WO2022097753A1 - 液晶デバイス用フィルム、液晶デバイス、及び調光装置 - Google Patents

液晶デバイス用フィルム、液晶デバイス、及び調光装置 Download PDF

Info

Publication number
WO2022097753A1
WO2022097753A1 PCT/JP2021/041082 JP2021041082W WO2022097753A1 WO 2022097753 A1 WO2022097753 A1 WO 2022097753A1 JP 2021041082 W JP2021041082 W JP 2021041082W WO 2022097753 A1 WO2022097753 A1 WO 2022097753A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal device
group
resin
Prior art date
Application number
PCT/JP2021/041082
Other languages
English (en)
French (fr)
Inventor
祐美子 寺口
裕司 大東
祐樹 岡田
加奈子 浦所
尚輝 鴨志田
由貴 石川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020237014055A priority Critical patent/KR20230104874A/ko
Priority to EP21889304.8A priority patent/EP4242739A1/en
Priority to MX2023005330A priority patent/MX2023005330A/es
Priority to US18/034,947 priority patent/US20230399475A1/en
Priority to JP2022560840A priority patent/JPWO2022097753A1/ja
Priority to CN202180075140.3A priority patent/CN116529222A/zh
Publication of WO2022097753A1 publication Critical patent/WO2022097753A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • B32B17/10211Doped dielectric layer, electrically conductive, e.g. SnO2:F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10605Type of plasticiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • G02F2202/025Materials and properties organic material polymeric curable thermocurable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/08Materials and properties glass transition temperature
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a film for a liquid crystal device, a liquid crystal device having a film for the liquid crystal device, and a dimming device.
  • thermoplastic resin such as a polyvinyl acetal resin containing a plasticizer is generally used in order to secure penetration resistance, adhesion to glass, and shock absorption. ..
  • a dimming film provided with a liquid crystal layer into a transparent member such as a window glass in order to be able to adjust light transmission and the like, and even in laminated glass, an interlayer film is being considered. It is being considered to incorporate a light control film inside.
  • Patent Document 1 discloses that a liquid crystal film is built in a laminated window panel having an intermediate layer structure laminated between the first and second glass layers.
  • the intermediate layer structure includes a frame-shaped first intermediate layer arranged on the outer peripheral side of the liquid crystal film, and second and third intermediate layers laminated so as to arrange the liquid crystal film in between.
  • two dimming cells made of a liquid crystal film or the like are arranged between two glass plates, and an interlayer film is arranged between each glass plate and the dimming cell, or between the dimming cells. Is arranged, and it is shown that the glass plate and the dimming cell, or the dimming cells are joined to each other via an interlayer film.
  • Patent Documents 1 and 2 the detailed composition of the intermediate layer and the interlayer film is not shown, and it is unclear whether or not the liquid crystal contamination can be appropriately prevented in the disclosed contents of Patent Documents 1 and 2, and further improvement is made. is necessary. Therefore, it is an object of the present invention to provide a film for a liquid crystal device capable of preventing liquid crystal contamination in a liquid crystal device and suppressing defects such as display unevenness.
  • the present inventors have found that the above problems can be solved by suppressing the change in the NI point when the film for a liquid crystal device comes into contact with the liquid crystal within a certain range, and completed the following invention. .. That is, the gist of the present invention is as follows [1] to [30]. [1] A film for a liquid crystal device used for a liquid crystal device, which contains a thermoplastic resin and contains. A film for a liquid crystal device in which the change in NI point when the film for the liquid crystal device is brought into contact with the liquid crystal is -2 ° C to + 2 ° C.
  • [2] Does not contain a plasticizer, or contains at least one of a plasticizer having a hydroxyl group and a plasticizer having no hydroxyl group.
  • the content of the plasticizer having a hydroxyl group is 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the film for a liquid crystal device according to the above [1], wherein the content of the plasticizer having no hydroxyl group is 25 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the film for a liquid crystal device according to the above [2] which does not contain a plasticizer or contains 70 parts by mass or less of a plasticizer containing a hydroxyl group with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin is at least one selected from the group consisting of a polyvinyl acetal resin, an ionomer resin, a polyurethane resin, a polyolefin resin, and an ethylene-vinyl acetate copolymer resin.
  • thermoplastic resin is a polyvinyl acetal-based resin.
  • the polyvinyl acetal-based resin has at least one of a hydrocarbon group or a polyoxyalkylene group other than the hydrocarbon group constituting the acetal group and the acetyl group in the side chain.
  • the film for a liquid crystal device according to item 1. At least one of the hydrocarbon group or the polyoxyalkylene group is one of an ester bond, an ether bond, -CH 2 O-, -CH 2 CH 2 O-, -CONH-, and a urethane bond.
  • the film for a liquid crystal device according to the above [8] which is connected to the main chain by a group.
  • thermoplastic having a hydroxyl group which contains a thermoplastic having a hydroxyl group
  • thermoplastic having the hydroxyl group is at least one selected from the group consisting of a (poly) ether polyol, a polyester polyol, and an ether compound of a (poly) ether polyol.
  • the film for a liquid crystal device according to any one of the above [1] to [22], which contains a plasticizer having no hydroxyl group and the plasticizer having no hydroxyl group is an organic ester plasticizer.
  • a dimming device comprising the film for a liquid crystal device according to the above [25] and a liquid crystal dimming cell.
  • the liquid crystal dimming cell is further provided with two transparent plates and an interlayer film, and the intermediate film is arranged between at least one of the transparent plates and the liquid crystal dimming cell.
  • Two transparent plates and an interlayer film are further provided, two or more liquid crystal dimming cells are provided between the two transparent plates, and the interlayer film is arranged between the liquid crystal dimming cells. Join these and The dimming device according to the above [27] or [28], wherein the interlayer film includes the film for a liquid crystal device.
  • the content of the plasticizer having a hydroxyl group is 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • a film for an electronic device in which the content of the plasticizer having no hydroxyl group is 25 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the present invention provides a film for a liquid crystal device that can prevent liquid crystal contamination in a liquid crystal device and suppress problems such as display unevenness.
  • the film for a liquid crystal device of the present invention contains a thermoplastic resin, and the change in NI point when the film for a liquid crystal device is brought into contact with the liquid crystal is ⁇ 2 ° C. to + 2 ° C.
  • the NI point is the temperature at which the liquid crystal undergoes a phase transition from the nematic phase to the isotropic phase (isotropic phase), and can be measured from the endothermic peak top using a differential thermal analyzer (DSC).
  • DSC differential thermal analyzer
  • the NI point of the liquid crystal is determined by the mixed composition of each component of the liquid crystal, and is a unique value for each composition.
  • the NI point when a substance such as a plasticizer is mixed with the liquid crystal and the liquid crystal is contaminated, the NI point changes significantly. Therefore, it can be used as an evaluation of the degree of contamination of the liquid crystal display by observing the change in the NI point.
  • the change in NI point when the film for the liquid crystal device is brought into contact with the liquid crystal is -2 ° C to + 2 ° C
  • the film for the liquid crystal device is used in an environment where the film is in contact with or close to the liquid crystal device.
  • the change in NI point is preferably ⁇ 1.5 ° C. to + 1.5 ° C., more preferably -1 ° C.
  • the temperature is + 0.5 ° C, particularly preferably ⁇ 0.3 ° C to + 0.3 ° C.
  • the change in the NI point can be adjusted within the above range by appropriately adjusting the composition of the thermoplastic resin, the presence or absence of the plasticizer, and the type and amount of the plasticizer.
  • To change the NI point leave the sample bottle containing the liquid crystal device film and liquid crystal (“JC-5001LA” manufactured by Chisso) at 100 ° C for 1 hour, and then return it to room temperature (25 ° C) before liquid crystal. It can be obtained by taking out a portion and using it as an evaluation liquid crystal sample, measuring the NI points of the blank liquid crystal and the evaluation liquid crystal sample, and calculating the difference. Details of the measurement conditions are as described in the examples.
  • As the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) can be used instead of the above-mentioned "JC-5001LA".
  • the glass transition temperature (Tg) of the film for a liquid crystal device of the present invention is, for example, 75 ° C. or lower, preferably 55 ° C. or lower.
  • Tg glass transition temperature
  • the flexibility is increased, and the impact absorption and the penetration resistance when used as an interlayer film can be improved.
  • thermocompression bonding is performed at a relatively low temperature of about 80 ° C., it becomes possible to adhere to a glass plate or a base material (such as a base film or a plastic substrate) constituting a liquid crystal device with a high adhesive force.
  • a liquid crystal device may be damaged when heated to a high temperature, but when bonded by thermocompression bonding at a low temperature as described above, the liquid crystal device can be damaged without being damaged by a film for a liquid crystal device, such as a glass plate. It becomes possible to join to the member of.
  • the glass transition temperature (Tg) is more preferably 50 ° C. or lower, and even more preferably 45 ° C. or lower, from the viewpoints of adhesiveness, penetration resistance, shock absorption and the like.
  • the glass transition temperature (Tg) of the film for a liquid crystal device is not particularly limited with respect to the lower limit value, but from the viewpoint of improving handleability without developing adhesiveness and the like, it is easy to adjust the change in NI point within the above range. From the viewpoint of the above, for example, it is 5 ° C. or higher, preferably 10 ° C. or higher, and more preferably 15 ° C. or higher.
  • the glass transition temperature of the film for a liquid crystal device can be detected by measuring the viscoelasticity using a dynamic viscoelasticity measuring device and reading the peak temperature of the loss tangent tan ⁇ obtained from the result of the viscoelasticity measurement. Details of the measurement conditions are as described in the examples.
  • the thermoplastic resin contained in the film for a liquid crystal device is preferably selected from a polyvinyl acetal resin, an ionomer resin, a polyurethane resin, a polyolefin resin, and an ethylene-vinyl acetate copolymer resin.
  • a polyvinyl acetal resin an ionomer resin
  • a polyurethane resin a polyurethane resin
  • a polyolefin resin ethylene-vinyl acetate copolymer resin.
  • the polyvinyl acetal-based resin used for the film for a liquid crystal device may be a modified polyvinyl acetal resin or an unmodified polyvinyl acetal resin.
  • Polyvinyl acetal resins typically have acetal groups, hydroxyl groups, and acetyl groups in their side chains, whereas modified polyvinyl acetal resins have units other than these, typically other units in their side chains.
  • the modified polyvinyl acetal resin preferably has a hydrocarbon group or a polyoxyalkylene group in the side chain as a unit other than the above.
  • the hydrocarbon group referred to here is a hydrocarbon group other than the acetal group and the hydrocarbon group constituting the acetyl group, and in the following description of the polyvinyl acetal resin, the term "hydrogen group" is used.
  • Acetal group and acetyl group have the same meaning except for the case of explaining the hydrocarbon group.
  • the polyvinyl acetal resin has a hydrocarbon group or a polyoxyalkylene group, the glass transition temperature (Tg) is low even if the film for a liquid crystal device does not contain a plasticizer or contains a small amount. As a result, it is possible to improve the adhesiveness to the base material constituting the liquid crystal device, the glass plate, etc. while ensuring a certain degree of flexibility.
  • the polyvinyl acetal-based resin is preferably a modified polyvinyl acetal resin having a polyoxyalkylene group in the side chain among the above-mentioned resins.
  • the unmodified polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol with an aldehyde.
  • the modified polyvinyl acetal resin is obtained, for example, by acetalizing polyvinyl alcohol with an aldehyde and further reacting it with a modifying agent. Further, the modified polyvinyl acetal resin may be obtained by using modified polyvinyl alcohol as the raw material polyvinyl alcohol and acetalizing the modified polyvinyl alcohol with an aldehyde.
  • Units other than acetal groups, hydroxyl groups, and acetyl groups are the main chains of any of the following linking groups: ester bond, ether bond, -CH 2 O-, -CH 2 CH 2 O-, -CONH-, and urethane bond. It is preferable that they are connected. More specifically, it is preferable that either the hydrocarbon group or the polyoxyalkylene group is linked to the main chain via the linking group. In -CH 2 O-, a carbon atom may be linked to the main chain. Similarly, -CH 2 CH 2 O- and -CONH- may also have carbon atoms linked to the main chain. Further, the hydrocarbon group has, for example, 2 to 30 carbon atoms.
  • the polyvinyl acetal resin contained in the film for liquid crystal devices has the above structure, so that the glass transition temperature (Tg) is lowered and the flexibility is increased, while the base material and the glass plate constituting the liquid crystal device are used. Good adhesion to and from.
  • the hydrocarbon group has a structure in which the hydrocarbon group is linked to the main chain via either an ester bond or a urethane bond. Is preferable.
  • the polyoxyalkylene group is contained, it is preferable that the polyoxyalkylene group has a structure in which the polyoxyalkylene group is linked to the main chain via either an ether bond or —CH 2 O—. More specifically, the polyvinyl acetal-based resin preferably has at least one selected from the functional groups represented by the following formulas (1-1) to (1-3).
  • the polyvinyl acetal resin has at least the functional groups represented by the formulas (1-1) to (1-3), the glass transition temperature (Tg) of the film for a liquid crystal device does not need to contain a large amount of a plasticizer. ) Can be lowered to ensure a certain degree of flexibility, and the adhesiveness to a glass plate or a base material constituting a liquid crystal device can be improved. Further, from the viewpoint of adhesiveness and the like, it is more preferable to have a functional group represented by the formula (1-3).
  • R 1 and R 2 are hydrocarbon groups having 2 to 30 carbon atoms independently.
  • Y is oxygen. It is either an atom, -CH 2 O-, -CH 2 CH 2 O-, or -CONH-
  • a 1 O is an oxyalkylene group having 2 to 4 carbon atoms
  • m is an average number of repetitions. 4 to 120.
  • R 3 is an independently alkyl group or hydrogen atom having 1 to 4 carbon atoms.
  • One type of oxyalkylene group may be used alone, or two or more types, for example, an oxyethylene group and an oxypropylene group. Group etc. may be mixed.
  • the hydrocarbon group in R 1 and R 2 may or may not have an aromatic ring, but is preferably an aliphatic hydrocarbon group having no aromatic ring. Since it is an aliphatic hydrocarbon group, it becomes easy to improve the adhesiveness to organic glass such as a polycarbonate plate and a base material constituting a liquid crystal device. Further, the aliphatic hydrocarbon group may be linear, may have a branch, or may have a ring structure. For example, when an aliphatic hydrocarbon group is branched, it tends to lower the glass transition temperature (Tg). Further, the aliphatic hydrocarbon group may have an unsaturated bond or may not have an unsaturated bond.
  • the aliphatic hydrocarbon group is preferably an alkenyl group, an alkyl group or an alkynyl group, but more preferably an alkyl group.
  • the number of carbon atoms in each of R 1 and R 2 is preferably 3 or more, more preferably 5 or more, still more preferably 7 or more, and even more preferably 11 or more.
  • Tg glass transition temperature
  • the number of carbon atoms in each of R 1 and R 2 is preferably 24 or less, more preferably 20 or less, still more preferably 18 or less, from the viewpoint of preventing crystallization and facilitating the improvement of the transmittance.
  • R 1 and R 2 are preferably an alkyl group having 3 to 24 carbon atoms, more preferably an alkyl group having 5 to 20 carbon atoms, still more preferably an alkyl group having 7 to 18 carbon atoms, and 11 to 18 carbon atoms. Alkyl groups are even more preferred.
  • R 1 and R 2 include branched butyl groups such as n-propyl group, isopropyl group, n-butyl group, s-butyl and t-butyl groups, n-pentyl group, branched pentyl group and n-hexyl.
  • Branched heptyl group such as group, branched hexyl group, n-heptyl group, isoheptyl group, 3-heptyl group, branched octyl group such as n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group and the like.
  • a 1 O is an oxyalkylene group having 2 to 4 carbon atoms.
  • the oxyalkylene group having 2 to 4 carbon atoms is an oxyethylene group, an oxypropylene group, or an oxybutylene group, preferably an oxyethylene group or an oxypropylene group, and more preferably an oxyethylene group.
  • the oxyalkylene group may be used alone or in combination of two or more, and in that case, each oxyalkylene group may be added randomly or in a block.
  • m indicates the average number of repetitions of the oxyalkylene group, which is 4 to 120, preferably 8 to 110, and more preferably 12 to 100.
  • R 3 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, and a t-butyl group.
  • R 3 is an alkyl group or a hydrogen atom having 1 to 4 carbon atoms, preferably an alkyl group or a hydrogen atom having 1 to 2 carbon atoms, more preferably a methyl group or a hydrogen atom, and further preferably. It is a hydrogen atom.
  • Y is either an oxygen atom (ether bond), -CH 2 O-, -CH 2 CH 2 O-, or -CONH-, but is an oxygen atom, or -CH 2 . Either O- is preferable. Therefore, it is preferable that the functional group is represented by the following formulas (1-4) and (1-5). In -CH 2 O- and -CH 2 CH 2 O-, an oxygen atom may be bonded to a carbon atom (A 1 ) of A 1 O, and in -CONH-, a nitrogen atom may be bonded. (In equations (1-4) and ( 1-5 ), A1 O, m, and R 3 are the same as above, respectively.)
  • the functional group represented by the formula (1-3) is the functional group represented by ⁇ O— (CH 2 CH 2 O) m ⁇ H, or ⁇ CH 2 O— (CH 2 CH 2 O) m ⁇ . It is particularly preferable that it is a functional group represented by H.
  • the preferred range of m in these cases is also as described above.
  • the polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group.
  • the polyvinyl acetal-based resin does not have to contain a hydroxyl group because it is modified by a functional group.
  • the polyvinyl acetal-based resin preferably has a hydrocarbon group or a polyoxyalkylene group in the side chain as described above by being modified, and specifically, the above formulas (1-1) to (1) to (form). It is preferable to have at least one functional group selected from the functional groups shown in 1-3).
  • a polyvinyl acetal-based resin having a hydrocarbon group or a polyoxyalkylene group in the side chain typically polyvinyl having any of the functional groups represented by the above formulas (1-1) to (1-3).
  • the acetal-based resin may be described as the polyvinyl acetal-based resin (A) in order to distinguish it from other polyvinyl acetal-based resins.
  • the polyvinyl acetal-based resin (A) has a modification amount of, for example, 0.2 mol% or more and 25 mol% or less due to a functional group selected from a hydrocarbon group and a polyoxyalkylene group.
  • the amount of modification is typically the amount of modification due to the functional groups represented by the above formulas (1-1) to (1-3).
  • Tg glass transition temperature
  • the preferred value of the modification amount depends on the type of functional group.
  • a polyvinyl acetal-based resin having a hydrocarbon group in a side chain (hereinafter, may be referred to as “polyvinyl acetal-based resin (A-1)” for convenience) has a hydrocarbon group from the viewpoint of improving the adhesiveness.
  • the amount of modification by (typically, the functional group represented by the formula (1-1) and the formula (1-2)) is preferably 5 mol% or more and 25 mol% or less.
  • the modification amount is more preferably 6 mol% or more, further preferably 8 mol% or more, further preferably 10 mol% or more, still more preferably 25 mol% or less, still more preferably 22 mol% or less.
  • polyvinyl acetal-based resin (A-2) is a polyoxyalkylene from the viewpoint of improving the adhesiveness.
  • the amount of modification by the group is preferably 0.2 mol% or more and 12 mol% or less.
  • the modification amount is more preferably 0.5 mol% or more, further preferably 0.6 mol% or more, further preferably 0.8 mol% or more, still more preferably 10 mol% or less, and further preferably 8 mol. % Or less is more preferable, and 6 mol% or less is even more preferable.
  • the amount of modification by each functional group represents the ratio of each functional group to the total vinyl monomer unit constituting the polyvinyl acetal-based resin, and is represented by the formulas (1-1) and (1-2), for example.
  • the amount of modification with a functional group represents the total amount of the ratio of these functional groups.
  • the amount of modification can be calculated from the obtained spectrum obtained by performing proton NMR measurement on the polyvinyl acetal resin.
  • the degree of acetalization, the amount of hydroxyl groups, and the degree of acetylation, which will be described later, can also be calculated from the obtained spectra obtained by performing proton NMR measurement in the same manner.
  • the polyvinyl acetal-based resin does not have to have a polyoxyalkylene group or a hydrocarbon group in the side chain.
  • a polyvinyl acetal-based resin contains a functional group other than the polyoxyalkylene group and the hydrocarbon group (typically, a functional group other than the functional groups represented by the formulas (1-1) to (1-3)). It may be a modified polyvinyl acetal resin having or an unmodified polyvinyl acetal resin. Even if it is an unmodified polyvinyl acetal resin, the glass transition temperature (Tg) can be easily lowered by adding a plasticizer as described later.
  • the polyvinyl acetal-based resin has a structural unit derived from a vinyl group as a main chain, and the functional groups represented by the formulas (1-1) to (1-3) have a constitution derived from a vinyl group constituting the main chain. It should be combined with the unit. Therefore, the polyvinyl acetal-based resin preferably has any of the structural units represented by the following formulas (2-1) to (2-3), and any of the structural units represented by the formula (2-3). It is more preferable to have a resin.
  • R 1 and R 2 are the same as above.
  • Y, A 1 O, m, and R 3 are the same as above, respectively. Is the same as.
  • the polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group, that is, the polyvinyl acetal-based resin typically has the following formulas (3-1) and (3-2). ) And the structural unit represented by the formula (3-3). Therefore, the modified polyvinyl acetal resin has the structural units represented by the following formulas (3-1), (3-2) and (3-3), and the above-mentioned formulas (2-1) to (2-). It is preferable to have at least one structural unit selected from 3). However, the polyvinyl acetal-based resin may not have a hydroxyl group as described above, and may not have a structural unit represented by the formula (3-2). That is, the polyvinyl acetal-based resin has the structural units represented by the following formulas (3-1) and (3-3), but may further have the structural units represented by the following formulas (3-2). preferable.
  • R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 19 carbon atoms.
  • the polyvinyl acetal-based resin is obtained by acetalizing polyvinyl alcohol or modified polyvinyl alcohol obtained by modifying polyvinyl alcohol with aldehyde as described above, and then modifying it as necessary.
  • the degree of saponification of polyvinyl alcohol is high. 80-99.8 mol% polyvinyl alcohol is commonly used.
  • the average degree of polymerization of polyvinyl alcohol is preferably 300 or more and 5000 or less in order to adjust the average degree of polymerization of the polyvinyl acetal resin within a desired range.
  • the average degree of polymerization of polyvinyl alcohol is determined by a method based on JIS K6726 "polyvinyl alcohol test method".
  • the carbon number of the acetal group contained in the polyvinyl acetal-based resin is not particularly limited, but as shown in the above formula (3-1), for example, it is 1 to 20, but preferably 2 to 10. It is more preferably to 6 and even more preferably 2, 3 or 4. Therefore, the carbon number of R5 represented by the above formula (3-1) is preferably 1 to 9, more preferably 1 to 5 , and even more preferably 1 to 3.
  • a butyral group is particularly preferable, and therefore, as the polyvinyl acetal-based resin, a polyvinyl butyral-based resin is preferable.
  • the degree of acetalization (that is, the amount of acetal groups) of the polyvinyl acetal-based resin is preferably 40 mol% or more and 90 mol% or less.
  • the degree of acetalization is more preferably 55 mol% or more, further preferably 60 mol% or more, still more preferably 85 mol% or less, still more preferably 83 mol% or less.
  • the degree of acetalization means the degree of acetalization when the acetal group of the polyvinyl acetal-based resin is an acetal acetal group, and the degree of butyralization when the acetal group is a butyral group. ..
  • the degree of acetalization represents the ratio of the acetalized vinyl alcohol unit to the total vinyl monomer unit constituting the polyvinyl acetal-based resin.
  • the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 35 mol% or less.
  • the glass transition temperature (Tg) is lowered, and it becomes easy to improve the adhesiveness to organic glass such as a polycarbonate plate.
  • the amount of hydroxyl groups is more preferably 30 mol% or less, still more preferably 25 mol% or less.
  • the amount of hydroxyl groups in the polyvinyl acetal-based resin is preferably 0 mol% or more, but in the case of the polyvinyl acetal-based resin (A), a certain amount or more of hydroxyl groups is used from the viewpoint of preventing the film from becoming too flexible.
  • the amount may be contained, for example, 5 mol% or more, preferably 9 mol% or more, and more preferably 11 mol% or more.
  • the amount of hydroxyl groups in the unmodified polyvinyl acetal resin is preferably 35 mol% or less, preferably 20 mol% or more, and more preferably 25 mol% or more, as described above.
  • the amount of hydroxyl groups represents the ratio of hydroxyl groups to the total vinyl monomer unit constituting the polyvinyl acetal resin.
  • the degree of acetylation (acetyl group amount) of the polyvinyl acetal-based resin is, for example, 40 mol% or less, preferably 20 mol% or less, and more preferably 10 mol% or less.
  • the degree of acetylation of the polyvinyl acetal resin is, for example, 0.01 mol% or more, preferably 0.1 mol% or more, and more preferably 0.5 mol% or more.
  • the degree of acetylation represents the ratio of the acetyl group to the total vinyl monomer unit constituting the polyvinyl acetal resin.
  • the average degree of polymerization of the polyvinyl acetal resin is preferably 300 or more and 5000 or less. By adjusting the average degree of polymerization within the above range, it becomes easy to improve the adhesiveness while maintaining good mechanical strength, flexibility and the like.
  • the average degree of polymerization of the polyvinyl acetal resin is more preferably 500 or more, further preferably 700 or more. Further, by lowering the average degree of polymerization, the glass transition temperature can be lowered, and as a result, the processability at the time of forming a film is improved. From such a viewpoint, the average degree of polymerization is more preferably 4500 or less, and even more preferably 3500 or less.
  • the average degree of polymerization of the polyvinyl acetal-based resin is the same as the average degree of polymerization of polyvinyl alcohol as a raw material, and can be determined by the average degree of polymerization of polyvinyl alcohol.
  • the aldehyde used in producing the polyvinyl acetal-based resin is not particularly limited, and is, for example, an aldehyde having 1 to 20 carbon atoms, but an aldehyde having 2 to 10 carbon atoms is preferably used.
  • the aldehyde having 2 to 10 carbon atoms is not particularly limited, and for example, acetaldehyde, propionaldehyde, n-butylaldehyde, isobutylaldehyde, n-barrelaldehyde, 2-ethylbutylaldehyde, n-hexylaldehyde, and n-octylaldehyde.
  • aldehydes having 2 to 6 carbon atoms such as acetaldehyde, n-butyraldehyde, n-hexylaldehyde, and n-barrelaldehyde are preferable, aldehydes having 2, 3 and 4 carbon atoms are more preferable, and n-butyraldehyde is further preferable. preferable.
  • aldehydes may be used alone or in combination of two or more.
  • the polyvinyl acetal-based resin used in the present invention may be used alone or in combination of two or more.
  • the film for a liquid crystal device of the present invention may be used alone or in combination with a thermoplastic resin other than the polyvinyl acetal resin. ..
  • the thermoplastic resin other than the polyvinyl acetal-based resin may be appropriately selected from the above-mentioned thermoplastic resins.
  • the main component is a polyvinyl acetal resin.
  • the total amount of the polyvinyl acetal-based resin is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin contained in the film for a liquid crystal device. Most preferably, it is 100% by mass.
  • the polyvinyl acetal-based resin used for the film for a liquid crystal device in the present invention is obtained by acetalizing polyvinyl alcohol (also referred to as “raw material polyvinyl alcohol”) with an aldehyde and then reacting it with a modifier, if necessary.
  • the raw material polyvinyl alcohol may be unmodified polyvinyl alcohol, but when a modified polyvinyl acetal resin is obtained, modified polyvinyl alcohol may be used as the raw material polyvinyl alcohol.
  • a polyvinyl acetal-based resin having at least one selected from the functional groups represented by the above formulas (1-1) and (1-2) (modified polyvinyl acetal resin (A-1)). Is preferably produced by the following production method (1).
  • the raw material polyvinyl alcohol is acetalized with an aldehyde to obtain a polyvinyl acetal-based resin (hereinafter, also referred to as a raw material polyvinyl acetal-based resin).
  • the raw material polyvinyl alcohol used here is obtained by saponifying a polyvinyl ester, and is preferably unmodified polyvinyl alcohol.
  • the raw material polyvinyl acetal-based resin is reacted with a modifier having R 1 or R 2 to obtain at least one of the functional groups represented by the formulas (1-1) and (1-2). Introduced into raw material polyvinyl acetal resin.
  • examples of the reactive compound that reacts with a hydroxyl group to form a urethane bond include an isocyanate compound represented by R1 - NCO (where R1 is the same as above).
  • the isocyanate compound has high reactivity with the hydroxyl group of the raw material polyvinyl acetal resin, and the functional group represented by the formula (1-1) can be easily introduced.
  • the compound having a reactive group that reacts with a hydroxyl group to form an ester bond is a carboxylic acid represented by R2 -COOH (where R2 is the same as above), or an anhydride of the carboxylic acid.
  • a carboxylic acid halide represented by R 2 -COX (where R 2 is the same as above and X is a halogen atom) is preferable, and a carboxylic acid chloride in which X is a chlorine atom is more preferable.
  • Carboxylic acid halides such as carboxylic acid chlorides have high reactivity with the hydroxyl groups of the raw material polyvinyl acetal-based resin, and the functional group represented by the formula (1-2) can be easily introduced.
  • preferable isocyanate compounds include hexyl isocyanate, 2-ethylhexyl isocyanate, n-octyl isocyanate, n-nonyl isocyanate, n-decyl isocyanate, n-undecyl isocyanate, n-dodecyl isocyanate, n-tetradecyl isocyanate, n.
  • alkyl isocyanates such as -hexadecyl isocyanate, n-octadecyl isocyanate, and n-icosyl isocyanate, and n-octadecyl isocyanate is preferable.
  • Preferred carboxylic acid chlorides include 2-ethylhexanoyl chloride, n-octanoyl chloride, n-nonanoyl chloride, n-decanoyl chloride, n-undecanoyl chloride, lauroyl chloride, myristyl chloride, and palmitoyl chloride. Examples thereof include isostriatoyl chloride, stearoyl chloride, isostearoyl chloride, oleoyl chloride, behenic acid chloride and the like.
  • 2-ethylhexanoyl chloride, lauroyl chloride, myristyl chloride, palmitoyl chloride, and stearoyl chloride are preferable, and lauroyl chloride, myristyl chloride, and palmitoyl chloride are more preferable.
  • the reaction between the raw material polyvinyl acetal-based resin and the modifier such as an isocyanate compound or carboxylic acid halide is not particularly limited, and for example, the raw material polyvinyl acetal-based resin and the modifier are used under a solvent, for example, 30. It is preferable to heat the mixture at ° C. or higher and 150 ° C. or lower, preferably 50 ° C. or higher and 140 ° C. or lower.
  • the reaction may be carried out in the presence of a base or an acid, and for example, pyridine or the like is used as the base.
  • modified polyvinyl acetal resin (A-1) is not limited to the above, and as shown in the following production method (2), modified polyvinyl alcohol is obtained, and the modified polyvinyl alcohol is acetalized for production. You may.
  • Manufacturing method 2 In the present production method (2), first, modified polyvinyl alcohol is produced as a raw material polyvinyl alcohol. Specifically, the unmodified polyvinyl alcohol obtained by saponifying the polyvinyl ester is reacted with a modifying agent to form a part of the side chain of the polyvinyl alcohol with the formula (1-1) or the formula (1-2). ) Is introduced. Specific examples of the denaturing agent are as shown in the above-mentioned production method (1). Then, the obtained modified polyvinyl alcohol is acetalized with an aldehyde to obtain a polyvinyl acetal-based resin (A).
  • polyoxyalkylene-modified polyvinyl alcohol is produced as a raw material polyvinyl alcohol. Specifically, it is obtained by polymerizing a vinyl ester and a monomer having a polyoxyalkylene group and having a double bond to obtain a polymer, and then saponifying the polymer. Alkali or acid is generally used for saponification, but it is preferable to use alkali. As the PVA-based polymer, only one kind may be used, or two or more kinds may be used in combination.
  • the polyoxyalkylene-modified polyvinyl alcohol obtained above may be acetalized with an aldehyde to obtain a modified polyvinyl acetal resin (A-2).
  • the acetalization method may be a known method.
  • the vinyl ester used in the production method (3) includes vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl isochomate, vinyl pivalate, vinyl versatic acid, vinyl caproate, vinyl caprylate, and lauric acid.
  • Vinyl, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like can be used. Of these, vinyl acetate is preferred.
  • Examples of the monomer having a polyoxyalkylene group and having a double bond used in the production method (3) include a vinyl monomer having a vinyl group, and specifically, the following formula (4). Examples thereof include the monomers indicated by.
  • vinyl ether in which Y is an oxygen atom and allyl ether in which Y is —CH 2 O— are preferable as described above.
  • Preferred specific examples are polyoxyethylene monovinyl ether, polyoxyethylene polyoxypropylene monovinyl ether, polyoxypropylene monovinyl ether, polyoxyethylene monoallyl ether, polyoxyethylene polyoxypropylene monoallyl ether, and polyoxypropylene monoallyl ether.
  • polyoxyethylene monovinyl ether polyoxyethylene monoallyl ether, polyoxypropylene monovinyl ether, polyoxypropylene monoallyl ether, and polyoxyethylene polyoxypropylene monoallyl ether are more preferable.
  • the ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature crosslinked ethylene-vinyl acetate copolymer resin.
  • an ethylene-vinyl acetate modified resin such as an ethylene-vinyl acetate copolymer saponified product and an ethylene-vinyl acetate hydrolyzate can also be used.
  • the ethylene-vinyl acetate copolymer resin preferably has a vinyl acetate content of 10% by mass or more and 50% by mass or less as measured in accordance with JIS K 6730 "Ethylene-vinyl acetate resin test method" or JIS K 6924-2: 1997. , More preferably 25% by mass or more and 45% by mass or less.
  • the vinyl acetate content By setting the vinyl acetate content to these lower limit values or more, the adhesiveness to the glass becomes high, and when it is used for the laminated glass, the penetration resistance of the laminated glass tends to be good. Further, by setting the vinyl acetate content to these upper limit values or less, the breaking strength of the resin layer is increased and the impact resistance of the laminated glass is improved.
  • the ionomer resin is not particularly limited, and various ionomer resins can be used. Specific examples thereof include ethylene-based ionomers, styrene-based ionomers, perfluorocarbon-based ionomers, telechelic ionomers, and polyurethane ionomers. Among these, ethylene-based ionomers are preferable because they have good mechanical strength, durability, transparency, and the like, which will be described later, and are excellent in adhesiveness to glass.
  • an ethylene / unsaturated carboxylic acid copolymer ionomer is preferably used because it has excellent transparency and toughness.
  • the ethylene / unsaturated carboxylic acid copolymer is a copolymer having at least a structural unit derived from ethylene and a structural unit derived from unsaturated carboxylic acid, and may have a structural unit derived from another monomer.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid and the like, and acrylic acid and methacrylic acid are preferable, and methacrylic acid is particularly preferable.
  • Examples of other monomers include acrylic acid ester, methacrylic acid ester, 1-butene and the like.
  • the ethylene / unsaturated carboxylic acid copolymer As the ethylene / unsaturated carboxylic acid copolymer, assuming that the total constituent units of the copolymer are 100 mol%, it is preferable to have 75 to 99 mol% of the constituent units derived from ethylene, and the copolymer is derived from unsaturated carboxylic acid. It is preferable to have 1 to 25 mol% of the constituent units.
  • the ionomer of the ethylene / unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or cross-linking at least a part of the carboxyl groups of the ethylene / unsaturated carboxylic acid copolymer with metal ions. The degree of neutralization of the carboxyl group is usually 1 to 90%, preferably 5 to 85%.
  • Examples of the ion source in the ionomer resin include alkali metals such as lithium, sodium, potassium, rubidium and cesium, and polyvalent metals such as magnesium, calcium and zinc, and sodium and zinc are preferable.
  • the method for producing the ionomer resin is not particularly limited, and the ionomer resin can be produced by a conventionally known production method.
  • the ionomer resin when an ionomer of an ethylene / unsaturated carboxylic acid copolymer is used as the ionomer resin, for example, ethylene and unsaturated carboxylic acid are subjected to radical copolymerization at high temperature and high pressure to carry out radical copolymerization of ethylene / unsaturated carboxylic acid. Produce a copolymer.
  • polyurethane resin examples include polyurethane obtained by reacting an isocyanate compound with a diol compound, polyurethane obtained by reacting an isocyanate compound with a diol compound, and a chain length extender such as polyamine. Further, the polyurethane resin may contain a sulfur atom. In that case, a part or all of the above diol may be selected from polythiol and sulfur-containing polyol. The polyurethane resin can improve the adhesiveness with the organic glass. Therefore, it is suitably used in applications where it adheres to organic glass.
  • the polyolefin-based resin may be a polyethylene-based resin, a polypropylene-based resin, a polybutene-based resin, a poly (4-methylpentene-1) -based resin, or the like, or a cyclic olefin-based copolymer or the like.
  • the film for a liquid crystal device of the present invention may or may not contain a plasticizer.
  • the glass transition temperature can be lowered and the flexibility can be increased. Therefore, it becomes easy to improve the adhesiveness, penetration resistance, shock absorption and the like.
  • a plasticizer it is preferably used in combination with a polyvinyl acetal resin. By using the plasticizer together with the polyvinyl acetal resin, it becomes easier to further improve the adhesiveness.
  • the film for a liquid crystal device does not contain a plasticizer, the liquid crystal contamination by the plasticizer can be prevented and the change in the NI point can be reduced.
  • the film for a liquid crystal device when the film for a liquid crystal device contains a plasticizer, it may erode the organic glass and the base material (base film, plastic substrate, etc.) constituting the liquid crystal device, but by not containing the plasticizer, the film may erode. It can also prevent erosion of organic glass and base material.
  • the plasticizer may be either a plasticizer having a hydroxyl group or a plasticizer having no hydroxyl group, but a plasticizer having a hydroxyl group is preferable.
  • the plasticizer having a hydroxyl group can suppress the elution to the liquid crystal and suppress the change of the NI point while increasing the flexibility of the film for the liquid crystal device. In addition, erosion of the base material constituting the organic glass or the liquid crystal device can be suppressed. Further, it is easy to improve the adhesiveness to glass.
  • a plasticizer having no hydroxyl group easily elutes into the liquid crystal display and causes a change in the NI point of the liquid crystal display, but if the amount is relatively small, the change in the NI point is small and the plasticizer can be used. Further, if the amount of the plasticizer having no hydroxyl group is relatively small, erosion of the base material constituting the organic glass or the liquid crystal device can be suppressed.
  • the film for a liquid crystal device of the present invention preferably contains no plasticizer or contains only a small amount of plasticizer.
  • the film for a liquid crystal device contains a plasticizer
  • the film for a liquid crystal device contains a relatively large amount of the plasticizer containing a hydroxyl group. It can also be contained.
  • the content of the plasticizer having a hydroxyl group in the film for a liquid crystal device is preferably 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. By setting the content to 70 parts by mass or less, the elution of the plasticizer into the liquid crystal can be suppressed while lowering the glass transition temperature, and the change in the NI point can be suppressed to be small.
  • the content of the plasticizer containing a hydroxyl group is more preferably 60 parts by mass or less, and further preferably 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the content thereof is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the thermoplastic resin. The above is more preferable.
  • the amount of the plasticizer not containing a hydroxyl group may be small.
  • the content of the plasticizer that does not contain a hydroxyl group in the film for a liquid crystal device may be 25 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. If it is 25 parts by mass or less, the NI point change is relatively suppressed even with a plasticizer having no hydroxyl group, and the NI point change can be kept within the above range. In addition, erosion of organic glass, a base material constituting a liquid crystal device, or the like can be suppressed.
  • the content of the plasticizer containing no hydroxyl group is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less, and 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Less than parts are more preferable, and most preferably 0 parts by mass. That is, it is most preferable that the film for a liquid crystal device does not contain a plasticizer having no hydroxyl group.
  • the film for electronic devices may contain only one of a plasticizer having a hydroxyl group and a plasticizer having no hydroxyl group, but these may be used in combination.
  • the content of each plasticizer (plasticizer having a hydroxyl group and plasticizer not having a hydroxyl group) may be as described above.
  • the total content of the plasticizer when used in combination is from the viewpoint of suppressing the change in the NI point and further suppressing the erosion of the organic glass and the substrate while lowering the glass transition temperature and improving the flexibility and adhesiveness. Therefore, it is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, further preferably 50 parts by mass or less, and preferably 10 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. 20 parts by mass or more is more preferable, and 30 parts by mass or more is further preferable.
  • plasticizer having a hydroxyl group examples include a polyol such as a (poly) ether polyol and a polyester polyol, or an ether compound of a (poly) ether polyol.
  • the (poly) ether polyol is a polyol having one or more ether groups, and examples thereof include (poly) alkylene glycol.
  • examples of the ether compound of the (poly) ether polyol include polyoxyalkylene ether and the like.
  • the (poly) alkylene glycol include one or more compounds selected from ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butylene glycol, etc., or a polymer thereof.
  • examples thereof include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block, random copolymer and the like, and further may be polytetramethylene ether glycol and the like.
  • the polyoxyalkylene ether is an ether compound of a monohydric or polyhydric alcohol and a polyoxyalkylene.
  • polyoxyalkylene ether is preferably an ether compound of a polyhydric alcohol and polyoxyalkylene, more preferably an ether compound of glycerin or diglycerin and polyoxyalkylene, and further preferably glycerin or diglycerin and poly. It is an ether compound with oxypropylene.
  • polyester polyol examples include a condensation system of a polyvalent carboxylic acid and a polyhydric alcohol, and a lactone system obtained by polymerizing ⁇ -caprolactone.
  • the polyvalent carboxylic acid is preferably a dicarboxylic acid.
  • polyvalent carboxylic acids include terephthalic acid, isophthalic acid, adipic acid, trimellitic acid, citric acid and the like.
  • the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol, octanediol, glycerin, and pentaerythritol.
  • lactone system examples include polypropiolactone diol, polybutyrolactone diol, polyhexanolactone diol, and polycaprolactone diol.
  • polyester polyol examples include polylactide, polyglycolide, polydioxanone, poly (lactide-co-glycolide) and the like.
  • plasticizers containing hydroxyl groups include octyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, behenyl alcohol, 2-hexyl-1-decanol, 2-octyldodecanol, and phthal. Hydroxyethyl 2-ethylhexyl acid and the like can also be mentioned.
  • the plasticizer containing a hydroxyl group may be used alone or in combination of two or more.
  • the plasticizer having a hydroxyl group may have at least one hydroxyl group in the molecule, but the average number of functional groups represented by the number of hydroxyl groups is preferably 2 or more, more preferably 2 to 4.
  • the plasticizer containing a hydroxyl group is not particularly limited, but has a molecular weight of preferably 150 to 10000, more preferably 200 to 5000. When the molecular weight is at least these lower limit values, the compatibility with the liquid crystal is lowered, the liquid crystal contamination by the plasticizer is prevented, and the occurrence of the NI point change can be suppressed.
  • Plasticizer without hydroxyl group examples include an organic ester plasticizer and a phosphorus-based plasticizer such as an organic phosphoric acid plasticizer and an organic subphosphoric acid plasticizer.
  • the plasticizer may be used alone or in combination of two or more. Of these, organic ester plasticizers are preferable.
  • examples of the organic ester plasticizer include monobasic organic acid esters and polybasic organic acid esters.
  • Examples of the monobasic organic acid ester include an ester of glycol and a monobasic organic acid.
  • examples of the glycol include polyalkylene glycols in which each alkylene unit has 2 to 4, preferably 2 or 3 carbon atoms, and the number of repetitions of the alkylene unit is 2 to 10, preferably 2 to 4. Further, the glycol may be a monoalkylene glycol having 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms (that is, the repeating unit is 1).
  • glycol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, butylene glycol and the like.
  • monobasic organic acid examples include organic acids having 3 to 10 carbon atoms, and specifically, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptyl acid, n-octyl acid, and 2-ethylhexic acid. , N-nonyl acid, decyl acid and the like.
  • monobasic organic acid examples include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, and triethylene glycol di-n-octanoate.
  • polybasic organic acid ester examples include ester compounds of a dibasic organic acid having 4 to 12 carbon atoms such as adipic acid, sebacic acid and azelaic acid and an alcohol having 4 to 10 carbon atoms. ..
  • the alcohol having 4 to 10 carbon atoms may have a linear structure, a branched structure, or a cyclic structure.
  • oil-modified sebacic acid alkyd or the like may be used.
  • the mixed adipate ester include an adipate ester prepared from two or more alcohols selected from an alkyl alcohol having 4 to 9 carbon atoms and a cyclic alcohol having 4 to 9 carbon atoms.
  • organic phosphoric acid plasticizer examples include phosphoric acid esters such as tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • phosphoric acid esters such as tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • triethylene glycol-di-2-ethylhexanoate (3GO) is particularly preferably used.
  • the plasticizer containing no hydroxyl group one type may be used alone, or two or more types may be used in combination.
  • the film for a liquid crystal device may appropriately contain a known additive used in combination with a thermoplastic resin such as a polyvinyl acetal resin.
  • a thermoplastic resin such as a polyvinyl acetal resin.
  • the additives other than the plasticizer include ultraviolet absorbers, infrared absorbers, antioxidants, light stabilizers, adhesive strength modifiers, pigments, dyes, fluorescent whitening agents, crystal nucleating agents and the like. ..
  • the thickness of the film for a liquid crystal device of the present invention is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 200 ⁇ m or more and 1500 ⁇ m or less, and more preferably 250 ⁇ m or more and 900 ⁇ m or less.
  • the film for a liquid crystal device of the present invention may be used in a multilayer film including a plurality of resin layers.
  • at least one of the plurality of resin layers may be the film for a liquid crystal device of the present invention.
  • the film for a liquid crystal device may form any resin layer out of a plurality of resin layers, but it is preferable to form the outermost layer.
  • the multilayer film is used, for example, by bringing the film for the liquid crystal device of the present invention into contact with the liquid crystal device and further adhering the film for the liquid crystal device to the liquid crystal device.
  • one or more of the plurality of resin layers in the multilayer film may not be the film for the liquid crystal device of the present invention, but even in that case, the resin layer is preferably a thermoplastic resin layer.
  • the thermoplastic resin constituting the thermoplastic resin layer may be the above-mentioned various thermoplastic resins, and the thermoplastic resin layer may be blended with a plasticizer or other additives, if necessary.
  • a raw material for a film for obtaining a film for a liquid crystal device is prepared.
  • the raw material for the film the polyvinyl acetal-based resin produced as described above and other thermoplastic resins can be used as they are as the raw material for the film.
  • the raw material for a film may be prepared by adding a plasticizer, other additives, or the like to the polyvinyl acetal-based resin produced as described above or other thermoplastic resin, if necessary. Further, the raw material for the film may be appropriately diluted with a solvent.
  • the raw material for a film may be formed into a film by a known method to obtain a film for a liquid crystal device. Specifically, the raw material for a film may be applied to a support such as a mold release sheet, or poured into a mold, appropriately heated and dried as necessary, and molded into a sheet shape. It may be molded by extrusion molding, press molding or the like.
  • the raw material polyvinyl acetal-based resin when the raw material polyvinyl acetal-based resin is reacted with the modifier to obtain the polyvinyl acetal-based resin, it may be molded as follows. That is, a film raw material containing a raw material polyvinyl acetal resin, a modifier, and other additives such as a plasticizer to be blended as needed is applied onto a support such as a release sheet, or a mold.
  • the modifier may be reacted with the raw material polyvinyl acetal-based resin by pouring it into a film and then heating it to form a film to obtain a film for a liquid crystal device.
  • the film for a liquid crystal device is used for a multilayer film
  • a raw material for a film for obtaining a resin layer (other resin layer) other than the film for a liquid crystal device is also prepared, and the raw material for the film is used. It is advisable to obtain another resin layer.
  • the liquid crystal device film and other resin layers may be appropriately superposed and molded, and may be molded by, for example, coextrusion.
  • the film for a liquid crystal device of the present invention is used for a liquid crystal device.
  • the film for a liquid crystal device is not particularly limited as long as it is used for a liquid crystal device, but may be used by being laminated on the liquid crystal device or may be arranged and used around the liquid crystal device, for example.
  • the film for a liquid crystal device is arranged around, the film may be formed in a frame shape so as to surround the liquid crystal device.
  • the film for the liquid crystal device is arranged at a position where it comes into contact with the liquid crystal device.
  • the film for a liquid crystal device is laminated on the liquid crystal device and used for joining the liquid crystal device to another member.
  • the multilayer film when a multilayer film having a film for a liquid crystal device is used for the liquid crystal device, the multilayer film may be arranged in the same manner as the film for the liquid crystal device, but the outermost layer of the multilayer film composed of the film for the liquid crystal device is used. However, it is preferable that the film is arranged at a position where it comes into contact with the liquid crystal device.
  • the liquid crystal device may be any device having a liquid crystal layer, and examples thereof include a liquid crystal dimming cell and a liquid crystal display. Among these, a liquid crystal dimming cell is preferable. Since the structure of the liquid crystal light control cell is relatively simple, when the film for a liquid crystal device is used for the liquid crystal light control cell, the film component penetrates from the end face of the liquid crystal light control cell and the liquid crystal light control cell is used. Although it becomes easy to come into contact with the liquid crystal, the film for a liquid crystal device of the present invention can reduce the change in the NI point, so that the elution of the film component into the liquid crystal can be prevented and the liquid crystal contamination can be suppressed.
  • the liquid crystal dimming cell generally has a liquid crystal layer.
  • the liquid crystal layer is not particularly limited, and a twisted nematic type, a super twisted nematic type, a phase transition type, a guest host type, a ferroelectric liquid crystal and the like can be used, and a polymer dispersion type liquid crystal, for example PDLC (polymer dispersion type) can be used. Liquid crystal) or the like can also be used.
  • the polymer-dispersed liquid crystal include a so-called network liquid crystal in which a network structure is formed by a polymer in a liquid crystal layer.
  • a microcapsule type liquid crystal in which a liquid crystal is microencapsulated and dispersed in a binder resin may be used.
  • a space for filling the liquid crystal inside is formed by a spacer or the like, and the space is filled and sealed with the liquid crystal, but the spacer may not be provided.
  • the liquid crystal dimming cell may include two base films and a liquid crystal layer arranged between the two base films.
  • polyester resin such as polyethylene terephthalate and polyethylene naphthalate, acrylic resin, cellulose derivative such as triacetylcellol (TAC), polyether sulfone (PES) resin, polyimide resin and the like are used as resin components.
  • TAC triacetylcellol
  • PES polyether sulfone
  • polyimide resin polyimide resin and the like
  • the resin film to be used is mentioned. Among these, a polyester resin film is preferable from the viewpoint of handleability and the like, and a polyethylene terephthalate film is more preferable.
  • each of the two base films is provided with an electrode layer on the surface on the liquid crystal layer side.
  • the electrode layer any conventionally known transparent electrode material can be used without particular limitation.
  • ITO indium tin oxide
  • tin oxide conductive film tin oxide conductive film
  • zinc oxide conductive film and polymer conductive film
  • Examples include membranes.
  • An extraction electrode is connected to the electrode layer, and a voltage may be applied between the electrode layers via the extraction electrode.
  • the orientation state of the liquid crystal layer changes and the light transmittance changes. More specifically, for example, the light transmission mode and the light scattering are switched depending on the presence or absence of application of a voltage.
  • the thickness of the liquid crystal dimming cell is not particularly limited, but is, for example, 0.05 mm or more and 2 mm or less, preferably 0.1 mm or more and 1 mm or less, and more preferably 0.2 mm or more and 0.8 mm or less.
  • the film for a liquid crystal device of the present invention is preferably used for applications such as laminating on a liquid crystal device and adhering to the liquid crystal device to bond the liquid crystal device to another member.
  • the film for a liquid crystal device is particularly preferably used for a dimming device having a liquid crystal dimming cell.
  • the liquid crystal device film is preferably used in a dimming device including two transparent plates and at least one liquid crystal dimming cell arranged between the two transparent plates.
  • the film for a liquid crystal device is arranged between the transparent plate and the liquid crystal dimming cell, and may be used as an interlayer film for joining these.
  • the liquid crystal device film is arranged between the liquid crystal dimming cells and used as an interlayer film for joining them. May be good.
  • the transparent plate include glass plates such as inorganic glass and organic glass, as described later. Moreover, you may use the above-mentioned multilayer film as an interlayer film.
  • the dimming device 10 shown in FIG. 1 includes first and second transparent plates 11 and 12, a liquid crystal dimming cell 13 arranged between them, a first transparent plate 11, and a liquid crystal dimming cell 13.
  • a first interlayer film 15 arranged between the two, a second transparent plate 12, and a second interlayer film 16 arranged between the liquid crystal dimming cells 13 are provided.
  • the first interlayer film 15 joins the first transparent plate 11 and the liquid crystal dimming cell 13
  • the second interlayer film 16 has the second transparent plate 11 and the liquid crystal tone.
  • the dimming device 10 becomes an integrated laminated body.
  • the liquid crystal dimming cell 13 may be configured such that a liquid crystal layer is arranged between two base films, and both outer surfaces are formed of the base films. Therefore, the first and second interlayer films 15 and 16 may be adhered to the base film of the liquid crystal dimming cell 13, respectively. At least one of the first and second interlayer films 15 and 16 is composed of the above-mentioned film for the liquid crystal device of the present invention, but it is preferable that both are composed of the film for the liquid crystal device of the present invention.
  • the dimming device 20 shown in FIG. 2 is a dimming device including two liquid crystal dimming cells 23 and 24.
  • the dimming device 20 includes first and second transparent plates 21 and 22, and first and second liquid crystal dimming cells 23 and 24 arranged between them.
  • the first and second liquid crystal dimming cells 23 and 24 are arranged in the thickness direction of the dimming device 20.
  • the dimming device 20 includes a first transparent plate 21 and a first liquid crystal dimming cell 23, between the first and second liquid crystal dimming cells 23 and 24, and a second liquid crystal dimming cell 24.
  • the first, second, and third interlayer films 25, 26, and 27 are provided between the second transparent plates 22, respectively.
  • the first interlayer film 25 joins the first transparent plate 21 and the first liquid crystal dimming cell 23, and the second interlayer film 26 is the first and second liquid crystal dimming cells 23, 24 to each other.
  • the third interlayer film 27 joins the second liquid crystal dimming cell 24 and the second transparent plate 22 to form a laminated body in which the dimming device 20 is integrated.
  • each of the liquid crystal dimming cells 23 and 24 is configured such that a liquid crystal layer is arranged between two base films, and both outer surfaces are preferably made of the base film. Therefore.
  • Each of the interlayer films 25, 26, 27 may be adhered to the base film of the liquid crystal dimming cells 23, 24, respectively.
  • At least one of the first to third interlayer films 25, 26, and 27 is composed of the above-mentioned film for the liquid crystal device of the present invention, but it is preferable that all of them are composed of the film for the liquid crystal device of the present invention. ..
  • the peripheral end surface of the liquid crystal dimming cell may be sealed with an edge sealing material (not shown), if necessary.
  • the film for the liquid crystal device is used, for example, in contact with the liquid crystal dimming cell. .. Therefore, it is possible to suppress problems such as display unevenness in the liquid crystal dimming cell. Further, the film for a liquid crystal device of the present invention can have good adhesiveness to a base film of a liquid crystal dimming cell and a transparent plate by lowering the glass transition temperature, and even if it is thermocompression bonded at a low temperature, for example, It can be adhered to liquid crystal dimming cells and transparent plates with high adhesive strength.
  • the interlayer film is shown to be an interlayer film having a single-layer structure, but the interlayer film may have a multilayer structure.
  • the interlayer film is preferably the above-mentioned multilayer film, and above all, the resin layer arranged at a position to be adhered to the liquid crystal dimming cell is preferably composed of a film for a liquid crystal device.
  • the adhesiveness of the liquid crystal dimming cell to the base film can be improved. Therefore, even when a multilayer film is used, it can be adhered to a liquid crystal light control cell or the like with a high adhesive force.
  • a glass plate can be used as the transparent plate (for example, the first and second transparent plates 21 and 22 described above) used in the dimming device of the present invention.
  • the glass plate may be either inorganic glass or organic glass.
  • the first and second transparent plates in the dimmer may be organic glass on one side and inorganic glass on the other side, both may be organic glass, or both may be inorganic glass.
  • the inorganic glass is not particularly limited, and is, for example, float plate glass, tempered glass, colored glass, polished plate glass, template glass, meshed plate glass, wire-reinforced plate glass, ultraviolet absorber glass, infrared reflector glass, infrared absorber glass, and the like. Examples include various glass plates such as green glass. Inorganic glass may be surface-treated.
  • the thickness of the inorganic glass is not particularly limited, but is preferably 0.1 mm or more, more preferably 1.0 mm or more, and preferably 5.0 mm or less, further preferably 3.2 mm or less.
  • the organic glass is not particularly limited, but is not particularly limited, but is a methacrylate plate such as a polycarbonate plate or a polymethylmethacrylate plate, an acrylonitrile styrene copolymer plate, an acrylonitrile butadiene styrene copolymer plate, a polyester plate, a fluororesin plate, or a polychloride.
  • methacrylate plate such as a polycarbonate plate or a polymethylmethacrylate plate
  • an acrylonitrile styrene copolymer plate an acrylonitrile butadiene styrene copolymer plate
  • polyester plate a fluororesin plate
  • fluororesin plate or a polychloride
  • Examples thereof include various organic glass plates such as vinyl plates, chlorinated polyvinyl chloride plates, polypropylene plates, polystyrene plates, polysulphon plates, epoxy resin plates, phenol resin plates, unsaturated polyester resin plates,
  • a polycarbonate plate is preferable from the viewpoint of excellent transparency, impact resistance, and combustion resistance
  • a methacrylate plate such as a polymethylmethacrylate plate is preferable from the viewpoint of high transparency, weather resistance, and mechanical strength.
  • a polycarbonate plate is preferable.
  • the film for a liquid crystal device can be adhered to the transparent plate with high adhesiveness.
  • the thickness of the organic glass is not particularly limited, but is preferably 0.1 mm or more, more preferably 0.3 mm or more, and preferably 5.0 mm or less, further preferably 3.0 mm or less.
  • the dimming device of the present invention can be manufactured by joining a transparent plate and a liquid crystal dimming cell, or liquid crystal dimming cells to each other via a interlayer film by thermocompression bonding or the like.
  • the first transparent plate 11, the first intermediate film 15, the liquid crystal dimming cell 13, the second intermediate film 16, and the second transparent plate 12 are superposed in this order. These may be manufactured by thermocompression bonding.
  • the dimming device 20 shown in FIG. 2 includes a first transparent plate 21, a first interlayer film 25, a first liquid crystal dimming cell 23, a second interlayer film 26, and a second liquid crystal dimming cell 24.
  • the third interlayer film 27 and the second transparent plate 22 may be superposed in this order and thermocompression bonded to each other.
  • the temperature at the time of thermocompression bonding in the manufacture of the dimmer is not particularly limited, but is, for example, 40 ° C. or higher and 120 ° C. or lower, preferably 50 ° C. or higher and 100 ° C. or lower.
  • the temperature at the time of thermocompression bonding is set to the above upper limit or less, the liquid crystal light control cell and the transparent plate or the liquid crystal light control cell can be bonded to each other via the interlayer film without damaging or deteriorating the liquid crystal light control cell.
  • the present invention by lowering the glass transition temperature of the film for electronic devices as described above, it is possible to bond with high adhesive strength even if thermocompression bonding is performed at a low temperature.
  • the dimming device of the present invention can be used in various fields. Specifically, vehicles such as automobiles and trains, various vehicles such as ships and airplanes, various buildings such as buildings, apartments, detached houses, halls and gymnasiums, machine tools such as cutting and polishing, excavators and cranes, etc. Used for windowpanes of construction machinery, etc. It can also be used for partitions inside buildings.
  • the present invention also provides, in another aspect, films for electronic devices used in electronic devices.
  • the film for electronic devices of the present invention contains a thermoplastic resin.
  • the film for an electronic device of the present invention does not contain a plasticizer, or contains at least one of a plasticizer having a hydroxyl group and a plasticizer having no hydroxyl group.
  • the content of the plasticizer having a hydroxyl group is 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, and the content of the plasticizer without a hydroxyl group is 25 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It is as follows.
  • the film for an electronic device having the above structure can prevent the plasticizer from elution into the electronic device and the base material of the electronic device from being eroded by the plasticizer.
  • Examples of electronic devices include organic EL devices, plasma display devices, and the like, in addition to the liquid crystal devices described above.
  • the above-mentioned electronic device often has a plastic substrate or a film base material, but the film for an electronic device of the present invention is a base of an electronic device by adjusting the type and amount of a plasticizer as described above. It is possible to prevent erosion of the material (for example, a plastic substrate or a film substrate). In addition, contamination of various members of electronic devices other than the base material, such as a liquid crystal layer, can be effectively prevented.
  • the structure of the film for electronic devices is the same as that of the film for liquid crystal devices of the present invention described above, and details such as the structure of the thermoplastic resin, the plasticizer, and other additives, the glass transition temperature, and the thickness are detailed. Is as described in the above film for liquid crystal devices, and the description thereof will be omitted.
  • the change in NI point when the film for electronic devices comes into contact with the liquid crystal is preferably ⁇ 2 ° C. to + 2 ° C., more preferably ⁇ 1.5 ° C. to +1 as described above. It is 5.5 ° C., more preferably -1 ° C. to + 1 ° C., still more preferably ⁇ 0.5 ° C. to + 0.5 ° C., and particularly preferably ⁇ 0.3 ° C. to + 0.3 ° C.
  • the film for an electronic device is not particularly limited as long as it is used for an electronic device, but may be used by being laminated on the electronic device or may be arranged and used around the electronic device, for example. Further, it is preferable that the film for the electronic device is arranged at a position where it comes into contact with the electronic device. It is also preferable that the film for an electronic device is laminated on the electronic device and used for joining the electronic device to another member.
  • the film for an electronic device may be used as a single layer or may be used in a multilayer structure, similarly to the film for a liquid crystal device.
  • at least one of the plurality of resin layers may be composed of a film for electronic devices, but it is preferable that the outermost layer is composed of a film for electronic devices.
  • the multilayer film it may be used in the same manner as the above-mentioned film for electronic devices, but it is preferable that the outermost layer of the multilayer film composed of the film for electronic devices is arranged at a position in contact with the electronic device. ..
  • the electronic device is preferably a liquid crystal device. Therefore, the film for an electronic device is preferably used for a liquid crystal device, and in that case, the configuration of the liquid crystal device and the dimming device including the liquid crystal device (liquid crystal dimming cell) is as described above.
  • the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
  • the method for measuring and evaluating each physical property value in the present invention is as follows.
  • ⁇ NI point change> Cut the film for liquid crystal device into 10 mm x 5 mm, put it in a sample bottle (No. 2, capacity 6 ml), and further liquid crystal (manufactured by Chisso, "JC-5001LA” or 4-cyano-4'-pentylbiphenyl (5CB)). ) 0.5 g was added. This bottle was placed in an oven at 100 ° C., left in an environment of 100 ° C. for 1 hour, then allowed to stand at room temperature to return to room temperature (25 ° C.), and then the liquid crystal part was taken out and used as an evaluation liquid crystal sample. ..
  • the measurement was carried out using a differential scanning calorimeter (DSC, manufactured by Hitachi High-Technologies Corporation, "DSC7000X”), 5 mg of a liquid crystal sample for evaluation was enclosed in an aluminum sample pan, and the temperature was raised at a temperature of 10 ° C./min. The NI point (transition temperature) of the liquid crystal sample for measurement was determined. Further, 5 mg of the liquid crystal display alone before being placed in the sample bottle was sealed in an aluminum sample pan, the NI point was measured under the same conditions, and the result was used as a blank. The NI point of the blank was 76.8 ° C. The transition temperature difference between the liquid crystal unit (blank) and the liquid crystal sample for evaluation was defined as the NI point change.
  • DSC differential scanning calorimeter
  • a film for a liquid crystal device having a size of 15 mm in length and 15 mm in width was prepared, and two glass plates having a thickness of 2 mm, a length of 25 mm and a width of 100 mm in accordance with JIS K6735 were prepared. Two glass plates were arranged so as to be perpendicular to each other in the longitudinal direction and overlapped in a cross shape via a film for a liquid crystal device. After that, in a vacuum laminator using a spacer having the same thickness as the liquid crystal device film so that the thickness of the liquid crystal device film becomes constant, the two glass plates laminated with each other via the liquid crystal device film are formed.
  • Temporary crimping was performed for 3 minutes under the conditions of 100 ° C. and 0.1 MPa. Then, the two temporarily crimped polycarbonate plate glasses were subjected to main crimping at 100 ° C. and 0.5 MPa for another 1 hour to obtain a laminated glass sample. A cross peeling test was performed on the obtained laminated glass sample. Specifically, the maximum load (N) when the laminated glass sample was peeled off in the direction perpendicular to the adhesive surface at a speed of 10 mm / min in an environment of a temperature of 23 ° C. was measured. The maximum load (N) was taken as the adhesive force and evaluated based on the following criteria. (Evaluation criteria) A: The maximum load is 150 N or more. B: The maximum load is 80 N or more and less than 150 N. C: The maximum load is less than 80N.
  • ⁇ Glass transition temperature (Tg)> The films for liquid crystal devices obtained in Examples and Comparative Examples were cut out to a length of 10 mm and a width of 5 mm, and were used with a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name "DVA-200"). , Viscoelasticity was measured under the following measurement conditions. The peak temperature of the loss tangent tan ⁇ obtained from the result of the viscoelasticity measurement was read. The first peak temperature counted from the low temperature side in the temperature range of ⁇ 50 to 150 ° C. was defined as the glass transition temperature (Tg). (Measurement condition) Deformation mode: shear mode, measurement temperature: -50 ° C to 200 ° C, temperature rise rate: 5 ° C / min, measurement frequency: 1Hz, strain: 1%
  • the solid content concentration in the system at the time of stopping the polymerization was 53% by mass, and the polymerization yield with respect to all the monomers was 65% by mass. After removing the unreacted monomer under reduced pressure, a 30% by mass methanol solution of the copolymer was obtained. It was confirmed from the quantification of unreacted monomers that the obtained copolymer contained 95.0 mol% of vinyl acetate unit and 5.0 mol% of alkyl vinyl ether unit containing ethylene oxide.
  • ethylene oxide-modified polyvinyl alcohol had 1 mol% of an acetyl group and 5 mol% of an ethylene oxide unit amount, and had a degree of polymerization of 700.
  • the obtained polyvinyl acetal-based resin was press-molded at a temperature of 160 ° C. and a pressure of 20 MPa to obtain a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m.
  • the degree of polymerization of ethylene oxide-modified polyvinyl alcohol was 860.
  • a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m was obtained by the same method as in Example 1.
  • Example 3 PVB2-2 prepared by the same method as in Example 2 except that 6.0 parts by mass of 3% by mass NaOH methanol solution was adjusted to 2.7 parts by mass was obtained.
  • a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m was obtained by the same method as in Example 1.
  • Example 6 300 g of THF and 30 g of polyvinyl butyral (polymerization degree 1700, manufactured by Sekisui Chemical Co., Ltd., PVB4) were placed in a 500 mL separable flask dried under a nitrogen stream, and the polyvinyl butyral was dissolved while stirring at 65 ° C. with a stirring blade. 30 g of n-octadecyl isocyanate as a denaturing agent was added to this solution, and the mixture was stirred for 10 minutes.
  • polyvinyl butyral polymerization degree 1700, manufactured by Sekisui Chemical Co., Ltd., PVB4
  • the solution is taken out from the separable flask, and a PET release film (trade name "PET50D1-C", manufactured by Nippa Co., Ltd.) is poured into an aluminum pad laid so that the peeling surface is on the upper surface, and then the temperature is 2 at 130 ° C. in an oven. After heating for a time and reacting, a film made of a polyvinyl acetal resin (PVB6) having a functional group of the formula (1-1) was obtained. The obtained polyvinyl acetal-based resin was press-molded at a temperature of 160 ° C. and a pressure of 20 MPa to obtain a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m. When the obtained resin film was measured with an infrared spectrophotometer (IR), the peak of the isocyanate group (wave number 2260 cm-1) disappeared, so that the progress of the reaction could be confirmed.
  • IR infrared spectrophotometer
  • Example 7 instead of PVB1, PVB4 (polymerization degree 1700, manufactured by Sekisui Chemical Co., Ltd.) used in Example 4 was used to prepare a resin film (film for liquid crystal device) in the same manner as in Example 1.
  • PVB4 polymerization degree 1700, manufactured by Sekisui Chemical Co., Ltd.
  • Example 8 PVB4 and a polyester polyol (“OD-X-2586” manufactured by DIC Corporation, 3 hydroxyl groups, molecular weight 850) as a plasticizer were sufficiently kneaded at the ratios shown in Table 1 to obtain a film composition.
  • the obtained film composition was press-molded at a temperature of 160 ° C. and a pressure of 20 MPa to obtain a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m.
  • Examples 9 to 11, Comparative Examples 1 to 2) PVB1, PVB4, and PVB5 and the plasticizer triethylene glycol di-2-ethylhexanoate (3GO) (0 hydroxyl groups) were sufficiently kneaded at the ratios shown in Table 1 to obtain a film composition.
  • the obtained film composition was press-molded at a temperature of 160 ° C. and a pressure of 20 MPa to obtain a resin film (film for liquid crystal device) having a thickness of 800 ⁇ m.
  • PVB5 was a polyvinyl butyral resin having an average degree of polymerization of 830.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • Example 13 Polypropylene glycol was changed to polyoxypropylene diglyceryl ether (manufactured by NOF CORPORATION, trade name "Uniloop DGP-700", 4 hydroxyl groups) having a number average molecular weight of 700, in the same manner as in Example 12. A resin film (film for liquid crystal device) having a thickness of 800 ⁇ m was obtained.
  • Example 14 The thickness of polypropylene glycol is the same as that of Example 12 except that polyoxypropylene glyceryl ether having a number average molecular weight of 1000 (manufactured by NOF CORPORATION, trade name "Uniall TG-1000R", 2 hydroxyl groups) is used. An 800 ⁇ m resin film (film for liquid crystal device) was obtained.
  • Example 15 Polypropylene glycol was changed to polyoxypropylene diglyceryl ether (Sakamoto Yakuhin Kogyo Co., Ltd., trade name "SCP-1600", 4 hydroxyl groups) having a number average molecular weight of 1600, except that the thickness was changed in the same manner as in Example 12. An 800 ⁇ m resin film (film for liquid crystal device) was obtained.
  • polyoxypropylene diglyceryl ether Sakamoto Yakuhin Kogyo Co., Ltd., trade name "SCP-1600", 4 hydroxyl groups
  • the change in NI point when in contact with the liquid crystal is reduced by appropriately adjusting the composition of the thermoplastic resin, the presence or absence of the plasticizer, and the type and amount of the plasticizer.
  • the films of Comparative Examples 1 and 2 have a large change in the NI point when they come into contact with the liquid crystal display, so that when used for a liquid crystal device, the liquid crystal is contaminated and problems such as display unevenness occur. Conceivable.

Abstract

液晶デバイス(10)に用いられるフィルム(15または16)であって、熱可塑性樹脂を含有し、液晶と接触した際の液晶のNI点変化が、-2℃~+2℃である液晶デバイス用フィルム。

Description

液晶デバイス用フィルム、液晶デバイス、及び調光装置
 本発明は、液晶デバイス用フィルム、及び液晶デバイス用フィルムを有する液晶デバイス及び調光装置に関する。
 窓ガラス、特に自動車用窓ガラスにおいては、2枚のガラス板が中間膜を介して接着させた合わせガラスが広く使用されている。合わせガラス用中間膜は、耐貫通性、ガラスとの接着性、衝撃吸収性を確保するために、可塑剤が配合されたポリビニルアセタール樹脂などの熱可塑性樹脂が使用されることが一般的である。
 一方で、窓ガラスなどの透明部材には、光透過性などを調整できるようにするために、液晶層を備える調光フィルムが導入されることが検討されており、合わせガラスにおいても、中間膜中に調光フィルムを組み込むことが検討されている。
 例えば、特許文献1では、第1及び第2のガラス層間にラミネートした中間層構造を設けたラミネート窓パネルにおいて、中間層構造の内部に液晶フィルムが内蔵されることが開示されている。中間層構造は、液晶フィルム外周側に配置された額縁フレーム状の第1中間層と、液晶フィルムを間に配置されるように積層された第2及び第3中間層を備える。また、特許文献2では、2枚のガラス板の間に、液晶フィルムなどからなる2つの調光セルが配置されるとともに、各ガラス板と調光セルの間、又は調光セル同士の間に中間膜が配置され、ガラス板と調光セル、又は調光セル同士が中間膜を介して接合されることが示されている。
 調光フィルムが組み込まれた中間膜構造は、低分子成分が液晶へ溶出して、液晶汚染を発生させることがある。低分子成分が液晶へ溶出すると、液晶の相転移が阻害され、表示ムラなどの原因になる。そのため、特許文献1では、中間層材料の成分は、可塑剤を含まない、または液晶フィルム内に移動しないように可塑剤を含有することが示されている。また、特許文献2でも中間膜に可塑剤を含有しないものが使用されている。
特表2009-534557号公報 特開2020-030355号公報
 しかしながら、特許文献1、2では、中間層や中間膜の詳細な組成が示されず、特許文献1、2の開示内容では液晶汚染が適切に防止できるか否かが不明であり、更なる改善が必要である。
 そこで、本発明は、液晶デバイスにおける液晶汚染を防止し、表示ムラなどの不具合を抑制できる液晶デバイス用フィルムを提供することを課題とする。
 本発明者らは鋭意検討の結果、液晶デバイス用フィルムが液晶と接触した際のNI点変化を一定の範囲内に抑えることで、上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明の要旨は、以下の[1]~[30]の通りである。
[1]液晶デバイスに用いられる液晶デバイス用フィルムであって、熱可塑性樹脂を含有し、
 液晶デバイス用フィルムを液晶と接触させた際のNI点変化が-2℃~+2℃である液晶デバイス用フィルム。
[2]可塑剤を含有しないか、又は水酸基を有する可塑剤及び水酸基を有しない可塑剤の少なくともいずれかを含有し、
 前記水酸基を有する可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して70質量部以下であり、
 前記水酸基を有しない可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して25質量部以下である上記[1]に記載の液晶デバイス用フィルム。
[3]可塑剤を含有しないか、若しくは水酸基を含有する可塑剤を熱可塑性樹脂100質量部に対して70質量部以下含有する上記[2]に記載の液晶デバイス用フィルム。
[4]前記熱可塑性樹脂が、ポリビニルアセタール系樹脂、アイオノマー樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、及びエチレン-酢酸ビニル共重合樹脂からなる群から選択される少なくとも1種である上記[1]~[3]のいずれか1項に記載の液晶デバイス用フィルム。
[5]前記熱可塑性樹脂が、ポリビニルアセタール系樹脂である上記[4]に記載の液晶デバイス用フィルム。
[6]前記ポリビニルアセタール系樹脂が、アセタール基、アセチル基、及び水酸基以外のユニットを有する変性ポリビニルアセタール樹脂を含む上記[4]又は[5]に記載の液晶デバイス用フィルム。
[7]前記ポリビニルアセタール系樹脂が、ポリオキシアルキレン基を有する上記[4]~[6]のいずれか1項に記載の液晶デバイス用フィルム。
[8]前記ポリビニルアセタール系樹脂が、アセタール基及びアセチル基を構成する炭化水素基以外の炭化水素基又はポリオキシアルキレン基の少なくともいずれかを側鎖に有する上記[4]~[7]のいずれか1項に記載の液晶デバイス用フィルム。
[9]前記炭化水素基又はポリオキシアルキレン基の少なくともいずれかは、エステル結合、エーテル結合、-CHO-、-CHCHO-、-CONH-、及びウレタン結合のいずれかの連結基で主鎖と連結する上記[8]に記載の液晶デバイス用フィルム。
[10]前記炭化水素基の炭素数が2~30である上記[8]又は[9]に記載の液晶デバイス用フィルム。
[11]前記ポリオキシアルキレン基が、エーテル結合及び-CHO-のいずれかを介して主鎖に連結する上記[7]~[10]のいずれか1項に記載の液晶デバイス用フィルム。
[12]前記炭化水素基及びポリオキシアルキレン基からなる群から選択される官能基による変性量が例えば0.2モル%以上25モル%以下である上記[7]~[11]のいずれか1項に記載の液晶デバイス用フィルム。
[13]前記ポリオキシアルキレン基による変性量が、0.2モル%以上12モル%以下である上記[7]~[12]のいずれか1項に記載の液晶デバイス用フィルム。
[14]前記ポリオキシアルキレン基の平均繰り返し数が4~120である上記[7]~[13]のいずれか1項に記載の液晶デバイス用フィルム。
[15]前記ポリビニルアセタール系樹脂のアセタール化度が、40モル%以上90モル%以下である上記[4]~[14]のいずれか1項に記載の液晶デバイス用フィルム。
[16]前記ポリビニルアセタール系樹脂の水酸基量が、0モル%以上35モル%以下である上記[4]~[15]のいずれか1項に記載の液晶デバイス用フィルム。
[17]ガラス転移温度が55℃以下である上記[1]~[16]のいずれか1項に記載の液晶デバイス用フィルム。
[18]前記NI点変化が、-1℃~+1℃である上記[1]~[17]のいずれか1項に記載の液晶デバイス用フィルム。
[19]前記NI点変化を測定する際に使用する液晶が、チッソ社製の「JC-5001LA」である上記[1]~[18]のいずれか1項に記載の液晶デバイス用フィルム。
[20]ガラス転移温度が5℃以上である上記[1]~[19]のいずれか1項に記載の液晶デバイス用フィルム。
[21]水酸基を有する可塑剤を含有し、水酸基を有する可塑剤の含有量が、熱可塑性樹脂100質量部に対して、5質量部以上である上記[1]~[20]のいずれか1項に記載の液晶デバイス用フィルム。
[22]水酸基を有する可塑剤を含有し、前記水酸基を有する可塑剤が(ポリ)エーテルポリオール、ポリエステルポリオール、及び(ポリ)エーテルポリオールのエーテル化合物からなる群から選択される少なくとも1種である上記[1]~[21]のいずれか1項に記載の液晶デバイス用フィルム。
[23]水酸基を有さない可塑剤を含有し、前記水酸基を有さない可塑剤が有機エステル可塑剤である上記[1]~[22]のいずれか1項に記載の液晶デバイス用フィルム。
[24]100μm以上2000μm以下の厚みを有する上記[1]~[23]のいずれか1項に記載の液晶デバイス用フィルム。
[25]液晶調光セル用である上記[1]~[24]のいずれか1項に記載の液晶デバイス用フィルム。
[26]上記[1]~[25]のいずれか1項に記載の液晶デバイス用フィルムが設けられる液晶デバイス。
[27]上記[25]に記載の液晶デバイス用フィルムと、液晶調光セルとを備える、調光装置。
[28]2枚の透明板と、中間膜をさらに備え、前記液晶調光セルが2枚の透明板の間に配置され、前記中間膜が、前記透明板の少なくとも一方と液晶調光セルの間に配置されてこれらを接合し、
 前記中間膜が、前記液晶デバイス用フィルムを含む上記[27]に記載の調光装置。
[29]2枚の透明板と、中間膜をさらに備え、前記2枚の透明板の間に2つ以上の前記液晶調光セルが設けられ、前記中間膜が液晶調光セル同士の間に配置されこれらを接合し、
 前記中間膜が、前記液晶デバイス用フィルムを含む上記[27]又は[28]に記載の調光装置。
[30]電子デバイスに用いられる電子デバイス用フィルムであって、
 熱可塑性樹脂を含有し、かつ
 可塑剤を含有しないか、又は水酸基を有する可塑剤及び水酸基を有しない可塑剤の少なくともいずれかを含有し、
 前記水酸基を有する可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して70質量部以下であり、
 前記水酸基を有しない可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して25質量部以下である電子デバイス用フィルム。
 本発明では、液晶デバイスにおける液晶汚染を防止し、表示ムラなどの不具合を抑制できる液晶デバイス用フィルムを提供する。
本発明の液晶デバイス用フィルムが適用される調光装置の一実施形態を示す模式的な断面図である。 本発明の液晶デバイス用フィルムが適用される調光装置の別の実施形態を示す模式的な断面図である。
<液晶デバイス用フィルム>
 本発明の液晶デバイス用フィルムは、熱可塑性樹脂を含有し、液晶デバイス用フィルムを液晶と接触させた際のNI点変化が-2℃~+2℃となるものである。
 ここで、NI点とは、液晶がネマチック相からアイソトロピック相(等方相)へ相転移するときの温度であり、示差熱分析装置(DSC)を用いて吸熱ピークトップから測定できる。液晶のNI点は液晶の各成分の混合組成により決定され、各配合で固有の値となる。一方で、可塑剤などの物質が液晶に混合され液晶が汚染されると、NI点が大きく変化する。そのため、NI点変化を見ることで液晶への汚染度合いの評価として用いることができる。そして、本発明では、液晶デバイス用フィルムを液晶と接触させた際のNI点変化が-2℃~+2℃であると、液晶デバイス用フィルムを液晶デバイスと接触ないし近接する環境下で使用しても、液晶汚染が進行せずに、表示ムラなどの不具合を防止できる。
 NI点変化は、液晶汚染をより有効に防止する観点から、好ましくは-1.5℃~+1.5℃であり、より好ましくは-1℃~+1℃、さらに好ましくは-0.5℃~+0.5℃、特に好ましくは-0.3℃~+0.3℃である。
 本発明において、上記NI点変化は、熱可塑性樹脂の構成、可塑剤の有無、及び可塑剤の種類と量を適宜調整することで、上記範囲内に調整できる。
 なお、NI点変化は、液晶デバイス用フィルムと、液晶(チッソ社製、「JC-5001LA」)を加えたサンプル瓶を100℃で1時間放置させ、その後室温(25℃)に戻してから液晶部分を取り出して評価用液晶サンプルとし、ブランクの液晶と評価用液晶サンプルのNI点を測定し、その差を算出することで求めることができる。測定条件の詳細は、実施例に記載の通りである。なお、液晶としては、上記の「JC-5001LA」の代わりに4-シアノ-4’-ペンチルビフェニル(5CB)も使用できる。
[ガラス転移温度]
 本発明の液晶デバイス用フィルムのガラス転移温度(Tg)は、例えば75℃以下であるが、好ましくは55℃以下である。液晶デバイス用フィルムは、ガラス転移温度(Tg)が55℃以下であることで、柔軟性が高くなり、衝撃吸収性や、中間膜に使用した場合の耐貫通性を良好にできる。さらに、80℃程度の比較的低温で熱圧着しても、ガラス板や、液晶デバイスを構成する基材(基材フィルムやプラスチック基板など)などに対して高い接着力で接着できるようになる。なお、液晶デバイスは、一般的に高温に加熱すると損傷することがあるが、上記の通り低温の熱圧着により接着すると、損傷させることなく液晶デバイスを、液晶デバイス用フィルムによって、ガラス板などの他の部材に接合させることができるようになる。
 上記ガラス転移温度(Tg)は、接着性、耐貫通性、衝撃吸収性などの観点から、50℃以下がより好ましく、45℃以下がさらに好ましい。
 液晶デバイス用フィルムのガラス転移温度(Tg)は、下限値に関しては特に限定されないが、粘着性などが発現させずに取扱い性を良好にする観点、及びNI点変化を上記範囲内に調整しやすくする観点から、例えば5℃以上、好ましくは10℃以上、より好ましくは15℃以上である。
 なお、液晶デバイス用フィルムのガラス転移温度は、動的粘弾性測定装置を用いて粘弾性測定を行い、粘弾性測定の結果から得られる損失正接tanδのピーク温度を読み取ることで検出できる。測定条件の詳細は、実施例に記載の通りである。
[熱可塑性樹脂]
 液晶デバイス用フィルムに含有される熱可塑性樹脂は、ポリビニルアセタール系樹脂、アイオノマー樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、及びエチレン-酢酸ビニル共重合樹脂から選択されることが好ましい。これら樹脂を使用することで、ガラス板や液晶デバイスを構成する基材などに対する接着性を良好にしつつ、NI点変化を所定の範囲内に調整しやすくなる。これら熱可塑性樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中では、ポリビニルアセタール系樹脂が好ましい。ポリビニルアセタール系樹脂を使用することで、ガラス板や液晶デバイスを構成する基材などに対して優れた接着性を発揮できる。
(ポリビニルアセタール系樹脂)
 液晶デバイス用フィルムに使用されるポリビニルアセタール系樹脂は、変性ポリビニルアセタール樹脂であってもよいし、未変性ポリビニルアセタール樹脂であってもよい。
 ポリビニルアセタール系樹脂は、典型的にはアセタール基、水酸基、及びアセチル基を側鎖に有するが、変性ポリビニルアセタール樹脂は、これら以外のユニットを有し、典型的にはこれら以外のユニットを側鎖に有する。変性ポリビニルアセタール樹脂は、上記以外のユニットとして、典型的には側鎖に、炭化水素基、又はポリオキシアルキレン基を有することが好ましい。なお、ここでいう炭化水素基は、アセタール基及びアセチル基を構成する炭化水素基以外の炭化水素基であり、以下のポリビニルアセタール樹脂の説明においても、「炭化水素基」と述べた場合には、アセタール基及びアセチル基の炭化水素基を説明する場合を除いて、同様の意味とする。
 ポリビニルアセタール系樹脂は、炭化水素基、又はポリオキシアルキレン基を有することで、液晶デバイス用フィルムが可塑剤を含有せず、又は含有量が少量であっても、ガラス転移温度(Tg)を低くして、一定の柔軟性を確保しつつ、液晶デバイスを構成する基材や、ガラス板などとの接着性を良好にできる。
 また、ポリビニルアセタール系樹脂は、上記した中でも側鎖にポリオキシアルキレン基を有する変性ポリビニルアセタール樹脂であることが好ましい。
 未変性ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化して得られるものである。変性ポリビニルアセタール樹脂は、例えば、ポリビニルアルコールをアルデヒドでアセタール化し、さらに変性剤と反応させることで得られるものである。また、変性ポリビニルアセタール樹脂は、原料となるポリビニルアルコールとして変性ポリビニルアルコールを使用し、その変性ポリビニルアルコールをアルデヒドでアセタール化して得られたものでもよい。
 アセタール基、水酸基、及びアセチル基以外のユニットは、エステル結合、エーテル結合、-CHO-、-CHCHO-、-CONH-、及びウレタン結合のいずれかの連結基で主鎖と連結していることが好ましい。より具体的には、炭化水素基、及びポリオキシアルキレン基のいずれかが上記連結基を介して主鎖と連結していることが好ましい。なお、-CHO-は、炭素原子が主鎖に連結するとよい。同様に、-CHCHO-、及び-CONH-も炭素原子が主鎖に連結するとよい。また、炭化水素基は、例えば炭素数が2~30である。液晶デバイス用フィルムに含まれるポリビニルアセタール系樹脂は、以上の構造を有することで、ガラス転移温度(Tg)を低くして、柔軟性を高くしつつ、液晶デバイスを構成する基材やガラス板などとの接着性を良好にできる。
 ポリビニルアセタール系樹脂における、アセタール基、水酸基、及びアセチル基以外のユニットは、炭化水素基を含む場合、その炭化水素基がエステル結合及びウレタン結合のいずれかを介して主鎖に連結する構造を有することが好ましい。また、ポリオキシアルキレン基を含む場合、ポリオキシアルキレン基が、エーテル結合及び-CHO-のいずれかを介して主鎖に連結する構造を有することが好ましい。
 ポリビニルアセタール系樹脂は、より具体的には、以下の式(1-1)~式(1-3)で示される官能基から選択される少なくとも1つを有することが好ましい。ポリビニルアセタール系樹脂が、式(1-1)~(1-3)で示される官能基を少なくとも有することで、可塑剤を多量に含有させなくても、液晶デバイス用フィルムのガラス転移温度(Tg)を低くして、一定の柔軟性を確保し、かつガラス板や、液晶デバイスを構成する基材などとの接着性を良好にできる。また、接着性などの観点から、式(1-3)で示される官能基を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000001

(式(1-1)、(1-2)において、R、Rはそれぞれ独立に炭素数が2~30である炭化水素基である。式(1-3)において、Yは、酸素原子、-CHO-、-CHCHO-、又は-CONH-のいずれかであり、AOは炭素数2~4のオキシアルキレン基であり、mは平均繰り返し数であり、4~120である。Rは独立に炭素数が1~4のアルキル基又は水素原子である。なおオキシアルキレン基は1種単独でもよいし、2種類以上、例えば、オキシエチレン基とオキシプロピレン基などが混在していてもよい。)
 R、Rにおける炭化水素基は、芳香環を有していてもよいし、有していなくてもよいが、芳香環を有しない脂肪族炭化水素基であることが好ましい。脂肪族炭化水素基であることで、ポリカーボネート板などの有機ガラスや、液晶デバイスを構成する基材などに対する接着性を向上させやすくなる。また、脂肪族炭化水素基は、直鎖状であってもよいし、分岐を有してもよいし、環構造を有してもよい。例えば脂肪族炭化水素基は、分岐していると、ガラス転移温度(Tg)を低くしやすくなる。
 さらに、脂肪族炭化水素基は、不飽和結合を有してもよいし、不飽和結合を有さなくてもよい。脂肪族炭化水素基は、アルケニル基、アルキル基、アルキニル基が好ましいが、アルキル基であることがより好ましい。
 R、Rそれぞれにおける炭素数は、好ましくは3以上、より好ましくは5以上、さらに好ましくは7以上、よりさらに好ましくは11以上である。R、Rそれぞれにおける炭素数を大きくすることで、液晶デバイス用フィルムのガラス転移温度(Tg)も低くしやすくなり、有機ガラスなどに対する接着性を向上させやすくなる。
 R、Rそれぞれにおける炭素数は、結晶化などすることを防止して透過率を向上させやすくする観点から、好ましくは24以下、より好ましくは20以下、さらに好ましくは18以下である。
 したがって、R、Rはそれぞれ、炭素数3~24のアルキル基が好ましく、炭素数5~20のアルキル基がより好ましく、炭素数7~18のアルキル基がさらに好ましく、炭素数11~18のアルキル基がよりさらに好ましい。
 R、Rの具体例としては、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル、t-ブチル基などの分岐ブチル基、n-ペンチル基、分岐ペンチル基、n-ヘキシル基、分岐ヘキシル基、n-ヘプチル基、イソヘプチル基、3-ヘプチル基などの分岐ヘプチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基などの分岐オクチル基、n-ノニル基、イソノニル基などの分岐ノニル基、n-デシル基、分岐デシル基、n-ウンデシル基、分岐ウンデシル基、n-ドデシル基、分岐ドデシル基、n-トリデシル基、分岐トリデシル基、n-テトラデシル基、分岐テトラデシル基、n-ペンタデシル基、分岐ペンタデシル基、n-ヘキサデシル基、分岐ヘキサデシル基、n-へプタデシル基、分岐へプタデシル基、n-オクタデシル基、分岐オクタデシル基、n-ノナデシル基、分岐ノナデシル基、n-イコシル基、分岐イコシル基、n-ヘンイコシル基、分岐ヘンイコシル基、n-ドコシル基、分岐ドコシル基、n-トリコシル基、分岐ドコシル基、n-テトラコシル基、分岐テトラコシル基、オレイル基などが挙げられる。
 式(1-3)において、AOは炭素数2~4のオキシアルキレン基である。炭素数2~4のオキシアルキレン基は、オキシエチレン基、オキシプロピレン基、又はオキシブチレン基であり、好ましくはオキシエチレン基、オキシプロピレン基であり、より好ましくはオキシエチレン基である。なお、オキシアルキレン基は1種単独でもよいが、2種以上併用してもよく、その場合、各オキシアルキレン基は、ランダムに付加してもよいし、ブロックで付加してもよい。
 mは、オキシアルキレン基の平均繰り返し数を示し、4~120であり、好ましくは8~110、より好ましくは12~100である。
 また、Rにおけるアルキル基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル、t-ブチル基などが挙げられる。また、Rは、炭素数が1~4のアルキル基又は水素原子であるが、好ましくは炭素数1~2のアルキル基又は水素原子、より好ましはメチル基又は水素原子、さらに好ましは水素原子である。
 式(1-3)において、Yは、酸素原子(エーテル結合)、-CHO-、-CHCHO-、又は-CONH-のいずれかであるが、酸素原子、又は-CHO-のいずれかが好ましい。したがって、以下の式(1-4)、(1-5)で示す官能基であることが好ましい。なお、-CHO-、及び-CHCHO-においては酸素原子が、-CONH-においては窒素原子がAOの炭素原子(A)に結合するとよい。
Figure JPOXMLDOC01-appb-C000002

(式(1-4)、(1-5)においてAO、m、及びRはそれぞれ上記と同じである。)
 したがって、式(1-3)で示される官能基は、-O-(CHCHO)-Hで示される官能基、或いは、-CHO-(CHCHO)-Hで示される官能基であることが特に好ましい。なお、これらの場合のmの好適な範囲も上記のとおりである。
 ポリビニルアセタール系樹脂は、上記のとおり、典型的には、アセタール基、水酸基、及びアセチル基を有する。ただし、ポリビニルアセタール系樹脂は、官能基により変性されたりすることで水酸基を含有しなくてもよい。
 また、ポリビニルアセタール系樹脂は、変性することで、上記の通り、側鎖に炭化水素基、又はポリオキシアルキレン基を有することが好ましく、具体的には、上記式(1-1)~式(1-3)で示される官能基から選択される少なくとも1つの官能基を有することが好ましい。
 なお、側鎖に炭化水素基、又はポリオキシアルキレン基を有するポリビニルアセタール系樹脂、典型的には上記式(1-1)~式(1-3)で示される官能基のいずれかを有するポリビニルアセタール系樹脂は、他のポリビニルアセタール系樹脂と区別して説明するために、ポリビニルアセタール系樹脂(A)として説明することがある。
 ポリビニルアセタール系樹脂(A)は、炭化水素基及びポリオキシアルキレン基から選択される官能基による変性量が例えば0.2モル%以上25モル%以下である。なお、該変性量は、典型的には、上記式(1-1)~式(1-3)で示される官能基による変性量である。
 変性量を上記範囲内とすることで、ガラス転移温度(Tg)を低くしやすくなり、フィルムの柔軟性を向上させ、かつガラス板や液晶デバイスを構成する基材などに対する接着性も向上させやすくなる。
 上記変性量の好適値は、官能基の種類によって異なる。例えば、炭化水素基を側鎖に有するポリビニルアセタール系樹脂(以下、便宜上、「ポリビニルアセタール系樹脂(A-1)」ということがある)は、上記接着性を向上させる観点などから、炭化水素基(典型的には、式(1-1)及び式(1-2)で示される官能基)による変性量が、5モル%以上25モル%以下が好ましい。また、該変性量は、6モル%以上がより好ましく、8モル%以上がさらに好ましく、10モル%以上がよりさらに好ましく、また、25モル%以下が好ましく、22モル%以下がより好ましい。
 また、ポリオキシアルキレン基を側鎖に有するポリビニルアセタール系樹脂(以下、便宜上、「ポリビニルアセタール系樹脂(A-2)」ということがある)は、上記接着性を向上させる観点から、ポリオキシアルキレン基(典型的には、式(1-3)で示される官能基)による変性量は、0.2モル%以上12モル%以下が好ましい。また、該変性量は、0.5モル%以上がより好ましく、0.6モル%以上がさらに好ましく、0.8モル%以上がよりさらに好ましく、また、10モル%以下がより好ましく、8モル%以下がさらに好ましく、6モル%以下がよりさらに好ましい。
 なお、各官能基による変性量は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、各官能基の割合を表し、例えば式(1-1)及び式(1-2)で示される官能基による変性量とは、これら官能基の割合の合計量を表す。なお、変性量は、ポリビニルアセタール系樹脂に対してプロトンNMR測定を行い、得られたスペクトルから算出することができる。後述するアセタール化度、水酸基量、及びアセチル化度も同様に、プロトンNMR測定を行い、得られたスペクトルから算出することができる。
 ポリビニルアセタール系樹脂は、ポリオキシアルキレン基、炭化水素基を側鎖に有さなくてもよい。そのようなポリビニルアセタール系樹脂は、ポリオキシアルキレン基、炭化水素基以外の官能基(典型的には、式(1-1)~(1-3)で示される官能基以外の官能基)を有する変性ポリビニルアセタール樹脂でもよいし、未変性ポリビニルアセタール樹脂でもよい。未変性ポリビニルアセタール樹脂であっても、後述する通り可塑剤を配合することで、ガラス転移温度(Tg)を低くしやすくなる。
 ポリビニルアセタール系樹脂は、主鎖としてビニル基由来の構成単位を有するものであり、式(1-1)~(1-3)で示される官能基は、主鎖を構成するビニル基由来の構成単位に結合するものであるとよい。したがって、ポリビニルアセタール系樹脂は、以下の式(2-1)~式(2-3)で示される構成単位のいずれかを有することが好ましく、式(2-3)で示される構成単位のいずれかを有することがより好ましい。
Figure JPOXMLDOC01-appb-C000003

(式(2-1)、(2-2)において、R、Rはそれぞれ上記と同じである。式(2-3)において、Y、AO、m、及びRはそれぞれ上記と同じである。)
 ポリビニルアセタール系樹脂は、典型的には、アセタール基、水酸基、及びアセチル基を有し、すなわち、ポリビニルアセタール系樹脂は、典型的には、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位を有する。したがって、変性ポリビニルアセタール樹脂は、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位と、上記した式(2-1)~式(2-3)から選択される少なくとも1つの構成単位とを有することが好ましい。
 ただし、ポリビニルアセタール系樹脂は、上記のとおり水酸基を有さなくてもよく、式(3-2)で示される構成単位を有さなくてもよい。すなわち、ポリビニルアセタール系樹脂は、以下の式(3-1)及び式(3-3)で示される構成単位を有するが、以下の式(3-2)で示される構成単位をさらに有することが好ましい。
Figure JPOXMLDOC01-appb-C000004

(式(3-1)において、Rは水素原子又は炭素数1~19の炭化水素基を表す。)
 ポリビニルアセタール系樹脂は、上記のとおりポリビニルアルコール、又はポリビニルアルコールを変性させた変性ポリビニルアルコールをアルデヒドでアセタール化し、その後必要に応じて変性して得られるものであるが、ポリビニルアルコールとしては、鹸化度80~99.8モル%のポリビニルアルコールが一般的に用いられる。また、ポリビニルアルコールの平均重合度は、ポリビニルアセタール系樹脂の平均重合度を所望の範囲内に調整するために、300以上5000以下が好ましい。ポリビニルアルコールの平均重合度は、JIS  K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
 ポリビニルアセタール系樹脂に含まれているアセタール基の炭素数は特に限定されないが、上記式(3-1)で示した通り、例えば1~20であるが、2~10であることが好ましく、2~6であることがより好ましく、2、3又は4であることがさらに好ましい。したがって、上記式(3-1)で示すRの炭素数は、1~9が好ましく、1~5がより好ましく、1~3であることがさらに好ましい。
 アセタール基としては、具体的にはブチラール基が特に好ましく、したがって、ポリビニルアセタール系樹脂としては、ポリビニルブチラール系樹脂が好ましい。ポリビニルアセタール系樹脂のアセタール化度(すなわち、アセタール基量)は、好ましくは40モル%以上90モル%以下である。また、アセタール化度は、55モル%以上がより好ましく、60モル%以上がさらに好ましく、また、より好ましくは85モル%以下であり、さらに好ましくは83モル%以下である。アセタール化度をこれら範囲内とすることで、水酸基の量を適度な量としつつ、式(1-1)~式(1-3)で示される官能基を一定量含有させやすくなる。
 なお、アセタール化度とは、ポリビニルアセタール系樹脂のアセタール基がアセトアセタール基である場合には、アセトアセタール化度を意味し、アセタール基がブチラール基である場合には、ブチラール化度を意味する。
 また、アセタール化度は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、アセタール化されたビニルアルコール単位の割合を表す。
 ポリビニルアセタール系樹脂の水酸基量は、好ましくは35モル%以下である。水酸基量を35モル%以下とすると、ガラス転移温度(Tg)を低くして、ポリカーボネート板などの有機ガラスに対する接着性を高くしやすくなる。そのような観点から、ポリビニルアセタール系樹脂(A)である場合には、水酸基量は、より好ましくは30モル%以下、さらに好ましくは25モル%以下である。
 ポリビニルアセタール系樹脂の水酸基量は、0モル%以上であるとよいが、ポリビニルアセタール系樹脂(A)である場合には、フィルムが柔軟になりすぎることを防止する観点から、一定量以上の水酸基量を含有するとよく、例えば5モル%以上、好ましく9モル%以上、より好ましくは11モル%以上である。
 一方で、未変性ポリビニルアセタール樹脂の水酸基量は、上記のとおり35モル%以下であることが好ましいが、20モル%以上であることも好ましく、25モル%以上であることがより好ましい。
 なお、水酸基量は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、水酸基の割合を表す。
 上記ポリビニルアセタール系樹脂のアセチル化度(アセチル基量)は、例えば40モル%以下であるが、好ましくは20モル%以下、より好ましくは10モル%以下である。アセチル化度を上記上限値以下とすることで、例えば、ポリビニルアセタール系樹脂(A)の場合には、炭化水素基やポリオキシアルキレン基などの官能基による変性量を一定値以上にできる。また、ポリビニルアセタール系樹脂のアセチル化度は、例えば0.01モル%以上であるが、好ましくは0.1モル%以上、より好ましくは0.5モル%以上である。
 なお、アセチル化度は、ポリビニルアセタール系樹脂を構成する全ビニル単量体単位に対する、アセチル基の割合を表す。
 ポリビニルアセタール系樹脂の平均重合度は、好ましくは300以上5000以下である。平均重合度を上記範囲内に調整することで、機械強度、柔軟性などを良好に維持しつつ、接着性を向上させやすくなる。ポリビニルアセタール系樹脂の平均重合度は、500以上がより好ましく、700以上がさらに好ましい。また、平均重合度は、低くすることでガラス転移温度を低くでき、それにより膜にする際の加工性などが向上する。そのような観点から平均重合度は、4500以下がより好ましく、3500以下がよりさらに好ましい。
 なお、ポリビニルアセタール系樹脂の平均重合度は、原料となるポリビニルアルコールの平均重合度と同じであり、ポリビニルアルコールの平均重合度によって求めることができる。
 ポリビニルアセタール系樹脂を製造する際に用いるアルデヒドは特に限定されず、例えば炭素数1~20のアルデヒドであるが、炭素数が2~10のアルデヒドが好適に用いられる。上記炭素数が2~10のアルデヒドは特に限定されず、例えば、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、アセトアルデヒド、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドなどの炭素数2~6のアルデヒドが好ましく、炭素数2、3,4のアルデヒドがより好ましく、n-ブチルアルデヒドがさらに好ましい。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。
 本発明で使用するポリビニルアセタール系樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 本発明の液晶デバイス用フィルムは、熱可塑性樹脂としてポリビニルアセタール系樹脂を使用する場合、ポリビニルアセタール系樹脂単独で使用してもよいし、ポリビニルアセタール系樹脂以外の熱可塑性樹脂と併用してもよい。ポリビニルアセタール系樹脂以外の熱可塑性樹脂は、上記した熱可塑性樹脂から適宜選択してもよい。ただし、ポリビニルアセタール系樹脂が主成分であることが好ましい。具体的には、ポリビニルアセタール系樹脂の合計量は、液晶デバイス用フィルムに含有される樹脂全量基準で、例えば50質量%以上であり、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。
《ポリビニルアセタール系樹脂の製造方法》
 本発明において液晶デバイス用フィルムに使用するポリビニルアセタール系樹脂は、ポリビニルアルコール(「原料ポリビニルアルコール」ともいう)をアルデヒドでアセタール化し、その後、必要に応じて変性剤と反応させたものである。原料ポリビニルアルコールとしては、未変性ポリビニルアルコールでもよいが、変性ポリビニルアセタール樹脂を得る場合には、原料ポリビニルアルコールとして変性ポリビニルアルコールを使用してもよい。
 具体的には、例えば、上記式(1-1)及び式(1-2)で示される官能基から選択される少なくとも1つを有するポリビニルアセタール系樹脂(変性ポリビニルアセタール樹脂(A-1))を製造する際には、以下の製造方法(1)により製造することが好ましい。
(製造方法(1))
 本製造方法(1)では、原料ポリビニルアルコールをアルデヒドでアセタール化して、ポリビニルアセタール系樹脂(以下、原料ポリビニルアセタール系樹脂ともいう)を得る。ここで使用される原料ポリビニルアルコールは、ポリビニルエステルをケン化して得られたものであり、未変性ポリビニルアルコールであることが好ましい。
 次に、上記原料ポリビニルアセタール系樹脂に対して、R又はRを有する変性剤を反応させて、式(1-1)及び式(1-2)で示される官能基の少なくともいずれかを原料ポリビニルアセタール系樹脂に導入する。ここで、変性剤としては、原料ポリビニルアセタール系樹脂が有する水酸基に反応して、式(1-1)に示すウレタン結合を形成し、又は式(1-2)に示すエステル結合を形成する反応性基を有する化合物であるとよい。
 具体的には、水酸基と反応してウレタン結合を形成する反応性を有する化合物としては、R-NCO(ただし、Rは上記と同じである)で表されるイソシアネート化合物が挙げられる。イソシアネート化合物は、原料ポリビニルアセタール系樹脂が有する水酸基との反応性が高く、式(1-1)で表される官能基を容易に導入できる。
 また、水酸基と反応してエステル結合を形成する反応性基を有する化合物としては、R-COOH(ただし、Rは上記と同じである)で表されるカルボン酸、又はカルボン酸の無水物、カルボン酸エステル、カルボン酸ハライドなどのカルボン酸誘導体が挙げられる。これらの中では、R-COX(ただし、Rは上記と同じでありXはハロゲン原子である。)で表されるカルボン酸ハライドが好ましく、Xが塩素原子である、カルボン酸クロリドがより好ましい。カルボン酸クロリドなどのカルボン酸ハライドは、原料ポリビニルアセタール系樹脂が有する水酸基との反応性が高く、式(1-2)で表される官能基を容易に導入できる。
 好ましいイソシアネート化合物の具体例としては、ヘキシルイソシアネート、2-エチルヘキシルイソシアネート、n-オクチルイソシアネート、n-ノニルイソシアネート、n-デシルイソシアネート、n-ウンデシルイソシアネート、n-ドデシルイソシアネート、n-テトラデシルイソシアネート、n-ヘキサデシルイソシアネート、n-オクタデシルイソシアネート、n-イコシルイソシアネートなどのアルキルイソシアネートが挙げられ、好ましくはn-オクタデシルイソシアネートである。
 また、好ましいカルボン酸クロリドとしては、2-エチルヘキサノイルクロリド、n-オクタノイルクロリド、n-ノナノイルクロリド、n-デカノイルクロリド、n-ウンデカノイルクロリド、ラウロイルクロリド、ミリスチルクロリド、パルミトイルクロリド、イソパルミトイルクロリド、ステアロイルクロリド、イソステアロイルクロリド、オレオイルクロリド、ベヘニン酸クロライドなどが挙げられる。これらの中では、好ましくは2-エチルヘキサノイルクロリド、ラウロイルクロリド、ミリスチルクロリド、パルミトイルクロリド、ステアロイルクロリドのいずれかであり、より好ましくはラウロイルクロリド、ミリスチルクロリド、パルミトイルクロリドである。
 上記製造方法(1)において、原料ポリビニルアセタール系樹脂と、イソシアネート化合物やカルボン酸ハライドなどの変性剤との反応は、特に限定されないが、例えば原料ポリビニルアセタール系樹脂と変性剤を溶剤下で例えば30℃以上150℃以下で、好ましくは50℃以上140℃以下程度に加熱して行うとよい。反応は、塩基又は酸存在下などで行ってもよく、塩基としては例えばピリジンなどを使用する。
 ただし、変性ポリビニルアセタール樹脂(A-1)を製造する方法は、上記に限定されず、以下の製造方法(2)に示すように変性ポリビニルアルコールを得て、その変性ポリビニルアルコールをアセタール化して製造してもよい。
(製造方法2)
 本製造方法(2)では、まず、原料ポリビニルアルコールとして変性ポリビニルアルコールを製造する。具体的には、ポリビニルエステルをケン化して得られた未変性ポリビニルアルコールに対して、変性剤を反応させて、ポリビニルアルコールの側鎖の一部に式(1-1)又は式(1-2)の官能基を導入する。なお、変性剤の具体例は、上記製造方法(1)で示したとおりである。そして、得られた変性ポリビニルアルコールをアルデヒドでアセタール化して、ポリビニルアセタール系樹脂(A)を得る。
 また、例えば、上記式(1-3)で示される官能基の少なくともいずれかを有するポリビニルアセタール系樹脂(変性ポリビニルアセタール樹脂(A-2))を製造する際には、以下の製造方法(3)により製造することが好ましい。
(製造方法(3))
 本製造方法(3)では、まず、原料ポリビニルアルコールとしてポリオキシアルキレン変性ポリビニルアルコールを製造する。具体的には、ビニルエステルと、ポリオキシアルキレン基を有し、かつ二重結合を有するモノマーを重合してポリマーを得た後、ポリマーをけん化することにより得られる。ケン化には、一般に、アルカリ又は酸が用いられるが、アルカリを用いることが好ましい。PVA系重合体としては、1種のみが用いられてもよく、2種以上が併用されてもよい。
 次いで、上記で得られたポリオキシアルキレン変性ポリビニルアルコールに対して、アルデヒドでアセタール化して、変性ポリビニルアセタール樹脂(A-2)を得るとよい。アセタール化の方法は、公知の方法で行うとよい。
 製造方法(3)で使用するビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ絡酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどを用いることができる。これらの中では酢酸ビニルが好ましい。
 また、製造方法(3)で使用するポリオキシアルキレン基を有し、かつ二重結合を有するモノマーとしては、ビニル基を有するビニルモノマーなどが挙げられ、具体的には、以下の式(4)で示されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000005

(式(4)において、Y、AO、m、及びRはそれぞれ上記と同じである。)
 上記したポリオキシアルキレン基を有し、かつ二重結合を有するモノマーは、上記のとおりYが酸素原子であるビニルエーテル、Yが-CHO-であるアリルエーテルが好ましい。好ましい具体例としては、ポリオキシエチレンモノビニルエーテル、ポリオキシエチレンポリオキシプロピレンモノビニルエーテル、ポリオキシプロピレンモノビニルエーテル、ポリオキシエチレンモノアリルエーテル、ポリオキシエチレンポリオキシプロピレンモノアリルエーテル、ポリオキシプロピレンモノアリルエーテルが挙げられ、これらの中でも、ポリオキシエチレンモノビニルエーテル、ポリオキシエチレンモノアリルエーテル、ポリオキシプロピレンモノビニルエーテル、ポリオキシプロピレンモノアリルエーテル、ポリオキシエチレンポリオキシプロピレンモノアリルエーテルがより好ましい。
(エチレン-酢酸ビニル共重合体樹脂)
 エチレン-酢酸ビニル共重合体樹脂としては、非架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよいし、また、高温架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよい。エチレン-酢酸ビニル共重合体樹脂としては、エチレン-酢酸ビニル共重合体けん化物、エチレン-酢酸ビニルの加水分解物などのようなエチレン-酢酸ビニル変性体樹脂も用いることができる。
 エチレン-酢酸ビニル共重合体樹脂は、JIS K 6730「エチレン・酢酸ビニル樹脂試験方法」またはJIS K 6924-2:1997に準拠して測定される酢酸ビニル含量が好ましく10質量%以上50質量%以下、より好ましくは25質量以上45質量%以下である。酢酸ビニル含量をこれら下限値以上とすることで、ガラスへの接着性が高くなり、また、合わせガラスに使用したときには合わせガラスの耐貫通性が良好になりやすくなる。また、酢酸ビニル含量をこれら上限値以下とすることで、樹脂層の破断強度が高くなり、合わせガラスの耐衝撃性が良好になる。
(アイオノマー樹脂)
 アイオノマー樹脂としては、特に限定はなく、様々なアイオノマー樹脂を用いることができる。具体的には、エチレン系アイオノマー、スチレン系アイオノマー、パーフルオロカーボン系アイオノマー、テレケリックアイオノマー、ポリウレタンアイオノマー等が挙げられる。これらの中では、後述する合わせガラスの機械強度、耐久性、透明性などが良好になる点、ガラスへの接着性に優れる点から、エチレン系アイオノマーが好ましい。
 エチレン系アイオノマーとしては、エチレン・不飽和カルボン酸共重合体のアイオノマーが透明性と強靭性に優れるため好適に用いられる。エチレン・不飽和カルボン酸共重合体は、少なくともエチレン由来の構成単位および不飽和カルボン酸由来の構成単位を有する共重合体であり、他のモノマー由来の構成単位を有していてもよい。
 不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸等が挙げられ、アクリル酸、メタクリル酸が好ましく、メタクリル酸が特に好ましい。また、他のモノマーとしては、アクリル酸エステル、メタクリル酸エステル、1-ブテン等が挙げられる。
 エチレン・不飽和カルボン酸共重合体としては、該共重合体が有する全構成単位を100モル%とすると、エチレン由来の構成単位を75~99モル%有することが好ましく、不飽和カルボン酸由来の構成単位を1~25モル%有することが好ましい。
 エチレン・不飽和カルボン酸共重合体のアイオノマーは、エチレン・不飽和カルボン酸共重合体が有するカルボキシル基の少なくとも一部を金属イオンで中和または架橋することにより得られるアイオノマー樹脂であるが、該カルボキシル基の中和度は、通常は1~90%であり、好ましくは5~85%である。
 アイオノマー樹脂におけるイオン源としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、マグネシウム、カルシウム、亜鉛等の多価金属が挙げられ、ナトリウム、亜鉛が好ましい。
 アイオノマー樹脂の製造方法としては特に限定はなく、従来公知の製造方法によって、製造することが可能である。例えばアイオノマー樹脂として、エチレン・不飽和カルボン酸共重合体のアイオノマーを用いる場合には、例えば、エチレンと不飽和カルボン酸とを、高温、高圧下でラジカル共重合を行い、エチレン・不飽和カルボン酸共重合体を製造する。そして、そのエチレン・不飽和カルボン酸共重合体と、上記のイオン源を含む金属化合物とを反応させることにより、エチレン・不飽和カルボン酸共重合体のアイオノマーを製造することができる。
(ポリウレタン樹脂)
 ポリウレタン樹脂としては、イソシアネート化合物と、ジオール化合物とを反応して得られるポリウレタン、イソシアネート化合物と、ジオール化合物、さらに、ポリアミンなどの鎖長延長剤を反応させることにより得られるポリウレタンなどが挙げられる。また、ポリウレタン樹脂は、硫黄原子を含有するものでもよい。その場合には、上記ジオールの一部又は全部を、ポリチオール及び含硫黄ポリオールから選択されるものとするとよい。ポリウレタン樹脂は、有機ガラスとの接着性を良好にすることができる。そのため、有機ガラスに接着する用途において好適に使用される。
(ポリオレフィン系樹脂)
 ポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリ(4-メチルペンテン-1)系樹脂などでもよいし、環状オレフィン系共重合体などでもよい。
[可塑剤]
 本発明の液晶デバイス用フィルムは、可塑剤を含有してもよいし、可塑剤を含有しなくてもよい。液晶デバイス用フィルムは、可塑剤を含有すると、ガラス転移温度を低くでき、柔軟性が高めることができる。そのため、接着性、耐貫通性、衝撃吸収性などを良好にしやすくなる。可塑剤を使用する場合、ポリビニルアセタール系樹脂と併用することが好ましい。可塑剤をポリビニルアセタール系樹脂と併用することで接着性をより一層向上させやすくなる。
 一方で、液晶デバイス用フィルムは、可塑剤を含有しないことで、可塑剤による液晶汚染が防止され、上記NI点変化を小さくすることができる。また、液晶デバイス用フィルムは、可塑剤を含有すると、有機ガラスや、液晶デバイスを構成する基材(基材フィルムやプラスチック基板など)を浸食することがあるが、可塑剤を含有しないことで、有機ガラスや基材を浸食することも防止できる。
 可塑剤としては、水酸基を有する可塑剤、水酸基を有しない可塑剤のいずれでもよいが、水酸基を有する可塑剤が好ましい。水酸基を有する可塑剤は、液晶デバイス用フィルムの柔軟性を高めつつ、液晶への溶出が抑えられてNI点変化を抑制できる。また、有機ガラスや液晶デバイスを構成する基材に対する浸食も抑えられる。さらに、ガラスに対する接着性なども良好にしやすい。
 一方で、水酸基を有しない可塑剤は、液晶へ溶出しやすく、液晶のNI点を変化させる要因となるが、比較的少量であればNI点変化も小さくなり使用できる。また、水酸基を有しない可塑剤は、比較的少量であれば、有機ガラスや液晶デバイスを構成する基材に対する浸食も抑えられる。
 以上の観点から、本発明の液晶デバイス用フィルムは、可塑剤を含有しない態様や、可塑剤を少量のみ含有する態様が好ましい。
 また、液晶デバイス用フィルムは、可塑剤を含有する場合には、水酸基を含有する可塑剤を使用する態様が好ましく、その場合、液晶デバイス用フィルムは、水酸基を含有する可塑剤を比較的大量に含有することも可能である。具体的には、水酸基を有する可塑剤を使用する場合、液晶デバイス用フィルムにおける水酸基を有する可塑剤の含有量は、熱可塑性樹脂100質量部に対して70質量部以下であることが好ましい。70質量部以下とすることで、ガラス転移温度を低下させつつ、可塑剤の液晶への溶出を抑制でき、NI点変化も小さく抑えることができる。さらに、有機ガラスや液晶デバイスを構成する基材などへの浸食も抑えることができる。以上の観点から、水酸基を含有する可塑剤の含有量は、熱可塑性樹脂100質量部に対して60質量部以下がより好ましく、50質量部以下がさらに好ましい。
 また、液晶デバイス用フィルムが水酸基を有する可塑剤を含有する場合、その含有量は、熱可塑性樹脂100質量部に対して、5質量部以上が好ましく、10質量部以上がより好ましく、15質量部以上がさらに好ましい。水酸基を有する可塑剤の含有量をこれら下限値以上とすることで、ガラス転移温度を十分に低くでき、柔軟性、接着性などが良好となる。
 一方で、水酸基を有しない可塑剤を使用する場合、水酸基を含有しない可塑剤の使用量は、少量にすればよい。具体的には、液晶デバイス用フィルムにおいて、水酸基を含有しない可塑剤の含有量は、熱可塑性樹脂100質量部に対して25質量部以下であればよい。25質量部以下であれば、水酸基を有しない可塑剤であっても、NI点変化が比較的抑制され、NI点変化を上記した範囲内に収めることができる。また、有機ガラスや液晶デバイスを構成する基材などへの浸食も抑えることができる。
 これら観点から、水酸基を含有しない可塑剤の含有量は、熱可塑性樹脂100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下がさらに好ましく、3質量部以下がよりさらに好ましく、最も好ましく0質量部である。すなわち、液晶デバイス用フィルムは、水酸基を有しない可塑剤を含有しないことが最も好ましい。
 電子デバイス用フィルムは、水酸基を有する可塑剤、及び水酸基を有さない可塑剤のいずれか一方のみ含有してもよいが、これらを併用してもよい。併用する場合、各可塑剤(水酸基を有する可塑剤、及び水酸基を有さない可塑剤)の含有量は、上記の通りとすればよい。ただし、併用する場合の可塑剤の含有量合計は、ガラス転移温度を低下させて柔軟性、接着性を向上させつつ、NI点変化を抑制し、さらに有機ガラスや基材に対する浸食を抑制する観点から、熱可塑性樹脂100質量部に対して、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下がさらに好ましく、また、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましい。
≪水酸基を含有する可塑剤≫
 水酸基を有する可塑剤としては、(ポリ)エーテルポリオール、ポリエステルポリオールなどのポリオール、又は(ポリ)エーテルポリオールのエーテル化合物などが挙げられる。(ポリ)エーテルポリオールは、1つ又は2つ以上のエーテル基を有するポリオールであり、(ポリ)アルキレングリコールなどが挙げられる。(ポリ)エーテルポリオールのエーテル化合物としては、ポリオキシアルキレンエーテルなどが挙げられる。
 (ポリ)アルキレングリコールとしては、具体的には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ブチレングリコールなどから選ばれる1種類以上の化合物単体、もしくはその重合物、具体的にはポリエチレングリコール、ポリプロピレングリコール,ポリ(エチレンオキシド/プロピレンオキシド)ブロック又はランダム共重合体等が挙げられ、さらにはポリテトラメチレンエーテルグリコールなどでもよい。
 ポリオキシアルキレンエーテルは、一価又は多価アルコールとポリオキシアルキレンとのエーテル化合物である。例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシプロピレンアリルエーテル、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、ポリオキシエチレンジグリセリルエーテル、ポリオキシプロピレンジグリセリルエーテル、ポリオキシアルキレンペンタエリスリトールエーテルなどが挙げられる。ポリオキシアルキレンエーテルとしては、好ましくは多価アルコールとポリオキシアルキレンとのエーテル化合物であり、より好ましくはグリセリン又はジグリセリンとポリオキシアルキレンとのエーテル化合物であり,更に好ましくはグリセリン又はジグリセリンとポリオキシプロピレンとのエーテル化合物である。
 ポリエステルポリオールとしては多価カルボン酸と多価アルコールの縮合系、ε-カプロラクトンの重合によるラクトン系などがある。縮合系では、多価カルボン酸がジカルボン酸が好ましい。多価カルボン酸の例として、テレフタル酸、イソフタル酸、アジピン酸、トリメリット酸、クエン酸などが挙げられる。多価アルコールとしてはエチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオール、オクタンジオール、グリセリン、ペンタエリトリトールなどが挙げられる。
 また、ラクトン系として、ポリプロピオラクトンジオール、ポリブチロラクトンジオール、ポリヘキサノラクトンジオール、ポリカプロラクトンジオールなどが挙げられる。また、ポリエステルポリオールとしては、ポリラクチド、ポリグリコリド、ポリジオキサノン、ポリ(ラクチド-co-グリコリド)なども挙げられる。
 水酸基を含有する可塑剤としては、その他、オクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、セトステアリルアルコール、ステアリルアルコール、ベヘニルアルコール、2-ヘキシル-1-デカノール、2-オクチルドデカノール、フタル酸ヒドロキシエチル2-エチルヘキシルなども挙げられる。
 水酸基を含有する可塑剤は、1種単独で使用してもよいが、2種以上を併用してもよい。
 水酸基を有する可塑剤は、分子中に水酸基を少なくとも1個有すればよいが、水酸基の数で表される平均官能基数は、2以上有することが好ましく、より好ましくは2~4である。
 水酸基を含有する可塑剤は、特に限定されないが、分子量が150~10000であることが好ましく、200~5000がより好ましい。分子量がこれら下限値以上であると、液晶との相溶性が低くなり、可塑剤による液晶汚染が防止され、NI点変化が生じることを抑制できる。また、分子量が10000以下であることで、ポリビニルアセタール系樹脂などの熱可塑性樹脂との相溶性が良好となり、液晶デバイス用フィルムの透明性を確保できる。
 なお、上記分子量は、モノマーであり式量を特定できる場合には、式量で求められる分子量であり、混合物である場合には、数平均分子量であるとよい。また、ポリオールについては、水酸基価(mgKOH/g)を測定して次式により求めるとよい。
 数平均分子量=水酸基価×N×1,000/56.11
 N:ポリオールの平均官能基数
 なお、水酸基価は、JIS K 1557-1により測定するとよい。
《水酸基を有しない可塑剤》
 水酸基を有しない可塑剤としては、例えば、有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などのリン系可塑剤等が挙げられる。可塑剤は1種単独で使用してもよいし、2種以上を併用してもよい。なかでも、有機エステル可塑剤が好ましい。有機エステル可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等が挙げられる。
 一塩基性有機酸エステルとしては、グリコールと、一塩基性有機酸とのエステルが挙げられる。グリコールとしては、各アルキレン単位が炭素数2~4、好ましくは炭素数2又は3であり、アルキレン単位の繰り返し数が2~10、好ましくは2~4であるポリアルキレングリコールが挙げられる。また、グリコールとしては、炭素数2~4、好ましくは炭素数2又は3のモノアルキレングリコール(すなわち、繰り返し単位が1)でもよい。
 グリコールとしては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ブチレングリコールなどが挙げられる。
 一塩基性有機酸としては、炭素数3~10の有機酸が挙げられ、具体的には、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸などが挙げられる。
 具体的な一塩基性有機酸としては、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-2-エチルヘキサノエート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、トリエチレングリコールジ-2-エチルブチレート、エチレングリコールジ-2-エチルブチレート、1,2-プロピレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、1,2-ブチレングリコールジ-2-エチルブチレートなどが挙げられる。
 また、多塩基性有機酸エステルとしては、例えば、アジピン酸、セバシン酸、アゼライン酸等の炭素数4~12の二塩基性有機酸と、炭素数4~10のアルコールとのエステル化合物が挙げられる。炭素数4~10のアルコールは、直鎖でもよいし、分岐構造を有していてもよいし、環状構造を有してもよい。
 具体的には、セバシン酸ジブチル、アゼライン酸ジオクチル、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、ジブチルカルビトールアジペート、混合型アジピン酸エステルなどが挙げられる。また、油変性セバシン酸アルキドなどでもよい。混合型アジピン酸エステルとしては、炭素数4~9のアルキルアルコール及び炭素数4~9の環状アルコールから選択される2種以上のアルコールから作製されたアジピン酸エステルが挙げられる。
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等のリン酸エステルなどが挙げられる。
 可塑剤としては、上記したなかでも、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)が特に好適に用いられる。
 水酸基を含有しない可塑剤は、1種単独で使用してもよいが、2種以上を併用してもよい。
(その他の添加剤)
 液晶デバイス用フィルムは、可塑剤以外にも、ポリビニルアセタール系樹脂などの熱可塑性樹脂と併用される公知の添加剤を適宜含有してもよい。可塑剤以外の添加剤は、具体的には、紫外線吸収剤、赤外線吸収剤、酸化防止剤、光安定剤、接着力調整剤、顔料、染料、蛍光増白剤、結晶核剤等が挙げられる。
(液晶デバイス用フィルムの厚み)
 本発明の液晶デバイス用フィルムの厚みは、例えば100μm以上2000μm以下であり、好ましくは200μm以上1500μm以下、さらに好ましくは250μm以上900μm以下である。液晶デバイス用フィルムの厚みをこのような範囲内にすることで、必要以上に厚くすることなく、液晶デバイスや、ガラス板などに対する接着性を良好にできる。
[多層フィルム]
 また、本発明の液晶デバイス用フィルムは、複数の樹脂層を備える多層フィルムにおいて使用してもよい。多層フィルムにおいて使用する場合には、複数の樹脂層のうち、少なくとも1つを本発明の液晶デバイス用フィルムとすればよい。
 その場合、液晶デバイス用フィルムは、複数の樹脂層のうちいずれの樹脂層を構成してもよいが、最外層を構成することが好ましい。本発明の液晶デバイス用フィルムが最外層を構成することで、多層フィルムは、例えば液晶デバイスに、本発明の液晶デバイス用フィルムを接触させ、さらに、液晶デバイスに液晶デバイス用フィルムを接着させて使用されることもあるが、そのような場合、液晶汚染を効果的に抑制することができる。また、液晶デバイス用フィルムのガラス転移温度を低くすることで、高い接着力で液晶デバイスに接着することもできる。
 多層フィルムにおける複数の樹脂層のうち1つ以上は、上記の通り、本発明の液晶デバイス用フィルムでなくてもよいが、その場合も樹脂層は熱可塑性樹脂層であることが好ましい。熱可塑性樹脂層を構成する熱可塑性樹脂は、上記した各種の熱可塑性樹脂であるとよく、また、熱可塑性樹脂層には必要に応じて可塑剤やその他の添加剤が配合されてもよい。
<液晶デバイス用フィルムの製造方法>
 液晶デバイス用フィルムの製造においては、まず、液晶デバイス用フィルムを得るためのフィルム用原料を調製する。フィルム用原料は、上記の通りに製造されたポリビニルアセタール系樹脂や、その他の熱可塑性樹脂をそのままフィルム用原料として使用することができる。また、フィルム用原料には、上記の通り製造されたポリビニルアセタール系樹脂や、その他の熱可塑性樹脂に必要に応じて、可塑剤、その他の添加剤などを添加して調製してもよい。また、フィルム用原料は、適宜溶媒に希釈してもよい。
 上記フィルム用原料は、公知の方法でフィルム状に成形して液晶デバイス用フィルムとするとよい。具体的には、フィルム用原料を離型シートなどの支持体に塗布して、あるいは、型枠に流し込んで、必要に応じて適宜加熱、乾燥して、シート状に成形してもよいし、押出成形、プレス成形などにより成形してもよい。
 また、上記の通り、原料ポリビニルアセタール系樹脂を変性剤と反応させて、ポリビニルアセタール系樹脂を得る場合には、以下のように成形してもよい。すなわち、原料ポリビニルアセタール系樹脂と、変性剤と、その他の必要に応じて配合される可塑剤などの添加剤を含むフィルム用原料を、剥離シートなどの支持体上に塗布して、或いは型枠に流し込んで、その後、加熱することで変性剤を原料ポリビニルアセタール系樹脂に反応させ、かつフィルム状に成形して、液晶デバイス用フィルムを得てもよい。
 さらに、液晶デバイス用フィルムは、多層フィルムに使用される場合には、液晶デバイス用フィルム以外の樹脂層(その他の樹脂層)を得るためのフィルム用原料も併せて用意し、そのフィルム用原料からその他の樹脂層を得るとよい。多層フィルムの場合には、液晶デバイス用フィルムとその他の樹脂層は、適宜重ね合わせて成形されるとよく、例えば共押出などにより成形されてもよい。
<液晶デバイス>
 本発明の液晶デバイス用フィルムは、液晶デバイスに使用される。液晶デバイス用フィルムは、液晶デバイスに使用される限り特に限定されないが、例えば、液晶デバイスに積層されて使用されてもよいし、液晶デバイスの周囲に配置されて使用されてもよい。液晶デバイス用フィルムは、周囲に配置される場合、液晶デバイスを取り囲むように枠状に成形されてもよい。また、液晶デバイス用フィルムは、液晶デバイスに接触する位置に配置されることが好ましい。さらに、液晶デバイス用フィルムは、液晶デバイスに積層されて、液晶デバイスを他の部材に接合するために使用することも好ましい。
 また、液晶デバイス用フィルムを有する多層フィルムを液晶デバイスに使用する場合も、多層フィルムは、上記液晶デバイス用フィルムと同様に配置させるとよいが、液晶デバイス用フィルムにより構成される多層フィルムの最外層が、液晶デバイスに接触する位置に配置されることが好ましい。
 液晶デバイスとしては、液晶層を有するデバイスであればよく、液晶調光セル、液晶ディスプレイなどが挙げられ、これらの中では液晶調光セルが好ましい。液晶調光セルの構造は比較的簡素であるため、液晶デバイス用フィルムは、液晶調光セルに対して使用されると、フィルム成分が液晶調光セルの端面から浸入して液晶調光セルの液晶に接触しやすくなるが、本発明の液晶デバイス用フィルムは、NI点変化を小さくできるため、フィルム成分の液晶への溶出が防止され、液晶汚染を抑制できる。
 液晶調光セルは、一般的に液晶層を有する。液晶層としては、特に限定されず、ツイステッドネマチック型、スーパーツイステッドネマチック型、相転移型、ゲストホスト型、強誘電液晶などを用いることができ、高分子分散型の液晶、例えばPDLC(ポリマー分散型液晶)などを用いることもできる。ポリマー分散型液晶としては、液晶層中にポリマーによりネットワーク構造が形成されたネットワーク液晶と呼ばれるものが挙げられる。また、液晶をマイクロカプセル化してバインダー樹脂中に分散させたマイクロカプセル型液晶(PDMLC)でもよい。また、液晶層は、例えばスペーサなどにより液晶を内部に充填するためのスペースが形成され、そのスペース内に液晶を充填しかつ封止したものが挙げられるが、スペーサは無くてもよい。
 液晶調光セルは、2枚の基材フィルムと、2枚の基材フィルムの間に配置される液晶層とを備えるとよい。基材フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、アクリル系樹脂、トリアセチルセルロール(TAC)などのセルロース誘導体、ポリエーテルサルフォン(PES)樹脂、ポリイミド樹脂などを樹脂成分として使用する樹脂フィルムが挙げられる。これらの中では、取扱い性などの観点から、ポリエステル樹脂フィルムが好ましく、中でもポリエチレンテレフタレートフィルムがより好ましい。
 また、2枚の基材フィルムそれぞれには液晶層側の面に電極層が設けられるとよい。電極層としては、従来公知の透明性を有する電極材料であれば特に限定なく用いることができ、例えば、インジウム錫酸化物(ITO)導電膜、酸化錫導電膜、酸化亜鉛導電膜、高分子導電膜などが挙げられる。電極層には、引き出し電極が接続され、引き出し電極を介して電極層間に電圧が印加されるとよい。
 液晶調光セルは、電極層間に電圧が印加されることで、液晶層の配向状態が変化し、光線透過率が変化する。より具体的には、例えば電圧の印加の有無により光透過モードと光散乱が切り替えられ、光散乱モードでは光が散乱させられて光線透過率が低くなる一方で、光透過モードでは光線を透過させて光線透過率が高くなるとよい。
 液晶調光セルの厚みは、特に限定されないが、例えば0.05mm以上2mm以下、好ましくは0.1mm以上1mm以下、より好ましくは0.2mm以上0.8mm以下である。
[調光装置]
 本発明の液晶デバイス用フィルムは、上記のとおり、例えば液晶デバイスに積層して液晶デバイスに接着され、液晶デバイスを他の部材に接合させる用途に使用されることが好ましい。
 液晶デバイス用フィルムは、特に、液晶調光セルを有する調光装置に使用されることが好ましい。具体的には、液晶デバイス用フィルムは、2枚の透明板と、2枚の透明板の間に配置される少なくとも1つの液晶調光セルとを備える調光装置において使用されることが好ましい。液晶デバイス用フィルムは、透明板と液晶調光セルの間に配置され、これらを接合させる中間膜として使用するとよい。また、2枚の透明板の間に2つ以上の液晶調光セルが設けられる場合には、液晶デバイス用フィルムは、液晶調光セル同士の間に配置され、これらを接合させる中間膜として使用してもよい。透明板としては、後述する通り、無機ガラス、有機ガラスなどのガラス板が挙げられる。また、中間膜としては上記した多層フィルムを使用してもよい。
 次に、調光装置の具体例を図1、2を参照しつつより詳細に説明する。図1に示す調光装置10は、第1及び第2の透明板11、12と、これらの間に配置される液晶調光セル13と、第1の透明板11と、液晶調光セル13の間に配置される第1の中間膜15と、第2の透明板12と、液晶調光セル13の間に配置される第2の中間膜16とを備える。
 調光装置10において、第1の中間膜15は、第1の透明板11と、液晶調光セル13とを接合させ、第2の中間膜16は、第2の透明板11と、液晶調光セル13とを接合させることで、調光装置10が一体化された積層体となる。なお、液晶調光セル13は、上記の通り、例えば2枚の基材フィルムの間に液晶層が配置されて構成され、両外表面が基材フィルムにより構成されるとよい。そのため、第1及び第2の中間膜15、16はそれぞれ、液晶調光セル13の基材フィルムに接着するとよい。
 第1及び第2の中間膜15、16は、少なくともいずれか一方が上記した本発明の液晶デバイス用フィルムにより構成されるが、両方が本発明の液晶デバイス用フィルムにより構成されることが好ましい。
 図2に示す調光装置20は、2つの液晶調光セル23,24を備える調光装置である。
具体的には、調光装置20は、第1及び第2の透明板21、22と、これらの間に配置される第1及び第2の液晶調光セル23、24を備える。第1及び第2の液晶調光セル23、24は、調光装置20の厚さ方向に並べられる。調光装置20では、2つの液晶調光セル23、24が設けられることで、例えば、光透過モードでは高い光透過率を確保できる一方で、光散乱モードでは高い遮光性を確保できる。また、2つの液晶調光セル23、24のオン-オフを適宜切り替えることで、光の透過率や遮光性などを細かく調整できる。
 調光装置20は、第1の透明板21と第1の液晶調光セル23の間、第1及び第2の液晶調光セル23、24の間、及び第2の液晶調光セル24と第2の透明板22の間それぞれに、第1、第2、及び第3の中間膜25、26、27を備える。そして、第1の中間膜25が第1の透明板21と第1の液晶調光セル23とを接合させ、第2の中間膜26が第1及び第2の液晶調光セル23、24同士を接合させ、かつ第3の中間膜27が第2の液晶調光セル24と第2の透明板22とを接合させ、それにより、調光装置20が一体化された積層体となる。なお、各液晶調光セル23、24は、上記の通り、例えば2枚の基材フィルムの間に液晶層が配置されて構成され、両外表面が基材フィルムにより構成されるとよく、そのため、各中間膜25、26、27はそれぞれ、液晶調光セル23、24の基材フィルムに接着するとよい。
 第1~第3の中間膜25、26、27は、少なくともいずれかが上記した本発明の液晶デバイス用フィルムにより構成されるが、全てが本発明の液晶デバイス用フィルムにより構成されることが好ましい。
 また、各調光装置10、20において、液晶調光セルの周端面は、必要に応じてエッジシール材(図示しない)により封止されてもよい。
 各調光装置10、20において、液晶デバイス用フィルムは、図1、2に示すとおり、例えば液晶調光セルに接触して使用されるが、NI点変化を小さくできるので、液晶汚染を防止できる。そのため、液晶調光セルにおいて表示ムラなどの不具合を抑制できる。また、本発明の液晶デバイス用フィルムは、ガラス転移温度を低くすることで、液晶調光セルの基材フィルムや、透明板に対する接着性も良好にでき、例えば低温下で熱圧着しても、液晶調光セルや、透明板に高い接着力で接着できる。
 また、上記図1、2に示す調光装置において、中間膜は、単層構造の中間膜である態様が示されるが、中間膜は多層構造を有してもよい。その場合、中間膜は、上記した多層フィルムであることが好ましく、中でも、液晶調光セルに接着する位置に配置される樹脂層が、液晶デバイス用フィルムで構成されることが好ましい。
 液晶調光セルに接着する位置に配置される樹脂層を本発明の液晶デバイス用フィルムとすることで、多層構造の場合でも効果的に液晶汚染を防止できる。また、本発明の液晶デバイス用フィルムは、ガラス転移温度を低くすることで、液晶調光セルの基材フィルムに対する接着性も良好にできる。そのため、多層フィルムを用いる場合であっても液晶調光セルなどに対して高い接着力で接着させることができる。
(透明板)
 本発明の調光装置に使用される透明板(例えば、上記した第1及び第2の透明板21、22)としてはガラス板を使用できる。ガラス板は、無機ガラス及び有機ガラスのいずれでもよい。調光装置における第1及び第2の透明板は、一方が有機ガラスで他方が無機ガラスでもよいし、両方が有機ガラスでもよいし、両方が無機ガラスでもよい。
 無機ガラスは、特に限定されるものではないが、例えば、フロート板ガラス、強化ガラス、着色ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、紫外線吸収板ガラス、赤外線反射板ガラス、赤外線吸収板ガラス、グリーンガラス等の各種ガラス板が挙げられる。無機ガラスは表面処理などが行われてもよい。
 無機ガラスの厚みは、特に限定されないが、好ましくは0.1mm以上、さらに好ましくは1.0mm以上であり、また、好ましくは5.0mm以下、さらに好ましくは3.2mm以下である。
 有機ガラスは、特に限定されるものではないが、ポリカーボネート板、ポリメチルメタクリレート板などのメタクリレート板、アクリロニトリルスチレン共重合体板、アクリロニトリルブタジエンスチレン共重合体板、ポリエステル板、フッ素系樹脂板、ポリ塩化ビニル板、塩素化ポリ塩化ビニル板、ポリプロピレン板、ポリスチレン板、ポリサルホン板、エポキシ樹脂板、フェノール樹脂板、不飽和ポリエステル樹脂板、ポリイミド樹脂板等の各種有機ガラス板が挙げられる。有機ガラスは、適宜表面処理などが行われてもよい。
 上記した中では、透明性、耐衝撃性、耐燃焼性に優れる点から、ポリカーボネート板が好ましく、透明性が高く、耐候性、機械強度に優れる点から、ポリメチルメタクリレート板などのメタクリレート板が好ましく、これらの中ではポリカーボネート板が好ましい。本発明では、透明板としてポリカーボネート板やメタクリレート板などの疎水性の高い有機ガラスを使用しても、液晶デバイス用フィルムを高い接着性で透明板に接着することができる。また、液晶デバイス用フィルムによって有機ガラスが浸食されることも防止できる。
 有機ガラスの厚みは、特に限定されないが、好ましくは0.1mm以上、さらに好ましくは0.3mm以上であり、また、好ましくは5.0mm以下、さらに好ましくは3.0mm以下である。
 本発明の調光装置は、透明板と液晶調光セル、又は、液晶調光セル同士を中間膜を介して熱圧着などにより接合することで製造することができる。例えば、図1に示す調光装置は、第1の透明板11、第1の中間膜15、液晶調光セル13、第2の中間膜16、及び第2の透明板12をこの順に重ね合わせてこれらを熱圧着することで製造するとよい。
 また、図2に示す調光装置20は、第1の透明板21、第1の中間膜25、第1の液晶調光セル23、第2の中間膜26、第2の液晶調光セル24、第3の中間膜27、及び第2の透明板22をこの順に重ね合わせてこれらを熱圧着することで製造するとよい。
 調光装置の製造における熱圧着時の温度は、特に限定されないが、例えば40℃以上120℃以下、好ましくは50℃以上100℃以下である。熱圧着時の温度を上記上限以下とすることで、液晶調光セルを損傷又は劣化などさせることなく、液晶調光セルと透明板、又は液晶調光セル同士を中間膜を介して接合できる。また、本発明では、電子デバイス用フィルムのガラス転移温度を上記の通りに低くすることで、低温度で熱圧着しても高い接着強度で接着させることができる。
 本発明の調光装置は、各種分野に使用可能である。具体的には、自動車、電車などの車両、船舶、飛行機などの各種乗り物、あるいは、ビル、マンション、一戸建て、ホール、体育館などの各種建築物、あるいは切削、研磨などの工作機械、ショベルやクレーンなどの建設機械等の窓ガラスなどに使用される。また、建築物内部のパーテーションなどにも使用できる。
<電子デバイス用フィルム>
 本発明は、別の側面において、電子デバイスに用いられる電子デバイス用フィルムも提供する。本発明の電子デバイス用フィルムは、熱可塑性樹脂を含有する。また、本発明の電子デバイス用フィルムは、可塑剤を含有しないか、あるいは、水酸基を有する可塑剤及び水酸基を有しない可塑剤の少なくともいずれかを含有する。そして、水酸基を有する可塑剤の含有量が、熱可塑性樹脂100質量部に対して70質量部以下であり、水酸基を有しない可塑剤の含有量が熱可塑性樹脂100質量部に対して25質量部以下である。
 以上の構成を有する電子デバイス用フィルムは、可塑剤が電子デバイスに溶出したり、可塑剤によって電子デバイスの基材が浸食したりすることを防止できる。
 電子デバイスとしては、上記した液晶デバイス以外にも、有機ELデバイス、プラズマディスプレイデバイスなどが挙げられる。上記した電子デバイスは、プラスチック基板や、フィルム基材を有することが多いが、本発明の電子デバイス用フィルムは、上記の通りに可塑剤の種類、及び量を調整することで、電子デバイスの基材(例えば、プラスチック基板や、フィルム基材)の浸食を防止できる。また、液晶層など、基材以外の電子デバイスの各種部材の汚染も有効に防止できる。
 本発明において、電子デバイス用フィルムの構成は、上記した本発明の液晶デバイス用フィルムと同じ構成であり、熱可塑性樹脂、可塑剤、及びその他の添加剤の構成、ガラス転移温度、厚みなどの詳細は、上記の液晶デバイス用フィルムで説明したとおりであり、その説明は省略する。また、電子デバイス用フィルムは、電子デバイス用フィルムが液晶と接触した際のNI点変化が、上記の通り、-2℃~+2℃であることが好ましく、より好ましくは-1.5℃~+1.5℃であり、さらに好ましくは-1℃~+1℃、よりさらに好ましくは-0.5℃~+0.5℃、特に好ましくは-0.3℃~+0.3℃である。
 また、電子デバイス用フィルムは、電子デバイスに使用される限り特に限定されないが、例えば、電子デバイスに積層されて使用されてもよいし、電子デバイスの周囲に配置されて使用されてもよい。また、電子デバイス用フィルムは、電子デバイスに接触する位置に配置されることが好ましい。また、電子デバイス用フィルムは、電子デバイスに積層されて、電子デバイスを他の部材に接合するために使用することも好ましい。
 また、電子デバイス用フィルムは、液晶デバイス用フィルムと同様に、単層で使用してもよいし、多層構造にして使用してもよい。多層構造の場合には、複数の樹脂層のうち少なくとも1層を電子デバイス用フィルムで構成すればよいが、最外層を電子デバイス用フィルムにより構成することが好ましい。多層フィルムの場合も、上記した電子デバイス用フィルムと同様に使用されればよいが、電子デバイス用フィルムにより構成される多層フィルムの最外層が、電子デバイスに接触する位置に配置されることが好ましい。
 電子デバイスは液晶デバイスが好ましい。したがって、電子デバイス用フィルムは、液晶デバイスに使用されることが好ましく、その場合、液晶デバイスや、液晶デバイス(液晶調光セル)を備える調光装置の構成は、上記で説明したとおりである。
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 なお、本発明における各物性値の測定方法、及び評価方法は、以下の通りである。
<NI点変化>
 液晶デバイス用フィルムを10mm×5mmにカットし、サンプル瓶(No.2、容量6ml)に入れ、さらに液晶(チッソ社製、「JC-5001LA」あるいは4-シアノ-4’-ペンチルビフェニル(5CB))0.5gを加えた。この瓶を100℃のオーブンに投入して、100℃の環境下に1時間放置し、その後室温で静置して室温(25℃)に戻ってから液晶部分を取り出し、評価用液晶サンプルとした。
 測定は、示差走査型熱量計(DSC、日立ハイテクノロジーズ社製、「DSC7000X」)を使用し、評価用液晶サンプル5mgをアルミサンプルパンに封入し、昇温速度10℃/分の条件で行い、測定用液晶サンプルのNI点(転移温度)を求めた。
 また、サンプル瓶に入れる前の液晶単体5mgをアルミサンプルパンに封入し、同様の条件でNI点を測定し、その結果をブランクとした。ブランクのNI点は、76.8℃であった。液晶単体(ブランク)と評価用液晶サンプルの転移温度差をNI点変化とした。
 変化温度が-1~+1℃のものを「A」、-1~+1℃ではないが-2~+2℃のものを「B」、それ以上の変化温度を「C」として評価した。
<接着性>
 縦15mm及び横15mmのサイズにした液晶デバイス用フィルムを用意し、さらにJIS K6735に準拠した厚み2mm、縦25mm及び横100mmのガラス板を2枚用意した。液晶デバイス用フィルムを介して、2枚のガラス板を、互いの長手方向が垂直となるように配置して十字に重ね合わせた。
 その後、液晶デバイス用フィルムの厚みが一定になるように、液晶デバイス用フィルムと同じ厚みのスペーサーを用いて、真空ラミネーターにおいて、液晶デバイス用フィルムを介して、重ね合わせた2枚のガラス板を、100℃、0.1MPaの条件で3分間仮圧着をした。その後、仮圧着した2枚のポリカーボネート板ガラスを、100℃、0.5MPaの条件でさらに1時間本圧着を行い、合わせガラスサンプルを得た。
 得られた合わせガラスサンプルに対して十字剥離試験を行った。具体的には、温度23℃、の環境下で、合わせガラスサンプルを速度10mm/分で接着面と垂直方向に剥離させたときの最大荷重(N)を測定した。その最大荷重(N)を接着力とし、下記基準に基づいて評価した。
(評価基準)
   A:最大荷重が150N以上である。
   B:最大荷重が80N以上150N未満である。
   C:最大荷重が80N未満である。
<ガラス転移温度(Tg)>
 実施例、比較例で得られた液晶デバイス用フィルムを、長さ10mm、幅5mmで切り出し、動的粘弾性測定装置(アイティー計測制御株式会社製、商品名「DVA-200」)を用いて、以下の測定条件で粘弾性を測定した。粘弾性測定の結果から得られる損失正接tanδのピーク温度を読みとった。-50~150℃の温度領域において低温側から数えて1番目のピーク温度をガラス転移温度(Tg)とした。
(測定条件)
変形様式:せん断モード、測定温度:-50℃~200℃、昇温速度:5℃/分、測定周波数:1Hz、歪:1%
<変性量、アセタール化度、アセチル化度、及び水酸基量>
 ポリビニルアセタール系樹脂をDMSO-d6若しくはクロロホルム-dに溶解し、1H-NMR(核磁気共鳴スペクトル)を用いて測定し、各ユニットのモル比を分析することで求めた。結果を表1に記載する。
(実施例1)
[エチレンオキサイド変性ポリビニルアルコールの合成]
 攪拌機、温度計、滴下ロートおよび還流冷却器を付したフラスコ中に、酢酸ビニル1000質量部、平均繰り返し単位m=10であるポリオキシエチレンモノビニルエーテル320質量部、及びメタノール300質量部を添加し、系内の窒素置換を行った後、温度を60℃まで昇温した。この系に2,2-アゾビスイソブチロニトリル1.1質量部を添加し、重合を開始した。重合開始から5時間で重合を停止した。重合停止時の系内の固形分濃度は53質量%であり、全モノマーに対する重合収率は65質量%であった。減圧下に未反応のモノマーを除去した後、共重合体の30質量%メタノール溶液を得た。得られた共重合体は酢酸ビニル単位95.0モル%、エチレンオキサイドを含有するアルキルビニルエーテル単位5.0モル%を含有することが未反応のモノマーの定量より確認された。
 得られた共重合体のメタノール溶液100質量部を40℃で攪拌しながら、3質量%のNaOHメタノール溶液6.0質量部を添加して、よく混合した後に放置した。2時間後、固化したポリマーを粉砕機で粉砕し、メタノールで洗浄後、乾燥してポリマー粉末(エチレンオキサイド変性ポリビニルアルコール)を得た。エチレンオキサイド変性ポリビニルアルコールはアセチル基1モル%、エチレンオキサイド単位量5モル%を有し、重合度は700であった。
[ポリビニルブチラール(PVB1)の調製]
得られたポリマー粉末100質量部を純水753質量部に加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、濃度35質量%の塩酸56質量部とn-ブチルアルデヒド54質量部を添加し、液温を20℃まで下げ、温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を40℃として3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール系樹脂(PVB1)の白色粉末を得た。
[液晶デバイス用フィルムの作製]
 得られたポリビニルアセタール系樹脂を、温度160℃、圧力20MPaでプレス成形して厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例2)
 平均繰り返し単位m=10であるポリオキシエチレンモノビニルエーテル320質量部を、繰り返し単位m=30のポリオキシエチレンモノビニルエーテル180質量部にした以外は実施例1と同様の方法で調製したPVB2を得た。エチレンオキサイド変性ポリビニルアルコールの重合度は、860であった。PVB2を用いて実施例1と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例3)
 3質量%のNaOHメタノール溶液6.0質量部を、2.7質量部にした以外は実施例2と同様の方法で調製したPVB2-2を得た。PVB2を用いて実施例1と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例4)
 平均繰り返し単位m=10であるポリオキシエチレンモノビニルエーテル320質量部を、繰り返し単位m=30のポリオキシプロピレンモノアリルエーテル180質量部にした以外は実施例1と同様の方法で調製したPVB3を得た。エチレンオキサイド変性ポリビニルアルコールの重合度は1100であった。PVB3を用いて実施例1と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例5)
 平均繰り返し単位m=10であるポリオキシエチレンモノビニルエーテル320質量部を、繰り返し単位m=50のポリオキシエチレンポリオキシプロピレンモノアリルエーテル520質量部にした以外は実施例1と同様の方法で調製したPVB3-2を得た。エチレンオキサイド及びプロピレンオキサイド変性ポリビニルアルコールの重合度は、1500であった。PVB2を用いて実施例1と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例6)
 窒素気流下で乾燥させた500mLセパラブルフラスコに、THF300gとポリビニルブチラール(重合度1700、積水化学社製、PVB4)30gを仕込み、65℃で撹拌翼で撹拌しながら、ポリビニルブチラールを溶解させた。
 この溶液に変性剤としてのn-オクタデシルイソシアネート30gを添加して10分間撹拌させた。セパラブルフラスコから溶液を取出して、PET離型フィルム(商品名「PET50D1-C」、ニッパ社製)を剥離処理面が上面となるように敷いたアルミパットに流し込んだ後、オーブンで130℃2時間加熱し反応させて、式(1-1)の官能基を有するポリビニルアセタール系樹脂(PVB6)からなるフィルムを得た。得られたポリビニルアセタール系樹脂を、温度160℃、圧力20MPaでプレス成形して厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。得られた樹脂フィルムを赤外分光光度計(IR)にて測定したところ、イソシアネート基(波数2260cm-1)のピークが消失したことから、反応の進行を確認できた。
(実施例7)
 PVB1の代わりに、実施例4で用いたPVB4(重合度1700、積水化学社製)を用いて、実施例1と同様の方法で樹脂フィルム(液晶デバイス用フィルム)を作製した。
(実施例8)
 PVB4と可塑剤であるポリエステルポリオール(DIC社製「OD-X-2586」、水酸基3個、分子量850)を表1の割合で充分に混練し、フィルム用組成物を得た。得られたフィルム用組成物を温度160℃、圧力20MPaでプレス成形して厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例9~11、比較例1~2)
 PVB1、PVB4、及びPVB5と可塑剤であるトリエチレングリコールジ-2-エチルヘキサノエート(3GO)(水酸基0個)を表1の割合で充分に混練し、フィルム用組成物を得た。得られたフィルム用組成物を温度160℃、圧力20MPaでプレス成形して厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
 なお、PVB5は、平均重合度830のポリビニルブチラール樹脂であった。
(実施例12)
 平均繰り返し単位m=10であるポリオキシエチレンモノビニルエーテル320質量部を、繰り返し単位m=30のポリオキシプロピレンモノアリルエーテル110質量部にした以外は実施例1と同様の方法で調製したPVB7を得た。エチレンオキサイド変性ポリビニルアルコールの重合度は1100であった。PVB7を用いてトリエチレングリコールジ-2-エチルヘキサノエート(3GO)(水酸基0個)を、数平均分子量が1000であるポリプロピレングリコール(富士フィルム和光純薬社製、PPG1000、水酸基2個)にした以外は実施例9~11と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例13)
 ポリプロピレングリコールを、数平均分子量が700であるポリオキシプロピレンジグリセリルエーテル(日油株式会社製、商品名「ユニループ DGP-700」、水酸基4個)に変更した以外は実施例12と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例14)
 ポリプロピレングリコールを、数平均分子量が1000であるポリオキシプロピレングリセリルエーテル(日油株式会社製、商品名「ユニーオール TG-1000R」、水酸基2個)にした以外は実施例12と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
(実施例15)
 ポリプロピレングリコールを、数平均分子量が1600であるポリオキシプロピレンジグリセリルエーテル(阪本薬品工業株式会社、商品名「SCP-1600」、水酸基4個)に変更した以外は実施例12と同様の方法で厚み800μmの樹脂フィルム(液晶デバイス用フィルム)を得た。
Figure JPOXMLDOC01-appb-T000006
 以上の各実施例の液晶デバイス用フィルムは、熱可塑性樹脂の構成、可塑剤の有無、及び可塑剤の種類と量を適宜調整することで、液晶に接触した際のNI点変化を小さくすることができた。そのため、液晶デバイスに対して使用しても、液晶汚染を抑制でき、表示ムラなどの不具合が、生じることを防止できる。
 それに対して、比較例1、2のフィルムは、液晶に接触した際のNI点変化が大きくなったので、液晶デバイスに対して使用すると、液晶が汚染され、表示ムラなどの不具合が、生じると考えられる。
 10、20 調光装置
 11、21 第1の透明板
 12、22 第2の透明板
 13 液晶調光セル
 15、25 第1の中間膜
 16、26 第2の中間膜
 23 第1の液晶調光セル
 24 第2の液晶調光セル
 27 第3の中間膜

 

Claims (13)

  1.  液晶デバイスに用いられる液晶デバイス用フィルムであって、熱可塑性樹脂を含有し、
     液晶デバイス用フィルムを液晶と接触させた際のNI点変化が-2℃~+2℃である液晶デバイス用フィルム。
  2.  可塑剤を含有しないか、又は水酸基を有する可塑剤及び水酸基を有しない可塑剤の少なくともいずれかを含有し、
     前記水酸基を有する可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して70質量部以下であり、
     前記水酸基を有しない可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して25質量部以下である請求項1に記載の液晶デバイス用フィルム。
  3.  可塑剤を含有しないか、若しくは水酸基を含有する可塑剤を熱可塑性樹脂100質量部に対して70質量部以下含有する請求項2に記載の液晶デバイス用フィルム。
  4.  前記熱可塑性樹脂が、ポリビニルアセタール系樹脂、アイオノマー樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、及びエチレン-酢酸ビニル共重合樹脂からなる群から選択される少なくとも1種である請求項1~3のいずれか1項に記載の液晶デバイス用フィルム。
  5.  前記熱可塑性樹脂が、ポリビニルアセタール系樹脂である請求項4に記載の液晶デバイス用フィルム。
  6.  前記ポリビニルアセタール系樹脂が、アセタール基、アセチル基、及び水酸基以外のユニットを有する変性ポリビニルアセタール樹脂を含む請求項4又は5に記載の液晶デバイス用フィルム。
  7.  前記ポリビニルアセタール系樹脂が、ポリオキシアルキレン基を有する請求項4~6のいずれか1項に記載の液晶デバイス用フィルム。
  8.  ガラス転移温度が55℃以下である請求項1~7のいずれか1項に記載の液晶デバイス用フィルム。
  9.  前記NI点変化が、-1℃~+1℃である請求項1~8のいずれか1項に記載の液晶デバイス用フィルム。
  10.  液晶調光セル用である請求項1~9のいずれか1項に記載の液晶デバイス用フィルム。
  11.  請求項1~10のいずれか1項に記載の液晶デバイス用フィルムが設けられる液晶デバイス。
  12.  請求項10に記載の液晶デバイス用フィルムと、液晶調光セルとを備える、調光装置。
  13.  電子デバイスに用いられる電子デバイス用フィルムであって、
     熱可塑性樹脂を含有し、かつ
     可塑剤を含有しないか、又は水酸基を有する可塑剤及び水酸基を有しない可塑剤の少なくともいずれかを含有し、
     前記水酸基を有する可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して70質量部以下であり、
     前記水酸基を有しない可塑剤の含有量が、前記熱可塑性樹脂100質量部に対して25質量部以下である電子デバイス用フィルム。
     
PCT/JP2021/041082 2020-11-09 2021-11-09 液晶デバイス用フィルム、液晶デバイス、及び調光装置 WO2022097753A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237014055A KR20230104874A (ko) 2020-11-09 2021-11-09 액정 디바이스용 필름, 액정 디바이스, 및 조광 장치
EP21889304.8A EP4242739A1 (en) 2020-11-09 2021-11-09 Film for liquid crystal device, liquid crystal device, and light adjusting apparatus
MX2023005330A MX2023005330A (es) 2020-11-09 2021-11-09 Pelicula para dispositivo de cristal liquido, dispositivo de cristal liquido y aparato de ajuste de luz.
US18/034,947 US20230399475A1 (en) 2020-11-09 2021-11-09 Film for liquid crystal device, liquid crystal device, and light adjusting apparatus
JP2022560840A JPWO2022097753A1 (ja) 2020-11-09 2021-11-09
CN202180075140.3A CN116529222A (zh) 2020-11-09 2021-11-09 液晶装置用膜、液晶装置及调光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186790 2020-11-09
JP2020-186790 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097753A1 true WO2022097753A1 (ja) 2022-05-12

Family

ID=81458314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041082 WO2022097753A1 (ja) 2020-11-09 2021-11-09 液晶デバイス用フィルム、液晶デバイス、及び調光装置

Country Status (8)

Country Link
US (1) US20230399475A1 (ja)
EP (1) EP4242739A1 (ja)
JP (1) JPWO2022097753A1 (ja)
KR (1) KR20230104874A (ja)
CN (1) CN116529222A (ja)
MX (1) MX2023005330A (ja)
TW (1) TW202225221A (ja)
WO (1) WO2022097753A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534557A (ja) * 2006-04-20 2009-09-24 ピルキントン グループ リミテッド 窓パネル
WO2012115223A1 (ja) * 2011-02-25 2012-08-30 株式会社クラレ ポリオキシアルキレン変性ビニルアセタール系重合体及びそれを含有する組成物
WO2019174700A1 (en) * 2018-03-15 2019-09-19 Shark Solutions Aps Modification of virgin and/or recycled construction polymers, using poly vinyl butyral (pvb), or recycled pvb from industrial waste streams and an alloying copolymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286928B2 (ja) 2018-08-23 2023-06-06 大日本印刷株式会社 調光装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534557A (ja) * 2006-04-20 2009-09-24 ピルキントン グループ リミテッド 窓パネル
WO2012115223A1 (ja) * 2011-02-25 2012-08-30 株式会社クラレ ポリオキシアルキレン変性ビニルアセタール系重合体及びそれを含有する組成物
WO2019174700A1 (en) * 2018-03-15 2019-09-19 Shark Solutions Aps Modification of virgin and/or recycled construction polymers, using poly vinyl butyral (pvb), or recycled pvb from industrial waste streams and an alloying copolymer

Also Published As

Publication number Publication date
MX2023005330A (es) 2023-05-22
EP4242739A1 (en) 2023-09-13
US20230399475A1 (en) 2023-12-14
KR20230104874A (ko) 2023-07-11
TW202225221A (zh) 2022-07-01
CN116529222A (zh) 2023-08-01
JPWO2022097753A1 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
US9764534B2 (en) Laminated glass interlayer and laminated glass
US20170197387A1 (en) Interlayer for laminated glass and laminated glass
EP3438072B1 (en) Interlayer film for laminated glass, and laminated glass
WO2021215455A1 (ja) 合わせガラス用中間膜、及び合わせガラス
WO2021215456A1 (ja) 樹脂組成物、合わせガラス用中間膜、及び合わせガラス
WO2022097753A1 (ja) 液晶デバイス用フィルム、液晶デバイス、及び調光装置
KR20180132636A (ko) 폴리비닐아세탈 아이오노머 수지 필름 및 접합 유리
WO2022265074A1 (ja) 粘着フィルム、及び積層体
WO2022265073A1 (ja) 粘着フィルム、及び積層体
WO2023120667A1 (ja) 変性ポリビニルアセタール樹脂、及びフィルム
WO2022265075A1 (ja) 粘着フィルム、積層体、液晶ディスプレイ及び合わせガラス
WO2022265077A1 (ja) 粘着フィルム、積層体、液晶ディスプレイ及び合わせガラス
WO2022265079A1 (ja) ポリビニルアセタール系樹脂、及びフィルム
WO2022265078A1 (ja) ポリビニルアセタール系樹脂フィルム
CN117460799A (zh) 粘合膜和层叠体
CN117545814A (zh) 胶粘膜、叠层体、液晶显示器及夹层玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180075140.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021889304

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889304

Country of ref document: EP

Effective date: 20230609