every site
  • part the side part 14, the crown part 16, the bead part 12, etc.
  • a reinforcing material polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.
  • the tire case 17 may be reinforced.
  • the tire case 17 of the present embodiment is obtained by joining a pair of tire case halves (tire case pieces) 17A made of a resin material.
  • the tire case half 17A is formed by injection molding or the like so that one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrated with each other so as to face each other. It is formed by joining at the tire equator part.
  • the tire case 17 is not limited to the one formed by joining two members, and may be formed by joining three or more members.
  • the tire case half 17A formed of the resin material can be formed by, for example, vacuum forming, pressure forming, injection molding, melt casting, or the like. For this reason, it is not necessary to perform vulcanization compared to the case where the tire case is molded with rubber as in the prior art, the manufacturing process can be greatly simplified, and the molding time can be omitted.
  • the tire case half body 17A has a symmetrical shape, that is, the one tire case half body 17A and the other tire case half body 17A have the same shape. There is also an advantage that only one type of mold is required.
  • an annular bead core 18 made of a steel cord is embedded in the bead portion 12, similar to a conventional general pneumatic tire.
  • the present disclosure is not limited to this configuration, and the bead core 18 can be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
  • an organic fiber cord, a resin-coated organic fiber cord, or a hard resin may be used.
  • An annular seal layer 24 made of is formed.
  • the seal layer 24 may also be formed at a portion where the tire case 17 (bead portion 12) and the bead sheet 21 are in contact with each other.
  • a material having better sealing properties than the resin material constituting the tire case 17 a softer material than the resin material constituting the tire case 17 can be used.
  • thermoplastic resin thermoplastic elastomer
  • examples of such other thermoplastic resins include polyurethane resins, polyolefin resins, polystyrene thermoplastic resins, polyester resins, and the like, and blends of these resins with rubbers or elastomers.
  • Thermoplastic elastomers can also be used, for example, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, combinations of these elastomers, and blends with rubber. Thing etc. are mentioned.
  • a reinforcing cord 26 having higher rigidity than the resin material constituting the tire case 17 is wound around the crown portion 16 in the circumferential direction of the tire case 17.
  • the reinforcing cord 26 is wound spirally in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire case 17, thereby forming a reinforcing cord layer 28.
  • a material having higher wear resistance than the resin material constituting the tire case 17, for example, a tread 30 that is a rubber member is disposed.
  • FIG. 3 is a cross-sectional view along the tire rotation axis showing a state in which the reinforcement cord 26 is embedded in the crown portion 16 of the tire case of the tire according to the present embodiment. Further, the tread 30 and the crown portion 16 form the RFL layer 26C. Is glued through. As shown in FIG. 3, the reinforcing cord 26 is spirally wound in a state in which at least a part is embedded in the crown portion 16 in a sectional view along the axial direction of the tire case 17. A reinforcing cord layer 28 indicated by a broken line portion in FIG. 3 is formed together with a part of the outer peripheral portion 17.
  • the portion embedded in the crown portion 16 of the reinforcing cord 26 is in close contact with the resin material constituting the crown portion 16 (tire case 17).
  • a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers such as a steel cord twisted with a steel fiber can be used.
  • a steel cord is used as the reinforcing cord 26.
  • the burying amount L indicates the burying amount of the reinforcing cord 26 with respect to the tire case 17 (crown portion 16) in the tire rotation axis direction.
  • the embedding amount L of the reinforcing cord 26 in the crown portion 16 is preferably 1/5 or more of the diameter D of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount L of the reinforcing cord 26 exceeds 1/2 of the diameter D of the reinforcing cord 26, it is difficult to jump out of the embedded portion due to the size of the reinforcing cord 26.
  • the reinforcing cord layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.
  • the tread 30 is disposed on the outer peripheral side of the reinforcing cord layer 28 in the tire radial direction.
  • the rubber used for the tread 30 is preferably the same type of rubber as that used in conventional rubber pneumatic tires.
  • the tread 30 is formed with a tread pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.
  • the manufacturing method of the tire of this embodiment is explained.
  • the joining portion of the tire case half is heated using a joining mold, but the present disclosure is not limited to this, and the joining portion is heated by, for example, a separately provided high-frequency heater.
  • the tire case halves may be joined by softening or melting in advance by irradiation with hot air, infrared rays, or the like, and pressurizing with a joining mold.
  • FIG. 4 is an explanatory diagram for explaining an operation of embedding a reinforcing cord in a crown portion of a tire case using a cord heating device and rollers.
  • the cord supply device 56 is disposed on the reel 58 around which the reinforcing cord 26 is wound, the cord heating device 59 disposed on the downstream side of the reel 58 in the cord transport direction, and the downstream side of the reinforcing cord 26 in the transport direction.
  • the first roller 60, the first cylinder device 62 that moves the first roller 60 in the direction of contacting and separating from the outer peripheral surface of the tire, and the downstream side in the conveying direction of the reinforcing cord 26 of the first roller 60 A second roller 64, and a second cylinder device 66 that moves the second roller 64 in a direction in which the second roller 64 comes into contact with and separates from the tire outer peripheral surface.
  • the second roller 64 can be used as a metal cooling roller.
  • the surface of the first roller 60 or the second roller 64 is made of a fluororesin (in this embodiment, Teflon (registered trademark)) in order to suppress adhesion of a molten or softened thermoplastic resin material. ).
  • the cord supply device 56 has two rollers, ie, the first roller 60 or the second roller 64, but the present disclosure is not limited to this configuration, and any one of the rollers. It is also possible to have only one (that is, one roller).
  • the cord heating device 59 includes a heater 70 and a fan 72 that generate hot air. Further, the cord heating device 59 includes a heating box 74 through which the reinforcing cord 26 passes through an internal space in which hot air is supplied, and a discharge port 76 for discharging the heated reinforcing cord 26.
  • the temperature of the heater 70 of the cord heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the reinforcing cord 26 unwound from the reel 58 is fed into a heating box 74 in which the internal space is heated with hot air (for example, the temperature of the reinforcing cord 26 is heated to about 100 to 200 ° C.).
  • the heated reinforcing cord 26 passes through the discharge port 76 and is wound spirally around the outer peripheral surface of the crown portion 16 of the tire case 17 rotating in the direction of arrow R in FIG.
  • the resin material at the contact portion melts or softens, and at least a part of the heated reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16. Is done. At this time, since the heated reinforcing cord 26 is embedded in the molten or softened resin material, there is no gap between the resin material and the reinforcing cord 26, that is, a tight contact state. Thereby, the air entering to the portion where the reinforcing cord 26 is embedded is suppressed.
  • the burying amount L of the reinforcing cord 26 can be adjusted by the heating temperature of the reinforcing cord 26, the tension applied to the reinforcing cord 26, the pressing force by the first roller 60, and the like.
  • the embedding amount L of the reinforcing cord 26 is set to be 1/5 or more of the diameter D of the reinforcing cord 26.
  • the burying amount L of the reinforcing cord 26 is more preferably more than 1/2 of the diameter D, and most preferably the entire reinforcing cord 26 is embedded.
  • the reinforcing cord layer 28 is formed on the outer peripheral side of the crown portion 16 of the tire case 17 by winding the heated reinforcing cord 26 while being embedded in the outer peripheral surface of the crown portion 16.
  • the belt-shaped tread 30 that is an unvulcanized rubber member is wound around the outer peripheral surface of the tire case 17 by one turn, and the tread 30 is attached to the outer peripheral surface of the tire case 17 using an RFL adhesive.
  • the tread 30 can use the precure crown used for the retread tire conventionally known, for example. This step is the same step as the step of bonding the precure crown to the outer peripheral surface of the base tire of the retreaded tire.
  • the sealing layer 24 made of a soft material softer than the resin material is adhered to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 10 is completed.
  • an annealing process for heating the tire 10 may be further performed.
  • the heating temperature in the annealing treatment is preferably a glass transition temperature to 140 ° C., more preferably 50 ° C. to 140 ° C.
  • the tire case 17 is formed of a material including the polyamide-based thermoplastic elastomer of the present disclosure, and can achieve both high heat resistance and moist heat resistance, and is excellent in durability. At the same time, the occurrence of cracks can be suppressed. Further, since the tire case 17 and the tread 30 (rubber member) are bonded by the RFL adhesive, the adhesiveness with the RFL adhesive is excellent, and therefore, the peel resistance is excellent. Furthermore, it is excellent not only in peel resistance but also in impact resistance and breakability. Furthermore, since the tire structure can be simplified, the weight is light compared to conventional rubber. For this reason, when the tire 10 of the present embodiment is applied to an automobile, the durability is excellent. Moreover, since the weight of the tire can be reduced, the fuel consumption of an automobile using such a tire can be improved.
  • the polyamide-based thermoplastic elastomer of the present disclosure has high adhesion to the reinforcing cord 26 and is excellent in fixing performance such as welding strength. Therefore, the phenomenon (air entering) that air remains around the reinforcing cord 26 in the reinforcing cord winding step can be particularly suppressed. If the adhesion to the reinforcement cord 26 and the weldability are high, and if air entry around the reinforcement cord member is suppressed, it is possible to effectively suppress the movement of the reinforcement cord 26 due to input during traveling or the like. . Thereby, for example, even when a member constituting the tire is provided on the outer peripheral portion of the tire case so as to cover the entire reinforcing cord member, the movement of the reinforcing cord member is suppressed. The occurrence of peeling and damage (including the tire case) is suppressed, and the durability of the tire 10 is improved.
  • the reinforcing cord 26 having higher rigidity than the polyamide thermoplastic elastomer material is provided in the circumferential direction on the outer peripheral surface of the crown portion 16 of the tire case 17 formed of the polyamide thermoplastic elastomer material. Since it is wound spirally, puncture resistance, cut resistance, and circumferential rigidity of the tire 10 are improved. In addition, creep of the tire case 17 formed of a polyamide-based thermoplastic elastomer material is prevented by improving the circumferential rigidity of the tire 10.
  • At least one of the reinforcing cords 26 is provided on the outer peripheral surface of the crown portion 16 of the tire case 17 formed of a polyamide-based thermoplastic elastomer material. Since the portion is embedded and is in close contact with the surrounding polyamide-based thermoplastic elastomer material, air entry during manufacture is suppressed, and movement of the reinforcing cord 26 due to input during travel is suppressed. Thereby, it is suppressed that peeling etc. arise in the reinforcement cord 26, the tire case 17, and the tread 30, and durability of the tire 10 improves.
  • the embedding amount L of the reinforcement cord 26 is 1/5 or more of the diameter D as shown in FIG. 3, the air entry at the time of manufacture is suppressed effectively, the input at the time of driving, etc. This further suppresses the movement of the reinforcing cord 26.
  • the reinforcement cord layer 28 is comprised including the polyamide-type thermoplastic elastomer material, the hardness of the tire case 17 and the reinforcement cord layer 28 compared with the case where the reinforcement cord 26 is fixed with cushion rubber. Therefore, the reinforcing cord 26 can be further adhered and fixed to the tire case 17. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
  • the reinforcing cord when the reinforcing cord is a steel cord, the reinforcing cord 26 can be easily separated and collected from the polyamide-based thermoplastic elastomer material by heating at the time of disposal of the tire, which is advantageous in terms of recyclability of the tire 10.
  • the resin material usually has a lower loss coefficient (Tan ⁇ ) than vulcanized rubber. For this reason, if the reinforcing cord layer contains a large amount of resin material, the rolling property of the tire can be improved.
  • a resin material having a relatively high elastic modulus as compared with vulcanized rubber has an advantage that the in-plane shear rigidity is large and the stability and wear resistance during running of the tire are excellent.
  • the tread 30 that is in contact with the road surface is made of a rubber material that is more resistant to wear than the polyamide-based thermoplastic elastomer material, the wear resistance of the tire 10 is improved. Further, since an annular bead core 18 made of a metal material is embedded in the bead portion 12, the tire case 17, that is, the tire 10 is strong against the rim 20 like the conventional rubber pneumatic tire. Retained.
  • a seal layer 24 made of a rubber material having a sealing property than that of the polyamide-based thermoplastic elastomer material is provided in a portion that contacts the rim 20 of the bead portion 12, a gap between the tire 10 and the rim 20 is provided. Improves the sealing performance. For this reason, compared with the case where it seals with the rim
  • the reinforcing cord 26 is heated, and the polyamide thermoplastic elastomer material in a portion where the heated reinforcing cord 26 contacts is melted or softened.
  • the present disclosure is not limited to this configuration, and the reinforcing cord 26
  • the hot cord generator may be used without heating the cord 26, and the reinforcing cord 26 may be buried in the crown portion 16 after the outer peripheral surface of the crown portion 16 in which the reinforcing cord 26 is buried is heated.
  • the heat source of the cord heating device 59 is a heater and a fan.
  • the present disclosure is not limited to this configuration, and the reinforcement cord 26 is directly heated by radiant heat (for example, infrared rays). Also good.
  • the portion in which the polyamide-based thermoplastic elastomer material in which the reinforcing cord 26 is embedded is melted or softened is forcibly cooled by the metal second roller 64.
  • the present invention is not limited to this configuration, and a configuration may be adopted in which cold air is directly blown onto a portion where the polyamide-based thermoplastic elastomer material is melted or softened to forcibly cool and solidify the melted or softened portion of the polyamide-based thermoplastic elastomer material.
  • the reinforcing cord 26 is heated.
  • the outer periphery of the reinforcing cord 26 may be covered with the same polyamide-based thermoplastic elastomer material as the tire case 17.
  • the polyamide-based thermoplastic elastomer material coated with the reinforcing cord 26 is also heated, so that air can be effectively introduced when embedded in the crown portion 16. Can be suppressed.
  • the tire 10 of the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present disclosure has this configuration. It is not limited and a perfect tube shape may be sufficient.
  • FIG. 5A is a cross-sectional view along the tire width direction of the tire of the second embodiment
  • FIG. 5B is a cross section along the tire width direction of the bead portion in a state where a rim is fitted to the tire of the second embodiment
  • FIG. 6 is a cross-sectional view along the tire width direction showing the periphery of the reinforcing cord layer of the tire of the second embodiment.
  • the tire case 17 is formed of the polyamide-based thermoplastic elastomer (TPA) of the present disclosure, as in the first embodiment described above.
  • the tire 200 includes a reinforcing cord layer 28 (indicated by a broken line in FIG. 6) formed by winding a covering cord member 26 ⁇ / b> B around the crown portion 16 in the circumferential direction. Are stacked).
  • the reinforcing cord layer 28 constitutes the outer peripheral portion of the tire case 17 and reinforces the circumferential rigidity of the crown portion 16.
  • the outer peripheral surface of the reinforcing cord layer 28 is in contact with the cushion rubber 28A through the RFL layer 26C.
  • the coated cord member 26B is a polyamide-based thermoplastic for coating that is separate from the polyamide-based thermoplastic elastomer that forms the tire case 17 on the cord member 26A that has higher rigidity than the polyamide-based thermoplastic elastomer that forms the tire case 17. It is formed by coating an elastomer material (hereinafter, resin material for coating) 27. Further, at the contact portion of the covering cord member 26B with the crown portion 16, the covering cord member 26B and the crown portion 16 are bonded by an RFL layer 26C formed of an RFL adhesive.
  • the elastic modulus of the coating resin material 27 is set within a range of 0.1 to 10 times the elastic modulus of the resin material forming the tire case 17.
  • the elastic modulus of the resin material 27 for covering is 10 times or less than the elastic modulus of the polyamide-based thermoplastic elastomer material forming the tire case 17, the crown portion is not too hard and rim assembly is facilitated.
  • the elastic modulus of the coating resin material 27 is 0.1 times or more of the elastic modulus of the polyamide-based thermoplastic elastomer material forming the tire case 17, the resin constituting the reinforcing cord layer 28 is not too soft, Excellent in-belt shear rigidity and improved cornering force.
  • a material similar to the polyamide-based thermoplastic elastomer material forming the tire case 17 that is, the above-described polyamide-based thermoplastic elastomer of the present disclosure
  • the coating resin material 27 is used as the coating resin material 27.
  • the covering cord member 26B has a substantially trapezoidal cross section.
  • the upper surface (the surface on the outer side in the tire radial direction) of the covering cord member 26B is denoted by reference numeral 26U
  • the lower surface (the surface on the inner side in the tire radial direction) is denoted by reference numeral 26D.
  • the cross-sectional shape of the covering cord member 26B is a substantially trapezoidal shape.
  • the present disclosure is not limited to this configuration, and the cross-sectional shape is from the lower surface 26D side (the tire radial direction inner side) to the upper surface 26U. Any shape may be used as long as the shape excluding the shape that becomes wider toward the side (the tire radial direction outer side).
  • the rubber used for the tread 30 is preferably the same type of rubber as that used for conventional rubber pneumatic tires.
  • a tread formed of another type of resin material that is more excellent in wear resistance than the resin material forming the tire case 17 may be used.
  • the tread 30 is formed with a tread pattern (not shown) including a plurality of grooves on the ground contact surface with the road surface, similarly to the conventional rubber pneumatic tire.
  • the tire manufacturing apparatus is the same as that of the first embodiment described above.
  • the cord member 26A is attached to the reel 58 with the coating resin material 27.
  • a material in which a coated cord member 26B having a substantially trapezoidal cross-section coated with (polyamide-based thermoplastic elastomer material) is wound is used.
  • the temperature of the heater 70 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the coated cord member 26B unwound from the reel 58 is fed into the heating box 74 in which the internal space is heated with hot air (for example, the temperature of the outer peripheral surface of the coated cord member 26B is equal to or higher than the melting point of the coating resin material 27).
  • the covering cord member 26B is heated, the covering resin material 27 is melted or softened.
  • the covering cord member 26B is spirally wound around the outer peripheral surface of the crown portion 16 of the tire case 17 that rotates in the front direction of the paper through the discharge port 76 with a certain tension.
  • the lower surface 26 ⁇ / b> D of the covering cord member 26 ⁇ / b> B contacts the outer peripheral surface of the crown portion 16.
  • the molten or softened covering resin material 27 in the contacted portion spreads on the outer peripheral surface of the crown portion 16, and the covering cord member 26 ⁇ / b> B is welded to the outer peripheral surface of the crown portion 16.
  • the joint strength between the crown portion 16 and the covering cord member 26B is improved.
  • a blasting device (not shown) emits a projection material at a high speed toward the outer peripheral surface 17S while rotating the tire case 17 side toward the outer peripheral surface 17S of the tire case 17.
  • the ejected projection material collides with the outer circumferential surface 17S, and fine roughening irregularities having an arithmetic average roughness Ra of 0.05 mm or more are formed on the outer circumferential surface 17S.
  • corrugation is formed in the outer peripheral surface 17S of the tire case 17, and the outer peripheral surface 17S becomes hydrophilicity and the wettability of the bonding agent mentioned later improves.
  • the cushion rubber 29 in an unvulcanized state is wound around the outer peripheral surface 17S to which the RFL adhesive is applied for one turn, and a bonding agent such as a rubber cement composition is applied on the cushion rubber 29, A vulcanized or semi-cured tread rubber 30A is wound on the wrapping portion for one turn to obtain a raw tire case state.
  • the seal layer 24 made of a soft material softer than the resin material is bonded to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 200 is completed.
  • a tire case 17 formed of a material including a polyamide-based thermoplastic elastomer of the present disclosure and a covering cord member 26B formed of a material including a polyamide-based thermoplastic elastomer of the present disclosure include an RFL layer 26C. Therefore, the tire frame body and the covering cord member 26B, the cushion rubber 29, and the tread 30 are sufficiently bonded to each other. Thereby, durability etc. of the tire 200 can be improved.
  • the surface of the tire case 17 and the surface of the covering cord member 26B are covered with the RFL layer 26C.
  • the RFL layer 26C may be formed only on one of the surfaces of the covering cord member 26B.
  • the polyamide-based thermoplastic elastomer of the present disclosure since the polyamide-based thermoplastic elastomer of the present disclosure is formed, high heat resistance and wet heat resistance can be achieved at the same time, and the durability is excellent and cracks are generated. Can also be suppressed. Furthermore, it is excellent in tensile modulus, tensile strength and breaking strain, and is light in weight because of its simple structure compared to conventional rubber tires. For this reason, the tire 200 of this embodiment has high friction resistance and durability.
  • the reinforcing cord layer 28 is configured to include the covering cord member 26B as described above, the hardness of the tire case 17 and the reinforcing cord layer 28 compared to the case where the reinforcing cord 26A is simply fixed by the cushion rubber 29. Therefore, the coated cord member 26 ⁇ / b> B can be further adhered and fixed to the tire case 17. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving. Further, when the reinforcing cord 26A is a steel cord, the cord member 26A can be easily separated and recovered from the coated cord member 26B by heating at the time of disposal of the tire, which is advantageous in terms of the recyclability of the tire 200.
  • the polyamide-based thermoplastic elastomer has a lower loss factor (Tan ⁇ ) than vulcanized rubber, if the reinforcing cord layer 28 contains a large amount of the polyamide-based thermoplastic elastomer, the rolling property of the tire can be improved. it can. Furthermore, the polyamide-based thermoplastic elastomer has an advantage that the in-plane shear rigidity is larger than that of the vulcanized rubber, and the stability and wear resistance during running of the tire are excellent.
  • the outer peripheral surface 17S of the tire case 17 is roughened when the tire case 17, the cushion rubber 29, and the tread rubber 30A are integrated via the RFL layer 26C.
  • the anchoring effect improves the bondability (adhesiveness).
  • the resin material forming the tire case 17 is dug up by the collision of the projection material, the wettability of the bonding agent is improved. Thereby, the bonding agent is held in a uniform applied state on the outer peripheral surface 17S of the tire case 17, and the bonding strength between the tire frame 17 and the cushion rubber 29 can be ensured.
  • the projection material is made to collide with the concave portion (gap 28A) to roughen the periphery of the concave portion (concave wall, concave bottom).
  • the bonding strength with the cushion rubber 29 can be ensured.
  • the cushion rubber 29 is laminated in the roughened region of the outer peripheral surface 17S of the tire case 17, the bonding strength between the tire case 17 and the cushion rubber is effectively ensured through the RFL layer 26C. be able to.
  • the puncture resistance and the cut resistance are improved as compared with the outer peripheral portion configured by other than the reinforcing cord layer 28. To do.
  • the reinforcing cord layer 28 is formed by winding the covering cord member 26B, the circumferential rigidity of the tire 200 is improved.
  • creep of the tire case 17 (a phenomenon in which plastic deformation of the tire case 17 increases with time under a constant stress) is suppressed, and pressure resistance against air pressure from the inner side in the tire radial direction is suppressed. improves.
  • the tire case 17 may be formed with a reinforcing cord layer so as to cover the coated cord member wound and joined to the crown portion of the tire case with a polyamide-based thermoplastic elastomer material for coating.
  • a polyamide thermoplastic elastomer material for coating in a molten or softened state can be discharged onto the reinforcing cord layer 28 to form a coating layer.
  • the welding sheet may be heated to be in a molten or softened state and attached to the surface (outer peripheral surface) of the reinforcing cord layer 28 to form a coating layer.
  • the case divided body (the tire case half body 17A) is joined to form the tire case 17.
  • the present disclosure is not limited to this configuration, and a tire case using a mold or the like is used. 17 may be integrally formed.
  • the tire 200 of the second embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 200 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present disclosure is limited to this configuration. Instead, the tire 200 may have a complete tube shape, for example.
  • the cushion rubber 29 is disposed between the tire case 17 and the tread 30.
  • the present disclosure is not limited thereto, and the configuration in which the cushion rubber 29 is not disposed, that is, the laminated structure illustrated in FIG. 1C or FIG. 1E. It is good also as a structure corresponding to.
  • the covering cord member 26B is spirally wound around the crown portion 16.
  • the present disclosure is not limited thereto, and the covering cord member 26B is discontinuous in the width direction. It is good also as a structure wound up.
  • both the tire case 17 and the covering cord member 26B are heated to be in a molten or softened state, both are mixed well, so that the bonding strength is improved.
  • the resin material forming the tire case 17 and the covering resin material 27 forming the covering cord member 26B are preferably the same kind of thermoplastic material, particularly the same thermoplastic material.
  • the corona treatment or the plasma treatment is applied to the outer peripheral surface 17S of the tire case 17 that has been further roughened, and the surface of the outer peripheral surface 17S is activated to increase the hydrophilicity, and then the RFL adhesive is applied. Good.
  • Example 1 Synthesis of polyamide elastomer
  • DDA dodecanedioic acid
  • HMDA hexamethylenediamine
  • PPG / PTMG / PPG Polymer forming a soft segment, triblock polyether diamine having amino groups at both ends, manufactured by HUNTSMAN, trade name: ELASTAMINE (registered trademark) RT-1000) 280 g, purified water 150 g, sodium hypophosphite 0.7 g was charged and mixed.
  • ELASTAMINE registered trademark
  • the mixture was purged with nitrogen and then heated to 230 ° C. under a sealing pressure. After the container pressure reached 0.5 MPa, the pressure was gradually released, and stirring was performed at 230 ° C. for 5 hours under a nitrogen stream to obtain a polyamide elastomer.
  • the obtained polyamide elastomer was pelletized and injection molded at 240 ° C. to obtain a sample piece. Various measurements were carried out using a sample obtained by punching a test piece from this sample piece.
  • Example 2 The molar ratio of dodecanedioic acid (DDA) and hexamethylenediamine (HMDA), which is the raw material of the hard segment, the mass ratio of the hard segment and the soft segment, and the molecular weight of the synthesized polyamide elastomer are shown in Table 1 below.
  • a polyamide elastomer was obtained in the same manner as in Example 1 except that it was changed.
  • PPG (1) polymer in which the hydroxyl groups at both ends of polypropylene glycol were aminated
  • ELASTAMINE registered trademark
  • HUNTSMAN manufactured by HUNTSMAN
  • PPG (2) (polymer in which the hydroxyl groups at both ends of polypropylene glycol were aminated, manufactured by HUNTSMAN, JEFFAMINE (registered trademark) D-400) was used as a polymer for forming a soft segment.
  • Example 5 a polyamide elastomer was obtained in the same manner as in Example 5 except that dodecanedioic acid (DDA) serving as the raw material for the hard segment was changed to sebacic acid (decanedioic acid).
  • DDA dodecanedioic acid
  • PPG / PTMG / PPG polymer forming a soft segment, triblock polyether diamine having amino groups at both ends, manufactured by HUNTSMAN Co., Ltd., trade name: ELASTAMINE (registered trademark) RT- 1000) 54 g and sodium hypophosphite 0.5 g were added and stirred at 230 ° C. for 4 hours to obtain a white polyamide-based thermoplastic elastomer.
  • PPG / PTMG / PPG polymer forming a soft segment, triblock polyether diamine having amino groups at both ends, manufactured by HUNTSMAN, trade name: ELASTAMINE (registered trademark) RT- 1000) 54 g and sodium hypophosphite 0.5 g were added and stirred at 230 ° C. for 4 hours to obtain a white polyamide-based thermoplastic elastomer.
  • thermoplastic elastomer obtained in each of the examples and comparative examples was measured from 0 ° C. The temperature was raised to 250 ° C. at 10 ° C./min.
  • the evaluation criteria are as follows. A: Melting point is 189 ° C. or higher B: Melting point is 180 ° C. or higher and lower than 189 ° C. C: Melting point is lower than 180 ° C.
  • the injection molded sample was left in a constant temperature and humidity chamber at 80 ° C and 95RH% for 1000 hours, and the molecular weight of the sample before and after being left was measured by the method described above.
  • the case where the molecular weight maintained a value of 90% or more compared with the value before the test was evaluated as “A”, the case where it was greater than 80% and less than 90% was evaluated as “B”, and the case where it was 80% or less was evaluated as “C”.
  • an RFL adhesive was prepared by the following method. 9 g of resorcinol, 12 g of formaldehyde (37% by mass solution, manufactured by Nippon Formalin Kogyo Co., Ltd.), and 28 g of 4% by mass NaOH (0.1 mol / l) solution were added to 217 g of soft water and mixed beforehand. 96 g of styrene-butadiene (SBR) latex [JSR2108, manufactured by JSR, 40 mass% latex] and 93 g of vinylpyridine (VP) latex [PYRATEX (registered trademark), 41 mass% latex] were mixed and stirred for 1 hour. A 20% by weight solution of resorcinol-formalin-latex was obtained. This was used as an RFL adhesive.
  • SBR styrene-butadiene
  • VP vinylpyridine
  • PYRATEX registered trademark
  • One side of the two injection pieces was surface-treated with a sander (sandpaper) for 1 minute, and then 10 mg of the RFL adhesive was applied with a brush.
  • a sander sandpaper
  • an unvulcanized 100% natural rubber (NR), a vulcanizing agent, a vulcanization accelerator, and various rubber drugs were kneaded with a Banbury mixer and formed with a roll mill with a thickness of 2.5 mm.
  • the molded product (rubber piece) is sandwiched between the two resin pieces after application of the RFL adhesive so that the coated surface is in contact with the two resin pieces after application of the RFL adhesive, and two resin pieces are attached to both sides of the rubber piece.
  • Pasting and vulcanization treatment were carried out to produce an evaluation sample.
  • the adhesive strength was determined by a method based on JIS-K6854-3 (1999). Using the test piece as a test sample, the sample was pulled at a rate of 200 mm per minute to determine the tensile strength at the time of peeling (adhesion strength, kN / m) and evaluated according to the following criteria.
  • Adhesion strength 15 kN / m or more Adhesion strength 10 kN / m or more and less than 15 kN / m
  • B Adhesion strength 10 kN / m or more and less than 15 kN / m
  • C Adhesion strength more than 1 kN / m and less than 10 kN / m
  • D Adhesion strength 1 kN / m or less
  • Comparative Example 1 using polyamine for the soft segment and polyamide 610 for the hard segment results in poor heat and heat resistance while having excellent heat resistance.
  • Comparative Example 2 using polyamine and using polyamide 6 for the hard segment resulted in poor heat and heat resistance while having excellent heat resistance, and also used polyamine for the soft segment and polyamide 12 for the hard segment.
  • Comparative Example 3 has a result of inferior heat resistance while having excellent wet heat resistance.
  • Comparative Example 4 using a polyol for the soft segment and polyamide 612 for the hard segment has excellent heat resistance while being inferior in heat and humidity resistance.
  • each example using polyamine for the soft segment and polyamide 612 for the hard segment is excellent in heat resistance as comparable as Comparative Examples 1, 2, and 4, and as excellent as Comparative Example 3. As a result, the heat and heat resistance is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 ハードセグメント及びソフトセグメントを有する熱可塑性エラストマーであって、前記ハードセグメントがポリアミド612を含み、前記ソフトセグメントがポリアミンを含むポリアミド系熱可塑性エラストマー。

Description

ポリアミド系熱可塑性エラストマー及びタイヤ
 本開示は、ポリアミド系熱可塑性エラストマーにかかり、特にリムに装着されるタイヤに好適に用い得るポリアミド系熱可塑性エラストマー及びタイヤに関する。
 従来、乗用車等の車両に用いられる空気入りタイヤにおいて、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどを材料として用いたタイヤが検討されている。
 これら熱可塑性の高分子材料(熱可塑性樹脂)は、射出成形が可能であるなど、生産性の向上の観点から有利な点が多い。
 例えば、タイヤにおけるタイヤ骨格体を熱可塑性樹脂材料で形成し、該熱可塑性樹脂材料としてポリアミド系熱可塑性エラストマーを用いることが提案されている(特開2012-046030号公報参照)。
 ここで、タイヤ等の樹脂成形体の製造に用いられる熱可塑性エラストマーには、高い耐熱性や耐湿熱劣化性が求められることがある。しかし、ポリアミド系熱可塑性エラストマーにおいて、この耐熱性と耐湿熱劣化性とを高い質で両立することは容易でなかった。
 本開示は、前記事情を踏まえ、高い耐熱性と耐湿熱劣化性とを両立したポリアミド系熱可塑性エラストマー及びタイヤを提供することを目的とする。
[1]ハードセグメント及びソフトセグメントを有するポリアミド系熱可塑性エラストマーであって、前記ハードセグメントがポリアミド612を含み、前記ソフトセグメントがポリアミンを含むポリアミド系熱可塑性エラストマー。
 本開示によれば、高い耐熱性と耐湿熱劣化性とを両立したポリアミド系熱可塑性エラストマー及びタイヤを提供することができる。
ゴム部材と樹脂部材との層構成の一例を示す摸式図である。 ゴム部材と樹脂部材との層構成の一例を示す摸式図である。 ゴム部材と樹脂部材との層構成の一例を示す摸式図である。 ゴム部材と樹脂部材との層構成の一例を示す摸式図である。 ゴム部材と樹脂部材との層構成の一例を示す摸式図である。 本開示の一実施形態に係るタイヤの一部の断面を示す斜視図である。 リムに装着したビード部の断面図である。 本開示の第1実施形態のタイヤのタイヤ骨格体のクラウン部に、補強コードが埋没された状態を示すタイヤ回転軸に沿った断面図を表す図である。 コード加熱装置、及びローラを用いてタイヤ骨格体のクラウン部に補強コードを埋没する動作を説明するための説明図である。 本開示の第2実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。 タイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。 本開示の第2実施形態のタイヤの補強コード層の周囲を示すタイヤ幅方向に沿った断面図である。
 本開示のポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントを有する熱可塑性エラストマーであって、前記ハードセグメントがポリアミド612を含み、前記ソフトセグメントがポリアミンを含む。
 ここで、「ポリアミド系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 本開示ではこのハードセグメントにポリアミド612を含み、つまりハードセグメントがポリアミド612に由来する構造を有する。また、ソフトセグメントにポリアミンを含み、つまりソフトセグメントがポリアミンに由来する構造を有する。
 なお、「ポリアミド612」の構造は、{HN-(CH-NHCO-(CH10-CO}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 ポリアミド612は、例えば、ヘキサメチレンジアミン(HMDA、構造:HN-(CH-NH)と、ドデカン二酸(DDA、構造:HOOC-(CH10-COOH)と、が重合されてなる。
 以下においては、ポリアミド系熱可塑性エラストマーを単に「TPA」(ThermoPlastic Amid elastomer)と称することもある。
 従来から、樹脂成形体の製造に用いられる熱可塑性エラストマーには、高い耐熱性や耐湿熱劣化性が求められることがある。
 耐熱性とは、具体的には熱可塑性エラストマーが高い融点を示す性質を指し、高い耐熱性を有することで高温環境下における塑性変形の発生を抑制することができる。一方、耐湿熱劣化性とは、熱可塑性エラストマーが高湿の環境に晒された場合(例えば80℃95RH%というような環境に1000時間放置された場合など)であっても分子量の変動などによる劣化が抑制される性質を指し、高い耐湿熱劣化性を有することで高湿環境下における樹脂成形体の劣化(例えば耐久性の低下等)を抑制することができる。
 しかし、ポリアミド系熱可塑性エラストマーにおいて、この耐熱性と耐湿熱劣化性とを高い質で両立することは容易でない。
 例えば、ポリアミド系熱可塑性エラストマーとしてソフトセグメントにポリアミンを用いハードセグメントにポリアミド6を用いた組成が考えられる。ポリアミド6は、6-アミノヘキサン酸を重縮合したポリアミドであり、優れた耐熱性を備える一方で高温高湿環境下に晒されると劣化し、つまり耐湿熱劣化性について改善の余地がある。また、ポリアミド系熱可塑性エラストマーとしてソフトセグメントにポリアミンを用いハードセグメントにポリアミド12を用いた組成も考えられる。ポリアミド12は、12-アミノドデカン酸を重縮合したポリアミドであり、優れた耐湿熱劣化性を備える一方で融点が高くなく、つまり耐熱性について改善の余地がある。一方、ポリアミド系熱可塑性エラストマーとしてソフトセグメントにポリアミンを用いハードセグメントにポリアミド610を用いた組成も考えられ、ポリアミド610はヘキサメチレンジアミンとセバシン酸(デカン二酸)とを重縮合したポリアミドであるが、優れた耐熱性を備える一方で、耐湿熱劣化性に未だ改善の余地がある。
 このように、高い耐熱性と耐湿熱劣化性とを両立したポリアミド系熱可塑性エラストマーを得ることは容易でない。
 これに対して本開示は、ポリアミド系熱可塑性エラストマーとして、ハードセグメントにポリアミド612を含み、かつソフトセグメントにポリアミンを含むことで、高い耐熱性と耐湿熱劣化性とを両立し得ることを見出したものである。つまり、ポリアミンを含むソフトセグメントに対しポリアミド612を含むハードセグメントを組合せたポリアミド系熱可塑性エラストマーとすることで、ポリアミド6を含むポリアミド系熱可塑性エラストマーが有するような優れた耐熱性と、ポリアミド12を含むポリアミド系熱可塑性エラストマーが有するような優れた耐湿熱劣化性と、をいずれも予想以上に高い質で両立し得ることを見出したものである。
 また、本開示は、ポリアミンを含むソフトセグメントに対しポリアミド610を含むハードセグメントを組合せたポリアミド系熱可塑性エラストマーや、ポリアミン以外のポリマー(例えばポリオール)のみからなるソフトセグメントを有するポリアミド系熱可塑性エラストマー等では実現が容易でないような、高い耐熱性と耐湿熱劣化性との両立を実現し得ることを見出したものである。
 なお、本開示に係るポリアミド系熱可塑性エラストマーは、例えばタイヤに好適に用いることができる。熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて製造が容易でかつ低コストであるとの利点を有しており、更にこのタイヤにおける高分子材料として本開示に係るポリアミド系熱可塑性エラストマーを用いることで、高い耐熱性及び高い耐湿熱劣化性を備えたタイヤとすることができる。
 また、本開示に係るポリアミド系熱可塑性エラストマーを含むタイヤは、更に耐久性に優れると共に、亀裂の発生をも抑制し得る(耐亀裂性)との特性を備える。
 また、タイヤはトレッド部等の部材としてゴム組成物で形成されたゴム部材を備えることがある。こうしたゴム部材と熱可塑性エラストマーを含む高分子材料で形成された樹脂部材とが接着層を介して接着されることがあり、この接着層に含まれる接着剤としてレゾルシノール-ホルマリン-ラテックス系接着剤(RFL接着剤)が用いられている。
 本開示に係るポリアミド系熱可塑性エラストマーは、前記の構成を備えることにより、前記RFL接着剤との接着性にも優れる。
≪ポリアミド系熱可塑性エラストマー≫
 本開示に係るポリアミド系熱可塑性エラストマー(TPA)は、ハードセグメント及びソフトセグメントを有し、前記ハードセグメントがポリアミド612を含み、前記ソフトセグメントがポリアミンを含む。また、ポリアミド系熱可塑性エラストマーにおけるハードセグメント及びソフトセグメントの結合部の形成に、ジカルボン酸等の鎖長延長剤を用いてもよい。
-ハードセグメント-
 前記ハードセグメントは、少なくともポリアミド612を含み、つまり{HN-(CH-NHCO-(CH10-CO}(nは任意の繰り返し単位数を表す)で表される構造を有する。なお、ポリアミド612は、ヘキサメチレンジアミン(HMDA)とドデカン二酸(DDA)との共重合により合成することができる。
 ・DDA/HMDA比
 本開示に係るポリアミド系熱可塑性エラストマーにおいて、ドデカン二酸に由来する部分(OC-(CH10-CO)(DDA由来部)とヘキサメチレンジアミンに由来する部分(HN-(CH-NH)(HMDA由来部)とのモル比(DDA/HMDA比)は、73/27~52/48の範囲であることが好ましく、更に好ましくは57/43~53/47の範囲である。
 ドデカン二酸由来部(OC-(CH10-CO)とヘキサメチレンジアミン由来部(HN-(CH-NH)との合計量100モルに対し、ドデカン二酸由来部の量が73モル以下(ヘキサメチレンジアミン由来部の量が27モル以上)であることで、ポリアミド系熱可塑性エラストマーの耐熱性の低下を抑えるとの効果が奏される。
 一方、ドデカン二酸由来部の量が52モル以上(ヘキサメチレンジアミン由来部の量が48モル以下)であることで、ポリアミド系熱可塑性エラストマーの吸湿性を抑えることで、耐湿熱劣化性が向上するとの効果が奏される。
 上記DDA/HMDA比とは、ポリアミド系熱可塑性エラストマーの分子鎖中に含まれるドデカン二酸(DDA)を由来とする部分と、ヘキサメチレンジアミン(HMDA)を由来とする部分と、のモル比を表す。前記DDA/HMDA比は、ドデカン二酸(DDA)とヘキサメチレンジアミン(HMDA)の仕込み量を設定することで所望の範囲に調整することができる。
 また、前記DDA/HMDA比は、ポリアミド系熱可塑性エラストマーに対しH-NMR及び13C-NMRを用いることで、測定することができる。
 なお、ポリアミド系熱可塑性エラストマーは、ハードセグメントとしてポリアミド612以外の他の樹脂を含んでもよいが、その場合であっても、全ハードセグメント中におけるポリアミド612の割合(質量比)が50質量%以上であることが好ましく、更に70質量%以上であることがより好ましく、100質量%であることが更に好ましい。
 ハードセグメントとして併用し得る他の樹脂としては、例えば、ε-カプロラクタムを開環重縮合したポリアミド(ポリアミド6)、ウンデカンラクタムを開環重縮合したポリアミド(ポリアミド11)、ラウリルラクタムを開環重縮合したポリアミド(ポリアミド12)、12-アミノドデカン酸を重縮合したポリアミド(ポリアミド12)、ジアミンと二塩基酸との重縮合ポリアミド(ポリアミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を挙げることができる。
 ハードセグメントに含まれるポリアミド612の重量平均分子量としては、耐亀裂性及び射出成型性の観点から、50,000~200,000が好ましく、更に好ましくは80,000~160,000である。
-ソフトセグメント-
 前記ソフトセグメントは、少なくともポリアミンを含む。つまり、ポリアミド系熱可塑性エラストマーがソフトセグメントとしてポリアミンに由来する構造を有する。ポリアミンとは、分子中にアミノ基(-NH)を複数有する化合物を指す。本開示ではポリアミンを1種単独で用いても、2種以上を併用してもよい。
 ポリアミンとしては、特に限定されるものではないが、例えばポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等が挙げられる。ポリエーテルジアミンとしては、例えばABA型トリブロックポリエーテルジアミンを用いることができる。
 「ABA型トリブロックポリエーテルジアミン」としては、下記一般式(N)に示されるポリエーテルジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(N)中、X及びZは、それぞれ独立に1~20の整数を表す。Yは、4~50の整数を表す。
 前記一般式(N)において、X及びZとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(N)において、Yとしては、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 ソフトセグメントとして含有し得る前記ポリアミンの具体例としては、ポリエステルやポリエーテル等の末端をジアミン化した化合物が挙げられ、例えば、ポリエチレングリコール、ポリプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)、ポリエステルポリオール等のポリエーテル及びポリエステル、ABA型トリブロックポリエーテルジオール(例えばPPG/PTMG/PPGトリブロックポリエーテルジオール等)等の末端をジアミン化した化合物が挙げられる。
 なお、ポリアミド系熱可塑性エラストマーは、ソフトセグメントとして、ポリアミン以外の他の成分を含んでもよいが、その場合であっても、全ソフトセグメント中におけるポリアミンの割合(質量比)が80質量%以上であることが好ましく、更に90質量%以上であることがより好ましく、100質量%であることが更に好ましい。
 ソフトセグメントとして併用し得る他の成分としては、例えば、ポリエステルや、ポリエーテルが挙げられ、更に、例えば、ポリエチレングリコール、ポリプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)、ポリエステルポリオール等のポリエーテル及びポリエステル、ABA型トリブロックポリエーテルジオール(例えばPPG/PTMG/PPGトリブロックポリエーテルジオール等)等が挙げられる。
 前記ソフトセグメントを形成するポリマーは、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミン等のジアミンをモノマー単位として含んでいてもよい。また、これら、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミンは、それぞれ単独で用いてもよいし、これらを組み合わせて用いてもよい。
 前記炭素数6~22の分岐型飽和ジアミンとしては、例えば、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン及び2-メチル-1,8-ジアミノオクタンなどが挙げられる。
 前記炭素数6~16の分岐脂環式ジアミンとしては、例えば、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン等を挙げることができる。これらのジアミンはシス体及びトランス体のいずれであってもよく、これら異性体の混合物であってもよい。
 前記ノルボルナンジアミンとしては、例えば、2,5-ノルボルナンジメチルアミン、2,6-ノルボルナンジメチルアミンあるいはこれらの混合物などが挙げられる。
 更に、前記ソフトセグメントを構成するポリマーは、上述以外の他のジアミン化合物をモノマー単位として含んでいてもよい。他のジアミン化合物としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタンメチレンジアミンなどの脂肪族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサンなどの脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミンなどが挙げられる。
 上述のジアミンは単独で使用してもよいし、2種類以上を適宜組合せて使用してもよい。
 ソフトセグメントに含まれるポリアミンの数平均分子量としては、強靭性及び耐低温衝撃性の観点から、400~6,000が好ましく、更に好ましくは600~3,000である。
-鎖長延長剤-
 上述のように、ポリアミド系熱可塑性エラストマーはハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤に由来する部分(結合部)を有していてもよい。前記ジカルボン酸としては、例えば、脂肪族、脂環式及び芳香族ジカルボン酸から選ばれる少なくとも一種又はこれらの誘導体を用いることができる。
 前記ジカルボン酸の具体例としては、アジピン酸、デカンジカルボン酸、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~25の直鎖脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸及びこれらの水素添加物等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、及びテレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。
 ・HS/SS比
 本開示におけるポリアミド系熱可塑性エラストマーは、ハードセグメント(HS)とソフトセグメント(SS)との質量比(HS/SS比)が30/70~85/15であることが好ましく、更に好ましくは55/45~75/25である。
 ハードセグメント(HS)の質量比が30以上であると、ポリアミド系熱可塑性エラストマーの結晶化度が低くなりすぎず、適度な弾性率を維持できるとの効果が奏される。加えて、ハードセグメント(HS)の質量比が50以上であると、弾性率が高くなり、形状保持性が得られ、特にタイヤに用いた場合には良好なリム組み性が得られる。
 ハードセグメント(HS)の質量比が85以下であると、ポリアミド系熱可塑性エラストマーの結晶化度が高くなりすぎず、適度な弾性率を維持できるとの効果が奏される。加えて、ハードセグメント(HS)の質量比が85以下であることで、弾性率が高くなり過ぎず、特にタイヤに用いた場合には良好なリム組み性が得られる。
 前記HS/SS比は、ハードセグメントを構成する原料及びソフトセグメントを構成する原料の仕込み量を設定することで所望の範囲に調整することができる。
 また、前記HS/SS比は、ポリアミド系熱可塑性エラストマーに対しH-NMR及び13C-NMRを用いることで、測定することができる。
 前記ポリアミド系熱可塑性エラストマー中のハードセグメント及びソフトセグメントの含有量は、前記HS/SS比が上述の範囲になるように適宜設定されることが好ましい。
 前記鎖長延長剤を用いる場合、その含有量は前記ソフトセグメントを構成するモノマーのアミノ基(又は水酸基及びアミノ基)と、鎖長延長剤のカルボキシル基と、がほぼ等モルになるように設定されることが好ましい。
 前記ポリアミド系熱可塑性エラストマー中のハードセグメント、ソフトセグメント及び必要に応じて用いられる鎖長延長剤の含有量は、HS/SS比が上述の範囲内になるように適宜選定され、例えば各々の仕込み量を設定することで各々所望の含有量とすることができる。
 ・分子量
 本開示に係るポリアミド系熱可塑性エラストマーの重量平均分子量は、特に限定はないが、20,000~250,000であることが好ましく、より好ましくは50,000~200,000、更に好ましくは80,000~160,000である。
 重量平均分子量が20,000以上であると、分子鎖の絡み合いにより優れた耐亀裂性が得られるとの効果が奏される。一方、重量平均分子量が250,000以下であると、溶融粘度が高くなりすぎず、優れた射出成型性が得られるとの効果が奏される。
 前記ポリアミド系熱可塑性エラストマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、例えば、東ソー株式会社製の「HLC-8320GPC EcoSEC」等のGPC(ゲル浸透クロマトグラフィー)を用いることができる。
(ポリアミド系熱可塑性エラストマーの合成)
 前記ポリアミド系熱可塑性エラストマーの合成方法について説明する。
 例えば、ハードセグメントとしてポリアミド612のみを含み、かつソフトセグメントとしてポリアミンのみを含む場合であれば、ポリアミド612の原料となるヘキサメチレンジアミン(HMDA)及びドデカン二酸(DDA)とポリアミンとを全て混合し、公知の方法によって共重合することで合成することができる(方法1)。また、ヘキサメチレンジアミン(HMDA)とドデカン二酸(DDA)とをまず公知の方法によって重合してポリアミド612を調製し、その後このポリアミド612とポリアミンとを混合し公知の方法によって共重合することで合成してもよい(方法2)。
 また、鎖長延長剤(例えばアジピン酸、デカンジカルボン酸等)を更に共重合させる場合には、前記方法1の場合には、全ての材料をいっぺんに混合し共重合することで合成することができ、また前記方法2の場合には、ポリアミド612とポリアミンとを混合する際に鎖長延長剤を一緒に混合し共重合することで合成することができる。
 ここで、ヘキサメチレンジアミン(HMDA)が有するアミノ基はドデカン二酸(DDA)が有するカルボキシ基と反応する。また、ソフトセグメントを構成するポリアミンが有するアミノ基は、前記方法1の場合にはドデカン二酸(DDA)が有するカルボキシ基と反応し、前記方法2の場合にはポリアミド612が有するドデカン二酸(DDA)に由来のカルボキシ基と反応する。そのため、合成に用いるヘキサメチレンジアミン(HMDA)とドデカン二酸(DDA)とポリアミンとの比(モル比)は、(DDA)/(HMDA+ポリアミン)の比率で1/1となるよう調整することが好ましい。
 また、重合の方法としては、常圧溶融重合、常圧溶融重合に更に減圧溶融重合を行って合成する方法等が挙げられる。これら合成反応は、回分式及び連続式のいずれで実施してもよい。また、上述の合成反応には、バッチ式反応釜、一槽式もしくは多槽式の連続反応装置、管状連続反応装置などを単独であるいは適宜組み合わせて用いてもよい。
 前記ポリアミド系熱可塑性エラストマーの製造において、重合温度は150~300℃が好ましく、200~280℃が更に好ましい。また、重合時間は、合成するポリアミド系熱可塑性エラストマーの重合平均分子量及び重合温度との関係で適宜決定できるが、例えば0.5~30時間が好ましく、3~20時間が更に好ましい。
 前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて分子量の調整や成形加工時の溶融粘度安定化を目的として、ラウリルアミン、ステアリルアミン、メタキシリレンジアミンなどのモノアミンもしくはジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸などのモノカルボン酸、あるいはジカルボン酸などの添加剤を添加してもよい。これら添加剤は、本開示の効果に悪い影響を与えない範囲で、得られるポリアミド系熱可塑性エラストマーの分子量や粘度等の関係で適宜選定することができる。
 また、前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて触媒を用いることができる。前記触媒としては、P、Ti、Ge、Zn、Fe、Sn、Mn、Co、Zr、V、Ir、La、Ce、Li、Ca、及び、Hfからなる群より選択される少なくとも1種を含む化合物が挙げられる。
 例えば、無機系リン化合物、有機チタン化合物、有機ジルコニウム化合物、有機スズ化合物等が挙げられる。
 具体的には、無機系リン化合物としては、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸等のリン含有酸、リン含有酸のアルカリ金属塩、リン含有酸のアルカリ土類金属塩等が挙げられる。
 有機チタン化合物としては、チタンアルコキシド〔チタンテトラブトキシド、チタンテトライソプロポキシド等〕等が挙げられる。
 有機ジルコニウム化合物としては、ジルコニウムアルコキシド〔ジルコニウムテトラブトキシド(「Zr(OBu)」又は「Zr(OC」とも称される)等〕等が挙げられる。
 有機スズ化合物としては、ジスタノキサン化合物〔1-ヒドロキシ-3-イソチオシアネート-1,1,3,3-テトラブチルジスタノキサン等〕、酢酸スズ、ジラウリン酸ジブチルスズ、ブチルチンヒドロキシドオキシドヒドレート等が挙げられる。
 触媒添加量及び触媒添加時期は、目的物を速やかに得られる条件であれば特に制限されない。
(用途)
 本開示に係るポリアミド系熱可塑性エラストマーの用途としては、例えばタイヤが挙げられ、具体的にはタイヤ骨格体、補強コード層等が挙げられる。また、タイヤに用いられるゴム部材への配合剤として用いることも可能である。
 また、タイヤ以外にも、チューブ、ホース、電線被覆材料、シューズ材料、電気部品、自動車部品等が挙げられる。
≪タイヤ≫
 本開示に係るタイヤは、少なくとも前述の本開示に係るポリアミド系熱可塑性エラストマーを含む。
 例えば、タイヤ骨格体を構成する樹脂材料が前述のポリアミド系熱可塑性エラストマーを含む態様や、タイヤ骨格体の外周部に周方向に巻回される補強コード層を構成する樹脂材料が前述のポリアミド系熱可塑性エラストマーを含む態様等が挙げられる。
(樹脂材料の物性)
 ここで、本開示のタイヤに用いられる、前述の本開示に係るポリアミド系熱可塑性エラストマーを含む樹脂材料の好ましい物性について説明する。
 前記樹脂材料の融点(又は軟化点)としては、通常100℃~350℃、好ましくは100℃~250℃程度であるが、タイヤの生産性の観点から120℃~250℃程度が好ましく、120℃~230℃が更に好ましい。
 このように、融点が120℃~250℃の樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、120℃~250℃の周辺温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本開示のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成する樹脂材料の融点(又は軟化点)よりも10℃~150℃高い温度が好ましく、10℃~100℃高い温度が更に好ましい。
 前記樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが好ましく、5MPa~17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 前記樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10%~70%が好ましく、15%~60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
 前記樹脂材料のJIS K7113:1995に規定される引張破断伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破断伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 前記樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50℃~150℃が好ましく、50℃~130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
 前記樹脂材料は、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。溶融混合して得られた樹脂材料は、必要に応じてペレット状にして用いることができる。
 前記樹脂材料は、ポリアミド系熱可塑性エラストマー以外の熱可塑性エラストマーや任意の成分(添加剤)を含んでいてもよいが、前記樹脂材料の総量に対する本開示におけるポリアミド系熱可塑性エラストマーの含有量が30質量%以上であることが好ましく、50質量%以上であることが更に好ましく、70質量%以上であることが特に好ましい。また、本明細書において「樹脂」とは、熱可塑性樹脂及び熱硬化性樹脂を含む概念であるが、天然ゴムは含まない。
 前記樹脂材料には、所望に応じて、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。前記添加剤の樹脂材料中の含有量は特に限定はなく、本開示の効果を損なわない範囲で適宜用いることができる。前記樹脂材料に添加剤など樹脂以外の成分を加える場合、前記樹脂材料中の樹脂成分の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。尚、樹脂材料中の樹脂成分の含有量は、前記樹脂材料の総量から各種添加剤の総含有量を差し引いた残部となる。
(タイヤの構成)
 ここで、少なくとも前述のポリアミド系熱可塑性エラストマーを含む本開示に係るタイヤの構成について、一例を挙げて説明する。
 本開示のタイヤの構成としては、例えば、前述のポリアミド系熱可塑性エラストマーを含む樹脂材料で形成された環状のタイヤ骨格体を有する態様が挙げられる。また、更にゴム組成物で形成されたゴム部材を有し、かつ前記ゴム部材が、レゾルシノール-ホルマリン-ラテックス(RFL)系接着剤を含む組成物で形成された層(以下「RFL層」とも称す)を介して樹脂部材に接着された態様であってもよい。
 上記構成のタイヤによれば、RFL層によって、ポリアミド系熱可塑性エラストマーを含む樹脂部材と前記ゴム部材とを直接的に強く接着させることができる。このため、該樹脂部材とゴム部材との間(界面)で剥離することを抑制することができ、部材どうしが十分に接着したタイヤを提供できる。また、RFL系接着剤は、水系の接着剤であることから、環境負荷を抑えた接着方法によって前記タイヤを提供できる。尚、上記構成のタイヤは、ゴム部材とRFL層と樹脂部材とがこの順で接着された層構成をタイヤ構造の一部として含んでいればよく、ゴム部材と樹脂部材との全てが、RFL層を介して接着されている必要はない。
(積層構造の例)
 各部材は、樹脂部材、RFL層、ゴム部材の順に積層される。
 本開示におけるゴム部材としては、例えば、トレッド部及びベース等の外皮ゴム、プライ、クッションゴム及びゴムセメント等が挙げられる。
 また、本開示における樹脂部材はポリアミド系熱可塑性エラストマーを用いた部材であれば特に限定はされないが、例えば、タイヤ骨格体が挙げられる。この場合、タイヤ骨格体のクラウン部上にRFL層及びゴム部材が積層されるのが好ましい。また、タイヤ骨格体上に補強コードをポリアミド系熱可塑性エラストマーを含む樹脂材料で被覆した補強コード層を設けた場合、タイヤ骨格体の表面上に配置された補強コード層等も本開示における樹脂部材となりうる。この場合、補強コード層上にRFL層及びゴム部材が積層されるのが好ましい。
 図1A~図1Eに、本開示のタイヤにおける積層構造の具体例(層構成)を示す。図1A~図1Eに示される層構成はこの順で積層され、かつ接着されていることを示す。
 なお、本開示のタイヤの層構成は図1A~図1Eで示される層構成のみに限定されるものではない。
 図1Aにおいては、タイヤ骨格体2上にRFL層4と外皮ゴム層6Aとがこの順で積層されている。当該層構成においては本開示における樹脂部材がタイヤ骨格体2となる。また、外皮ゴム層6Aは、例えば、セメントゴム又はクッションゴムであってもよいし、トレッド部が直接接着されていてもよい。例えば、図1Bに示すように、RFL層4上にゴムセメント層6Bと外皮ゴム層6A(例えば、トレッド部材)とが積層されるように構成することができる。
 図1Cにおいては、タイヤ骨格体2上に補強コード層8が配置されており、これらの表面にRFL層4が配置され、外皮ゴム層6Aと併せた層構成とされている。当該層構成においては、少なくともタイヤ骨格体2が本開示における樹脂部材となる。さらに、補強コード層8を形成する補強コード部材がポリアミド系熱可塑性エラストマーを含む場合には、タイヤ骨格体2だけでなく補強コード部材も本開示における樹脂部材に該当する。この場合、RFL層4はタイヤ骨格体2の表面及び補強コード層8の表面と接着している。また、補強コード層8がポリアミド系熱可塑性エラストマーを含んでいない場合であって、当該タイヤ骨格体2がRFL層4と接着されているときは、当該タイヤ骨格体2が本開示における樹脂部材であってもよい。図1Cの層構成においても、外皮ゴム層6Aは、例えば、セメントゴム又はクッションゴムであってもよいし、トレッド部が直接接着されていてもよい。例えば、図1Dに示すように、RFL層4上にクッションゴム層6Cと外皮ゴム層6A(例えば、トレッド部材)とが積層されるように構成することができる。更に、図1Eに示すように、RFL層4上にゴムセメント層6Bと外皮ゴム層6A(例えば、トレッド部材)とが積層されるように構成することができる。
(ゴム部材)
 本開示におけるゴム部材は、ゴム組成物(例えばジエン系ゴムを含むゴム組成物)で形成された部材である。前記ゴム組成物に含まれるゴムは未加硫ゴムであることが好ましい。ゴムとしては特に限定されないが、例えば、天然ゴム(NR)、各種ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合ゴム(SBR)及びアクリロニトリル-ブタジエン共重合ゴム(NBR)等が挙げられる。また、ゴム部材には、前記ジエン系ゴム以外に、カーボンブラック、加硫剤、加硫促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他のゴム組成物用に一般的に配合されている各種添加剤を配合することができる。これらを含むゴム組成物は一般的な方法で混練して、加硫することができる。
 本開示におけるゴム部材はゴムを含むゴム組成物で形成された部材であれば、特に形状は限定されない。前記ゴム部材としては、例えば、外皮ゴム、プライ、クッションゴム、ゴムセメント等が挙げられる。前記外皮ゴムとしては、トレッド部、ベース等が挙げられる。また、プライ及びクッションゴムとしては、ゴムを含む組成物で形成された部材であれば適宜用途に所定の部位に用いることができる。
<ゴムセメント>
 上述のように、本開示のタイヤを構成するゴム部材として、ゴムセメントを含めてもよい。ゴムセメントを用いることで、複数のゴム部材(例えば外皮ゴム)同士を貼り合わせる際に、例えば加硫工程の前等に、ゴム部材同士の十分な接着力や粘着力を確保することができる。
 ゴムセメントは、例えば、ジエン系のゴムを含む組成物で形成された部材であれば、特に限定されない。ゴムセメントの効果を十分に発揮する観点から、外皮ゴム等の素材に併せて適宜選択することが好ましく、例えば、特開2011-241363号公報に記載されているゴムセメント等を用いることができる。例えば、外皮ゴムとしてブタジエン系ゴムを用いる場合には、ゴムセメント組成物として、ブタジエン系のスプライスセメントを用いることが好ましい。さらにこの場合には、ブタジエン系のスプライスセメントにブタジエンゴムを配合したものを用いることが好ましい。この他、ゴムセメント組成物として、液状ブタジエンゴム等の液状エラストマーを配合した無溶剤セメントや、イソプレンゴム(IR)-ブタジエンゴム(SBR)のブレンドを主成分とするセメントを用いることが可能である。
(樹脂部材)
 本開示のタイヤを構成する樹脂部材は、前述の本開示のポリアミド系熱可塑性エラストマーを含む樹脂部材を構成の一つとする。樹脂部材は本開示のポリアミド系熱可塑性エラストマーを含むため、RFL系接着剤との接着性が特に高く、結果的にゴム部材と樹脂部材との接着力を高めることができる。
 補強コード部材及び樹脂材料を含む補強コード層をタイヤ骨格体上に設ける場合には、補強コード層も本開示における樹脂部材であることが好ましい。
(レゾルシノール-ホルムアルデヒド-ラテックス(RFL)系接着剤)
 RFL層を形成するためのRFL系接着剤は、RFLを主成分とする接着剤である。RFLは、レゾール化反応により得られたレゾルシノール-ホルムアルデヒド縮合物と、ラテックスとからなる組成物の溶液である。レゾルシノール-ホルムアルデヒド縮合物は、レゾルシノールとホルムアルデヒド又は比較的低分子量のレゾルシノール・ホルムアルデヒド縮合物とホルムアルデヒドを、いわゆるレゾール反応によりレゾルシノール・ホルムアルデヒド縮合反応させ得られる反応物である。ホルムアルデヒド由来の構成単位とレゾルシノール由来の構成単位とを含有し、ホルムアルデヒド由来の構成単位が化学量論的に不足する状態を維持して、これによりRFL系接着剤を低分子量で可溶性に維持することができる。
 ラテックスとしては、例えば、アクリルゴムラテックス、アクリロニトリル-ブタジエンゴムラテックス、イソプレンゴムラテックス、ウレタンゴムラテックス、エチレン-プロピレンゴムラテックス、ブチルゴムラテックス、クロロプレンゴムラテックス、シリコーンゴムラテックス、スチレン-ブタジエンゴムラテックス、天然ゴムラテックス、ビニルピリジン-スチレン-ブタジエンゴムラテックス、ブタジエンゴムラテックス、ブチルゴムラテックス、カルボキシル化ブタジエン・スチレン共重合体ラテックス又はクロルスルホン化ポリエチレンラテックス、ニトリルゴムラテックス等が挙げられる。これらの中でも、ゴム部材との接着性から、ビニルピリジン-スチレン-ブタジエンゴムラテックスが好ましい。さらに、この場合には、ビニルピリジン、スチレン及びブタジエンの2段重合からなる2重構造を有する共重合ゴムラテックスであることがより好ましい。なお、これらは単独であるいは二種以上混合したものなどを用いてもよく、またレゾルシノールとホルムアルデヒドを反応させる反応系に反応前から共存させてもよい。
 ビニルピリジン、スチレン及びブタジエンの2段重合からなる2重構造を有する共重合ゴムラテックスは、ビニルピリジン、スチレン、ブタジエンの共重合ゴムラテックスであり、(i)スチレン含有率が10質量%~60質量%、ブタジエン含有率が60質量%未満及びビニルピリジン含有率0.5質量%~15質量%で構成される単量体混合物を重合させた後、次いで、(ii)スチレン含有率10質量%~40質量%、ブタジエン含有率45質量%~75質量%及びビニルピリジン含有率5質量%~20質量%で構成される単量体混合物を、(i)における重合で用いたスチレン含有量よりも低いスチレン含有量で重合させて得ることができる。
<RFL系接着剤の調製>
 RFL系接着剤は、レゾルシノール-ホルムアルデヒド縮合物がレゾール化した高分子とラテックスとが3次元的に十分にからみあった構造を有する。このため、RFL系接着剤の調製においては、レゾール化反応はラテックスが分散した溶液中で行われる。
 この場合に用いられる溶液としては酸性、中性もしくはアルカリ性の水、又はアセトン、アルコール等の有機溶媒を用いることができるが、ラテックスはpHが中性領域では水溶性が低く、熟成でのレゾルシノール・ホルムアルデヒド縮合反応(レゾール化反応)を十分行わせるため、アルカリ性又は、中性の水を用いることが好ましい。このレゾール化反応は、通常pH8.0以上、好ましくは8.5~10.0の範囲で行われる。
 ここで、アルカリ性の水とは水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化アンニモニウム又は、モノメチルアミン、アンモニア等の有機アミンを水に溶解したものである。また、任意のアニオン系界面活性剤を用いて、ボールミル、サンドミルによって中性の水に分散させて使用することも可能である。この場合、接着力を有効に発現させるために、界面活性剤の量を分散状態が悪くならない程度に少量にすることが好ましい。
 なお、RFL液中のホルムアルデヒド(F)とレゾルシノール(R)とのモル比(F/R)や全ラテックスの固形分質量(L)に対するレゾルシノール及びホルムアルデヒド総質量(RF)の割合(RF/L)等は目的に応じて適宜選択することができる。
 前記レゾール化させて得られるレゾルシノール-ホルムアルデヒド縮合物をラテックスとの混合下で反応させる方法としては、例えば、アルカリ性液下で、レゾルシノール-ホルムアルデヒド縮合物の原材料(レゾルシノール、比較的低分子量のレゾルシノール-ホルムアルデヒド縮合物、ホルムアルデヒド)とラテックスとを混合させる方法、更に、反応開始時はラテックスと混合せず、アルカリ性液下で、レゾルシノール-ホルムアルデヒド縮合物の原材料でレゾール化反応を開始させるが、なるべく反応初期段階で低縮合度の反応中間体をラテックスと混合して反応を続行させる方法等が挙げられる。
<接着方法>
 RFL系接着剤による樹脂部材とゴム部材の接着は、例えば、未加硫のゴム部材もしくは樹脂部材にRFL系接着剤を塗布した後、これらを貼着し、その後、必要に応じて熱処理等を行い、完了させることができる。
 RFL系接着剤を塗布する前に各部材に対して行われる前処理としては、必要に応じて適宜選択されることが好ましい。例えば、RFL系接着剤を塗布する前に、樹脂部材とゴム部材の接着面を、あらかじめ前処理することで、接着力を強固にすることができる。このような前処理法としては、電子線、マイクロ波、コロナ放電、プラズマ放電及び脱脂処理等を挙げることができる。また、単にバフ掛けやヤスリなどを用いて前処理することもできる。
 前記前処理を行う場所としては、より十分な接着の観点から、補強コード層並びにタイヤ骨格体のいずれかであることが好ましい。
 ここで、前処理として、レゾルシノール-ホルマリン-ラテックス系接着剤以外の接着剤処理(下塗り処理)を行ってもよい。下塗り処理に用いる下塗り処理剤としては、樹脂部材をRFL系接着剤によってより十分にゴム部材に接着させる場合に用いられるものであれば特に限定されないが、例えば、特開2009-191395号公報に記載のエポキシ化合物とイソシアネート化合物とを含む水溶性高分子を有するアンダーコート組成物、再表02-094962号公報に記載のアルキル化ビスフェノールとアクリル(メタクリル)酸との共重合体を有するアンダーコート組成物、及び特開平11-001658号公報に記載の塩化ビニルプラスチゾル系高分子を含むアンダーコート組成物等が挙げられる。なお、下塗り処理剤とレゾルシノール-ホルマリン-ラテックス系接着剤とは、塗布の過程で混合された状態となってもよい。
 前記下塗り処理剤によって形成する下塗り層の層厚としては、1μm~15μmであることが好ましい。
 また、タイヤ骨格体の表面粗さをある程度の範囲にすることで、接着後の接着強度をより強めることができる。タイヤ骨格体の表面粗さとしては、例えば算術平均粗さ(Ra)で0.1μm以上が好ましい。0.1μm以上であることで、RFL系接着剤と接するタイヤ骨格体の接着面積が増すので、より十分に接着できる。また、RFL系接着剤の液だれをより低減させる観点からは、0.5μm以上が好ましく、さらに好ましくは1μm以上である。また、同じく接着強度を高める観点から、Raとしては10μm以下が好ましい。
 RFL系接着剤の塗布方法としては、浸漬法、バーコート法、ニーダーコート法、カーテンコート法、ローラコート法、スピンコート法等が挙げられる。
 接着強度は、タイヤの各部材をRFL系接着剤で接着させた試験片を作製し、JIS-K6854-3:(1999年)に準拠した方法により求めることができる。なお、試験方法としては、ゴム部材に相当するゴム片と樹脂部材に相当する樹脂片をRFL系接着剤で単に接着して重ねた構造を有する試料を試験片とするのではなく、1枚のゴム片の両側面を、RFL系接着剤によって、2枚の樹脂片で挟むように接着したものを試験片として用い、剥離試験を行うことで、接着強度(kN/m)を得ることができる。また、剥離試験後に試験片を目視観察することで、破断もしくは剥離した場所を確認することができる。接着剤としては、良好な接着力を付与する点から、20kN/m以上であることが望ましい。十分な接着強度が得られている場合、凝集破壊が起こり、界面剥離が抑制される。
 RFL系接着剤によってタイヤ骨格体と未加硫のゴム部材とを接着させた場合は、さらに加硫処理を行うことが好ましい。この場合の加硫処理は公知の方法で行なえばよく、例えば、特開平11-048264号公報、特開平11-029658号公報、特開2003-238744号公報等に記載される方法が挙げられる。ゴムの加硫は、前記未加硫のゴムに、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等を適宜配合し、バンバリーミキサーを用いて混練した後、加熱することで行うことができる。
(補強コード層)
 本開示のタイヤは、タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材及び樹脂材料を有していてもよい。ここで、樹脂材料としては、前述の本開示に係るポリアミド系熱可塑性エラストマーを含む樹脂材料が好ましい。
 このように、補強コード層に本開示のポリアミド系熱可塑性エラストマーが含まれていると、補強コード層とゴム部材とのRFL系接着剤による接着性が向上するだけでなく、補強コードをゴム部材(クッションゴム)で固定する場合と比して、タイヤと補強コード層との硬さの差を小さくできるため、補強コード部材をタイヤ骨格体により密着させて固定することができる。
 更に、補強コードがスチールコードの場合、タイヤ処分時に補強コードをクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コードと分離させるのが難しいのに対し、ポリアミド系熱可塑性エラストマー材料は加熱のみで補強コードと分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、ポリアミド系熱可塑性エラストマー材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高いポリアミド系熱可塑性エラストマー材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 補強コード層に用いられるポリアミド系熱可塑性エラストマー材料の弾性率(JIS K7113:1995に規定される引張弾性率)は、タイヤ骨格体を形成する熱可塑性樹脂の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。前記ポリアミド系熱可塑性エラストマー材料の弾性率がタイヤ骨格体を形成するポリアミド系熱可塑性エラストマー材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、ポリアミド系熱可塑性エラストマー材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。
 また、前記補強コード層にポリアミド系熱可塑性エラストマー材料を含める場合は、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コード部材はその表面が20%以上ポリアミド系熱可塑性エラストマー材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中のポリアミド系熱可塑性エラストマー材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
 補強コード層を、樹脂材料を含むように構成するには、例えば、タイヤ骨格体の軸方向に沿った断面視で、ポリアミド系熱可塑性エラストマー材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成して形成することができる。この場合、補強コード部材が埋設しているタイヤ骨格体外周部のポリアミド系熱可塑性エラストマーを含む樹脂材料が補強コード層を構成する樹脂材料に該当し、タイヤ骨格体を形成するポリアミド系熱可塑性エラストマー材料と補強コード部材とで前記補強コード層が構成される。また、補強コード層に樹脂材料が含まれるように構成する場合においては、前記タイヤ骨格体を形成する樹脂材料と同種又は別の樹脂材料で補強コードを被覆した被覆コード部材を、前記タイヤ骨格体の周方向に巻回してもよい。樹脂材料の同種とは、アミド系同士、ウレタン系同士、スチレン系同士などの形態を指す。
<第1実施形態>
 以下に、図面に沿って本実施形態に係るタイヤを説明する。また、第1及び第2実施形態ではタイヤ骨格体をタイヤケースと称する。
 本実施形態のタイヤ10について説明する。図2Aは、本開示の一実施形態に係るタイヤの一部の断面を示す斜視図である。図2Bは、リムに装着したビード部の断面図である。図2Aに示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
 図2Aに示すように、タイヤ10は、図2Bに示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。RFL層は、図2Aのクラウン部16(外周部)とゴム部材であるトレッド30との間に位置し、クラウン部16の外周に沿って形成されている。また、サイド部14の外周部上にさらにゴム部材を設ける場合には、そのゴム部材とサイド部14との間にRFL層を形成してもよい。さらに、RFL層は、補強コード26が存在する場所では厚く、サイド部14に近い部分などは薄くするなど、場所によって異なる層厚としてもよい。
 本実施形態においてタイヤケース17は、単一の樹脂材料、すなわちポリアミド系熱可塑性エラストマー材料で形成されているが、本開示はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
 本実施形態のタイヤケース17は、樹脂材料で形成された一対のタイヤケース半体(タイヤケース片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
 前記樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
 また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
 本実施形態において、図2Bに示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本開示はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂などで形成されていてもよい。
 本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成する樹脂材料よりもシール性に優れた材料としては、タイヤケース17を構成する樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、前記樹脂材料よりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系熱可塑性樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
 図2Aに示すように、クラウン部16には、タイヤケース17を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れた材料、例えばゴム部材であるトレッド30が配置されている。
 図3を用いて補強コード26によって形成される補強コード層28について説明する。図3は、本実施形態のタイヤのタイヤケースのクラウン部16に補強コード26が埋設された状態を示すタイヤ回転軸に沿った断面図であり、さらにトレッド30とクラウン部16がRFL層26Cを介して接着されている。図3に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図3において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
 また、図3において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである
 上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
 以下、本実施形態のタイヤの製造方法について説明する。
(タイヤケース形成工程)
 まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する熱可塑性樹脂材料の融点以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱・加圧されると、前記接合部が溶融しタイヤ骨格体半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本開示はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧して、タイヤケース半体を接合させてもよい。
(補強コード部材巻回工程)
 次に、補強コード巻回工程について図4を用いて説明する。図4は、コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図4において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60又は第2のローラ64の表面は、溶融又は軟化した熱可塑性樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60又は第2のローラ64の2つのローラを有する構成としているが、本開示はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
 また、コード加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱された補強コード26を排出する排出口76とを備えている。
 本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100~200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図4の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融又は軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融又は軟化した樹脂材料に加熱された補強コード26が埋設されるため、樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の樹脂材料の融点(又は軟化点)よりも高温に加熱することで、補強コード26が接触した部分の樹脂材料の溶融又は軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
 また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
 このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
 次に、タイヤケース17のクラウン部16のトレッド30のクラウン部16と接する面に、RFL系接着剤を塗布する。塗布においては、通常使用される塗布又はコーティング方法又は装置を特別な制限なく使用することができるが、ナイフコーティング法、バーコーティング法、グラビアコーティング法、スプレー法及び浸漬法を用いることができる。中でも、ナイフコーティング法、バーコーティング法又はグラビアコーティング法を用いることが、接着剤の均一な塗布及びコーティングの面で好ましい。
 タイヤケース17の外周面に未加硫のゴム部材である帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、RFL系接着剤を用いて貼着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアクラウンを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアクラウンを接着する工程と同様の工程である。
(加硫工程)
 次に、トレッド30が貼着されたタイヤケース17を加硫缶やモールドに収容して加硫する。加硫を行うことによって、RFL系接着剤のラテックスゴムとジエン系ゴムとの間での化学的な結合が新たに形成されるので、結果的にゴム部材であるトレッド30と樹脂部材であるタイヤケースとの結合がより強固になる。
 そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
 また、タイヤ10の完成後に、更に、タイヤ10を加熱するアニール処理を行ってもよい。タイヤの完成後にアニール処理を行うことで、樹脂材料が含むポリアミド系熱可塑性エラストマーのハードセグメントの結晶化度を調整することもできる。アニール処理における加熱温度は、ガラス転移温度~140℃であることが好ましく50℃~140℃であることがより好ましい。また、タイヤ10を加熱した後、徐々に室温(例えば、25℃)まで冷却することが好ましい。
(作用)
 本実施形態のタイヤ10では、タイヤケース17が本開示のポリアミド系熱可塑性エラストマーを含む材料によって形成されており、高い耐熱性と耐湿熱劣化性とを両立することができ、また耐久性に優れると共に亀裂の発生をも抑制し得る。また、タイヤケース17とトレッド30(ゴム部材)とがRFL系接着剤によって接着されていることから、RFL系接着剤との接着性に優れるため耐剥離性に優れる。さらに、耐剥離性だけでなく、耐衝撃性、破断性に優れる。さらにタイヤ構造が簡素化できる為、従来のゴムに比して重量が軽い。このため、本実施形態のタイヤ10を自動車に適用すると、耐久性に優れる。また、タイヤを軽量化することができるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
 また、本開示のポリアミド系熱可塑性エラストマーは、補強コード26に対する密着性が高く、溶着強度等の固定性能に優れている。そのため、補強コード巻回工程において補強コード26の周囲に空気が残る現象(エア入り)を特に抑制することができる。補強コード26への密着性及び溶着性が高く、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード26が動くのを効果的に抑制することができる。これにより、例えば、タイヤケースの外周部に補強コード部材全体を覆うようにタイヤを構成する部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤケース含む)の剥離及び損傷の発生が抑制されタイヤ10の耐久性が向上する。
 また、本実施形態のタイヤ10では、ポリアミド系熱可塑性エラストマー材料で形成されたタイヤケース17のクラウン部16の外周面に、ポリアミド系熱可塑性エラストマー材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、及びタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、ポリアミド系熱可塑性エラストマー材料で形成されたタイヤケース17のクリープが防止される。
 また、タイヤケース17の軸方向に沿った断面視(図3に示される断面)で、ポリアミド系熱可塑性エラストマー材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ周囲のポリアミド系熱可塑性エラストマー材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、及びトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
 そして、図3に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
 このように補強コード層28が、ポリアミド系熱可塑性エラストマー材料を含んで構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、補強コードがスチールコードの場合、タイヤ処分時に補強コード26を加熱によってポリアミド系熱可塑性エラストマー材料から容易に分離・回収が可能であるため、タイヤ10のリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 また、路面と接触するトレッド30をポリアミド系熱可塑性エラストマー材料よりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
 さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
 またさらに、ビード部12のリム20と接触する部分に、ポリアミド系熱可塑性エラストマー材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とポリアミド系熱可塑性エラストマー材料とでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
 上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分のポリアミド系熱可塑性エラストマー材料を溶融又は軟化させる構成としたが、本開示はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
 また、第1の実施形態では、コード加熱装置59の熱源をヒーター及びファンとしているが、本開示はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
 さらに、第1の実施形態では、補強コード26を埋設したポリアミド系熱可塑性エラストマー材料が溶融又は軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本開示はこの構成に限定されず、ポリアミド系熱可塑性エラストマー材料が溶融又は軟化した部分に冷風を直接吹きかけて、ポリアミド系熱可塑性エラストマー材料の溶融又は軟化した部分を強制的に冷却固化する構成としてもよい。
 また、第1の実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じポリアミド系熱可塑性エラストマー材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆したポリアミド系熱可塑性エラストマー材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
 また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
 第1の実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本開示はこの構成に限定されず、完全なチューブ形状であってもよい。
 以上、実施形態を挙げて本開示の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
<第2実施形態>
 次に、図面に従って本開示のタイヤの製造方法及びタイヤの第2実施形態について説明する。本実施形態のタイヤは、上述の第1実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、前記第1実施形態と同様の構成については同様の番号が付される。図5Aは、第2実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図5Bは第2実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図6は、第2実施形態のタイヤの補強コード層の周囲を示すタイヤ幅方向に沿った断面図である。
 第2実施形態のタイヤは、上述の第1実施形態と同様に、タイヤケース17が本開示のポリアミド系熱可塑性エラストマー(TPA)で形成されている。本実施形態においてタイヤ200は、図5A及び図6に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図6では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面はRFL層26Cを介してクッションゴム28Aと接している。
 この被覆コード部材26Bは、タイヤケース17を形成するポリアミド系熱可塑性エラストマーよりも剛性が高いコード部材26Aにタイヤケース17を形成するポリアミド系熱可塑性エラストマーとは別体の被覆用のポリアミド系熱可塑性エラストマー材料(以下、被覆用樹脂材料)27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とがRFL系接着剤で形成されたRFL層26Cによって接着されている。
 また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成するポリアミド系熱可塑性エラストマー材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成するポリアミド系熱可塑性エラストマー材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。なお、本実施形態では、被覆用樹脂材料27としてタイヤケース17を形成するポリアミド系熱可塑性エラストマー材料と同様の材料(つまり前述の本開示のポリアミド系熱可塑性エラストマー)が用いられている。
 また、図6に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、本実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本開示はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。
 図6に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。
 タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸が均一に形成され、その上にRFL層を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸に流れ込んでいる。
 また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。
 なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。
 以上、実施形態を挙げて本開示の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 次に本実施形態のタイヤの製造方法について説明する。
(タイヤケース形成工程)
 まず、上述の第1実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤケース17を形成する。
(補強コード部材巻回工程)
 本実施形態におけるタイヤの製造装置は、上述の第1実施形態と同様であり、上述の第1実施形態の図4に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(ポリアミド系熱可塑性エラストマー材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。
 まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融又は軟化した状態となる。
 そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融又は軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。
(粗化処理工程)
 次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸を形成する。
 このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
(積層工程)
 次に、粗化処理を行なったタイヤケース17の外周面17SにRFL系接着剤を塗布し、RFL層26Cを形成させる。
 次に、RFL系接着剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済み又は半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。
(加硫工程)
 次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理を行なったタイヤケース17の外周面17Sに形成されたRFL層26Cに未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、RFL層26Cとクッションゴム29の化学的架橋構造が形成され、接着強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接着強度が向上する。
 そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。
(作用)
 本実施形態のタイヤ200では、本開示のポリアミド系熱可塑性エラストマーを含む材料によって形成されるタイヤケース17及び本開示のポリアミド系熱可塑性エラストマーを含む材料によって形成される被覆コード部材26BがRFL層26Cを介してクッションゴム29と接着されているため、タイヤ骨格体及び被覆コード部材26Bとクッションゴム29及びトレッド30とが十分に接着されている。これにより、タイヤ200の耐久性等を向上させることができる。尚、本実施形態においては、タイヤケース17表面と被覆コード部材26Bの表面とがRFL層26Cに覆われる構成とされているが、本開示はこれに限定されるものではなく、タイヤケース17表面及び被覆コード部材26Bの表面のいずれか一方のみにRFL層26Cが構成されていてもよい。
 本実施形態のタイヤ200では、本開示のポリアミド系熱可塑性エラストマーを含んで形成されているため、高い耐熱性と耐湿熱劣化性とを両立することができ、また耐久性に優れると共に亀裂の発生をも抑制し得る。更に、引張弾性率、引張強度及び破断ひずみに優れ、さらに従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性及び耐久性が高い。
 このように補強コード層28が、被覆コード部材26Bを含んで構成されていると、補強コード26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、補強コード26Aがスチールコードの場合に、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離・回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28がポリアミド系熱可塑性エラストマーを多く含んでいると、タイヤの転がり性を向上させることができる。更には、ポリアミド系熱可塑性エラストマーは加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 本実施形態のタイヤの製造方法では、タイヤケース17とクッションゴム29及びトレッドゴム30AとをRFL層26Cを介して一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤ骨格体17とクッションゴム29との接合強度を確保することができる。
 特に、タイヤケース17の外周面17Sに凹凸が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケースとクッションゴム29との接合強度を確保することができる。
 一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、RFL層26Cを介してタイヤケース17とクッションゴムとの接合強度を効果的に確保することができる。
 また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性及び耐カット性が向上する。
 また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、且つ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。
 本実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本開示はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
 また、タイヤケース17は、タイヤケースのクラウン部に巻回され且つ接合された被覆コード部材を被覆用のポリアミド系熱可塑性エラストマー材料で覆うようにして補強コード層を形成してもよい。この場合、溶融又は軟化状態の被覆用のポリアミド系熱可塑性エラストマー材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融又は軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
 上述の第2実施形態では、ケース分割体(タイヤケース半体17A)を接合してタイヤケース17を形成する構成としたが、本開示はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。
 第2実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本開示はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状であってもよい。
 第2実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本開示はこれに限らず、クッションゴム29を配置しない構成、すなわち図1Cもしくは図1Eに示す積層構造に相当する構成としてもよい。
 また、第2実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本開示はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。
 なお、タイヤケース17及び被覆コード部材26Bの両者を加熱して溶融又は軟化状態にした場合は、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、及び被覆コード部材26Bを形成する被覆用樹脂材料27は、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
 また、さらに粗化処理を行ったタイヤケース17の外周面17Sにコロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後にRFL系接着剤を塗布してもよい。
 以下、本開示について実施例を用いてより具体的に説明する。ただし、本開示はこれに限定されるものではない。
[実施例1]
 (ポリアミドエラストマーの合成)
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、ドデカン二酸(DDA)68.2gと、ヘキサメチレンジアミン(HMDA)1.8gと、PPG/PTMG/PPG(ソフトセグメントを形成するポリマー、両末端にアミノ基を有するトリブロックポリエーテルジアミン、HUNTSMAN社製、商品名:ELASTAMINE(登録商標)RT-1000)280gと、精製水150gと、次亜リン酸ナトリウム0.7gと、を仕込み、混合した。
 この混合物を窒素置換後、封圧下、230℃まで昇温した。容器圧力が0.5MPaに達したのち、圧力を徐々に開放し、窒素気流下、230℃5時間撹拌を行い、ポリアミドエラストマーを得た。
 得られたポリアミドエラストマーはペレット化し、240℃で射出成形し、サンプル片を得た。各種測定は、このサンプル片から試験片を打ち抜いたサンプルを用いて実施した。
[実施例2~9]
 ハードセグメントの原料となるドデカン二酸(DDA)とヘキサメチレンジアミン(HMDA)とのモル比、このハードセグメントとソフトセグメントとの質量比、合成されるポリアミドエラストマーの分子量を、下記表1に記載のものに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
 ただし、実施例7では、ソフトセグメントを形成するポリマーとしてPPG(1)(ポリプロピレングリコールの両末端の水酸基がアミノ化されたポリマー、HUNTSMAN社製、ELASTAMINE(登録商標)RP-2009)を用い、実施例8では、ソフトセグメントを形成するポリマーとしてPPG(2)(ポリプロピレングリコールの両末端の水酸基がアミノ化されたポリマー、HUNTSMAN社製、JEFFAMINE(登録商標)D-400)を用いた。
[比較例1]
 実施例5において、ハードセグメントの原料となるドデカン二酸(DDA)をセバシン酸(デカン二酸)に変更した以外は、実施例5と同様にしてポリアミドエラストマーを得た。
[比較例2]
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、カプロラクタム500gと、アジピン酸32.4gと、アミノヘキサン酸38.7gと、を入れ、容器内を十分窒素置換した後、250℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、水洗工程を経て所望の数平均分子量約3700のポリアミド6重合物である白色固体を得た。
 得られたポリアミド6重合物200gに、PPG/PTMG/PPG(ソフトセグメントを形成するポリマー、両末端にアミノ基を有するトリブロックポリエーテルジアミン、HUNTSMAN社製、商品名:ELASTAMINE(登録商標)RT-1000)54gと、次亜リン酸ナトリウム0.5gと、を加え、230℃で4時間撹拌を行い、白色のポリアミド系熱可塑性エラストマーを得た。
[比較例3]
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、アミノドデカン酸43.7gと、アミノドデカノラクタム600gと、ドデカン二酸41gと、を入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.4MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、数平均分子量3000のポリアミド12重合物である白色固体を得た。
 得られたポリアミド12重合物200gに、PPG/PTMG/PPG(ソフトセグメントを形成するポリマー、両末端にアミノ基を有するトリブロックポリエーテルジアミン、HUNTSMAN社製、商品名:ELASTAMINE(登録商標)RT-1000)54gと、次亜リン酸ナトリウム0.5gと、を加え、230℃で4時間撹拌を行い、白色のポリアミド系熱可塑性エラストマーを得た。
[比較例4]
 攪拌機、還流装置を備えた三口の2Lセパラブルフラスコにエタノール500mLと、ドデカン二酸(DDA)170gと、を入れ、65℃で撹拌することで溶解させた。この溶液に、ヘキサメチレンジアミン(HMDA)85.6gをエタノール100mLに溶解させた溶液を徐々に加え、析出したポリアミド塩をろ別し、エタノールで洗浄後、減圧乾燥することで、ポリアミド612塩を得た。
 上記のようにしてドデカン二酸とヘキサメチレンジアミンから調製したナイロン612塩232gと、ソフトセグメントを形成するポリマーとしてPTMG(ポリテトラメチレンエーテルグリコール;平均分子量650)87.5gと、ドデカン二酸31gと、ジルコニウムテトラブトキシド0.3gと、を仕込み、窒素置換した。250℃まで昇温後、減圧下で6時間撹拌を行い、白色のポリアミド系熱可塑性エラストマーを得た。
-評価-
・耐熱性
 示差走査型熱量分析(DSC)装置〔ティー・エイ・インスツルメント・ジャパン株式会社製、DSC Q2000〕を用い、各実施例及び比較例で得られた熱可塑性エラストマーを、0℃から250℃まで10℃/分で昇温した。評価基準は以下の通りである。
 A:融点が189℃以上
 B:融点が180℃以上189℃未満
 C:融点が180℃未満
・耐湿熱劣化性
 射出成形サンプルを、80℃95RH%の恒温恒湿槽に1000時間放置し、放置前後のサンプルの分子量を前述の方法により測定した。該分子量が試験前対比90%以上の値を維持している場合を「A」、80%より大きく90%未満の場合を「B」、80%以下の場合を「C」として評価した。
・RFL接着性
 まず、以下の方法によりRFL系接着剤を調製した。
 レゾルシノール9g、ホルムアルデヒド(37質量%溶液、日本ホルマリン工業(株)製)12g、及びNaOH(0.1mol/l)4質量%溶液28gを軟水217gに添加混合したものに、あらかじめ混合しておいたスチレン-ブタジエン(SBR)ラテックス[JSR2108、JSR社製、40質量%ラテックス]96g及びビニルピリジン(VP)ラテックス[PYRATEX(登録商標)、41質量%ラテックス]93gを、混合して1時間撹拌して、レゾルシノール-ホルマリン-ラテックスの20質量%溶液を得た。これをRFL系接着剤として用いた。
 射出片2枚の片面をサンダー(サンドペーパー)によって1分間表面処理した後、前記RFL系接着剤10mgをそれぞれ刷毛塗りした。次に、未加硫の100%の天然ゴム(NR)、加硫剤、加硫促進剤及び各種ゴム薬をバンバリミキサーで混練し、ロールミルにて成形することにより作製した厚さ2.5mmの成形物(ゴム片)1枚の両側面を、前記RFL系接着剤塗布後の樹脂片2枚にて、塗布面が接するように挟み、ゴム片1枚の両側面に2枚の樹脂片を貼り付け、加硫処理(加硫条件:145℃、2MPa、21分間)を行い、評価サンプルを作製した。接着強度は、JIS-K6854-3(1999年)に準拠した方法により求めた。前記の試験片を試験試料として用い、試料を毎分200mmで引っ張ることで、剥離時の引張強度(接着強度、kN/m)を求め、以下の基準で評価した。
 A:接着強度15kN/m以上
 B:接着強度10kN/m以上15kN/m未満
 C:接着強度1kN/mを超え10kN/m未満
 D:接着強度1kN/m以下
・耐亀裂進展性
 射出成型サンプルをJIS-3のダンベル形状に打ち抜き、予めサンプル中心部に亀裂起点を入れた試験サンプルを作製した。試験サンプルを島津製作所社のサーボパルサーの装置を用いて繰り返し引っ張り(17Hz定歪11%)を行い、亀裂が進展してサンプルが破断するまでの回数を記録し、以下の基準で評価した。
 A:1,000,000回より多い回数で破断
 B:100,000回より多く且つ1,000,000回以下の回数で破断
 C:100,000回以下の回数で破断
・タイヤ耐久性
 各実施例及び比較例で得られた重合体(エラストマー)を用い、それぞれ上述の実施形態を参照し、タイヤを成形した。次いで、タイヤをリムに装着し、80℃95RH%の環境下で10日間放置した。このようにして得られたタイヤを、JIS-D4230:1999年(高速性能試験B)に準じて高速性能試験を行い、以下の基準で評価した。
 A:完走
 B:試験段階3の時点で故障が発生し停止
 C:試験段階2の時点で故障が発生し停止
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 尚、上記表1、表2に示される成分は、それぞれ以下の通りである。
 -ソフトセグメント用ポリマー-
・PPG/PTMG/PPG:HUNTSMAN社製、商品名:JEFFAMINE(登録商標)RT-1000
・PPG(1):HUNTSMAN社製、商品名:ELASTAMINE(登録商標)RP-2009
・PPG(2):HUNTSMAN社製、商品名:JEFFAMINE(登録商標)D-400
 上記表1、表2に示す通り、ソフトセグメントにポリアミンを用い、ハードセグメントにポリアミド610を用いた比較例1は、優れた耐熱性を備える一方で耐湿熱劣化性に劣る結果となり、ソフトセグメントにポリアミンを用い、ハードセグメントにポリアミド6を用いた比較例2は、優れた耐熱性を備える一方で耐湿熱劣化性に劣る結果となり、またソフトセグメントにポリアミンを用い、ハードセグメントにポリアミド12を用いた比較例3は、優れた耐湿熱劣化性を備える一方で耐熱性に劣る結果となっている。更に、ソフトセグメントにポリオールを用い、ハードセグメントにポリアミド612を用いた比較例4は、優れた耐熱性を備える一方で耐湿熱劣化性に劣る結果となっている。
 これに対し、ソフトセグメントにポリアミンを用い、ハードセグメントにポリアミド612を用いた各実施例は、比較例1、2、及び4と同程度に優れた耐熱性と、比較例3と同程度に優れた耐湿熱劣化性とを両立した結果となっている。
 2015年4月10日に出願された日本国特許出願2015-081098号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (10)

  1.  ハードセグメント及びソフトセグメントを有するポリアミド系熱可塑性エラストマーであって、
     前記ハードセグメントがポリアミド612を含み、前記ソフトセグメントがポリアミンを含むポリアミド系熱可塑性エラストマー。
  2.  前記ハードセグメント(HS)と前記ソフトセグメント(SS)との質量比(HS/SS)が30/70~85/15である請求項1に記載のポリアミド系熱可塑性エラストマー。
  3.  ドデカン二酸(DDA)に由来する(OC-(CH10-CO)で表されるDDA由来部と、ヘキサメチレンジアミン(HMDA)に由来する(HN-(CH-NH)で表されるHMDA由来部と、を有し、前記DDA由来部と前記HMDA由来部とのモル比(DDA由来部/HMDA由来部)が73/27~52/48である請求項1又は請求項2に記載のポリアミド系熱可塑性エラストマー。
  4.  前記ポリアミンがポリエーテルジアミンである請求項1~請求項3のいずれか一項に記載のポリアミド系熱可塑性エラストマー。
  5.  重量平均分子量が20,000~250,000である請求項1~請求項4のいずれか一項に記載のポリアミド系熱可塑性エラストマー。
  6.  請求項1~請求項5のいずれか一項に記載のポリアミド系熱可塑性エラストマーを含むタイヤ。
  7.  少なくとも、環状のタイヤ骨格体を有し、
     前記タイヤ骨格体が前記ポリアミド系熱可塑性エラストマーを含む樹脂組成物で形成された請求項6に記載のタイヤ。
  8.  少なくとも、環状のタイヤ骨格体と、補強コード層と、を有し、
     前記補強コード層が、前記タイヤ骨格体の外周部に周方向に巻回された補強コード部材と、前記ポリアミド系熱可塑性エラストマーを含む樹脂組成物と、で形成された請求項6に記載のタイヤ。
  9.  少なくとも、ゴム組成物で形成されたゴム部材と、前記ポリアミド系熱可塑性エラストマーを含む樹脂組成物で形成された樹脂部材と、を有し、
     前記ゴム部材が、レゾルシノール-ホルマリン-ラテックス系接着剤を含む組成物で形成された層を介して前記樹脂部材に接着されている請求項6~請求項8のいずれか一項に記載のタイヤ。
  10.  前記樹脂部材が環状のタイヤ骨格体である請求項9に記載のタイヤ。
PCT/JP2016/061307 2015-04-10 2016-04-06 ポリアミド系熱可塑性エラストマー及びタイヤ WO2016163425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16776591.6A EP3281966B1 (en) 2015-04-10 2016-04-06 Polyamide-based thermoplastic elastomer and tire
US15/564,046 US10766304B2 (en) 2015-04-10 2016-04-06 Polyamide-based thermoplastic elastomer and tire
CN201680020953.1A CN107428933B (zh) 2015-04-10 2016-04-06 聚酰胺系热塑性弹性体和轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-081098 2015-04-10
JP2015081098A JP6517572B2 (ja) 2015-04-10 2015-04-10 ポリアミド系熱可塑性エラストマー及びタイヤ

Publications (1)

Publication Number Publication Date
WO2016163425A1 true WO2016163425A1 (ja) 2016-10-13

Family

ID=57073116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061307 WO2016163425A1 (ja) 2015-04-10 2016-04-06 ポリアミド系熱可塑性エラストマー及びタイヤ

Country Status (5)

Country Link
US (1) US10766304B2 (ja)
EP (1) EP3281966B1 (ja)
JP (1) JP6517572B2 (ja)
CN (1) CN107428933B (ja)
WO (1) WO2016163425A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494300A (zh) * 2017-04-12 2019-11-22 株式会社普利司通 轮胎和轮胎的制造方法
CN110753627A (zh) * 2017-06-16 2020-02-04 株式会社普利司通 轮胎用树脂金属复合部件和轮胎
US11027577B2 (en) * 2016-01-29 2021-06-08 Bridgestone Corporation Tire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232300B2 (en) 2015-11-11 2019-03-19 Ngk Insulators, Ltd. Plugged honeycomb structure
JP6560973B2 (ja) * 2015-12-14 2019-08-14 株式会社ブリヂストン タイヤ
JP2018111400A (ja) * 2017-01-11 2018-07-19 株式会社ブリヂストン タイヤ
JP6863034B2 (ja) * 2017-04-18 2021-04-21 横浜ゴム株式会社 積層体及び空気入りタイヤの製造方法
JP6976908B2 (ja) * 2018-06-22 2021-12-08 株式会社ブリヂストン 樹脂被覆コード及び空気入りタイヤ
CN109206613A (zh) * 2018-07-20 2019-01-15 沧州旭阳科技有限公司 聚酰胺弹性体的制备方法、由其制备的弹性体及该弹性体的用途
JP2024034511A (ja) * 2022-08-31 2024-03-13 株式会社ブリヂストン 積層体、積層体の製造方法、及びタイヤ
CN115850693B (zh) * 2022-12-21 2024-04-09 万华化学集团股份有限公司 一种聚醚型聚酰胺弹性体及其发泡材料和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024116A (en) * 1974-09-21 1977-05-17 Basf Aktiengesellschaft Hot-melt adhesive based on copolyamides from caprolactam and alkylene dicarboxylic acid salts of polyether diamine
JPS61225213A (ja) * 1985-03-28 1986-10-07 ローヌ‐プーラン・スペシアリテ・シミーク 低温軟質性のテクニカルコポリエーテルアミドの製造方法
JP2003246926A (ja) * 2002-01-19 2003-09-05 Degussa Ag 成形材料、それから製造される成形品および該成形材料の使用
US20030173707A1 (en) * 2000-08-19 2003-09-18 Bettina Becker Moulded parts made of polyamides which are free of dimeric acids
JP2005042111A (ja) * 2003-07-18 2005-02-17 Degussa Ag 成形材料、これから製造される成形部品および成形材料の使用
JP2010511082A (ja) * 2006-11-29 2010-04-08 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン ホットメルト接着剤からの成形品
US20100282411A1 (en) * 2008-01-21 2010-11-11 Henkel Corporation Polyamides
WO2013154205A1 (ja) * 2012-04-13 2013-10-17 株式会社ブリヂストン タイヤ
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206628A (ja) 1982-05-27 1983-12-01 Toray Ind Inc ポリエ−テルエステルアミドの製造方法
JPS6335625A (ja) 1986-07-30 1988-02-16 Asahi Chem Ind Co Ltd ポリエ−テルエステルアミドエラストマ−の製造方法
JPH0672183B2 (ja) 1986-10-23 1994-09-14 旭化成工業株式会社 ポリアミドエラストマ−の製造方法
JPS63183929A (ja) 1987-01-27 1988-07-29 Asahi Chem Ind Co Ltd ポリエ−テルエステルアミドエラストマ−の製造法
US5399663A (en) 1993-04-15 1995-03-21 Huntsman Corporation Poly(etheramide) segmented block copolymers
FR2709129B1 (fr) 1993-08-20 1995-09-22 Atochem Elf Sa Polymères comprenant des séquences polyéther et des séquences polyamides.
JP2004352793A (ja) 2003-05-27 2004-12-16 Ube Ind Ltd ポリアミド系エラストマー
JP2005319289A (ja) 2004-04-08 2005-11-17 Kaneka Corp カテーテルバルーン
WO2012026547A1 (ja) 2010-08-25 2012-03-01 株式会社ブリヂストン タイヤ、及びタイヤの製造方法
JP5993545B2 (ja) 2010-08-25 2016-09-14 株式会社ブリヂストン タイヤ
KR101328345B1 (ko) * 2011-08-29 2013-11-11 삼성전기주식회사 압전체 조성물, 압전 소자, 잉크젯 프린트 헤드 및 압전 소자와 잉크젯 프린터 헤드의 제조방법
EP2762519B1 (en) * 2011-09-30 2016-12-28 Kolon Industries, Inc. Film for an inner liner for a tire, and method for manufacturing same
JP6001488B2 (ja) 2013-03-29 2016-10-05 株式会社ブリヂストン タイヤ
WO2016047708A1 (ja) * 2014-09-24 2016-03-31 株式会社ブリヂストン タイヤ
EP3202819B1 (en) * 2014-09-29 2019-05-08 Bridgestone Corporation Tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024116A (en) * 1974-09-21 1977-05-17 Basf Aktiengesellschaft Hot-melt adhesive based on copolyamides from caprolactam and alkylene dicarboxylic acid salts of polyether diamine
JPS61225213A (ja) * 1985-03-28 1986-10-07 ローヌ‐プーラン・スペシアリテ・シミーク 低温軟質性のテクニカルコポリエーテルアミドの製造方法
US20030173707A1 (en) * 2000-08-19 2003-09-18 Bettina Becker Moulded parts made of polyamides which are free of dimeric acids
JP2003246926A (ja) * 2002-01-19 2003-09-05 Degussa Ag 成形材料、それから製造される成形品および該成形材料の使用
JP2005042111A (ja) * 2003-07-18 2005-02-17 Degussa Ag 成形材料、これから製造される成形部品および成形材料の使用
JP2010511082A (ja) * 2006-11-29 2010-04-08 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン ホットメルト接着剤からの成形品
US20100282411A1 (en) * 2008-01-21 2010-11-11 Henkel Corporation Polyamides
WO2013154205A1 (ja) * 2012-04-13 2013-10-17 株式会社ブリヂストン タイヤ
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11027577B2 (en) * 2016-01-29 2021-06-08 Bridgestone Corporation Tire
CN110494300A (zh) * 2017-04-12 2019-11-22 株式会社普利司通 轮胎和轮胎的制造方法
US11104105B2 (en) 2017-04-12 2021-08-31 Bridgestone Corporation Tire, and method for manufacturing tire
CN110494300B (zh) * 2017-04-12 2021-12-07 株式会社普利司通 轮胎和轮胎的制造方法
CN110753627A (zh) * 2017-06-16 2020-02-04 株式会社普利司通 轮胎用树脂金属复合部件和轮胎
CN110753627B (zh) * 2017-06-16 2021-07-27 株式会社普利司通 轮胎用树脂金属复合部件和轮胎

Also Published As

Publication number Publication date
US10766304B2 (en) 2020-09-08
EP3281966A4 (en) 2018-04-18
CN107428933B (zh) 2020-07-03
EP3281966A1 (en) 2018-02-14
EP3281966B1 (en) 2021-06-23
JP2016199689A (ja) 2016-12-01
US20180086140A1 (en) 2018-03-29
JP6517572B2 (ja) 2019-05-22
CN107428933A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016163425A1 (ja) ポリアミド系熱可塑性エラストマー及びタイヤ
US20130319592A1 (en) Tire
JP6333806B2 (ja) タイヤ
JP6001488B2 (ja) タイヤ
EP3266623B1 (en) Tire
JP6086782B2 (ja) タイヤ
JP6560973B2 (ja) タイヤ
US10017007B2 (en) Tire
US11104105B2 (en) Tire, and method for manufacturing tire
JP2017095616A (ja) タイヤ
WO2016195112A1 (ja) タイヤ
JP6474273B2 (ja) タイヤ
JP2017002270A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15564046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016776591

Country of ref document: EP