WO2016158694A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2016158694A1
WO2016158694A1 PCT/JP2016/059473 JP2016059473W WO2016158694A1 WO 2016158694 A1 WO2016158694 A1 WO 2016158694A1 JP 2016059473 W JP2016059473 W JP 2016059473W WO 2016158694 A1 WO2016158694 A1 WO 2016158694A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
less
interlayer film
glass
weight
Prior art date
Application number
PCT/JP2016/059473
Other languages
English (en)
French (fr)
Inventor
裕司 大東
郁 三箇山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2016242391A priority Critical patent/AU2016242391A1/en
Priority to JP2016520091A priority patent/JP6163259B2/ja
Priority to MX2017010189A priority patent/MX2017010189A/es
Priority to CN201680003027.3A priority patent/CN106795049A/zh
Priority to BR112017018489A priority patent/BR112017018489A2/pt
Priority to KR1020177003893A priority patent/KR20170134955A/ko
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP16772575.3A priority patent/EP3279158A4/en
Priority to US15/541,668 priority patent/US20180001600A1/en
Priority to RU2017128467A priority patent/RU2017128467A/ru
Priority to CA2981859A priority patent/CA2981859A1/en
Publication of WO2016158694A1 publication Critical patent/WO2016158694A1/ja
Priority to ZA2017/04800A priority patent/ZA201704800B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10605Type of plasticiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles

Definitions

  • the present invention relates to an interlayer film for laminated glass used for obtaining laminated glass. Moreover, this invention relates to the laminated glass using the said intermediate film for laminated glasses.
  • Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
  • the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
  • the interlayer film for laminated glass includes a single-layer interlayer film having a single-layer structure and a multilayer interlayer film having a structure of two or more layers.
  • Patent Document 1 As an example of the interlayer film for laminated glass, Patent Document 1 listed below discloses that 100 parts by weight of a polyvinyl acetal resin having a degree of acetalization of 60 to 85 mol% and at least one of alkali metal salts and alkaline earth metal salts. A sound insulating layer containing 0.001 to 1.0 parts by weight of a metal salt of the above and a plasticizer exceeding 30 parts by weight is disclosed. This sound insulation layer may be a single layer and used as an intermediate film.
  • Patent Document 1 also describes a multilayer intermediate film in which the sound insulation layer and other layers are laminated.
  • the other layer laminated on the sound insulation layer is composed of 100 parts by weight of a polyvinyl acetal resin having an acetalization degree of 60 to 85 mol%, and at least one metal salt of at least one of an alkali metal salt and an alkaline earth metal salt. 1.0 part by weight and a plasticizer that is 30 parts by weight or less are included.
  • Patent Document 2 discloses an intermediate film which is a polymer layer having a glass transition temperature of 33 ° C. or higher. Patent Document 2 describes that the polymer layer is disposed between glass plates having a thickness of 4.0 mm or less.
  • Patent Document 3 discloses an interlayer film containing polyvinyl acetal (A), at least one plasticizer (B), fumed silica (C), and at least one basic compound (D). .
  • the difference in refractive index between fumed silica (C) and plasticized polyvinyl acetal (A + B) is 0.015 or less, and the weight ratio C / (A + B) is 2.7 / 100 to 60/100. It is.
  • the conventional laminated glass using the interlayer film described in Patent Documents 1 to 3 may have low bending rigidity. For this reason, for example, when laminated glass is used as a window glass for a side door of an automobile, there is no frame for fixing the laminated glass, and due to bending due to the low rigidity of the laminated glass, May interfere with opening and closing.
  • the laminated glass can be reduced in weight if the bending rigidity of the laminated glass can be increased due to the intermediate film.
  • the laminated glass is lightweight, the amount of material used for the laminated glass can be reduced, and the environmental load can be reduced.
  • fuel efficiency can be improved, and as a result, environmental load can be reduced.
  • Patent Document 3 it is described that mechanical properties such as tensile strength are improved. However, generally, tensile strength and bending rigidity are different. Even if the tensile strength can be increased to some extent, the bending rigidity may not be sufficiently increased.
  • laminated glass using an interlayer film is desired to have high sound insulation in addition to high bending rigidity.
  • Patent Document 3 even if the tensile strength can be increased, the sound insulation is not sufficiently increased.
  • the bending rigidity of the laminated glass is insufficient by combining a thin glass plate and an intermediate film including a sound insulating layer having a low glass transition temperature.
  • the interlayer film for laminated glass of a single layer includes a thermoplastic resin and has a shear storage elastic modulus in a temperature range of 10 ° C. to 40 ° C. measured at a frequency of 0.5 Hz.
  • the minimum value is 3 MPa or more, and the ratio of the shear storage modulus at 20 ° C. measured at a frequency of 0.5 Hz to the shear storage modulus at ⁇ 30 ° C. measured at a frequency of 0.5 Hz is 0.01 or more and 0.8
  • An interlayer film for laminated glass having a glass transition temperature of ⁇ 20 ° C. or higher and 0 ° C. or lower, and a maximum tan ⁇ in a temperature range of ⁇ 20 ° C. or higher and 0 ° C. or lower being 0.1 or higher.
  • an interlayer film it may be referred to as an interlayer film).
  • the thermoplastic resin contains a polyvinyl acetal resin.
  • the content of the polyvinyl acetal resin is preferably 20% by weight or more in 100% by weight of the whole thermoplastic resin.
  • the polyvinyl acetal resin is preferably a polyvinyl acetoacetal resin or a polyvinyl butyral resin.
  • the maximum value of the shear storage elastic modulus in a temperature range of 10 ° C. or more and 40 ° C. or less measured at a frequency of 0.5 Hz is 500 MPa or less.
  • thermoplastic resin contains a thermoplastic resin other than the polyvinyl acetal resin.
  • the content of the thermoplastic resin other than the polyvinyl acetal resin is preferably 15% by weight or more in the total 100% by weight of the thermoplastic resin.
  • the thermoplastic resin other than the thermoplastic resin is preferably an acrylic polymer.
  • the thickness is 3 mm or less.
  • the said intermediate film is between a said 1st glass plate and a 2nd glass plate using the 1st glass plate whose thickness is 1.6 mm or less. And is used to obtain laminated glass.
  • the said intermediate film is arrange
  • the sum total of the thickness of a glass plate and the thickness of the said 2nd glass plate is 3.5 mm or less.
  • the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass described above are provided, and the first laminated glass member and the second laminated glass are provided.
  • the first laminated glass member is a first glass plate, and the thickness of the first glass plate is 1.6 mm or less.
  • a said 1st laminated glass member is a 1st glass plate
  • a said 2nd laminated glass member is a 2nd glass plate
  • the said 1st glass The total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
  • the interlayer film for laminated glass according to the present invention is a single-layer interlayer film for laminated glass, and the minimum value of the shear storage elastic modulus in a temperature range of 10 ° C. or more and 40 ° C. or less measured at a frequency of 0.5 Hz is 3 MPa.
  • the ratio of the shear storage modulus at 20 ° C. measured at a frequency of 0.5 Hz to the shear storage modulus at ⁇ 30 ° C. measured at a frequency of 0.5 Hz is 0.01 or more and 0.8 or less.
  • the glass transition temperature is -20 ° C or higher and 0 ° C or lower, and the maximum value of tan ⁇ in the temperature range of -20 ° C or higher and 0 ° C or lower is 0.1 or higher.
  • the rigidity can be increased, and the sound insulation of the laminated glass can be increased.
  • FIG. 1 is a cross-sectional view schematically showing an example of laminated glass using an interlayer film for laminated glass according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a method for measuring the bending stiffness.
  • the interlayer film for laminated glass according to the present invention (hereinafter sometimes referred to as an interlayer film) is a single-layer interlayer film for laminated glass.
  • the shear storage modulus (G ′ (10 to 40 ° C.)) in a temperature range of 10 ° C. or more and 40 ° C. or less is measured at a frequency of 0.5 Hz.
  • the minimum value of the shear storage modulus (G ′ (10 to 40 ° C.)) in the temperature range of 10 ° C. or more and 40 ° C. or less measured at a frequency of 0.5 Hz is 3 MPa or more.
  • the shear storage elastic modulus (G ′ (20 ° C.)) at 20 ° C. measured at a frequency of 0.5 Hz is equal to the shear storage elastic modulus ( ⁇ 30 ° C.) measured at a frequency of 0.5 Hz.
  • G ′ ( ⁇ 30 ° C.)) (G ′ (20 ° C.) / G ′ ( ⁇ 30 ° C.)) is 0.01 or more and 0.8 or less.
  • the glass transition temperature is ⁇ 20 ° C. or more and 0 ° C. or less
  • the maximum value of tan ⁇ in the temperature range of ⁇ 20 ° C. or more and 0 ° C. or less is 0.1 or more.
  • the interlayer film according to the present invention has the above-described configuration, the bending rigidity of the laminated glass using the interlayer film can be increased. Moreover, in order to obtain a laminated glass, an intermediate film is often disposed between the first glass plate and the second glass plate. Even if the thickness of the first glass plate is thin, the bending rigidity of the laminated glass can be sufficiently increased by using the interlayer film according to the present invention. Moreover, even if the thickness of both the first glass plate and the second glass plate is thin, the bending rigidity of the laminated glass can be sufficiently increased by using the interlayer film according to the present invention. In addition, when the thickness of both the 1st glass plate and the 2nd glass plate is thick, the bending rigidity of a laminated glass will become still higher.
  • the conventional intermediate film it is difficult for the conventional intermediate film to sufficiently increase the bending rigidity over a wide temperature range including high and low temperatures. For example, even if the bending rigidity at high temperature is high, the bending rigidity at low temperature is low, or even if the bending rigidity at low temperature is high, the bending rigidity at high temperature is low.
  • bending rigidity can be improved over a wide temperature range (for example, 23 degreeC, 40 degreeC).
  • the intermediate film according to the present invention has the above-described configuration, the sound insulation of the laminated glass using the intermediate film can be improved.
  • the intermediate film is not a multi-layered intermediate film but a single-layered intermediate film, and both the bending rigidity and sound insulation of the single-layered intermediate film can be effectively enhanced.
  • the recovered material (collected intermediate film) used at least once to obtain the intermediate film may be reused.
  • the recovered material (collected intermediate film) used at least once to obtain the intermediate film includes unnecessary portions (ears) at both ends of the intermediate film generated in the intermediate film manufacturing process, and intermediate generated in the laminated glass manufacturing process.
  • An interlayer film obtained by separating and removing the glass plate from the laminated glass obtained by dismantling the constructed building can be used.
  • the unnecessary intermediate film generated in the intermediate film manufacturing process also corresponds to the recovered material used at least once to obtain the intermediate film.
  • the intermediate film according to the present invention is a single layer, whereby the intermediate film material can be reused and the recyclability can be improved. Equivalent physical properties can be expressed before and after recycling.
  • the shear storage modulus is measured as follows.
  • the shear storage elastic modulus is measured using a dynamic viscoelasticity measuring device “DMA + 1000” manufactured by METRAVIB.
  • DMA + 1000 dynamic viscoelasticity measuring device manufactured by METRAVIB.
  • An interlayer film is cut out with a length of 50 mm and a width of 20 mm, and the temperature is increased from ⁇ 50 to 200 ° C. at a temperature increase rate of 2 ° C./min in the shear mode, and the frequency is 0.5 Hz and the strain is 0.05%. It is preferable to measure.
  • the minimum value of the shear storage modulus (G ′ (10 to 40 ° C.)) is 3 MPa or more, preferably 5 MPa or more, more preferably 10 MPa or more. When the minimum value is not less than the lower limit, the bending rigidity is effectively increased.
  • the maximum value of the shear storage modulus (G ′ (10 to 40 ° C.) in the temperature range of 10 ° C. to 40 ° C. measured at a frequency of 0.5 Hz is preferably 700 MPa or less, more preferably 500 MPa or less, and still more preferably. It is 450 MPa or less, particularly preferably 400 MPa or less, and if the maximum value is not more than the upper limit, the sound insulation is further improved.
  • the ratio (G ′ (20 ° C.) / G ′ ( ⁇ 30 ° C.)) is 0.01 or more, preferably 0.015 or more, more preferably 0.02 or more. When the ratio is equal to or greater than the lower limit, the bending rigidity and the sound insulation properties are effectively increased.
  • the ratio (G ′ (20 ° C.) / G ′ ( ⁇ 30 ° C.)) is preferably 0.8 or less, more preferably 0.7 or less, still more preferably 0.6 or less, and particularly preferably 0.5 or less. It is. When the ratio is not more than the upper limit, the sound insulation is improved.
  • the first surface and the second surface of the intermediate film are preferably surfaces on which laminated glass members or glass plates are laminated, respectively.
  • the intermediate film is disposed between the first glass plate and the second glass plate and is preferably used for obtaining laminated glass. Since the bending rigidity can be sufficiently increased due to the intermediate film, the total thickness of the first glass plate and the second glass plate is preferably 3.5 mm or less, more preferably 3 mm. It is as follows.
  • the said intermediate film is arrange
  • the intermediate film has a thickness of 1.6 mm and a first glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less). More preferably to obtain a laminated glass, which is disposed between the first glass plate and the second glass plate using a second glass plate which is below (preferably 1.3 mm or less). Used.
  • thermoplastic resin examples include polyvinyl acetal resin, polyacrylic resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, and polyvinyl alcohol resin.
  • Thermoplastic resins other than these may be used.
  • the said thermoplastic resin only 1 type may be used and 2 or more types may be used together.
  • the thermoplastic resin preferably includes a polyvinyl acetal resin, an acrylic polymer, a urethane polymer, a silicone polymer, rubber, or a vinyl acetate polymer, and more preferably includes a polyvinyl acetal resin or an acrylic polymer.
  • the thermoplastic resin preferably includes both a polyvinyl acetal resin and an acrylic polymer. More preferably, the thermoplastic resin includes a polyvinyl acetal resin. By using the polyvinyl acetal resin, the toughness is effectively increased and the penetration resistance is further enhanced.
  • the polyvinyl acetal resin is preferably a polyvinyl acetoacetal resin or a polyvinyl butyral resin.
  • the intermediate film may contain a polyvinyl acetal resin and a thermoplastic resin other than the polyvinyl acetal resin.
  • the intermediate film may contain a thermoplastic resin other than the acrylic polymer and an acrylic polymer.
  • the thermoplastic resin also preferably contains a thermoplastic resin other than the polyvinyl acetal resin.
  • the thermoplastic resin other than the thermoplastic resin is preferably an acrylic polymer.
  • the acrylic polymer is preferably a polymer of a polymerization component including (meth) acrylic acid and (meth) acrylic acid ester.
  • the acrylic polymer is preferably a poly (meth) acrylic acid ester.
  • the poly (meth) acrylic acid ester is not particularly limited.
  • examples of the poly (meth) acrylic acid ester include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate n-propyl, poly (meth) acrylate i-propyl, poly N-butyl (meth) acrylate, i-butyl poly (meth) acrylate, t-butyl poly (meth) acrylate, 2-ethylhexyl poly (meth) acrylate, 2-hydroxyethyl poly (meth) acrylate, Poly (meth) acrylate 4-hydroxybutyl, poly (meth) acrylate glycidyl, poly (meth) acrylate octyl, poly (meth) acrylate propyl, poly (meth) acrylate 2-ethyloctyl, poly (meth) Nonyl acrylate, poly (meth) acryl
  • polyacrylates are preferred because the temperature at which the loss tangent maximum value can be easily controlled within an appropriate range in the dynamic viscoelastic spectrum, and polyacrylates are preferred. Butyl, 2-ethylhexyl polyacrylate or octyl polyacrylate is more preferred. Furthermore, since the poly (meth) acrylic acid ester has a polar group, the adhesive force between the interlayer film and the glass and the bending rigidity of the laminated glass can be further increased by hydrogen bonding.
  • the poly (meth) acrylic acid ester has a polar group.
  • the acrylic polymer material (pre-polymerization component) preferably contains 2-hydroxyethyl poly (meth) acrylate or 4-hydroxybutyl poly (meth) acrylate.
  • the use of these preferable poly (meth) acrylic acid esters further improves the balance between the productivity of the interlayer film and the characteristics of the interlayer film.
  • the said poly (meth) acrylic acid ester only 1 type may be used and 2 or more types may be used together.
  • the thermoplastic resin may have a crosslinked structure.
  • the shear storage modulus can be controlled, and an intermediate film having both excellent flexibility and high strength can be produced.
  • a method of cross-linking the thermoplastic resin functional groups that react with each other are introduced into the polymer structure of the resin to form cross-links, and functional groups that react with the functional groups present in the polymer structure of the resin. Examples thereof include a method of crosslinking using a crosslinking agent having two or more groups, a method of crosslinking a polymer using a radical generator having hydrogen abstraction ability such as peroxide, and a method of crosslinking by electron beam irradiation.
  • a method in which functional groups that react with each other are introduced into the polymer structure of the resin to form a crosslink is preferable.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the saponification degree of the polyvinyl alcohol is generally 70 to 99.9 mol%.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 800 or more, still more preferably 1500 or more, particularly preferably 2000 or more, most preferably 2700 or more, preferably It is 5000 or less, more preferably 4000 or less, and still more preferably 3500 or less.
  • the average degree of polymerization is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased.
  • the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
  • the carbon number of the acetal group is preferably 2 to 10, more preferably 2 to 5, and further preferably 2, 3 or 4.
  • the carbon number of the acetal group in the polyvinyl acetal resin is preferably 2 or 4, and in this case, the production of the polyvinyl acetal resin is efficient.
  • an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde, and benzaldehyde.
  • acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde or n-valeraldehyde is more preferable, and acetaldehyde N-butyraldehyde or n-valeraldehyde is more preferred.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less.
  • the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of the ethylene group to which the hydroxyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.5 mol% or more, preferably 30 mol% or less. More preferably, it is 25 mol% or less, More preferably, it is 20 mol% or less.
  • the degree of acetylation is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer or other thermoplastic resin is increased, and the sound insulation can be further enhanced.
  • the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
  • the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the degree of acetalization of the polyvinyl acetal resin is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, more preferably 75 mol%. Hereinafter, it is 70 mol% or less more preferably.
  • the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer or other thermoplastic resin is increased, and the sound insulation can be further enhanced.
  • the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
  • the degree of acetalization is the value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups of the main chain. It is a value indicating the mole fraction obtained by dividing by the percentage.
  • the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
  • the content of the polyvinyl acetal resin is preferably 10% by weight or more, more preferably 20% by weight or more, still more preferably 25% by weight or more, preferably 100% by weight or less in the total 100% by weight of the thermoplastic resin. is there.
  • the content of the polyvinyl acetal resin is not less than the above lower limit, the bending rigidity is effectively increased.
  • the content of the polyvinyl acetal resin may be 90% by weight or less, or 75% by weight or less.
  • the content of the thermoplastic resin other than the polyvinyl acetal resin and the content of the acrylic polymer are each preferably 15% by weight or more, more preferably 20% by weight or more, and still more preferably Is 25% by weight or more, preferably 100% by weight or less.
  • the content of the thermoplastic resin other than the polyvinyl acetal resin and the acrylic polymer is equal to or higher than the lower limit, the bending rigidity and the sound insulation can be effectively increased, and the recyclability can be improved. As a result, molecular cutting is difficult to occur, and a decrease in bending rigidity after recycling can be suppressed.
  • the content of the thermoplastic resin other than the polyvinyl acetal resin and the content of the acrylic polymer may each be 90% by weight or less, and 80% by weight or less. It may be 70% by weight or less.
  • the content of the thermoplastic resin other than the polyvinyl acetal resin and the content of the acrylic polymer are 70% by weight or less, the recyclability can be further enhanced.
  • the intermediate film preferably contains a plasticizer.
  • the thermoplastic resin contained in the intermediate film contains a polyvinyl acetal resin
  • the intermediate film particularly preferably contains a plasticizer.
  • the said plasticizer only 1 type may be used and 2 or more types may be used together.
  • plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. . Of these, organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • Examples of the monobasic organic acid ester include glycol esters obtained by a reaction between glycol and a monobasic organic acid.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • polybasic organic acid examples include adipic acid, sebacic acid, and azelaic acid.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
  • organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10
  • R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
  • the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. More preferably, it contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and more preferably contains triethylene glycol di-2-ethylhexanoate.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • GGH triethylene glycol di-2-ethylbutyrate
  • triethylene glycol di-2-ethylpropanoate More preferably, it contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and more preferably contains triethylene glycol di-2-ethylhexanoate.
  • the content of the plasticizer is not particularly limited.
  • the content of the plasticizer with respect to 100 parts by weight of the thermoplastic resin is preferably 2 parts by weight or more, more preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 80 parts by weight or less, more preferably 60 parts by weight or less.
  • the content of the plasticizer is not less than the above lower limit, the penetration resistance and sound insulation of the laminated glass are further enhanced.
  • the content of the plasticizer is not more than the above upper limit, the transparency of the interlayer film is further enhanced.
  • the intermediate film preferably contains a heat shielding compound.
  • a heat shielding compound As for the said heat-shielding compound, only 1 type may be used and 2 or more types may be used together.
  • the intermediate film preferably includes at least one component X among a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound.
  • the component X is a heat shielding compound. As for the said component X, only 1 type may be used and 2 or more types may be used together.
  • the component X is not particularly limited.
  • component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
  • the component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine, and naphthalocyanine derivatives. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
  • the component X preferably contains a vanadium atom or a copper atom.
  • the component X preferably contains a vanadium atom, and preferably contains a copper atom.
  • the component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
  • the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
  • the content of the component X is preferably 0.001% by weight or more, more preferably 0.005% by weight or more, still more preferably 0.01% by weight or more, and particularly preferably 0.8%. It is at least 02% by weight, preferably at most 0.2% by weight, more preferably at most 0.1% by weight, even more preferably at most 0.05% by weight, particularly preferably at most 0.04% by weight.
  • the content of the component X is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
  • the visible light transmittance can be 70% or more.
  • Thermal barrier particles The intermediate film preferably contains heat shielding particles.
  • the heat shielding particles are heat shielding compounds. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
  • the heat shielding particles are more preferably metal oxide particles.
  • the heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
  • Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
  • infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
  • heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
  • the heat shielding particles mean particles that can absorb infrared rays.
  • heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
  • metal oxide particles are preferable because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferable, and ITO particles or tungsten oxide particles are particularly preferable.
  • tin-doped indium oxide particles ITO particles
  • tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
  • the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
  • the “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
  • cesium-doped tungsten oxide particles are particularly preferable.
  • the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
  • the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
  • the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased.
  • the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
  • the above “average particle diameter” indicates the volume average particle diameter.
  • the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
  • the content of the heat shielding particles in 100% by weight of the intermediate film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, still more preferably 1% by weight or more, and particularly preferably 1.5%.
  • % By weight or more, preferably 6% by weight or less, more preferably 5.5% by weight or less, still more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably 3% by weight or less.
  • the intermediate film preferably contains at least one metal salt (hereinafter sometimes referred to as a metal salt M) of an alkali metal salt and an alkaline earth metal salt.
  • a metal salt M metal salt of an alkali metal salt and an alkaline earth metal salt.
  • the metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • the metal salt contained in the interlayer film preferably contains at least one metal of K and Mg.
  • the metal salt M is more preferably an alkali metal salt of an organic acid having 2 to 16 carbon atoms or an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms, and a carboxylic acid having 2 to 16 carbon atoms. More preferably, it is a magnesium salt or a potassium salt of a carboxylic acid having 2 to 16 carbon atoms.
  • magnesium salt of carboxylic acid having 2 to 16 carbon atoms and the potassium salt of carboxylic acid having 2 to 16 carbon atoms include, but are not limited to, for example, magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, 2-ethylbutyric acid
  • magnesium, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate examples include magnesium, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
  • the total content of Mg and K in the intermediate film is preferably 5 ppm or more, more preferably 10 ppm or more, still more preferably 20 ppm or more, preferably 300 ppm or less, more preferably 250 ppm or less, and even more preferably 200 ppm or less.
  • the adhesion between the interlayer film and the laminated glass member can be controlled even better.
  • the intermediate film preferably contains an ultraviolet shielding agent.
  • an ultraviolet shielding agent By using the ultraviolet shielding agent, even if the interlayer film and the laminated glass are used for a long period of time, the visible light transmittance is more unlikely to decrease.
  • the said ultraviolet shielding agent only 1 type may be used and 2 or more types may be used together.
  • the ultraviolet shielding agent includes an ultraviolet absorber.
  • the ultraviolet shielding agent is preferably an ultraviolet absorber.
  • the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, and an ultraviolet shielding agent having a triazine structure. And an ultraviolet shielding agent having a malonic ester structure, an ultraviolet shielding agent having an oxalic acid anilide structure, and an ultraviolet shielding agent having a benzoate structure.
  • Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica.
  • the ultraviolet shielding agent is preferably not a heat shielding particle.
  • the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, an ultraviolet shielding agent having a triazine structure or an ultraviolet shielding agent having a benzoate structure, more preferably a benzotriazole structure.
  • an ultraviolet shielding agent having a benzotriazole structure more preferably an ultraviolet shielding agent having a benzotriazole structure.
  • Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
  • Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And UV absorbers having a benzotriazole structure such as 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole (“Tinvin 328” manufactured by BASF)).
  • the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure containing a halogen atom, and may be an ultraviolet shielding agent having a benzotriazole structure containing a chlorine atom. More preferred.
  • Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
  • UV shielding agent having the triazine structure examples include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
  • UV screening agent having a malonic ester structure examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
  • 2- (p-methoxybenzylidene) malonate examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
  • Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
  • Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant)kind.
  • ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
  • the content of the ultraviolet shielding agent in 100% by weight of the intermediate film is preferably 0.1% by weight or more, more preferably 0.8%. 2% by weight or more, more preferably 0.3% by weight or more, particularly preferably 0.5% by weight or more, preferably 2.5% by weight or less, more preferably 2% by weight or less, still more preferably 1% by weight or less, Particularly preferred is 0.8% by weight or less.
  • the content of the ultraviolet shielding agent is 0.2% by weight or more in 100% by weight of the intermediate film, it is possible to remarkably suppress a decrease in visible light transmittance after a lapse of a period of the intermediate film and the laminated glass. .
  • the intermediate film preferably contains an antioxidant.
  • an antioxidant As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
  • antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
  • the phenolic antioxidant is an antioxidant having a phenol skeleton.
  • the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
  • the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
  • the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
  • phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl - ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-butylphenol), 2,2'-methylenebis- (4-ethyl- 6-t-butylphenol), 4,4′-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-tert-butylphenyl) Butane, tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4- Droxy-5-tert-butylphenol) butane, 1,3,5-trimethyl-2,
  • Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
  • antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical, and “ IRGANOX 1010 ".
  • the content of the antioxidant is preferably 0.1% by weight or more in 100% by weight of the interlayer film. Further, since the effect of adding the antioxidant is saturated, the content of the antioxidant is preferably 2% by weight or less in 100% by weight of the intermediate film.
  • the above-mentioned interlayer film may be a coupling agent containing silicon, aluminum or titanium, a dispersing agent, a surfactant, a flame retardant, an antistatic agent, a filler, a pigment, a dye, an adhesive force adjusting agent, a moisture-proofing agent, a fluorescent agent, if necessary.
  • Additives such as brighteners and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
  • the interlayer film may contain a filler.
  • the filler include calcium carbonate particles and silica particles. Silica particles are preferable from the viewpoint of effectively increasing the bending rigidity and effectively suppressing the decrease in transparency.
  • the content of the filler in 100% by weight of the interlayer film is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10 parts by weight or more, preferably 95% by weight or less, more preferably 90% by weight. % Or less.
  • the thickness of the intermediate film is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently enhancing the penetration resistance and bending rigidity of the laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more Preferably it is 2.0 mm or less. When the thickness of the interlayer film is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the thickness of the interlayer film is not more than the above upper limit, the transparency of the interlayer film is further improved.
  • the method for producing the interlayer film according to the present invention is not particularly limited.
  • Examples of the method for producing an interlayer film according to the present invention include a method of extruding a resin composition using an extruder.
  • the intermediate film preferably has an uneven shape on at least one of the surfaces on both sides. More preferably, the intermediate film has a concavo-convex shape on both surfaces. It does not specifically limit as a method of forming said uneven
  • the embossing roll method is preferable because it can form a large number of concavo-convex embossments that are quantitatively constant.
  • FIG. 1 is a cross-sectional view schematically showing an example of laminated glass using an interlayer film for laminated glass according to an embodiment of the present invention.
  • a laminated glass 31 shown in FIG. 1 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11.
  • the intermediate film 11 is a single layer and is a first layer.
  • the intermediate film 11 is disposed between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched.
  • the first laminated glass member 21 is laminated on the first surface 11 a of the intermediate film 11.
  • a second laminated glass member 22 is laminated on the second surface 11 b opposite to the first surface 11 a of the intermediate film 11.
  • the laminated glass which concerns on this invention is equipped with the 1st laminated glass member, the 2nd laminated glass member, and the intermediate film, and this intermediate film is the intermediate film for laminated glasses which concerns on this invention. It is.
  • the interlayer film is disposed between the first laminated glass member and the second laminated glass member.
  • the first laminated glass member is preferably a first glass plate.
  • the second laminated glass member is preferably a second glass plate.
  • the laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
  • Laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass is a laminate including a glass plate, and preferably at least one glass plate is used.
  • Each of the first laminated glass member and the second laminated glass member is a glass plate or a PET film, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, and wire-containing plate glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates.
  • Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • the thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
  • the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
  • the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
  • the use of the interlayer film according to the present invention makes it possible to maintain the bending rigidity of the laminated glass high even if the laminated glass is thin. From the viewpoint of reducing the environmental impact by reducing the weight of the laminated glass, reducing the environmental load by reducing the material of the laminated glass, and reducing the environmental impact by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass.
  • the thickness is preferably 2 mm or less, more preferably 1.8 mm or less, even more preferably 1.6 mm or less, still more preferably 1.5 mm or less, still more preferably 1.4 mm or less, and even more preferably 1.3 mm or less, Still more preferably, it is 1.0 mm or less, Most preferably, it is 0.7 mm or less.
  • the total of the thickness of the glass plate and the thickness of the second glass plate is preferably 3.5 mm or less, more preferably 3.2 mm or less, still more preferably 3 mm or less, and particularly preferably 2.8 mm or less.
  • the method for producing the laminated glass is not particularly limited.
  • the intermediate film is sandwiched between the first laminated glass member and the second laminated glass member, passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure, and the first The air remaining between the laminated glass member, the second laminated glass member and the intermediate film is degassed. Thereafter, it is pre-adhered at about 70 to 110 ° C. to obtain a laminate.
  • the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained.
  • the interlayer film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the said intermediate film and the said laminated glass can be used besides these uses.
  • the interlayer film and the laminated glass are preferably a vehicle or architectural interlayer film and a laminated glass, and more preferably a vehicle interlayer film and a laminated glass.
  • the intermediate film and the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
  • the interlayer film and the laminated glass are suitably used for automobiles.
  • the interlayer film is used for obtaining laminated glass for automobiles.
  • thermoplastic resin Polyvinyl acetal resins shown in Tables 1 and 2 below were appropriately used. In the polyvinyl acetal resin used, acetaldehyde having 2 carbon atoms or n-butyraldehyde having 4 carbon atoms is used for acetalization.
  • the degree of acetalization degree of butyralization
  • the degree of acetylation degree of acetylation
  • the hydroxyl group content was measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • ASTM D1396-92 the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown.
  • the degree of acetalization is similarly measured by measuring the degree of acetylation and the hydroxyl group content, calculating the molar fraction from the obtained measurement results, and then 100 Calculation was performed by subtracting the degree of acetylation and the content of hydroxyl groups from mol%.
  • acrylic polymers shown in Tables 1 to 3 below were appropriately used.
  • the acrylic polymers shown in Tables 1 to 3 below are polymerization components containing ethyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, and benzyl acrylate in the contents shown in Tables 1 to 3 below. Is an acrylic polymer obtained by polymerizing
  • Tinuvin 326 (2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF)
  • Example 1 Preparation of a composition for forming an interlayer film: 100 parts by weight of a polyvinyl acetal resin of the type shown in Table 1 below, 60 parts by weight of silica particles, 75 parts by weight of a plasticizer (3GO), 0.2 parts by weight of an ultraviolet shielding agent (Tinvin 326), an antioxidant ( BHT) 0.2 parts by weight was mixed to obtain a composition for forming an intermediate film.
  • a polyvinyl acetal resin of the type shown in Table 1 below, 60 parts by weight of silica particles, 75 parts by weight of a plasticizer (3GO), 0.2 parts by weight of an ultraviolet shielding agent (Tinvin 326), an antioxidant ( BHT) 0.2 parts by weight was mixed to obtain a composition for forming an intermediate film.
  • Preparation of interlayer film The composition for forming the intermediate film was extruded using an extruder to produce a single-layer intermediate film (thickness 800 ⁇ m).
  • Preparation of laminated glass A (for bending stiffness measurement): The obtained intermediate film was cut into a size of 20 cm long ⁇ 2.5 cm wide. As the first laminated glass member and the second laminated glass member, two glass plates (clear glass, length 20 cm ⁇ width 2.5 cm) having thicknesses shown in Table 1 below were prepared. The obtained interlayer film was sandwiched between the two glass plates to obtain a laminate. The obtained laminate was put in a rubber bag and deaerated at a vacuum degree of 2660 Pa (20 torr) for 20 minutes. Thereafter, the laminate was vacuum-pressed while being deaerated while being further kept at 90 ° C. for 30 minutes in an autoclave. The laminated body preliminarily pressure-bonded in this manner was pressure-bonded for 20 minutes in an autoclave under conditions of 135 ° C. and a pressure of 1.2 MPa (12 kg / cm 2 ) to obtain a laminated glass A.
  • Preparation of laminated glass B (for sound insulation measurement): The obtained intermediate film was cut into a size of 30 cm long ⁇ 2.5 cm wide. As the first laminated glass member and the second laminated glass member, two glass plates (clear glass, length 30 cm ⁇ width 2.5 cm) having thicknesses shown in Table 1 below were prepared. An interlayer film was sandwiched between two glass plates to obtain a laminate. This laminated body is put in a rubber bag, deaerated at a vacuum degree of 2.6 kPa for 20 minutes, transferred to an oven while being deaerated, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Crimped. The pre-pressed laminate was pressed for 20 minutes in an autoclave under conditions of 135 ° C. and a pressure of 1.2 MPa to obtain a laminated glass B.
  • Examples 2 to 12 and Comparative Examples 1 to 6 The resin used in the composition for forming the interlayer film, and the types and blending amounts of the plasticizer were set as shown in Tables 1 to 3 below, and the interlayer film, the first laminated glass member, and the second layer An interlayer film and a laminated glass were obtained in the same manner as in Example 1 except that the thickness of the laminated glass member was set as shown in Tables 1 to 3 below.
  • the same type of UV shielding agent and antioxidant as in Example 1 were added in the same amount as in Example 1 (0 parts by weight based on 100 parts by weight of polyvinyl acetal resin). 2 parts by weight).
  • Shear storage elastic modulus was evaluated as follows.
  • the shear storage elastic modulus was measured using a viscoelasticity measuring device “DMA + 1000” manufactured by Metarav. did.
  • An interlayer film is cut out with a length of 50 mm and a width of 20 mm, and the temperature is increased from ⁇ 50 to 200 ° C. at a temperature increase rate of 2 ° C./min in the shear mode, and the frequency is 0.5 Hz and the strain is 0.05%. It was measured.
  • the temperature indicated by the minimum value and the temperature indicated by the maximum value of the shear storage modulus (G ′ (10 to 40 ° C.)) in the temperature range of 10 ° C. to 40 ° C. were evaluated. Further, the minimum value and the maximum value of the shear storage modulus (G ′ (10 to 40 ° C.)) in the temperature range of 10 ° C. or more and 40 ° C. or less were evaluated. Further, the shear storage modulus at 20 ° C. (G ′ (20 ° C.)) and the shear storage modulus at ⁇ 30 ° C. (G ′ ( ⁇ 30 ° C.)) were evaluated, and the ratio (G ′ (20 ° C.) / G ′ ( ⁇ 30 ° C.)) was determined.
  • the bending rigidity was evaluated by the test method schematically shown in FIG.
  • UTA-500 manufactured by Orientec Co., Ltd. equipped with a three-point bending test jig was used.
  • the measurement conditions are as follows: measurement temperature 23 ° C. (23 ° C. ⁇ 3 ° C.) or 40 ° C. (40 ° C. ⁇ 3 ° C.); distance D1 is 12 cm; distance D2 is 20 cm;
  • the bending rigidity was calculated by measuring the stress when a deformation of 1.5 mm was applied and the displacement of 1.5 mm.
  • the bending stiffness was determined according to the following criteria. The higher the value of bending rigidity, the better the bending rigidity.
  • the obtained laminated glass B is vibrated by a vibration generator for vibration testing (“Vibrator G21-005D” manufactured by KENKEN Co., Ltd.), and the obtained vibration characteristics are measured by a mechanical impedance measuring device. (A “XG-81” manufactured by Rion Co., Ltd.), and the vibration spectrum was analyzed with an FFT spectrum analyzer (“FFT Analyzer HP3582A” manufactured by Yokogawa Hured Packard).
  • TL value is 35 dB or more ⁇ : TL value is 30 dB or more and less than 35 dB ⁇ : TL value is less than 30 dB
  • a single-layer intermediate film can be used as a recycling material for the intermediate film.
  • it since it is a single-layer interlayer film, it can be recycled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 合わせガラスの曲げ剛性を高めることができ、かつ合わせガラスの遮音性を高めることができる合わせガラス用中間膜を提供する。 本発明に係る合わせガラス用中間膜は、熱可塑性樹脂を含み、周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率の最小値が3MPa以上であり、周波数0.5Hzで測定した20℃におけるせん断貯蔵弾性率の、周波数0.5Hzで測定した-30℃におけるせん断貯蔵弾性率に対する比が0.01以上かつ0.8以下であり、ガラス転移温度が-20℃以上、0℃以下に存在し、-20℃以上、0℃以下の温度領域におけるtanδの最大値が0.1以上である。

Description

合わせガラス用中間膜及び合わせガラス
 本発明は、合わせガラスを得るために用いられる合わせガラス用中間膜に関する。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスに関する。
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。上記合わせガラスは、2つのガラス板の間に合わせガラス用中間膜を挟み込むことにより、製造されている。
 上記合わせガラス用中間膜としては、1層の構造を有する単層の中間膜と、2層以上の構造を有する多層の中間膜とがある。
 上記合わせガラス用中間膜の一例として、下記の特許文献1には、アセタール化度が60~85モル%のポリビニルアセタール樹脂100重量部と、アルカリ金属塩及びアルカリ土類金属塩の内の少なくとも一種の金属塩0.001~1.0重量部と、30重量部を超える可塑剤とを含む遮音層が開示されている。この遮音層は、単層で中間膜として用いられ得る。
 さらに、下記の特許文献1には、上記遮音層と他の層とが積層された多層の中間膜も記載されている。遮音層に積層される他の層は、アセタール化度が60~85モル%のポリビニルアセタール樹脂100重量部と、アルカリ金属塩及びアルカリ土類金属塩の内の少なくとも一種の金属塩0.001~1.0重量部と、30重量部以下である可塑剤とを含む。
 下記の特許文献2には、33℃以上のガラス転移温度を有するポリマー層である中間膜が開示されている。特許文献2では、上記ポリマー層が、厚みが4.0mm以下であるガラス板の間に配置されることが記載されている。
 下記の特許文献3には、ポリビニルアセタール(A)、少なくとも1種の可塑剤(B)、フュームドシリカ(C)及び少なくとも1種の塩基性化合物(D)を含む中間膜が開示されている。この中間膜では、フュームドシリカ(C)と可塑化ポリビニルアセタール(A+B)との屈折率の差が0.015以下であり、重量比C/(A+B)が2.7/100~60/100である。
特開2007-070200号公報 US2013/0236711A1 WO2008/122608A1
 特許文献1~3に記載のような従来の中間膜を用いた合わせガラスでは、曲げ剛性が低いことがある。このため、例えば合わせガラスが窓ガラスとして、自動車のサイドドアに使用される場合には、合わせガラスを固定する枠がなく、合わせガラスの剛性が低いことに起因する撓みが原因で、窓ガラスの開閉に支障をきたすことがある。
 また、近年、合わせガラスを軽量化するために、ガラス板の厚みを薄くすることが求められている。2つのガラス板の間に中間膜が挟み込まれた合わせガラスにおいて、ガラス板の厚みを薄くすると、曲げ剛性を充分に高く維持することが極めて困難であるという問題がある。
 例えば、ガラス板の厚みが薄くても、中間膜に起因して合わせガラスの曲げ剛性を高めることができれば、合わせガラスを軽量化することができる。合わせガラスが軽量であると、合わせガラスに用いる材料の量を少なくすることができ、環境負荷を低減することができる。さらに、軽量である合わせガラスを自動車に用いると、燃費を向上させることができ、結果として環境負荷を低減することができる。
 なお、特許文献3では、引張強度などの力学特性が改善されることが記載されている。しかし、一般に引張強度と曲げ剛性とは異なる。引張強度をある程度高めることができたとしても、曲げ剛性を十分に高めることができないことがある。
 また、中間膜を用いた合わせガラスでは、曲げ剛性が高いことに加えて、遮音性も高いことが望まれる。特許文献3では、引張強度を高めることができたとしても、遮音性が十分に高くならない。特に、厚みが薄いガラス板と、ガラス転移温度が低い遮音層を備える中間膜とを組み合わせることで、合わせガラスの曲げ剛性が不足するという課題は何ら示唆されていない。
 本発明の目的は、合わせガラスの曲げ剛性を高めることができ、かつ合わせガラスの遮音性を高めることができる合わせガラス用中間膜を提供することである。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスを提供することも目的とする。
 本発明の広い局面によれば、単層の合わせガラス用中間膜であって、熱可塑性樹脂を含み、周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率の最小値が3MPa以上であり、周波数0.5Hzで測定した20℃におけるせん断貯蔵弾性率の、周波数0.5Hzで測定した-30℃におけるせん断貯蔵弾性率に対する比が0.01以上かつ0.8以下であり、ガラス転移温度が-20℃以上、0℃以下に存在し、-20℃以上、0℃以下の温度領域におけるtanδの最大値が0.1以上である、合わせガラス用中間膜(以下、中間膜と記載することがある)が提供される。
 前記熱可塑性樹脂が、ポリビニルアセタール樹脂を含むことが好ましい。前記熱可塑性樹脂の全体100重量%中、前記ポリビニルアセタール樹脂の含有量が20重量%以上であることが好ましい。前記ポリビニルアセタ-ル樹脂が、ポリビニルアセトアセタール樹脂又はポリビニルブチラール樹脂であることが好ましい。
 本発明に係る中間膜のある特定の局面では、周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率の最大値が500MPa以下である。
 前記熱可塑性樹脂が、ポリビニルアセタール樹脂以外の熱可塑性樹脂を含むことも好ましい。前記熱可塑性樹脂の全体100重量%中、前記ポリビニルアセタール樹脂以外の熱可塑性樹脂の含有量が15重量%以上であることが好ましい。前記熱可塑性樹脂以外の熱可塑性樹脂が、アクリル重合体であることが好ましい。
 本発明に係る中間膜のある特定の局面では、厚みが3mm以下である。
 本発明に係る中間膜のある特定の局面では、前記中間膜は、厚みが1.6mm以下である第1のガラス板を用いて、前記第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられる。
 本発明に係る中間膜のある特定の局面では、前記中間膜は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられ、前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である。
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラスが提供される。
 本発明に係る合わせガラスのある特定の局面では、前記第1の合わせガラス部材が第1のガラス板であり、前記第1のガラス板の厚みが1.6mm以下である。
 本発明に係る合わせガラスのある特定の局面では、前記第1の合わせガラス部材が第1のガラス板であり、前記第2の合わせガラス部材が第2のガラス板であり、前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である。
 本発明に係る合わせガラス用中間膜は、単層の合わせガラス用中間膜であり、周波数0.5Hzで測定した10℃以上、40℃以下の温度領域でのせん断貯蔵弾性率の最小値が3MPa以上であり、周波数0.5Hzで測定した20℃におけるせん断貯蔵弾性率の、周波数0.5Hzで測定した-30℃におけるせん断貯蔵弾性率に対する比が0.01以上かつ0.8以下であり、ガラス転移温度が-20℃以上、0℃以下に存在し、-20℃以上、0℃以下の温度領域におけるtanδの最大値が0.1以上であるので、中間膜を用いた合わせガラスの曲げ剛性を高めることができ、かつ合わせガラスの遮音性を高めることができる。
図1は、本発明の一実施形態に係る合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。 図2は、曲げ剛性の測定方法を説明するための模式図である。
 以下、本発明を詳細に説明する。
 本発明に係る合わせガラス用中間膜(以下、中間膜と記載することがある)は、単層の合わせガラス用中間膜である。本発明に係る中間膜において、周波数0.5Hzにおいて、10℃以上40℃以下の温度領域でのせん断貯蔵弾性率(G’(10~40℃))を測定する。本発明に係る中間膜では、周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率(G’(10~40℃))の最小値が3MPa以上である。
 さらに、本発明に係る中間膜では、周波数0.5Hzで測定した20℃におけるせん断貯蔵弾性率(G’(20℃))の、周波数0.5Hzで測定した-30℃におけるせん断貯蔵弾性率(G’(-30℃))に対する比(G’(20℃)/G’(-30℃))が0.01以上かつ0.8以下である。
 さらに、本発明に係る中間膜では、ガラス転移温度が-20℃以上、0℃以下に存在し、-20℃以上、0℃以下の温度領域におけるtanδの最大値が0.1以上である。
 本発明に係る中間膜では、上記の構成が備えられているので、中間膜を用いた合わせガラスの曲げ剛性を高めることができる。また、合わせガラスを得るために、中間膜は、第1のガラス板と第2のガラス板との間に配置されることが多い。第1のガラス板の厚みが薄くても、本発明に係る中間膜の使用により、合わせガラスの曲げ剛性を充分に高くすることができる。また、第1のガラス板と第2のガラス板との双方の厚みが薄くても、本発明に係る中間膜の使用により、合わせガラスの曲げ剛性を充分に高くすることができる。なお、第1のガラス板と第2のガラス板との双方の厚みが厚いと、合わせガラスの曲げ剛性はより一層高くなる。
 また、従来の中間膜では、高温及び低温を含む広い温度範囲に渡り、曲げ剛性を十分に高めることは困難である。例えば、高温での曲げ剛性が高くても、低温での曲げ剛性が低かったり、低温での曲げ剛性が高くても、高温での曲げ剛性が低かったりする。これに対して、本発明では、広い温度範囲(例えば、23℃、40℃)に渡り、曲げ剛性を高めることができる。
 さらに、本発明に係る中間膜では、上記の構成が備えられているので、中間膜を用いた合わせガラスの遮音性を高めることができる。本発明では、音周波数3,000Hz付近での遮音性を高めることができ、4,000Hz付近での遮音性も高めることができる。
 本発明では、中間膜が、多層の中間膜ではなく、単層の中間膜であり、単層の中間膜の曲げ剛性及び遮音性の双方を効果的に高めることができる。
 ところで、中間膜を得るために、中間膜を得るために少なくとも1回用いられた回収材料(回収中間膜)が再利用されることがある。中間膜を得るために少なくとも1回用いられた回収材料(回収中間膜)としては、中間膜の製造工程で発生する中間膜の両端の不要部分(耳)、合わせガラスの製造工程で発生する中間膜の周囲の不要部分(トリム)、合わせガラスの製造工程にて発生した合わせガラスの不良品からガラス板を分離し、除去して得られる合わせガラス用中間膜、並びに使用済の車両及び老朽化した建築物を解体することで得られた合わせガラスから、ガラス板を分離し、除去して得られる中間膜等が挙げられる。なお、中間膜の製造工程で発生する不要となった中間膜も、中間膜を得るために少なくとも1回用いられた回収材料に相当する。
 本発明に係る中間膜が、単層であることによって、中間膜材料を再利用することができ、リサイクル性を高めることができる。リサイクル前後で同等の物性を発現させることができる。
 上記せん断貯蔵弾性率は、以下のようにして測定される。
 METRAVIB社製の動的粘弾性測定装置「DMA+1000」を用いて、せん断貯蔵弾性率を測定する。中間膜を長さ50mm、幅20mmで切り出し、せん断モードで2℃/分の昇温速度で-50~200℃まで温度を上昇させる条件、及び周波数0.5Hz及び歪0.05%の条件で測定することが好ましい。
 せん断貯蔵弾性率(G’(10~40℃))の最小値は3MPa以上であり、好ましくは5MPa以上、より好ましくは10MPa以上である。上記最小値が上記下限以上であると、曲げ剛性が効果的に高くなる。
 周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率(G’(10~40℃)の最大値は、好ましくは700MPa以下、より好ましくは500MPa以下、更に好ましくは450MPa以下、特に好ましくは400MPa以下である。上記最大値が上記上限以下であると、遮音性がより一層良好になる。
 上記比(G’(20℃)/G’(-30℃))は0.01以上、好ましくは0.015以上、より好ましくは0.02以上である。上記比が上記下限以上であると、曲げ剛性及び遮音性が効果的に高くなる。
 上記比(G’(20℃)/G’(-30℃))は、好ましくは0.8以下、より好ましくは0.7以下、更に好ましくは0.6以下、特に好ましくは0.5以下である。上記比が上記上限以下であると、遮音性が良好になる。
 中間膜の第1の表面及び第2の表面はそれぞれ、合わせガラス部材又はガラス板が積層される表面であることが好ましい。
 上記中間膜は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。中間膜に起因して曲げ剛性を充分に高くすることができるので、上記第1のガラス板の厚みと上記第2のガラス板の厚みとの合計は好ましくは3.5mm以下、より好ましくは3mm以下である。上記中間膜は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。中間膜に起因して曲げ剛性を充分に高くすることができるので、上記中間膜は、厚みが1.6mm以下(好ましくは1.3mm以下)である第1のガラス板を用いて、該第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。中間膜に起因して曲げ剛性を充分に高くすることができるので、上記中間膜は、厚みが1.6mm以下(好ましくは1.3mm以下)である第1のガラス板と厚みが1.6mm以下(好ましくは1.3mm以下)である第2のガラス板とを用いて、上記第1のガラス板と上記第2のガラス板との間に配置されて、合わせガラスを得るためにより好適に用いられる。
 以下、本発明に係る中間膜を構成する各成分の詳細を説明する。
 (樹脂)
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、ポリアクリル樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル酸共重合体樹脂、ポリウレタン樹脂及びポリビニルアルコール樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂は、ポリビニルアセタール樹脂、アクリル重合体、ウレタン重合体、シリコーン重合体、ゴム、又は酢酸ビニル重合体を含むことが好ましく、ポリビニルアセタール樹脂又はアクリル重合体を含むことがより好ましい。この好ましい態様では、熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。曲げ剛性と遮音性とを効果的に高めることができるので、上記熱可塑性樹脂は、ポリビニルアセタール樹脂と、アクリル重合体との双方を含むことも好ましい。上記熱可塑性樹脂は、ポリビニルアセタール樹脂を含むことが更に好ましい。ポリビニルアセタール樹脂の使用により、強靭性が効果的に高くなり、耐貫通性がより一層高くなる。
 曲げ剛性及び遮音性をより一層高める観点からは、上記ポリビニルアセタ-ル樹脂は、ポリビニルアセトアセタール樹脂又はポリビニルブチラール樹脂であることが好ましい。
 上記中間膜は、ポリビニルアセタール樹脂と、ポリビニルアセタール樹脂以外の熱可塑性樹脂とを含んでいてもよい。上記中間膜は、アクリル重合体以外の熱可塑性樹脂と、アクリル重合体とを含んでいてもよい。上記熱可塑性樹脂は、ポリビニルアセタール樹脂以外の熱可塑性樹脂を含むことも好ましい。上記熱可塑性樹脂以外の熱可塑性樹脂は、アクリル重合体であることが好ましい。アクリル重合体の使用により、曲げ剛性及び遮音性が効果的に高くなる。
 上記アクリル重合体は、(メタ)アクリル酸、及び、(メタ)アクリル酸エステルを含む重合成分の重合体であることが好ましい。上記アクリル重合体は、ポリ(メタ)アクリル酸エステルであることが好ましい。
 上記ポリ(メタ)アクリル酸エステルは特に限定されない。上記ポリ(メタ)アクリル酸エステルとしては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸n-プロピル、ポリ(メタ)アクリル酸i-プロピル、ポリ(メタ)アクリル酸n-ブチル、ポリ(メタ)アクリル酸i-ブチル、ポリ(メタ)アクリル酸t-ブチル、ポリ(メタ)アクリル酸2-エチルヘキシル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸4-ヒドロキシブチル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸2-エチルオクチル、ポリ(メタ)アクリル酸ノニル、ポリ(メタ)アクリル酸イソノニル、ポリ(メタ)アクリル酸デシル、ポリ(メタ)アクリル酸イソデシル、ポリ(メタ)アクリル酸ラウリル、ポリ(メタ)アクリル酸イソテトラデシル、ポリ(メタ)アクリル酸シクロヘキシル、及びポリ(メタ)アクリル酸ベンジル等が挙げられる。なかでも、動的粘弾性スペクトルにおいて、損失正接の極大値を示す温度を適度な範囲内に容易に制御することができることから、ポリアクリル酸エステルが好ましく、ポリアクリル酸エチル、ポリアクリル酸n-ブチル、ポリアクリル酸2-エチルヘキシル又はポリアクリル酸オクチルがより好ましい。さらに、上記ポリ(メタ)アクリル酸エステルが極性基を有することで、水素結合により中間膜とガラスとの接着力や、合わせガラスの曲げ剛性をより一層高めることができる。また、上記ポリビニルアセタール樹脂と上記ポリ(メタ)アクリル酸エステルとを混合して用いる場合、上記ポリビニルアセタール樹脂と上記ポリ(メタ)アクリル酸エステルとの親和性を高める観点から、上記ポリ(メタ)アクリル酸エステルが極性基を有することが好ましい。曲げ剛性をより一層高める観点からは、上記アクリル重合体の材料(重合前成分)は、ポリ(メタ)アクリル酸2-ヒドロキシエチル、又はポリ(メタ)アクリル酸4-ヒドロキシブチルを含むこと好ましい。また、これらの好ましいポリ(メタ)アクリル酸エステルの使用により、中間膜の生産性と中間膜の特性のバランスとがより一層良好になる。上記ポリ(メタ)アクリル酸エステルは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂は架橋構造を有してもよい。上記熱可塑性樹脂が架橋構造を有することにより、せん断貯蔵弾性率を制御でき、優れた可撓性と高い強度とを併せ持つ中間膜を作製することができる。上記熱可塑性樹脂を架橋させる方法としては、樹脂のポリマー構造中に互いに反応する官能基を導入しておき、架橋を形成させる方法、樹脂のポリマー構造中に存在する官能基に対して反応する官能基を2つ以上有する架橋剤を用いて架橋させる方法、過酸化物等の水素引き抜き能を有するラジカル発生剤を用いてポリマーを架橋させる方法、並びに電子線照射により架橋させる方法等が挙げられる。なかでも、せん断貯蔵弾性率を制御しやすく、中間膜の生産性が高くなることから、樹脂のポリマー構造中に互いに反応する官能基を導入しておき、架橋を形成させる方法が好適である。
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に70~99.9モル%である。
 上記ポリビニルアルコール(PVA)の平均重合度は、好ましくは200以上、より好ましくは500以上、より一層好ましくは800以上、更に好ましくは1500以上、特に好ましくは2000以上、最も好ましくは2700以上、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性と曲げ剛性とがより一層高くなる。上記平均重合度が上記上限以下であると、中間膜の成形が容易になる。
 上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
 上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は2~10であることが好ましく、2~5であることがより好ましく、2、3又は4であることが更に好ましい。また、上記ポリビニルアセタール樹脂におけるアセタール基の炭素数が2又は4であることが好ましく、この場合には、ポリビニルアセタール樹脂の生産が効率的である。
 上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、及びベンズアルデヒド等が挙げられる。なかでも、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド又はn-バレルアルデヒドがより好ましく、アセトアルデヒド、n-ブチルアルデヒド又はn-バレルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、好ましくは15モル%以上、より好ましくは18モル%以上、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 上記ポリビニルアセタール樹脂のアセチル化度(アセチル基量)は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、更に好ましくは0.5モル%以上、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤や他の熱可塑性樹脂との相溶性が高くなり、遮音性をより一層高めることができる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは60モル%以上、より好ましくは63モル%以上、好ましくは85モル%以下、より好ましくは75モル%以下、更に好ましくは70モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤や他の熱可塑性樹脂との相溶性が高くなり、遮音性をより一層高めることができる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。
 上記アセタール化度は、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。但し、ASTM D1396-92による測定を用いてもよい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、上記アセタール化度(ブチラール化度)及び上記アセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。
 上記熱可塑性樹脂の全体100重量%中、上記ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、更に好ましくは25重量%以上、好ましくは100重量%以下である。上記ポリビニルアセタール樹脂の含有量が上記下限以上であると、曲げ剛性が効果的に高くなる。上記熱可塑性樹脂の全体100重量%中、上記ポリビニルアセタール樹脂の含有量は、90重量%以下であってもよく、75重量%以下であってもよい。
 上記熱可塑性樹脂の全体100重量%中、上記ポリビニルアセタール樹脂以外の熱可塑性樹脂の含有量及びアクリル重合体の含有量はそれぞれ、好ましくは15重量%以上、より好ましくは20重量%以上、更に好ましくは25重量%以上、好ましくは100重量%以下である。上記ポリビニルアセタール樹脂以外の熱可塑性樹脂及びアクリル重合体の含有量が上記下限以上であると、曲げ剛性及び遮音性が効果的に高くなり、リサイクル性も高めることができ、リサイクル時の押出機にて分子切断が起こり難く、リサイクル後の曲げ剛性の低下を抑えることができる。上記熱可塑性樹脂の全体100重量%中、上記ポリビニルアセタール樹脂以外の熱可塑性樹脂の含有量及びアクリル重合体の含有量はそれぞれ、90重量%以下であってもよく、80重量%以下であってもよく、70重量%以下であってもよい。上記ポリビニルアセタール樹脂以外の熱可塑性樹脂の含有量及びアクリル重合体の含有量が70重量%以下であると、リサイクル性をより一層高めることができる。
 (可塑剤)
 中間膜の接着力及び耐貫通性をより一層高める観点からは、上記中間膜は、可塑剤を含むことが好ましい。中間膜に含まれている熱可塑性樹脂が、ポリビニルアセタール樹脂を含む場合に、中間膜は、可塑剤を含むことが特に好ましい。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などの有機リン酸可塑剤等が挙げられる。なかでも、有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。
 上記一塩基性有機酸エステルとしては、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数2~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数5~10の有機基であることが好ましく、炭素数6~10の有機基であることがより好ましい。
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)又はトリエチレングリコールジ-2-エチルプロパノエートを含むことが好ましく、トリエチレングリコールジ-2-エチルヘキサノエート又はトリエチレングリコールジ-2-エチルブチレートを含むことがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートを含むことが更に好ましい。
 上記可塑剤の含有量は特に限定されない。上記熱可塑性樹脂100重量部(熱可塑性樹脂がポリビニルアセタール樹脂である場合には、ポリビニルアセタール樹脂100重量部)に対して、上記可塑剤の含有量は、好ましくは2重量部以上、より好ましくは5重量部以上、更に好ましくは10重量部以上、好ましくは80重量部以下、より好ましくは60重量部以下である。上記可塑剤の含有量が上記下限以上であると、合わせガラスの耐貫通性及び遮音性がより一層高くなる。上記可塑剤の含有量が上記上限以下であると、中間膜の透明性がより一層高くなる。
 (遮熱性化合物)
 上記中間膜は、遮熱性化合物を含むことが好ましい。上記遮熱性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 成分X:
 上記中間膜は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むことが好ましい。上記成分Xは遮熱性化合物である。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記成分Xは特に限定されない。成分Xとして、従来公知のフタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物を用いることができる。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、上記成分Xは、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも1種であることが好ましく、フタロシアニン及びフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。
 遮熱性を効果的に高め、かつ長期間にわたり可視光線透過率をより一層高いレベルで維持する観点からは、上記成分Xは、バナジウム原子又は銅原子を含有することが好ましい。上記成分Xは、バナジウム原子を含有することが好ましく、銅原子を含有することも好ましい。上記成分Xは、バナジウム原子又は銅原子を含有するフタロシアニン及びバナジウム原子又は銅原子を含有するフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。中間膜及び合わせガラスの遮熱性を更に一層高くする観点からは、上記成分Xは、バナジウム原子に酸素原子が結合した構造単位を有することが好ましい。
 上記中間膜100重量%中、上記成分Xの含有量は、好ましくは0.001重量%以上、より好ましくは0.005重量%以上、更に好ましくは0.01重量%以上、特に好ましくは0.02重量%以上、好ましくは0.2重量%以下、より好ましくは0.1重量%以下、更に好ましくは0.05重量%以下、特に好ましくは0.04重量%以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。例えば、可視光線透過率を70%以上にすることが可能である。
 遮熱粒子:
 上記中間膜は、遮熱粒子を含むことが好ましい。上記遮熱粒子は遮熱性化合物である。遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。上記遮熱粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 合わせガラスの遮熱性をより一層高める観点からは、上記遮熱粒子は、金属酸化物粒子であることがより好ましい。上記遮熱粒子は、金属の酸化物により形成された粒子(金属酸化物粒子)であることが好ましい。
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質に吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。なお、遮熱粒子とは、赤外線を吸収可能な粒子を意味する。
 上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子、ルビジウムドープ酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子、珪素ドープ酸化亜鉛粒子等の金属酸化物粒子や、六ホウ化ランタン(LaB)粒子等が挙げられる。これら以外の遮熱粒子を用いてもよい。なかでも、熱線の遮蔽機能が高いため、金属酸化物粒子が好ましく、ATO粒子、GZO粒子、IZO粒子、ITO粒子又は酸化タングステン粒子がより好ましく、ITO粒子又は酸化タングステン粒子が特に好ましい。特に、熱線の遮蔽機能が高く、かつ入手が容易であるので、錫ドープ酸化インジウム粒子(ITO粒子)が好ましく、酸化タングステン粒子も好ましい。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、酸化タングステン粒子は、金属ドープ酸化タングステン粒子であることが好ましい。上記「酸化タングステン粒子」には、金属ドープ酸化タングステン粒子が含まれる。上記金属ドープ酸化タングステン粒子としては、具体的には、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子及びルビジウムドープ酸化タングステン粒子等が挙げられる。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、セシウムドープ酸化タングステン粒子が特に好ましい。中間膜及び合わせガラスの遮熱性を更に一層高くする観点からは、該セシウムドープ酸化タングステン粒子は、式:Cs0.33WOで表される酸化タングステン粒子であることが好ましい。
 上記遮熱粒子の平均粒子径は好ましくは0.01μm以上、より好ましくは0.02μm以上、好ましくは0.1μm以下、より好ましくは0.05μm以下である。平均粒子径が上記下限以上であると、熱線の遮蔽性が充分に高くなる。平均粒子径が上記上限以下であると、遮熱粒子の分散性が高くなる。
 上記「平均粒子径」は、体積平均粒子径を示す。平均粒子径は、粒度分布測定装置(日機装社製「UPA-EX150」)等を用いて測定できる。
 上記中間膜100重量%中、上記遮熱粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、更に好ましくは1重量%以上、特に好ましくは1.5重量%以上、好ましくは6重量%以下、より好ましくは5.5重量%以下、更に好ましくは4重量%以下、特に好ましくは3.5重量%以下、最も好ましくは3重量%以下である。上記遮熱粒子の含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。
 (金属塩)
 上記中間膜は、アルカリ金属塩及びアルカリ土類金属塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含むことが好ましい。上記金属塩Mの使用により、中間膜と合わせガラス部材との接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記金属塩Mは、Li、Na、K、Rb、Cs、Mg、Ca、Sr及びBaからなる群から選択された少なくとも1種の金属を含むことが好ましい。中間膜中に含まれている金属塩は、K及びMgの内の少なくとも1種の金属を含むことが好ましい。
 また、上記金属塩Mは、炭素数2~16の有機酸のアルカリ金属塩又は炭素数2~16の有機酸のアルカリ土類金属塩であることがより好ましく、炭素数2~16のカルボン酸マグネシウム塩又は炭素数2~16のカルボン酸カリウム塩であることが更に好ましい。
 上記炭素数2~16のカルボン酸マグネシウム塩及び上記炭素数2~16のカルボン酸カリウム塩としては特に限定されないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチル酪酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム及び2-エチルヘキサン酸カリウム等が挙げられる。
 上記中間膜におけるMg及びKの含有量の合計は、好ましくは5ppm以上、より好ましくは10ppm以上、更に好ましくは20ppm以上、好ましくは300ppm以下、より好ましくは250ppm以下、更に好ましくは200ppm以下である。Mg及びKの含有量の合計が上記下限以上及び上記上限以下であると、中間膜と合わせガラス部材との接着性をより一層良好に制御できる。
 (紫外線遮蔽剤)
 上記中間膜は、紫外線遮蔽剤を含むことが好ましい。紫外線遮蔽剤の使用により、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記紫外線遮蔽剤には、紫外線吸収剤が含まれる。上記紫外線遮蔽剤は、紫外線吸収剤であることが好ましい。
 上記紫外線遮蔽剤としては、例えば、金属原子を含む紫外線遮蔽剤、金属酸化物を含む紫外線遮蔽剤、ベンゾトリアゾール構造を有する紫外線遮蔽剤、ベンゾフェノン構造を有する紫外線遮蔽剤、トリアジン構造を有する紫外線遮蔽剤、マロン酸エステル構造を有する紫外線遮蔽剤、シュウ酸アニリド構造を有する紫外線遮蔽剤及びベンゾエート構造を有する紫外線遮蔽剤等が挙げられる。
 上記金属原子を含む紫外線遮蔽剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。
 上記紫外線遮蔽剤は、好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤、ベンゾフェノン構造を有する紫外線遮蔽剤、トリアジン構造を有する紫外線遮蔽剤又はベンゾエート構造を有する紫外線遮蔽剤であり、より好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤又はベンゾフェノン構造を有する紫外線遮蔽剤であり、更に好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤である。
 上記金属酸化物を含む紫外線遮蔽剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物を含む紫外線遮蔽剤に関して、表面が被覆されていてもよい。上記金属酸化物を含む紫外線遮蔽剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。
 上記ベンゾトリアゾール構造を有する紫外線遮蔽剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’,5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等のベンゾトリアゾール構造を有する紫外線吸収剤が挙げられる。紫外線を吸収する性能に優れることから、上記紫外線遮蔽剤は、ハロゲン原子を含むベンゾトリアゾール構造を有する紫外線遮蔽剤であることが好ましく、塩素原子を含むベンゾトリアゾール構造を有する紫外線遮蔽剤であることがより好ましい。
 上記ベンゾフェノン構造を有する紫外線遮蔽剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。
 上記トリアジン構造を有する紫外線遮蔽剤としては、例えば、ADEKA社製「LA-F70」及び2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製「Tinuvin1577FF」)等が挙げられる。
 上記マロン酸エステル構造を有する紫外線遮蔽剤としては、2-(p-メトキシベンジリデン)マロン酸ジメチル、テトラエチル-2,2-(1,4-フェニレンジメチリデン)ビスマロネート、2-(p-メトキシベンジリデン)-ビス(1,2,2,6,6-ペンタメチル4-ピペリジニル)マロネート等が挙げられる。
 上記マロン酸エステル構造を有する紫外線遮蔽剤の市販品としては、Hostavin B-CAP、Hostavin PR-25、Hostavin PR-31(いずれもクラリアント社製)が挙げられる。
 上記シュウ酸アニリド構造を有する紫外線遮蔽剤としては、N-(2-エチルフェニル)-N’-(2-エトキシ-5-t-ブチルフェニル)シュウ酸ジアミド、N-(2-エチルフェニル)-N’-(2-エトキシ-フェニル)シュウ酸ジアミド、2-エチル-2’-エトキシ-オキシアニリド(クラリアント社製「SanduvorVSU」)などの窒素原子上に置換されたアリール基などを有するシュウ酸ジアミド類が挙げられる。
 上記ベンゾエート構造を有する紫外線遮蔽剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製「Tinuvin120」)等が挙げられる。
 期間経過後の可視光線透過率の低下をより一層抑制する観点からは、上記中間膜100重量%中、上記紫外線遮蔽剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、更に好ましくは0.3重量%以上、特に好ましくは0.5重量%以上、好ましくは2.5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下、特に好ましくは0.8重量%以下である。特に、上記中間膜100重量%中、上記紫外線遮蔽剤の含有量が0.2重量%以上であることにより、中間膜及び合わせガラスの期間経過後の可視光線透過率の低下を顕著に抑制できる。
 (酸化防止剤)
 上記中間膜は、酸化防止剤を含むことが好ましい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記酸化防止剤としては、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤はフェノール骨格を有する酸化防止剤である。上記硫黄系酸化防止剤は硫黄原子を含有する酸化防止剤である。上記リン系酸化防止剤はリン原子を含有する酸化防止剤である。
 上記酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。
 上記フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチル化ヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。
 上記リン系酸化防止剤としては、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。
 上記酸化防止剤の市販品としては、例えばBASF社製「IRGANOX 245」、BASF社製「IRGAFOS 168」、BASF社製「IRGAFOS 38」、住友化学工業社製「スミライザーBHT」、並びにBASF社製「IRGANOX 1010」等が挙げられる。
 中間膜及び合わせガラスの高い可視光線透過率を長期間に渡り維持するために、上記中間膜100重量%中、上記酸化防止剤の含有量は0.1重量%以上であることが好ましい。また、酸化防止剤の添加効果が飽和するので、上記中間膜100重量%中、上記酸化防止剤の含有量は2重量%以下であることが好ましい。
 (他の成分)
 上記中間膜は、必要に応じて、ケイ素、アルミニウム又はチタンを含むカップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、フィラー、顔料、染料、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 せん断貯蔵弾性率を好適な範囲に制御するために、中間膜は、フィラーを含んでいてもよい。上記フィラーとしては、炭酸カルシウム粒子、及びシリカ粒子等が挙げられる。曲げ剛性及を効果的に高め、透明性の低下を効果的に抑える観点からは、シリカ粒子が好ましい。
 上記中間膜100重量%中、上記フィラーの含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、更に好ましくは10重量部以上、好ましくは95重量%以下、より好ましくは90重量%以下である。
 (合わせガラス用中間膜の他の詳細)
 上記中間膜の厚みは特に限定されない。実用面の観点、並びに合わせガラスの耐貫通性及び曲げ剛性を充分に高める観点からは、中間膜の厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは2.0mm以下である。中間膜の厚みが上記下限以上であると、合わせガラスの耐貫通性及び曲げ剛性がより一層高くなる。中間膜の厚みが上記上限以下であると、中間膜の透明性がより一層良好になる。
 本発明に係る中間膜の製造方法としては特に限定されない。本発明に係る中間膜の製造方法としては、樹脂組成物を押出機を用いて押出する方法が挙げられる。
 上記中間膜は、両側の表面の内の少なくとも一方の表面に凹凸形状を有することが好ましい。上記中間膜は、両側の表面に凹凸形状を有することがより好ましい。上記の凹凸形状を形成する方法としては特に限定されず、例えば、リップエンボス法、エンボスロール法、カレンダーロール法、及び異形押出法等が挙げられる。定量的に一定の凹凸模様である多数の凹凸形状のエンボスを形成することができることから、エンボスロール法が好ましい。
 (合わせガラス)
 図1は、本発明の一実施形態に係る合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。
 図1に示す合わせガラス31は、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11とを備える。中間膜11は、単層であり、第1の層である。中間膜11は、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。
 中間膜11の第1の表面11aに、第1の合わせガラス部材21が積層されている。中間膜11の第1の表面11aとは反対の第2の表面11bに、第2の合わせガラス部材22が積層されている。
 このように、本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、中間膜とを備えており、該中間膜が、本発明に係る合わせガラス用中間膜である。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記中間膜が配置されている。
 上記第1の合わせガラス部材は、第1のガラス板であることが好ましい。上記第2の合わせガラス部材は、第2のガラス板であることが好ましい。
 上記合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。合わせガラスには、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。上記合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第1の合わせガラス部材及び上記第2の合わせガラス部材がそれぞれ、ガラス板又はPETフィルムであり、かつ上記合わせガラスは、上記第1の合わせガラス部材及び上記第2の合わせガラス部材の内の少なくとも一方として、ガラス板を備えることが好ましい。
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、及び線入り板ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
 上記合わせガラス部材の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、上記合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは0.5mm以上、より好ましくは0.7mm以上、好ましくは5mm以下、より好ましくは3mm以下である。上記合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上、好ましくは0.5mm以下である。
 本発明に係る中間膜の使用により、合わせガラスの厚みが薄くても、合わせガラスの曲げ剛性を高く維持することができる。合わせガラスを軽量化したり、合わせガラスの材料を少なくして環境負荷を低減したり、合わせガラスの軽量化によって自動車の燃費を向上させて環境負荷を低減したりする観点からは、上記ガラス板の厚みは、好ましくは2mm以下、より好ましくは1.8mm以下、より一層好ましくは1.6mm以下、より一層好ましくは1.5mm以下、更に好ましくは1.4mm以下、更に好ましくは1.3mm以下、更に一層好ましくは1.0mm以下、特に好ましくは0.7mm以下である。合わせガラスを軽量化したり、合わせガラスの材料を少なくして環境負荷を低減したり、合わせガラスの軽量化によって自動車の燃費を向上させて環境負荷を低減したりする観点からは、上記第1のガラス板の厚みと上記第2のガラス板の厚みとの合計は、好ましくは3.5mm以下、より好ましくは3.2mm以下、更に好ましくは3mm以下、特に好ましくは2.8mm以下である。
 上記合わせガラスの製造方法は特に限定されない。例えば、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、中間膜を挟んで、押圧ロールに通したり、又はゴムバッグに入れて減圧吸引したりして、上記第1の合わせガラス部材と上記第2の合わせガラス部材と中間膜との間に残留する空気を脱気する。その後、約70~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。
 上記中間膜及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記中間膜及び上記合わせガラスは、これらの用途以外にも使用できる。上記中間膜及び上記合わせガラスは、車両用又は建築用の中間膜及び合わせガラスであることが好ましく、車両用の中間膜及び合わせガラスであることがより好ましい。上記中間膜及び上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。上記中間膜及び上記合わせガラスは、自動車に好適に用いられる。上記中間膜は、自動車の合わせガラスを得るために用いられる。
 以下に実施例を掲げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。
 以下の材料を用意した。
 (熱可塑性樹脂)
 下記の表1,2に示すポリビニルアセタール樹脂を適宜用いた。用いたポリビニルアセタール樹脂では、アセタール化に、炭素数2のアセトアルデヒド又は炭素数4のn-ブチルアルデヒドが用いられている。
 ポリビニルアセタール樹脂に関しては、アセタール化度(ブチラール化度)、アセチル化度及び水酸基の含有率はJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定した。なお、ASTM D1396-92により測定した場合も、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法と同様の数値を示した。また、アセタールの種類がアセトアセタールである場合には、アセタール化度は、同様に、アセチル化度、水酸基の含有率を測定し、得られた測定結果からモル分率を算出し、次いで、100モル%からアセチル化度及び水酸基の含有率を引くことにより、算出した。
 また、下記の表1~3に示すアクリル重合体を適宜用いた。下記の表1~3に示すアクリル重合体は、アクリル酸エチルと、アクリル酸ブチルと、アクリル酸2-ヒドロキシエチルと、アクリル酸ベンジルとを下記の表1~3に示す含有量で含む重合成分を重合させたアクリル重合体である。
 (添加剤)
 シリカ粒子(東ソー・シリカ社製「BZ-400」)
 (可塑剤)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
 (紫外線遮蔽剤)
 Tinuvin326(2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
 (酸化防止剤)
 BHT(2,6-ジ-t-ブチル-p-クレゾール)
 (実施例1)
 中間膜を形成するための組成物の作製:
 下記の表1に示す種類のポリビニルアセタール樹脂100重量部と、シリカ粒子60重量部と、可塑剤(3GO)75重量部と、紫外線遮蔽剤(Tinuvin326)0.2重量部と、酸化防止剤(BHT)0.2重量部とを混合し、中間膜を形成するための組成物を得た。
 中間膜の作製:
 中間膜を形成するための組成物を、押出機を用いて押出しすることにより、単層の中間膜(厚み800μm)を作製した。
 合わせガラスAの作製(曲げ剛性測定用):
 得られた中間膜を縦20cm×横2.5cmの大きさに切断した。第1の合わせガラス部材及び第2の合わせガラス部材として、下記の表1に示す厚みの2つのガラス板(クリアアガラス、縦20cm×横2.5cm)を用意した。この2つのガラス板の間に、得られた中間膜を挟み込み、積層体を得た。得られた積層体をゴムバック内に入れ、2660Pa(20torr)の真空度で20分間脱気した。その後、脱気したままで積層体をオートクレーブ中で更に90℃で30分間保持しつつ、真空プレスした。このようにして予備圧着された積層体を、オートクレーブ中で135℃、圧力1.2MPa(12kg/cm)の条件で20分間圧着を行い、合わせガラスAを得た。
 合わせガラスBの作製(遮音性測定用):
 得られた中間膜を縦30cm×横2.5cmの大きさに切断した。第1の合わせガラス部材及び第2の合わせガラス部材として、下記の表1に示す厚みの2つのガラス板(クリアガラス、縦30cm×横2.5cm)を用意した。2枚のガラス板の間に、中間膜を挟み込み、積層体を得た。この積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラスBを得た。
 (実施例2~12及び比較例1~6)
 中間膜を形成するための組成物に用いる樹脂、及び可塑剤の種類と配合量とを下記の表1~3に示すように設定したこと、並びに中間膜、第1の合わせガラス部材及び第2の合わせガラス部材の厚みを下記の表1~3に示すように設定したこと以外は実施例1と同様にして、中間膜及び合わせガラスを得た。また、実施例2~12及び比較例1~6では、実施例1と同じ種類の紫外線遮蔽剤及び酸化防止剤を、実施例1と同様の配合量(ポリビニルアセタール樹脂100重量部に対して0.2重量部)で配合した。
 (評価)
 (1)せん断貯蔵弾性率
 せん断貯蔵弾性率は、以下のようにして評価した。
 得られた中間膜を、室温23±2℃、湿度25±5%の環境下に12時間保管した直後に、Metravib社製の粘弾性測定装置「DMA+1000」を用いて、せん断貯蔵弾性率を測定した。中間膜を長さ50mm、幅20mmで切り出し、せん断モードで2℃/分の昇温速度で-50~200℃まで温度を上昇させる条件、及び周波数0.5Hz及び歪0.05%の条件で測定した。
 10℃以上40℃以下の温度領域でのせん断貯蔵弾性率(G’(10~40℃))の最小値が示す温度と、最大値が示す温度とを評価した。また、10℃以上40℃以下の温度領域でのせん断貯蔵弾性率(G’(10~40℃))の最小値と、最大値とを評価した。さらに、20℃におけるせん断貯蔵弾性率(G’(20℃))と、-30℃におけるせん断貯蔵弾性率(G’(-30℃))とを評価し、比(G’(20℃)/G’(-30℃))を求めた。
 (2)ガラス転移温度Tg:
 得られた中間膜を、室温23±2℃、湿度25±5%の環境下に12時間保管した直後に、Metravib社製の粘弾性測定装置「DMA+1000」を用いて、せん断貯蔵弾性率を測定した。中間膜を長さ50mm、幅20mmで切り出し、せん断モードで2℃/分の昇温速度で-50~200℃まで温度を上昇させる条件、及び周波数0.5Hz及び歪0.05%の条件で測定した。得られた粘弾性スペクトルで、損失正接(tanδ)が-20℃から0℃にピークがある場合はピーク温度を、ない場合は「なし」と記載した。
 (3)-20℃以上、0℃以下の温度領域でのtanδの最大値
 -20℃以上、0℃以下の温度領域でのtanδの最大値を評価した。具体的には、得られた中間膜を、室温23±2℃、湿度25±5%の環境下に12時間保管した直後に、Metravib社製の粘弾性測定装置「DMA+1000」を用いて、METRAVIB社製の動的粘弾性測定装置「DMA+1000」を用いて、せん断貯蔵弾性率を測定した。中間膜を長さ50mm、幅20mmで切り出し、せん断モードで2℃/分の昇温速度で-50~200℃まで温度を上昇させる条件、及び周波数0.5Hz及び歪0.05%の条件で測定した。得られた粘弾性スペクトルで、損失正接(tanδ)が-20℃から0℃にピークがある場合はピーク値(最大値)を記載した。
 (4)曲げ剛性
 得られた合わせガラスAを用いて、曲げ剛性を評価した。
 図2に模式的に示す試験方法で、曲げ剛性を評価した。測定装置としては、3点曲げ試験治具を備えたオリエンテック社製のUTA-500を使用した。測定条件としては、測定温度23℃(23℃±3℃)又は40℃(40℃±3℃)、距離D1は12cm、距離D2は20cmとし、変位速度1mm/分でFの方向に合わせガラスに変形を加え、1.5mmの変位を加えたときの応力を測定し、曲げ剛性を算出した。曲げ剛性を以下の基準で判定した。曲げ剛性の数値が高いほど、曲げ剛性に優れる。
 [曲げ剛性の判定基準]
 ○○:50N/mm以上
 ○:45N/mm以上、50N/mm未満
 ×:45N/mm未満
 (5)遮音性
 得られた合わせガラスBをダンピング試験用の振動発生機(振研社製「加振機G21-005D」)により加振し、そこから得られた振動特性を機械インピーダンス測定装置(リオン社製「XG-81」)にて増幅し、振動スペクトルをFFTスペクトラムアナライザー(横河ヒューレッドパッカード社製「FFTアナライザー HP3582A」)により解析した。
 このようにして得られた損失係数と合わせガラスBとの共振周波数との比から、20℃における音周波数(Hz)と音響透過損失(dB)との関係を示すグラフを作成し、音周波数3,000Hz付近と4,000Hz付近とにおける極小の音響透過損失(TL値)を求めた。このTL値が高いほど、遮音性が高くなる。遮音性を下記の基準で判定した。
 [遮音性の判定基準]
 ○○:TL値が35dB以上
 ○:TL値が30dB以上、35dB未満
 ×:TL値が30dB未満
 (6)リサイクル後の評価について
 中間膜の製造工程で発生する不要となった中間膜を回収した。回収した膜を原料として用い、押出し機で中間膜を製造した。得られた中間膜を用いて、上記の評価(4),(5)と同様の方法で、リサイクル後の曲げ剛性と遮音性を評価した。
 詳細及び結果を下記の表1~3に示す。なお、下記の表1~3では、熱可塑性樹脂、可塑剤、及び添加剤であるシリカ粒子以外の配合成分の記載は省略した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 単層の中間膜は、中間膜のリサイクル材料として用いることができる。実施例では、単層の中間膜であるため、リサイクル可能であった。
 11…中間膜(単層、第1の層)
 11a…第1の表面
 11b…第2の表面
 21…第1の合わせガラス部材
 31…合わせガラス

Claims (14)

  1.  単層の合わせガラス用中間膜であって、
     熱可塑性樹脂を含み、
     周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率の最小値が3MPa以上であり、
     周波数0.5Hzで測定した20℃におけるせん断貯蔵弾性率の、周波数0.5Hzで測定した-30℃におけるせん断貯蔵弾性率に対する比が0.01以上かつ0.8以下であり、ガラス転移温度が-20℃以上、0℃以下に存在し、-20℃以上、0℃以下の温度領域におけるtanδの最大値が0.1以上である、合わせガラス用中間膜。
  2.  前記熱可塑性樹脂が、ポリビニルアセタール樹脂を含む、請求項1に記載の合わせガラス用中間膜。
  3.  前記熱可塑性樹脂の全体100重量%中、前記ポリビニルアセタール樹脂の含有量が20重量%以上である、請求項2に記載の合わせガラス用中間膜。
  4.  前記ポリビニルアセタ-ル樹脂が、ポリビニルアセトアセタール樹脂又はポリビニルブチラール樹脂である、請求項2又は3に記載の合わせガラス用中間膜。
  5.  周波数0.5Hzで測定した10℃以上40℃以下の温度領域でのせん断貯蔵弾性率の最大値が500MPa以下である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  6.  前記熱可塑性樹脂が、ポリビニルアセタール樹脂以外の熱可塑性樹脂を含む、請求項1~5のいずれか1項に記載の合わせガラス用中間膜。
  7.  前記熱可塑性樹脂の全体100重量%中、前記ポリビニルアセタール樹脂以外の熱可塑性樹脂の含有量が15重量%以上である、請求項6に記載の合わせガラス用中間膜。
  8.  前記熱可塑性樹脂以外の熱可塑性樹脂が、アクリル重合体である、請求項6又は7に記載の合わせガラス用中間膜。
  9.  厚みが3mm以下である、請求項1~8のいずれか1項に記載の合わせガラス用中間膜。
  10.  厚みが1.6mm以下である第1のガラス板を用いて、前記第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられる、請求項1~9のいずれか1項に記載の合わせガラス用中間膜。
  11.  第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられ、
     前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である、請求項1~10のいずれか1項に記載の合わせガラス用中間膜。
  12.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項1~9のいずれか1項に記載の合わせガラス用中間膜とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
  13.  前記第1の合わせガラス部材が第1のガラス板であり、
     前記第1のガラス板の厚みが1.6mm以下である、請求項12に記載の合わせガラス。
  14.  前記第1の合わせガラス部材が第1のガラス板であり、
     前記第2の合わせガラス部材が第2のガラス板であり、
     前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である、請求項12又は13に記載の合わせガラス。
PCT/JP2016/059473 2015-03-31 2016-03-24 合わせガラス用中間膜及び合わせガラス WO2016158694A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2016520091A JP6163259B2 (ja) 2015-03-31 2016-03-24 合わせガラス用中間膜及び合わせガラス
MX2017010189A MX2017010189A (es) 2015-03-31 2016-03-24 Capa intermedia para vidrio laminado y vidrio laminado.
CN201680003027.3A CN106795049A (zh) 2015-03-31 2016-03-24 夹层玻璃用中间膜及夹层玻璃
BR112017018489A BR112017018489A2 (pt) 2015-03-31 2016-03-24 intercamada para vidro laminado e vidro laminado".
KR1020177003893A KR20170134955A (ko) 2015-03-31 2016-03-24 접합 유리용 중간막 및 접합 유리
AU2016242391A AU2016242391A1 (en) 2015-03-31 2016-03-24 Interlayer for laminated glass and laminated glass
EP16772575.3A EP3279158A4 (en) 2015-03-31 2016-03-24 Interlayer for laminated glass and laminated glass
US15/541,668 US20180001600A1 (en) 2015-03-31 2016-03-24 Interlayer for laminated glass and laminated glass
RU2017128467A RU2017128467A (ru) 2015-03-31 2016-03-24 Межслойная пленка для многослойного стекла и многослойное стекло
CA2981859A CA2981859A1 (en) 2015-03-31 2016-03-24 Interlayer for laminated glass and laminated glass
ZA2017/04800A ZA201704800B (en) 2015-03-31 2017-07-14 Interlayer for laminated glass and laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-074433 2015-03-31
JP2015074433 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158694A1 true WO2016158694A1 (ja) 2016-10-06

Family

ID=57006764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059473 WO2016158694A1 (ja) 2015-03-31 2016-03-24 合わせガラス用中間膜及び合わせガラス

Country Status (13)

Country Link
US (1) US20180001600A1 (ja)
EP (1) EP3279158A4 (ja)
JP (2) JP6163259B2 (ja)
KR (1) KR20170134955A (ja)
CN (1) CN106795049A (ja)
AU (1) AU2016242391A1 (ja)
BR (1) BR112017018489A2 (ja)
CA (1) CA2981859A1 (ja)
MX (1) MX2017010189A (ja)
RU (1) RU2017128467A (ja)
TW (1) TW201641572A (ja)
WO (1) WO2016158694A1 (ja)
ZA (1) ZA201704800B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116997A1 (ja) * 2016-12-22 2018-06-28 日本ゼオン株式会社 合わせガラス
WO2019151327A1 (ja) * 2018-02-02 2019-08-08 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2019147703A (ja) * 2018-02-27 2019-09-05 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラスの製造方法
JP2019147704A (ja) * 2018-02-27 2019-09-05 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2020506860A (ja) * 2017-01-20 2020-03-05 ピッツバーグ グラス ワークス、エルエルシー 音波減衰を改善するための対称ガラス
WO2020130117A1 (ja) * 2018-12-21 2020-06-25 積水化学工業株式会社 合わせガラス用中間膜、及び合わせガラス
JPWO2021002032A1 (ja) * 2019-07-02 2021-01-07
WO2021117596A1 (ja) * 2019-12-09 2021-06-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2022265074A1 (ja) * 2021-06-18 2022-12-22 積水化学工業株式会社 粘着フィルム、及び積層体
WO2022265073A1 (ja) * 2021-06-18 2022-12-22 積水化学工業株式会社 粘着フィルム、及び積層体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019132423A (ru) * 2017-03-15 2021-04-15 Секисуй Кемикал Ко., Лтд. Промежуточная пленка для многослойных стекол и многослойное стекло
CN111655648B (zh) * 2018-02-02 2023-06-02 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
US20210394491A1 (en) * 2018-11-30 2021-12-23 Showa Denko Materials Co., Ltd. Laminated glass for vehicle
WO2020130116A1 (ja) * 2018-12-21 2020-06-25 積水化学工業株式会社 合わせガラス用中間膜、及び合わせガラス
KR102103217B1 (ko) 2019-09-30 2020-05-08 (주)웰크론 체열반사 부직포원단 제조장치 및 방법 및 이를 이용한 침구제품
WO2022071341A1 (ja) * 2020-09-29 2022-04-07 積水化学工業株式会社 サイドガラス用合わせガラス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040653A (ja) * 2001-07-30 2003-02-13 Kanegafuchi Chem Ind Co Ltd 合わせガラス用樹脂組成物
JP2010523449A (ja) * 2007-04-05 2010-07-15 株式会社クラレ 特定の屈折率を有するシリカを含む合わせガラス用中間膜
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
WO2015046583A1 (ja) * 2013-09-30 2015-04-02 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2015152293A1 (ja) * 2014-03-31 2015-10-08 株式会社ガラステクノシナジー ポリビニルブチラール樹脂組成物、成型品、及びポリビニルブチラール樹脂組成物の製造方法
WO2016039477A1 (ja) * 2014-09-12 2016-03-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432522B1 (en) * 1999-02-20 2002-08-13 Saint-Gobain Vitrage Transparent acoustical and mechanical barrier
US7838102B2 (en) * 2004-10-28 2010-11-23 E. I. Du Pont De Nemours And Company Filled polyvinyl butyral sheeting for decorative laminated glass and a process for making same
JP5019706B2 (ja) * 2004-12-07 2012-09-05 積水化学工業株式会社 熱可塑性樹脂シート及び透明積層板
FR2901174B1 (fr) * 2006-05-19 2013-01-11 Saint Gobain Vitrage feuillete acoustique, intercalaire acoustique et procede de selection de l'intercalaire pour un amortissement acoustique optimal
US7348062B2 (en) * 2006-06-10 2008-03-25 Solutia Incorporated Interlayers comprising modified fumed silica
JP5568301B2 (ja) * 2008-04-22 2014-08-06 株式会社クラレ アクリル系熱可塑性樹脂組成物
EP2153989B1 (de) * 2008-08-01 2021-09-29 Kuraray Europe GmbH Mehrschichtfolien aus weichmacherhaltigem Polyvinylacetal mit schalldämpfenden Eigenschaften
KR101777536B1 (ko) * 2008-09-30 2017-09-11 세키스이가가쿠 고교가부시키가이샤 합판 유리용 중간막, 및 합판 유리
EP2623474B1 (en) * 2010-09-30 2018-06-27 Sekisui Chemical Co., Ltd. Laminated glass interlayer and laminated glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040653A (ja) * 2001-07-30 2003-02-13 Kanegafuchi Chem Ind Co Ltd 合わせガラス用樹脂組成物
JP2010523449A (ja) * 2007-04-05 2010-07-15 株式会社クラレ 特定の屈折率を有するシリカを含む合わせガラス用中間膜
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
WO2015046583A1 (ja) * 2013-09-30 2015-04-02 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2015152293A1 (ja) * 2014-03-31 2015-10-08 株式会社ガラステクノシナジー ポリビニルブチラール樹脂組成物、成型品、及びポリビニルブチラール樹脂組成物の製造方法
WO2016039477A1 (ja) * 2014-09-12 2016-03-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279158A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010241B2 (ja) 2016-12-22 2022-02-10 日本ゼオン株式会社 合わせガラス
CN110062748A (zh) * 2016-12-22 2019-07-26 日本瑞翁株式会社 夹层玻璃
WO2018116997A1 (ja) * 2016-12-22 2018-06-28 日本ゼオン株式会社 合わせガラス
JPWO2018116997A1 (ja) * 2016-12-22 2019-10-24 日本ゼオン株式会社 合わせガラス
CN110062748B (zh) * 2016-12-22 2022-05-13 日本瑞翁株式会社 夹层玻璃
JP7170209B2 (ja) 2017-01-20 2022-11-14 ピッツバーグ グラス ワークス、エルエルシー 音波減衰を改善するための対称ガラス
JP2020506860A (ja) * 2017-01-20 2020-03-05 ピッツバーグ グラス ワークス、エルエルシー 音波減衰を改善するための対称ガラス
WO2019151327A1 (ja) * 2018-02-02 2019-08-08 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US11491768B2 (en) 2018-02-02 2022-11-08 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
JP2019147704A (ja) * 2018-02-27 2019-09-05 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2019147703A (ja) * 2018-02-27 2019-09-05 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラスの製造方法
WO2020130117A1 (ja) * 2018-12-21 2020-06-25 積水化学工業株式会社 合わせガラス用中間膜、及び合わせガラス
US11850827B2 (en) 2018-12-21 2023-12-26 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
WO2021002032A1 (ja) * 2019-07-02 2021-01-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2021002032A1 (ja) * 2019-07-02 2021-01-07
JP7372840B2 (ja) 2019-07-02 2023-11-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2021117596A1 (ja) * 2019-12-09 2021-06-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2022265074A1 (ja) * 2021-06-18 2022-12-22 積水化学工業株式会社 粘着フィルム、及び積層体
WO2022265073A1 (ja) * 2021-06-18 2022-12-22 積水化学工業株式会社 粘着フィルム、及び積層体

Also Published As

Publication number Publication date
EP3279158A4 (en) 2018-12-19
JP2017193485A (ja) 2017-10-26
JPWO2016158694A1 (ja) 2017-04-27
RU2017128467A (ru) 2019-02-12
JP6163259B2 (ja) 2017-07-12
MX2017010189A (es) 2017-11-23
BR112017018489A2 (pt) 2018-04-17
CA2981859A1 (en) 2016-10-06
KR20170134955A (ko) 2017-12-07
US20180001600A1 (en) 2018-01-04
AU2016242391A1 (en) 2017-07-13
EP3279158A1 (en) 2018-02-07
TW201641572A (zh) 2016-12-01
ZA201704800B (en) 2018-12-19
CN106795049A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6163259B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6147421B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6609185B2 (ja) 合わせガラス用中間膜及び合わせガラス
WO2018181758A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2019194113A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP7036716B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6949757B2 (ja) 合わせガラス用中間膜及び合わせガラスの製造方法
WO2018181747A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2018181746A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2018181751A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2018181757A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2019147704A (ja) 合わせガラス用中間膜及び合わせガラス
JP2016183077A (ja) 合わせガラス用中間膜及び合わせガラス
JP2019147707A (ja) 合わせガラス用中間膜及び合わせガラス
JP2016183078A (ja) 合わせガラス用中間膜及び合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520091

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003893

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2981859

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15541668

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016242391

Country of ref document: AU

Date of ref document: 20160324

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010189

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017128467

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017018489

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017018489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170829