WO2016158552A1 - R-tm-b系焼結磁石 - Google Patents

R-tm-b系焼結磁石 Download PDF

Info

Publication number
WO2016158552A1
WO2016158552A1 PCT/JP2016/058917 JP2016058917W WO2016158552A1 WO 2016158552 A1 WO2016158552 A1 WO 2016158552A1 JP 2016058917 W JP2016058917 W JP 2016058917W WO 2016158552 A1 WO2016158552 A1 WO 2016158552A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
magnet
point
sintered
sintered magnet
Prior art date
Application number
PCT/JP2016/058917
Other languages
English (en)
French (fr)
Inventor
大介 山道
政直 蒲池
倫太郎 石井
孝洋 加藤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201680010730.7A priority Critical patent/CN107251169A/zh
Priority to JP2017509820A priority patent/JP6658737B2/ja
Priority to DE112016001436.8T priority patent/DE112016001436T5/de
Priority to US15/549,777 priority patent/US20180025818A1/en
Publication of WO2016158552A1 publication Critical patent/WO2016158552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the present invention relates to an R-TM-B sintered magnet with improved corrosion resistance and an R-TM-B cylindrical anisotropic sintered magnet with reduced cracking.
  • R-TM-B sintered magnets are widely used because of their high magnetic properties.
  • the R-TM-B sintered magnet has a problem of being easily corroded because it contains a rare earth element (R element) as a main component. It is known that corrosion starts from a rare earth-rich phase containing a large amount of rare earth elements and proceeds while the main phase drops off.
  • R element rare earth element
  • the surface of R-TM-B sintered magnets is usually provided with a rust-preventive coating (painting or plating). It is difficult to prevent completely.
  • a cylindrical polar anisotropic magnet and a cylindrical radial anisotropic magnet are known as one of the forms of the R-TM-B sintered magnet. These cylindrical magnets are easy to assemble and widely used because they do not need to be attached to the rotor one by one like a bow-shaped magnet when used in a rotating machine.
  • Co is known as a metal that improves the corrosion resistance of R-TM-B sintered magnets.
  • JP-A-63-38555 describes that Co is taken into the main phase and grain boundaries of an R-TM-B sintered magnet to form an intermetallic compound with a rare earth element that is less susceptible to corrosion than a rare earth-rich phase. is doing.
  • the added Co is included not only in the main phase but also in the grain boundary phase, thereby causing a problem of reducing the mechanical strength. For this reason, R-TM-B sintered magnets containing Co are liable to be chipped and cracked during handling after sintering or grinding, which may reduce production efficiency.
  • JP 2003-31409 describes the addition of Co and Cu to segregate Co and Cu around the R-rich phase (rare earth element-rich grain boundary phase) to form an intermediate phase, thereby converting the R-rich phase to Co. And a technique of coating with Cu to improve the corrosion resistance of individual R-rich phases.
  • Patent Document 2 there is a problem that the mechanical strength of the sintered magnet decreases due to the addition of Co. Therefore, it is desired to develop a technique for improving the corrosion resistance particularly in a magnet having a stress such as a cylindrical magnet. ing.
  • Japanese Patent Laid-Open No. 2013-216965 discloses R, which is a rare earth element, T, which is a transition metal essential for Fe, a metallic element M containing one or more metals selected from Al, Ga, and Cu, and B And an alloy for RTB rare earth sintered magnets composed of inevitable impurities.
  • T which is a rare earth element
  • M metallic element M containing one or more metals selected from Al, Ga, and Cu
  • B an alloy for RTB rare earth sintered magnets composed of inevitable impurities.
  • an object of the present invention is to provide an R-TM-B based sintered magnet that achieves both high mechanical strength and excellent corrosion resistance without adding Co.
  • Another object of the present invention is to provide an R-TM-B cylindrical anisotropic sintered magnet with reduced generation of cracks, chips and cracks.
  • R-TM-B based sintered magnets added with Ga or (Ga + Cu) have excellent corrosion resistance even when they contain substantially no Co.
  • the present invention finds that the occurrence of cracks, chips, cracks, etc. is reduced even when a cylindrical anisotropic sintered magnet that does not cause a decrease in mechanical strength and is liable to generate residual stress. I came up with it.
  • the R-TM-B sintered magnet of the present invention has 24.5 to 34.5% by mass of R (R is at least one selected from rare earth elements including Y), 0.85 to 1.15% by mass of B, 0.1%
  • R is at least one selected from rare earth elements including Y
  • B 0.85 to 1.15% by mass of B
  • the R-TM-B sintered magnet of the present invention has 3 mass% or less of M (M is Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Ag, Mn, Ge , Sn, Bi, Pb and Zn) may be further contained.
  • M is Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Ag, Mn, Ge , Sn, Bi, Pb and Zn
  • the Ga and Cu contents are Ga (mass%) and Cu (mass%) on the XY plane with the X axis and Y axis, respectively, point A (0.5, 0.0), point B (0.5, 0.4). ), Point C ′ (0.1, 0.4), point D ′ (0.1, 0.1), and point E (0.2, 0.0) are preferably in a region surrounded by a pentagon.
  • the R-TM-B sintered magnet is preferably a cylindrical radial anisotropic magnet or a cylindrical polar anisotropic magnet.
  • the R-TM-B sintered magnet of the present invention exhibits corrosion resistance by including Ga and Cu in a specific range instead of imparting corrosion resistance by containing Co. It is possible to achieve both excellent corrosion resistance. For this reason, it is possible to provide an R-TM-B sintered magnet with reduced occurrence of cracks, chips, cracks, etc., and cylindrical R-TM-B anisotropic sintering that is liable to generate residual stress.
  • the present invention can also be applied to a binding magnet (cylindrical radial anisotropic magnet and cylindrical polar anisotropic magnet). Therefore, the R-TM-B based sintered magnet of the present invention can be preferably used as a magnet for a rotating machine.
  • FIG. 6 is a schematic diagram showing a molding apparatus for molding the R-TM-B radial anisotropic ring magnet used in Experimental Example 4.
  • 10 is a cross-sectional view schematically showing a molding apparatus for molding the R-TM-B polar anisotropic ring magnet used in Experimental Example 5.
  • FIG. FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • the R-TM-B sintered magnet of the present invention comprises 24.5 to 34.5% by mass of R (R is at least one selected from rare earth elements including Y), 0.85 to 1.15% by mass of B, An R-TM-B sintered magnet containing less than 0.1 mass% Co, 0.07 to 0.5 mass% Ga, 0 to 0.4 mass% Cu, unavoidable impurities, and the balance Fe, The content of Ga and Cu, Ga amount (mass%) and Cu amount (mass%) on the XY plane with the X axis and the Y axis, respectively, point A (0.5, 0.0), point B (0.5, 0.4 ), Point C (0.07, 0.4), point D (0.07, 0.1), and point E (0.2, 0.0).
  • the R-TM-B sintered magnet of the present invention preferably consists essentially of R-TM-B.
  • R is at least one of rare earth elements including Y, and preferably necessarily includes at least one of Nd, Dy, and Pr, and TM is at least one of transition metal elements, preferably Fe. .
  • B is boron.
  • the R-TM-B sintered magnet has R of 24.5-34.5% by mass.
  • R the amount of R is less than 24.5% by mass, the residual magnetic flux density Br and the coercive force iHc decrease. If the amount of R exceeds 34.5% by mass, the rare earth-rich phase region inside the sintered body increases, so that the residual magnetic flux density Br decreases and the corrosion resistance decreases.
  • the R-TM-B sintered magnet has B of 0.85 to 1.15% by mass.
  • B 0.85 to 1.15% by mass.
  • B necessary for forming the main phase R 2 Fe 14 B phase is insufficient, and an R 2 Fe 17 phase having soft magnetic properties is generated and the coercive force is reduced.
  • the amount of B exceeds 1.15% by mass, the phase rich in B which is a nonmagnetic phase increases and the residual magnetic flux density decreases.
  • the R-TM-B sintered magnet contains 0.07 to 0.5 mass% Ga.
  • Ga has the effect of improving the corrosion resistance in addition to the effect of improving the coercive force. If it is 0.07% by mass or less, the effect of improving the coercive force iHc cannot be obtained. Even if Ga is added in an amount of more than 0.5% by mass, no further effect of improving the coercive force and improving the corrosion resistance cannot be expected.
  • the effect of improving corrosion resistance due to the addition of Ga is sufficiently effective if contained in an amount of 0.07% by mass or more, but it is more preferable to contain 0.1% by mass or more. In particular, when Cu is not included, the Ga content is preferably 0.2% by mass or more.
  • the R-TM-B sintered magnet contains 0 to 0.4 mass% Cu. Even if it does not contain Cu, the effect of the present invention can be obtained by adjusting the Ga content, but the corrosion resistance is further improved by containing Cu. When the Ga content is 0.07% by mass, it is preferable to contain 0.1% by mass or more of Cu. Even if Cu is added in an amount of more than 0.4% by mass, the effect of further improving the corrosion resistance cannot be obtained.
  • the Ga content (Cu) and the Cu content (mass%) should be changed.
  • point A 0.5, 0.0
  • point B 0.5, 0.4
  • point C (0.07, 0.4
  • point D (0.07, 0.1
  • point E 0.2, 0.0
  • substantially not containing is indicated as “substantially” by allowing inclusion as an inevitable impurity.
  • the contents of Ga and Cu are point A (0.5, 0.0), point B (0.5, 0.4), point C ′ (0.1, 0.4), point D ′ (0.1, 0.1) and point E. It is preferably within a region surrounded by a pentagon with (0.2, 0.0) as the vertex, and point A (0.5, 0.0), point B (0.5, 0.4), point C "(0.2, 0.4) and point D" ( More preferably, it is in a region surrounded by a quadrangle with the vertices at 0.2, 0.1).
  • Part of Fe may be substituted with Co, but if Co is contained in an amount of 0.1% by mass or more, cracking particularly occurs in cylindrical anisotropic sintered magnets, which is undesirable, so the Co content is It is preferably less than 0.1% by mass.
  • Co may be used as a material that usually enhances corrosion resistance, but in the present invention, as described above, corrosion resistance can be imparted by Ga or Ga and Cu.
  • the use of Co is not mandatory.
  • 0.08 mass% or less of Co may be contained as an inevitable impurity of Fe. Although it is desirable that the amount of Co contained as an inevitable impurity is small, it is contained at a certain ratio depending on the purity of raw materials used in the mass production process and the addition of recycled materials. Co contained as an inevitable impurity is more preferably 0.06% by mass or less.
  • Ni is one of the impurities that may be mixed into the R-TM-B sintered magnet from the raw material and its manufacturing process. Ni is known to be substituted for a part of Fe and to reduce the magnetic properties of R-TM-B magnets. In addition, inclusion of a certain amount or more of Ni is not desirable because cracks rapidly increase. Ni as an unavoidable impurity contained in the raw material and an impurity which is unintentionally mixed in the manufacturing process is preferably suppressed to less than 0.1% by mass, and more preferably 0.08% by mass or less.
  • R-TM-B based sintered magnets are further M (M is Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Ag, Mn, Ge, Sn, Bi, Pb and It may contain at least one selected from Zn.
  • M is Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Ag, Mn, Ge, Sn, Bi, Pb and It may contain at least one selected from Zn.
  • the trace addition of the metal element M changes the nature of the grain boundary phase, but the coercive force improving effect is obtained, to decrease a large amount of the addition R 2 Fe 14 B phase volume ratio decreases Br, 3 wt% It is preferable to keep it below.
  • the R-TM-B sintered magnet of the present invention is preferably cylindrical.
  • the cylindrical magnet preferably has radial anisotropy or polar anisotropy as an anisotropic direction.
  • the cylindrical magnet having the composition of the R-TM-B sintered magnet of the present invention has not only good corrosion resistance but also a very small amount even if it does not contain Co. There is no occurrence of cracks, chips, cracks, etc. due to it, or even if it occurs, the amount is extremely small.
  • the R-T-B radial anisotropic ring magnet preferably has a ratio D1 / D2 between the inner diameter (D1) and the outer diameter (D2) of 0.7 or more.
  • the number of poles when the R-T-B radial anisotropy ring magnet is multipolarized may be set as appropriate according to the specifications of the motor in which the magnet is used.
  • RTB polar anisotropy ring magnet is composed of 4 poles, 6 poles, 8 poles, 10 poles, 12 poles or 14 poles of multi-circular anisotropy and a circular cross section outer peripheral surface You may have.
  • the number of poles of the outer peripheral surface is an integral multiple of the number of vertices of the polygon.
  • at least one of the intermediate positions of the pole positions of the outer peripheral surface and at least one vertex of a polygon of a cross section constituting the inner peripheral surface coincide with each other in the circumferential direction.
  • the number of poles is preferably the same as or twice the number of vertices of the polygon.
  • the polygon is preferably a regular polygon.
  • yen circumscribing a polygon be an internal diameter.
  • Example 1 As shown in Table 1, Nd is 24.80% by mass, Pr is 6.90% by mass, Dy is 1.15% by mass, B is 0.96% by mass, Nb is 0.15% by mass, Al is 0.10% by mass, and Ga and Cu contents are shown in Table 1. Strip casting method of 25 types of alloys containing Fe and unavoidable impurities as the balance, with 0.1, 0.2, 0.3, 0.4, 0.5% by mass and 0.02, 0.1, 0.2, 0.3, 0.4% by mass, respectively. It was produced by. These alloys contained 0.06% by mass of Co as an inevitable impurity. The Cu content is a value containing 0.02% by mass of Cu contained as an inevitable impurity.
  • the resulting alloy is crushed by jet mill in nitrogen gas containing 5000 ppm oxygen, compression molded in a magnetic field, sintered and heat-treated, then ground, and R-TM-B sintered.
  • Ga or Ga + Cu reduces the corrosion weight loss of the R-TM-B sintered magnet and greatly improves the corrosion resistance.
  • Cu was not added (however, when 0.02% by mass of Cu was included as an inevitable impurity), the corrosion weight loss was remarkably large when the Ga content was 0.1% by mass, but when the Ga content was increased, the corrosion weight loss decreased and the corrosion resistance was reduced. Good results were obtained.
  • Cu was added at a Ga content of 0.1% by mass, the corrosion weight loss decreased and the corrosion resistance was improved.
  • the corrosion weight loss is less than 2 mg / cm 2 when the pressure cooker test is performed under the conditions of 120 ° C. 100% RH, 2 atm and 96 hours in the R-TM-B sintered magnet, It has been confirmed that it can satisfy the standards of corrosion resistance required for automobiles (electric equipment and HV).
  • the range of Cu and Ga content that is considered to be able to satisfy the above corrosion resistance standard even when substantially free of Co, Ga amount (mass%) and Cu amount (mass%) are respectively expressed in the X axis and Y direction. As shown in FIG. 1, on the XY plane as the axis, it can be seen that the region is surrounded by a pentagon with the point ABCDE as a vertex.
  • Experimental example 2 24.80% by mass of Nd, 6.90% by mass of Pr, 1.15% by mass of Dy, 0.96% by mass of B, 0.15% by mass of Nb, 0.10% by mass of Al, 0.30% by mass of Ga and 0.15% by mass of Cu, Alloy A containing Fe and inevitable impurities as the balance was prepared by strip casting. This alloy A contained 0.06% by mass of Co as an inevitable impurity.
  • Alloys B to F were produced in the same manner as Alloy A except that the alloy composition was changed as shown in Table 2. Alloys A to E are included in the composition range of the R-TM-B sintered magnet of the present invention, and Alloy F is not included in the composition range of the R-TM-B sintered magnet of the present invention. Is.
  • Co is an inevitable impurity.
  • Ga content and Cu content are 0.1% by mass and 0.02% by mass of alloy 1, 0.1% by mass and 0.4% by mass of alloy 2, 0.5% by mass and 0.02% by mass, respectively.
  • the% alloy 3 and 0.5 wt% and 0.4 wt% of the residual magnetic flux density B r and the coercivity H cJ of alloy 4 were measured. The results are shown in Table 3.
  • Alloy A ⁇ E and alloys 2-4 are included in the composition range of R-TM-B based sintered magnet of the present invention, the corrosion weight loss is small, it is found to have a high residual magnetic flux density B r and the coercivity H cJ .
  • alloy F the sum of Nd, Pr, and Dy exceeds the rare earth amount specified in the present invention, and as a result, it is presumed that the corrosion resistance has deteriorated.
  • Experimental Example 3 About the alloy 1 with Ga content and Cu content of 0.1% by mass and 0.02% by mass obtained in Experimental Example 1, respectively, and the alloy 4 with Ga content and Cu content of 0.5% by mass and 0.4% by mass, respectively.
  • a pressure cooker test was conducted under the conditions of 120 ° C., 100% RH, 2 atm and 24 hours, and the state of corrosion after the test was observed by SEM. The result is shown in figure 2.
  • Example 4 In order to evaluate the effect of Co content on the mechanical strength of R-TM-B sintered magnets, the following experiment was conducted.
  • the obtained alloy was pulverized in a jet mill in a nitrogen gas containing 5000 ppm of oxygen to prepare a fine powder.
  • compression molding in a magnetic field (magnetic field strength: 318 kA / m, pressure: 98 MPa) with the molding equipment shown in Fig. 3 gives a compact of an R-TM-B radial anisotropic ring magnet. (Outer diameter 41.8 mm x inner diameter 32.5 mm x height 47.2 mm). Ten compacts were produced for each alloy.
  • the molding equipment used to mold the R-TM-B radial anisotropic ring magnet includes cylindrical upper and lower cores 40a and 40b (made by permender), a cylindrical outer mold 30 (made by SK3), and a cylindrical shape.
  • the upper core 40a can be detached from the lower core 40b, the upper core 40a and the upper punch 90a can be moved up and down independently, and the upper punch 90a can be detached from the cavity 60.
  • a magnetic field can be applied in the radial direction to the cavity 60 along the magnetic field line 70 through the closely contacted upper core 40a and lower core 40b.
  • a sintering jig material SUS403 linear expansion coefficient 11.4 ⁇ 10 -6 ) consisting of a cylindrical body with an outer diameter of 29.0 mm into the molded body, and place it on the Mo heat-resistant plate laid in the Mo container. It was sintered for 2 hours at 1080 ° C. in a vacuum. The sintering jig was used after applying Nd 2 O 3 stirred in an organic solvent to the outer peripheral surface. The end surface, outer peripheral surface and inner peripheral surface of the obtained sintered body were ground to produce 13 types of R-TM-B radial anisotropic ring magnets 401 to 413 having different Co contents.
  • the results are shown in Table 4.
  • the ring magnets 401 to 403 are reference examples in which the Ga content is out of the present invention, but the Co content is less than 0.1% by mass (within the range specified in the present invention), and the ring magnets 404 to 413 are the Co content. Is 0.1% by mass or more (outside the range specified in the present invention).
  • Experimental Example 5 Using fine powders of 13 kinds of alloys prepared in the same manner as in Experimental Example 4, compression molding in a magnetic field (pressure: 80 MPa, magnetic field strength was the same under all conditions (pulse Thus, an R-TM-B polar anisotropic ring magnet molded body (outer diameter 31.5 mm ⁇ inner diameter 20.3 mm ⁇ height 27.8 mm) having eight poles on the outer peripheral surface was obtained. Ten compacts were produced for each alloy.
  • the forming apparatus 100 in the magnetic field used for forming the R-TM-B polar anisotropic ring magnet has a die 101 made of a magnetic material and a concentric space in the annular space of the die 101. And a core 102 made of a cylindrical non-magnetic material, and the dice 101 are supported by support posts 111 and 112, and the core 102 and the support posts 111 and 112 are both supported by a lower frame 108.
  • the upper punch 104 made of a cylindrical non-magnetic material the lower punch 107 made of a cylindrical non-magnetic material is fitted into the molding space 103 between the die 101 and the core 102, respectively.
  • the lower punch 107 is fixed to the substrate 113, while the upper punch 104 is fixed to the upper frame 105.
  • the upper frame 105 and the lower frame 108 are connected to the upper cylinder 106 and the lower cylinder 109, respectively.
  • Fig. 4 (b) shows the AA cross section of Fig. 4 (a).
  • a plurality of grooves 117 are formed on the inner surface of the cylindrical die 101, and a magnetic field generating coil 115 is embedded in each groove 117.
  • An annular non-magnetic annular sleeve 116 is provided on the inner surface of the die 101 so as to cover the groove.
  • a space 103 between the annular sleeve 116 and the core 102 is formed.
  • the magnetic field generating coil 115 in each groove 117 is arranged so that the current flows in a direction perpendicular to the paper surface, and the current direction of the coils adjacent in the circumferential direction is alternately reversed. So connected.
  • the obtained molded body was placed on a Mo heat-resistant plate laid in a Mo container and sintered at 1080 ° C. for 2 hours in a vacuum.
  • the end surface, outer peripheral surface and inner peripheral surface of the obtained sintered body were ground to produce 13 types of R-TM-B polar anisotropic ring magnets 501 to 513 having different Co contents.
  • the obtained R-TM-B polar anisotropic ring magnet was visually checked for cracks.
  • the results are shown in Table 5.
  • the ring magnets 501 to 503 are reference examples in which the Ga content is out of the present invention but the Co content is less than 0.1% by mass (within the range specified in the present invention), and the ring magnets 504 to 513 are the Co content. Is 0.1% by mass or more (outside the range specified in the present invention).
  • Experimental Example 6 A radially anisotropic sintered ring magnet of the present invention example was manufactured in the same manner as in Experimental example 4 except that 25 kinds of fine alloy powders prepared in the same manner as in Experimental example 1 were used. As a result, all of these 25 types of radially anisotropic sintered ring magnets did not crack after grinding.
  • Experimental Example 7 A polar anisotropic sintered ring magnet of the example of the present invention was manufactured in the same manner as in Experimental Example 5 except that fine powders of 25 types of alloys prepared in the same manner as in Experimental Example 1 were used. As a result, all of these 25 types of radially anisotropic sintered ring magnets did not crack after grinding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 24.5~34.5質量%のR(RはYを含む希土類元素から選ばれる少なくとも1種)と、0.85~1.15質量%のBと、0.1質量%未満のCoと、0.07~0.5質量%のGaと、0~0.4質量%のCuと、不可避不純物と、残部Feとを含有するR-TM-B系焼結磁石であって、前記Ga及びCuの含有量が、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C(0.07、0.4)、点D(0.07、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあることを特徴とするR-TM-B系焼結磁石。

Description

R-TM-B系焼結磁石
 本発明は、耐食性改善を図ったR-TM-B系焼結磁石及び割れ低減を図ったR-TM-B系円筒状異方性焼結磁石に関する。
 R-TM-B系焼結磁石は、高い磁気特性を有しているため広く使用されている。しかしながら、R-TM-B系焼結磁石は主成分として希土類元素(R元素)を含有していることから腐食しやすいといった問題がある。腐食は希土類元素を多く含む希土類リッチ相から始まり、主相が脱落しながら進行してゆくことが知られている。腐食を防止するため、R-TM-B系焼結磁石の表面には通常防錆被膜(塗装やめっき)が施されているが、水蒸気はある程度防錆被膜を通過するため、磁石の腐食を完全に防止することは難しい。
 R-TM-B系焼結磁石の形態の一つとして、円筒状極異方性磁石及び円筒状ラジアル異方性磁石が知られている。これらの円筒状磁石は、回転機に用いる場合に、弓型磁石のようにロータに一枚ずつ貼りつける必要がないため、組み立てが容易であり広く使用されている。
 しかしながら、これら円筒状磁石は、異方性化に起因して、磁石のC軸方向とC軸と垂直方向との線膨張係数の違いが生じ、それらの線膨張係数の違いにより発生する応力が円筒状磁石に内在するようになる。この応力が円筒状磁石の機械強度より大きくなると、例えば、特開昭64-27208号に記載されているように、割れやクラックが発生する。なおブロック形状の磁石の場合には、線膨張係数が異なっていたとしても応力は解放されるため、応力が磁石に内在することはない。
 R-TM-B系焼結磁石の耐食性を向上させる金属としてCoが知られている。例えば、特開昭63-38555号は、CoがR-TM-B系焼結磁石の主相及び粒界に取り込まれ、希土類リッチ相より腐食しにくい希土類元素との金属間化合物を形成すると記載している。しかしながら一方で、添加したCoは主相に含まれるだけでなく、粒界相にも含まれることにより機械的強度を低減させるという問題を生じる。このためCoを含有させたR-TM-B系焼結磁石は、焼結後の取り扱いや研削加工の際に欠けやクラックが発生しやすく、生産効率を低下させる場合がある。
 特開2003-31409号は、CoとCuを添加して、Rリッチ相(希土類元素リッチな粒界相)の周囲にCoとCuを偏析させて中間相を形成することによってRリッチ相をCoとCuにより被覆し、個々のRリッチ相の耐食性を改善させる技術を開示している。しかしながら、特許文献2と同様に、Co添加により焼結磁石の機械的強度が低下するといった問題が生じるため、特に円筒状磁石のように応力が内在する磁石での耐食性改良技術の開発が望まれている。
 特開2013-216965号は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、B及び不可避不純物からなるR-T-B系希土類焼結磁石用合金を開示している。しかしながら耐食性及び強度の改良技術について言及しておらず、これらのR-T-B系希土類焼結磁石用合金を円筒状磁石へ適用する記載もない。
 以上の様に、R-TM-B系焼結磁石においては、Coの添加によって耐食性を向上させることが可能であるものの、一方で機械的強度が低下することから、特に円筒状極異方性磁石や円筒状ラジアル異方性磁石に応用するときには、割れ、欠け、クラックが発生するという問題がある。そのため、耐食性を確保するために十分な量のCoを添加できなかったり、円筒状磁石の寸法(円筒状磁石の径方向寸法)を大きくすることによって機械的強度を確保したりする等、製造するにあたっては十分な注意が必要であった。
 従って、本発明の目的は、Coを添加することなく、高い機械的強度と優れた耐食性とを両立させたR-TM-B系焼結磁石を提供することである。
 本発明の他の目的は、割れ、欠け、クラックの発生が低減されたR-TM-B系円筒状異方性焼結磁石を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者らは、Ga又は(Ga+Cu)を添加したR-TM-B系焼結磁石は、実質的にCoを含有しない場合でも耐食性に優れており、機械的強度の低下が発生せず、残留応力が発生しやすい円筒状異方性焼結磁石とした場合であっても、割れ、欠け、クラック等の発生が低減することを見出し、本発明に想到した。
 すなわち、本発明のR-TM-B系焼結磁石は、24.5~34.5質量%のR(RはYを含む希土類元素から選ばれる少なくとも1種)と、0.85~1.15質量%のBと、0.1質量%未満のCoと、0.07~0.5質量%のGaと、0~0.4質量%のCuと、不可避不純物と、残部Feとを含有するR-TM-B系焼結磁石であって、
前記Ga及びCuの含有量が、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C(0.07、0.4)、点D(0.07、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあることを特徴とする。
 本発明のR-TM-B系焼結磁石は、3質量%以下のM(MはZr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Ag、Mn、Ge、Sn、Bi、Pb及びZnから選ばれる少なくとも1種)をさらに含有してもよい。
 前記Ga及びCuの含有量は、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C'(0.1、0.4)、点D'(0.1、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあるのが好ましい。
 前記R-TM-B系焼結磁石は、円筒状ラジアル異方性磁石又は円筒状極異方性磁石であるのが好ましい。
 本発明のR-TM-B系焼結磁石は、Coを含有させることによって耐食性を付与する代わりに、Ga及びCuを特定の範囲で含有させることによって耐食性を発揮させるので、高い機械的強度と優れた耐食性とを両立することができる。このため、割れ、欠け、クラック等の発生が低減されたR-TM-B系焼結磁石を提供することができ、残留応力が発生しやすい円筒状のR-TM-B系異方性焼結磁石(円筒状ラジアル異方性磁石及び円筒状極異方性磁石)にも適用できる。従って、本発明のR-TM-B系焼結磁石は回転機用の磁石として好ましく使用できる。
本発明のR-TM-B系焼結磁石に含有するCu量及びGa量の範囲を示すグラフである。 実験例3で行ったプレッシャークッカーテスト後の合金1(Ga/Cu=0.1/0.02質量%)の腐食の様子を示すSEM写真である。 実験例3で行ったプレッシャークッカーテスト後の合金4(Ga/Cu=0.5/0.4質量%)の腐食の様子を示すSEM写真である。 実験例4で使用したR-TM-B系ラジアル異方性リング磁石を成形するための成形装置を示す模式図である。 実験例5で使用したR-TM-B系極異方性リング磁石を成形するための成形装置を模式的に示す断面図である。 図4(a)のA-A断面図である。
(1)組成
 本発明のR-TM-B系焼結磁石は、24.5~34.5質量%のR(RはYを含む希土類元素から選ばれる少なくとも1種)と、0.85~1.15質量%のBと、0.1質量%未満のCoと、0.07~0.5質量%のGaと、0~0.4質量%のCuと、不可避不純物と、残部Feとを含有するR-TM-B系焼結磁石であって、
前記Ga及びCuの含有量が、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C(0.07、0.4)、点D(0.07、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあることを特徴とする。
 本発明のR-TM-B系焼結磁石は、R-TM-Bから実質的になるのが好ましい。ここでRはYを含む希土類元素の少なくとも1種であり、Nd、Dy、Prの少なくとも1種を必ず含むのが好ましく、TMは遷移金属元素の少なくとも1種であり、Feであるのが好ましい。Bはホウ素である。
 R-TM-B系焼結磁石は24.5~34.5質量%のRを有する。R量が24.5質量%未満では、残留磁束密度Br及び保磁力iHcが低下する。R量が34.5質量%超では焼結体内部の希土類リッチ相の領域が多くなるので、残留磁束密度Brが低下し、かつ耐食性が低下する。
 R-TM-B系焼結磁石は、0.85~1.15質量%のBを有する。B量が0.85質量%未満の場合、主相であるR2Fe14B相の形成に必要なBが不足し、軟磁性的な性質を有するR2Fe17相が生成し保磁力が低下する。一方B量が1.15質量%を超えると、非磁性相であるBに富む相が増加して残留磁束密度が低下する。
 R-TM-B系焼結磁石は、0.07~0.5質量%のGaを含有する。Gaは保磁力を向上させる効果に加えて、耐食性を向上させる効果を有する。0.07質量%以下では、保磁力iHc向上の効果が得られない。またGaを0.5質量%超含有させてもさらなる保磁力向上の効果及び耐食性向上の効果は望めない。Ga添加による耐食性向上の効果は0.07質量%以上含有していれば十分にその効果を奏するが、0.1質量%以上含有するのがさらに好ましい。特にCuを含まない場合は、Ga含有量を0.2質量%以上とするのが好ましい。
 R-TM-B系焼結磁石は、0~0.4質量%のCuを含有する。Cuを含有しなくても、Gaの含有量を調整することにより本発明の効果を得ることができるが、Cuを含有させることにより耐食性がより向上する。Ga含有量が0.07質量%である場合は、Cuを0.1質量%以上含有させるのが好ましい。Cuを0.4質量%超含有させてもさらなる耐食性の向上効果は得られない。
 R-TM-B系焼結磁石において、Ga及びCuによる耐食性の向上効果を十分に発揮させるためには、Ga及びCuの含有量を、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C(0.07、0.4)、点D(0.07、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内に設定する。Ga及びCuの含有量がこの領域内にあると、実質的にCoを含有しない場合でも必要な磁気特性と耐食性能を備えたR-TM-B系焼結磁石を得ることができる。なお本発明において「実質的に含有しない」とは、不可避不純物としての含有を許容し「実質的」と表記している。
 Ga及びCuの含有量は、前記XY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C'(0.1、0.4)、点D'(0.1、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあるのが好ましく、点A(0.5、0.0)、点B(0.5、0.4)、点C"(0.2、0.4)及び点D"(0.2、0.1)を頂点とする四角形で囲まれる領域内にあるのがさらに好ましい。
 Feはその一部がCoで置換されていても良いが、Coを0.1質量%以上含有すると特に円筒状異方性焼結磁石において割れの発生が急激に多くなり望ましくないため、Co含有量は0.1質量%未満であるのが好ましい。R-TM-B系焼結磁石において、Coは通常耐食性を高めるものとして使用される場合があるが、本発明においては前述したようにGa又はGa及びCuによって耐食性を付与することができるので、Coの使用は必須ではない。ただしFeの不可避不純物として、0.08質量%以下のCoを含有しても良い。不可避不純物として含有されるCoは少ない方が望ましいが、量産工程で使用される原料の純度や、再生材料の添加によって一定の割合で含有される。不可避不純物として含まれるCoは0.06質量%以下であるのがより好ましい。
 R-TM-B系焼結磁石に原料やその製造工程から混入する可能性のある不純物の一つとしてとしてはNiがあげられる。Niは、Feの一部に置換し、R-TM-B系磁石の磁気特性を低下させることが知られている。また一定量以上のNiの含有は、割れの発生が急激に多くなるため望ましくない。原料に含まれる不可避不純物及び製造工程において意図せずに混入する不純物としてのNiは0.1質量%未満に抑えることが望ましく、0.08質量%以下にすることがさらに望ましい。
 R-TM-B系焼結磁石は、さらにM(MはZr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Ag、Mn、Ge、Sn、Bi、Pb及びZnから選ばれる少なくとも1種)を含有してもよい。金属元素Mの微量添加により粒界相の性質が変化し、保磁力向上効果が得られるが、多量に添加するとR2Fe14B相の体積比率が減少しBrが低下するため、3質量%以下にとどめておくのが好ましい。
(2)磁石形状
 本発明のR-TM-B系焼結磁石は円筒状であるのが好ましい。前記円筒状磁石は、異方性方向としてラジアル異方性又は極異方性を有するのが好ましい。円筒状(リング形状)とすることで、回転機として組み立てる際の組立工数を低減することができる。
 本発明のR-TM-B系焼結磁石の組成を有する円筒状磁石は耐食性が良好であるばかりでなく、Coを含まないか含んでも極微量であるためCo含有による機械的強度の低下に起因する割れ、欠け、クラック等の発生は無いか、発生しても極めて少ない量になる。
 R-T-B系ラジアル異方性リング磁石は、内径(D1)と外径(D2)との比D1/D2が0.7以上であるのが好ましい。
 R-T-B系ラジアル異方性リング磁石を多極着磁する場合の極数は、当該磁石が使用される電動機の仕様に合わせ適宜設定すれば良い。
 R-T-B系極異方性リング磁石は、着磁極数をPとしたとき、内径(D1)と外径(D2)との比D1/D2が、式:D1/D2=1-K(π/P)[ただし、P=4のときKの値は0.51~0.70、P=6のときKの値は0.57~0.86、P=8のときKの値は0.59~0.97、P=10のときKの値は0.59~1.07、P=12のときKの値は0.61~1.18、及びP=14のときKの値は0.62~1.29である。]で表される範囲であるのが好ましい。
 R-T-B系極異方性リング磁石は、4極、6極、8極、10極、12極又は14極の多極異方性を有する断面円形の外周面と、断面多角形の内周面とを有していても良い。その場合には前記外周面の極数が前記多角形の頂点の数の整数倍であるのが好ましい。また前記外周面の極位置の中間位置の少なくとも一つと、前記内周面を構成する断面多角形の頂点の少なくとも一つとが周方向において一致しているのが好ましい。前記極数は、前記多角形の頂点の数と同じ又は2倍であるのが好ましい。多角形の頂点の数をどのように設定するかは、極数に応じて適宜調節すればよい。前記多角形は正多角形であるのが好ましい。なお内周面の断面が多角形の場合には、多角形に外接する円の直径を内径とする。
 本発明を以下の実験例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実験例1
 Ndを24.80質量%、Prを6.90質量%、Dyを1.15質量%、Bを0.96質量%、Nbを0.15質量%、Alを0.10質量%含有し、Ga及びCuの含有量を表1に示すようにそれぞれ0.1、0.2、0.3、0.4、0.5質量%及び0.02、0.1、0.2、0.3、0.4質量%の範囲で変更し、残部としてFe及び不可避不純物を含有する25種類の組成の合金をストリップキャスト法により作製した。これらの合金には、不可避不純物としてCoが0.06質量%含有していた。なお、前記Cu含有量は不可避不純物として含まれる0.02質量%のCuを含んだ値である。
 得られた合金を、5000 ppmの酸素を含んだ窒素ガス中でジェットミル粉砕し、磁場中で圧縮成形し、焼結及び熱処理を行った後、研削加工し、R-TM-B系焼結磁石からなる3 mm×10 mm×40 mmのテストピースを準備した。これらのテストピースを用いて、プレッシャークッカーテスト(120℃100%RH、2気圧、96時間)を行い、テスト前後での重量から腐食減量(mg/cm2)を求めた。結果を表1に示す。なおこれらの結果は各合金についてn=3でテストした結果の平均値である。
Figure JPOXMLDOC01-appb-T000001
 Ga又はGa+Cuの添加によってR-TM-B系焼結磁石の腐食減量が少なくなり、耐食性が大幅に向上していることが分かる。Cuを添加しない(ただし、不可避不純物として0.02質量%のCuを含む)場合、Ga含有量が0.1質量%では腐食減量は著しく大きかったが、Ga含有量を増やすと腐食減量は低下し、耐食性が良好となる結果が得られた。Ga含有量が0.1質量%でCuを添加してゆくと腐食減量は低下し、耐食性が良好となる結果が得られた。
 本発明者らは、R-TM-B系焼結磁石において120℃100%RH、2気圧及び96時間の条件でプレッシャークッカーテストを行ったときに腐食減量が2 mg/cm2未満であれば、自動車用(電装用やHV用)に要求される耐食性の規格を満足できることを確認している。
 従って、Coを実質的に含まなくても前記耐食性の規格を満足できると考えられるCu及びGaの含有量の範囲は、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、図1に示すように、点ABCDEを頂点とする五角形で囲まれる領域であることが分かる。
実験例2
 Ndを24.80質量%、Prを6.90質量%、Dyを1.15質量%、Bを0.96質量%、Nbを0.15質量%、Alを0.10質量%、Gaを0.30質量%及びCuを0.15質量%含有し、残部としてFe及び不可避不純物を含有する合金Aをストリップキャスト法により作製した。この合金Aには、不可避不純物としてCoが0.06質量%含有していた。
 合金組成を表2に示すように変更した以外は合金Aと同様にして、合金B~Fを作製した。なお合金A~Eは本発明のR-TM-B系焼結磁石の組成範囲に含まれるものであり、合金Fは本発明のR-TM-B系焼結磁石の組成範囲に含まれないものである。
Figure JPOXMLDOC01-appb-T000002
注(1) Coは不可避不純物である。
 得られた合金A~Fを、5000 ppmの酸素を含んだ窒素ガス中でジェットミル粉砕し、磁場中で圧縮成形し、焼結及び熱処理を行った後、研削加工し、R-TM-B系焼結磁石からなる3 mm×10 mm×40 mmのテストピースを準備した。これらのテストピースを用いて、残留磁束密度Br及び保磁力HcJを測定し、さらにプレッシャークッカーテスト(120℃100%RH、2気圧、96時間)を行い、テスト前後での重量から腐食減量を求めた。結果を表3に示す。なおプレッシャークッカーテストの結果は各合金についてn=3でテストした結果の平均値である。
 さらに実験例1で作製したテストピースのうち、Ga含有量及びCu含有量が、それぞれ0.1質量%及び0.02質量%の合金1、0.1質量%及び0.4質量%の合金2、0.5質量%及び0.02質量%の合金3及び0.5質量%及び0.4質量%の合金4の残留磁束密度Br及び保磁力HcJを測定した。結果を合わせて表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明のR-TM-B系焼結磁石の組成範囲に含まれる合金A~E及び合金2~4は、腐食減量が小さく、高い残留磁束密度Br及び保磁力HcJを有することが分かる。なお合金FについてはNd、Pr及びDyの合計が本発明で規定する希土類量を超えており、結果として耐食性が悪くなったものと推定している。
実験例3
 実験例1で得られた、Ga含有量及びCu含有量がそれぞれ0.1質量%及び0.02質量%の合金1と、Ga含有量及びCu含有量がそれぞれ0.5質量%及び0.4質量%の合金4とについて、120℃100%RH、2気圧及び24時間の条件でプレッシャークッカーテストを行い、テスト後の腐食の様子をSEMで観察した。結果を図2に示す。
 合金1のサンプル(図2(a))は深さ方向に腐食(図中矢印で示した部分)が進行していることが確認されたが、合金4のサンプル(図2(b))については腐食の進行は確認されなかった。
実験例4
 Co含有量がR-TM-B系焼結磁石の機械的強度に与える影響を評価するため、以下の実験を行った。
 Ndを24.25質量%、Prを6.75質量%、Dyを2.1質量%、Bを0.96質量%、Nbを0.15質量%、Alを0.06質量%、Gaを0.08質量%含有し、Co含有量を0.0、0.06、0.08及び0.1~1.0質量%(0.1質量%刻み)の範囲で変更し、残部としてFe及び不可避不純物を含有する13種類の組成の合金をストリップキャスト法により作製した。なお実験には純度の高い金属を使用したが微量の不可避不純物は含まれる。従って、Co含有量が0.0質量%と表記した合金は、実際は測定限界(0.01質量%)以下のCoを含んでいる可能性がある。
 得られた合金を、5000 ppmの酸素を含んだ窒素ガス中でジェットミル粉砕し微粉を準備した。得られた微粉を用いて、図3に示す成形装置で磁場中圧縮成形(磁場強度:318 kA/m、圧力:98 MPa)し、R-TM-B系ラジアル異方性リング磁石の成形体(外径41.8 mm×内径32.5 mm×高さ47.2 mm)を得た。各合金について、それぞれ10個の成形体を作製した。
 R-TM-B系ラジアル異方性リング磁石の成形に用いた成形装置は、円柱状の上下コア40a,40b(パーメンダー製)と、円筒状の外型30(SK3製)と、円筒状の上下パンチ90a,90b(非磁性)とからなる金型と、これらに囲まれた空間によって構成されるキャビティ60と、上コア40a及び下コア40bの外周位置にそれぞれ配置された一対の磁場発生コイル10a,10bとからなる。上コア40aは下コア40bから離脱可能であり、上コア40aと上パンチ90aとは、それぞれ独立に上下動でき、上パンチ90aはキャビティ60から離脱可能である。密着した上コア40a及び下コア40bを通して磁力線70に沿ってキャビティ60にラジアル方向に磁場を印加できる。
 得られた成形体の内部に外径29.0 mmの円柱体からなる焼結治具(材質SUS403線膨張係数11.4×10-6)を挿入し、Mo容器内に敷いたMo製耐熱板の上に置き真空中1080℃で2時間焼結した。上記焼結治具は有機溶剤にいれ攪拌したNd2O3を外周面に塗布したのち使用した。得られた焼結体の端面、外周面及び内周面を研削加工し、Co含有量の異なる13種のR-TM-B系ラジアル異方性リング磁石401~413を作製した。得られたR-TM-B系ラジアル異方性リング磁石に割れが発生しているかについて目視により確認した。結果を表4に示す。リング磁石401~403は、Ga含有量は本発明から外れるが、Co含有量が0.1質量%未満(本発明で規定する範囲内)である参考例であり、リング磁石404~413はCo含有量が0.1質量%以上(本発明で規定する範囲外)である比較例である。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、Co含有量が0.1質量%以上の場合に、リング磁石の焼結体に割れが発生しており、Co含有量が増加するに従って割れの発生が増加していることが分かる。
実験例5
 実験例4と同様にして準備した13種類の合金の微粉を用いて、図4に示す成形装置100で磁場中圧縮成形(圧力:80 MPa、磁場強度については全ての条件で同じ磁場強度(パルス磁場)とした。)し、外周面に8極を有するR-TM-B系極異方性リング磁石の成形体(外径31.5 mm×内径20.3 mm×高さ27.8 mm)を得た。各合金について、それぞれ10個の成形体を作製した。
 R-TM-B系極異方性リング磁石の成形に用いた磁場中成形装置100は、図4(a)に示すように、磁性体からなるダイス101と、ダイス101の環状空間内に同心状に配置された円柱状の非磁性体からなるコア102とを有し、ダイス101は支柱111,112により支持され、コア102及び支柱111、112はいずれも下部フレーム108により支持されている。ダイス101とコア102との間の成形空間103内に円筒状の非磁性体からなる上パンチ104と同様に円筒状の非磁性体からなる下パンチ107とがそれぞれ嵌入される。下パンチ107は基板113に固着され、一方上パンチ104は上部フレーム105に固定されている。上部フレーム105及び下部フレーム108はそれぞれ上部シリンダー106及び下部シリンダー109と連結している。
 図4(b)は図4(a)のA-A断面を示す。円筒状のダイス101の内面には複数の溝117が形成されており、各溝117には磁場発生コイル115が埋設されている。ダイス101の内面には溝を覆うように環状の非磁性体の環状スリーブ116が設けられている。環状スリーブ116とコア102の間が成形空間103である。図4(b)において、各溝117内の磁場発生コイル115は、電流が紙面に対して垂直方向に流れるように配置され、周方向に隣り合うコイルの電流の向きが交互に逆向きになるように接続されている。磁場発生コイル115に電流を流すと、成形空間103に矢印Aで示すような磁束の流れが生じ、磁束が環状のスリーブにあたる点(矢印の始点及び終点)に、円周方向に順にS、N、S、N・・・と極性が交互に変わる磁極(図では8極)が形成される。
 得られた成形体をMo容器内に敷いたMo製耐熱板の上に置き真空中1080℃で2時間焼結した。得られた焼結体の端面、外周面及び内周面を研削加工し、Co含有量の異なる13種のR-TM-B系極異方性リング磁石501~513を作製した。得られたR-TM-B系極異方性リング磁石に割れが発生しているかについて目視により確認した。結果を表5に示す。リング磁石501~503は、Ga含有量は本発明から外れるが、Co含有量が0.1質量%未満(本発明で規定する範囲内)である参考例であり、リング磁石504~513はCo含有量が0.1質量%以上(本発明で規定する範囲外)である比較例である。
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、Co含有量が0.1質量%以上の場合に、リング磁石の焼結体に割れが発生しており、Co含有量が増加するに従って割れの発生が増加していることが分かる。
実験例6
 実験例1と同様にして準備した25種類の合金の微粉を用いた以外、実験例4と同様にして本発明例のラジアル異方性焼結リング磁石を製作した。その結果、これらの25種のラジアル異方性焼結リング磁石は、全て研削加工後の割れが発生しなかった。
実験例7
 実験例1と同様にして準備した25種類の合金の微粉を用いた以外、実験例5と同様にして本発明例の極異方性焼結リング磁石を製作した。その結果、これらの25種のラジアル異方性焼結リング磁石は、全て研削加工後の割れが発生しなかった。

Claims (4)

  1.  24.5~34.5質量%のR(RはYを含む希土類元素から選ばれる少なくとも1種)と、0.85~1.15質量%のBと、0.1質量%未満のCoと、0.07~0.5質量%のGaと、0~0.4質量%のCuと、不可避不純物と、残部Feとを含有するR-TM-B系焼結磁石であって、
    前記Ga及びCuの含有量が、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C(0.07、0.4)、点D(0.07、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあることを特徴とするR-TM-B系焼結磁石。
  2.  請求項1に記載のR-TM-B系焼結磁石において、
    3質量%以下のM(MはZr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Ag、Mn、Ge、Sn、Bi、Pb及びZnから選ばれる少なくとも1種)をさらに含有することを特徴とするR-TM-B系焼結磁石。
  3.  請求項1又は2に記載のR-TM-B系焼結磁石において、
    前記Ga及びCuの含有量が、Ga量(質量%)及びCu量(質量%)をそれぞれX軸及びY軸としたXY平面上で、点A(0.5、0.0)、点B(0.5、0.4)、点C'(0.1、0.4)、点D'(0.1、0.1)及び点E(0.2、0.0)を頂点とする五角形で囲まれる領域内にあることを特徴とするR-TM-B系焼結磁石。
  4.  請求項1~3のいずれかに記載のR-TM-B系焼結磁石において、
    前記R-TM-B系焼結磁石が、円筒状ラジアル異方性磁石又は円筒状極異方性磁石であることを特徴とするR-TM-B系焼結磁石。
PCT/JP2016/058917 2015-03-27 2016-03-22 R-tm-b系焼結磁石 WO2016158552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680010730.7A CN107251169A (zh) 2015-03-27 2016-03-22 R‑tm‑b系烧结磁铁
JP2017509820A JP6658737B2 (ja) 2015-03-27 2016-03-22 R−tm−b系焼結磁石
DE112016001436.8T DE112016001436T5 (de) 2015-03-27 2016-03-22 Gesinterter R-TM-B Magnet
US15/549,777 US20180025818A1 (en) 2015-03-27 2016-03-22 Sintered r-tm-b magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-066185 2015-03-27
JP2015066185 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158552A1 true WO2016158552A1 (ja) 2016-10-06

Family

ID=57007149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058917 WO2016158552A1 (ja) 2015-03-27 2016-03-22 R-tm-b系焼結磁石

Country Status (5)

Country Link
US (1) US20180025818A1 (ja)
JP (4) JP6658737B2 (ja)
CN (1) CN107251169A (ja)
DE (1) DE112016001436T5 (ja)
WO (1) WO2016158552A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059197A (ja) * 2016-09-30 2018-04-12 日立金属株式会社 R−tm−b系焼結磁石
CN109979698A (zh) * 2017-12-28 2019-07-05 深圳市鸿效节能股份有限公司 一种天然气节能净化装置及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
WO2009150843A1 (ja) * 2008-06-13 2009-12-17 日立金属株式会社 R-T-Cu-Mn-B系焼結磁石

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740714B2 (en) * 2005-12-13 2010-06-22 Shin-Etsu Chemical Co., Ltd. Method for preparing radially anisotropic magnet
CN101266856A (zh) * 2007-12-28 2008-09-17 烟台正海磁性材料有限公司 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法
WO2009122709A1 (ja) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
JP6303480B2 (ja) * 2013-03-28 2018-04-04 Tdk株式会社 希土類磁石
EP2985768B8 (en) * 2013-03-29 2019-11-06 Hitachi Metals, Ltd. R-t-b-based sintered magnet
JP5999080B2 (ja) * 2013-07-16 2016-09-28 Tdk株式会社 希土類磁石
CN106165026B (zh) * 2014-03-27 2019-02-15 日立金属株式会社 R-t-b系合金粉末及其制造方法、以及r-t-b系烧结磁铁及其制造方法
JP6572550B2 (ja) * 2015-02-04 2019-09-11 Tdk株式会社 R−t−b系焼結磁石
JP2018059197A (ja) * 2016-09-30 2018-04-12 日立金属株式会社 R−tm−b系焼結磁石

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
WO2009150843A1 (ja) * 2008-06-13 2009-12-17 日立金属株式会社 R-T-Cu-Mn-B系焼結磁石

Also Published As

Publication number Publication date
DE112016001436T5 (de) 2017-12-21
JPWO2016158552A1 (ja) 2018-01-18
JP2020096187A (ja) 2020-06-18
JP2021038464A (ja) 2021-03-11
JP6984715B2 (ja) 2021-12-22
JP6801801B2 (ja) 2020-12-16
JP6984716B2 (ja) 2021-12-22
US20180025818A1 (en) 2018-01-25
CN107251169A (zh) 2017-10-13
JP6658737B2 (ja) 2020-03-04
JP2021038463A (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6274216B2 (ja) R−t−b系焼結磁石、および、モータ
JP6330813B2 (ja) R−t−b系焼結磁石、および、モータ
JP5447736B2 (ja) 希土類焼結磁石、希土類焼結磁石の製造方法及び回転機
JP5561170B2 (ja) R−t−b系焼結磁石の製造方法
JP5120710B2 (ja) RL−RH−T−Mn−B系焼結磁石
CN103839640B (zh) 永磁体、以及使用该永磁体的电动机和发电机
JP6798546B2 (ja) R−t−b系焼結磁石の製造方法
JP6984716B2 (ja) R−tm−b系焼結磁石
JP4702543B2 (ja) R−t−b−c型希土類焼結磁石
JP2013138170A (ja) 希土類焼結磁石
US6312494B1 (en) Arc segment magnet, ring magnet and method for producing such magnets
JP2018059197A (ja) R−tm−b系焼結磁石
JP2009010305A (ja) 希土類磁石の製造方法
JP6645306B2 (ja) R−t−b系焼結磁石
EP3276640B1 (en) Permanent magnet, motor and dynamo
JP7215044B2 (ja) R-t-b系焼結磁石の製造方法
JP2002367846A (ja) ラジアルまたは極異方性焼結磁石の製造方法
JP6488743B2 (ja) R−t−b系焼結磁石
JP6341115B2 (ja) 極異方性リング磁石、及びそれを用いた回転子
JPH01155603A (ja) 耐酸化性希土類永久磁石の製造方法
JP6488744B2 (ja) R−t−b系焼結磁石
JP3719782B2 (ja) 表面多極異方性リング磁石の製造方法
JP3809175B2 (ja) 表面多極異方性リング磁石
JP2006108591A (ja) 希土類焼結磁石及びその製造方法
JP2020077843A (ja) RFeB系焼結磁石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509820

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15549777

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001436

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772433

Country of ref document: EP

Kind code of ref document: A1