WO2016152722A1 - 導電パターン形成用組成物及び導電パターン形成方法 - Google Patents
導電パターン形成用組成物及び導電パターン形成方法 Download PDFInfo
- Publication number
- WO2016152722A1 WO2016152722A1 PCT/JP2016/058509 JP2016058509W WO2016152722A1 WO 2016152722 A1 WO2016152722 A1 WO 2016152722A1 JP 2016058509 W JP2016058509 W JP 2016058509W WO 2016152722 A1 WO2016152722 A1 WO 2016152722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- conductive pattern
- carboxylic acid
- organic carboxylic
- composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
Definitions
- the present invention relates to an improvement in a conductive pattern forming composition and a conductive pattern forming method.
- a method of forming a wiring pattern by a lithography method using a combination of a copper foil and a photoresist is generally used, but this method has a long process number, drainage, The burden of waste liquid treatment is large, and environmental improvement is desired.
- a method of patterning a metal thin film produced by a heat deposition method or a sputtering method by a photolithography method is also known.
- the heating vapor deposition method and the sputtering method are indispensable for a vacuum environment, and the price is very expensive. When applied to a wiring pattern, it is difficult to reduce the manufacturing cost.
- Patent Document 1 discloses a step of discharging a conductive inorganic composition containing conductive inorganic metal particles on a substrate, and a conductive organic composition containing a conductive organometallic complex on the conductive inorganic composition.
- a method for producing a substrate is disclosed which includes a step of discharging the conductive inorganic composition and the conductive organic composition.
- Patent Document 5 also describes a system combining copper formate and copper particles, but formic acid is highly corrosive and has particular difficulties in use in processes such as photocalcination, and this system should be applied to silver salts.
- silver formate has a very low decomposition temperature, even if not as much as silver thunderate, and there is a risk of ignition such as an explosive mixture. .
- Patent Document 6 has an object of providing an electric conductor having a low thermal effect on an electric component or an electronic component having low heat resistance, an excellent electric conductivity, and a firm bonding force, and a method for forming the electric conductor.
- Metal nanowires are metal-bonded by a metal formed by reducing a metal salt in an organic layer made of an organic compound having a carboxyl group that covers at least a part of its surface, or a metal complex of the organic compound and the metal salt
- An electrical conductor is disclosed.
- this patent can reduce the resistance between the contact points of the nanowire, it is difficult to form a dense metal thin film.
- the method using light energy or microwave for heating may be able to heat only the ink part and is a very good method.
- metal particles themselves the conductivity of the obtained conductive pattern is satisfactory.
- copper oxide is used, there is a problem that the porosity of the obtained conductive pattern is large and copper oxide particles remain without being partially reduced.
- JP 2010-183082 A Special table 2008-522369 Pamphlet of WO2010 / 110969 Special table 2010-528428 JP 2014-182913 A JP 2011-210454 A
- a conductive pattern formed on a substrate has higher performance as the electrical conductivity is higher (volume resistivity is lower). Therefore, it is desirable to further improve the conductivity of the conductive pattern formed by the conventional technique.
- An object of the present invention is to provide a conductive pattern forming composition and a conductive pattern forming method capable of improving the conductivity of a conductive pattern.
- one embodiment of the present invention provides a conductive pattern forming composition
- the (B) metal material preferably includes (B1) metal particles, and may further include (B2) metal nanowires and / or metal nanotubes.
- the metal constituting is preferably silver, copper, nickel or cobalt.
- At least one metal compound selected from a metal salt of an organic carboxylic acid having 2 to 18 carbon atoms and an organometallic complex not containing an organic carboxylic acid as a ligand has 2 carbon atoms.
- Metal salts of -18 alkanoic acid metal salts, carboxylic acid metal salts having a carbonyl group at the ⁇ - or ⁇ -position, or neocarboxylic acid metal salts, 1,3-diketones or ⁇ -ketocarboxylic acid esters Is preferred.
- the resin (C) preferably contains at least one of poly-N-vinylpyrrolidone, poly-N-vinylacetamide, a phenoxy-type epoxy resin solid at room temperature, cellulose, polyethylene glycol, polypropylene glycol, and polyurethane. It is.
- the solvent (D) is ethylene glycol, propylene glycol, glycerin, acetic acid, succinic acid, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether monoacetate (ethyl carbitol acetate), diethylene glycol monobutyl ether monoacetate (butyl carbitol).
- Acetate) and at least one kind of ⁇ -butyrolactone are preferably included.
- Another embodiment of the present invention is a method for forming a conductive pattern, characterized in that the conductive pattern forming composition is prepared, and the conductive pattern forming composition is irradiated with light or microwaves. To do.
- a conductive pattern with improved conductivity can be obtained.
- the composition for forming a conductive pattern according to the present embodiment is at least one selected from (A) a metal salt of an organic carboxylic acid having 2 to 18 carbon atoms and an organometallic complex not containing the organic carboxylic acid as a ligand. (B) a metal material, (C) a resin, and (D) a solvent, and (A) a metal salt of an organic carboxylic acid having 2 to 18 carbon atoms and an organic carboxylic acid.
- the “mass in terms of metal atom” means the total mass of metal atoms of the compound.
- Examples of the metal constituting the (A) metal compound and (B) the metal material include silver, copper, nickel, and cobalt. Further, (A) the metal element constituting the metal compound and (B) the metal element constituting the metal material may be the same or different.
- Examples of the (A) metal compound include silver, copper, nickel or cobalt, an organic carboxylic acid metal salt having 2 to 18 carbon atoms and an organometallic complex that does not contain an organic carboxylic acid as a ligand.
- an organometallic complex that does not contain an organic carboxylic acid as a ligand is a different coordination from a coordination compound of a carboxylic acid such as a complex of an organic carboxylic acid metal salt having 2 to 18 carbon atoms.
- (A) metal compounds include, for example, silver acetate, silver oxalate, silver propionate, silver n-butyrate, silver isobutyrate, silver succinate, n-silver valerate, silver isovalerate, silver pivalate.
- a metal salt of a linear or branched alkanoic acid having 2 to 18 carbon atoms (C n H 2n + 1 COOH, n is an integer of 1 to 17), a carboxyl having a carbonyl group at the ⁇ or ⁇ position.
- Binding a carboxyl group in the neo acids alkanoic acids among metal salts of linear or branched alkanoic acids having a carbon number of 2 to 18 (an integer of C n H 2n + 1 COOH, n is 1 to 17)
- a carboxylic acid having a quaternary carbon atom is preferred because of its low melting point and high decomposability.
- the (B) metal material includes (B1) metal particles.
- the average particle size of the metal particles is preferably 5 nm to 5 ⁇ m, more preferably 10 nm to 3 ⁇ m.
- the particle size is particularly limited, and (B1) the average particle size of the metal particles is preferably 5 nm to 500 nm, more preferably 5 nm to 300 nm.
- the (A) metal compound is also preferably dissolved in the same average particle diameter as (B1) metal particles or (D) a solvent.
- the average particle diameter is a number-based D50 (median diameter) measured by a laser diffraction / scattering method when the particle diameter is 500 nm or more and by a dynamic scattering method when the particle diameter is less than 500 nm. Means particle size.
- the (B) metal material may further include (B2) metal nanowires and / or metal nanotubes.
- the metal nanowire and / or metal nanotube is a metal having a diameter of nanometer order size
- the metal nanowire is a wire shape
- the metal nanotube is a conductive material having a porous or non-porous tube shape.
- Material in the present specification, both “wire shape” and “tube shape” are linear, but the former is intended to have a hollow center, and the latter is intended to have a hollow center.
- the property may be flexible or rigid. Either a metal nanowire or a metal nanotube may be used, or a mixture of both may be used.
- the outer diameter of the metal nanowire and / or metal nanotube is too thin, the printability is not good, and if it is too thick, the resistance is difficult to decrease during sintering, so it is preferably 10 nm to 200 nm, more preferably 15 nm to 100 nm. preferable. If the length is too short, there is no effect of using nanowires, and if the length is too long, the printability deteriorates, so 2 ⁇ m to 30 ⁇ m is preferable, and 5 ⁇ m to 20 ⁇ m is more preferable.
- the shape is greatly limited, and it is better to knead with a three roll or the like so that the wire length is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
- metal nanoparticles and / or flat metal particles are spherical or prismatic metal particles having an average particle size of 1 ⁇ m or less. If the particle size is too small, it is necessary to use a large amount of a binder component for preventing aggregation. The resistance is less likely to decrease even when bonded, so that the thickness is preferably 5 nm to 800 nm, and more preferably 20 nm to 500 nm.
- the flat metal particles are flat (flat) metal particles.
- the shape of the flat metal particles was changed by observing 10 points by SEM at a magnification of 30,000 times, and the thickness and width of the flat metal particles were measured, and the thickness was obtained as the number average value. Is preferably 5 to 200 nm, more preferably 20 to 70 nm.
- the thickness of the flat metal particles exceeds 200 nm, the sintering temperature of the flat metal particles increases, and the volume resistance after sintering increases even if a metal salt is used.
- the thickness is less than 5 nm, the flat metal particles themselves tend to aggregate, and the thickness of such an ultrathin film cannot be maintained.
- the aspect ratio width / thickness of the flat metal particles
- the preferred aspect ratio is in the range of 5 to 200, more preferably in the range of 5 to 100. If the aspect ratio is less than 5, the conductivity is difficult to develop, and if it is greater than 200, it is difficult to print a fine pattern.
- the blending ratio of (A) the metal compound and (B) the metal material is such that (A) the mass of the metal compound in terms of metal atoms and (B) the total mass ratio of the metal material are (A) metal.
- Compound: (B) Metal material 80: 20 to 2:98. (A) If the proportion of the metal compound exceeds 80%, depending on the type of the (A) metal compound, the volatilization amount of components other than the metal during firing is excessive, and in the case of light firing, per volume during firing. There is a case where the heat generation of becomes smaller and sintering cannot be performed well.
- (A) metal compound: (B) metal material 60: 40 to 5:95.
- (B) metal particles and (B2) metal nanowires and / or metal nanotubes are used in combination as (B) metal material, (B2) metal relative to the total metal mass of metal nanowires and / or metal nanotubes
- the total metal mass ratio ((B1) / (B2)) of the particles is preferably 2 to 99.
- the preferred blending ratio of (A) metal compound and (B) metal material is (A) metal
- the more preferable ratio ((B1) / (B2)) of (B1) metal particles to (B2) metal nanowires and / or metal nanotubes is 3 to 80, and more preferably 4 to 50.
- Organic resins can also be used.
- Organic resins that can also be used as reducing agents include poly-N-vinyl compounds such as poly-N-vinylpyrrolidone, poly-N-vinylcaprolactam, poly-N-vinylacetamide, polyethylene glycol, polypropylene glycol, and polyTHF.
- polyalkylene glycol, polyurethane, cellulose and derivatives thereof, epoxy resin, polyester, chlorinated polyolefin, thermoplastic resin such as polyacrylic resin, and thermosetting resin can be used.
- poly-N-vinylpyrrolidone poly-N-vinylacetamide
- phenoxy-type epoxy resin that is solid at room temperature and cellulose are preferable when considering the binder effect
- polyethylene glycol, polypropylene glycol, and polyurethane are preferable when considering the reducing effect.
- Polyethylene glycol and polypropylene glycol fall into the category of polyhydric alcohols and have characteristics that are particularly suitable as reducing agents.
- the amount of (C) resin used (c) is the amount of (A) the amount of metal compound used (a) and the amount of (B) metal material used (b).
- the total amount is 100 to 50 parts by mass, preferably 0.5 to 50 parts by mass, more preferably 0.5 to 20 parts by mass, still more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
- a solvent is mix
- a solvent to be used a known organic solvent or water can be used although it varies depending on a desired printing method.
- the conductive pattern forming composition according to this embodiment includes a compound having a reducing action.
- the organic group itself has a reducing action.
- the above-mentioned (C) resin contains an organic resin, or (D) the solvent contains an organic solvent, these have a reducing action. Therefore, it is not necessary to add a so-called reducing agent such as a metal hydride or hypophosphorous acid, but this does not prevent the addition.
- organic solvents having a reducing action examples include monohydric alcohol compounds such as methanol, ethanol, isopropyl alcohol, butanol, cyclohexanol, and terpineol, polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin, acetic acid, succinic acid, and succinic acid.
- Carboxylic acids such as acetone, methyl ethyl ketone, benzaldehyde, carbonyl compounds such as octyl aldehyde, ether compounds such as diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1,4-cyclohexanedimethanol monomethyl ether, ethyl acetate, butyl acetate, acetic acid Phenyl, ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate, di Tylene glycol monoethyl ether monoacetate (ethyl carbitol acetate), diethylene glycol monobutyl ether monoacetate (butyl carbitol acetate), ester compounds such as 1,4-cyclohexanedimethanol monoacetate, lactone compounds such as ⁇ -butyrolactone, Hydrocarbon compounds such as hexane, octane, toluene
- diethylene glycol Ether compounds such as monoethyl ether, diethylene glycol monobutyl ether, 1,4-cyclohexanedimethanol monomethyl ether, diethylene glycol monoethyl ether monoacetate (ethyl carbitol acetate), diethylene glycol monobutyl ether monoacetate (butyl carbitol acetate), 1, An ester compound such as 4-cyclohexanedimethanol monoacetate and a lactone compound such as ⁇ -butyrolactone are preferred.
- an organic solvent other than those listed as the reducing agent can be used as the reducing agent.
- a known ink additive such as an antifoaming agent, a surface conditioner, or a thixotropic agent
- a known ink additive such as an antifoaming agent, a surface conditioner, or a thixotropic agent
- the conductive pattern forming composition is prepared, and the conductive pattern forming composition is irradiated with light or microwaves (A) a metal generated from the metal compound and (B)
- a feature is that a sintered body with a metal material is generated to form a conductive pattern.
- the metal material can be fused with the metal derived from (A) the metal compound in addition to the necking of the particles, and a stronger conductive (metal) pattern It can be.
- preparation means forming a composition layer of an arbitrary shape with the above composition for forming a conductive pattern on an appropriate substrate by, for example, screen printing, gravure printing, or using a printing apparatus such as an ink jet printer. Say. More specifically, it means forming a printed pattern with the conductive pattern forming composition or forming the conductive pattern forming composition layer on the entire surface of the substrate (forming a solid pattern).
- the conductive pattern means (A) a metal derived from a metal compound and (B) a metal material by forming the conductive pattern forming composition into a printed pattern and irradiating it with light or microwaves.
- a conductive metal thin film pattern (including a solid pattern) made of metal formed in a pattern (including a solid pattern) is used.
- pulsed light is light in a short time with a light irradiation period (irradiation time) of several microseconds to several tens of milliseconds.
- irradiation time a light irradiation period of several microseconds to several tens of milliseconds.
- FIG. 1 shows that the light intensity of the pulsed light is constant, the light intensity may change within one light irradiation period (on).
- the pulsed light is emitted from a light source including a flash lamp such as a xenon flash lamp.
- a light source including a flash lamp such as a xenon flash lamp.
- the layer of the conductive pattern forming composition is irradiated with pulsed light.
- the atmosphere irradiated with pulsed light can be carried out in an air atmosphere. It can also be carried out under an inert atmosphere if necessary.
- irradiation is repeated n times, one cycle (on + off) in FIG. 1 is repeated n times.
- an electromagnetic wave having a wavelength range of 1 pm to 1 m can be used, preferably an electromagnetic wave having a wavelength range of 10 nm to 1000 ⁇ m (from far ultraviolet to far infrared), more preferably 100 nm to 2000 nm.
- Electromagnetic waves in the wavelength range can be used. Examples of such electromagnetic waves include gamma rays, X-rays, ultraviolet rays, visible light, infrared rays and the like.
- the wavelength range is preferably the ultraviolet to infrared range, more preferably the wavelength range of 100 to 3000 nm, among the wavelengths described above.
- the irradiation interval (off) is preferably in the range of 20 microseconds to 30 seconds, more preferably 2000 microseconds to 5 seconds.
- the composition for forming a conductive pattern can be heated by microwave irradiation.
- the microwave used when the composition for forming a conductive pattern is heated by microwave is an electromagnetic wave having a wavelength range of 1 m to 1 mm (frequency is 300 MHz to 300 GHz).
- the microwave irradiation is performed in a state where the surface of the substrate on which the printed pattern or the solid pattern is formed with the conductive pattern forming composition is maintained substantially parallel to the direction of the electric lines of force (the direction of the electric field).
- substantially parallel refers to a state in which the surface of the substrate and the direction of the electric force lines of the microwave are parallel or maintain an angle of 30 degrees or less with respect to the direction of the electric force lines.
- the angle within 30 degrees refers to a state in which the normal line standing on the surface of the substrate and the direction of the lines of electric force form an angle of 60 degrees or more.
- the number of lines of electric force passing through the film (printing pattern or solid pattern) of the conductive pattern forming composition formed on the substrate is limited, and the occurrence of sparks can be suppressed.
- the substrate is not particularly limited, and for example, a plastic substrate, a glass substrate, a ceramic substrate, or the like can be employed.
- D50 of the flat silver particle N300 is a median diameter obtained by measuring the particle diameter by spherical approximation as measured by Nanotrack UPA-EX150 (dynamic light scattering method) manufactured by Nikkiso Co., Ltd.
- Formulation Example 2 0.509 g of silver acetate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.647 g of butyl carbitol acetate (diethylene glycol monobutyl ether acetate, manufactured by Daicel Corporation) in which 25% by mass of jER1256 (manufactured by Mitsubishi Chemical Corporation) was dissolved in a mortar And then mixed well with 3.141 g of Ag Nano Flake N300 @ BCA (produced by Toxen Industries, Inc., butyl carbitol acetate dispersion paste having an Ag content of 92.6% by mass) as silver particles. did.
- the D50 of 1030Y was determined in the same manner using Nanotrack UPA-EX150 (dynamic light scattering method) manufactured by Nikkiso Co., Ltd.
- Formulation Example 7 A solution obtained by dissolving 2.813 g of silver acetate acylate (manufactured by Aldrich) in 2.010 g of butyl carbitol acetate (manufactured by Daicel Corporation, diethylene glycol monobutyl ether acetate) was dissolved in 25% by mass of jER1256 (manufactured by Mitsubishi Chemical Corporation).
- Comparative formulation example 1 Butyl in which 2.016 g of silver acetate (manufactured by Wako Pure Chemical Industries, Ltd.), 2.066 g of butyl carbitol acetate (manufactured by Daicel Corporation) and 25% by mass of jER1256 (manufactured by Mitsubishi Chemical Corporation) are dissolved. Carbitol acetate (diethylene glycol monobutyl ether acetate, manufactured by Daicel Corporation) 0.274 g was mixed well in a mortar to obtain a dispersion paste.
- Comparative formulation example 2 As a silver particle, 2.164 g of Ag Nano Flaque N300 @ BCA (manufactured by Toxen Industries Co., Ltd., butyl carbitol acetate dispersion paste having an Ag content of 92.6% by mass) and 25% by mass of jER1256 (manufactured by Mitsubishi Chemical Corporation) are dissolved. 0.411 g of butyl carbitol acetate (diethylene glycol monobutyl ether acetate manufactured by Daicel Corporation) was mixed well to obtain a dispersion paste.
- Comparative formulation example 3 25 masses of jER1256 (manufactured by Mitsubishi Chemical Corporation) obtained by dissolving 0.503 g of copper (II) ethyl acetoacetate (manufactured by STREM CHEMICALS) in 0.512 g of butyl carbitol acetate (manufactured by Daicel Corporation, diethylene glycol monobutyl ether acetate) % Dissolved butyl carbitol acetate (diethylene glycol monobutyl ether acetate, manufactured by Daicel Co., Ltd.) (0.021 g) was used as a dispersion paste.
- Comparative formulation example 4 25 masses of jER1256 (manufactured by Mitsubishi Chemical Corporation) obtained by dispersing 2.003 g of 1030Y (manufactured by Mitsui Mining & Smelting Co., Ltd.) as copper particles in 0.106 g of butyl carbitol acetate (manufactured by Daicel diethylene glycol monobutyl ether acetate) % Dissolved butyl carbitol acetate (diethylene glycol monobutyl ether acetate, Daicel Co., Ltd.) 0.501 g was mixed well to obtain a dispersion paste.
- Table 1 summarizes the blending amounts in these pastes.
- ⁇ Applying paste> A bar coater was used to apply a solid (approximately 10 cm square) to a polyimide (PI) film (Kapton (registered trademark) 100N, manufactured by Toray DuPont Co., Ltd.). After coating, the solvent was dried at 100 ° C. for 60 minutes using a HISPEC horizontal type high-temperature apparatus HT-320N (manufactured by Enomoto Kasei Co., Ltd.).
- PI polyimide
- HT-320N manufactured by Enomoto Kasei Co., Ltd.
- the coating film itself was uneven and did not become a uniform film. It is considered that these dispersion pastes contain only a metal compound and the metal content in the ink could not be increased.
- the film thickness of the coating film was cut out to about 2 cm square by avoiding the peripheral part of the solid film with Mitutoyo straight micron micrometer OMV-25M (manufactured by Mitutoyo Corporation). Five locations were measured, the average value was determined, and the thickness was calculated by subtracting the film thickness of the polyimide (PI) film from that value.
- Pulses were applied to the dispersion paste patterns of the substrates of Examples 1 to 7 and Comparative Examples 1 and 2 in which the dispersion pastes of Formulation Examples 1 to 7 and Comparative Formulation Examples 2 and 4 were applied using a xenon irradiation device Pulse Forge 3300 manufactured by NovaCentrix. Light irradiation was performed. Table 2 shows the light baking conditions.
- Examples 1, 2, 6 and 7 using a silver compound (metal compound) and silver particles (metal particles) in combination have a resistance lower than that of Comparative Example 1 using only silver particles (metal particles).
- Examples 3 to 5 in which (metal compound) and copper particles (metal particles) are used in combination the resistance is lower than in Comparative Example 2 in which only copper particles (metal particles) are used.
- D50 of the flat silver particle N300 is a median diameter obtained by measuring the particle diameter by spherical approximation as measured by Nanotrack UPA-EX150 (dynamic light scattering method) manufactured by Nikkiso Co., Ltd.
- pastes of Formulation Examples 9 to 15 and Comparative Formulation Examples 5 to 8 were prepared with the formulations shown in Table 3.
- the metal particles 1030Y and 1005Y D50 were also determined in the same manner using the Nikkiso Co., Ltd. Nanotrack UUPA-EX150.
- the concentrations in the table were calculated on the assumption that all of ethanol or isopropanol used for the dispersion medium of the nanowire ink could be distilled off.
- the system using the metal compound has improved the results of the cross-cut peel test, and it can be seen that the metals are bonded more effectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
配合例1
Silver acetylacetonate(Aldrich社製)0.502gを、jER1256(三菱化学株式会社製 フェノキシタイプのエポキシ樹脂)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.528gに溶解させ、その後、銀粒子としてAg Nano Flake N300@BCA(トクセン工業株式会社製扁平銀粒子N300(厚さ:30nm、D50=470nm、Ag含有量92.6質量%のブチルカルビトールアセテート分散ペースト))2.535gとよく混合し、分散ペーストとした。扁平銀粒子N300のD50は参考値として日機装株式会社製ナノトラックUPA-EX150(動的光散乱法)により測定し、球近似により粒径を求めたメジアン径である。
酢酸銀(和光純薬工業株式会社製)0.509gを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.647gに乳鉢中でよく分散させ、その後、銀粒子としてAg Nano Flake N300@BCA(トクセン工業株式会社製、Ag含有量92.6質量%のブチルカルビトールアセテート分散ペースト)3.141gとよく混合し、分散ペーストとした。
エチルアセト酢酸銅(II)(STREM CHEMICALS社製)0.508gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.286gに溶解したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.201gに溶解させ、その後、銅粒子として1030Y(三井金属鉱業株式会社製、球状、D50=385nm)0.894gとよく混合し、分散ペーストとした。1030YのD50も日機装株式会社製ナノトラックUPA-EX150(動的光散乱法)を用いて同様に求めた。
2-エチルヘキサン酸銅(II)(STREM CHEMICALS社製)0.918gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.349gに溶解したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.364gに溶解させ、その後、銅粒子として1030Y(三井金属鉱業株式会社製)1.635gとよく混合し、分散ペーストとした。
オレイン酸銅(II)(和光純薬工業株式会社製)1.264gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.447gに溶解したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート)0.259gに溶解させ、その後、銅粒子として1030Y(三井金属鉱業株式会社製)1.145gとよく混合し、分散ペーストとした。
Silver acetylacetonate(Aldrich社製)0.221gを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.471gに溶解させ、その後、銀粒子としてAg Nano Flake N300@BCA(トクセン工業株式会社製、Ag含有量92.6質量%のブチルカルビトールアセテート分散ペースト)2.405gとよく混合し、分散ペーストとした。
Silver acetylacetonate(Aldrich社製)2.813gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)2.010gに溶解したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.586gに溶解させ、その後、銀粒子としてAg Nano Flake N300@BCA(トクセン工業株式会社製、Ag含有量92.6質量%のブチルカルビトールアセテート分散ペースト)1.567gとよく混合し、分散ペーストとした。
酢酸銀(和光純薬工業株式会社製)2.016gと、ブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)2.066gと、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.274gとを乳鉢中でよく混合し、分散ペーストとした。
銀粒子としてAg Nano Flake N300@BCA(トクセン工業株式会社製、Ag含有量92.6質量%のブチルカルビトールアセテート分散ペースト)2.164gを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.411gとをよく混合し、分散ペーストとした。
エチルアセト酢酸銅(II)(STREM CHEMICALS社製)0.503gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.512gに溶解したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.021gと混合し、ほぼ溶解したものを分散ペーストとした。
銅粒子として1030Y(三井金属鉱業株式会社製)2.503gをブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.106gに分散したものを、jER1256(三菱化学株式会社製)を25質量%溶解したブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート 株式会社ダイセル製)0.501gとよく混合し、分散ペーストとした。
バーコーターを用いて、ポリイミド(PI)フィルム(カプトン(登録商標)100N、東レ・デュポン株式会社製)にベタ状(略10cm角)に塗布した。塗布後、HISPEC横型高温器HT-320N(楠本化成株式会社製)を用いて100℃-60分で溶剤を乾燥した。
NovaCentrix社製のキセノン照射装置Pulse Forge3300を使用して配合例1~7及び比較配合例2,4の分散ペーストを塗布した実施例1~7及び比較例1、2の基板の分散ペーストパターンにパルス光照射を行った。光焼成条件を表2に示した。
三菱化学株式会社製LORESTA(登録商標)-GP MCP-T610 4探針法表面抵抗率、体積抵抗率測定装置を使用して、形成された薄膜導電パターンの焼成後の体積抵抗率を測定した。結果を表2に示す。
新しい刃を付けたカッターナイフを用いて実施例1~7及び比較例1,2の基板の塗膜(導電パターン)に1mm間隔で切込みを11本入れた後、90°向きを変えてさらに11本引いて100個の1mm角のマス目を形成した。カットした印刷面に付着するようにセロハン粘着テープをはりつけ、セロハン粘着テープ上を消しゴムでこすって塗膜にテープを付着させた。テープを付着させてから1~2分後にテープの端を持って印刷面に直角に保ち、瞬間的にひきはがして、旧JIS K5400に従って図2に示す基準で判定した。結果を表2に示す。
ポリビニルピロリドンK-90(株式会社日本触媒製)(0.049g)、AgNO3(0.052g)及びFeCl3(0.04mg)を、2-メチル-1,3-プロパンジオール(12.5ml)に溶解させ、150℃で1時間加熱反応させた。得られた析出物を遠心分離により単離し、析出物を乾燥して目的の銀ナノワイヤ120mgを得た。この銀ナノワイヤの任意の100個をSEM(日立ハイテク株式会社製 FE-SEM S-5200)で観察したところ平均径は90nm、平均長さは40μmであった。銀ナノワイヤをエタノール48gに分散させ、銀濃度0.25質量%の分散液を得た。
オクタデシルアミン0.648g(2.4mmol)、グルコース0.007g(0.04mmol)及び塩化銅0.054g(0.4mmol)を水30mlに溶解させて、オイルバス温度120℃、24時間で反応させた。遠心分離器により生成したナノワイヤを沈降させ、水、ヘキサン及びイソプロパノールで順次洗浄し、銅ナノワイヤを得た。得られた銅ナノワイヤの任意の100個をSEM(日立ハイテク株式会社製 FE-SEM S-5200)で観察したところ、平均径は40nm、平均長さは50μmであった。
配合例8
Silver acetylacetonato(Aldrich社製)1.05gを、jER(登録商標)1256(三菱化学株式会社製 フェノキシタイプのエポキシ樹脂)を25質量%溶解させたブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルモノアセテート 株式会社ダイセル製)0.598gに溶解させ、その後、銀粒子としてN300@BCA(トクセン工業株式会社製扁平銀粒子N300(厚さ:30nm、D50=470nm)を92.6質量%含むブチルカルビトールアセテート分散ペースト)2.535g、銀ナノワイヤを含む前記分散液48.12gとをよく混合し、エバポレーターによりエタノールを留去して、分散ペーストとした。扁平銀粒子N300のD50は参考値として日機装株式会社製ナノトラックUPA-EX150(動的光散乱法)により測定し、球近似により粒径を求めたメジアン径である。
Claims (8)
- 導電パターン形成用組成物であって、
(A)炭素原子数が2~18の有機カルボン酸の金属塩及び有機カルボン酸を配位子として含まない有機金属錯体から選択される少なくとも一種の金属化合物と、
(B)金属材料と、
(C)樹脂と、
(D)溶媒と、
を含み、
前記(A)炭素原子数が2~18の有機カルボン酸の金属塩及び有機カルボン酸を配位子として含まない有機金属錯体から選択される少なくとも一種の金属化合物の総量の金属原子換算の質量と前記(B)金属材料の総金属質量との質量割合が、(A)炭素原子数が2~18の有機カルボン酸の金属塩及び有機カルボン酸を配位子として含まない有機金属錯体から選択される少なくとも一種の金属化合物:(B)金属材料=80:20~2:98であることを特徴とする導電パターン形成用組成物。 - 前記(B)金属材料が、(B1)金属粒子を含む、請求項1に記載の導電パターン形成用組成物。
- 前記(B)金属材料が、さらに(B2)金属ナノワイヤ及び/又は金属ナノチューブを含む、請求項2に記載の導電パターン形成用組成物。
- 前記(A)炭素原子数が2~18の有機カルボン酸の金属塩及び有機カルボン酸を配位子として含まない有機金属錯体から選択される少なくとも一種の金属化合物、及び(B)金属材料を構成する金属が、銀、銅、ニッケル又はコバルトである、請求項1~3のいずれかに記載の導電パターン形成用組成物。
- 前記(A)炭素原子数が2~18の有機カルボン酸の金属塩及び有機カルボン酸を配位子として含まない有機金属錯体から選択される少なくとも一種の金属化合物が、炭素原子数が2~18のアルカン酸の金属塩、α又はβ位にカルボニル基を持つカルボン酸金属塩、又はネオカルボン酸金属塩、1,3-ジケトン又はβ-ケトカルボン酸エステルとの金属錯体である、請求項1~4のいずれかに記載の導電パターン形成用組成物。
- 前記(C)樹脂が、ポリ-N-ビニルピロリドン、ポリ-N-ビニルアセトアミド、常温で固形状のフェノキシタイプのエポキシ樹脂、セルロース、ポリエチレングリコール、ポリプロピレングリコール、ポリウレタンからなる少なくとも一種を含む請求項1~5のいずれかに記載の導電パターン形成用組成物。
- 前記(D)溶媒が、エチレングリコール、プロピレングリコール、グリセリン、酢酸、蓚酸、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルモノアセテート(エチルカルビトールアセテート)、ジエチレングリコールモノブチルエーテルモノアセテート(ブチルカルビトールアセテート)、γ-ブチロラクトンからなる少なくとも一種を含む請求項1~6のいずれかに記載の導電パターン形成用組成物。
- 請求項1から請求項7のいずれか一項に記載の導電パターン形成用組成物を準備し、
前記導電パターン形成用組成物に光照射又はマイクロ波照射を行う、
ことを特徴とする導電パターン形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017508293A JP6737773B2 (ja) | 2015-03-24 | 2016-03-17 | 導電パターン形成用組成物及び導電パターン形成方法 |
CN201680007402.1A CN107210083A (zh) | 2015-03-24 | 2016-03-17 | 导电图案形成用组合物和导电图案形成方法 |
KR1020177017504A KR102096826B1 (ko) | 2015-03-24 | 2016-03-17 | 도전 패턴 형성용 조성물 및 도전 패턴 형성 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060419 | 2015-03-24 | ||
JP2015-060419 | 2015-03-24 | ||
JP2015193261 | 2015-09-30 | ||
JP2015-193261 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152722A1 true WO2016152722A1 (ja) | 2016-09-29 |
Family
ID=56977363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058509 WO2016152722A1 (ja) | 2015-03-24 | 2016-03-17 | 導電パターン形成用組成物及び導電パターン形成方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6737773B2 (ja) |
KR (1) | KR102096826B1 (ja) |
CN (1) | CN107210083A (ja) |
TW (1) | TWI694469B (ja) |
WO (1) | WO2016152722A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163615A1 (ja) * | 2016-03-23 | 2017-09-28 | 昭和電工株式会社 | 導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタン |
WO2019225340A1 (ja) * | 2018-05-24 | 2019-11-28 | 学校法人芝浦工業大学 | 導体の製造方法、配線基板の製造方法及び導体形成用組成物 |
CN114846570A (zh) * | 2019-12-25 | 2022-08-02 | 京瓷株式会社 | 薄膜电容器用电介质薄膜、使用该电介质薄膜的薄膜电容器、连结型电容器、逆变器及电动车辆 |
WO2022161616A1 (de) * | 2021-01-29 | 2022-08-04 | Midnex Ag | Verfahren und vorrichtung zur aufbringung einer metallischen beschichtung auf eine oberfläche |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111867264B (zh) * | 2019-04-30 | 2021-10-22 | 云谷(固安)科技有限公司 | 导电线的制造方法、可拉伸显示器件以及可拉伸显示器件的制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229109A (ja) * | 2004-02-10 | 2005-08-25 | E I Du Pont De Nemours & Co | インクジェット印刷可能な厚膜インク組成物および方法 |
JP2008226727A (ja) * | 2007-03-14 | 2008-09-25 | Sumitomo Bakelite Co Ltd | 導電性ペースト |
JP2011210454A (ja) * | 2010-03-29 | 2011-10-20 | Shinshu Univ | 電気伝導体及びその形成方法 |
JP2012505966A (ja) * | 2008-10-17 | 2012-03-08 | エヌシーシー ナノ, エルエルシー | 低温基板上の薄膜を還元する方法 |
JP2013115004A (ja) * | 2011-11-30 | 2013-06-10 | Nippon Parkerizing Co Ltd | 水系銅ペースト材料及び導電層の形成方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101500929B1 (ko) | 2004-11-24 | 2015-03-11 | 엔씨씨 나노, 엘엘씨 | 나노 물질 합성물의 전기적, 도금적, 및 촉매적 이용 |
US8945686B2 (en) | 2007-05-24 | 2015-02-03 | Ncc | Method for reducing thin films on low temperature substrates |
US10231344B2 (en) | 2007-05-18 | 2019-03-12 | Applied Nanotech Holdings, Inc. | Metallic ink |
US9578752B2 (en) | 2009-02-05 | 2017-02-21 | Lg Chem, Ltd. | Method of forming conductive pattern and substrate having conductive pattern manufactured by the same method |
CN102044309A (zh) * | 2009-10-21 | 2011-05-04 | 财团法人工业技术研究院 | 通过光能或热能成形的导电材料、导电材料的制备方法以及导电组合物 |
JP2014182913A (ja) | 2013-03-19 | 2014-09-29 | Fujifilm Corp | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 |
-
2016
- 2016-03-17 WO PCT/JP2016/058509 patent/WO2016152722A1/ja active Application Filing
- 2016-03-17 CN CN201680007402.1A patent/CN107210083A/zh active Pending
- 2016-03-17 JP JP2017508293A patent/JP6737773B2/ja active Active
- 2016-03-17 KR KR1020177017504A patent/KR102096826B1/ko active IP Right Grant
- 2016-03-24 TW TW105109239A patent/TWI694469B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229109A (ja) * | 2004-02-10 | 2005-08-25 | E I Du Pont De Nemours & Co | インクジェット印刷可能な厚膜インク組成物および方法 |
JP2008226727A (ja) * | 2007-03-14 | 2008-09-25 | Sumitomo Bakelite Co Ltd | 導電性ペースト |
JP2012505966A (ja) * | 2008-10-17 | 2012-03-08 | エヌシーシー ナノ, エルエルシー | 低温基板上の薄膜を還元する方法 |
JP2011210454A (ja) * | 2010-03-29 | 2011-10-20 | Shinshu Univ | 電気伝導体及びその形成方法 |
JP2013115004A (ja) * | 2011-11-30 | 2013-06-10 | Nippon Parkerizing Co Ltd | 水系銅ペースト材料及び導電層の形成方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163615A1 (ja) * | 2016-03-23 | 2017-09-28 | 昭和電工株式会社 | 導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタン |
JPWO2017163615A1 (ja) * | 2016-03-23 | 2019-03-07 | 昭和電工株式会社 | 導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタン |
JP6994455B2 (ja) | 2016-03-23 | 2022-01-14 | 昭和電工株式会社 | 導電性組成物用バインダー樹脂、これを含む導電パターン形成用組成物及びポリウレタン |
WO2019225340A1 (ja) * | 2018-05-24 | 2019-11-28 | 学校法人芝浦工業大学 | 導体の製造方法、配線基板の製造方法及び導体形成用組成物 |
CN114846570A (zh) * | 2019-12-25 | 2022-08-02 | 京瓷株式会社 | 薄膜电容器用电介质薄膜、使用该电介质薄膜的薄膜电容器、连结型电容器、逆变器及电动车辆 |
WO2022161616A1 (de) * | 2021-01-29 | 2022-08-04 | Midnex Ag | Verfahren und vorrichtung zur aufbringung einer metallischen beschichtung auf eine oberfläche |
Also Published As
Publication number | Publication date |
---|---|
KR102096826B1 (ko) | 2020-04-03 |
KR20170088955A (ko) | 2017-08-02 |
TW201709218A (zh) | 2017-03-01 |
CN107210083A (zh) | 2017-09-26 |
JP6737773B2 (ja) | 2020-08-12 |
JPWO2016152722A1 (ja) | 2018-01-18 |
TWI694469B (zh) | 2020-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6295080B2 (ja) | 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 | |
JP6737773B2 (ja) | 導電パターン形成用組成物及び導電パターン形成方法 | |
JP5922929B2 (ja) | 低温基板上の薄膜を還元する方法 | |
JP5618309B2 (ja) | 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 | |
KR20060021310A (ko) | 동 미립자 소결체형의 미세 형상 도전체의 형성 방법, 그방법을 응용한 동미세 배선 및 동박막의 형성 방법 | |
JP6717289B2 (ja) | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び装置 | |
WO2006109410A1 (ja) | インク組成物及び金属質材料 | |
JP2019090110A (ja) | 導電性パターン領域付構造体及びその製造方法 | |
JP2016146291A (ja) | 導電膜の製造方法、それにより得られた導電体及び導電膜を用いて製造された装置 | |
WO2014156326A1 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 | |
JP5991830B2 (ja) | 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 | |
WO2016080544A1 (ja) | 金属表面の処理方法並びに当該方法により処理された銀被着銅及び複合金属体 | |
JP6838462B2 (ja) | 導体形成用組成物、導体及びその製造方法、積層体並びに装置 | |
JP2017101307A (ja) | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び電子部品 | |
JP6902321B2 (ja) | 銅膜の製造方法及びそれにより得られた導電体 | |
WO2016029398A1 (en) | Solar cells with copper electrodes | |
JP6627228B2 (ja) | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び装置 | |
KR101798277B1 (ko) | 판상형 산화구리 나노물질을 이용한 전도성 구리박막 패턴의 제조방법 | |
JP6574553B2 (ja) | 導電パターン形成用組成物および導電パターン形成方法 | |
JP2016160455A (ja) | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び装置 | |
JP2021015907A (ja) | 導体層を有する物品の製造方法 | |
JP2016146289A (ja) | 導電性組成物、それを用いた導電材料及び導電体 | |
JP2016039009A (ja) | 導電性積層体の製造方法及び導電性積層体 | |
JP2009176605A (ja) | 導電膜付基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768625 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177017504 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017508293 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16768625 Country of ref document: EP Kind code of ref document: A1 |