WO2022265073A1 - 粘着フィルム、及び積層体 - Google Patents

粘着フィルム、及び積層体 Download PDF

Info

Publication number
WO2022265073A1
WO2022265073A1 PCT/JP2022/024190 JP2022024190W WO2022265073A1 WO 2022265073 A1 WO2022265073 A1 WO 2022265073A1 JP 2022024190 W JP2022024190 W JP 2022024190W WO 2022265073 A1 WO2022265073 A1 WO 2022265073A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
resin
group
film
polyvinyl acetal
Prior art date
Application number
PCT/JP2022/024190
Other languages
English (en)
French (fr)
Inventor
裕司 大東
祐美子 寺口
由貴 石川
尚輝 鴨志田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022542637A priority Critical patent/JPWO2022265073A1/ja
Publication of WO2022265073A1 publication Critical patent/WO2022265073A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to an adhesive film and a laminate provided with an adhesive film.
  • Adhesive films are widely used to superimpose and fix surface protection panels, polarizing plates, films with touch sensors, glass with touch sensors, etc. in various displays such as liquid crystal displays, organic EL displays, and displays with touch panels.
  • (meth)acrylic resins have been widely used as adhesive films from the viewpoints of transparency, adhesiveness, and the like.
  • polyvinyl acetal resins has also been investigated.
  • Laminated glass into which a light control film has been introduced is also being studied for use as window glass for vehicles such as automobiles.
  • the display and window glass are less likely to break even if a strong impact is applied in a collision accident. , crash safety is required.
  • adhesive films are used for displays or laminated glass with light control films, it is necessary to increase the adhesiveness to various resin materials that make up polarizing plates, films with touch sensors, light control films, etc. be.
  • plasticized polyvinyl acetal resins have good collision safety, but when plasticizers or reactive diluents are added during long-term storage, the plasticizers and reactive diluents bleed out. As a result, there is a problem with bleeding, such as contamination of surrounding members. Moreover, it is difficult for the plasticized polyvinyl acetal-based resin to sufficiently improve the adhesiveness to various resin materials, particularly low-polarity resin materials.
  • an object of the present invention is to improve the collision safety and bleeding property while improving the adhesion to various resin films in an adhesive film containing a thermoplastic resin such as polyvinyl acetal resin.
  • the present inventors have found that in an adhesive film containing a thermoplastic resin, while reducing the content of the plasticizer, the storage elastic modulus and the adhesive strength to a polycarbonate substrate measured under predetermined measurement conditions are increased to a predetermined value.
  • the said subject was solvable, and the following invention was completed. That is, the present invention provides the following [1] to [32].
  • An adhesive film containing a thermoplastic resin Does not contain a plasticizer, or contains less than 20 parts by weight of a plasticizer with respect to 100 parts by weight of the thermoplastic resin, An adhesive film having a shear storage modulus at 20° C.
  • the maximum load (N) is taken as the adhesive strength.
  • N The pressure-sensitive adhesive film according to [1] above, wherein the maximum peak temperature of tan ⁇ from -50°C to 150°C is 10°C or higher and 52°C or lower.
  • the pressure-sensitive adhesive film according to [1] or [2] above which has a thickness of 100 ⁇ m or more and 2000 ⁇ m or less.
  • the thermoplastic resin is a polyvinyl acetal resin.
  • thermoplastic resin Adhesive film as described.
  • the plasticizer is at least one selected from the group consisting of organic ester plasticizers, organic phosphorus plasticizers, organic ether plasticizers, and alcohol plasticizers.
  • the adhesive film contains, as a plasticizer, an ester of a glycol and a monobasic organic acid, an ester compound of a dibasic organic acid having 4 to 12 carbon atoms and an alcohol having 4 to 10 carbon atoms, or polyalkylene glycol.
  • the pressure-sensitive adhesive film according to any one of [1] to [18] above, which contains at least one selected from the group consisting of plasticizers and polyoxyalkylene ether plasticizers.
  • a laminate comprising the adhesive film according to any one of [1] to [19] above, and at least one of an inorganic material substrate and an organic material substrate.
  • An intermediate member disposed between the pair of base materials and an adhesive film disposed between each base material and the intermediate member, wherein at least one of the adhesive films is the adhesive film The laminate according to [24] above.
  • [26] The laminate according to [25] above, wherein at least one of an inorganic material substrate and an organic material substrate is arranged at a position of the intermediate member to which the adhesive film adheres.
  • thermoplastic resin in an adhesive film containing a thermoplastic resin, it is possible to improve the adhesion to various resin materials, as well as the collision safety and the bleeding property.
  • FIG. 5 is a cross-sectional view showing a laminate according to a second embodiment; It is a sectional view showing a layered product concerning a 3rd embodiment. It is a sectional view showing a layered product concerning a 4th embodiment. It is a perspective view for explaining a cross-peel test. It is a top view for demonstrating the measuring method of the adhesive force with respect to a TAC polarizing plate.
  • the adhesive film of the present invention contains a thermoplastic resin and does not contain a plasticizer, or contains less than 20 parts by weight of a plasticizer with respect to 100 parts by weight of the thermoplastic resin, and has a shear storage elastic modulus of 3 ⁇ at 20 ° C. It has a pressure of 10 5 Pa or more and an adhesive strength of 100 N or more to a polycarbonate substrate measured under predetermined measurement conditions.
  • the pressure-sensitive adhesive film of the present invention having the above configuration can improve the adhesion to various resin films, as well as the collision safety and the bleeding property.
  • the pressure-sensitive adhesive film of the present invention has a shear storage modulus of 3 ⁇ 10 5 Pa or more at 20°C.
  • the shear storage modulus is less than 3 ⁇ 10 5 Pa
  • the shear storage modulus is greatly deformed and the amount of sinking of the laminate increases.
  • the shear storage elastic modulus at 20° C. is preferably 1 ⁇ 10 6 Pa or more, and 5 ⁇ 10 6 Pa or more. is more preferable, 1 ⁇ 10 7 Pa or more is more preferable, and 2 ⁇ 10 7 Pa or more is even more preferable.
  • the shear storage modulus of the pressure-sensitive adhesive film at 20° C. should be high from the viewpoint of crash safety, but from the viewpoint of improving other physical properties in a well-balanced manner, it should be, for example, 5 ⁇ 10 9 Pa or less, preferably 1 ⁇ 10 9 Pa or less, more preferably 8 ⁇ 10 8 Pa or less.
  • the shear storage modulus can be measured by performing viscoelasticity measurement in shear mode using a dynamic viscoelasticity measuring device at a frequency of 1 Hz, and detecting the storage modulus (G') at 20°C.
  • the pressure-sensitive adhesive film of the present invention has an adhesive strength of 100 N or more to a polycarbonate substrate measured under predetermined measurement conditions.
  • the polycarbonate base material has low polarity and is a resin that is difficult to adhere to the resin constituting the adhesive film such as polyvinyl acetal resin. Adhesive strength to various resin materials is increased. On the other hand, if the adhesive strength is less than 100 N, the adhesive strength of the pressure-sensitive adhesive film to various resins may be insufficient. From the viewpoint of further improving the adhesive strength to various resins, the adhesive strength is preferably 200 N or more. Moreover, the higher the adhesive strength, the better.
  • First step An adhesive film having a length of 15 mm and a width of 15 mm and two sheets of polycarbonate plate glass having a thickness of 2 mm, a length of 25 mm and a width of 100 mm conforming to JIS K6735 are prepared. Then, two sheets of polycarbonate plate glass are arranged so that their longitudinal directions are perpendicular to each other and overlapped in a cross shape with an adhesive film interposed therebetween.
  • Second step Using a spacer with the same thickness as the adhesive film so that the thickness of the adhesive film is constant, in a vacuum laminator, two sheets of polycarbonate plate glass are laminated via the adhesive film at 90 ° C. Temporary pressure bonding is performed for 3 minutes under the condition of 0.1 MPa. Third step: The two temporarily pressure-bonded polycarbonate plate glasses are further pressure-bonded under conditions of 90° C. and 0.5 MPa for 1 hour to obtain a laminated glass sample.
  • the obtained laminated glass sample is subjected to a cross peeling test. Specifically, the maximum load (N) when peeling one polycarbonate plate glass from the other polycarbonate plate glass in a direction perpendicular to the adhesive surface at a speed of 10 mm / min in an environment of 23 ° C. is measured.
  • the load (N) be the adhesion force.
  • the adhesive force may be measured by setting the jig shown in FIG.
  • the jig consists of a box 11 and a pressing member 20 .
  • the box 11 and the pressing member 20 are made of SUS.
  • the box 11 has a rectangular parallelepiped shape with an open upper surface, and rectangular notches 14, 14 are provided on the upper end surfaces of the side surfaces 13, 13 facing each other.
  • the pressing member 20 is a U-shaped member provided with a rectangular base portion 16 and pressing pieces 17, 17 connected to both ends of the base 16 in the longitudinal direction at right angles. Each pressing piece 17 has a width W of 20 mm, a thickness T of 5 mm, and a distance L between the pressing pieces 17, 17 of 35 mm.
  • one polycarbonate plate glass 21 is placed across the notches 14, 14 so that the other polycarbonate plate 22 is placed on the lower side.
  • the maximum load (N) when peeling the polycarbonate sheet glass 31 by applying a load in the vertical downward direction X, which is the direction perpendicular to the bonding surface, at a speed of 10 mm / minute is measured, and the maximum load (N) is used to obtain the adhesive strength ( N).
  • the adhesive strength (N) is the adhesive strength per 225 mm 2 area.
  • the maximum peak temperature of tan ⁇ of the adhesive film is preferably 10°C or higher and 52°C or lower.
  • the resin film becomes sufficiently flexible and can have good adhesiveness to various resin materials and inorganic glass.
  • the maximum peak temperature of tan ⁇ of the resin composition is preferably 48° C. or lower, more preferably 44° C. or lower, and even more preferably 40° C. or lower.
  • the maximum peak temperature of tan ⁇ is 10° C. or higher, coalescence of the adhesive film can be easily prevented, and deterioration of handleability can be prevented.
  • the maximum peak temperature of tan ⁇ of the resin composition is preferably 12° C. or higher, more preferably 20° C. or higher.
  • the maximum peak temperature of tan ⁇ of the resin film is measured using a dynamic viscoelasticity measuring device, and among the peak temperatures of the loss tangent tan ⁇ obtained from the results of the viscoelasticity measurement, tan ⁇ is the maximum value. It can be detected by reading the peak temperature.
  • the shear storage modulus, adhesive strength, and maximum peak temperature of tan ⁇ described above can be adjusted by appropriately selecting the type of resin, the molecular weight of the resin, the presence or absence of a plasticizer, and its content.
  • thermoplastic resins used for adhesive films include (meth) acrylic resins, polyvinyl acetal resins, polyvinyl alcohol resins (PVA), polyurethane resins (PU), ethylene-vinyl acetate copolymer resins (EVA ), saponified ethylene-vinyl acetate copolymer (EVOH), ethylene-methacrylic acid copolymer resin, ionomer resin, isobutylene resin, styrene-isoprene copolymer resin, styrene-butadiene copolymer resin, and the like.
  • the thermoplastic resin may be used singly or in combination of two or more.
  • thermoplastic resins polyvinyl acetal-based resins are preferred. By using a polyvinyl acetal-based resin, it becomes easier to improve the collision safety while improving the adhesion to various resins.
  • the polyvinyl acetal-based resin used for the thermoplastic resin will be described in detail below.
  • the thermoplastic resin is preferably a polyvinyl acetal resin.
  • the polyvinyl acetal resin may be a modified polyvinyl acetal resin or an unmodified polyvinyl acetal resin.
  • the modified polyvinyl acetal resin may have a structure (modifying group) other than an acetal group, a hydroxyl group, and an acetyl group, and preferably has a modifying group in a side chain, as will be described later.
  • a polyvinyl acetal-based resin is obtained by acetalizing polyvinyl alcohol with an aldehyde, and optionally reacting it with a modifier or re-acetylating it.
  • modified polyvinyl alcohol may be used as the raw material polyvinyl alcohol.
  • the structure other than the above acetal group, hydroxyl group, and acetyl group is preferably a polyalkylene oxide structure.
  • the polyalkylene oxide structure is as represented by the following formula (1).
  • a 1 O is an oxyalkylene group having 2 to 6 carbon atoms, m is the average number of repetitions, and is 4 to 200.
  • R 1 is an alkyl group having 1 to 8 carbon atoms or It is a hydrogen atom.
  • the oxyalkylene group may be of one type alone, or two or more types may be mixed.* indicates the bonding position with another group.
  • the oxyalkylene group for A 1 O is an oxyalkylene group having 2 to 6 carbon atoms, preferably an oxyalkylene group having 2 to 4 carbon atoms, and more preferably an oxyalkylene group having 2 or 3 carbon atoms.
  • the alkylene group in the oxyalkylene group may be linear or may have a branched structure.
  • the oxyalkylene group includes, for example, an oxyethylene group, an oxypropylene group, or an oxybutylene group, preferably an oxyethylene group or an oxypropylene group.
  • One type of oxyalkylene group may be used alone, but two or more types may be used in combination. When two or more types are used in combination, each oxyalkylene group may be added at random or may be added in blocks, but is more preferably added at random.
  • the oxyalkylene group in the polyalkylene oxide structure preferably contains at least one of an oxyethylene group and an oxypropylene group, and preferably contains both an oxyethylene group and an oxypropylene group.
  • both an oxyethylene group and an oxypropylene group may form a block structure, but more preferably a random structure.
  • the ratio (PO/EO) of the oxypropylene group to the oxyethylene group is, for example, 1/9 or more and 9/1 or less, preferably 2 /8 or more and 8/2 or less, more preferably 3/7 or more and 7/3 or less.
  • m represents the average number of repeating oxyalkylene groups, and is 4-200, preferably 5-100, more preferably 10-80, and still more preferably 15-50.
  • the alkyl group for R 1 may be linear or may have a branched structure.
  • alkyl groups for R 1 include branched butyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl and t-butyl groups, n-pentyl group, branched pentyl group, n branched heptyl groups such as -hexyl group, branched hexyl group, n-heptyl group, isoheptyl group and 3-heptyl group; branched octyl groups such as n-octyl group, isooctyl group and 2-ethylhexyl group; R 1 is preferably an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, more preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • the above polyalkylene oxide structure may be linked to the main chain via a single bond, but is preferably linked to the main chain via a linking group other than a single bond.
  • Linking groups other than single bonds include ether bond (-O-), ester bond (-COO-), amide bond (-CONR-: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom ), or a hydrocarbon group which may have at least one of these bonds.
  • R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom
  • a hydrocarbon group which may have at least one of these bonds is more preferable.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, but may be, for example, about 1-10, preferably 1-4.
  • the polyalkylene oxide structure is bonded to the main chain via either an ether bond or —CH 2 O—.
  • the polyalkylene oxide structure is attached to the main chain through any of these to facilitate its manufacture.
  • an oxygen atom is preferably bonded to the polyalkylene oxide structure.
  • a polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group.
  • the polyvinyl acetal-based resin does not have to contain hydroxyl groups by being modified with functional groups or undergoing a re-acetylation reaction.
  • the acetal group, hydroxyl group, and acetyl group are groups bonded directly to the main chain or via an oxygen atom, as shown in formulas (3-1) to (3-3) described later.
  • a hydroxyl group, etc., possessed by a polyalkylene oxide structure is not included.
  • the polyvinyl acetal-based resin is preferably modified to have a polyalkylene oxide structure represented by the above formula (1) as described above.
  • the polyvinyl acetal resin having a polyalkylene oxide structure is sometimes described as a modified polyvinyl acetal resin (A) in order to distinguish it from other polyvinyl acetal resins.
  • the modified polyvinyl acetal resin (A) preferably has a modification amount of 0.1 mol % or more and 10 mol % or less with the polyalkylene oxide structure (that is, the functional group represented by formula (1)).
  • the amount of modification is within the above range, the shear storage elastic modulus at 20°C is increased, and crash safety can be improved.
  • the maximum peak temperature of tan ⁇ tends to be low, and the adhesive strength of the adhesive film to various resin materials such as polycarbonate can be improved.
  • the amount modified by the polyalkylene oxide structure is preferably 0.2 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.4 mol% or more, and particularly 0.5 mol% or more. 8 mol % or less is preferable, 6 mol % or less is more preferable, and 4 mol % or less is even more preferable.
  • the amount of modification by the functional group represents the ratio of the functional group to all the vinyl monomer units that constitute the polyvinyl acetal-based resin.
  • the amount of modification can be calculated from the spectrum obtained by subjecting the polyvinyl acetal-based resin to proton NMR measurement.
  • the degree of acetalization, the amount of hydroxyl groups, and the degree of acetylation, which will be described later, can be calculated from the spectrum obtained by performing proton NMR measurement.
  • the polyvinyl acetal-based resin does not have to have the polyalkylene oxide structure described above.
  • a polyvinyl acetal resin may be a modified polyvinyl acetal resin having a modifying group other than the functional group represented by formula (1), or may be an unmodified polyvinyl acetal resin. Even if it is an unmodified polyvinyl acetal resin, the maximum peak temperature of tan ⁇ can be lowered by reducing the amount of hydroxyl groups as described later by a re-acetylation reaction or the like, and the adhesion to various resin materials can be easily increased.
  • Examples of modifying groups other than the functional groups represented by formula (1) include alkyl groups.
  • the alkyl group may be linear or may have a branched structure.
  • the number of carbon atoms in the alkyl group is, for example, 2-30, preferably 3-24, more preferably 5-20, still more preferably 7-18, still more preferably 11-18.
  • the alkyl group may be directly bonded to the main chain, preferably a structural unit derived from a vinyl group constituting the main chain, but preferably an ether bond (-O-) or an ester bond (*-COO-**). , through a urethane bond (*-NHCOO-**), more preferably through an ester bond or a urethane bond.
  • the polyvinyl acetal-based resin has a vinyl group-derived structural unit as a main chain, and the functional group represented by formula (1) is bonded to the vinyl group-derived structural unit that constitutes the main chain. good. Therefore, the polyvinyl acetal-based resin preferably has a structural unit represented by the following formula (2). It is more preferable to have
  • R 2 is a single bond or a hydrocarbon group which may have at least one of an ester bond and an ether bond. or.
  • a 1 O, R 1 , and m in the formulas (2), (2-1), and (2-2) are as described above, so description thereof will be omitted.
  • the carbon number of R 2 in formula (2) is, for example, 1-10, preferably 1-4.
  • the hydrocarbon group of R 2 may have an ester bond or an ether bond as described above, but preferably does not have an ester bond or an ether bond.
  • Polyvinyl acetal-based resins typically have an acetal group, a hydroxyl group, and an acetyl group. ) and structural units represented by formula (3-3). Therefore, the modified polyvinyl acetal resin is composed of structural units represented by the following formulas (3-1), (3-2) and (3-3) and structural units represented by the above formula (2). It is preferable to have However, when the polyvinyl acetal-based resin is, for example, an unmodified polyvinyl acetal resin, it may not have a hydroxyl group as described above, and may not have a structural unit represented by formula (3-2). That is, the unmodified polyvinyl acetal resin has structural units represented by the following formulas (3-1) and (3-3), and optionally further a structural unit represented by the following formula (3-2). may have.
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 19 carbon atoms.
  • Polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol or modified polyvinyl alcohol obtained by modifying polyvinyl alcohol with aldehyde as described above, and then modifying it as necessary. 80-99.8 mole % polyvinyl alcohol is commonly used.
  • the number of carbon atoms in the acetal group contained in the polyvinyl acetal-based resin is not particularly limited. ⁇ 6 is more preferred, and 2, 3 or 4 is even more preferred. Accordingly, the number of carbon atoms in R represented by formula (3-1) is preferably 1 to 9, more preferably 1 to 5, even more preferably 1 to 3.
  • the acetal group is particularly preferably a butyral group, and therefore, the polyvinyl acetal-based resin is preferably a polyvinyl butyral-based resin.
  • the degree of acetalization (that is, the amount of acetal) of the polyvinyl acetal-based resin is preferably 40 mol % or more and 90 mol % or less.
  • the degree of acetalization is more preferably 55 mol % or more, still more preferably 60 mol % or more, more preferably 88 mol % or less, and even more preferably 85 mol % or less. By setting the degree of acetalization within these ranges, it becomes easier to contain a certain amount of the functional group represented by formula (1) while maintaining an appropriate amount of hydroxyl groups.
  • the degree of acetalization means the degree of acetoacetalization when the acetal group of the polyvinyl acetal-based resin is an acetoacetal group, and the degree of butyralization when the acetal group is a butyral group. . Further, the degree of acetalization represents the ratio of acetalized vinyl alcohol units to all vinyl monomer units constituting the polyvinyl acetal-based resin.
  • the hydroxyl group content of the polyvinyl acetal-based resin is preferably 35 mol % or less, more preferably 33 mol % or less, still more preferably 30 mol % or less.
  • amount of hydroxyl groups is set to the above upper limit or less, the maximum peak temperature of tan ⁇ can be easily adjusted to a suitable value, and the adhesive strength to low-polarity resin materials such as polycarbonate can be easily increased.
  • the hydroxyl group content of the polyvinyl acetal resin is preferably 0 mol% or more, but in the case of the modified polyvinyl acetal resin (A), from the viewpoint of preventing the adhesive film from becoming too flexible, a certain amount is preferably 5 mol % or more, preferably 9 mol % or more, more preferably 10 mol % or more, still more preferably 12 mol % or more.
  • the hydroxyl group content is lowered in order to lower the maximum peak temperature of tan ⁇ and increase the adhesive strength to resins with low polarity such as polycarbonate.
  • the amount of hydroxyl groups in the unmodified polyvinyl acetal resin is preferably 15 mol% or less, more preferably 10 mol% or less, even more preferably 5 mol% or less, even more preferably 3 mol% or less, and most preferably 0 mol%. is.
  • the amount of hydroxyl groups represents the ratio of hydroxyl groups to all vinyl monomer units constituting the polyvinyl acetal-based resin.
  • the degree of acetylation (acetyl group content) of the polyvinyl acetal resin is, for example, 0.01 mol % or more and 50 mol % or less. In order to keep the amount of modification by the functional group above a certain value, the degree of acetylation should also be below a certain value. Therefore, the degree of acetylation of the modified polyvinyl acetal resin (A) is preferably 20 mol% or less, more preferably 15 mol% or less, still more preferably 12 mol% or less, and even more preferably 5 mol% or less. The degree of acetylation of the modified polyvinyl acetal resin (A) is, for example, 0.01 mol % or more as described above, preferably 0.1 mol % or more, and more preferably 0.3 mol % or more.
  • the degree of acetylation is a constant value. or more, preferably 15 mol % or more, more preferably 25 mol % or more, still more preferably 30 mol % or more.
  • the degree of acetylation of the unmodified polyvinyl acetal resin is, for example, 50 mol % or less, preferably 45 mol % or less, and more preferably 42 mol % or less.
  • the degree of acetylation represents the ratio of acetyl groups to all vinyl monomer units constituting the polyvinyl acetal-based resin.
  • the weight average molecular weight (Mw) of the polyvinyl acetal resin is preferably 50,000 or more and 800,000 or less. By adjusting the weight-average molecular weight within the above range, the shear storage modulus can be kept within the desired range, and the adhesiveness can be easily improved while maintaining favorable mechanical strength, flexibility, and the like. From these viewpoints, the weight average molecular weight (Mw) of the polyvinyl acetal resin is more preferably 100,000 or more, still more preferably 120,000 or more, and even more preferably 150,000 or more. Also, the weight average molecular weight (Mw) is more preferably 600,000 or less, even more preferably 500,000 or less, and even more preferably 400,000 or less. The weight average molecular weight (Mw) is measured by gel permeation chromatography.
  • Aldehydes used in producing polyvinyl acetal resins are not particularly limited, and are, for example, aldehydes having 1 to 20 carbon atoms, but generally aldehydes having 2 to 10 carbon atoms are preferably used.
  • the aldehyde having 2 to 10 carbon atoms is not particularly limited, and examples thereof include acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, and n-octylaldehyde.
  • aldehydes having 2 to 6 carbon atoms such as acetaldehyde, n-butyraldehyde, n-hexylaldehyde and n-valeraldehyde are preferable, aldehydes having 2, 3 and 4 carbon atoms are more preferable, and n-butyraldehyde is further preferable. preferable.
  • aldehydes may be used alone or in combination of two or more.
  • the polyvinyl acetal-based resins used in the present invention may be used singly or in combination of two or more.
  • the pressure-sensitive adhesive film of the present invention may have a thermoplastic resin other than the polyvinyl acetal-based resin as long as the effects of the present invention are exhibited.
  • the main component is a polyvinyl acetal-based resin.
  • Thermoplastic resins other than polyvinyl acetal resins are as described above.
  • the content of the polyvinyl acetal-based resin is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, based on the total amount of the thermoplastic resin contained in the adhesive film. Most preferably it is 100% by mass. Therefore, the thermoplastic resin contained in the pressure-sensitive adhesive film of the present invention may consist of only a polyvinyl acetal-based resin.
  • the adhesive film of the present invention may contain a plasticizer.
  • the adhesive film becomes flexible by containing a plasticizer, and by lowering the maximum peak temperature of tan ⁇ of the adhesive film, it is possible to increase the adhesiveness to various adherends such as various resin materials such as polycarbonate and inorganic glass. can.
  • the pressure-sensitive adhesive film of the present invention does not contain a plasticizer or contains a small amount of the plasticizer. By containing only a small amount of the plasticizer or not containing the plasticizer, bleeding out of the plasticizer can be prevented, and bleeding property can be improved.
  • even if the adhesive film of the present invention contains a small amount of plasticizer or does not contain a plasticizer by using the above-described predetermined thermoplastic resin, the adhesion to resin materials such as polycarbonate can be improved.
  • the content of the plasticizer in the adhesive film is less than 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin contained in the adhesive film. If the amount of the plasticizer is 20 parts by mass or more, the plasticizer bleeds out, causing problems such as contamination of peripheral members. From the viewpoint of bleeding property, the content of the plasticizer is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less. The lower limit of the plasticizer content is 0 parts by mass.
  • the resin composition of the present invention may not contain a plasticizer, but the inclusion of a plasticizer makes it easier to improve the adhesiveness of the resin film. .
  • the resin composition preferably contains a plasticizer from the viewpoint of improving the adhesiveness of the resin film.
  • plasticizers include organic ester plasticizers, organic phosphorus plasticizers such as organic phosphate ester plasticizers and organic phosphite ester plasticizers, polyalkylene glycol plasticizers, polyoxyalkylene ether plasticizers, and the like. organic ether-based plasticizers, alcohol-based plasticizers, and the like. A plasticizer may be used individually by 1 type, and may use 2 or more types together. Among them, organic ester plasticizers and organic ether plasticizers are preferred. Preferred organic ester plasticizers include monobasic organic acid esters and polybasic organic acid esters.
  • Monobasic organic acid esters include esters of glycols with monobasic organic acids.
  • Glycols include polyalkylene glycols in which each alkylene unit has 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms, and the number of repeating alkylene units is 2 to 10, preferably 2 to 4.
  • the glycol may also be a monoalkylene glycol having 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms (that is, 1 repeating unit).
  • Specific examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and butylene glycol.
  • Examples of monobasic organic acids include organic acids having 3 to 10 carbon atoms, and specific examples include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, and 2-ethylhexylic acid. , n-nonylic acid and decylic acid.
  • Specific monobasic organic acids include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, di Propylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicapryate, triethylene glycol di-n-heptanoate, tetraethylene glycol Di-n-heptanoate, triethylene glycol di-2-ethylbutyrate,
  • polybasic organic acid esters examples include ester compounds of dibasic organic acids having 4 to 12 carbon atoms such as adipic acid, sebacic acid and azelaic acid and alcohols having 4 to 10 carbon atoms. .
  • the alcohol having 4 to 10 carbon atoms may be linear, branched, or cyclic. Specific examples include dibutyl sebacate, dioctyl azelate, dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, diisononyl adipate, heptyl nonyl adipate, dibutyl carbitol adipate, and mixed adipates.
  • oil-modified alkyd sebacic acid may be used.
  • Mixed adipates include adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms.
  • the organic phosphorus plasticizer include phosphoric acid esters such as tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • the organic ester plasticizer is not limited to the complete ester of each ester described above, and may be a partial ester.
  • it may be a partial ester between a glycol and a monobasic organic acid, or a partial ester between a dibasic organic acid and an alcohol.
  • Specific examples include triethylene glycol-mono-2-ethylhexanoate.
  • it may be a trihydric or higher alcohol such as glycerin and a partial ester of a monobasic organic acid.
  • Monobasic organic acids include monobasic organic acids having 3 to 24 carbon atoms, preferably 6 to 18 carbon atoms.
  • partial esters of trihydric or higher alcohols and monobasic organic acids include mono- or diesters of glycerin and stearic acid and mono- or diesters of glycerin and 2-ethylhexyl acid.
  • organic ester plasticizers triethylene glycol-di-2-ethylhexanoate (3GO) is particularly preferably used.
  • Polyalkylene glycol-based plasticizers include polyethylene glycol, polypropylene glycol, poly(ethylene oxide/propylene oxide) block copolymer, poly(ethylene oxide/propylene oxide) random copolymer, polytetramethylene glycol and the like. Among them, polypropylene glycol is preferred.
  • a polyoxyalkylene ether-based plasticizer is an ether compound of a monohydric or polyhydric alcohol and polyoxyalkylene.
  • Specific polyoxyalkylene ether plasticizers include, for example, polyoxyethylene hexyl ether, polyoxyethylene heptyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene Ethylene decyl ether, polyoxyethylene allyl ether, polyoxypropylene allyl ether, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene diglyceryl ether, polyoxypropylene diglyceryl ether, polyoxyalkylene pentaerythritol ether, etc.
  • the polyoxyalkylene ether-based plasticizer is preferably an ether compound of polyhydric alcohol and polyoxyalkylene, more preferably an ether compound of glycerin or diglycerin and polyoxyalkylene, still more preferably glycerin or diglycerin. and polyoxypropylene ether compound.
  • Alcohol-based plasticizers include various polyhydric alcohols such as butanediol, hexanediol, trimethylolpropane, and pentaerythritol. Among these, trimethylolpropane is preferred.
  • the adhesive film may appropriately contain known additives used in combination with the thermoplastic resin, in addition to the plasticizer. That is, the adhesive film may be made of a thermoplastic resin such as a polyvinyl acetal-based resin. good too. Additives other than the plasticizer specifically include ultraviolet absorbers, infrared absorbers, antioxidants, light stabilizers, adhesion regulators, pigments, dyes, fluorescent brighteners, crystal nucleating agents, and the like. . Moreover, the resin composition of the present invention may be diluted with a solvent and used in the form of a diluent.
  • the adhesive film does not contain a low-molecular-weight compound, or if it does contain a small amount.
  • a low-molecular-weight compound refers to a compound having a molecular weight of less than 1,000, and includes the above-described plasticizers and reactive diluents that are cured by light irradiation.
  • reactive diluents include (meth)acrylic reactive diluents such as (meth)acrylic monomers and (meth)acrylic oligomers, epoxy reactive diluents such as epoxy monomers and epoxy oligomers, and alkoxysilanes. Silicone-based reactive diluents such as monomers and alkoxysilane oligomers may be used. From the viewpoint of bleeding property, the content of the low-molecular-weight compound in the adhesive film is, for example, less than 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin contained in the adhesive film.
  • the content of the low-molecular-weight compound is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less, from the viewpoint of further improving the bleeding property. is.
  • the lower limit of the content of the low molecular weight compound is 0 parts by mass.
  • the polyvinyl acetal resin used in the adhesive film of the present invention is obtained by acetalizing polyvinyl alcohol (also referred to as "raw material polyvinyl alcohol") with aldehyde, and then reacting with a modifier as necessary, or re-acetylating. It is obtained by As raw material polyvinyl alcohol, unmodified polyvinyl alcohol may be used, but in the case of obtaining a modified polyvinyl acetal resin, modified polyvinyl alcohol may be used as raw material polyvinyl alcohol. For example, when manufacturing a modified polyvinyl acetal resin (A) having a polyalkylene oxide structure, it is preferable to use the following manufacturing method (1).
  • polyoxyalkylene-modified polyvinyl alcohol is produced as raw material polyvinyl alcohol. Specifically, it is obtained by polymerizing a vinyl ester and a monomer containing a vinyl monomer having a polyoxyalkylene group to obtain a polymer, and then saponifying the polymer. Alkali or acid is generally used for saponification, and alkali is preferably used.
  • the polyoxyalkylene-modified polyvinyl alcohol only one type may be used, or two or more types may be used in combination.
  • the polyoxyalkylene-modified polyvinyl alcohol obtained above is acetalized with an aldehyde to obtain a modified polyvinyl acetal resin (A).
  • the method of acetalization is preferably carried out by a known method.
  • Vinyl esters used in production method (1) include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl isoformate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, and lauric acid.
  • Vinyl, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate, and the like can be used. Among these, vinyl acetate is preferred.
  • vinyl monomers having a polyoxyalkylene group used in production method (1) include compounds represented by the following formula (4).
  • a polyoxyalkylene vinyl ether represented by the following formula (4-1) and a polyoxyalkylene allyl ether represented by the following formula (4-2) are preferable.
  • vinyl monomers having a polyoxyalkylene group include polyoxyethylene monovinyl ether, polyoxyethylene polyoxypropylene monovinyl ether, polyoxypropylene monovinyl ether, polyoxyethylene monoallyl ether, polyoxyethylene polyoxypropylene mono Allyl ether, polyoxypropylene monoallyl ether, polyoxyethylene alkyl vinyl ether, polyoxyethylene polyoxypropylene alkyl vinyl ether, polyoxypropylene alkyl vinyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene alkyl allyl ether, polyoxyethylene polyoxypropylene alkyl allyl ether, polyoxy and propylene alkyl allyl ether.
  • an unmodified polyvinyl acetal resin it is preferable to manufacture it by the following manufacturing methods (2).
  • Manufacturing method (2) raw polyvinyl alcohol is acetalized with aldehyde to obtain a polyvinyl acetal-based resin (hereinafter also referred to as raw polyvinyl acetal-based resin).
  • raw polyvinyl acetal-based resin a polyvinyl acetal-based resin
  • undenatured polyvinyl alcohol obtained by saponifying polyvinyl ester is used as raw material polyvinyl alcohol.
  • the raw material polyvinyl acetal resin is preferably subjected to a re-acetylation treatment to obtain an unmodified polyvinyl acetal resin.
  • the re-acetylation treatment may be performed by a conventionally known method using acetic anhydride in the presence of a base such as pyridine.
  • the re-acetylation treatment may be carried out by heating at, for example, 50° C. or higher and 100° C. or lower, preferably 70° C. or higher and 90° C. or lower.
  • the modified polyvinyl acetal resin having an alkyl group in its side chain may be produced, for example, by the following production method.
  • a raw material polyvinyl alcohol is acetalized with an aldehyde to obtain a polyvinyl acetal-based resin (hereinafter also referred to as a raw material polyvinyl acetal-based resin).
  • the raw material polyvinyl alcohol used here is obtained by saponifying a polyvinyl ester, and is preferably unmodified polyvinyl alcohol.
  • the raw material polyvinyl acetal resin is reacted with a modifying agent having an alkyl group to introduce an alkyl group into the raw material polyvinyl acetal resin.
  • the modifying agent is preferably a compound having a reactive group that forms a urethane bond or an ester bond by reacting with the hydroxyl group of the raw material polyvinyl acetal resin.
  • alkyl isocyanates having an alkyl group having 2 to 30 carbon atoms such as n-octadecyl isocyanate.
  • carboxylic acids having 3 to 31 carbon atoms, or carboxylic acid derivatives such as anhydrides, carboxylic acid esters and carboxylic acid halides of the above carboxylic acids are also included.
  • Preferred carboxylic acid derivatives are carboxylic acid chlorides such as 2-ethylhexanoyl chloride, lauroyl chloride, myristyl chloride, palmitoyl chloride and stearoyl chloride.
  • the pressure-sensitive adhesive film of the present invention is not only a single pressure-sensitive adhesive film, but also a layered or film-like form obtained by laminating or coating on another member. Sheets, which are relatively thick, are also called adhesive films.
  • the thickness of the adhesive film is not particularly limited, it is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 100 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the adhesive film is preferably as large as possible, more preferably 200 ⁇ m or more, and still more preferably 300 ⁇ m or more, in order to improve collision safety.
  • the thickness of the adhesive film is more preferably 500 ⁇ m or less.
  • the adhesive film of the present invention may consist of a single layer.
  • the layers constituting the single-layer film preferably have the same composition as described for the adhesive film. That is, the layer constituting the single-layer film preferably contains a thermoplastic resin and does not contain a plasticizer, or contains a plasticizer in the above-described content. Furthermore, additives may be appropriately added as described above.
  • the adhesive film of the present invention may be a multilayer film having two or more layers.
  • the composition of the entire film may be as described for the adhesive film, but each layer (hereinafter also referred to as "first layer") may have the composition as described for the adhesive film.
  • each first layer preferably contains a thermoplastic resin and does not contain a plasticizer, or contains a plasticizer in the amount described above, as described for the adhesive film.
  • additives may be appropriately added as described above.
  • the details of the thermoplastic resin, plasticizer, and additives in each first layer of the multilayer film and the details of the content of each component are as described for the adhesive film above.
  • the thermoplastic resin used as the reference for the content is the thermoplastic resin contained in each first layer.
  • each first layer may have the same composition or different compositions.
  • the multilayer film may be a laminate of the first layer described above and a layer other than the first layer (hereinafter also referred to as "second layer"). Specifically, for example, a three-layer structure of first layer/second layer/first layer may be used.
  • each layer preferably has the same composition as described for the adhesive film.
  • the adhesive film of the present invention can be produced by forming a resin composition containing a thermoplastic resin such as a polyvinyl acetal resin into a film by a known method.
  • the resin composition contains at least a thermoplastic resin such as a polyvinyl acetal-based resin produced as described above, and may be prepared by adding a plasticizer, an additive, and the like, if necessary.
  • the resin composition may be used by diluting it with a solvent as appropriate.
  • the adhesive film is formed by applying a resin composition to a support such as a release sheet, or by pouring it into a mold, heating and drying it as necessary, and forming it into a film.
  • a resin composition such as a release sheet
  • it may be formed into a film by extrusion molding, press molding, or the like.
  • the molding may be performed as follows.
  • composition containing a raw material polyvinyl acetal-based resin, a modifier, and other additives such as a plasticizer that are blended as necessary is coated on a support such as a release sheet, or a mold and then heated to react the modifying agent with the raw material polyvinyl acetal-based resin to form a film.
  • the adhesive film is a multilayer film
  • each layer may be suitably laminated, and the multi-layer structure may be formed by co-extrusion or the like.
  • the pressure-sensitive adhesive film of the present invention is not particularly limited, and can be used for various applications, but is preferably used for various display applications, laminated glass applications, and the like.
  • the display is not particularly limited, it is preferably for vehicle use.
  • Laminated glass is also used in vehicles such as automobiles, trains, ships, airplanes, and other vehicles, buildings, condominiums, detached houses, halls, and gymnasiums, as well as machine tools for cutting and polishing, shovels, and cranes. It is used for window glass of construction machinery such as , etc., and is preferably used for vehicles such as automobiles.
  • the pressure-sensitive adhesive film of the present invention has high collision safety, and even when a collision accident or the like occurs, the laminate described later is less likely to be damaged, so it is suitable for use in in-vehicle displays and vehicle window glasses.
  • the pressure-sensitive adhesive film of the present invention is not particularly limited, it is preferably used together with a substrate such as an organic material substrate or an inorganic material substrate, and used as part of a laminate.
  • the laminate of the present invention preferably includes at least one of the adhesive film, an inorganic material substrate, and an organic material substrate.
  • the adhesive film is preferably arranged so as to adhere to at least one of the inorganic material substrate and the organic material substrate, and more preferably arranged in a position to adhere to the organic material substrate. Since the adhesive film has high adhesive strength to various resin materials, it can be attached to the base material with high adhesive strength by arranging it at a position where it adheres to the organic material base material.
  • organic material substrates include organic resin plates and resin films.
  • the organic resin plate is also called an organic glass plate.
  • organic resin plates include, but are not limited to, polycarbonate plates, (meth)acrylic plates such as polymethylmethacrylate plates, acrylonitrile-styrene copolymer plates, acrylonitrile-butadiene-styrene copolymer plates, polyester plates such as polyethylene terephthalate plates, Various organic glass plates such as fluorine resin plate, polyvinyl chloride plate, chlorinated polyvinyl chloride plate, polypropylene plate, polystyrene plate, polysulfone plate, epoxy resin plate, phenol resin plate, unsaturated polyester resin plate, polyimide resin plate, etc. mentioned.
  • the organic resin plate may be appropriately subjected to surface treatment or the like.
  • a polycarbonate plate is preferable from the viewpoint of excellent transparency and impact resistance
  • a (meth)acrylic plate is preferable from the viewpoint of high transparency, weather resistance, and mechanical strength. is more preferred.
  • the thickness of the organic resin plate is not particularly limited, it is preferably 0.1 mm or more, more preferably 0.4 mm or more, and preferably 5.0 mm or less, further preferably 3.0 mm or less.
  • the resin film is not particularly limited, but includes polyester resin films such as (meth)acrylic resin films, polycarbonate films, polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films, polyolefin resin films such as polyethylene films and polypropylene films, A cyclic polyolefin (COP) film, a triacetyl cellulose (TAC) film, a polyether sulfone (PES) resin film, a polyimide resin film, and the like are included.
  • a surface layer such as a hard coat layer made of (meth)acrylic resin may be provided on the surface of the resin film.
  • the thickness of the resin film is not particularly limited, it is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less. It should be noted that while the organic resin plate is relatively thick, has low flexibility, and cannot be generally bent, it is generally referred to as a resin film, which is relatively thin and generally bendable. are not clearly distinguished.
  • An inorganic glass plate can be mentioned as an inorganic material base material.
  • the inorganic glass plate is not particularly limited, but examples thereof include float plate glass, tempered glass, colored glass, polished plate glass, figured glass, wired plate glass, lined plate glass, ultraviolet absorbing plate glass, infrared reflecting plate glass, and infrared absorbing plate glass. , various glass plates such as green glass.
  • the inorganic glass may be subjected to surface treatment or the like.
  • the thickness of the inorganic glass is not particularly limited, it is preferably 0.1 mm or more, more preferably 1.0 mm or more, and preferably 5.0 mm or less, further preferably 3.0 mm or less.
  • the organic material substrate or the inorganic material substrate may be appropriately attached with an electrode, a sensor, or the like.
  • the electrode is composed of a conductive layer laminated on each base material.
  • a touch sensor is mentioned as a sensor.
  • a touch sensor is a sensor that detects a touch input when a finger, touch pen, or other object approaches or touches a base material, and is composed of a conductive layer laminated on the base material.
  • a touch sensor is a finger, touch pen, or other object that approaches or touches a substrate, causing electrical changes such as capacitance, current, and voltage to occur in the conductive layer. Detect touch input.
  • the conductive layer is not particularly limited, and conventionally known transparent electrode materials can be used without particular limitation. Examples include indium tin oxide (ITO) conductive films, tin oxide conductive films, and zinc oxide conductive films. , polymer conductive films, and the like.
  • the inorganic material substrate is preferably selected from the group consisting of an inorganic glass plate and an inorganic glass plate to which at least one of electrodes or sensors is attached.
  • the organic material substrate is selected from the group consisting of polycarbonate plate, (meth)acrylic plate, PET film, COP film, polycarbonate film, and at least one of electrodes or sensors attached to these films. At least one is preferred.
  • the organic material substrate (especially, film) on which a conductive layer such as an electrode and a sensor is laminated may have the above-described hard coat layer formed on the surface opposite to the surface on which the conductive layer is provided.
  • the surface opposite to the surface on which the conductive layer is provided is usually the surface to be adhered to the adhesive film. It is possible to have
  • the laminate is not particularly limited, but includes a pair of substrates selected from inorganic material substrates and organic material substrates, and an adhesive film disposed between the pair of substrates, and has three or more layers. It preferably has a multilayer structure. In such a multilayer structure, the adhesive film may be adhered to both of the pair of substrates, thereby joining the pair of substrates via the adhesive film. In this case, the adhesive film is preferably the adhesive film of the present invention described above.
  • the laminate may have a structure in which another intermediate member is arranged between the pair of base materials.
  • an adhesive film is provided between each base material and the intermediate member.
  • the adhesive film is preferably adhered to each base material and the intermediate member, so that the base material and the intermediate member are bonded via the adhesive film.
  • the adhesive film between the substrate and the intermediate member may be a resin film, and at least one of them may be the pressure-sensitive adhesive film of the present invention.
  • An adhesive film is preferred.
  • the intermediate member preferably has at least one of the inorganic material substrate and the organic material substrate described above, and at least one of the inorganic material substrate and the organic material substrate is arranged at a position where the pressure-sensitive adhesive film of the present invention adheres. good.
  • the laminate described above may constitute a display, laminated glass, etc., but is not limited to these.
  • the intermediate member may be a touch panel, a light control element, or the like, but is not limited to these.
  • the inorganic material base material and the organic material base material may constitute a part of a touch panel, a light control element, a display element constituting a display, and the like.
  • the laminate of the present invention can be produced, for example, by preparing an adhesive film and crimping each member through the prepared adhesive film. For example, it can be produced by laminating a base material, an adhesive film, and a base material in this order and pressing them together. Moreover, when an intermediate member is provided, it can be produced by stacking the base material, the adhesive film, the intermediate member, the adhesive film, and the base material in this order and pressing them together.
  • FIG. 1 shows a laminate according to a first embodiment.
  • 30 A of laminated bodies are applied to a display with a touch panel.
  • the display with a touch panel is preferably an in-vehicle display.
  • a laminate 30A according to the present embodiment includes a display element 31, a surface protection panel 32, and a touch panel 33 arranged between the display element 31 and the surface protection panel 32. , and between the surface protection panel 32 and the touch panel 33, adhesive films 34A and 34B are arranged, respectively.
  • the surface protection panel 32 is preferably an organic resin plate or an inorganic glass plate, and preferably an inorganic glass plate.
  • the display element 31 may be an organic EL display element or a liquid crystal display element.
  • a polarizing plate is preferably provided on the outermost surface of the display element 31 .
  • the outermost surface on the front side is the outermost surface on the surface protection panel side, and the opposite side is also called the back side.
  • a polarizing plate generally has a structure in which protective films are provided on both sides of a polarizer such as a polyvinyl alcohol resin film.
  • the protective film is composed of the resin film described above, preferably a PET film, a COP film, or a TAC film.
  • an organic material substrate is generally arranged on the outermost surface on the surface side of the display element 31 .
  • a protective film is provided on the outermost surface of the surface side.
  • the outermost surface of the side is composed of the organic material base material.
  • the touch panel 33 may be composed of any one of inorganic glass, organic resin plate, or resin film with a touch sensor attached thereto, preferably inorganic glass or resin film with a touch sensor attached.
  • two or more of the inorganic glass, the organic resin plate, or the resin film may be laminated to form a multilayer structure.
  • the touch sensor may be attached to any one of the inorganic glass, the organic resin plate, and the resin film in the touch panel 33 .
  • the touch panel 33 may have a protective film made of a resin film on either the outermost surface on the front side or the outermost surface on the back side. Therefore, in the touch panel 33, the adhesive surface with the adhesive films 34A and 34B is any one of inorganic glass, organic glass, and resin film.
  • the adhesive films 34A and 34B are adhered to the display element 31, the touch panel 33, the touch panel 33 and the surface protection panel 32 to join them together.
  • Either one of the adhesive films 34A and 34B may be the adhesive film of the present invention, but both are preferably the adhesive film of the present invention.
  • the pressure-sensitive adhesive film of the present invention has high adhesive strength not only to inorganic material substrates but also to various resin materials (that is, organic material substrates). Therefore, in the display element 33, the surface protection panel 32, and the touch panel 33, the adhesive surfaces of the adhesive films 34A and 34B may be composed of an organic material base material. , the display element 31 and the touch panel 33, and the surface protection panel 32 and the touch panel 33 can be joined.
  • the pressure-sensitive adhesive film of the present invention has high collision safety, even when the display with a touch panel is an in-vehicle display, it is possible to prevent serious damage due to breakage of the display with a touch panel. Furthermore, since the bleeding property is good, it is possible to prevent the touch panel 33, the display element 31, and the like from being contaminated by bleeding out.
  • FIG. 2 shows a laminate according to a second embodiment.
  • the laminate according to the second embodiment is also applied to a display, but the touch panel 33 is omitted in the laminate 30B. , with an adhesive film 34 disposed therebetween.
  • the adhesive film 34 is made of the adhesive film of the present invention.
  • the adhesive film 34 (adhesive film) is adhered to the display element 31 and the surface protection panel 32 to join them. Therefore, as in the first embodiment, the display element 31 and the surface protection panel 32 They are joined with high adhesive strength.
  • the adhesive film has high collision safety and high bleeding property, even if the laminate 30B is applied to an in-vehicle display, the display will not be damaged and serious damage will not occur. contamination can also be prevented.
  • the surface protection panel 32 may be an OGS (one glass solution) panel, and the surface protection panel 32 may be provided with a sensor such as a touch sensor. Therefore, the surface protection panel 32 may be made of inorganic glass or the like with a sensor attached.
  • OGS one glass solution
  • FIG. 3 shows a laminate according to a third embodiment.
  • a laminated body 30C according to the third embodiment is applied to a laminated glass with a light control function.
  • a laminate 30C according to the present embodiment includes a pair of laminated glass members (base materials) 41 and 42 and a light control element 43 disposed between the pair of laminated glass members 41 and 42.
  • Adhesive films 34A and 34B are arranged between 41 and the light control element 43 and between the other laminated glass member 42 and the light control element 43, respectively.
  • the laminated glass members 41 and 42 may be inorganic glass plates or organic resin plates, and the details thereof are as described above.
  • the light control element 43 is preferably a light control film including two resin films and a light control layer arranged between the two resin films. Therefore, the adhesive surfaces of the light control element 43 and the adhesive films 34A and 34B are made of a resin material.
  • resin films included in the light modulating element 43 include polyester resin films such as PET films and PEN films, (meth)acrylic resin films, TAC films, PES resin films, and polyimide resin films. Among these, polyester resin films are preferred, and PET films are more preferred, from the viewpoint of handleability and the like.
  • a conductive layer forming an electrode is provided on each of the two resin films on the light control layer side.
  • the light control layer changes the visible light transmittance by switching between the application and non-application of a voltage between the conductive layers of the two resin films.
  • the light control layer is preferably composed of a liquid crystal layer such as polymer dispersed liquid crystal (PDLC).
  • the light control film may be an SPD (Suspended Particle Device) film, an electrochromic film, an electrophoretic film device, or the like.
  • the light-modulating layer may be an SPD layer comprising a resin matrix and a light-modulating suspension dispersed in the resin matrix, or it may be an electrochromic material layer.
  • it may be an electrophoretic layer including electrophoretic particles and a dispersing agent for dispersing the electrophoretic particles.
  • the adhesive films 34A and 34B are respectively adhered to the laminated glass member 41 and the light control element 43, and the laminated glass member 42 and the light control element 43 to join them.
  • the adhesive films 34A and 34B are resin films, and one of them is preferably the adhesive film of the present invention, but both are preferably the adhesive film of the present invention.
  • the pressure-sensitive adhesive film of the present invention has high adhesive strength not only to inorganic material substrates but also to various resin materials. be able to.
  • the adhesive film of the present invention has high collision safety, even when the laminated glass according to the third embodiment is used as a vehicle window glass, serious damage due to breakage can be prevented. can. Furthermore, since the bleeding property is good, it is possible to prevent the polarizing element 43 and the like from being contaminated by bleeding out.
  • FIG. 4 shows a laminate according to a fourth embodiment.
  • a laminate 30D according to the present embodiment is applied to laminated glass.
  • a laminate 30D according to the present embodiment includes a pair of laminated glass members 41 and 42 and an adhesive film 34 disposed between the pair of laminated glass members 41 and 42, and the adhesive film 34 is the above-described book. It is preferable to consist of the adhesive film of the invention.
  • a pair of laminated glass members 41 and 42 are as described in the third embodiment. Since the adhesive film 34 (adhesive film) is adhered to both of the laminated glass members 41 and 42 to join them together, the laminated glass members 41 and 42 can be joined with high adhesive strength. In addition, since the adhesive film has high collision safety and high bleedability, even if laminated glass is used for vehicle window glass, serious damage due to breakage of vehicle window glass is unlikely to occur, and peripheral members contamination can also be prevented.
  • the adhesive film is a single-layer adhesive film
  • a multi-layer film may be used as the adhesive film.
  • the structure of the multilayer film is as described above.
  • the present invention will be described in more detail by way of examples, the present invention is not limited by these examples.
  • the measuring method of each physical-property value in this invention, and the evaluation method are as follows.
  • Weight average molecular weight (Mw) was calculated using a molecular weight calibration curve prepared from monodisperse polystyrene standard samples.
  • a Shodex GPC KF-806L manufactured by Showa Denko was used as a column, and tetrahydrofuran was used as an eluent.
  • ⁇ Shear storage modulus and maximum peak temperature of tan ⁇ > The pressure-sensitive adhesive films obtained in Examples and Comparative Examples were cut into a length of 10 mm and a width of 5 mm, and a dynamic viscoelasticity measuring device (manufactured by IT Instrument Control Co., Ltd., trade name "DVA-200") was used to measure the following: The viscoelasticity was measured under the measurement conditions of , and the shear storage modulus (G') at 20°C was detected. Also, the peak temperature of the loss tangent tan ⁇ obtained from the results of the viscoelasticity measurement was read.
  • a dynamic viscoelasticity measuring device manufactured by IT Instrument Control Co., Ltd., trade name "DVA-200
  • the peak temperature at which tan ⁇ has the maximum value was defined as the maximum peak temperature of tan ⁇ .
  • Measurement condition Deformation mode: shear mode, measurement temperature: -50°C to 200°C, heating rate: 5°C/min, measurement frequency: 1Hz, strain: 1%
  • ⁇ Adhesive strength to polycarbonate substrate (PC)> According to the method described in the specification, using the pressure-sensitive adhesive film of each example and comparative example, the adhesive strength to a polycarbonate substrate was measured and evaluated based on the following criteria. (Evaluation criteria) AA: The maximum load is 200N or more. A: The maximum load is 100N or more and less than 200N. B: The maximum load is less than 100N.
  • the obtained laminate was fixed with a support frame, an iron ball with a diameter of 82 mm and a weight of 2.26 kg was dropped from a height of 1.0 m, and the subsidence amount of the structure was measured using a high-speed camera. Collision safety was evaluated based on the measured subsidence amount.
  • AA The settlement amount is 50 mm or less.
  • A The settlement amount is more than 50 mm and 100 mm or less.
  • B The amount of subsidence exceeds 100 mm.
  • TAC polarizing plate An adhesive film having a length of 10 mm and a width of 10 mm, a polarizing plate film manufactured by TAC manufactured by Sumitomo Chemical Co., Ltd. having a length of 25 mm and a width of 100 mm, and a float glass having a length of 25 mm and a width of 100 mm were prepared.
  • the TAC polarizing plate film was obtained by laminating TAC films on both sides of a PVA film.
  • a polarizing plate film 50 made by TAC and a float glass 51 were arranged so that their longitudinal directions were parallel to each other, and were overlapped with an adhesive film 52 interposed therebetween.
  • a spacer having the same thickness as the adhesive film 52 was used so that the thickness of the adhesive film 52 was constant, and temporary pressure bonding was performed for 3 minutes at 90° C. and 0.1 MPa in a vacuum laminator.
  • main pressure bonding was performed for another hour under conditions of 90° C. and 0.5 MPa to obtain a laminate 53 .
  • a shear adhesion test was performed on the obtained laminate 53 . Specifically, in an environment with a temperature of 23° C., the polarizing plate film 50 is pulled against the float glass 51 at a speed of 200 mm/min in the shear direction S along the longitudinal direction, and the polarizing film 50 is peeled off.
  • the maximum load (N) was measured, and the maximum load (N) was used as the adhesive strength and evaluated according to the following evaluation criteria.
  • AA The maximum load is 220N or more.
  • A The maximum load is 150N or more and less than 220N.
  • B The maximum load is less than 150N.
  • ⁇ Adhesive strength to ITO-PET> instead of the TAC polarizing plate film, a polyethylene terephthalate film (ITO-PET, manufactured by Sekisui Nanocoat Technology Co., Ltd.) coated with ITO on one side and hard-coated on the other side was used. It was evaluated in the same manner as the adhesive strength to. The hard-coated surface opposite to the ITO-coated surface was used as the surface to which the adhesive film was attached.
  • ITO-PET polyethylene terephthalate film
  • Allyl ether monomer (1) shown in Table 1 was prepared. Allyl ether monomer (1) is a compound represented by formula (4-2), A 1 O contains a mixture of oxyethylene group (EO) and oxypropylene group (PO), and these have a random structure. The molar ratio, the average repeating number of EO and PO, and the terminal group (R 1 ) are as shown in Table 1.
  • the obtained polyvinyl acetal resin (PVB1) was press-molded at a temperature of 160° C. and a pressure of 20 MPa to obtain an adhesive film having a thickness of 380 ⁇ m.
  • the maximum peak temperature of tan ⁇ , shear storage modulus (G′), and adhesion to a polycarbonate substrate were measured for the obtained adhesive film, and the impact safety, bleeding property, and TAC polarizing plate Adhesion was evaluated.
  • Example 2 The same procedure as in Example 1 was carried out, except that the thickness of the adhesive film was adjusted as shown in Table 4.
  • Example 4 The allyl ether monomer used was changed to allyl ether monomer (2), and 723 parts by mass of vinyl acetate, 257 parts by mass of allyl ether monomer (2), and 20 parts by mass of methanol, 2,2-azobisisobutyro Nitrile was changed to 1 part by mass. Furthermore, after adding allyl ether monomer (2) and methanol, the temperature in the system was raised to 62 ° C., 2,2-azobisisobutyronitrile was added at 62 ° C., and polymerization was performed. The procedure was carried out in the same manner as in Example 1 to obtain PVB2, and an adhesive film was produced in the same manner as in Example 1 using PVB2.
  • the physical properties of the resulting adhesive film were measured or evaluated in the same manner as in Example 1.
  • the allyl ether monomer (2) is a compound represented by formula (4-2), A 1 O is an oxypropylene group (PO), and the average number of repetitions and the terminal group (R 1 ) are 1.
  • Example 5 15 parts by mass of a plasticizer (triethylene glycol-di-2-ethylhexanoate: 3GO) is mixed with 100 parts by mass of PVB2 to obtain a resin composition, and the resulting resin composition is was press-molded in the same manner as in Example 1 to prepare an adhesive film. The physical properties of the resulting adhesive film were measured or evaluated in the same manner as in Example 1.
  • a plasticizer triethylene glycol-di-2-ethylhexanoate: 3GO
  • Example 6 552 parts by mass of vinyl acetate, 162 parts by mass of allyl ether monomer (1), 286 parts by mass of methanol, and 1.4 parts by mass of 2,2-azobisisobutyronitrile were carried out in the same manner as in Example 1. Then, PVB3 was obtained, and an adhesive film was produced in the same manner as in Example 1 using PVB3. The physical properties of the resulting adhesive film were measured or evaluated in the same manner as in Example 1.
  • Example 7 PVB3 obtained in the same manner as in Example 6 was prepared, and 10 parts by mass of PVB3 was mixed with 10 parts by mass of a plasticizer (3GO) to obtain a resin composition. was press-molded in the same manner as in Example 1 to obtain an adhesive film. The physical properties of the resulting adhesive film were measured or evaluated in the same manner as in Example 1.
  • Example 8 572 parts by mass of vinyl acetate, 143 parts by mass of allyl ether monomer (1), 286 parts by mass of methanol, and 0.7 parts by mass of 2,2-azobisisobutyronitrile were carried out in the same manner as in Example 1. Then, PVB4 was obtained, and an adhesive film was produced in the same manner as in Example 1 using PVB4. The obtained adhesive film was evaluated in the same manner as in Example 1.
  • Example 9 The allyl ether monomer used was changed to allyl ether monomer (3), and 751 parts by mass of vinyl acetate, 230 parts by mass of allyl ether monomer (3), and 20 parts by mass of methanol, 2,2-azobisisobutyro PVB5 was obtained in the same manner as in Example 1 except that the nitrile was changed to 1 part by mass, and a pressure-sensitive adhesive film was produced in the same manner as in Example 1 using PVB5. The obtained adhesive film was evaluated in the same manner as in Example 1.
  • allyl ether monomer (3) is a compound represented by the formula (4-2), in which A 1 O is a mixture of an oxyethylene group (PO) and an oxypropylene group (PO), the average number of repetitions, and Terminal groups (R 1 ) are as shown in Table 1.
  • Example 10 The allyl ether monomer used was changed to allyl ether monomer (4), and 834 parts by mass of vinyl acetate, 147 parts by mass of allyl ether monomer (4), and 20 parts by mass of methanol, 2,2-azobisisobutyro Nitrile was changed to 0.5 parts by mass. Furthermore, after adding allyl ether monomer (4) and methanol, the temperature in the system was raised to 52 ° C., 2,2-azobisisobutyronitrile was added at 52 ° C., and polymerization was performed. The procedure was carried out in the same manner as in Example 1 to obtain PVB6, and an adhesive film was produced in the same manner as in Example 1 using PVB6. The obtained adhesive film was evaluated in the same manner as in Example 1.
  • the allyl ether monomer (4) is a compound represented by the formula (4-2), A 1 O is an oxyethylene group (EO), and the average repeating number and terminal group (R 1 ) are 1.
  • the polyvinyl acetal-based resin to be used is PVB7, which is unmodified polyvinyl butyral, and 100 parts by mass of PVB7 is mixed with 40 parts by mass of a plasticizer (3GO) to obtain a resin composition, Using the obtained resin composition, press molding was performed in the same manner as in Example 1 to obtain an adhesive film. The obtained adhesive film was evaluated in the same manner as in Example 1.
  • the polyvinyl acetal-based resin to be used is PVB8, which is unmodified polyvinyl butyral, and 100 parts by mass of PVB8 is mixed with 25 parts by mass of a plasticizer (3GO) to obtain a resin composition, Using the obtained resin composition, press molding was performed in the same manner as in Example 1 to obtain an adhesive film. The obtained adhesive film was evaluated in the same manner as in Example 1.
  • PVB7 which is unmodified polyvinyl butyral, was used as the polyvinyl acetal resin.
  • a plasticizer 3GO
  • 10 parts by weight of a reactive diluent trimethylolpropane triacrylate: TMPA
  • BP benzophenone
  • the adhesive film was irradiated with 4000 mJ/cm 2 of light having a wavelength of 365 nm using an ultra-high pressure mercury lamp, and after the light irradiation, the shear storage modulus (G′) and the maximum peak temperature of tan ⁇ were measured. Furthermore, in evaluating the adhesive strength to polycarbonate substrates, collision safety, and adhesive strength to TAC polarizing plates, the adhesive film prepared in Comparative Example 3 was used to produce a laminate as described in each evaluation method above. Then, the laminate was irradiated with 4000 mJ/cm 2 of light having a wavelength of 365 nm using an ultra-high pressure mercury lamp. Adhesion to polycarbonate substrates, crashworthiness, and adhesion to TAC polarizers were then evaluated.
  • the adhesive film was irradiated with 4000 mJ/cm 2 of light having a wavelength of 365 nm using an ultra-high pressure mercury lamp, and after the light irradiation, the shear storage modulus (G′) and the maximum peak temperature of tan ⁇ were measured. Furthermore, in evaluating the adhesive strength to polycarbonate substrates, collision safety, and adhesive strength to TAC polarizing plates, the adhesive film prepared in Comparative Example 3 was used to produce a laminate as described in each evaluation method above. Then, the laminate was irradiated with 4000 mJ/cm 2 of light having a wavelength of 365 nm using an ultra-high pressure mercury lamp. Adhesion to polycarbonate substrates, crashworthiness, and adhesion to TAC polarizers were then evaluated.
  • PVB1 to PVB8 used in Examples and Comparative Examples are shown in Table 2 below.
  • the (meth)acrylic polymers used in Comparative Examples are shown in Table 3 below.
  • Table 4 shows the working conditions, physical properties and evaluation results of each example and comparative example. *1 Shows parts by mass for 100 parts by mass of thermoplastic resin. *2 Shows parts by mass for 100 parts by mass of reactive diluent.
  • the pressure-sensitive adhesive film of each of the above examples had a high shear storage elastic modulus at 20° C. and a high adhesion to the polycarbonate base material by using a predetermined thermoplastic resin. Moreover, the adhesive strength to various resin materials was high, and the adhesive strength to the TAC polarizing plate was also excellent. In addition, since no plasticizer was blended, or even if blended, the amount was small, the bleeding property was also good. On the other hand, in Comparative Examples 1 to 4, the adhesive strength to the polycarbonate substrate was low, so the adhesive strength to various resin materials was insufficient, and the adhesive strength to the TAC polarizing plate was also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

粘着フィルムは、熱可塑性樹脂を含む粘着フィルムであって、可塑剤を含まない、又は前記熱可塑性樹脂100質量部に対して可塑剤を20質量部未満で含み、20℃におけるせん断貯蔵弾性率が3×105Pa以上であり、下記方法で測定したポリカ―ボネート基材への接着力が100N以上である。

Description

粘着フィルム、及び積層体
 本発明は、粘着フィルム、及び粘着フィルムを備える積層体に関する。
 液晶ディスプレイ、有機ELディスプレイ、タッチパネル付きディスプレイなどの各種ディスプレイにおいて、表面保護パネル、偏光板、タッチセンサ付きフィルム、タッチセンサ付きガラスなどを重ね合わせて固定するために、粘着フィルムが広く使用されている。粘着フィルムとしては、透明性、粘着性等の観点から、従来、(メタ)アクリル系樹脂が広く使用されている。また、(メタ)アクリル系樹脂以外にも、ポリビニルアセタール系樹脂が使用されることも検討されている。
 ポリビニルアセタール系樹脂を使用する場合、例えば、特許文献1、2に開示されるように、一定量以上の可塑剤を配合した可塑化ポリビニルアセタール系樹脂が使用されることが知られている。また、可塑化ポリビニルアセタール系樹脂に、光照射により貯蔵弾性率を高くできるようにするために、光照射により硬化する反応性希釈剤を配合することも検討されている。
 また、近年、窓ガラスを構成する合わせガラスに、光透過性などを調整できるようにするために、調光フィルムが導入されることが試みられている。調光フィルムが導入される場合、合わせガラスは、例えば、2枚のガラス板の間に調光フィルムが配置され、調光フィルムと各ガラス板を樹脂フィルムを介して接合させる構成が知られている。樹脂フィルムには、可塑化ポリビニルアセタール系樹脂を含有する粘着フィルムが適用されることが検討されている。
特許第6046811号公報 特許第6116772号公報
 ところで、各種ディスプレイ、特にタッチパネル付きディスプレイは、カーナビゲーションシステムなどの車載用に広く使用されている。また、調光フィルムが導入された合わせガラスも、自動車などの車両用窓ガラスに使用されることが検討されている。ディスプレイを車載用に使用し、または、調光フィルムが導入された合わせガラスを車両用窓ガラスに使用する場合、衝突事故などが生じて強い衝撃が加えられてもディスプレイや窓ガラスが破損しにくい、衝突安全性が必要とされる。
 また、粘着フィルムを、ディスプレイ用途や、調光フィルムが導入された合わせガラスに使用する場合、偏光板、タッチセンサー付きフィルム、調光フィルムなどを構成する各種の樹脂材料に対する接着性を高める必要がある。
 しかし、粘着フィルムとして広く使用されている従来の(メタ)アクリル系樹脂フィルムは、衝突事故などが生じた場合に、ディスプレイや窓ガラスが破損しやすく衝突安全性が低いという問題がある。
 一方で、可塑化ポリビニルアセタール系樹脂は、衝突安全性が良好であるものの、長期保管時に可塑剤、または、反応性希釈剤が配合される場合には、可塑剤及び反応性希釈剤がブリードアウトして、周辺の部材を汚染するなど、ブリード性に問題があることがある。また、可塑化ポリビニルアセタール系樹脂は、各種の樹脂材料、特に極性の低い樹脂材料に対する接着性を十分に高めることが難しい。
 そこで、本発明は、ポリビニルアセタール系樹脂などの熱可塑性樹脂を含む粘着フィルムにおいて、各種の樹脂フィルムに対する接着性を良好にしつつ、衝突安全性及びブリード性を良好にすることを課題とする。
 本発明者らは鋭意検討の結果、熱可塑性樹脂を含む粘着フィルムにおいて、可塑剤の含有量を低くしつつ、貯蔵弾性率、及び所定の測定条件で測定したポリカーボネート基材に対する接着力を所定値以上とすることで、上記課題を解決できることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、以下の[1]~[32]を提供する。
[1]熱可塑性樹脂を含む粘着フィルムであって、
 可塑剤を含まない、又は前記熱可塑性樹脂100質量部に対して可塑剤を20質量部未満で含み、
 20℃におけるせん断貯蔵弾性率が3×10Pa以上であり、下記方法で測定したポリカ―ボネート基材への接着力が100N以上である、粘着フィルム。
<接着力測定方法>
 縦15mm及び横15mmのサイズの粘着フィルムと、JIS K6735に準拠した厚み2mm、縦25mm及び横100mmのポリカーボネート板ガラスを2枚用意する。前記粘着フィルムを介して、2枚のポリカーボネート板ガラスを、互いの長手方向が垂直となるように配置して十字に重ね合わせる。その後、前記粘着フィルムの厚みが一定になるように、前記粘着フィルムと同じ厚みのスペーサーを用いて、真空ラミネーターにおいて、前記粘着フィルムを介して、重ね合わせた2枚のポリカーボネート板ガラスを、90℃、0.1MPaの条件で3分間仮圧着をする。次いで、仮圧着した2枚のポリカーボネート板ガラスを、90℃、0.5MPaの条件でさらに1時間本圧着を行い、合わせガラスサンプルを得る。得られた合わせガラスサンプルについて、温度23℃の環境下で、速度10mm/分で、一方のポリカーボネート板ガラスから他方のポリカーボネート板ガラスを、接着面と垂直方向に剥離させたときの最大荷重(N)を測定し、その最大荷重(N)を接着力とする。
[2]-50℃から150℃におけるtanδの最大ピーク温度が10℃以上52℃以下である、上記[1]に記載の粘着フィルム。
[3]厚みが100μm以上2000μm以下である、上記[1]又は[2]に記載の粘着フィルム。
[4]厚みが100μm以上1000μm以下である、上記[1]~[3]のいずれか1項に記載の粘着フィルム。
[5]前記熱可塑性樹脂がポリビニルアセタール系樹脂である、上記[1]~[4]のいずれか1項に記載の粘着フィルム。
[6]前記ポリビニルアセタール系樹脂が、以下の式(1)で示すポリアルキレンオキサイド構造を有する、上記[5]に記載の粘着フィルム。
Figure JPOXMLDOC01-appb-C000002

(式(1)において、AOは炭素数2~6のオキシアルキレン基であり、mは平均繰り返し数であり、4~200である。Rは炭素数が1~8のアルキル基又は水素原子である。なお、オキシアルキレン基は1種単独でもよいし、2種類以上が混在していてもよい。*は他の基との結合位置である。)
[7]前記ポリビニルアセタール系樹脂が、ポリアルキレンオキサイド構造を有する、上記[5]に記載の粘着フィルム。
[8]前記ポリアルキレンオキサイド構造が、オキシエチレン基及びオキシプロピレン基の少なくともいずれかを含む、上記[6]又は[7]に記載の粘着フィルム。
[9]前記ポリアルキレンオキサイド構造が、単結合、またはエーテル結合、エステル結合、アミド結合、及びこれら結合のうち少なくともいずれかを有してもよい炭化水素基のいずれかを介して主鎖に連結される、上記[6]~[8]のいずれか1項に記載の粘着フィルム。
[10]前記ポリアルキレンオキサイド構造による変性量が、0.1モル%以上10モル%以下である、上記[6]~[9]のいずれか1項に記載の粘着フィルム。
[11]前記ポリビニルアセタール系樹脂のアセタール化度が40モル%以上90モル%以下である、上記[5]~[10]のいずれか1項に記載の粘着フィルム。
[12]前記ポリビニルアセタール系樹脂の水酸基量が、5モル%以上35モル%以下である、上記[5]~[11]のいずれか1項に記載の粘着フィルム。
[13]前記ポリビニルアセタール系樹脂のアセチル化度が、0.01モル%以上50モル%以下である、上記[5]~[12]のいずれか1項に記載の粘着フィルム。
[14]前記ポリビニルアセタール系樹脂が、ポリビニルブチラール系樹脂である、上記[5]~[13]のいずれか1項に記載の粘着フィルム。
[15]前記ポリビニルアセタール系樹脂の重量平均分子量(Mw)が、50,000以上800,000以下である、上記[5]~[14]のいずれか1項に記載の粘着フィルム。
[16]前記ポリビニルアセタール系樹脂の含有量は、粘着フィルムに含有される熱可塑性樹脂全量基準で、50質量%以上100質量%以下である、上記[5]~[15]のいずれか1項に記載の粘着フィルム。
[17]分子量1000未満の低分子量化合物を含有しないか、または、前記熱可塑性樹脂100質量部に対して、20質量部未満で含有する、上記[1]~[16]のいずれか1項に記載の粘着フィルム。
[18]前記可塑剤が、有機エステル可塑剤、有機リン系可塑剤、有機エーテル系可塑剤、及びアルコール系可塑剤からなる群から選択される少なくとも1種である、上記[1]~[17]のいずれか1項に記載の粘着フィルム。
[19]前記粘着フィルムが、可塑剤として、グリコールと一塩基性有機酸とのエステル、炭素数4~12の二塩基性有機酸と炭素数4~10のアルコールとのエステル化合物、ポリアルキレングリコール系可塑剤、及びポリオキシアルキレンエーテル系可塑剤からなる群から選択される少なくとも1種を含む、上記[1]~[18]のいずれか1項に記載の粘着フィルム。
[20]上記[1]~[19]のいずれか1項に記載の粘着フィルムと、無機材料基材、及び有機材料基材の少なくともいずれかを備える、積層体。
[21]前記粘着フィルムが、無機材料基材、及び有機材料基材の少なくともいずれかに接着するように配置される、上記[20]に記載の積層体。
[22]前記無機材料基材が、無機ガラス板、並びに、電極又はセンサーの少なくともいずれかが付けられた無機ガラス板からなる群から選択される、上記[20]又は[21]に記載の積層体。
[23]前記有機材料基材が、ポリカーボネート板、(メタ)アクリル板、並びにポリエチレンテレフタレートフィルム、環状ポリオレフィンフィルム、ポリカーボネートフィルム、及びこれらフィルムに電極又はセンサーの少なくともいずれかが付けられたフィルムからなる群から選択される、上記[20]~[22]のいずれか1項に記載の積層体。
[24]無機材料基材及び有機材料基材から選択される一対の基材と、前記一対の基材の間に配置される前記粘着フィルムとを備え、3層以上の多層構造である、上記[20]~[23]のいずれか1項に積層体。
[25]前記一対の基材の間に配置される中間部材と、各基材と前記中間部材の間に配置される接着用フィルムを備え、前記接着用フィルムの少なくともいずれかが、前記粘着フィルムである、上記[24]に記載の積層体。
[26]前記中間部材の前記粘着フィルムが接着する位置に無機材料基材、及び有機材料基材の少なくともいずれかが配置される、上記[25]に記載の積層体。
[27]前記中間部材が、タッチパネル及び調光素子のいずれかである、上記[25]又は[26]に記載の積層体。
[28]前記無機材料基材及び有機材料基材の少なくともいずれかが、タッチパネル、調光素子、及び表示素子の少なくとも一部を構成する、上記[20]~[27]のいずれか1項に記載の積層体。
[29]上記[20]~[28]のいずれか1項に記載の積層体を含むディスプレイ。
[30]上記[20]~[28]のいずれか1項に記載の積層体を含む合わせガラス。
[31]上記[1]~[19]のいずれか1項に記載の粘着フィルムのディスプレイにおける使用。
[32]上記[1]~[19]のいずれか1項に記載の粘着フィルムの合わせガラスにおける使用。
 本発明によれば、熱可塑性樹脂を含む粘着フィルムにおいて、各種の樹脂材料に対する接着性を良好にしつつ、衝突安全性及びブリード性を良好にできる。
第1の実施形態に係る積層体を示す断面図である。 第2の実施形態に係る積層体を示す断面図である。 第3の実施形態に係る積層体を示す断面図である。 第4の実施形態に係る積層体を示す断面図である。 十字剥離試験を説明するための斜視図である。 TAC偏光板に対する接着力の測定方法を説明するための平面図である。
<粘着フィルム>
 本発明の粘着フィルムは、熱可塑性樹脂を含み、かつ可塑剤を含まない、又は熱可塑性樹脂100質量部に対して可塑剤を20質量部未満で含み、20℃におけるせん断貯蔵弾性率が3×10Pa以上であり、所定の測定条件で測定したポリカ―ボネート基材への接着力が100N以上となるものである。
 本発明の粘着フィルムは、以上の構成を有することで、各種の樹脂フィルムに対する接着性を良好にしつつ、衝突安全性及びブリード性を良好にできる。
 以下、本発明の一実施形態に係る粘着フィルムについて詳細に説明する。
[せん断貯蔵弾性率]
 本発明の粘着フィルムは、20℃におけるせん断貯蔵弾性率が3×10Pa以上である。せん断貯蔵弾性率が3×10Pa未満となると、粘着フィルムにより接着させて得られた積層体などに高い衝撃を与えると、粘着フィルムが大きく変形して積層体の沈み込み量が多くなる。そのため、粘着フィルムを含む積層体に破損が生じやすくなり、衝突安全性が低下する。高い衝撃を与えても積層体の沈み込み量を少なくして衝突安全性を向上させる観点から、上記した20℃におけるせん断貯蔵弾性率は1×10Pa以上が好ましく、5×10Pa以上がより好ましく、1×10Pa以上がさらに好ましく、2×10Pa以上がよりさらに好ましい。
 粘着フィルムの20℃におけるせん断貯蔵弾性率は、衝突安全性の観点からは高いほうがよいが、他の物性などをバランスよく良好にする観点から、例えば5×10Pa以下、好ましくは1×10Pa以下、さらに好ましくは8×10Pa以下である。
 なお、せん断貯蔵弾性率は、周波数1Hz、動的粘弾性測定装置を用いてせん断モードで粘弾性測定を行い、20℃における貯蔵弾性率(G’)を検出することで測定することができる。
[接着力]
 本発明の粘着フィルムは、所定の測定条件で測定したポリカ―ボネート基材への接着力が100N以上となるものである。ポリカ―ボネート基材は極性が低く、ポリビニルアセタール系樹脂などの粘着フィルムを構成する樹脂に接着されにくい樹脂であるが、本発明では、上記した接着力が100N以上であることで、粘着フィルムは各種樹脂材料に対する接着力が高くなる。一方で、上記接着力が100N未満であると、粘着フィルムの各種樹脂に対する接着力が不十分になることがある。上記接着力は、各種の樹脂に対する接着力をより向上させる観点から、200N以上であることが好ましい。
 また、上記接着力は、高ければ高い方がよいが、通常は1000N以下であればよく、600N以下であってもよい。
 上記したポリカ―ボネート基材への接着力の測定方法は、下記の第1、第2及び第3の工程をこの順に経て得られる合わせガラスサンプルに対して行う。
 第1の工程:縦15mm及び横15mmのサイズの粘着フィルムと、JIS K6735に準拠した厚み2mm、縦25mm及び横100mmのポリカーボネート板ガラスを2枚用意する。そして、粘着フィルムを介して、2枚のポリカーボネート板ガラスを、互いの長手方向が垂直となるように配置して十字に重ね合わせる。
 第2の工程:粘着フィルムの厚みが一定になるように、粘着フィルムと同じ厚みのスペーサーを用いて、真空ラミネーターにおいて、粘着フィルムを介して、重ね合わせた2枚のポリカーボネート板ガラスを、90℃、0.1MPaの条件で3分間仮圧着をする。
 第3の工程:仮圧着した2枚のポリカーボネート板ガラスを、90℃、0.5MPaの条件でさらに1時間本圧着を行い、合わせガラスサンプルを得る。 
 次いで、得られた合わせガラスサンプルに対して十字剥離試験を行う。具体的には、23℃環境下にて速度10mm/分で、一方のポリカーボネート板ガラスから他方のポリカーボネート板ガラスを、接着面と垂直方向に剥離させたときの最大荷重(N)を測定し、その最大荷重(N)を接着力とする。
 より具体的には、図5に示す冶具にセットして接着力を測定すればよい。冶具は、箱体11と、押圧部材20からなる。箱体11及び押圧部材20は、SUSからなる。箱体11は、上面が開口した直方体状であり、互いに対向する側面13、13の上端面に矩形の切り欠き14、14が設けられる。押圧部材20は、矩形のベース部16と、ベース16の長手方向における両端部に直角に接続される押圧片17、17が設けられたコの字状の部材である。各押圧片17は、幅Wが20mm、厚みTが5mmであり、押圧片17、17間の距離Lは35mmである。
 合わせガラスサンプル10は、他方のポリカーボネート板22が下側に配置されるように、一方のポリカーボネート板ガラス21を切り欠き14、14間に掛け渡して配置する。ポリカーボネート板ガラス31を、速度10mm/分で接着面と垂直方向である鉛直下向きXに荷重を作用させて剥離させたときの最大荷重(N)を測定し、その最大荷重(N)から接着力(N)を求める。なお、接着力(N)は、225mm2面積あたり接着力である。
[tanδの最大ピーク温度]
 本発明において、粘着フィルムのtanδの最大ピーク温度は、10℃以上52℃以下であることが好ましい。tanδの最大ピーク温度を52℃以下とすると、樹脂フィルムが十分に柔軟となり、各種樹脂材料や、無機ガラスに対する接着性を良好にできる。柔軟性を高めて接着性を向上させる観点から、樹脂組成物のtanδの最大ピーク温度は、48℃以下が好ましく、44℃以下がさらに好ましく、40℃以下がよりさらに好ましい。
 また、tanδの最大ピーク温度が10℃以上であると、粘着フィルムの合着を防止しやすく、取扱い性が低下することを防止できる。樹脂組成物のtanδの最大ピーク温度は、好ましくは12℃以上、より好ましくは20℃以上である。
 なお、樹脂フィルムのtanδの最大ピーク温度は、動的粘弾性測定装置を用いて粘弾性測定を行い、粘弾性測定の結果から得られる損失正接tanδのピーク温度のうち、tanδが最大値となるピーク温度を読み取ることで検出できる。
 なお、上記したせん断貯蔵弾性率、接着力、及びtanδの最大ピーク温度は、樹脂の種類、樹脂の分子量、可塑剤の配合の有無及びその含有量などを適宜選択することで調整できる。
[熱可塑性樹脂]
 粘着フィルムに使用される熱可塑性樹脂としては、例えば(メタ)アクリル系樹脂、ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂(PVA)、ポリウレタン系樹脂(PU)、エチレン-酢酸ビニル共重合体樹脂(EVA)、エチレン-酢酸ビニル共重合体けん化物(EVOH)、エチレン-メタクリル酸共重合体樹脂、アイオノマー樹脂、イソブチレン樹脂、スチレン-イソプレン共重合体樹脂、スチレン-ブタジエン共重合体樹脂などが挙げられる。
 粘着フィルムにおいて、熱可塑性樹脂は1種単独で用いてもよく、2種以上を併用してもよい。
 熱可塑性樹脂は、上記の中では、ポリビニルアセタール系樹脂が好ましい。ポリビニルアセタール系樹脂を使用することで、各種の樹脂に対する接着力を向上させつつ、衝突安全性を良好にしやすくなる。以下、熱可塑性樹脂に使用されるポリビニルアセタール系樹脂について詳細に説明する。
[ポリビニルアセタール系樹脂]
 上記の通り熱可塑性樹脂は、ポリビニルアセタール系樹脂であることが好ましい。ポリビニルアセタール系樹脂は、変性ポリビニルアセタール樹脂であってもよいし、未変性ポリビニルアセタール樹脂であってもよい。変性ポリビニルアセタール樹脂は、後述する通り、アセタール基、水酸基、及びアセチル基以外の構造(変性基)を有すればよく、好ましくは変性基を側鎖に有する。
 ポリビニルアセタール系樹脂は、ポリビニルアルコールをアルデヒドでアセタール化し、さらに必要に応じて変性剤と反応させたり、再酢化処理したりすることで得られるものである。また、変性ポリビニルアセタール樹脂を得るには、原料となるポリビニルアルコールとして変性ポリビニルアルコールを使用してもよい。
 上記のアセタール基、水酸基、及びアセチル基以外の構造は、ポリアルキレンオキサイド構造であることが好ましい。ポリアルキレンオキサイド構造は、具体的には、以下の式(1)で示すとおりである。
Figure JPOXMLDOC01-appb-C000003

(式(1)において、AOは炭素数2~6のオキシアルキレン基であり、mは平均繰り返し数であり、4~200である。Rは炭素数が1~8のアルキル基又は水素原子である。なお、オキシアルキレン基は1種単独でもよいし、2種類以上が混在していてもよい。*は他の基との結合位置である。)
 AOにおけるオキシアルキレン基は、炭素数2~6のオキシアルキレン基であり、好ましくは炭素数2~4のオキシアルキレン基であり、より好ましくは炭素数2又は3のオキシアルキレン基である。オキシアルキレン基の炭素数が上記範囲内であると、上記したせん断貯蔵弾性率を高めて粘着フィルムの衝突安全性を良好にしつつ、ポリカーボネートなどの各種樹脂材料に対する接着力を向上させやすくなる。
 オキシアルキレン基におけるアルキレン基は、直鎖であってもよいし、分岐構造を有してもよい。オキシアルキレン基としては、例えばオキシエチレン基、オキシプロピレン基、又はオキシブチレン基が挙げられ、好ましくはオキシエチレン基、オキシプロピレン基である。オキシアルキレン基は1種単独で使用してよいが、2種以上を併用してもよい。2種以上を併用する場合、各オキシアルキレン基は、ランダムに付加してもよいし、ブロックで付加してもよいが、ランダムに付加されることがより好ましい。
 ポリアルキレンオキサイド構造におけるオキシアルキレン基は、オキシエチレン基及びオキシプロピレン基の少なくともいずれかを含むことが好ましく、オキシエチレン基及びオキシプロピレン基の両方を含有することも好ましい。オキシエチレン基及びオキシプロピレン基の両方を含む場合、これらはブロック構造を構成してもよいが、ランダム構造を構成することがより好ましい。オキシエチレン基(EO)及びオキシプロピレン基(PO)を含む場合、オキシプロピレン基のオキシエチレン基に対する比(PO/EO)は、モル比で、例えば1/9以上9/1以下、好ましくは2/8以上8/2以下であり、より好ましくは3/7以上7/3以下である。
 式(1)において、mは、オキシアルキレン基の平均繰り返し数を示し、4~200であり、好ましくは5~100、より好ましくは10~80、さらに好ましくは15~50である。
 また、Rにおけるアルキル基は、直鎖であってもよいし、分岐構造を有していてもよい。
 Rにおけるアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル、t-ブチル基どの分岐ブチル基、n-ペンチル基、分岐ペンチル基、n-ヘキシル基、分岐ヘキシル基、n-ヘプチル基、イソヘプチル基、3-ヘプチル基などの分岐ヘプチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基などの分岐オクチル基などが挙げられる。
 Rは、好ましくは炭素数1~6のアルキル基又は水素原子であり、より好ましは炭素数1~4のアルキル基又は水素原子である。
 上記ポリアルキレンオキサイド構造は、単結合を介して主鎖に連結してもよいが、単結合以外の連結基を介して、主鎖に連結することが好ましい。
 単結合以外の連結基としては、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-CONR-:Rは水素原子又は炭素数1~4のアルキル基、好ましくは水素原子)、又はこれら結合のうち少なくともいずれかを有してもよい炭化水素基が挙げられる。これらの中では、エーテル結合(-O-)、エステル結合(-COO-)、又はこれら結合のうち少なくともいずれかを有してもよい炭化水素基がより好ましい。該炭化水素基の炭素数は、特に限定されないが、例えば1~10程度であればよく、好ましくは1~4である。また、これらの中では、上記ポリアルキレンオキサイド構造は、エーテル結合又は-CHO-のいずれかを介して、主鎖に結合されることがより好ましい。ポリアルキレンオキサイド構造は、これらのいずれかを介して主鎖に結合することで、その製造が容易になる。なお、-CHO-においては、酸素原子が上記ポリアルキレンオキサイド構造に結合するとよい。
 ポリビニルアセタール系樹脂は、典型的には、アセタール基、水酸基、及びアセチル基を有する。ただし、ポリビニルアセタール系樹脂は、官能基により変性され、または再酢化反応されることで水酸基を含有しなくてもよい。なお、アセタール基、水酸基、及びアセチル基とは、後述する式(3-1)~式(3-3)に示すとおりに、主鎖に直接又は酸素原子を介して結合される基であり、ポリアルキレンオキサイド構造が有する水酸基などは含まれない。
 また、ポリビニルアセタール系樹脂は、変性することで、上記の通り、上記式(1)で示されるポリアルキレンオキサイド構造を有することが好ましい。なお、以下では、ポリアルキレンオキサイド構造を有するポリビニルアセタール系樹脂は、他のポリビニルアセタール系樹脂と区別して説明するために、変性ポリビニルアセタール樹脂(A)として説明することがある。
 変性ポリビニルアセタール樹脂(A)は、ポリアルキレンオキサイド構造(すなわち、式(1)で示される官能基)による変性量が、好ましくは0.1モル%以上10モル%以下である。上記変性量を上記範囲内とすると、20℃におけるせん断貯蔵弾性率が高くなり衝突安全性を良好にできる。また、tanδの最大ピーク温度が低くなりやすく、粘着フィルムのポリカーボネートなどの各種の樹脂材料に対する接着力を向上させることができる。
 これら観点から、ポリアルキレンオキサイド構造による変性量は、0.2モル%以上が好ましく、0.3モル%以上がより好ましく、0.4モル%以上がさらに好ましく、0.5モル%以上が特に好ましく、また、8モル%以下が好ましく、6モル%以下がより好ましく、4モル%以下がさらに好ましい。
 なお、官能基による変性量とは、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、官能基の割合を表す。変性量は、ポリビニルアセタール系樹脂に対してプロトンNMR測定を行い、得られたスペクトルから算出することができる。後述するアセタール化度、水酸基量、及びアセチル化度も同様に、プロトンNMR測定を行い、得られたスペクトルから算出することができる。
 ポリビニルアセタール系樹脂は、上記したポリアルキレンオキサイド構造を有さなくてもよい。そのようなポリビニルアセタール系樹脂は、式(1)で示される官能基以外の変性基を有する変性ポリビニルアセタール樹脂でもよいし、未変性ポリビニルアセタール樹脂でもよい。未変性ポリビニルアセタール樹脂であっても、再酢化反応などにより後述するように水酸基量を少なくすることで、tanδの最大ピーク温度を低くして各種樹脂材料に対する接着力を高くしやすくなる。
 式(1)で示される官能基以外の変性基としては、アルキル基が挙げられる。アルキル基は、直鎖であってもよいし、分岐構造を有してもよい。アルキル基の炭素数は、例えば2~30、好ましくは3~24、より好ましくは5~20、さらに好ましくは7~18、よりさらに好ましくは11~18である。アルキル基は、主鎖、好ましくは主鎖を構成するビニル基由来の構成単位に、直接結合してもよいが、好ましくはエーテル結合(-O-)、エステル結合(*-COO-**)、ウレタン結合(*-NHCOO-**)を介して結合され、より好ましくはエステル結合、又はウレタン結合を介して結合される。
 なお、エステル結合、ウレタン結合において、「*」及び「**」は、アルキル基又は主鎖に対する結合位置であり、各結合において「*」がアルキル基に対する結合位置で、「**」が主鎖に対する結合位置であることが好ましい。
 ポリビニルアセタール系樹脂は、主鎖としてビニル基由来の構成単位を有するものであり、式(1)で示される官能基は、主鎖を構成するビニル基由来の構成単位に結合するものであるとよい。したがって、ポリビニルアセタール系樹脂は、以下の式(2)で示される構成単位を有することが好ましく、中でも以下の式(2-1)及び式(2-2)で示される構成単位のいずれかを有することがより好ましい。
Figure JPOXMLDOC01-appb-C000004

(式(2)において、AO、R、mは上記と同様である。Rは、単結合、又はエステル結合又はエーテル結合の少なくともいずれかを有してもよい炭化水素基のいずれかである。)
Figure JPOXMLDOC01-appb-C000005

(式(2-1)、(2-2)において、AO、R、mは上記と同様である。)
 式(2)、(2-1)、(2-2)におけるAO、R、mは上述した通りであるのでその説明は省略する。式(2)におけるRの炭素数は、例えば1~10、好ましくは1~4である。Rの炭化水素基は、上記の通り、エステル結合又はエーテル結合を有してもよいが、エステル結合又はエーテル結合を有さないことが好ましい。
 ポリビニルアセタール系樹脂は、典型的には、アセタール基、水酸基、及びアセチル基を有し、すなわち、ポリビニルアセタール系樹脂は、典型的には、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位を有する。したがって、変性ポリビニルアセタール樹脂は、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位と、上記した式(2)で示される構成単位とを有することが好ましい。
 ただし、ポリビニルアセタール系樹脂は、例えば未変性ポリビニルアセタール樹脂などである場合、上記のとおり水酸基を有さなくてもよく、式(3-2)で示される構成単位を有さなくてもよい。すなわち、未変性ポリビニルアセタール樹脂は、以下の式(3-1)及び式(3-3)で示される構成単位を有し、さらに任意で以下の式(3-2)で示される構成単位を有してもよい。
Figure JPOXMLDOC01-appb-C000006

(式(3-1)において、Rは水素原子又は炭素数1~19の炭化水素基を表す。)
 ポリビニルアセタール系樹脂は、上記のとおりポリビニルアルコール、又はポリビニルアルコールを変性させた変性ポリビニルアルコールをアルデヒドでアセタール化し、その後必要に応じて変性して得られるものであるが、ポリビニルアルコールとしては、鹸化度80~99.8モル%のポリビニルアルコールが一般的に用いられる。
 ポリビニルアセタール系樹脂に含まれているアセタール基の炭素数は特に限定されないが、上記式(3-1)で示した通り、例えば1~20であるが、2~10であることが好ましく、2~6であることがより好ましく、2、3又は4であることがさらに好ましい。したがって、上記式(3-1)で示すRの炭素数は、1~9が好ましく、1~5がより好ましく、1~3であることがさらに好ましい。
 アセタール基としては、具体的にはブチラール基が特に好ましく、したがって、ポリビニルアセタール系樹脂としては、ポリビニルブチラール系樹脂が好ましい。ポリビニルアセタール系樹脂のアセタール化度(すなわち、アセタール量)は、好ましくは40モル%以上90モル%以下である。また、アセタール化度は、55モル%以上がより好ましく、60モル%以上がさらに好ましく、また、より好ましくは88モル%以下であり、さらに好ましくは85モル%以下である。アセタール化度をこれら範囲内とすることで、水酸基の量を適度な量としつつ、式(1)で示される官能基を一定量含有させやすくなる。
 なお、アセタール化度とは、ポリビニルアセタール系樹脂のアセタール基がアセトアセタール基である場合には、アセトアセタール化度を意味し、アセタール基がブチラール基である場合には、ブチラール化度を意味する。
 また、アセタール化度は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、アセタール化されたビニルアルコール単位の割合を表す。
 ポリビニルアセタール系樹脂の水酸基量は、好ましくは35モル%以下、より好ましくは33モル%以下、さらに好ましくは30モル%以下である。水酸基量を上記上限値以下とすると、tanδの最大ピーク温度を好適な値としやすくなり、また、ポリカーボネートなどの極性の低い樹脂材料に対する接着力を高くしやすくなる。
 また、ポリビニルアセタール系樹脂の水酸基量は、0モル%以上であるとよいが、変性ポリビニルアセタール樹脂(A)である場合には、粘着フィルムが柔軟になりすぎることを防止する観点から、一定量の水酸基量を含有するとよく、例えば5モル%以上、好ましくは9モル%以上、より好ましくは10モル%以上、さらに好ましくは12モル%以上である。
 また、ポリビニルアセタール系樹脂が、例えば未変性ポリビニルアセタール樹脂である場合には、tanδの最大ピーク温度を低くして、ポリカーボネートなどの極性の低い樹脂に対する接着力を高くするために、水酸基量を低くする必要がある。そのため、未変性ポリビニルアセタール樹脂の水酸基量は、好ましくは15モル%以下、より好ましくは10%モル以下、さらに好ましくは5モル%以下、よりさらに好ましくは3モル%以下、最も好ましくは0モル%である。
 なお、水酸基量は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、水酸基の割合を表す。
 上記ポリビニルアセタール系樹脂のアセチル化度(アセチル基量)は、例えば0.01モル%以上50モル%以下であるが、変性ポリビニルアセタール樹脂(A)の場合には、式(1)で示される官能基による変性量を一定値以上とするために、アセチル化度も一定値以下とした方がよい。したがって、変性ポリビニルアセタール樹脂(A)のアセチル化度は、好ましくは20モル%以下、より好ましくは15モル%以下、さらに好ましくは12モル%以下、よりさらに好ましくは5モル%以下である。
 また、変性ポリビニルアセタール樹脂(A)のアセチル化度は、上記のとおり例えば0.01モル%以上であるが、好ましくは0.1モル%以上、より好ましくは0.3モル%以上である。
 また、水酸基量を低くし、tanδの最大ピーク温度を低くして、ポリカーボネートなどの極性の低い樹脂に対する接着力を高くする観点から、未変性ポリビニルアセタール樹脂の場合、そのアセチル化度は、一定値以上としたほうがよく、好ましくは15モル%以上、より好ましくは25モル%以上、さらに好ましくは30モル%以上である。また、未変性ポリビニルアセタール樹脂のアセチル化度は、上記のとおり、例えば50モル%以下であるが、好ましくは45モル%以下、さらに好ましくは42モル%以下である。
 なお、アセチル化度は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、アセチル基の割合を表す。
 ポリビニルアセタール系樹脂の重量平均分子量(Mw)は、好ましくは50,000以上800,000以下である。重量平均分子量を上記範囲内に調整することで、せん断貯蔵弾性率を所望の範囲内として、機械強度、柔軟性などを良好に維持しつつ、接着性を向上させやすくなる。これら観点からポリビニルアセタール系樹脂の重量平均分子量(Mw)は、100,000以上がより好ましく、120,000以上がさらに好ましく、150,000以上がよりさらに好ましい。また、重量平均分子量(Mw)は、600,000以下がより好ましく、500,000以下がさらに好ましく、400,000以下がよりさらに好ましい。
 なお、重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーにより測定されるものである。
 ポリビニルアセタール系樹脂を製造する際に用いるアルデヒドは特に限定されず、例えば炭素数1~20のアルデヒドであるが、一般には炭素数が2~10のアルデヒドが好適に用いられる。上記炭素数が2~10のアルデヒドは特に限定されず、例えば、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、アセトアルデヒド、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドなどの炭素数2~6のアルデヒドが好ましく、炭素数2、3,4のアルデヒドがより好ましく、n-ブチルアルデヒドがさらに好ましい。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。
 本発明で使用するポリビニルアセタール系樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 本発明の粘着フィルムは、熱可塑性樹脂として、ポリビニルアセタール系樹脂を使用する場合、本発明の効果を奏する限り、ポリビニルアセタール系樹脂以外の熱可塑性樹脂を有してもよい。ただし、ポリビニルアセタール系樹脂が主成分であるとよい。ポリビニルアセタール系樹脂以外の熱可塑性樹脂は、上記の通りである。
 具体的には、ポリビニルアセタール系樹脂の含有量は、粘着フィルムに含有される熱可塑性樹脂全量基準で、例えば50質量%以上であり、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。したがって、本発明の粘着フィルムに含まれる熱可塑性樹脂は、ポリビニルアセタール系樹脂のみからなるものでもよい。
(可塑剤)
 本発明の粘着フィルムは、可塑剤を含有してもよい。粘着フィルムは、可塑剤を含有することにより柔軟となり、粘着フィルムのtanδの最大ピーク温度を低くして、ポリカーボネートなどの各種樹脂材料や無機ガラスなどの各種被着体に対する接着性を高くすることができる。ただし、本発明の粘着フィルムは、可塑剤を含有しないか、含有していても少量である。可塑剤を少量のみ含有し又は含有させないことで、可塑剤がブリードアウトすることを防止して、ブリード性を良好にできる。
 また、本発明の粘着フィルムは、可塑剤が少量であり又は含有しなくても、上記した所定の熱可塑性樹脂を使用することで、ポリカーボネートなどの樹脂材料に対する接着性を良好にできる。
 粘着フィルムにおける可塑剤の含有量は、粘着フィルムに含まれる熱可塑性樹脂100質量部に対して、20質量部未満である。可塑剤が20質量部以上となると、可塑剤のブリードアウトが発生して周辺部材を汚染するなどの不具合が生じる。
 ブリード性の観点から、可塑剤の上記含有量は、好ましくは15質量部以下であり、より好ましくは10質量部以下、さらに好ましくは5質量部以下、よりさらに好ましくは1質量部以下である。可塑剤の含有量の下限は、0質量部である。
 本発明の樹脂組成物は、変性ポリビニルアセタール樹脂(A)を使用する場合には、可塑剤を含有しなくてもよいが、可塑剤を含有することで樹脂フィルムの接着性を向上しやすくなる。一方で、樹脂組成物は、未変性ポリビニルアセタール樹脂を使用する場合には、樹脂フィルムの接着性を向上させる観点から、可塑剤を含有したほうがよい。
 可塑剤としては、例えば、有機エステル可塑剤、並びに有機リン酸エステル可塑剤及び有機亜リン酸エステル可塑剤などの有機リン系可塑剤、ポリアルキレングリコール系可塑剤、ポリオキシアルキレンエーテル系可塑剤などの有機エーテル系可塑剤、アルコール系可塑剤などが挙げられる。
 可塑剤は1種単独で使用してもよいし、2種以上を併用してもよい。上記したなかでも、有機エステル可塑剤、有機エーテル系可塑剤が好ましい。好ましい有機エステル可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等が挙げられる。
 一塩基性有機酸エステルとしては、グリコールと、一塩基性有機酸とのエステルが挙げられる。グリコールとしては、各アルキレン単位が炭素数2~4、好ましくは炭素数2又は3であり、アルキレン単位の繰り返し数が2~10、好ましくは2~4であるポリアルキレングリコールが挙げられる。また、グリコールとしては、炭素数2~4、好ましくは炭素数2又は3のモノアルキレングリコール(すなわち、繰り返し単位が1)でもよい。
 グリコールとしては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ブチレングリコールなどが挙げられる。
 一塩基性有機酸としては、炭素数3~10の有機酸が挙げられ、具体的には、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸などが挙げられる。
 具体的な一塩基性有機酸としては、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-2-エチルヘキサノエート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、トリエチレングリコールジ-2-エチルブチレート、エチレングリコールジ-2-エチルブチレート、1,2-プロピレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、1,2-ブチレングリコールジ-2-エチルブチレートなどが挙げられる。
 また、多塩基性有機酸エステルとしては、例えば、アジピン酸、セバシン酸、アゼライン酸等の炭素数4~12の二塩基性有機酸と、炭素数4~10のアルコールとのエステル化合物が挙げられる。炭素数4~10のアルコールは、直鎖でもよいし、分岐構造を有していてもよいし、環状構造を有してもよい。
 具体的には、セバシン酸ジブチル、アゼライン酸ジオクチル、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、ジブチルカルビトールアジペート、混合型アジピン酸エステルなどが挙げられる。また、油変性セバシン酸アルキドなどでもよい。混合型アジピン酸エステルとしては、炭素数4~9のアルキルアルコール及び炭素数4~9の環状アルコールから選択される2種以上のアルコールから作製されたアジピン酸エステルが挙げられる。
 上記有機リン系可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等のリン酸エステルなどが挙げられる。
 有機エステル可塑剤としては、上記した各エステルの完全エステルに限定されず、部分エステルであってもよい。例えば、グリコールと、一塩基性有機酸との部分エステルであってもよいし、二塩基性有機酸と、アルコールとの部分エステルであってもよい。具体的には、トリエチレングリコール-モノ-2-エチルヘキサノエートなどが挙げられる。
 さらに、グリセリンなどの3価以上のアルコールと、一塩基性有機酸の部分エステルなどであってよい。一塩基性有機酸としては、炭素数3~24、好ましくは炭素数6~18の一塩基性有機酸が挙げられる。3価以上のアルコールと、一塩基性有機酸の部分エステルの具体例としては、グリセリンとステアリン酸のモノ又はジエステル、グリセリンと2-エチルヘキシル酸とのモノ又はジエステルなどが挙げられる。
 有機エステル可塑剤としては、上記したなかでも、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)が特に好適に用いられる。
 ポリアルキレングリコール系可塑剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキシド/プロピレンオキシド)ブロック共重合体、ポリ(エチレンオキシド/プロピレンオキシド)ランダム共重合体、ポリテトラメチレングリコールなどが挙げられ、これらの中では、ポリプロピレングリコールが好ましい。
 ポリオキシアルキレンエーテル系可塑剤は、1価又は多価アルコールとポリオキシアルキレンとのエーテル化合物である。
 具体的なポリオキシアルキレンエーテル系可塑剤としては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシプロピレンアリルエーテル、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、ポリオキシエチレンジグリセリルエーテル、ポリオキシプロピレンジグリセリルエーテル、ポリオキシアルキレンペンタエリスリトールエーテルなどが挙げられる。
 ポリオキシアルキレンエーテル系可塑剤は、好ましくは多価アルコールとポリオキシアルキレンとのエーテル化合物であり、より好ましくはグリセリン又はジグリセリンとポリオキシアルキレンとのエーテル化合物であり、更に好ましくはグリセリン又はジグリセリンとポリオキシプロピレンとのエーテル化合物である。
 アルコール系可塑剤としては、ブタンジオール、ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトールなどの各種の多価アルコールが挙げられる。これらの中では、トリメチロールプロパンが好ましい。
 粘着フィルムは、可塑剤以外にも、熱可塑性樹脂と併用される公知の添加剤を適宜含有してもよい。すなわち、粘着フィルムは、ポリビニルアセタール系樹脂などの熱可塑性樹脂からなるものでもよいが、熱可塑性樹脂に加えて、必要に応じて配合される可塑剤、又は可塑剤以外の添加剤を含有してもよい。
 可塑剤以外の添加剤は、具体的には、紫外線吸収剤、赤外線吸収剤、酸化防止剤、光安定剤、接着力調整剤、顔料、染料、蛍光増白剤、結晶核剤等が挙げられる。また、本発明の樹脂組成物は、溶媒により希釈されて希釈液の形態で使用されてもよい。
 また、粘着フィルムは、低分子量化合物を含有しないか、もしくは含有していても少量であることが好ましい。低分子量化合物を少量のみ含有し又は含有させないことで、低分子量化合物がブリードアウトすることを防止して、ブリード性を良好にできる。
 なお、低分子量化合物は、分子量1000未満の化合物をいい、上記した可塑剤や、光照射による硬化する反応性希釈剤などが挙げられる。反応性希釈剤としては、例えば、(メタ)アクリルモノマーや(メタ)アクリルオリゴマー等の(メタ)アクリル系反応性希釈剤や、エポキシモノマー、エポキシオリゴマー等のエポキシ系反応性希釈剤や、アルコキシシランモノマー、アルコキシシランオリゴマー等のシリコーン系反応性希釈剤等が挙げられる。
 粘着フィルムにおける低分子量化合物の含有量は、ブリード性の観点から、粘着フィルムに含まれる熱可塑性樹脂100質量部に対して、例えば20質量部未満である。低分子量化合物の含有量は、ブリード性をより向上させる観点から、好ましくは15質量部以下であり、より好ましくは10質量部以下、さらに好ましくは5質量部以下、よりさらに好ましくは1質量部以下である。低分子量化合物の含有量の下限は、0質量部である。
[ポリビニルアセタール系樹脂の製造方法]
 本発明の粘着フィルムで使用されるポリビニルアセタール系樹脂は、ポリビニルアルコール(「原料ポリビニルアルコール」ともいう)をアルデヒドでアセタール化し、その後、必要に応じて変性剤と反応させ、または再酢化処理をすることで得られるものである。原料ポリビニルアルコールとしては、未変性ポリビニルアルコールでもよいが、変性ポリビニルアセタール樹脂を得る場合には、原料ポリビニルアルコールとして変性ポリビニルアルコールを使用してもよい。
 例えば、ポリアルキレンオキサイド構造を有する変性ポリビニルアセタール樹脂(A)を製造する際には、以下の製造方法(1)により製造することが好ましい。
(製造方法(1))
 本製造方法(1)では、まず、原料ポリビニルアルコールとしてポリオキシアルキレン変性ポリビニルアルコールを製造する。具体的には、ビニルエステルと、ポリオキシアルキレン基を有するビニルモノマーを含むモノマーを重合してポリマーを得た後、ポリマーをけん化することにより得られる。ケン化には、一般に、アルカリ又は酸が用いられるが、アルカリを用いることが好ましい。ポリオキシアルキレン変性ポリビニルアルコールとしては、1種のみが用いられてもよく、2種以上が併用されてもよい。
 次いで、上記で得られたポリオキシアルキレン変性ポリビニルアルコールに対して、アルデヒドでアセタール化して、変性ポリビニルアセタール樹脂(A)を得るとよい。アセタール化の方法は、公知の方法で行うとよい。
 製造方法(1)で使用するビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ絡酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどを用いることができる。これらの中では酢酸ビニルが好ましい。
 また、製造方法(1)で使用するポリオキシアルキレン基を有するビニルモノマーとしては、具体的には、以下の式(4)で示される化合物が挙げられる。中でも、以下の式(4-1)で示されるポリオキシアルキレンビニルエーテル、式(4-2)で示されるポリオキシアルキレンアリルエーテルが好ましい。
Figure JPOXMLDOC01-appb-C000007

(式(4)において、AO、R、R、mは上記と同様である。)
Figure JPOXMLDOC01-appb-C000008

(式(4-1)、(4-2)において、AO、m、及びRはそれぞれ上記と同じである。)
 ポリオキシアルキレン基を有するビニルモノマーの好ましい具体例としては、ポリオキシエチレンモノビニルエーテル、ポリオキシエチレンポリオキシプロピレンモノビニルエーテル、ポリオキシプロピレンモノビニルエーテル、ポリオキシエチレンモノアリルエーテル、ポリオキシエチレンポリオキシプロピレンモノアリルエーテル、ポリオキシプロピレンモノアリルエーテル、ポリオキシエチレンアルキルビニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルビニルエーテル、ポリオキシプロピレンアルキルビニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアリルエーテル、ポリオキシプロピレンアルキルアリルエーテルなどが挙げられる。
 また、未変性ポリビニルアセタール樹脂の場合には、以下の製造方法(2)で製造することが好ましい。
(製造方法(2))
 本製造方法(2)では、原料ポリビニルアルコールをアルデヒドでアセタール化して、ポリビニルアセタール系樹脂(以下、原料ポリビニルアセタール系樹脂ともいう)を得る。ここで、原料ポリビニルアルコールとしては、ポリビニルエステルをケン化して得られた未変性ポリビニルアルコールを使用する。次いで、原料ポリビニルアセタール系樹脂に対して、再酢化処理して、未変性ポリビニルアセタール樹脂を得るとよい。再酢化処理としては、従来公知の方法で行えばよいが、無水酢酸を用いてピリジンなどの塩基存在下で行えばよい。また、再酢化処理は、例えば50℃以上100℃以下、好ましくは70℃以上90℃以下程度に加熱して行うとよい。ポリビニルアセタール系樹脂は、再酢化処理されることで、水酸基量が少なくなり、tanδの最大ピーク温度を低くしやすくなり、ポリカーボネートなどの各種樹脂材料に対する接着性が良好となる。
 また、アルキル基を側鎖に有する変性ポリビニルアセタール樹脂は、例えば、以下の製造方法によって製造するとよい。
 まず、原料ポリビニルアルコールをアルデヒドでアセタール化して、ポリビニルアセタール系樹脂(以下、原料ポリビニルアセタール系樹脂ともいう)を得る。ここで使用される原料ポリビニルアルコールは、ポリビニルエステルをケン化して得られたものであり、未変性ポリビニルアルコールであることが好ましい。
 次に、上記原料ポリビニルアセタール系樹脂に対して、アルキル基を有する変性剤を反応させて、原料ポリビニルアセタール系樹脂にアルキル基を導入する。変性剤としては、原料ポリビニルアセタール系樹脂が有する水酸基に反応して、ウレタン結合やエステル結合を形成する反応性基を有する化合物であるとよい。具体的には、n-オクタデシルイソシアネートなどのアルキル基の炭素数が2~30であるアルキルイソシアネートが挙げられる。また、炭素数3~31のカルボン酸、又は上記カルボン酸の無水物、カルボン酸エステル、カルボン酸ハライドなどのカルボン酸誘導体が挙げられる。カルボン酸誘導体としては、2-エチルヘキサノイルクロリド、ラウロイルクロリド、ミリスチルクロリド、パルミトイルクロリド、ステアロイルクロリドなどのカルボン酸クロリドが好ましい。
 本発明の粘着フィルムとは、粘着フィルム単体である場合のみならず、他の部材に積層、被膜などされて、層状、膜状の形態となっている場合も広く粘着フィルムといい、一般的にシートと呼ばれる比較的厚みが大きいものも粘着フィルムという。粘着フィルムの厚みは、特に限定されないが、例えば100μm以上2000μm以下であるが、好ましくは100μm以上1000μm以下である。また、粘着フィルムは、衝突安全性を高めるためには、粘着フィルムの厚みは大きいほどよく、より好ましくは200μm以上、更に好ましくは300μm以上である。また、薄型化の観点から、粘着フィルムの厚みは、500μm以下がより好ましい。
 本発明の粘着フィルムは、単層からなるものでよい。単層フィルムを構成する層は、上記粘着フィルムで述べたとおりの組成を有するとよい。すなわち、単層フィルムを構成する層は、熱可塑性樹脂を含有し、かつ、可塑剤を含有せず、あるいは、可塑剤を上記のとおりの含有量で含有するとよい。さらに、上記のとおりに適宜添加剤が配合されてもよい。
 また、本発明の粘着フィルムは、2層以上の多層フィルムであってもよい。多層フィルムは、フィルム全体の組成が上記粘着フィルムで述べたとおりとなればよいが、各層(以下、「第1の層」ともいう)が上記した粘着フィルムで述べたとおりの組成を有するとよい。すなわち、各第1の層は、上記粘着フィルムで述べたとおりに、熱可塑性樹脂を含み、かつ、可塑剤を含有せず、あるいは、可塑剤を上記のとおりの含有量で含有するとよい。さらに、上記のとおりに適宜添加剤が配合されてもよい。多層フィルムの各第1の層における熱可塑性樹脂、可塑剤、及び添加剤の詳細、及び各成分の含有量の詳細は上記の粘着フィルムで述べた通りである。ただし、含有量の基準となる熱可塑性樹脂は、各第1の層に含有される熱可塑性樹脂である。多層フィルムにおいて、各第1の層は、同一の組成であってもよいし、異なる組成であってもよい。
 また、多層フィルムは、上記した第1の層と、第1の層以外の層(以下、「第2の層」ともいう)との積層体であってもよい。具体的には、例えば第1の層/第2の層/第1の層の3層構造などが挙げられる。
 なお、本発明の粘着フィルムが2層以上の多層フィルムである場合、各層がそれぞれ上記粘着フィルムで述べたとおりの組成であることが好ましい。
[粘着フィルムの製造方法]
 本発明の粘着フィルムは、ポリビニルアセタール系樹脂などの熱可塑性樹脂を含む樹脂組成物を公知の方法でフィルム状に成形することで製造することができる。樹脂組成物は、上記の通り製造されたポリビニルアセタール系樹脂などの熱可塑性樹脂を少なくとも含み、必要に応じて、可塑剤、添加剤などを添加して調製するとよい。また、樹脂組成物は、適宜溶媒に希釈して使用してもよい。
 粘着フィルムは、より具体的には、樹脂組成物を離型シートなどの支持体に塗布して、あるいは、型枠に流し込んで、必要に応じて適宜加熱、乾燥して、フィルム状に成形してもよいし、押出成形、プレス成形などによりフィルム状に成形してもよい。
 また、上記の通り、原料ポリビニルアセタール系樹脂を変性剤と反応させて、ポリビニルアセタール系樹脂を得る場合には、以下のように成形してもよい。すなわち、原料ポリビニルアセタール系樹脂と、変性剤と、その他の必要に応じて配合される可塑剤などの添加剤を含む組成物を、剥離シートなどの支持体上に塗布して、あるいは、型枠に流し込んで、その後、加熱することで変性剤を原料ポリビニルアセタール系樹脂に反応させつつフィルム状に成形してもよい。
 さらに、粘着フィルムが多層フィルムの場合には、各層を構成する樹脂組成物を用意し、その各層を構成する樹脂組成物から多層フィルムの各層を得るとよい。多層構造の場合には、各層を適宜重ね合わせて得るとよく、共押出などにより多層構造を成形してもよい。
 本発明の粘着フィルムは、特に限定されず、様々な用途に使用可能であるが、各種ディスプレイ用途、合わせガラス用途などに使用されることが好ましい。ディスプレイは、特に限定されないが、車載用であることが好ましい。また、合わせガラスは、自動車、電車などの車両、船舶、飛行機などの各種乗り物、あるいは、ビル、マンション、一戸建て、ホール、体育館などの各種建築物、あるいは切削、研磨などの工作機械、ショベルやクレーンなどの建設機械等の窓ガラスに使用されるが、中でも自動車などの車両用途が好ましい。本発明の粘着フィルムは、衝突安全性が高く、衝突事故などが生じた際でも、後述する積層体などに破損を生じさせにくいので、車載用ディスプレイや車両用窓ガラスに使用することが適している。
<積層体>
 本発明の粘着フィルムは、特に限定されないが、有機材料基材、無機材料基材などの基材とともに使用され、積層体の一部として使用されることが好ましい。本発明の積層体は、具体的には、上記粘着フィルムと、無機材料基材、及び有機材料基材の少なくともいずれかを備えるとよい。また、粘着フィルムは、無機材料基材、及び有機材料基材の少なくともいずれに接着するように配置されることが好ましく、より好ましくは有機材料基材に接着する位置に配置される。粘着フィルムは、各種樹脂材料に対する接着力が高いため、有機材料基材に接着する位置に配置されることで、高い接着力で基材に接着させることができる。
 有機材料基材としては、有機樹脂板、樹脂フィルムなどが挙げられる。有機樹脂板は、有機ガラス板とも呼ばれるものである。有機樹脂板としては、特に限定されないが、ポリカーボネート板、ポリメチルメタクリレート板などの(メタ)アクリル板、アクリロニトリルスチレン共重合体板、アクリロニトリルブタジエンスチレン共重合体板、ポリエチレンテレフタラート板などのポリエステル板、フッ素系樹脂板、ポリ塩化ビニル板、塩素化ポリ塩化ビニル板、ポリプロピレン板、ポリスチレン板、ポリサルホン板、エポキシ樹脂板、フェノール樹脂板、不飽和ポリエステル樹脂板、ポリイミド樹脂板等の各種有機ガラス板が挙げられる。有機樹脂板は、適宜表面処理などが行われてもよい。
 上記した中では、透明性、耐衝撃性に優れる点から、ポリカーボネート板が好ましく、透明性が高く、耐候性、機械強度に優れる点から、(メタ)アクリル板が好ましく、これらの中ではポリカーボネート板がより好ましい。
 有機樹脂板の厚さは、特に限定されないが、好ましくは0.1mm以上、さらに好ましくは0.4mm以上であり、また、好ましくは5.0mm以下、さらに好ましくは3.0mm以下である。
 樹脂フィルムは、特に限定されないが、(メタ)アクリル樹脂フィルム、ポリカーボネートフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどのポリオレフィン樹脂フィルム、環状ポリオレフィン(COP)フィルム、トリアセチルセルロース(TAC)フィルム、ポリエーテルサルフォン(PES)樹脂フィルム、ポリイミド樹脂フィルムなどが挙げられる。また、樹脂フィルムの表面には、(メタ)アクリル系樹脂などからなるハードコート層などからなる表面層が設けられてもよい。
 樹脂フィルムの厚さは、特に限定されないが、好ましくは30μm以上、さらに好ましくは50μm以上であり、また、好ましくは500μm以下、さらに好ましくは450μm以下である。
 なお、厚みが比較的大きく、柔軟性が低くて、一般的に折り曲げできないようなものを有機樹脂板という一方、厚みが比較的小さく、一般的に折り曲げ可能なものを概ね樹脂フィルムというが、これらは明確に区別されるものでない。
 無機材料基材としては無機ガラス板が挙げられる。無機ガラス板は、特に限定されるものではないが、例えば、フロート板ガラス、強化ガラス、着色ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、紫外線吸収板ガラス、赤外線反射板ガラス、赤外線吸収板ガラス、グリーンガラス等の各種ガラス板が挙げられる。無機ガラスは表面処理などが行われてもよい。無機ガラスの厚さは、特に限定されないが、好ましくは0.1mm以上、さらに好ましくは1.0mm以上であり、また、好ましくは5.0mm以下、さらに好ましくは3.0mm以下である。
 有機材料基材、又は無機材料基材は、適宜、電極、センサーなどが付けられたものでもよい。電極は、上記各基材に積層される導電層により構成される。
 センサーとしては、タッチセンサーが挙げられる。タッチセンサーとは、指、タッチペン、その他の物体が基材に近づき、又は接触するタッチ入力を検知するセンサーであり、上記基材に積層される導電層により構成される。タッチセンサーは、指、タッチペン、その他の物体が、基材に近づき、又は接触することで、静電容量、電流、電圧などの電気的な変化が導電層に生じ、その電気的な変化により、タッチ入力を検知する。
 導電層は、特に限定されず、従来公知の透明性を有する電極材料であれば特に限定なく用いることができ、例えば、インジウム錫酸化物(ITO)導電膜、酸化錫導電膜、酸化亜鉛導電膜、高分子導電膜などが挙げられる。
 上記した中では、無機材料基材は、無機ガラス板、並びに、電極又はセンサーの少なくともいずれかが付けられた無機ガラス板からなる群から選択されることが好ましい。有機材料基材は、ポリカ―ボネート板、(メタ)アクリル板、並びに、PETフィルム、COPフィルム、ポリカーボネートフィルム、及びこれらフィルムに電極又はセンサーの少なくともいずれかが付けられたフィルムからなる群から選択された少なくとも1種が好ましい。
 また、電極、センサーなどの導電層が積層された有機材料基材(特に、フィルム)は、導電層が設けられた面とは反対側の面に上記したハードコート層が形成されてもよい。導電層が設けられた面とは反対側の面は、通常、粘着フィルムとの接着面となるが、本発明の粘着フィルムは、ハードコート層が設けられた面に対しても高い接着力を有することが可能である。
 積層体は、特に限定されないが、無機材料基材及び有機材料基材から選択される一対の基材と、これら一対の基材の間に配置される接着用フィルムとを備え、3層以上の多層構造を有することが好ましい。
 このような多層構造において、接着用フィルムは、例えば、一対の基材の両方に接着され、それにより、一対の基材が接着用フィルムを介して接合されるとよい。この場合、接着用フィルムは、上記した本発明の粘着フィルムであるとよい。
 また、積層体は、上記一対の基材の間にさらに別の中間部材が配置される構造を有してもよく、このような構造においては、各基材と中間部材の間に接着用フィルムが配置され、5層以上の多層構造を有するとよい。ここで、接着用フィルムは、各基材と中間部材に接着されるとよく、それにより、基材と中間部材が接着用フィルムを介して接合されるとよい。また、以上説明した5層以上の多層構造において、基材と中間部材の間の接着用フィルムは、樹脂フィルムであり、少なくとも一方が本発明の粘着フィルムであればよいが、両方が本発明の粘着フィルムであることが好ましい。
 中間部材は、上記した無機材料基材、及び有機材料基材の少なくともいずれを有するとよく、本発明の粘着フィルムが接着する位置に無機材料基材、及び有機材料基材の少なくともいずれが配置されるとよい。
 以上説明した積層体は、ディスプレイ、合わせガラスなどを構成すればよいが、これらに限定されるわけではない。また、中間部材は後述する通り、タッチパネルや調光素子などであってもよいが、これらに限定されない。また、上記無機材料基材や有機材料基材は、タッチパネル、調光素子、ディスプレイを構成する表示素子などの一部を構成すればよい。
 本発明の積層体は、例えば、接着用フィルムを用意して、用意した接着用フィルムを介して各部材を圧着することにより製造することができる。例えば、基材と、接着用フィルムと、基材とをこの順に重ね合わせて、これらを圧着することで製造できる。また、中間部材を設ける場合には、基材と、接着用フィルムと、中間部材と、接着用フィルムと、基材とをこの順に重ね合わせて、これらを圧着することで製造できる。
 次に、図面を参照しつつ、積層体の具体例を説明する。図1は、第1の実施形態に係る積層体を示す。第1の実施形態において、積層体30Aは、タッチパネル付きディスプレイに適用される。タッチパネル付きディスプレイは、好ましくは車載用ディスプレイである。本実施形態に係る積層体30Aは、表示素子31と、表面保護パネル32と、表示素子31と、表面保護パネル32の間に配置されるタッチパネル33とを備え、タッチパネル33と表示素子31の間、及び表面保護パネル32とタッチパネル33の間それぞれに接着用フィルム34A、34Bが配置される。
 表面保護パネル32は、有機樹脂板又は無機ガラス板のいずれかが好ましいが、無機ガラス板であることが好ましい。
 また、表示素子31としては、有機EL表示素子、液晶表示素子が挙げられる。表示素子31は、その表面側の最外面に偏光板が設けられることが好ましい。なお、表面側の最外面とは、表面保護パネル側の最外面であり、その反対側を裏面側ともいう。
 偏光板は、一般的にポリビニルアルコール樹脂フィルムなどの偏光子の両面に保護フィルムが設けられた構成を有する。保護フィルムは、上記した樹脂フィルムから構成され、好ましくは、PETフィルム、COPフィルム、又はTACフィルムのいずれかである。したがって、表示素子31の表面側の最外面には、一般的に有機材料基材が配置されることになる。
 また、表示素子31は、その表面側の面に偏光板が設けられない場合でも、表面側の最外面には保護フィルムが設けられるとよく、したがって、そのような場合でも、表示素子31の表面側の最表面は有機材料基材により構成されることになる。
 タッチパネル33は、タッチセンサーが付された、無機ガラス、有機樹脂板、又は樹脂フィルムのいずれにより構成されるとよいが、タッチセンサーが付された、無機ガラス又は樹脂フィルムが好ましい。
 また、タッチパネル33において、無機ガラス、有機樹脂板、又は樹脂フィルムは、これらのうちから2以上が積層されて多層構造体であってもよい。その場合も、タッチパネル33において、無機ガラス、有機樹脂板、又は樹脂フィルムのいずれかにタッチセンサーが付されるとよい。
 また、タッチパネル33は、表面側の最表面、裏面側の最表面のいずれかに樹脂フィルムからなる保護フィルムが配置されてもよい。したがって、タッチパネル33は、接着用フィルム34A、34Bとの接着面が、無機ガラス、有機ガラス、及び樹脂フィルムのいずれかとなる。
 接着用フィルム34A、34Bそれぞれは、表示素子31及びタッチパネル33、タッチパネル33及び表面保護パネル32に接着されて、これらを接合するものである。接着用フィルム34A、34Bは、いずれか一方が上記した本発明の粘着フィルムであるとよいが、両方が本発明の粘着フィルムであることが好ましい。
 本発明の粘着フィルムは、無機材料基材のみならず、各種樹脂材料(すなわち、有機材料基材)に対しても、高い接着力を有する。したがって、表示素子33、表面保護パネル32、及びタッチパネル33は、接着用フィルム34A、34Bとの接着面が、有機材料基材により構成されることがあるが、そのような場合でも、高い接着力で、表示素子31とタッチパネル33、及び表面保護パネル32とタッチパネル33とを接合させることができる。
 また、本発明の粘着フィルムは、衝突安全性が高いので、タッチパネル付きディスプレイが車載用ディスプレイである場合でも、タッチパネル付きディスプレイの破損による甚大な被害が発生することが防止できる。さらに、ブリード性が良好であるので、ブリードアウトにより、タッチパネル33や表示素子31などが汚染されることが防止できる。
 図2は、第2の実施形態に係る積層体を示す。第2の実施形態に係る積層体もディスプレイに適用されるものであるが、積層体30Bは、タッチパネル33が省略されており、そのため、積層体30Bは、表示素子31と、表面保護パネル32と、これらの間に配置される接着用フィルム34を備える。
 表示素子31と、表面保護パネル32の詳細は、第1の実施形態で述べたとおりである。
本実施形態では接着用フィルム34が本発明の粘着フィルムからなる。接着用フィルム34(粘着フィルム)は、表示素子31及び表面保護パネル32に接着されて、これらを接合し、したがって、第1の実施形態と同様に、表示素子31と表面保護パネル32とは、高い接着力で接合されることになる。また、粘着フィルムは、衝突安全性が高く、ブリード性も高いので、積層体30Bが車載用ディスプレイに適用されたとしても、ディスプレイの破損におり甚大な被害が発生にくくなり、また、表示素子31の汚染なども防止できる。
 なお、第2の実施形態において、表面保護パネル32は、OGS(one glass solution)パネルであってもよく、表面保護パネル32にタッチセンサーなどのセンサーが設けれてもよい。したがって、表面保護パネル32は、センサーが付された無機ガラスなどにより構成されてもよい。
 図3は、第3の実施形態に係る積層体を示す。第3の実施形態に係る積層体30Cは、調光機能付きの合わせガラスに適用される。本実施形態に係る積層体30Cは、一対の合わせガラス部材(基材)41、42と、一対の合わせガラス部材41、42の間に配置される調光素子43を備え、一方の合わせガラス部材41と調光素子43の間、及び他方の合わせガラス部材42と調光素子43の間それぞれに、接着用フィルム34A、34Bが配置される。
 合わせガラス部材41、42は、無機ガラス板、有機樹脂板のいずれでもよく、これらの詳細は上記で説明したとおりである。
 調光素子43は、2枚の樹脂フィルムと、2枚の樹脂フィルムの間に配置される調光層とを備える調光フィルムであることが好ましい。したがって、調光素子43の接着用フィルム34A,34Bとの接着面は、樹脂材料となる。
 調光素子43が備える樹脂フィルムとしては、PETフィルム、PENフィルムなどのポリエステル樹脂フィルム、(メタ)アクリル樹脂フィルム、TACフィルム、PES樹脂フィルム、ポリイミド樹脂フィルムなどが挙げられる。これらの中では、取扱い性などの観点から、ポリエステル樹脂フィルムが好ましく、中でもPETフィルムがより好ましい。
 また、2枚の樹脂フィルムそれぞれには調光層側の面に電極を構成する導電層が設けられる。
 調光層は、2枚の樹脂フィルムの導電層間への電圧の印加及び無印加を切り替えることで、可視光線透過率が変化するものである。調光層は、ポリマー分散型液晶(PDLC)などの液晶層で構成されるとよい。また、調光フィルムは、SPD(Suspended Particle Device)フィルム、エレクトロクロミックフィルム、電気泳動フィルムデバイスなどであってもよい。したがって、調光層は、樹脂マトリックスと樹脂マトリックス中に分散した光調整懸濁液とを含むSPD層であってもよいし、エレクトロクロミック材料層であってもよい。また、電気泳動粒子と、電気泳動粒子を分散させる分散剤とを備える電気泳動層などであってもよい。
 本実施形態においても、接着用フィルム34A、34Bそれぞれは、合わせガラス部材41及び調光素子43、並びに合わせガラス部材42及び調光素子43に接着されて、これらを接合するものである。接着用フィルム34A、34Bは、樹脂フィルムであり、いずれか一方が上記した本発明の粘着フィルムであるとよいが、両方が本発明の粘着フィルムであることが好ましい。
 本発明の粘着フィルムは、無機材料基材のみならず、各種樹脂材料に対しても、高い接着力を有するので、高い接着力で、合わせガラス部材41、42と、偏光素子43とを接合させることができる。
 また、本発明の粘着フィルムは、衝突安全性が高いので、第3の実施形態に係る合わせガラスが車両用窓ガラスに使用されるような場合でも、破損による甚大な被害が発生することが防止できる。さらに、ブリード性が良好であるので、ブリードアウトにより、偏光素子43などが汚染されることも防止できる。
 図4は、第4の実施形態に係る積層体を示す。本実施形態に係る積層体30Dは、合わせガラスに適用される。本実施形態に係る積層体30Dは、一対の合わせガラス部材41、42と、一対の合わせガラス部材41、42の間に配置される接着用フィルム34とを備え、接着用フィルム34が上記した本発明の粘着フィルムからなるとよい。
 一対の合わせガラス部材41、42は、第3の実施形態において説明したとおりである。接着用フィルム34(粘着フィルム)は、合わせガラス部材41、42の両方に接着されて、これらを接合するので、合わせガラス部材41、42を高い接着力で接合することができる。また、粘着フィルムは、衝突安全性が高く、ブリード性も高いので、合わせガラスを車両用窓ガラスに使用しても、車両用窓ガラスの破損による甚大な被害が発生にくくなり、また、周辺部材の汚染なども防止できる。
 なお、以上の第1~第4の実施形態では、接着用フィルムが単層の粘着フィルムである例を想定して説明したが、接着用フィルムとしては、多層フィルムを使用してもよい。多層フィルムの構成は、上記で説明したとおりである。
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、本発明における各物性値の測定方法、及び評価方法は、以下の通りである。
<重量平均分子量(Mw)>
 粘着フィルムをテトラヒドロフランに0.05重量%の濃度に溶解させ、シリンジフィルター(メルク社製、Millex-LH 0.45μm)を用いてろ過した後、ゲル浸透クロマトグラフィー(Waters社製、e2690)を用いて、分子量を測定した。重量平均分子量(Mw)は、単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出した。また、カラムはShodex GPC KF-806L(昭和電工社製)を用い、溶離液としてテトラヒドロフランを用いた。
<せん断貯蔵弾性率、及びtanδの最大ピーク温度>
 実施例、比較例で得られた粘着フィルムを、長さ10mm、幅5mmで切り出し、動的粘弾性測定装置(アイティー計測制御株式会社製、商品名「DVA-200」)を用いて、以下の測定条件で粘弾性を測定し、20℃におけるせん断貯蔵弾性率(G’)を検出した。
 また、粘弾性測定の結果から得られる損失正接tanδのピーク温度を読みとった。-50~150℃の温度領域において上記ピーク温度のうち、tanδが最大値となるピーク温度をtanδの最大ピーク温度とした。
(測定条件)
変形様式:せん断モード、測定温度:-50℃~200℃、昇温速度:5℃/分、測定周波数:1Hz、歪:1%
<変性量、アセタール化度、アセチル化度、及び水酸基量>
 ポリビニルアセタール系樹脂をクロロホルム-dに溶解し、1H-NMR(核磁気共鳴スペクトル)を用いて測定し、各ユニットのモル比を分析することで求めた。
<ポリカーボネート基材(PC)への接着力>
 明細書記載の方法に従って、各実施例、比較例の粘着フィルムを用いて、ポリカーボネート基材への接着力を測定し、下記基準に基づいて評価した。
(評価基準)
  AA:最大荷重が200N以上である。
   A:最大荷重が100N以上200N未満である。
   B:最大荷重が100N未満である。
<衝突安全性>
 30.3cm角サイズ、厚み1.1mmのフロートガラスを2枚用意して、2枚のフロートガラスを30.3cm角サイズの粘着フィルムを介して重ね合わせた。その後、重ね合わせた構成体の厚みと同じスペーサーを用いて、粘着フィルムの厚みが一定になるように、真空ラミネーターにおいて、90℃、0.1MPaの条件で3分間仮圧着をした。次いで、90℃、0.5MPaの条件でさらに1時間本圧着を行い、積層体を得た。
 得られた積層体を支持枠で固定し、直径82mm、重さ2.26kgの鉄球を高さ1.0mから落とし、高速カメラを用いて構成体の沈下量を測定した。測定した沈下量に基づき、衝突安全性を評価した。
 AA:沈下量が50mm以下である。
  A:沈下量が50mmを超え100mm以下である。
  B:沈下量が100mmを超える。
<ブリード性>
 実施例、比較例の粘着フィルムに赤色の油性マジックを用いて、縦方向及び横方向にそれぞれ2本ずつ線を引き、マーキングした。マーキングしたフィルムを主面が鉛直方向と平行な平面内に位置するように置いて、10℃の条件で2ヶ月間放置した。2ヵ月後に、可塑剤などのブリードアウトした物質によるマーキングの滲み及び垂れが生じているか否かを目視で確認した。マーキングされた4本の線のいずれにも滲み及び垂れが見られず、ブリードアウトが生じていない場合を「AA」、マーキングされた4本の線のうちのいずれかに滲みは垂れが見られ、ブリードアウトが生じている場合を「B」と評価した。
<TAC偏光板に対する接着力>
 縦10mm及び横10mmのサイズにした粘着フィルム、縦25mm及び横100mmの住友化学社製のTAC製偏光板フィルム、及び縦25mm及び横100mmのフロートガラスを用意した。TAC製偏光板フィルムは、PVAフィルムの両面にTACフィルムが積層されたものであった。
 図6に示すように、TAC製偏光板フィルム50とフロートガラス51を、互いの長手方向が平行になるように配置して、粘着フィルム52を介して重ね合わせた。
 その後、粘着フィルム52の厚みが一定になるように、粘着フィルム52と同じ厚みのスペーサーを用いて、真空ラミネーターにおいて、90℃、0.1MPaの条件で3分間仮圧着をした。次いで、90℃、0.5MPaの条件でさらに1時間本圧着を行い、積層体53を得た。
 得られた積層体53に対して、せん断接着試験を行った。具体的には、温度23℃の環境下で、フロートガラス51に対して、偏光板フィルム50をその長手方向に沿うせん断方向Sに速度200mm/分で引っ張り、偏光フィルム50を剥離させたときの最大荷重(N)を測定し、その最大荷重(N)を接着力として、以下の評価基準で評価した。
  AA:最大荷重が220N以上である。
   A:最大荷重が150N以上220N未満である。
   B:最大荷重が150N未満である。
<ITO-PETに対する接着力>
 TAC製偏光板フィルムの代わりに、片面にITOがコーティングされ、反対側の面がハードコート処理されたポリエチレンテレフタレートフィルム(ITO-PET、積水ナノコートテクノロジー株式会社製)を用いた以外は、TAC偏光板に対する接着力と同様に実施して評価した。なお、ITOがコーティングされている面とは反対側のハードコート面を、粘着フィルムが貼り付けられる面にした。
(実施例1)
[エチレンオキサイド変性ポリビニルアルコールの合成]
 表1に記載のアリルエーテルモノマー(1)を用意した。アリルエーテルモノマー(1)は、式(4-2)に示す化合物であり、AOには、オキシエチレン基(EO)と、オキシプロピレン基(PO)が混在し、かつこれらはランダム構造であり、そのモル比、EOとPOの平均繰り返し数、及び末端基(R)は、表1に示すとおりである。
 攪拌機、温度計、滴下ロートおよび還流冷却器を付したフラスコ中に、酢酸ビニル515質量部、アリルエーテルモノマー(1)151質量部、及びメタノール333質量部を添加し、系内の窒素置換を行った後、温度を60℃まで昇温した。温度を60℃に維持した状態でこの系に2,2-アゾビスイソブチロニトリル1.3質量部を添加し、重合を開始した。重合開始から5時間で重合を停止した。オーブンで加熱を行い、未反応のモノマーとメタノールを除去した後、共重合体の40質量%メタノール溶液を調製した。
 得られた共重合体のメタノール溶液100質量部を40℃で攪拌しながら、3質量%のNaOHメタノール溶液7.4質量部を添加して、よく混合した後に放置した。2時間後、固化したポリマーを粉砕機で粉砕し、メタノールで洗浄後、乾燥してポリマー粉末(エチレンオキサイド変性ポリビニルアルコール)を得た。
[ポリビニルブチラール(PVB1)の調製]
 得られたポリマー粉末280gを純水2100gに加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、濃度35質量%の塩酸160質量部とn-ブチルアルデヒド150質量部を添加し、液温を20℃まで下げ、温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を40℃として3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール系樹脂(PVB1)の白色粉末を得た。
[粘着フィルムの作製]
 得られたポリビニルアセタール系樹脂(PVB1)を、温度160℃、圧力20MPaでプレス成形して厚み380μmの粘着フィルムを得た。得られた粘着フィルムに対して、tanδの最大ピーク温度、せん断貯蔵弾性率(G’)、及びポリカーボネート基材への接着力を測定し、また、衝突安全性、ブリード性、及びTAC偏光板に対する接着力を評価した。
(実施例2、3)
 粘着フィルムの厚みを表4に示すとおりに調整する以外は、実施例1と同様に実施した。
(実施例4)
 使用するアリルエーテルモノマーを、アリルエーテルモノマー(2)に変更して、かつ酢酸ビニル723質量部、アリルエーテルモノマー(2)257質量部、及びメタノール20質量部、2,2-アゾビスイソブチロニトリルを1質量部に変更した。さらに、アリルエーテルモノマー(2)、及びメタノール添加後に、系内の温度を62℃に上昇させ、62℃で2,2-アゾビスイソブチロニトリルを添加して、重合を行った以外は実施例1と同様に実施して、PVB2を得て、PVB2を用いて実施例1と同様に粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に物性を測定し、または評価を行った。
 なお、アリルエーテルモノマー(2)は、式(4-2)に示す化合物であり、AOがオキシプロピレン基(PO)であり、その平均繰り返し数、及び末端基(R)は、表1に示すとおりである。
(実施例5)
 100質量部のPVB2に対して、15質量部の可塑剤(トリエチレングリコール-ジ-2-エチルヘキサノエート:3GO)を混合して、樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形し、粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に物性を測定し、または評価を行った。
(実施例6)
 酢酸ビニル552質量部、アリルエーテルモノマー(1)162質量部、及びメタノール286質量部、2,2-アゾビスイソブチロニトリルを1.4質量部に変更した以外は実施例1と同様に実施して、PVB3を得て、PVB3を用いて実施例1と同様に粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に物性を測定し、または評価を行った。
(実施例7)
 実施例6と同様の方法で得たPVB3を用意し、100質量部のPVB3に対して、10質量部の可塑剤(3GO)を混合して樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形して、粘着フィルムを得た。得られた粘着フィルムに対して、実施例1と同様に物性を測定し、または評価を行った。
(実施例8)
 酢酸ビニル572質量部、アリルエーテルモノマー(1)143質量部、及びメタノール286質量部、2,2-アゾビスイソブチロニトリルを0.7質量部に変更した以外は実施例1と同様に実施して、PVB4を得て、PVB4を用いて実施例1と同様に粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に評価した。
(実施例9)
 使用するアリルエーテルモノマーを、アリルエーテルモノマー(3)に変更して、かつ酢酸ビニル751質量部、アリルエーテルモノマー(3)230質量部、及びメタノール20質量部、2,2-アゾビスイソブチロニトリルを1質量部に変更した以外は実施例1と同様に実施して、PVB5を得て、PVB5を用いて実施例1と同様に粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に評価した。
 なお、アリルエーテルモノマー(3)は、式(4-2)に示す化合物であり、AOがオキシエチレン基(PO)と、オキシプロピレン基(PO)が混在し、その平均繰り返し数、及び末端基(R)は、は表1に示すとおりである。
(実施例10)
 使用するアリルエーテルモノマーを、アリルエーテルモノマー(4)に変更して、かつ酢酸ビニル834質量部、アリルエーテルモノマー(4)147質量部、及びメタノール20質量部、2,2-アゾビスイソブチロニトリルを0.5質量部に変更した。さらに、アリルエーテルモノマー(4)、及びメタノール添加後に、系内の温度を52℃に上昇させ、52℃で2,2-アゾビスイソブチロニトリルを添加して、重合を行った以外は実施例1と同様に実施して、PVB6を得て、PVB6を用いて実施例1と同様に粘着フィルムを作製した。得られた粘着フィルムに対して、実施例1と同様に評価した。
 なお、アリルエーテルモノマー(4)は、式(4-2)に示す化合物であり、AOがオキシエチレン基(EO)であり、その平均繰り返し数、及び末端基(R)は、表1に示すとおりである。
(比較例1)
 使用するポリビニルアセタール系樹脂を、未変性ポリビニルブチラールであるPVB7を使用し、かつ100質量部のPVB7に対して、40質量部の可塑剤(3GO)を混合して、樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形して、粘着フィルムを得た。得られた粘着フィルムに対して、実施例1と同様に評価した。
(比較例2)
 使用するポリビニルアセタール系樹脂を、未変性ポリビニルブチラールであるPVB8を使用し、かつ100質量部のPVB8に対して、25質量部の可塑剤(3GO)を混合して、樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形して、粘着フィルムを得た。得られた粘着フィルムに対して、実施例1と同様に評価した。
(比較例3)
 使用するポリビニルアセタール系樹脂を、未変性ポリビニルブチラールであるPVB7を使用した。100質量部のPVB7に対して、30質量部の可塑剤(3GO)、10質量部の反応性希釈剤(トリメチロールプロパントリアクリレート:TMPA)、及び光重合開始剤としてのベンゾフェノン(BP)0.1質量部を混合して、樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形して、粘着フィルムを得た。得られた粘着フィルムに対して、ブリード性の評価を行った。また、粘着フィルムに対して、超高圧水銀灯を用いて、365nmの波長の光を4000mJ/cm照射し、光照射後にせん断貯蔵弾性率(G’)、tanδの最大ピーク温度を測定した。
 さらに、ポリカーボネート基材への接着力、衝突安全性、及びTAC偏光板に対する接着力の評価においては、比較例3で作製した粘着フィルムを用いて上記各評価方法で述べたとおりに積層体を製造して、その積層体に対して超高圧水銀灯を用いて、365nmの波長の光を4000mJ/cm照射した。その後、ポリカーボネート基材への接着力、衝突安全性、及びTAC偏光板に対する接着力を評価した。
(比較例4)
 原料として使用するポリビニルブチラールを、PVB1の代わりに、未変性ポリビニルブチラールであるPVB8を使用した。100質量部のPVB8に対して、10質量部の可塑剤(3GO)、20質量部の反応性希釈剤(TMPA)、及び光重合開始剤としてのベンゾフェノン0.2質量部を混合して、樹脂組成物を得て、得られた樹脂組成物を用いて実施例1と同様の方法でプレス成形して、粘着フィルムを得た。得られた粘着フィルムに対して、ブリード性の評価を行った。また、粘着フィルムに対して、超高圧水銀灯を用いて、365nmの波長の光を4000mJ/cm照射し、光照射後にせん断貯蔵弾性率(G’)、tanδの最大ピーク温度を測定した。
 さらに、ポリカーボネート基材への接着力、衝突安全性、及びTAC偏光板に対する接着力の評価においては、比較例3で作製した粘着フィルムを用いて上記各評価方法で述べたとおりに積層体を製造して、その積層体に対して超高圧水銀灯を用いて、365nmの波長の光を4000mJ/cm照射した。その後、ポリカーボネート基材への接着力、衝突安全性、及びTAC偏光板に対する接着力を評価した。
(比較例5)
 表3に示すモノマー比でモノマーを重合して得た(メタ)アクリル系重合体(Ac1)100質量部を固形分量45質量%になるように酢酸エチルで希釈して、固形分基準で、イソシアネート系架橋剤(日本ポリウレタン社製「コロネートL-45」、固形分量45質量%)を1質量部添加して、樹脂組成物を得た。得られた樹脂組成物を、離型PETフィルムの離型処理面に乾燥後の厚さが150μmになるように塗工して、80℃で15分間乾燥して、粘着フィルムを得た。得られた粘着フィルムに対して、23℃で5日間養生した後、実施例1と同様に評価した。
(比較例6)
 (メタ)アクリル系重合体(Ac1)を(メタ)アクリル系重合体(Ac2)に変更した点を除いて比較例5と同様に実施した。
 実施例で原料として使用したアリルエーテルモノマー(1)~(4)を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例及び比較例で使用したPVB1~PVB8を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000010
 比較例で使用した(メタ)アクリル系重合体を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000011
 各実施例、比較例の実施条件、物性及び評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012

※1 熱可塑性樹脂100質量部に対する質量部を示す。
※2 反応性希釈剤100質量部に対する質量部を示す。
 以上の各実施例の粘着フィルムは、所定の熱可塑性樹脂を使用することで、20℃におけるせん断貯蔵弾性率が高く、かつポリカ―ボネート基材への接着力も高かったため、衝突安全性が高く、かつ各種樹脂材料に対する接着力が高く、TAC偏光板に対する接着力も優れていた。また、可塑剤が配合されず、又は配合されても少量であるため、ブリード性も良好であった。
 それに対して、比較例1~4では、ポリカ―ボネート基材への接着力が低かったため、各種樹脂材料に対する接着力が不十分で、TAC偏光板に対する接着力も低かった。また、可塑剤が大量に配合され、或いは、可塑剤と反応性希釈剤が大量に配合されていたため、ブリード性も不十分であった。また、比較例5、6では、20℃におけるせん断貯蔵弾性率(G’)が低いため、衝突安全性が不十分であった。
 30A、30B、30C、30D 積層体
 31 表示素子
 32 表面保護パネル
 34、34A、34B 接着用フィルム(粘着フィルム)
 32 第2の層
 41、42 合わせガラス部材
 43 偏光素子

Claims (11)

  1.  熱可塑性樹脂を含む粘着フィルムであって、
     可塑剤を含まない、又は前記熱可塑性樹脂100質量部に対して可塑剤を20質量部未満で含み、
     20℃におけるせん断貯蔵弾性率が3×10Pa以上であり、下記方法で測定したポリカ―ボネート基材への接着力が100N以上である、粘着フィルム。
    <接着力測定方法>
     縦15mm及び横15mmのサイズの粘着フィルムと、JIS K6735に準拠した厚み2mm、縦25mm及び横100mmのポリカーボネート板ガラスを2枚用意する。前記粘着フィルムを介して、2枚のポリカーボネート板ガラスを、互いの長手方向が垂直となるように配置して十字に重ね合わせる。その後、前記粘着フィルムの厚みが一定になるように、前記粘着フィルムと同じ厚みのスペーサーを用いて、真空ラミネーターにおいて、前記粘着フィルムを介して、重ね合わせた2枚のポリカーボネート板ガラスを、90℃、0.1MPaの条件で3分間仮圧着をする。次いで、仮圧着した2枚のポリカーボネート板ガラスを、90℃、0.5MPaの条件でさらに1時間本圧着を行い、合わせガラスサンプルを得る。得られた合わせガラスサンプルについて、温度23℃の環境下で、速度10mm/分で、一方のポリカーボネート板ガラスから他方のポリカーボネート板ガラスを、接着面と垂直方向に剥離させたときの最大荷重(N)を測定し、その最大荷重(N)を接着力とする。
  2.  -50℃から150℃におけるtanδの最大ピーク温度が10℃以上52℃以下である、請求項1に記載の粘着フィルム。
  3.  厚みが100μm以上2000μm以下である、請求項1又は2に記載の粘着フィルム。
  4.  厚みが100μm以上1000μm以下である、請求項1~3のいずれか1項に記載の粘着フィルム。
  5.  前記熱可塑性樹脂がポリビニルアセタール系樹脂である、請求項1~4のいずれか1項に記載の粘着フィルム。
  6.  前記ポリビニルアセタール系樹脂が、以下の式(1)で示すポリアルキレンオキサイド構造を有する、請求項5に記載の粘着フィルム。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、AOは炭素数2~6のオキシアルキレン基であり、mは平均繰り返し数であり、4~200である。Rは炭素数が1~8のアルキル基又は水素原子である。なお、オキシアルキレン基は1種単独でもよいし、2種類以上が混在していてもよい。*は他の基との結合位置である。)
  7.  請求項1~6のいずれか1項に記載の粘着フィルムと、無機材料基材、及び有機材料基材の少なくともいずれかを備える、積層体。
  8.  前記粘着フィルムが、無機材料基材、及び有機材料基材の少なくともいずれかに接着するように配置される、請求項7に記載の積層体。
  9.  前記無機材料基材が、無機ガラス板、並びに、電極又はセンサーの少なくともいずれかが付けられた無機ガラス板からなる群から選択される、請求項7又は8に記載の積層体。
  10.  前記有機材料基材が、ポリカーボネート板、(メタ)アクリル板、並びにポリエチレンテレフタレートフィルム、環状ポリオレフィンフィルム、ポリカーボネートフィルム、及びこれらフィルムに電極又はセンサーの少なくともいずれかが付けられたフィルムからなる群から選択される、請求項7~9のいずれか1項に記載の積層体。
  11.  無機材料基材及び有機材料基材から選択される一対の基材と、前記一対の基材の間に配置される前記粘着フィルムとを備え、3層以上の多層構造である、請求項7~10のいずれか1項に記載の積層体。
PCT/JP2022/024190 2021-06-18 2022-06-16 粘着フィルム、及び積層体 WO2022265073A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022542637A JPWO2022265073A1 (ja) 2021-06-18 2022-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021102040 2021-06-18
JP2021-102040 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022265073A1 true WO2022265073A1 (ja) 2022-12-22

Family

ID=84527541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024190 WO2022265073A1 (ja) 2021-06-18 2022-06-16 粘着フィルム、及び積層体

Country Status (3)

Country Link
JP (1) JPWO2022265073A1 (ja)
TW (1) TW202313886A (ja)
WO (1) WO2022265073A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148360A1 (ja) * 2013-03-22 2014-09-25 株式会社クラレ ポリビニルアセタール組成物
JP2015025042A (ja) * 2013-07-25 2015-02-05 積水化学工業株式会社 接着剤用ポリビニルアセタール樹脂
WO2016158694A1 (ja) * 2015-03-31 2016-10-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2017061545A1 (ja) * 2015-10-07 2017-04-13 積水化学工業株式会社 ポリビニルアセタール樹脂組成物、接着シート、タッチパネル用層間充填材料及び積層体
JP2017149956A (ja) * 2015-10-07 2017-08-31 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
JP2019065166A (ja) * 2017-09-29 2019-04-25 積水化学工業株式会社 水系ポリビニルアセタール樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148360A1 (ja) * 2013-03-22 2014-09-25 株式会社クラレ ポリビニルアセタール組成物
JP2015025042A (ja) * 2013-07-25 2015-02-05 積水化学工業株式会社 接着剤用ポリビニルアセタール樹脂
WO2016158694A1 (ja) * 2015-03-31 2016-10-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2017061545A1 (ja) * 2015-10-07 2017-04-13 積水化学工業株式会社 ポリビニルアセタール樹脂組成物、接着シート、タッチパネル用層間充填材料及び積層体
JP2017149956A (ja) * 2015-10-07 2017-08-31 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
JP2019065166A (ja) * 2017-09-29 2019-04-25 積水化学工業株式会社 水系ポリビニルアセタール樹脂組成物

Also Published As

Publication number Publication date
TW202313886A (zh) 2023-04-01
JPWO2022265073A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
US20170197387A1 (en) Interlayer for laminated glass and laminated glass
US10688758B2 (en) Laminated glass intermediate film and laminated glass
US9764534B2 (en) Laminated glass interlayer and laminated glass
JP5244243B2 (ja) 合わせガラス用中間膜及び合わせガラス
EP3128398B1 (en) Interlayer filling material for touch panel, and laminated body
WO2016093280A1 (ja) 透明接着剤付き偏光板、及び、タッチパネル
US20230142686A1 (en) Interlayer film for laminated glass, and laminated glass
WO2022265073A1 (ja) 粘着フィルム、及び積層体
WO2022265074A1 (ja) 粘着フィルム、及び積層体
WO2022265075A1 (ja) 粘着フィルム、積層体、液晶ディスプレイ及び合わせガラス
WO2022265077A1 (ja) 粘着フィルム、積層体、液晶ディスプレイ及び合わせガラス
JP2017021527A (ja) タッチパネル用層間充填材料キット、積層体、及び、積層体の製造方法
WO2023120667A1 (ja) 変性ポリビニルアセタール樹脂、及びフィルム
WO2022265079A1 (ja) ポリビニルアセタール系樹脂、及びフィルム
WO2022097753A1 (ja) 液晶デバイス用フィルム、液晶デバイス、及び調光装置
WO2024122517A1 (ja) 機能性積層体、及び合わせガラス
WO2024122512A1 (ja) 合わせガラス、及びその製造方法
CN117545814A (zh) 胶粘膜、叠层体、液晶显示器及夹层玻璃
CN117460799A (zh) 粘合膜和层叠体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825061

Country of ref document: EP

Kind code of ref document: A1