WO2016152845A1 - 長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法 - Google Patents

長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法 Download PDF

Info

Publication number
WO2016152845A1
WO2016152845A1 PCT/JP2016/058961 JP2016058961W WO2016152845A1 WO 2016152845 A1 WO2016152845 A1 WO 2016152845A1 JP 2016058961 W JP2016058961 W JP 2016058961W WO 2016152845 A1 WO2016152845 A1 WO 2016152845A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
sulfide resin
fiber reinforced
parts
mass
Prior art date
Application number
PCT/JP2016/058961
Other languages
English (en)
French (fr)
Inventor
昌則 内潟
恭彦 弓立
田中 幸治
卓 島屋
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US15/557,602 priority Critical patent/US10737427B2/en
Priority to JP2017508351A priority patent/JP6575590B2/ja
Priority to KR1020177025911A priority patent/KR102338700B1/ko
Priority to CN201680018640.2A priority patent/CN107428063B/zh
Priority to EP16768748.2A priority patent/EP3275620B1/en
Publication of WO2016152845A1 publication Critical patent/WO2016152845A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/04Conditioning or physical treatment of the material to be shaped by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/105Coating or impregnating independently of the moulding or shaping step of reinforcement of definite length with a matrix in solid form, e.g. powder, fibre or sheet form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0088Blends of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides

Definitions

  • the present invention relates to a long fiber reinforced polyarylene sulfide resin composition, a molded product, and a method for producing the same, and particularly to a blow hollow molded product and a method for producing the molded product.
  • PAS resin polyarylene sulfide resin
  • PAS resin polyarylene sulfide resin
  • polyarylene sulfide resin As an application example of polyarylene sulfide resin to blow molding, a resin composition obtained by melt-kneading a polyarylene sulfide resin and an epoxy group-containing olefin copolymer is known (Patent Document 1).
  • the polyarylene sulfide resin is a polyarylene sulfide resin having a high melt viscosity but a large proportion of terminal carboxy groups and containing a large amount of low molecular weight components.
  • the problem to be solved by the present invention is to provide a polyarylene sulfide resin molded product excellent in mechanical strength such as impact resistance while maintaining the excellent heat resistance of the polyarylene sulfide resin, and the molded product.
  • An object of the present invention is to provide a polyarylene sulfide resin composition and a method for producing them. Furthermore, among blow molded products, in particular, blow blow molded products with excellent mechanical strength such as impact resistance, and excellent moldability such as draw-down resistance, uneven thickness and internal smoothness are provided.
  • An object of the present invention is to provide a polyarylene sulfide resin composition and a method for producing them.
  • the present inventors have obtained a long fiber reinforced polyarylene sulfide resin composition comprising a polyarylene sulfide resin and a fiber reinforcing material having a fiber length of more than 5 mm. After dry blending with polyarylene sulfide resin, it is found that the dry blend can be melted and then molded to provide a long fiber reinforced polyarylene sulfide resin molded product with excellent mechanical strength such as impact resistance. The present invention has been completed.
  • the present invention is a method for producing a blow hollow molded article comprising a polyarylene sulfide resin and a fiber reinforcement having a fiber length of more than 5 mm,
  • a long fiber reinforced polyarylene sulfide resin composition comprising a polyarylene sulfide resin (a1) and a fiber reinforcement having a fiber length of more than 5 mm is dry-blended with the polyarylene sulfide resin (a2), and then the polyarylene sulfide resin
  • the present invention relates to a method for producing a long-fiber reinforced polyarylene sulfide resin molded product, characterized in that the polyarylene sulfide resin is melted by heating to a melting point or higher and then molded.
  • the present invention also includes a polyarylene sulfide resin and a fiber reinforcement having a fiber length of more than 5 mm,
  • the MFR value measured with a melt indexer with a cylinder temperature of 316 ° C. and an orifice diameter of 3 mm is in the range of 10 to 100 [g / 10 min]
  • the polyarylene sulfide resin is in the range of 99 to 25 parts by mass and the fiber reinforcement is in the range of 1 to 75 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin and the fiber reinforcement.
  • a long fiber reinforced polyarylene sulfide resin molded product is
  • a polyarylene sulfide resin molded product excellent in mechanical strength such as impact resistance while maintaining the excellent heat resistance of the polyarylene sulfide resin, and a polyarylene sulfide resin for providing the molded product Compositions and methods for their production can be provided. Furthermore, among blow molded products, in particular, blow blow molded products with excellent mechanical strength such as impact resistance, and excellent moldability such as draw-down resistance, uneven thickness and internal smoothness are provided.
  • the polyarylene sulfide resin composition and the production method thereof can be provided.
  • the method for producing a long fiber reinforced polyarylene sulfide resin molded product of the present invention is a method for producing a long fiber reinforced polyarylene sulfide resin molded product comprising a polyarylene sulfide resin and a fiber reinforcement having a fiber length of more than 5 mm. And After dry blending a long fiber reinforced polyarylene sulfide resin composition comprising a polyarylene sulfide resin (a) and a fiber reinforcement having a fiber length of more than 5 mm with the polyarylene sulfide resin (b), the polyarylene sulfide resin The polyarylene sulfide resin is melted by heating to a melting point or higher, and then molded.
  • the long fiber reinforced polyarylene sulfide resin composition used in the present invention will be described.
  • the polyarylene sulfide resin used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded.
  • the polyarylene sulfide resin has the following formula (1):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group).
  • the trifunctional structural site represented by the following formula (8) is preferably 0.001 to 3 mol%, particularly 0.01 to 1 mol%, based on the total number of moles with other structural sites. It is preferable.
  • R 1 and R 2 in the formula are hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin (A).
  • those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4) are exemplified.
  • the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (3). In terms of surface.
  • polyarylene sulfide resin is not limited to the structural portion represented by the formula (1) or (2), but the following structural formulas (5) to (8)
  • the structural site represented by the formula (1) and the structural site represented by the formula (2) may be included at 30 mol% or less.
  • the structural site represented by the above formulas (5) to (8) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin.
  • the bonding mode thereof may be either a random copolymer or a block copolymer. .
  • the polyarylene sulfide resin may have a naphthyl sulfide bond or the like in its molecular structure, but is preferably 3 mol% or less with respect to the total number of moles with other structural sites, particularly 1 It is preferable that it is below mol%.
  • the method for producing the polyarylene sulfide resin is not particularly limited.
  • 1) a dihalogenoaromatic compound in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogenoaromatic compound or other copolymerization component is added 2) A method of polymerizing a dihalogenoaromatic compound in a polar solvent in the presence of a sulfidizing agent, and adding a polyhalogenoaromatic compound or other copolymerization component if necessary, and 3) p-chloro.
  • Examples include a method in which ruthiophenol is self-condensed by adding other copolymerization components if necessary. Among these methods, the method 2) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound in the organic polar solvent.
  • a sulfidizing agent are added to and reacted with a polyhalogenoaromatic compound as necessary, and the amount of water in the reaction system is in the range of 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent.
  • a method for producing a polyarylene sulfide resin by controlling see Japanese Patent Application Laid-Open No. 07-228699), and if necessary, a dihalogeno aromatic compound in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent.
  • Polyhalogenoaromatic compound or other copolymerization component is added, and alkali metal hydrosulfide and organic acid alkali metal salt are added to sulfur source 1
  • the organic acid alkali metal salt in an amount of 0.01 to 0.9 mol with respect to the catalyst and the amount of water in the reaction system are controlled within a range of 0.02 mol or less relative to 1 mol of the aprotic polar organic solvent.
  • dihalogenoaromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-di
  • the halogen atom contained in each compound is a chlorine atom or a bromine atom.
  • the post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited.
  • the reaction mixture is left as it is, or an acid or a base is used.
  • the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is water, a reaction solvent (or an organic solvent having an equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone.
  • a solvent such as alcohols, and further neutralizing, washing with water, filtering and drying, or (3) after completion of the polymerization reaction, water,
  • a solvent such as acetone, methyl ethyl ketone, alcohol, etc.
  • water is added to the reaction mixture to wash with water. Filtration, if necessary, acid treatment at the time of washing with water, acid treatment and drying, (5) after completion of the polymerization reaction, the reaction mixture is filtered, and if necessary, once or twice or more with a reaction solvent Washing Further water washing, a method of filtering and drying, and the like.
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be.
  • the melt viscosity of the polyarylene sulfide resin is not particularly limited as long as it is in a range suitable for blow molding, but the melt viscosity at 300 ° C. and a shear rate of 10 sec ⁇ 1 is in the range of 10 to 500 Pa ⁇ s. More preferred are those in the range of 25 to 300 Pa ⁇ s, and more preferred are those in the range of 45 to 200 Pa ⁇ s. If the melt viscosity is 10 Pa ⁇ s or more, drawdown is less likely to occur, whereas if it is 500 Pa ⁇ s or less, the extrusion stability of the parison is improved, and a uniform molded product without uneven thickness is easily obtained. .
  • non-Newtonian index of the polyarylene sulfide resin is not particularly limited as long as it is in a range suitable for blow molding, but is preferably in the range of 0.9 to 1.2.
  • the polyarylene sulfide resin used in the present invention has a high melt viscosity suitable for blow hollow molding, and the non-Newton index is 0.9 to 1.2 in the linear structure. If it has a straight chain structure with a low degree of branching, it will prevent the melt viscosity of the melt-kneaded product from becoming excessively high by reacting with the fiber reinforcing material, and exhibit excellent moldability without uneven thickness This tends to improve the mechanical strength, particularly impact resistance, of the blown hollow molded article.
  • polyarylene sulfide resin (a1) the polyarylene sulfide resin contained in the long fiber reinforced polyarylene sulfide resin composition
  • polyarylene sulfide resin (a2) the polyarylene sulfide resin dry-blended with the long fiber reinforced polyarylene sulfide resin composition
  • polyarylene sulfide resin (a2) is the definition of the polyarylene sulfide resin described above May be the same or different as long as they are included.
  • fiber reinforcing material used in the present invention, known inorganic fiber reinforcing materials and organic fiber reinforcing materials can be used.
  • glass fiber reinforcement metal fiber reinforcement, basalt fiber reinforcement, carbon fiber (carbon fiber) reinforcement, aramid fiber (fully aromatic polyamide fiber) reinforcement, nylon MXD6 fiber (m-xylylenediamine and adipic acid And a fiber made of a co-condensation polymer), a PET fiber reinforcement, a PBT fiber reinforcement, a wholly aromatic polyester fiber (Kevlar fiber) reinforcement, and the like.
  • These fiber reinforcements can be used not only in the form of monofilaments, but also rovings obtained by bundling a large number of monofilaments with a bundling agent.
  • the roving it is preferable to use monofilaments having an average fiber diameter in the range of 5 to 50 ⁇ m, preferably in the range of average fiber diameter in the range of 6 to 30 ⁇ m, and in which 500 to 60000 monofilaments are bundled. It is more preferable to use monofilaments having a diameter in the range of 9 to 24 ⁇ m and in which 1000 to 20000 monofilaments are converged.
  • two or more of these rovings can be used in a combined form. Moreover, what added twist to these roving itself can also be used.
  • the sizing agent examples include a sizing agent containing at least one selected from maleic anhydride compounds, urethane compounds, acrylic compounds, epoxy compounds, and copolymers of these compounds.
  • a sizing agent containing a series compound or a urethane series compound is preferable. Of these, epoxy compounds and urethane compounds are preferred, and epoxy compounds are more preferred.
  • the epoxy compound include bisphenol / epichlorohydrin type epoxy resin, glycidyl ether type epoxy resin, tetraepoxy resin, novolac type epoxy resin, glycidyl amine, epoxy alkyl ester, and epoxidized unsaturated compound.
  • urethane compounds include isocyanates such as m-xylylene diisocyanate (XDI), 4,4′-methylenebis (cyclohexyl isocyanate) (HMDI) and isophorone diisocyanate (IPDI), polyesters and polyethers. And those synthesized from diols of the system.
  • isocyanates such as m-xylylene diisocyanate (XDI), 4,4′-methylenebis (cyclohexyl isocyanate) (HMDI) and isophorone diisocyanate (IPDI), polyesters and polyethers. And those synthesized from diols of the system.
  • thermoplastic elastomer can be used as necessary.
  • thermoplastic elastomer that can be used as necessary include an epoxy group, an amino group, a carboxy group, an isocyanato group, and the following structural formulas (1) and (2).
  • R represents an alkyl group having 1 to 8 carbon atoms
  • the thermoplastic elastomer is preferably a polyolefin obtained by copolymerizing an ⁇ -olefin and a monomer such as a vinyl polymerizable compound which may have the functional group.
  • a polyolefin obtained by copolymerizing an ⁇ -olefin and a monomer such as a vinyl polymerizable compound which may have the functional group.
  • the ⁇ -olefin include ⁇ -olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1.
  • the vinyl polymerizable compound optionally having a functional group include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, and fumaric acid.
  • Itaconic acid other unsaturated dicarboxylic acids having 4 to 10 carbon atoms, mono- and diesters thereof, and ⁇ , ⁇ -unsaturated dicarboxylic acids and derivatives thereof such as acid anhydrides thereof.
  • the polyolefin having an epoxy group is not particularly limited as long as it is an olefin polymer having an epoxy group, but a co-polymer comprising an ⁇ -olefin and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid.
  • a polymer is preferably used.
  • ⁇ -olefins include ethylene, propylene and butene-1.
  • Specific examples of the glycidyl ester of ⁇ , ⁇ -unsaturated acid include glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate.
  • the modification ratio of each monomer component with respect to the ⁇ -olefin is not particularly limited, but the modification site in the copolymer is converted to the mass of each monomer, and the ratio is 0 as the ratio with respect to 100 mass of the copolymer.
  • the range of 1 to 15 parts by mass, particularly 0.5 to 10 parts by mass is preferable.
  • the polyolefin having an amino group or an isocyanato group can be obtained, for example, by reacting a polyolefin modified with the above carboxylic acid with a polyvalent amine such as alkylene diamine or alkylene diisocyanate or a polyvalent isocyanate.
  • a polyvalent amine such as alkylene diamine or alkylene diisocyanate or a polyvalent isocyanate.
  • alkylene diamines include ethylene diamine, pentamethylene diamine, hexamethylene diamine, ethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, and the like.
  • olefin polymer that does not have a functional group that reacts with a carboxy group
  • olefin polymer that does not have a functional group that reacts with a carboxy group
  • polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, poly-1-butene Homopolymers such as poly 1-pentene and polymethyl pentene, and ethylene- ⁇ -olefin copolymers are used. Of these, ethylene- ⁇ -olefin copolymers are preferred.
  • the ethylene- ⁇ -olefin copolymer is a copolymer containing ethylene and at least one ⁇ -olefin having 3 to 20 carbon atoms as constituent components.
  • Specific examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and 1-undecene.
  • ⁇ -olefins a copolymer using an ⁇ -olefin having 6 to 12 carbon atoms is more preferable
  • melt viscosity is not particularly limited, but it is 0.01 to 70 as measured by a melt folate (temperature 190 ° C., load 2.16 kg). Those in the poise range are preferred.
  • the olefin polymer may be copolymerized with other olefin monomers such as methyl acrylate, methyl methacrylate, acrylonitrile, styrene, vinyl acetate and vinyl ether as long as the effects of the present invention are not impaired. Good.
  • thermoplastic elastomer that can be used in the present invention is preferably meltable, mixed and dispersible at the temperature at which the polyarylene sulfide resin is kneaded. From this point, an elastomer having a melting point of 300 ° C. or lower and having rubber elasticity at room temperature is more preferable. In particular, in view of heat resistance, ease of mixing, and improvement in freezing resistance, it is preferable to use a glass transition point of ⁇ 30 ° C. or lower because it has rubber elasticity even at an extremely low temperature. The glass transition point is preferably as low as possible in terms of improving the freezing resistance, but is usually preferably in the range of ⁇ 180 to ⁇ 30 ° C., particularly preferably in the range of ⁇ 150 to ⁇ 30 ° C.
  • polyolefin having a functional group having a good compatibility with the carboxy group or a functional group having reactivity, or a so-called unmodified polyolefin not having the functional group is appropriately combined with one or more types. Can be used.
  • thermoplastic elastomer (b1)) may be described in the long fiber reinforced polyarylene sulfide resin composition.
  • thermoplastic elastomer (b2)) is further added to the polyarylene sulfide resin (a2). May be added), or both.
  • the long fiber reinforced polyarylene sulfide resin composition used in the present invention contains a polyarylene sulfide resin and a fiber reinforcement having a fiber length of more than 5 mm.
  • the long fiber reinforced polyarylene sulfide resin composition can be produced according to a method such as the method described in Japanese Patent Application Laid-Open No. 2003-192911, for example, melted into continuous fibers (monofilament or roving).
  • a strand obtained by applying or impregnating a polyarylene sulfide resin and then cooling can be obtained by cutting to a length of more than 5 mm.
  • the thermoplastic elastomer, processing stabilizer, oxidation stabilizer, molding aid and other additives may be added to the melted polyarylene sulfide resin as necessary.
  • the polyarylene sulfide resin as the base resin is optionally mixed with the thermoplastic elastomer, processing stabilizer, oxidation stabilizer, and molding aid. , Blended with fillers and other additives, etc., and then charged into a single-screw or twin-screw extruder having a heating mechanism, more than the melting point of the polyarylene sulfide resin, preferably in the temperature range of the melting point + 10 ° C. or more.
  • the temperature range of melting point + 10 ° C. to melting point + 100 ° C. more preferably in the temperature range of melting point + 20 ° C. to melting point + 50 ° C. Charge at speed.
  • the impregnation apparatus uses a spread impregnation apparatus when continuous fibers are roving.
  • the fiber opening impregnation apparatus includes a molten resin reservoir, an upstream boundary wall or a fiber introduction hole (introduction port) drilled in the upstream top plate, and a shaping nozzle drilled in the downstream boundary wall.
  • 2 or more opening pins fixed so that they do not rotate despite the movement of long fibers
  • opening rolls spontaneous or accompanying rotation with the movement of long fibers Is possible to be fixed or rotated (rotatable) on both walls in a state where the left and right walls are bridged in a sequential manner toward the downstream side.
  • the opening pin or the opening roll may be mounted in two or more upper and lower stages through a predetermined gap or the like.
  • continuous fibers are introduced into the molten resin, and the spread pins or spread rolls are swung in a zigzag pattern, or are installed at two predetermined intervals on the top and bottom.
  • the opening of the roving and the application or impregnation of the molten resin to the opened fiber may be carried out by passing the middle of the opening pin without contacting both of them.
  • the strand extruded from the impregnation apparatus is cooled to a temperature lower than the melting temperature of the polyarylene sulfide resin, preferably room temperature (23 ° C.), and a strand obtained by pultruding endless fibers is obtained.
  • the fiber reinforcing material or roving can be twisted.
  • a plurality of continuous fiber reinforcing materials or rovings preferably 2 to 30 are passed through the impregnation apparatus, and a plurality of fiber reinforcing materials or rovings are passed. It is also possible to form a single strand by winding the wire while twisting the wire.
  • the obtained strand has a range of more than 5 mm, preferably more than 5 mm and not more than 30 mm, more preferably not less than 6 mm and not more than 20 mm, further preferably Can be obtained as columnar pellets by cutting to a length in the range of 6 mm or more and 15 mm or less.
  • the pellet diameter and pellet length are not particularly limited as long as the effects of the present invention are not impaired, but the pellet diameter is preferably in the range of 1.0 to 6.0 mm, and more preferably in the range of 1.5 to 4.0 mm. More preferably.
  • the pellet length is the same as the length when the strand is cut.
  • the aspect ratio of the fiber reinforcement obtained by such a method is in the range of 250 to 5000, preferably in the range of 600 to 4000, and more preferably in the range of 800 to 3000. Further, a fiber reinforcing material having a fiber length of 5 mm or less can be added to a fiber reinforcing material having a fiber length of more than 5 mm, but even in such a case, adjusting the number average to a range of 120 to 3000 is an invention. It is preferable from the viewpoint of maintaining the effect.
  • the long fiber reinforced polyarylene sulfide resin composition thus obtained is a columnar pellet obtained by cutting a strand obtained by drawing an endless fiber
  • the fiber length of the fiber reinforcing material in the pellet is It becomes more than the length of the pellet.
  • drawdown performance can be improved.
  • a sizing agent imparted with reactivity to enhance the interaction with the resin is applied to the fiber surface, the adhesion with the polyarylene sulfide resin is increased, and the fiber and resin interface are more firmly adhered to each other, thereby drawing down. Can be improved.
  • mechanical properties, particularly impact resistance can be improved.
  • the proportion of the polyarylene sulfide resin (a1), the fiber reinforcing material, and the thermoplastic elastomer (b1) used as necessary is the effect of the present invention.
  • the polyarylene sulfide resin (a1) is in the range of 99 to 20 parts by mass and the fiber reinforcement is 1 to 80 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin (a1) and the fiber reinforcement.
  • the polyarylene sulfide resin (a1) is preferably in the range of 95 to 30 parts by mass, and the fiber reinforcement is more preferably in the range of 5 to 70 parts by mass.
  • thermoplastic elastomer when added to the long fiber reinforced polyarylene sulfide resin composition, the polyarylene sulfide resin (a1), the fiber reinforcement, and the thermoplastic elastomer (b1) are added in a total amount of 100 parts by mass.
  • the arylene sulfide resin (a1) is in the range of 98 to 19 parts by mass
  • the fiber reinforcement is in the range of 1 to 79 parts by mass
  • thermoplastic elastomer (b1) is in the range of 1 to 30 parts by mass.
  • the polyarylene sulfide resin (a1) is in the range of 94 to 29 parts by mass
  • the fiber reinforcement is in the range of 5 to 69 parts by mass
  • the thermoplastic elastomer (b1) is 1 A range of ⁇ 20 parts by mass is more preferable.
  • a blending ratio in this range it is excellent in melt moldability, and a molded product excellent in heat resistance, chemical resistance, particularly mechanical properties represented by impact resistance tends to be obtained.
  • it becomes preferable for blow hollow molded products it is difficult to draw down the parison during blow hollow molding, exhibits good blow moldability, and has mechanical properties represented by heat resistance, chemical resistance, especially impact resistance. An excellent blown hollow molded product tends to be obtained.
  • the long fiber reinforced polyarylene sulfide resin composition used in the present invention has various fillers in order to further improve the performance such as strength, heat resistance, and dimensional stability within the range not impairing the effects of the present invention. May be contained.
  • a filler known and commonly used materials can be used as long as they do not impair the effects of the present invention, and examples thereof include fillers of various shapes such as granular and fibrous forms.
  • the fiber length is 6 mm, such as glass fiber, carbon fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate and other natural fibers such as wollastonite. Less than fibrous fillers can be used.
  • the filler used in the present invention is not an essential component, it is more than 0 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin, and usually 10 parts by mass or more and 500 parts by mass or less, whereby strength, rigidity, Various performances such as heat resistance, heat dissipation and dimensional stability can be improved according to the purpose of the filler to be added, which is preferable.
  • the long fiber reinforced polyarylene sulfide resin composition used in the present invention may be blended with known additives as long as the effects of the present invention are not impaired.
  • known additives include mold release agents, colorants, heat stabilizers, UV stabilizers, foaming agents, rust preventives, flame retardants, lubricants, and polyesters, polyamides, polyimides as appropriate depending on the application.
  • a synthetic resin such as an epoxy resin, a silicone resin, a phenol resin, a urethane resin, or a liquid crystal polymer, an elastomer such as polyolefin rubber, fluorine rubber, or silicone rubber, or a coupling agent such as silane coupling may be blended.
  • the additive used in the present invention is not an essential component, it is more than 0 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin, and usually 10 parts by mass or more and 500 parts by mass or less of the additive to be added. It is preferable because various performances can be improved according to the purpose.
  • the long fiber reinforced polyarylene sulfide resin molded product of the present invention is obtained by dry blending the long fiber reinforced polyarylene sulfide resin composition used in the present invention with a polyarylene sulfide resin.
  • the ratio of the long fiber reinforced polyarylene sulfide resin composition and the polyarylene sulfide resin (a2) is not particularly limited as long as the effects of the present invention are not impaired.
  • the long fiber reinforced polyarylene sulfide resin composition is in the range of 2 to 98 parts by mass and the polyarylene sulfide resin (a2) is in the range of 98 to 2 parts by mass with respect to 100 parts by mass in total with the polyarylene sulfide resin (a2).
  • the long fiber reinforced polyarylene sulfide resin composition is preferably in the range of 5 to 95 parts by mass, and the polyarylene sulfide resin (a2) is in the range of 95 to 5 parts by mass. More preferably, the long fiber reinforced polyarylene sulfide resin composition further comprises 10 to 90 parts by mass.
  • a circumference, polyarylene sulfide resin (a2) is particularly preferably in the range of 90 to 10 parts by weight.
  • the long fiber reinforced polyarylene sulfide resin composition is not particularly limited as long as the effects of the present invention are not impaired, but the long fiber reinforced polyarylene sulfide resin composition And the polyarylene sulfide resin composition (a2) and the thermoplastic elastomer (b2) in a total amount of 100 parts by mass, the long fiber reinforced polyarylene sulfide resin composition is in the range of 2 to 98 parts by mass, Sum of resin (a2) and the thermoplastic elastomer (b2) The range of 98 to 2 parts by mass is preferable, and the long fiber reinforced polyarylene sulfide resin composition is in the range of 5 to 95 parts by mass.
  • the polyarylene sulfide resin (a2) and the thermoplastic elastomer (b2) Is more preferably in the range of 95 to 5 parts by mass, and the long fiber reinforced polyarylene sulfide resin composition is in the range of 10 to 90 parts by mass, and the polyarylene sulfide resin (a2) and the thermoplastic
  • the total amount of the elastomer (b2) is particularly preferably in the range of 90 to 10 parts by mass.
  • the ratio of the polyarylene sulfide resin (a2) and the thermoplastic elastomer (b2) is not particularly limited as long as the effects of the present invention are not impaired, but the polyarylene sulfide resin (a2) and the above-mentioned
  • the polyarylene sulfide resin (a2) is in the range of 99.9 to 50 parts by mass and the thermoplastic elastomer (b2) is 0.1 to 50 parts by mass with respect to 100 parts by mass in total of the thermoplastic elastomer (b2).
  • the polyarylene sulfide resin (a2) is preferably in the range of 99 to 70 parts by mass, and the thermoplastic elastomer (b2) is more preferably in the range of 1 to 30 parts by mass.
  • the polyarylene sulfide resin (a2) is in the range of 95 to 80 parts by mass, and the thermoplastic elastomer (b2) is 5 And particularly preferably in the range of 20 parts by weight.
  • the shape of the polyarylene sulfide resin (a2) or the thermoplastic elastomer (b2) is not particularly limited.
  • powder, granule, granule, strand, rod, needle, plate, tubular it is preferably in the form of a pellet from the viewpoint that both can be easily and uniformly mixed.
  • the long fiber reinforced polyarylene sulfide resin composition, the polyarylene sulfide resin and the thermoplastic elastomer (b2) to be added if necessary are a ribbon blender, a Henschel mixer, V What is necessary is just to put into a blender etc. and dry-blend and to prepare a dry blend thing.
  • the dry blend used in the present invention is variously prepared according to the type and ratio of the polyarylene sulfide resin, the fiber reinforcing material, and the thermoplastic elastomer used as necessary.
  • the melt flow rate value is preferably in the range of 10 to 100 g / 10 min, more preferably in the range of 20 to 80 g / 10 min, and further in the range of 30 to 60 g / min. More preferably, the range is 10 minutes. By setting it in this range, it is preferable to suppress variation in the thickness of the molded product and to become a blow-molded product with excellent uniformity, and to increase the range of 10 g / 10 min or more is preferable because it tends to suppress gelation. .
  • the melt flow rate value was measured by measuring the melt flow rate (g / 10 minutes) after preheating for 5 minutes, applying the load of 10 kg to a melt indexer with a cylinder temperature of 316 ° C. and an orifice diameter of 3 mm. The value obtained at the time of use shall be used.
  • the long fiber reinforced polyarylene sulfide resin molded product of the present invention contains a long fiber length fiber reinforcement while maintaining the excellent heat resistance of the polyarylene sulfide resin by performing dry blending, impact resistance, etc.
  • a long fiber length fiber reinforcement while maintaining the excellent heat resistance of polyarylene sulfide resin, it is possible to obtain moldability such as drawdown and uneven thickness when blow blow molding is performed. It is possible to provide a blow hollow molded article that is excellent in mechanical strength such as excellent impact resistance.
  • the obtained dry blend is then melted and extruded as a melt-kneaded product, but may be once processed into pellets or directly molded by blow hollow molding or the like.
  • the obtained dry blend When melting the obtained dry blend, it is heated to the melting point or higher of the polyarylene sulfide resin to be used.
  • the polyarylene sulfide resin (a1) and the polyarylene sulfide resin (a2) have different melting points, they may be heated to a higher melting point or higher.
  • the dry blend Once the dry blend has been melted into a melt-kneaded product and once processed into pellets, etc., it is again heated to the melting point of the polyarylene sulfide resin in the same manner as the dry blend, and then blown. What is necessary is just to use for shaping
  • the dry blend product is supplied to a melt extruder equipped with a single screw and heated to a melting point or higher of the polyarylene sulfide resin. It is preferably melted, preferably heated to a temperature range of 290 to 320 ° C., melted, melt-extruded, and then molded.
  • a method of melt extrusion under conditions of a screw rotational speed of 50 to 250 rpm and a discharge of 5 to 25 kg / h, and then molding into a target molded product can be mentioned.
  • a method of forming a parison in the range of a die gap of 1 to 10 mm after melt extrusion, and then molding it into a desired two- to three-dimensional hollow molded product can be mentioned.
  • Examples of the screw form include a full flight type single screw and a single screw having a mixing mechanism such as a dull image type, a Maddock type, and a pin type. It is preferable to use a single screw having a compression ratio of 2 or less, and further to use a single screw having a compression ratio of 2 or less and in the range of 1 or more, because the fiber reinforcement can be prevented from being crushed by shearing during resin melting. More preferably, it is particularly preferable to use a single screw with a full flight type and a compression ratio of 2 or less.
  • the effective length (L / D) is not particularly limited as long as it is a value used when molding a normal polyarylene sulfide resin.
  • the effective length (L / D) is in the range of 1 to 100, preferably in the range of 5 to 50. is there.
  • blow molding methods it can be used for various types of molding such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, transfer molding, etc.
  • the blow molding method is preferable because of excellent moldability such as property.
  • Representative examples of blow molding methods include the direct blow method, the accumulator blow method, and the multidimensional blow method. Also, the multilayer blow molding method and exchange blow molding method used in combination with other materials are applied. Of course it is also possible to do.
  • the long fiber reinforced polyarylene sulfide resin molded article of the present invention thus obtained has a polyarylene sulfide resin and a range of more than 5 mm, preferably more than 5 mm and 30 mm or less, more preferably 6 mm or more and And a fiber reinforcement having a fiber length in the range of 20 mm or less, more preferably in the range of 10 mm or more and 15 mm or less.
  • the melt flow rate value is 10 to 100 g / 10 It is preferably in the range of 20 minutes, more preferably in the range of 20 to 80 g / 10 minutes, and still more preferably in the range of 30 to 60 g / 10 minutes.
  • the ratio of the polyarylene sulfide resin, the fiber reinforcing material, and the thermoplastic elastomer added as necessary in the long fiber reinforced polyarylene sulfide resin molded product of the present invention is the component added as a raw material in the above production method That is, the total amount of the polyarylene sulfide resin (a1) and the polyarylene sulfide resin (a2), the fiber reinforcement, and the thermoplastic elastomer (b1) and the thermoplastic elastomer (if necessary).
  • the ratio is the same as the ratio to the total amount of b2), but the polyarylene sulfide resin is in the range of 99 to 25 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin and the fiber reinforcement, and
  • the fiber reinforcement is preferably in the range of 1 to 75 parts by mass, and moreover polyarylensle It ranges I de resin 95 to 35 mass parts, and it is more preferable that the fiber reinforcement is in the range of 5 to 65 parts by weight.
  • the polyarylene sulfide resin is in the range of 98 to 24 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin, the fiber reinforcement, and the thermoplastic elastomer.
  • the fiber reinforcement is in the range of 1 to 74 parts by mass
  • the thermoplastic elastomer is in the range of 0.1 to 30
  • the polyarylene sulfide resin is in the range of 94 to 34 parts by mass. More preferably, the fiber reinforcement is in the range of 4 to 64 parts by mass, and the thermoplastic elastomer is in the range of 1 to 20.
  • the long fiber reinforced polyarylene sulfide resin molded product of the present invention has excellent moldability, and has the heat resistance, dimensional stability, chemical resistance, impact resistance, cold thermal shock resistance, etc. inherent to the polyarylene sulfide resin. It also has excellent performance such as mechanical strength, so it has electrical and electronic parts such as connectors, printed circuit boards and sealing moldings, automotive parts such as lamp reflectors and various electrical parts, various buildings, aircraft and Not only injection molding products such as automotive interior materials, OA equipment parts, precision parts such as camera parts and watch parts, compression molded products, metal insert molded products, but especially hollow molded products such as bottles, tanks and ducts. It can be widely used for chemical liquid containers, air-conditioning ducts, high-temperature gas ducts and pipes discharged from internal combustion engines such as automobiles and fuel cells.
  • the strand-like material was air-cooled to 23 ° C. to obtain a strand, and further cut to a length of 10 mm with a strand cutter to obtain a fiber-reinforced polyarylene sulfide resin composition pellet (CP).
  • Examples 1-7 Preparation of dry blend
  • Table 6 the long fiber reinforced polyarylene sulfide resin composition pellets (CP1 to 3) and the polyarylene sulfide resin were put into “Mazemaseman HBT-500” manufactured by Misgi Co., Ltd. and dry blended. Dry blends (DB1-7) were obtained. A part of the obtained dry blend was sampled and measured (Table 6).
  • the obtained dry blend (DB1-7) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (single screw with a full flight type and a compression ratio of 1), and a resin component discharge rate of 25 kg / hr, Extrusion is performed at a screw rotation speed of 250 rpm and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air is blown into the mold, the height is 250 mm, the outer diameter is 50 mm, and the wall thickness is about 2 A cylindrical container of ⁇ 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 7).
  • Examples 8-14 Preparation of dry blend
  • the polyolefin resin-containing long fiber reinforced polyarylene sulfide resin composition pellets (CP9 to 11) and the polyarylene sulfide resin are put into “Mazemazeman HBT-500” manufactured by Misgi Co., Ltd. and dried.
  • Blending dry mixing was performed to obtain a dry blend (DB9 to 16). A part of the obtained dry blend was sampled and measured (Table 8).
  • the obtained dry blend (DB9 to 16) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (single screw with a full flight type and a compression ratio of 1), and a resin component discharge rate of 25 kg / hr, Extrusion is performed at a screw speed of 250 rpm and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air is blown into the mold, the height is 250 mm, the outer diameter is 50 mm, and the wall thickness is about 2 A cylindrical container of ⁇ 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 9).
  • Examples 15-22 Preparation of dry blend
  • the long fiber reinforced polyarylene sulfide resin composition pellets (CP1 to 3) and the polyolefin resin-containing polyarylene sulfide resin (CP4 to 8) were manufactured by Misgi Co., Ltd. “Mazemaze Man HBT-500”. And dry blended (dry mixing) to obtain a dry blend (DB15-22). A part of the obtained dry blend was sampled and measured (Table 10).
  • the obtained dry blend (DB15-22) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (full flight type, single screw with compression ratio of 1, effective length L / D ratio of 30), Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 11).
  • Examples 23-30 Preparation of dry blend
  • the polyolefin resin-containing long fiber reinforced polyarylene sulfide resin composition pellets (CP9 to 11) and the polyolefin resin-containing polyarylene sulfide resin composition (CP4 to 8) are made by “Mixe-Maze” manufactured by Misgi Co., Ltd. Mann HBT-500) and dry blended (dry blending) to obtain a dry blend (DB23-30). A part of the obtained dry blend was sampled and measured (Table 12).
  • the obtained dry blend (DB23 to 30) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (full flight type, single screw with a compression ratio of 1, effective length L / D ratio of 30), Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 13).
  • Examples 31-35 Preparation of dry blend
  • the long fiber reinforced polyarylene sulfide resin composition pellets (CP1 to 3) and the short fiber reinforcement-containing polyarylene sulfide resin composition (CP12 to 14) were mixed with “Mazemaze Man” manufactured by Misugi Co., Ltd. HBT-500) and dry blended (dry blending) to obtain a dry blend (DB31 to 35). A part of the obtained dry blend was sampled and measured (Table 14).
  • the obtained dry blend (DB31 to 35) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (a single-screw having a full flight type and a compression ratio of 1 and an effective length L / D ratio of 30).
  • Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 15).
  • Examples 36-40 Preparation of dry blend
  • the polyolefin resin-containing long fiber reinforced polyarylene sulfide resin composition pellets (CP9 to 11) and the short fiber reinforcement containing polyarylene sulfide resin composition (CP12 to 14) were manufactured by Misugi Co., Ltd.
  • Mixing and mixing HBT-500
  • dry blending dry mixing was performed to obtain a dry blend (DB36 to 40).
  • a part of the obtained dry blend was sampled and measured (Table 16).
  • the obtained dry blend (DB36 to 40) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (full flight type, single screw of compression ratio 1 and effective length L / D ratio 30), Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 17).
  • Examples 41-45 Preparation of dry blend
  • Table 18 the long fiber reinforced polyarylene sulfide resin composition pellets (CP1 to 3) and the polyolefin / short fiber reinforcement containing polyarylene sulfide resin composition (CP15 to 17)
  • Mazeman HBT-500 "and dry blended (dry blending) to obtain a dry blend (DB41 to 45). A part of the obtained dry blend was sampled and measured (Table 18).
  • the obtained dry blend (DB41 to 45) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (full flight type, single screw with compression ratio 1 and effective length L / D ratio 30), Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 19).
  • Comparative Examples 1-6 Preparation of dry blend
  • the polyarylene sulfide resin (1 to 3) and the polyolefin / short fiber reinforcement-containing polyarylene sulfide resin composition are mixed into the “Mazemazeman HBT-500” manufactured by Misgi Limited. It was charged and dry blended (dry blending) to obtain a dry blend (DB46-51). A part of the obtained dry blend was sampled and measured (Table 20).
  • the obtained dry blend (DB46-51) was supplied to a blow molding machine equipped with a 45 mm ⁇ extruder (full flight type, single screw with compression ratio of 1, effective length L / D ratio of 30), Extrusion was performed at a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, and a cylinder set temperature of 290 ° C., and after forming a parison with an outer diameter of 30 mm and a wall thickness of 4 mm, air was blown into the mold, the height was 250 mm, A cylindrical container having an outer diameter of 50 mm and a wall thickness of about 2 to 3 mm was formed. Each measurement was performed about the obtained blow hollow molded article (Table 21).
  • melt viscosity (MFR) / Drawdown resistance / Extrusion stability The dry blends obtained in Examples 1 to 45 and Comparative Examples 1 to 6 were put into a melt indexer (cylinder temperature 316 ° C., orifice diameter 3 mm), subjected to a load of 10 kg after preheating for 5 minutes, and melt flow rate (MFR) was measured.
  • melt viscosity is used as an index of the drawdown resistance and extrusion stability at the time of blow molding, and “O” for 100 to 10 g / 10 min (good with drawdown resistance and extrusion stability) 10 g Those with less than / 10 minutes were evaluated as “ ⁇ ” (extrusion stability was poor), and those over 100 g / 10 minutes were evaluated as “x” (with poor drawdown resistance).
  • the maximum inner surface height Ry at any five locations on the upper part (30 mm from the upper end) and the lower part (30 mm from the lower end) of the blow molded article body obtained in Examples 1 to 45 and Comparative Examples 1 to 6 is as follows: Judged by. “ ⁇ ” for maximum height Ry of 0.2 mm or less “ ⁇ ” if the maximum height Ry exceeds 0.2 and is within 0.5mm “ ⁇ ” if the maximum height Ry exceeds 0.5 and is within 1.0 mm “X” for those whose maximum height Ry exceeds 1.0 mm
  • each component described in the table used the following, and the numerical value concerning each component represents the mass part.
  • Fiber reinforcement (1) Glass fiber roving (E glass, fiber diameter 10 ⁇ m, epoxy-based sizing agent)
  • Fiber reinforcement (2) Glass fiber chopped strand (E glass, fiber diameter 10 ⁇ m, fiber length 3 mm, epoxy-based sizing agent)
  • Polyolefin (1) Ethylene-glycidyl methacrylate-methyl acrylate copolymer “Bondfast-7L” manufactured by Sumitomo Chemical Co., Ltd.
  • Polyolefin (2) Ethylene-maleic anhydride-ethyl acrylate copolymer “Bondaine AX8390” manufactured by Arkema Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 ポリアリーレンスルフィド(PAS)樹脂の優れた耐熱性を維持しつつ、耐衝撃性等の機械的強度に優れたPAS樹脂組成物、PAS樹脂成形品およびそれらの製造方法を提供すること。さらに成形品のなかでも、耐衝撃性等の機械的強度に優れつつ、かつ、耐ドローダウン性、偏肉性や内面平滑性といった成形性に優れたブロー中空成形品およびその製造方法を提供する。具体的にはPAS樹脂と、5mm超の繊維長を有する繊維強化材とを含む長繊維強化PAS樹脂組成物を得た後、当該樹脂組成物をPAS樹脂とドライブレンドし、その後、該ドライブレンド物を溶融し、続いて溶融成形する、長繊維強化PAS樹脂成形品の製造方法、長繊維強化PAS樹脂組成物およびその製造方法を提供する。

Description

長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法
 本発明は長繊維強化ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法、特に、ブロー中空成形品および該成形品の製造方法に関するものである。
 近年、自動車の省資源、省エネルギー、二酸化炭素低減を目的とした低燃費化が要求される中で、自動車部品についての軽量化が特に求められるようになってきている。
 従来、金属によって形成されている各種材料の軽量化を図るには、金属よりも低比重の樹脂材料、特に、ポリアミド系材料への置き換えが進んできたが、ポリアミド系材料は金属材料に比べて、耐熱性が不十分であることから、使用に際し制限が生じていた。このため、より耐熱性に優れた樹脂材料が求められていた。
 特に、自動車部品としてエンジンルーム内のダクト類を従来のアルミ材料から、樹脂材料を用いたブロー中空成形品への置き換えが進んでおり、現在は、主としてポリアミド系材料が使用されている。しかし、主に排気ガスと接触する部材であることから、ポリアミド系材料では耐熱性が不十分であるため、耐熱性が高く、しかも耐薬品性、耐衝撃性も兼備したブロー中空成形用材料が求められていた。
 このため、耐熱性や耐薬品性、難燃性および電気特性などに優れるエンジニアリングプラスチックとして、ポリアリーレンスルフィド樹脂(以下、PAS樹脂と略称することがある)の使用が、自動車部品だけでなく電気・電子部品や精密機械部品などの各種用途に対し、検討されている。しかしながら、当該ポリアリーレンスルフィド樹脂を用いた成形品は脆いことが知られており、各種フィラーを添加し、耐衝撃性を付与した成形品が提供されてはいるものの、いまだ金属材料を代替するには不充分であった。
 特に、ポリアリーレンスルフィド樹脂を用いたブロー中空成形用材料の検討は古くから種々試みられているものの、ポリアリーレンスルフィド樹脂を成形加工する際、その溶融流動性が非常に大きいことから、通常の押出ブロー成型、すなわちパリソンを押出してそれをブロー成形する方法では、パリソンのドローダウンが非常に大きく、偏肉の少ない容器に成形することが極めて困難であるという問題点があった。このため、ほとんどが射出成形法に限られ、ポリアリーレンスルフィド樹脂の成形品は小型のものが大部分で、たとえばブロー成形などによるボトルおよびタンクなどの大型部品への応用はあまりなされていないのが実情であった。
 ポリアリーレンスルフィド樹脂のブロー成形への応用例として、ポリアリーレンスルフィド樹脂とエポキシ基含有オレフィン系共重合体とを溶融混練して得られる樹脂組成物が知られている(特許文献1)。しかしながら該ポリアリーレンスルフィド樹脂は、溶融粘度は高いものの末端カルボキシ基の割合が多く、低分子量成分を多く含むポリアリーレンスルフィド樹脂であった。このため、ブロー中空成形を行う際の耐ドローダウン性や偏肉性といった組成物の成形性に改良の余地があるだけでなく、特に、ポリアリーレンスルフィド樹脂の低分子量成分とエポキシ基含有オレフィン系共重合体との反応物の割合が高くなるため、機械的強度、特に耐冷熱衝撃性にも改良の余地があり、自動車エンジン周りなど、より過酷な環境下で使用されるに至っていなかった。
 そこで、特定量の末端カルボキシ基濃度を有する高分子量リニア型ポリアリーレンスルフィド樹脂をオレフィン系重合体と組み合わせることで、成形性に優れ、かつ耐冷熱衝撃性等の機械的強度に優れたブロー中空成形品が知られている(特許文献2)。しかしながら、オレフィン系重合体の使用はポリアリーレンスルフィド樹脂を含むブロー中空成形品に対し、耐衝撃性等の機械的強度を付与することができる反面、耐熱性を低下させる原因にもなっていた。そのため、ポリアリーレンスルフィド樹脂の優れた耐熱性を維持しつつ、かつ耐衝撃性等の機械的強度に優れたブロー中空成形品が求められていた。
特開平3-236930号公報 WO2001/148929号パンフレット
 従って、本発明が解決しようとする課題は、ポリアリーレンスルフィド樹脂の優れた耐熱性を維持しつつ、耐衝撃性等の機械的強度に優れたポリアリーレンスルフィド樹脂成形品、当該成形品を提供するためのポリアリーレンスルフィド樹脂組成物およびそれらの製造方法を提供することにある。さらに成形品のなかでも特に、耐衝撃性等の機械的強度に優れつつ、かつ、耐ドローダウン性、偏肉性や内面平滑性といった成形性に優れたブロー中空成形品、当該成形品を提供するためのポリアリーレンスルフィド樹脂組成物およびそれらの製造方法を提供することにある。
 本発明者等は、上記の課題を解決するため、鋭意研究を重ねた結果、ポリアリーレンスルフィド樹脂と5mm超の繊維長を有する繊維強化材とを含む長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂とドライブレンドした後、当該ドライブレンド物を溶融し、続いて成形することで、耐衝撃性等の機械的強度に優れた長繊維強化ポリアリーレンスルフィド樹脂成形品を提供できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含むブロー中空成形品の製造方法であって、
 ポリアリーレンスルフィド樹脂(a1)と5mm超の繊維長を有する繊維強化材とを含む長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂(a2)とドライブレンドした後、ポリアリーレンスルフィド樹脂の融点以上に加熱してポリアリーレンスルフィド樹脂を溶融し、続いて成形することを特徴とする長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法、に関する。
 また、本発明は、ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含み、
シリンダー温度316℃、オリフィス径3mmのメルトインデクサーで測定されたMFR値が10~100〔g/10min〕の範囲にあること、
 前記ポリアリーレンスルフィド樹脂と前記繊維強化材の合計100質量部に対して、前記ポリアリーレンスルフィド樹脂が99~25質量部の範囲であり、前記繊維強化材が1~75質量部の範囲であることを特徴とする長繊維強化ポリアリーレンスルフィド樹脂成形品、に関する。
 本発明によれば、ポリアリーレンスルフィド樹脂の優れた耐熱性を維持しつつ、耐衝撃性等の機械的強度に優れたポリアリーレンスルフィド樹脂成形品、当該成形品を提供するためのポリアリーレンスルフィド樹脂組成物およびそれらの製造方法を提供することができる。さらに成形品のなかでも特に、耐衝撃性等の機械的強度に優れつつ、かつ、耐ドローダウン性、偏肉性や内面平滑性といった成形性に優れたブロー中空成形品、当該成形品を提供するためのポリアリーレンスルフィド樹脂組成物およびそれらの製造方法を提供することができる。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法は、ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含む長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法であって、
 ポリアリーレンスルフィド樹脂(a)と5mm超の繊維長を有する繊維強化材とを含む長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂(b)とドライブレンドした後、前記ポリアリーレンスルフィド樹脂の融点以上に加熱して前記ポリアリーレンスルフィド樹脂を溶融し、続いて成形することを特徴とする。
 本発明で用いる長繊維強化ポリアリーレンスルフィド樹脂組成物について説明する。
 本発明で用いるポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記式(2)
Figure JPOXMLDOC01-appb-C000005
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。下記式(8)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して、0.001~3モル%が好ましく、特に0.01~1モル%であることが好ましい。
 ここで、前記式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂(A)の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。
Figure JPOXMLDOC01-appb-C000006
これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(3)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。
 また、前記ポリアリーレンスルフィド樹脂は、前記式(1)や式(2)で表される構造部位のみならず、下記の構造式(5)~(8)
Figure JPOXMLDOC01-appb-C000007
で表される構造部位を、前記式(1)と式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記式(5)~(8)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
 また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。
 前記ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されないが、例えば1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
 重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。
  尚、上記(1)~(5)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。
 ポリアリーレンスルフィド樹脂の溶融粘度は、ブロー成形に適した範囲のものであれば特に限定されるものではないが、300℃、剪断速度10sec-1における溶融粘度が10~500Pa・sの範囲のものが好ましく、さらに25~300Pa・sの範囲のものがより好ましく、さらに45~200Pa・sの範囲のものがより好ましい。溶融粘度が10Pa・s以上であれば、ドローダウンが起こりにくくなり、一方、500Pa・s以下であれば、パリソンの押出安定性が良好となり、偏肉のない均一な成形品が得られやすくなる。
 また、該ポリアリーレンスルフィド樹脂の非ニュートン指数は、ブロー成形に適した範囲のものであれば特に限定されるものではないが、0.9~1.2の範囲のものが好ましい。
 このように本発明に用いるポリアリーレンスルフィド樹脂は、ポリアリーレンスルフィド樹脂自体がブロー中空成形に適した高い溶融粘度を有することに加え、リニア型構造の中でも非ニュートン指数が0.9~1.2の分岐度の低い直鎖構造を有するものである場合には、前記繊維強化材と反応して溶融混練物の溶融粘度が過度に高くなることを防ぎ、偏肉のない優れた成形性を発揮することができ、ブロー中空成形品の機械的強度、とくに耐衝撃性を改善することができる傾向となる。
 なお、本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法において、前記長繊維強化ポリアリーレンスルフィド樹脂組成物中に含まれるポリアリーレンスルフィド樹脂(「ポリアリーレンスルフィド樹脂(a1)」と記すことがある)と、前記長繊維強化ポリアリーレンスルフィド樹脂組成物とドライブレンドするポリアリーレンスルフィド樹脂(「ポリアリーレンスルフィド樹脂(a2)」と記すことがある)とは、上述したポリアリーレンスルフィド樹脂の定義に含まれるものであれば同一であっても、異なっても良い。
 本発明で用いる繊維強化材の種類としては、公知の無機繊維強化材や有機繊維強化材を用いることできる。例えば、ガラス繊維強化材、金属繊維強化材、バサルト繊維強化材、カーボン繊維(炭素繊維)強化材、アラミド繊維(全芳香族ポリアミド繊維)強化材、ナイロンMXD6繊維(m-キシリレンジアミンとアジピン酸との共縮重合体からなる繊維)強化材、PET繊維強化材、PBT繊維強化材、全芳香族ポリエステル繊維(ケブラー繊維)強化材等を挙げることができる。
 これらの繊維強化材はモノフィラメントの形として用いられるばかりでなく、モノフィラメントの多数本を集束剤で相互に集束したロービングを用いることができる。ロービングとしては、平均繊維径5~50μmの範囲、好ましくは平均繊維径6~30μmの範囲のモノフィラメントで、かつ、500~60000本の範囲のモノフィラメントを集束したものを用いることが好ましく、さらに平均繊維径9~24μmの範囲のモノフィラメントで、かつ1000~20000本のモノフィラメントを集束したものを用いることがより好ましい。更にこれらのロービングを2本以上合糸した形で用いることもできる。またこれらのロービング自体に撚りが付与されたものも用いることができる。また、集束剤としては、例えば、無水マレイン酸系化合物、ウレタン系化合物、アクリル系化合物、エポキシ系化合物、及びこれら化合物の共重合体から選ばれる1種以上を含有する集束剤が挙げられ、エポキシ系化合物、ウレタン系化合物を含有する集束剤が好ましいものとして挙げられる。このうち、エポキシ系化合物、ウレタン系化合物が好ましいものとして挙げられ、さらにエポキシ系化合物がより好ましいものとして挙げられる。エポキシ系化合物としては、ビスフェノール・エピクロルヒドリン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、テトラエポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルアミン、エポキシアルキルエステルあるいはエポキシ化不飽和化合物などが例示される。また、ウレタン系化合物としては、m-キシリレンジイソシアナート(XDI)、4,4’-メチレンビス(シクロヘキシルイソシアナート)(HMDI)やイソホロンジイソシアナート(IPDI)等のイソシアネートと、ポリエステル系やポリエーテル系のジオールとから合成されるものなどが挙げられる。
 本発明は、必要に応じて熱可塑性エラストマを用いることができる。必要に応じて用いることができる熱可塑性エラストマとしては、エポキシ基、アミノ基、カルボキシ基、イソシアナト基または下記の構造式(1)、構造式(2)
Figure JPOXMLDOC01-appb-C000008
(但し、構造式(1)、構造式(2)中、Rは炭素原子数1~8のアルキル基を表す。)で表される部分構造からなる群から選ばれる少なくとも1種の官能基を有する熱可塑性エラストマであることが好ましい。これらの基または部分構造は、カルボキシ基と相溶性の良い官能基または反応性を有する官能基であるため、カルボキシ基を有するポリアリーレンスルフィド樹脂と溶融混練されることによって良好に相溶ないし反応する。その結果、本発明の成形品は機械的強度、特に優れた曲げ強度、高耐衝撃性、高い曲げ弾性率を奏することができることから好ましい。
 前記熱可塑性エラストマとしては、例えばα-オレフィンと前記官能基を有していてもよいビニル重合性化合物などの単量体とを共重合して得られるポリオレフィンであることが好ましい。前記α-オレフィンは、例えば、エチレン、プロピレン、ブテン-1等の炭素数2~8のα-オレフィン等が挙げられる。前記官能基を有していてもよいビニル重合性化合物としては、例えば(メタ)アクリル酸、(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸、その他の炭素数4~10の不飽和ジカルボン酸とそのモノ及びジエステル、その酸無水物等のα,β-不飽和ジカルボン酸及びその誘導体等が挙げられる。
 より具体的に説明すれば、例えば、エポキシ基を有するポリオレフィンは、エポキシ基を有するオレフィン系重合体であれば特に限定されないが、α-オレフィンとα,β-不飽和酸のグリシジルエステルからなる共重合体が好ましく用いられる。α-オレフィンとしてはエチレン、プロピレンおよびブテン-1などが挙げられる。また、α,β-不飽和酸のグリシジルエステルとしては、具体的にはアクリル酸グリシジル、メタクリル酸グリシジルおよびエタクリル酸グリシジルなどが挙げられる。α-オレフィンに対する、各単量体成分の変性割合は、特に制限されるものではないが、共重合体中の変性部位を各単量体質量に換算し、共重合体100質量に対する割合として0.1~15質量部、中でも0.5~10質量部の範囲が好ましい。
 またアミノ基またはイソシアナト基を有するポリオレフィンは、たとえば、上記のカルボン酸で変性されたポリオレフィンに、アルキレンジアミンやアルキレンジイソシアネートといった多価アミンや多価イソシアネートを反応させて得ることができる。アルキレンジアミンとしてはアルキレンジアミンとしては、エチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、エチレンジイソシアナト、ペンタメチレンジイソシアナト、ヘキサメチレンジイソシアナト等が挙げられる。
 また、カルボキシ基と反応する官能基を有していない、いわゆる未変性オレフィン系重合体を用いることもでき、たとえば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリ1-ブテン、ポリ1-ペンテン、ポリメチルペンテンなどの単独重合体、エチレン-α-オレフィン共重合体などが用いられる。これらのなかでも、エチレン-α-オレフィン共重合体が好ましい。
 該エチレン-α-オレフィン共重合体は、エチレンおよび炭素数3~20を有する少なくとも1種以上のα-オレフィンを構成成分とする共重合体である。上記の炭素数3~20のα-オレフィンとして、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンおよびこれらの組み合わせが挙げられる。これらα-オレフィンの中でも炭素数6から12であるα-オレフィンを用いた共重合体が機械強度の向上、改質効果の一層の向上が見られるためより好ましい。 
 官能基を有していない、いわゆる未変性ポリオレフィンを用いる場合、その溶融粘度は特に制限されるものではないが、メルトフトーレイト(温度190℃、荷重2.16kg)による測定で0.01~70ポイズの範囲のものが好ましい。
 なお、オレフィン系重合体には、本発明の効果を損わない範囲で、他のオレフィン系モノマ、たとえばアクリル酸メチル、メタクリル酸メチル、アクリロニトリル、スチレン、酢酸ビニルおよびビニルエーテルなどを共重合させてもよい。
 本発明に用いることができる熱可塑性エラストマは、ポリアリーレンスルフィド樹脂を混練する温度で、溶融し、混合分散可能であることが好ましい。その点から、融点が300℃以下であり、室温でゴム弾性を有するエラストマがより好ましい。とりわけ、耐熱性、混合の容易さ、耐氷結性向上の点を考慮した場合、ガラス転移点が-30℃以下のものを用いると、極低温でもゴム弾性を有するため好ましい。前記ガラス転移点は、耐氷結性向上の点では低いほど好ましいが、通常-180~-30℃の範囲のものが好ましく、-150~-30℃の範囲のものが特に好ましい。
 上述した、カルボキシ基と相溶性の良い官能基または反応性を有する官能基を有するポリオレフィン、ないし、当該官能基を有していない、いわゆる未変性ポリオレフィンは、それぞれ、一種または複数種を適宜組合せて用いることができる。
 なお、本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法において、前記長繊維強化ポリアリーレンスルフィド樹脂組成物中に、前記熱可塑性エラストマ(「熱可塑性エラストマ(b1)」と記すことがある)を加えても良く、また、前記長繊維強化ポリアリーレンスルフィド樹脂組成物とドライブレンドする成分として、ポリアリーレンスルフィド樹脂(a2)に、さらに前記熱可塑性エラストマ(「熱可塑性エラストマ(b2)」と記すことがある)を加えても良く、また、その両方であっても良い。
 本発明で用いる長繊維強化ポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含有する。当該該長繊維強化ポリアリーレンスルフィド樹脂組成物は、特開2003-192911号公報記載の方法などの方法に準拠して製造することができ、例えば、連続した繊維(モノフィラメントないしロービング)に、溶融したポリアリーレンスルフィド樹脂を塗布又は含浸させ、次いで冷却して得られるストランドを5mm超の長さに切断して得ることができる。その際、溶融したポリアリーレンスルフィド樹脂に、必要に応じて前記熱可塑性エラストマ、加工安定剤、酸化安定剤、成形助剤その他の添加剤などを加えることもできる。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂組成物を作製する過程においては、基材樹脂であるポリアリーレンスルフィド樹脂を、必要に応じて前記熱可塑性エラストマ、加工安定剤、酸化安定剤、成形助剤、フィラーその他の添加剤などと配合した上で、加熱機構を有する単軸または二軸スクリュー押出機へ投入してポリアリーレンスルフィド樹脂の融点以上、好ましくは該融点+10℃以上の温度範囲で、より好ましくは融点+10℃~融点+100℃の温度範囲で、さらに好ましくは融点+20℃~融点+50℃の温度範囲で、溶融混練を行なって流動可能状態へ移行させた後に含浸装置(含浸ダイス)へ所定速度で装入する。
 該含浸装置は、連続した繊維がロービングの場合には開繊含浸装置を用いる。開繊含浸装置は溶融樹脂貯留部、上流側の境壁又は上流側の天板に穿設された繊維導入孔(導入口)を備えると共に下流側の境壁に穿設された賦形ノズルを備え、同装置中には2本以上の開繊ピン(長繊維の移動に拘わらず回転しない様に固定されている)又は開繊ロール(長繊維の移動に伴って自発的又は随伴的に回転可能)が下流側へ向けて系列的にしかも左右壁を架橋する状態で両壁に固定又は回転(回動)可能に装着されている。なお、開繊ピン又は開繊ロールが所定の間隙等を介して上下2段以上に装着されていても良い。上記の開繊含浸装置の中で連続した繊維を溶融樹脂中に導入し、開繊ピン又は開繊ロールに千鳥型に周回させるか、または上下2段に所定間隔だけ離して設置された2本の開繊ピンの中間を両者の何れにも接触させずに通過させるか、によってロービングの開繊と開繊した繊維への溶融樹脂の塗布または含浸を行えばよい。
 次いで、含浸装置から押し出されたストランド状物を、ポリアリーレンスルフィド樹脂の溶融温度未満、好ましくは室温(23℃)まで冷却して、無端の繊維を引抜成形したストランドが得られる。その際、繊維強化材ないしロービングに撚りを付与することもでき、例えば、連続した繊維強化材ないしロービングの複数本、好ましくは2~30本を含浸装置に通し、複数本の繊維強化材ないしロービングを撚りながら巻き取り、一本のストランドを形成することもできる。本発明の長繊維強化ポリアリーレンスルフィド樹脂組成物は、得られたストランドを5mm超の範囲、好ましくは5mmを超えてかつ30mm以下の範囲、より好ましくは6mm以上、かつ20mm以下の範囲、さらに好ましくは6mm以上、かつ15mm以下の範囲の長さに切断することによって柱状のペレットとして得られる。なお、ペレット直径とペレット長は、本発明の効果を損ねなければ特に限定されないが、ペレット直径が1.0~6.0mmの範囲とすることが好ましく、さらに1.5~4.0mmの範囲とすることがより好ましい。また、ペレット長はストランドを切断した際の長さと同じである。
 このような方法で得られた繊維強化材のアスペクト比は、250~5000の範囲であり、好ましくは600~4000の範囲であり、さらに好ましくは800~3000の範囲である。また、5mm超の繊維長を有する繊維強化材に、5mm以下の繊維長を有する繊維強化材を加えることもできるが、その場合でも、数平均で120~3000の範囲に調整することが発明の効果を維持できる観点から好ましい。
 このようにして得られた長繊維強化ポリアリーレンスルフィド樹脂組成物は、無端の繊維を引抜成形したストランドを切断して得られる柱状ペレットであることから、該ペレット中の繊維強化材の繊維長は該ペレットの長さ以上になる。このような長繊維長の繊維を用いると、溶融成形時、特に、ブロー成形時のパリソン中に長繊維同士の物理的な絡まりあいが生じ、ドローダウン性を改善することができる。さらに、繊維表面に樹脂との相互作用を高めるための反応性を付与した収束剤を塗布するとポリアリーレンスルフィド樹脂との密着性が高まり、繊維と樹脂の界面でより強固に密着し、ドローダウン性を改善することができる。さらに長繊維長の繊維を用いることで、機的物性、特に耐衝撃性が向上させることができる。
 なお、長繊維強化ポリアリーレンスルフィド樹脂組成物において、ポリアリーレンスルフィド樹脂(a1)と、前記繊維強化材と、必要に応じて用いられる前記熱可塑性エラストマ(b1)の割合は、本発明の効果を損ねない範囲であれば特に限定されないが、以下の通りである。
 すなわち、ポリアリーレンスルフィド樹脂(a1)と繊維強化材との合計100質量部に対し、ポリアリーレンスルフィド樹脂(a1)が99~20質量部の範囲であり、かつ前記繊維強化材が1~80質量部の範囲であることが好ましく、さらにポリアリーレンスルフィド樹脂(a1)が95~30質量部の範囲であり、かつ前記繊維強化材が5~70質量部の範囲であることがより好ましい。この範囲の配合割合を採用することによって、溶融成形性に優れ、耐熱性、耐薬品性、耐衝撃性に代表される機械物性に優れた成形品が得られる傾向となるが、特に、ブロー中空成形時パリソンのドローダウンが起こりにくくなり良好なブロー成形性を示し、かつ耐熱、耐薬品性のすぐれたブロー中空成形品が得られる傾向となる。
 さらに、長繊維強化ポリアリーレンスルフィド樹脂組成物に前記熱可塑性エラストマを加える場合には、ポリアリーレンスルフィド樹脂(a1)と繊維強化材と前記熱可塑性エラストマ(b1)の合計100質量部に対し、ポリアリーレンスルフィド樹脂(a1)が98~19質量部の範囲であり、かつ前記繊維強化材が1~79質量部の範囲であり、かつ前記熱可塑性エラストマ(b1)が1~30質量部の範囲であることが好ましく、さらにポリアリーレンスルフィド樹脂(a1)が94~29質量部の範囲であり、かつ前記繊維強化材が5~69質量部の範囲であり、かつ前記熱可塑性エラストマ(b1)が1~20質量部の範囲であることがより好ましい。この範囲の配合割合を採用することによって溶融成形性に優れ、耐熱性、耐薬品性、特に、耐衝撃性に代表される機械物性により優れた成形品が得られる傾向となる。さらに、ブロー中空成形品用に好ましいものとなり、ブロー中空成形時パリソンのドローダウンが起こりにくくなり良好なブロー成形性を示し、かつ耐熱、耐薬品性、特に耐衝撃性に代表される機械物性に優れたブロー中空成形品が得られる傾向となる。
 また、本発明に用いる長繊維強化ポリアリーレンスルフィド樹脂組成物は、本発明の効果を損ねない範囲で、更に強度、耐熱性、寸法安定性等の性能を更に改善するために、各種の充填材を含有していてもよい。このような充填材としては、本発明の効果を損なうものでなければ公知慣用の材料を用いることができ、例えば、粒状、繊維状などさまざまな形状の充填材等が挙げられる。具体的には、ガラス繊維、炭素繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等の、繊維長が6mm未満の繊維状の充填材が使用できる。また硫酸バリウム、硫酸カルシウム、クレー、パイロフィライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等が使用できる。本発明で用いる充填剤は必須成分ではないが、前記ポリアリーレンスルフィド樹脂100質量部に対して0質量部より多く、通常は10質量部以上、500質量部以下を加えることによって、強度、剛性、耐熱性、放熱性および寸法安定性など、加える充填剤の目的に応じて各種性能を向上させることができるため、好ましい。
 また、本発明に用いる長繊維強化ポリアリーレンスルフィド樹脂組成物は、本発明の効果を損ねない範囲で公知の添加剤を配合していてよい。このような公知の添加剤としては、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、また用途に応じて、適宜、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂、あるいは、ポリオレフィン系ゴム、フッ素ゴム、シリコーンゴム等のエラストマ、シランカップリング等のカップリング剤等を配合してもよい。本発明で用いる添加剤は必須成分ではないが、前記ポリアリーレンスルフィド樹脂100質量部に対して0質量部より多く、通常は10質量部以上、500質量部以下を加えることによって、加える添加剤の目的に応じて各種性能を向上させることができるため、好ましい。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品は、本発明に用いる長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂とドライブレンドする。
 長繊維強化ポリアリーレンスルフィド樹脂組成物と、ポリアリーレンスルフィド樹脂(a2)との割合は、本発明の効果を損ねなければ特に限定されるものではないが、長繊維強化ポリアリーレンスルフィド樹脂組成物と、ポリアリーレンスルフィド樹脂(a2)との合計100質量部に対し、前記長繊維強化ポリアリーレンスルフィド樹脂組成物が2~98質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)が98~2質量部の範囲であることが好ましく、さらに前記長繊維強化ポリアリーレンスルフィド樹脂組成物が5~95質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)が95~5質量部の範囲であることがより好ましく、さらに前記長繊維強化ポリアリーレンスルフィド樹脂組成物が10~90質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)が90~10質量部の範囲であることが特に好ましい。
 また、前記長繊維強化ポリアリーレンスルフィド樹脂組成物とドライブレンドする成分として、ポリアリーレンスルフィド樹脂(a2)に、さらに前記熱可塑性エラストマ(b2)を加える場合には、前記長繊維強化ポリアリーレンスルフィド樹脂組成物と、ポリアリーレンスルフィド樹脂(a2)と、前記熱可塑性エラストマ(b2)との割合は、本発明の効果を損ねなければ特に限定されるものではないが、長繊維強化ポリアリーレンスルフィド樹脂組成物と、ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計100質量部に対し、前記長繊維強化ポリアリーレンスルフィド樹脂組成物が2~98質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計が98~2質量部の範囲であることが好ましく、さらに前記長繊維強化ポリアリーレンスルフィド樹脂組成物が5~95質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計が95~5質量部の範囲であることがより好ましく、さらに前記長繊維強化ポリアリーレンスルフィド樹脂組成物が10~90質量部の範囲であり、ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計が90~10質量部の範囲であることが特に好ましい。
 その際、前記ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の割合は、本発明の効果を損ねなければ特に限定されるものではないが、前記ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計100質量部に対して、前記ポリアリーレンスルフィド樹脂(a2)が99.9~50質量部の範囲であり、前記熱可塑性エラストマ(b2)が0.1~50質量部の範囲であることが好ましく、前記ポリアリーレンスルフィド樹脂(a2)が99~70質量部の範囲であり、前記熱可塑性エラストマ(b2)が1~30質量部の範囲であることがより好ましく、さらに、前記ポリアリーレンスルフィド樹脂(a2)が95~80質量部の範囲であり、前記熱可塑性エラストマ(b2)が5~20質量部の範囲であることが特に好ましい。
 ドライブレンドする際、ポリアリーレンスルフィド樹脂(a2)ないし前記熱可塑性エラストマ(b2)の形状は特に限定されず、例えば、粉末状、粒状、顆粒状、ストランド状、棒状、針状、板状、管状、ブロック状、ペレット状などであってもよいが、両者を容易かつ均一に混合できる点からペレット状であることが好ましい。
 ドライブレンドは公知の方法を用いればよく、例えば、前記長繊維強化ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂および必要に応じて加える前記熱可塑性エラストマ(b2)をリボンブレンター、ヘンシェルミキサー、Vブレンターなどに投入してドライブレンドして、ドライブレンド物を調製すればよい。
 この様にして得られた本発明に用いるドライブレンド物は、ポリアリーレンスルフィド樹脂、該繊維強化材および必要に応じて用いられる前記熱可塑性エラストマの種類や割合に応じて種々調製する。特に、ブロー中空成形する場合には、メルトフローレート値を10~100g/10分の範囲とすることが好ましく、さらに20~80g/10分の範囲とすることがより好ましく、さらに30~60g/10分の範囲とすることがさらに好ましい。当該範囲とすることで、成形品肉厚のばらつきを抑え、均一性にすぐれたブロー成形品となる傾向となり、また、10g/10分以上の範囲とすることでゲル化を抑制できる傾向となり好ましい。
 なお、メルトフローレート値はシリンダー温度316℃、オリフィス径3mmのメルトインデクサーに該ドライブレンド物を投入し、10kgの荷重を掛け、5分間の予熱後にメルトフローレート(g/10分)を測定した際の値を用いるものとする。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品は、ドライブレンドを行うことにより、ポリアリーレンスルフィド樹脂の優れた耐熱性を維持しつつ、長繊維長の繊維強化材を含むことから耐衝撃性等の機械特性になお一層優れた成形品が得られるが、特に、ポリアリーレンスルフィド樹脂の優れた耐熱性を維持しつつ、かつブロー中空成形を行う際のドローダウン性や偏肉性といった成形性に優れ、さらに耐衝撃性等の機械的強度に優れたブロー中空成形品を提供することができる。
 得られたドライブレンド物は続いて、溶融され、溶融混練物となり押出されるが、一旦、ペレット等に加工しても、直接、ブロー中空成形等、成形してもよい。
 得られたドライブレンド物を溶融する際は、用いるポリアリーレンスルフィド樹脂の融点以上に加熱する。ポリアリーレンスルフィド樹脂(a1)とポリアリーレンスルフィド樹脂(a2)が異なる融点の場合、いずれか高い融点以上に加熱すればよい。ドライブレンド物を溶融して溶融混練物とした後、一旦、ペレット等に加工した場合は、再度、ドライブレンド物と同様にポリアリーレンスルフィド樹脂の融点以上に加熱して溶融し、続いて、ブロー中空成形等、成形に供すればよい。
 成形法としては本発明の効果を損ねなければ公知の方法でよく、例えば、該前記ドライブレンド物を、単軸スクリューを備えた溶融押出機に供給し、前記ポリアリーレンスルフィド樹脂の融点以上に加熱して溶融し、好ましくは290~320℃の範囲に加熱して溶融し、溶融押出した後、成形することが好ましい。
 より詳しくは、例えば、スクリュー回転数50~250rpm、吐出5~25kg/hの範囲の条件で溶融押出した後、目的とする成形品に成形する方法などが挙げられる。ブロー成形の場合は、溶融押出した後、ダイギャップ1~10mmの範囲でパリソンを成形せしめ、その後目的とする2~3次元的中空成形品に成形する方法などが挙げられる。
 スクリュー形態としては、例えば、フルフライト型単軸スクリューや、ダルメージ型、マドック型、ピン付型等のミキシング機構を有する単軸スクリューが挙げられる。樹脂の溶融時における剪断による繊維強化材の破砕を抑制できるため、圧縮比2以下の単軸スクリューを用いることが好ましく、さらに圧縮比2以下、かつ1以上の範囲の単軸スクリューを用いることがよりこのましく、さらにフルフライト型でかつ圧縮比2以下の単軸スクリューを用いることが特に好ましい。
 有効長(L/D)は、通常のポリアリーレンスルフィド樹脂を成形する際に用いられる値であれば特に限定されることはなく、例えば、1~100の範囲、好ましくは5~50の範囲である。
 また、成形法としては射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に耐ドローダウン性や偏肉性といった成形性に優れることから、ブロー成形法が好ましい。ブロー成形法の代表例としてはダイレクトブロー法、アキエームレーターブロー法および多次元ブロー法などを挙げることができ、また他材料との組合せにおいて用いられる多層ブロー成形法やエクスチェンジブロー成形法などを適用することももちろん可能である。
 この様にして得られた本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品は、ポリアリーレンスルフィド樹脂と5mm超の範囲、好ましくは5mmを超えて、かつ30mm以下の範囲、より好ましくは6mm以上かつ20mm以下の範囲、さらに好ましくは10mm以上かつ15mm以下の範囲の繊維長を有する繊維強化材とを含み、特にブロー中空成形品では、ドライブレンド物と同様、メルトフローレート値を10~100g/10分の範囲であることが好ましく、さらに20~80g/10分の範囲であることがより好ましく、さらに30~60g/10分の範囲であることがさらに好ましい。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品におけるポリアリーレンスルフィド樹脂と前記繊維強化材と、必要に応じて添加される前記熱可塑性エラストマとの割合は、上記製造方法で原料として添加した各成分の合計量、すなわち、ポリアリーレンスルフィド樹脂(a1)およびポリアリーレンスルフィド樹脂(a2)の合計量と、前記繊維強化材と、必要に応じて加える前記熱可塑性エラストマ(b1)と前記熱可塑性エラストマ(b2)の合計量との割合と同様であるが、前記ポリアリーレンスルフィド樹脂と前記繊維強化材の合計100質量部に対して、ポリアリーレンスルフィド樹脂が99~25質量部の範囲であり、かつ前記繊維強化材が1~75質量部の範囲であることが好ましく、さらに、ポリアリーレンスルフィド樹脂が95~35質量部の範囲であり、かつ前記繊維強化材が5~65質量部の範囲であることがより好ましい。また、必要に応じて前記熱可塑性エラストマを加える場合は、ポリアリーレンスルフィド樹脂と前記繊維強化材と前記熱可塑性エラストマの合計100質量部に対して、ポリアリーレンスルフィド樹脂が98~24質量部の範囲であり、前記繊維強化材が1~74質量部の範囲であり、前記熱可塑性エラストマが0.1~30の範囲であることが好ましく、さらにポリアリーレンスルフィド樹脂が94~34質量部の範囲であり、前記繊維強化材が4~64質量部の範囲であり、前記熱可塑性エラストマが1~20の範囲であることがより好ましい。
 本発明の長繊維強化ポリアリーレンスルフィド樹脂成形品は優れた成形性を有し、かつポリアリーレンスルフィド樹脂が本来有する耐熱性、寸法安定性、耐薬品性、耐衝撃性、耐冷熱衝撃性等の機械的強度等の優れた諸性能も具備しているので、コネクタ、プリント基板及び封止成形品等の電気・電子部品、ランプリフレクター及び各種電装品部品などの自動車部品、各種建築物、航空機及び自動車などの内装用材料、OA機器部品、カメラ部品及び時計部品などの精密部品等の射出成形品や圧縮成形品、金属インサート成形品だけでなく、特に、ボトル、タンク、ダクトなど中空成型品として薬液用容器、空調ダクト、自動車など内燃機関や燃料電池から排出される高温ガス用ダクトおよびパイプなどに幅広く用いることができる。
 以下本発明を実施例により具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。
〔製造例1~3〕
(長繊維強化ポリアリーレンスルフィド樹脂組成物の製造)
 表1に記載のポリアリーレンスルフィド樹脂を2軸押出機に投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度310℃で溶融混練しながら、押出機先端に設置した含浸ダイスに、表1に記載のガラス繊維のロービング(繊維径10μm)を、表1に記載した割合となるように連続的に供給、押出して、ガラス繊維を溶融したポリアリーレンスルフィド樹脂で被覆したストランド状物を製造した。その後、該ストランド状物を23℃に空冷してストランドを得て、さらにストランドカッターで10mmの長さにカッティングして、繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP)を得た。
Figure JPOXMLDOC01-appb-T000009
〔製造例4~6〕
(ポリオレフィン樹脂含有ポリアリーレンスルフィド樹脂組成物の製造)
 表2に記載したポリアリーレンスルフィド樹脂とポリオレフィンを2軸押出機に投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度310℃で溶融混練した後、押出機先端に設置したTダイより押出してストランド状物を製造した。その後、該ストランド状物を23℃に空冷してストランドを得て、さらにストランドカッターで10mmの長さにカッティングして、ポリアリーレンスルフィド樹脂組成物ペレット(CP)を得た。
Figure JPOXMLDOC01-appb-T000010
〔製造例9~11〕
(ポリオレフィン樹脂含有長繊維強化ポリアリーレンスルフィド樹脂組成物の製造)
 表3に記載のとおりポリアリーレンスルフィド樹脂及びポリオレフィン樹脂を表3に記載の割合でヘンシェルミキサーを用いて混合した後、2軸押出機に投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度310℃で溶融混練しながら、押出機先端に設置した含浸ダイスに、表1に記載のガラス繊維のロービング(繊維径10μm)を、表1に記載した割合となるように連続的に供給、押出して、ガラス繊維を溶融したポリアリーレンスルフィド樹脂及びポリオレフィン樹脂で被覆したストランド状物を製造した。その後、該ストランド状物を23℃に空冷してストランドを得て、さらにストランドカッターで10mmの長さにカッティングして、繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP)を得た。
Figure JPOXMLDOC01-appb-T000011
〔製造例12~14〕
(短繊維強化材含有ポリアリーレンスルフィド樹脂組成物の製造)
 表4に記載したポリアリーレンスルフィド樹脂を2軸押出機に投入し、サイドフィーダ1から表4に記載のとおりにガラス繊維を供給して、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度310℃で溶融混練した後、押出機先端に設置したTダイより押出してストランド状物を製造した。その後、該ストランド状物を23℃に空冷してストランドを得て、さらにストランドカッターで10mmの長さにカッティングして、ポリアリーレンスルフィド樹脂組成物ペレット(CP)を得た。
Figure JPOXMLDOC01-appb-T000012
〔製造例15~17〕
(ポリオレフィン樹脂・短繊維強化材含有ポリアリーレンスルフィド樹脂組成物の製造)
 表5に記載したポリアリーレンスルフィド樹脂及びポリオレフィン樹脂を2軸押出機に投入し、サイドフィーダから表5に記載のとおりにガラス繊維を供給して、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度310℃で溶融混練した後、押出機先端に設置したTダイより押出してストランド状物を製造した。その後、該ストランド状物を23℃に空冷してストランドを得て、さらにストランドカッターで10mmの長さにカッティングして、ポリアリーレンスルフィド樹脂組成物ペレット(CP)を得た。
Figure JPOXMLDOC01-appb-T000013
実施例1~7
(ドライブレンド物の調製)
 表6に記載のとおり、前記長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP1~3)とポリアリーレンスルフィド樹脂とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンドし、ドライブレンド物(DB1~7)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表6)。
Figure JPOXMLDOC01-appb-T000014
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB1~7)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表7)。
Figure JPOXMLDOC01-appb-T000015
実施例8~14
(ドライブレンド物の調製)
 表8に記載のとおり、前記ポリオレフィン樹脂含有長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP9~11)とポリアリーレンスルフィド樹脂とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB9~16)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表8)。
Figure JPOXMLDOC01-appb-T000016
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB9~16)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表9)。
Figure JPOXMLDOC01-appb-T000017
実施例15~22
(ドライブレンド物の調製)
 表10に記載のとおり、前記長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP1~3)とポリオレフィン樹脂含有ポリアリーレンスルフィド樹脂(CP4~8)とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB15~22)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表10)。
Figure JPOXMLDOC01-appb-T000018
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB15~22)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表11)。
Figure JPOXMLDOC01-appb-T000019
実施例23~30
(ドライブレンド物の調製)
 表12に記載のとおり、前記ポリオレフィン樹脂含有長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP9~11)とポリオレフィン樹脂含有ポリアリーレンスルフィド樹脂組成物(CP4~8)とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB23~30)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表12)。
Figure JPOXMLDOC01-appb-T000020
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB23~30)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表13)。
Figure JPOXMLDOC01-appb-T000021
実施例31~35
(ドライブレンド物の調製)
 表14に記載のとおり、前記長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP1~3)と短繊維強化材含有ポリアリーレンスルフィド樹脂組成物(CP12~14)とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB31~35)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表14)。
Figure JPOXMLDOC01-appb-T000022
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB31~35)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表15)。
Figure JPOXMLDOC01-appb-T000023
実施例36~40
(ドライブレンド物の調製)
 表16に記載のとおり、前記ポリオレフィン樹脂含有長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP9~11)と短繊維強化材含有ポリアリーレンスルフィド樹脂組成物(CP12~14)とを有限会社ミスギ製「まぜまぜマン HBT-500)に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB36~40)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表16)。
Figure JPOXMLDOC01-appb-T000024
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB36~40)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表17)。
Figure JPOXMLDOC01-appb-T000025
実施例41~45
(ドライブレンド物の調製)
 表18に記載のとおり、前記長繊維強化ポリアリーレンスルフィド樹脂組成物ペレット(CP1~3)とポリオレフィン・短繊維強化材含有ポリアリーレンスルフィド樹脂組成物(CP15~17)とを有限会社ミスギ製「まぜまぜマン HBT-500」に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB41~45)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表18)。
Figure JPOXMLDOC01-appb-T000026
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB41~45)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表19)。
Figure JPOXMLDOC01-appb-T000027
比較例1~6
(ドライブレンド物の調製)
 表20に記載のとおり、ポリアリーレンスルフィド樹脂(1~3)とポリオレフィン・短繊維強化材含有ポリアリーレンスルフィド樹脂組成物(CP15~17)とを有限会社ミスギ製「まぜまぜマン HBT-500」に投入してドライブレンド(乾式混合)し、ドライブレンド物(DB46~51)を得た。
 得られたドライブレンド物の一部をサンプリングして各測定を行った(表20)。
Figure JPOXMLDOC01-appb-T000028
(ブロー成形品の製造)
 続いて、得られたドライブレンド物(DB46~51)を45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比30)を具備するブロー成形機に供給し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、シリンダー設定温度290℃で押出を行い、外径30mm、肉厚4mmのパリソンを成形した後、金型内で空気を吹込み、高さ250mm、外径50mm、肉厚約2~3mmの円筒型容器を成形した。
 得られたブロー中空成形品について各測定を行った(表21)。
Figure JPOXMLDOC01-appb-T000029
 各種試験は以下の通り行った。
 [溶融粘度(MFR)/耐ドローダウン性/押出安定性]
 実施例1~45および比較例1~6で得られたドライブレンド物をメルトインデクサー(シリンダー温度316℃、オリフィス径3mm)に投入し、5分間の予熱後に10kgの荷重を掛け、メルトフローレート(MFR)を測定した。
 得られた溶融粘度をブロー成形時の耐ドローダウン性および押出安定性の指標とし、100~10g/10分のものを「〇」(耐ドローダウン性および押出安定性が伴に良好)、10g/10分未満のものを「△」(押出安定性が不良)、100g/10分を超えるものを「×」(耐ドローダウン性が不良)と評価した。
 [内面平滑性]
 実施例1~45および比較例1~6で得られたブロー成形品胴部の上部(上端から30mm)および下部(下端から30mm)の任意の各5ケ所の内面最大高さRyを以下の基準で判定した。
最大高さRyが0.2mm以下のものを「◎」
最大高さRyが0.2を超え0.5mm以内のものを「○」
最大高さRyが0.5を超え1.0mm以内のものを「△」
最大高さRyが1.0mmを超えるものを「×」
 [均一性]
 実施例1~45および比較例1~6で得られたブロー成形品胴部の上部(上端から30mm)および下部(下端から30mm)の任意の各5ケ所の厚みを測定し、その均一性を以下の基準で判定した。
上部平均厚みと下部平均厚みの差が0.2mm以内のものを「◎」
上記厚みの差が0.2を超え0.5mm以内のものを「○」
上記厚みの差が0.5mmを越え1.0mm以内のものを「△」
上記厚みの差が1.0mmを超えるものを「×」。
 [耐熱性]
 実施例1~45および比較例1~6で得られたドライブレンド物を、45mmφ押出機(フルフライト型でかつ圧縮比1の単軸スクリュー、有効長L/D比20)を具備する射出成形機に供給し、シリンダー温度300℃、金型温度140℃で、引張試験用ダンベル形状試験片を射出成形した。この試験片を260℃のオーブンで3000時間加熱し、取り出した後の引張強さを測定し、加熱していない試験片の引張強さからの低下を保持率(%)で表した。この保持率が80%以上のものを「◎」、60以上~80未満%ものを「○」、40%以上~60%未満のものを「△」、40%未満のものを「×」と判定した。
 [耐衝撃性]
 耐熱性試験で作成した引張試験用ダンベル形状試験片の中央部分を長さ80mm、幅10mm、厚さ4mmの棒状に切り出したものを耐衝撃性試験片とし、ISO179に準拠して、シャルピー衝撃試験を行い衝撃強度(kJ/mm)の測定を行った。
[ペレットまたは成形品中の繊維強化材の繊維の測定]
 実施例1~45および比較例1~6で得られたドライブレンド物またはブロー中空成形品をマッフル炉中550℃で2h暴露させ、その灰分に含まれるガラス繊維を無作為に500本選出し、デジタルマイクロスコープにて繊維長および繊維直径を測定し、数平均繊維長および数平均繊維径を算出した。また、得られた数平均繊維長と数平均繊維直径の各値から、数平均繊維長/数平均繊維直径を算出してアスペクト比とした。
 なお、表中に記載した各成分は以下のものを用い、各成分にかかる数値はその質量部を表す。
表中の各原料は以下の通り。
PPS(1);DIC株式会社製ポリフェニレンスルフィド樹脂「DIC.PPS」(V6溶融粘度30Pa・s、非NT指数1.2)
PPS(2);DIC株式会社製ポリフェニレンスルフィド樹脂「DIC.PPS」(V6溶融粘度50Pa・s、非NT指数1.2)
PPS(3);DIC株式会社製ポリフェニレンスルフィド樹脂「DIC.PPS」(V6溶融粘度150Pa・s、非NT指数1.2)
 ※PPS樹脂のV6溶融粘度は島津製作所製フローテスター、CFT-500Cを用い、300℃、荷重:1.96×10Pa、L/D=10/1にて、6分間保持した後に測定した値による。
繊維強化材(1);ガラス繊維ロービング(Eガラス、繊維直径10μm、エポキシ系収束剤)
繊維強化材(2);ガラス繊維チョップドストランド(Eガラス、繊維直径10μm、繊維長3mm、エポキシ系収束剤)
ポリオレフィン(1):エチレン-メタクリル酸グリシジル-アクリル酸メチル共重合体 住友化学工業株式会社製「ボンドファスト-7L」
ポリオレフィン(2):エチレン-無水マレイン酸-アクリル酸エチル共重合体 アルケマ株式会社製「ボンダインAX8390」
ポリオレフィン(3):エチレン-1-オクテン共重合体 ダウケミカル株式会社製「エンゲージ8842」

Claims (18)

  1.  ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含むブロー中空成形品の製造方法であって、
     ポリアリーレンスルフィド樹脂(a1)と5mm超の繊維長を有する繊維強化材とを含む長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂(a2)とドライブレンドした後、ポリアリーレンスルフィド樹脂の融点以上に加熱してポリアリーレンスルフィド樹脂を溶融し、続いて成形することを特徴とする長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  2.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物と前記ポリアリーレンスルフィド樹脂(a2)の合計100質量部に対して、前記長繊維強化ポリアリーレンスルフィド樹脂組成物98~2質量部の範囲であり、前記ポリアリーレンスルフィド樹脂(a2)が2~98質量部の範囲である、請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  3.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(a1)と前記繊維強化材の合計100質量部に対して、ポリアリーレンスルフィド樹脂(a1)が99~20質量部の範囲であり、前記繊維強化材が1~80質量部の範囲である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  4.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物は、連続した繊維に、溶融混練したポリアリーレンスルフィド樹脂(a1)を塗布又は含浸させ、次いで冷却して得られるストランドを5mm超の長さに切断して得られたものである請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  5.  前記繊維強化材の繊維直径が5~50μmの範囲である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  6.  前記繊維強化材のアスペクト比が250~5000の範囲である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  7.  前記繊維強化材が、ガラス繊維強化材、カーボン繊維強化材、バサルト繊維強化材及びアラミド繊維強化材から成る群から選ばれる少なくとも一種である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  8.  前記ポリアリーレンスルフィド樹脂は、非ニュートン指数が0.9~1.2であり、かつ300℃で測定した溶融粘度が10~500〔Pa・s〕の範囲にある請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  9.  前記成形が、ブロー中空成形であり、長繊維強化ポリアリーレンスルフィド樹脂成形品がブロー中空成形品である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  10.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物が、
     ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とに加え、さらに、エポキシ基、アミノ基、カルボキシ基、イソシアナト基、下記の構造式(1)又は下記の構造式(2)
    Figure JPOXMLDOC01-appb-C000001
    (但し、構造式(1)、構造式(2)中、Rは炭素原子数1~8のアルキル基を表す。)で表される部分構造からなる群から選ばれる少なくとも1種の官能基を有していてもよい熱可塑性エラストマを含む、請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  11.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(a1)と前記繊維強化材と前記熱可塑性エラストマ(b1)の合計100質量部に対して、ポリアリーレンスルフィド樹脂(a1)が98~19質量部の範囲であり、前記繊維強化材が1~79質量部の範囲であり、前記熱可塑性エラストマ(b1)が1~30質量部の範囲である、請求項10記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  12.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物は、連続した繊維に、溶融混練したポリアリーレンスルフィド樹脂(a1)および前記熱可塑性エラストマ(b1)を含む組成物を塗布又は含浸させ、次いで冷却して得られるストランドを5mm超の長さに切断して得られたものである請求項10記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  13.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物を、ポリアリーレンスルフィド樹脂(a2)と、さらにエポキシ基、アミノ基、カルボキシ基、イソシアナト基、下記の構造式(1)又は下記の構造式(2)
    Figure JPOXMLDOC01-appb-C000002
    (但し、構造式(1)、構造式(2)中、Rは炭素原子数1~8のアルキル基を表す。)で表される部分構造からなる群から選ばれる少なくとも1種の官能基を有していてもよい熱可塑性エラストマ(b2)とドライブレンドする、請求項1又は10記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  14.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物と前記ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計100質量部に対して、前記長繊維強化ポリアリーレンスルフィド樹脂組成物98~2質量部の範囲であり、前記ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計が2~98質量部の範囲である、請求項13記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  15.  前記ポリアリーレンスルフィド樹脂(a2)と前記熱可塑性エラストマ(b2)の合計100質量部に対して、前記ポリアリーレンスルフィド樹脂(a2)が99.9~50質量部の範囲であり、前記熱可塑性エラストマ(b2)が0.1~50質量部の範囲である請求項13記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  16.  前記長繊維強化ポリアリーレンスルフィド樹脂組成物がペレットであり、かつ、前記繊維強化材の長さがペレット長以上である請求項1記載の長繊維強化ポリアリーレンスルフィド樹脂成形品の製造方法。
  17.  ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とを含み、
    シリンダー温度316℃、オリフィス径3mmのメルトインデクサーで測定されたMFR値が10~100〔g/10分〕の範囲にあること、
     前記ポリアリーレンスルフィド樹脂と前記繊維強化材の合計100質量部に対して、前記ポリアリーレンスルフィド樹脂が99~25質量部の範囲であり、前記繊維強化材が1~75質量部の範囲であることを特徴とする長繊維強化ポリアリーレンスルフィド樹脂成形品。
  18.  前記長繊維強化ポリアリーレンスルフィド樹脂成形品は、ポリアリーレンスルフィド樹脂と、5mm超の繊維長を有する繊維強化材とに加え、さらに、エポキシ基、アミノ基、カルボキシ基、イソシアナト基、下記の構造式(1)又は下記の構造式(2)
    Figure JPOXMLDOC01-appb-C000003
    (但し、構造式(1)、構造式(2)中、Rは炭素原子数1~8のアルキル基を表す。)で表される部分構造からなる群から選ばれる少なくとも1種の官能基を有していてもよい熱可塑性エラストマを含み、
     前記ポリアリーレンスルフィド樹脂と前記繊維強化材と前記熱可塑性エラストマの合計100質量部に対して、前記ポリアリーレンスルフィド樹脂が98~24質量部の範囲であり、前記繊維強化材が1~74質量部の範囲であり、前記熱可塑性エラストマが0.1~30の範囲である、請求項17記載の長繊維強化ポリアリーレンスルフィド樹脂成形品。
PCT/JP2016/058961 2015-03-26 2016-03-22 長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法 WO2016152845A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/557,602 US10737427B2 (en) 2015-03-26 2016-03-22 Long fiber-reinforced polyarylene sulfide resin molded article and method for producing the same
JP2017508351A JP6575590B2 (ja) 2015-03-26 2016-03-22 長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法
KR1020177025911A KR102338700B1 (ko) 2015-03-26 2016-03-22 장섬유 강화 폴리아릴렌설피드 수지 성형품 및 그 제조 방법
CN201680018640.2A CN107428063B (zh) 2015-03-26 2016-03-22 长纤维强化聚芳硫醚树脂成型品及其制造方法
EP16768748.2A EP3275620B1 (en) 2015-03-26 2016-03-22 Method for producing a fibre-reinforced polyarylene sulfide resin molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015064396 2015-03-26
JP2015-064396 2015-03-26
JP2015-089436 2015-04-24
JP2015089436 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016152845A1 true WO2016152845A1 (ja) 2016-09-29

Family

ID=56978227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058961 WO2016152845A1 (ja) 2015-03-26 2016-03-22 長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法

Country Status (6)

Country Link
US (1) US10737427B2 (ja)
EP (1) EP3275620B1 (ja)
JP (1) JP6575590B2 (ja)
KR (1) KR102338700B1 (ja)
CN (1) CN107428063B (ja)
WO (1) WO2016152845A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194881A (zh) * 2019-06-25 2019-09-03 江苏澳盛复合材料科技有限公司 一种高导热聚醚醚酮树脂及其成型品
EP3650501A4 (en) * 2017-07-03 2020-11-25 DIC Corporation INORGANIC FILLER, POLYARYLENE SULPHIDE RESIN COMPOSITION, MOLDED ARTICLE, AND THEIR PRODUCTION PROCESSES

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939389B (zh) * 2019-06-12 2024-01-30 三菱瓦斯化学株式会社 成型品的制造方法
KR102177348B1 (ko) * 2019-07-18 2020-11-11 순천향대학교 산학협력단 장섬유 복합재의 제조방법
JP2023519156A (ja) * 2020-03-26 2023-05-10 ディーエスエム アイピー アセッツ ビー.ブイ. 射出成形部品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281661A (ja) * 1990-03-30 1991-12-12 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂組成物
JPH04209657A (ja) * 1990-12-03 1992-07-31 Minoru Sangyo Kk 縦方向の剛性の優れた繊維強化ブロー成形体及びその製造方法
JPH0881630A (ja) * 1994-09-13 1996-03-26 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂組成物
JP2006124647A (ja) * 2004-09-30 2006-05-18 Toyoda Gosei Co Ltd 樹脂組成物並びに樹脂成形品及びその製造方法
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2009074043A (ja) * 2007-03-29 2009-04-09 Asahi Kasei Chemicals Corp 長繊維強化樹脂ペレット
WO2011148929A1 (ja) * 2010-05-26 2011-12-01 Dic株式会社 ブロー中空成形品用樹脂組成物、ブロー中空成形品および製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68925549T2 (de) * 1988-09-07 1996-06-20 Idemitsu Kosan Co Polyarylensulfid-Harzzusammensetzung
DE69026461T2 (de) 1989-10-26 1996-11-28 Idemitsu Petrochemical Co Polyarylensulfid-Mischungen
JPH0698673B2 (ja) 1990-02-13 1994-12-07 東レ株式会社 ブロー中空成形品
JP2002293939A (ja) 2001-03-30 2002-10-09 Petroleum Energy Center ポリアリーレンスルフィドの製造方法
JP2003171551A (ja) 2001-12-07 2003-06-20 Toray Ind Inc ポリアリーレンサルファイド樹脂組成物およびその用途
JP2007217679A (ja) 2006-01-20 2007-08-30 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物および成形品
JP2007197625A (ja) 2006-01-30 2007-08-09 Toray Ind Inc ポリアリーレンスルフィド樹脂の処理方法
KR20160079805A (ko) 2013-10-29 2016-07-06 도레이 카부시키가이샤 탄소 섬유 강화 폴리아릴렌술피드의 제조방법
JP6292457B2 (ja) 2013-12-18 2018-03-14 Dic株式会社 ブロー中空成形品用樹脂組成物、ブロー中空成形品および製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281661A (ja) * 1990-03-30 1991-12-12 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂組成物
JPH04209657A (ja) * 1990-12-03 1992-07-31 Minoru Sangyo Kk 縦方向の剛性の優れた繊維強化ブロー成形体及びその製造方法
JPH0881630A (ja) * 1994-09-13 1996-03-26 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂組成物
JP2006124647A (ja) * 2004-09-30 2006-05-18 Toyoda Gosei Co Ltd 樹脂組成物並びに樹脂成形品及びその製造方法
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2009074043A (ja) * 2007-03-29 2009-04-09 Asahi Kasei Chemicals Corp 長繊維強化樹脂ペレット
WO2011148929A1 (ja) * 2010-05-26 2011-12-01 Dic株式会社 ブロー中空成形品用樹脂組成物、ブロー中空成形品および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275620A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650501A4 (en) * 2017-07-03 2020-11-25 DIC Corporation INORGANIC FILLER, POLYARYLENE SULPHIDE RESIN COMPOSITION, MOLDED ARTICLE, AND THEIR PRODUCTION PROCESSES
US11390744B2 (en) 2017-07-03 2022-07-19 Dic Corporation Inorganic filler, polyarylene sulfide resin composition, molded article, and methods for producing same
CN110194881A (zh) * 2019-06-25 2019-09-03 江苏澳盛复合材料科技有限公司 一种高导热聚醚醚酮树脂及其成型品

Also Published As

Publication number Publication date
JPWO2016152845A1 (ja) 2018-03-22
US20180043602A1 (en) 2018-02-15
EP3275620B1 (en) 2019-11-13
CN107428063B (zh) 2019-12-03
US10737427B2 (en) 2020-08-11
EP3275620A4 (en) 2018-10-31
JP6575590B2 (ja) 2019-09-18
EP3275620A1 (en) 2018-01-31
KR102338700B1 (ko) 2021-12-14
KR20170126928A (ko) 2017-11-20
CN107428063A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6575590B2 (ja) 長繊維強化ポリアリーレンスルフィド樹脂成形品およびその製造方法
JP6292457B2 (ja) ブロー中空成形品用樹脂組成物、ブロー中空成形品および製造方法
US9718225B2 (en) Heat resistant toughened thermoplastic composition for injection molding
WO2012060392A1 (ja) ポリアミド樹脂組成物、ポリアミド樹脂発泡成形体および自動車用樹脂成形品
EP1433818A1 (en) Polyphenylene sulfide resin composition
CN104321383A (zh) 吹塑热塑性组合物
JP5263371B2 (ja) ポリアミド樹脂発泡成形体および自動車用樹脂成形品
US20130273289A1 (en) Automotive Fuel Lines Including A Polyarylene Sulfide
KR20180092824A (ko) 가교결합성 폴리아릴렌 설파이드 조성물
US20130269977A1 (en) Polyarylene Sulfide Composition Including a Functionalized Siloxane Polymer and a Non-Aromatic Impact Modifier
JP6601658B2 (ja) 長繊維強化ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7486056B2 (ja) 発泡成形用ポリアミド樹脂組成物および発泡成形体
JP5862944B2 (ja) 樹脂組成物、その製造方法、成形品およびその製造方法
JP6601657B2 (ja) 長繊維強化樹脂ペレット、長繊維強化樹脂成形品および製造方法
JP5263370B2 (ja) ポリアミド樹脂組成物およびポリアミド樹脂発泡成形体
JP5648426B2 (ja) ポリアミド樹脂組成物およびポリアミド樹脂発泡成形体
JP5970793B2 (ja) 樹脂組成物、その製造方法、成形品およびその製造方法
JP5131014B2 (ja) 樹脂組成物およびそれからなる成形品
JP2590250B2 (ja) プラスチック管状体
JP2006036824A (ja) 自動車用エンジン冷却系樹脂成形部品
TW202400922A (zh) 齒輪及機器人
KR100673777B1 (ko) 폴리페닐렌 설파이드 열가소성 수지조성물 및 그 성형품
JP2008081580A (ja) ポリフェニレンスルフィド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177025911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768748

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017508351

Country of ref document: JP

Kind code of ref document: A