WO2019225340A1 - 導体の製造方法、配線基板の製造方法及び導体形成用組成物 - Google Patents

導体の製造方法、配線基板の製造方法及び導体形成用組成物 Download PDF

Info

Publication number
WO2019225340A1
WO2019225340A1 PCT/JP2019/018573 JP2019018573W WO2019225340A1 WO 2019225340 A1 WO2019225340 A1 WO 2019225340A1 JP 2019018573 W JP2019018573 W JP 2019018573W WO 2019225340 A1 WO2019225340 A1 WO 2019225340A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
nickel
nickel complex
manufacturing
composition
Prior art date
Application number
PCT/JP2019/018573
Other languages
English (en)
French (fr)
Inventor
大石 知司
吉田 育史
克郎 平山
Original Assignee
学校法人芝浦工業大学
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人芝浦工業大学, 株式会社村田製作所 filed Critical 学校法人芝浦工業大学
Priority to JP2020521150A priority Critical patent/JP7340179B2/ja
Publication of WO2019225340A1 publication Critical patent/WO2019225340A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to a method for producing a conductor, a method for producing a wiring board, and a composition for forming a conductor.
  • Patent Document 1 describes a method of forming a circuit using copper fine particles including a coating layer containing cuprous oxide and a coating layer containing a long-chain aliphatic amine.
  • Patent Document 1 In the method described in Patent Document 1, it is necessary to produce copper fine particles having a coating, and there is room for improvement from the viewpoint of cost reduction. Therefore, development of a technique capable of forming a conductor while suppressing metal oxidation by a simpler method is required.
  • an object of the present invention is to provide a conductor manufacturing method, a wiring board manufacturing method, and a conductor forming composition capable of forming a conductor while suppressing oxidation.
  • Means for solving the above problems include the following embodiments.
  • a method for producing a conductor ⁇ 2> The method for producing a conductor according to ⁇ 1>, further including a step of performing metal plating on the deposited nickel.
  • ⁇ 3> The method for producing a conductor according to ⁇ 1> or ⁇ 2>, wherein the light irradiation is performed using at least one selected from the group consisting of a CO 2 laser, an Er laser, a xenon lamp, and an excimer lamp.
  • ⁇ 4> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 3>, wherein the light irradiation is performed in a pattern.
  • ⁇ 5> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 4>, which is performed in the atmosphere.
  • ⁇ 6> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 5>, wherein the nickel complex includes an amine compound as a ligand.
  • ⁇ 7> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 6>, wherein the nickel complex contains an amino alcohol as a ligand.
  • ⁇ 8> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 7>, wherein the nickel complex forms a salt soluble in a counter anion and an organic solvent.
  • the solvent is an organic solvent.
  • a method for producing a wiring board comprising a substrate and a nickel wiring disposed on the substrate, wherein a composition comprising a nickel complex and a solvent capable of dissolving the nickel complex is applied to the substrate.
  • a method for manufacturing a wiring board comprising: a step of forming a composition layer; and a step of depositing nickel by irradiating the composition layer with light.
  • ⁇ 11> The method for manufacturing a wiring board according to ⁇ 10>, further including a step of performing metal plating on the deposited nickel.
  • ⁇ 12> The method for producing a wiring board according to ⁇ 10> or ⁇ 11>, wherein the light irradiation is performed using at least one selected from the group consisting of a CO 2 laser, an Er laser, a xenon lamp, and an excimer lamp. .
  • ⁇ 13> The method for manufacturing a wiring board according to any one of ⁇ 10> to ⁇ 12>, wherein the light irradiation is performed in a pattern.
  • ⁇ 14> The method for manufacturing a wiring board according to any one of ⁇ 10> to ⁇ 13>, which is performed in the air.
  • ⁇ 15> The method for producing a wiring board according to any one of ⁇ 10> to ⁇ 14>, wherein the nickel complex includes an amine compound as a ligand.
  • ⁇ 16> The method for producing a wiring board according to any one of ⁇ 10> to ⁇ 15>, wherein the nickel complex contains amino alcohol as a ligand.
  • ⁇ 17> The method for producing a wiring board according to any one of ⁇ 10> to ⁇ 16>, wherein the nickel complex forms a salt soluble in a counter anion and an organic solvent.
  • the solvent is an organic solvent.
  • a conductor forming composition comprising a nickel complex and a solvent capable of dissolving the nickel complex.
  • the nickel complex contains an amino alcohol as a ligand.
  • the solvent is an organic solvent.
  • a conductor manufacturing method a wiring board manufacturing method, and a conductor forming composition capable of forming a conductor while suppressing oxidation.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • the conductor manufacturing method of the present disclosure includes a step of forming a composition layer by applying a composition containing a nickel complex and a solvent capable of dissolving the nickel complex to a substrate, and irradiating the composition layer with light. And depositing nickel.
  • nickel is deposited by irradiating the composition layer formed on the substrate with light. Specifically, when light irradiation is performed, the irradiated portion is heated instantaneously, and the bond of the ligand of the nickel complex is cut by this heat, nickel ions are reduced, and nickel is deposited. At this time, since the ligand constituting the nickel complex is decomposed into CO 2 , H 2 O, N 2 and the like by heat and removed as a gas, a high-purity conductor is obtained.
  • the shape of the conductor is not particularly limited, and may be a film shape, a pattern shape, or other shapes.
  • the deposited nickel nanoparticles melt at a temperature lower than the melting point of nickel due to the so-called size effect, a conductor can be formed with low energy.
  • the composition layer outside the region irradiated with light can be easily removed using a solvent or the like that can dissolve the nickel complex, which is advantageous in terms of cost reduction.
  • a solvent capable of dissolving the nickel complex in the composition problems such as aggregation and oxidation do not occur as in the case of using metal particles, and the storage stability is excellent.
  • Nickel complex The nickel complex used in the above method is not particularly limited as long as it contains a ligand and a nickel atom, but from the viewpoint of stability, a nickel complex containing a ligand containing a nitrogen atom is preferable. Those containing an amine compound are more preferred. A nickel complex may be used individually by 1 type, or may use 2 or more types together.
  • the amine compound as a ligand constituting the nickel complex includes monoalkylamine compounds such as methylamine and ethylamine, dialkylamine compounds such as diethylamine, trialkylamine compounds such as triethylamine, alkylenediamine compounds such as ethylenediamine, and amino alcohols. Etc.
  • the nickel complex may be one in which two molecules of an alkylenediamine compound are coordinated to a nickel atom, or two molecules of ethylenediamine are coordinated to a nickel atom (bis (ethylenediamine) nickel (II)). It may be. This nickel complex is soluble in water or an alcohol solvent.
  • the nickel complex may include an amino alcohol as a ligand.
  • Nickel complexes containing amino alcohols as ligands are soluble in both water and organic solvents.
  • an organic solvent can be used as a solvent for the composition containing the nickel complex.
  • an organic solvent can be used as a solvent for the composition containing the nickel complex.
  • the number of amino alcohol molecules coordinated to a nickel atom is preferably 4-6. As the number of amino alcohol molecules coordinated to the nickel atom increases, the solubility in the solvent tends to increase.
  • An amino alcohol is a compound in which an amino group and a hydroxy group are bonded to an alkane skeleton, and the position of the amino group and the hydroxy group in the alkane skeleton is not particularly limited.
  • Specific examples of amino alcohols include 2-aminoethanol, 2-amino-1-propanol, 2-amino-2-methyl-1-propanol, methanolamine, dimethylethanolamine, N-methylethanolamine, and propanolamine. Can be mentioned.
  • the nickel complex may form a salt with the counter anion.
  • the nickel complex can be made soluble in an organic solvent.
  • the above-described nickel complex of ethylenediamine that is soluble in water or an alcohol solvent can be made soluble in a nonpolar organic solvent.
  • the counter anion capable of forming a salt with the nickel complex is preferably as large as possible from the viewpoint of increasing the solubility in an organic solvent.
  • the counter anion may be a compound having a hydrocarbon group in the molecule or a compound having a hydrocarbon group and a halogen atom.
  • the hydrocarbon group include an alkyl group and an aryl group.
  • the number of carbon atoms of the hydrocarbon group is not particularly limited.
  • the counter anion (the total when the salt is formed by two molecules) may be 20 or more, or 40 or more.
  • Specific examples of the counter anion having a hydrocarbon group and a halogen atom in the molecule include tetraphenylborate ions.
  • the salt containing the nickel complex and the counter anion may be a salt containing one molecule of the nickel complex and two molecules of the counter anion.
  • the content of the nickel complex in the composition is not particularly limited, but may be, for example, in the range of 5% to 90% by weight of the entire composition, and preferably in the range of 10% to 80% by weight. .
  • the solvent contained in the composition is not particularly limited as long as it can dissolve the nickel complex or a salt thereof.
  • the solvent may be water or an organic solvent.
  • the organic solvent include alcohol solvents such as methanol, ethanol and aminoethanol, ketone solvents such as cyclohexanone, amide solvents such as dimethylformamide, terpene solvents such as terpineol, and ester solvents. From the viewpoint of little influence on the substrate and affinity for the environment, a polar organic solvent is preferable, and an alcohol solvent is more preferable.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the boiling point of the solvent is not particularly limited, but the boiling point at atmospheric pressure may be less than 150 ° C, may be less than 130 ° C, or may be 100 ° C or less.
  • the composition may contain components other than the nickel complex and the solvent as necessary.
  • examples of such components include viscosity modifiers and colorants.
  • the substrate used in the above method is not particularly limited, and a general wiring substrate for an electronic component device can be used.
  • a semiconductor substrate, a glass substrate, a ceramic substrate, a resin substrate, a composite body thereof, or the like can be given.
  • substrate etc. which are used for the paper device using a cellulose nanofiber are mentioned.
  • the conductor since the conductor is formed by light irradiation, the conductor can be formed even on a substrate made of a material that is not suitable for heat treatment such as baking.
  • the method for forming the composition layer on the substrate is not particularly limited. For example, a spin coat method, a printing method, etc. are mentioned.
  • the composition layer may be formed uniformly on the substrate or may be formed in a pattern.
  • the composition layer at the time of irradiation with light may contain a solvent or may contain no solvent (the solvent is volatilized).
  • the light used for light irradiation in the above method is preferably selected from ultraviolet rays, visible rays, infrared rays and near infrared rays, and is not particularly limited as long as it causes decomposition of the nickel complex and precipitation of nickel.
  • the light source is preferably an infrared laser or a near infrared laser from the viewpoint of forming a good conductor in the atmosphere, and more preferably a CO 2 laser and an Er laser (more specifically, YAG and YVO 4 ). Also, a xenon lamp and an excimer lamp may be used. Light irradiation may be carried out uniformly or in a pattern on the composition layer.
  • the above method may include a step of removing the composition layer other than the portion where nickel is deposited by light irradiation.
  • the composition layer may be removed using a solvent capable of dissolving the nickel complex contained in the composition layer.
  • the nickel conductor obtained by the above method may be further subjected to treatment such as metal plating.
  • metal plating By performing metal plating, the thickness of the conductor can be increased.
  • the metal used for metal plating is not particularly limited, and examples thereof include copper, nickel, tin, gold, silver, and alloys thereof. Nickel may be used as a metal plating material.
  • the method for performing metal plating is not particularly limited, and may be electroless plating or electrolytic plating.
  • the plating method is not particularly limited.
  • examples of the composition of the electrolytic plating bath include a sulfuric acid-based plating bath and an organic acid-based plating bath.
  • the nickel conductor obtained by the above method may be used as a catalyst film (base) for depositing metal by metal plating, or may be used alone as a conductor.
  • the thickness of the film formed on the nickel conductor by metal plating is not particularly limited, and may be selected from a range of 1 ⁇ m to 100 ⁇ m, for example.
  • the thickness of the film formed by metal plating can be controlled by conditions for performing metal plating.
  • the above method is suitable for forming a patterned conductor because a conductor having excellent pattern width uniformity can be formed by light irradiation.
  • it is possible to form a finer pattern than the conventional method, and it is possible to provide an element (circuit) or wiring having higher performance.
  • a method of directly irradiating the composition layer with a laser in a pattern to form a nickel conductor in the irradiated region also forms a composition layer in a pattern
  • a method of forming a conductor on nickel by irradiating the entire surface with a laser may be used. These methods do not require an etching process for removing unnecessary conductors, and are not environmentally friendly because no etching waste liquid is generated.
  • Examples of the method for forming the composition layer in a pattern include a printing method generally used for wiring formation such as screen printing and offset printing, and microcontact printing capable of forming finer wiring.
  • a composition adhered to a stamper made of PDMS is transferred to a substrate to form a patterned composition layer, and light irradiation is performed.
  • the method of precipitating nickel is mentioned by this.
  • the conductor formed by the above method can be used for various purposes. For example, it can be suitably used as a method of forming an element or wiring of a wiring board used in electronic equipment. Moreover, since a conductor can be formed with low energy, it can be suitably used for forming a conductor on a substrate, which is difficult to form with a conventional method such as a resin film, a thin glass plate, or a paper device.
  • the interposer is a member disposed between the substrate and the semiconductor element, and includes a through electrode that electrically connects the substrate and the semiconductor element.
  • resin, silicon or the like is generally used as the material of the interposer. Glass interposers are advantageous in terms of thermal expansion coefficient, heat resistance, insulation, manufacturing cost, etc., compared to interposers made of resin, silicon, etc., but they are not strong enough to withstand the process of forming through electrodes. There is.
  • the through electrode can be formed without damaging the glass thin plate.
  • the through electrode is formed on the glass interposer by, for example, forming a through hole in a glass thin plate by laser processing, then applying a conductor forming composition inside the through hole, and depositing nickel by light irradiation. be able to.
  • an external electrode or an internal electrode of a chip component can be mentioned.
  • a ceramic laminate in which an internal electrode is formed is prepared, a composition for forming a conductor is applied to a portion of the ceramic laminate where the external electrode is to be formed, and nickel is deposited by light irradiation. Then, it can form by implementing metal plating.
  • the internal electrode of the chip component is formed, for example, by applying a conductive composition to the portion of the ceramic green sheet where the internal electrode is to be formed, depositing nickel by light irradiation, and then performing metal plating. Can do.
  • a chip component can be manufactured by laminating and firing ceramic green sheets on which internal electrodes are formed, and then forming external electrodes.
  • a method for manufacturing a wiring board according to the present disclosure is a method for manufacturing a wiring board including a substrate and a nickel wiring disposed on the substrate, the composition including a nickel complex and a solvent capable of dissolving the nickel complex.
  • the conductor forming composition of the present disclosure includes a nickel complex and a solvent capable of dissolving the nickel complex.
  • a nickel conductor can be formed while suppressing oxidation of nickel.
  • the details and preferred embodiments of the composition are the same as the details and preferred embodiments of the composition used in the above-described conductor production method.
  • Nickel (II) formate dihydrate (0.827 g, 445 mmol) was added to 2.40 g of 2-amino-1-methyl-1-propanol (AMP) and 4.50 g of methanol. The mixture was added to the mixture and stirred for 24 hours to obtain a blue nickel complex solution. The resulting solution was designated as Composition 3.
  • composition layer was formed on the alumina substrate by spin coating (2000 rpm, 30 seconds).
  • the composition layer was irradiated with a CO 2 laser in a pattern (focal length: 155 mm, output: 3.2 W, scan speed: 20 mm / second, pattern width: 200 ⁇ m) to deposit nickel.
  • the portion of the composition layer where nickel was not deposited was removed by etching with acetone. The above process was implemented in air
  • Electroless Plating (copper and nickel) was performed on the alumina substrate on which nickel was deposited in a pattern using composition 2 in (1-5) above. As a result, it was confirmed that copper or nickel was deposited on nickel as the plating time passed, and that the film thickness increased while maintaining the line width of the pattern constant. When the film thickness of the conductor 30 minutes after the start of electroless plating was measured with a laser microscope, it was 1.83 ⁇ m (copper) and 5.81 ⁇ m (nickel).
  • the electrolytic copper plating bath contains 10 g / L to 100 g / L copper pyrophosphate, 80 g / L to 300 g / L potassium pyrophosphate, 0 ml / L to 10 ml / L 28% aqueous ammonia, and has a pH of 7. What was 5-10.0 was used.
  • the bath temperature was 15 ° C. to 60 ° C., and the current density was 0.05 A / dm 2 to 2.00 A / dm 2 .
  • the electrolytic nickel plating bath contains 250 g / L to 450 g / L nickel sulfate, 35 g / L to 55 g / L boric acid, 30 g / L to 60 g / L nickel chloride, and has a pH of 3.5 to 5. What was 0 was used.
  • the bath temperature was 40 to 75 ° C., and the current density was 0.05 A / dm 2 to 2.00 A / dm 2 .

Abstract

ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む導体の製造方法。

Description

導体の製造方法、配線基板の製造方法及び導体形成用組成物
 本発明は、導体の製造方法、配線基板の製造方法及び導体形成用組成物に関する。
 近年、各種電子デバイス、電気機器類などの素子及び配線を印刷法により形成する、プリンタブルエレクトロニクスと呼ばれる技術が注目されている。真空蒸着法、スパッタリング法、CVD法等による従来の方法は大掛かりな設備を必要とし、これが製品の高コスト化の大きな要因となっている。また、これらの方法では一般に配線となる部分を残し、その他の部分をエッチング等により除去する工程を伴うため、材料利用の非効率、廃棄物の処分などの問題点が存在する。これに対してプリンタブルエレクトロニクスでは、配線材料を含む塗布液を基板に印刷し、これを熱処理して配線を形成する。このため、高価な装置を必要としない、配線形成に伴う廃棄物が生じないなどの利点を有する。
 一方、配線材料としては金、銀等の貴金属に代わってより低価格でマイグレーションの発生もない銅、ニッケル等の金属の使用が検討されている。しかしながら、これらの金属は酸化され易い性質を有しているため、配線形成を不活性ガス雰囲気下で行う等の酸化防止のための対策が必要であり、これが低コスト化を妨げる要因の一つとなっている。
 金属の酸化を抑制する方法としては、金属粒子の表面を有機物又は無機物で被覆する方法が種々検討されている。例えば、特許文献1には亜酸化銅を含む被覆層と、長鎖脂肪族アミンを含む被覆層とを備える銅微粒子を用いて回路を形成する方法が記載されている。
特開2014-1443号公報
 特許文献1に記載されている方法では、被覆を有する銅微粒子を作製する必要があり低コスト化の観点から改善の余地がある。そこで、より簡便な手法で金属の酸化を抑制しながら導体を形成しうる技術の開発が求められている。
 本発明は上記事情に鑑み、酸化を抑制しながら導体を形成可能な導体の製造方法、配線基板の製造方法及び導体形成用組成物を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む導体の製造方法。
<2>前記析出したニッケルの上に金属めっきを施す工程をさらに含む、<1>に記載の導体の製造方法。
<3>前記光照射がCOレーザ、Erレーザ、キセノンランプ及びエキシマランプからなる群より選択される少なくとも1種を用いて行われる、<1>又は<2>に記載の導体の製造方法。
<4>前記光照射がパターン状に行われる、<1>~<3>のいずれか1項に記載の導体の製造方法。
<5>大気中で行われる、<1>~<4>のいずれか1項に記載の導体の製造方法。
<6>前記ニッケル錯体が配位子としてアミン化合物を含む、<1>~<5>のいずれか1項に記載の導体の製造方法。
<7>前記ニッケル錯体が配位子としてアミノアルコールを含む、<1>~<6>のいずれか1項に記載の導体の製造方法。
<8>前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、<1>~<7>のいずれか1項に記載の導体の製造方法。
<9>前記溶媒が有機溶媒である、<1>~<8>のいずれか1項に記載の導体の製造方法。
<10>基板と、前記基板上に配置されるニッケル配線とを備える配線基板の製造方法であり、ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を前記基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む配線基板の製造方法。
<11>前記析出したニッケルの上に金属めっきを施す工程をさらに含む、<10>に記載の配線基板の製造方法。
<12>前記光照射がCOレーザ、Erレーザ、キセノンランプ及びエキシマランプからなる群より選択される少なくとも1種を用いて行われる、<10>又は<11>に記載の配線基板の製造方法。
<13>前記光照射がパターン状に行われる、<10>~<12>のいずれか1項に記載の配線基板の製造方法。
<14>大気中で行われる、<10>~<13>のいずれか1項に記載の配線基板の製造方法。
<15>前記ニッケル錯体が配位子としてアミン化合物を含む、<10>~<14>のいずれか1項に記載の配線基板の製造方法。
<16>前記ニッケル錯体が配位子としてアミノアルコールを含む、<10>~<15>のいずれか1項に記載の配線基板の製造方法。
<17>前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、<10>~<16>のいずれか1項に記載の配線基板の製造方法。
<18>前記溶媒が有機溶媒である、<10>~<17>のいずれか1項に記載の配線基板の製造方法。
<19>ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む導体形成用組成物。
<20>前記ニッケル錯体が配位子としてアミン化合物を含む、<19>に記載の導体形成用組成物。
<21>前記ニッケル錯体が配位子としてアミノアルコールを含む、<19>又は<20>に記載の導体形成用組成物。
<22>前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、<19>~<21>のいずれか1項に記載の導体形成用組成物。
<23>前記溶媒が有機溶媒である、<19>~<22>のいずれか1項に記載の導体形成用組成物。
 本発明によれば、酸化を抑制しながら導体を形成可能な導体の製造方法、配線基板の製造方法及び導体形成用組成物が提供される。
析出したニッケルの上に無電解銅めっきを実施したときの状態を示す写真(左:デジタルマイクロスコープで撮影、右:レーザ顕微鏡で撮影)である。 析出したニッケルの上に無電解ニッケルめっきを実施したときの状態を示す写真(左:デジタルマイクロスコープで撮影、右:レーザ顕微鏡で撮影)である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
<導体の製造方法>
 本開示の導体の製造方法は、ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む。
 上記方法では、基板上に形成された組成物層に光照射を行うことでニッケルが析出する。具体的には、光照射を行うと照射部が瞬間的に熱せられ、この熱によってニッケル錯体の配位子の結合が切断され、ニッケルイオンが還元されてニッケルが析出する。このとき、ニッケル錯体を構成していた配位子は熱によりCO、HO、N等に分解され、気体となって除去されるため、高純度な導体が得られる。導体の形状は特に制限されず、膜状であってもパターン状であってもその他の形状であってもよい。
 上記方法では、析出により生じたニッケルのナノ粒子同士が溶融して成長し、光照射領域に導体が形成されると考えられる。また、この反応が極めて短時間のうちに進行するために、酸素と反応する前にニッケルが析出して導体が形成されると考えられる。このため、一連の工程を大気中で実施することが可能となる。
 さらに、析出したニッケルのナノ粒子は、いわゆるサイズ効果によりニッケルの融点よりも低い温度で溶融するため、低エネルギーで導体を形成することができる。また、光照射された領域外の組成物層は、ニッケル錯体を溶解しうる溶剤等を用いて容易に除去することができるため、低コスト化の点でも有利である。また、ニッケル錯体を溶解しうる溶媒を組成物に用いることで、金属粒子を用いる場合のように凝集、酸化等の問題が生じず保存安定性に優れている。
(ニッケル錯体)
 上記方法で使用するニッケル錯体は、配位子とニッケル原子とを含むものであれば特に制限されないが、安定性の観点からは窒素原子を含有する配位子を含むものが好ましく、配位子としてアミン化合物を含むものがより好ましい。ニッケル錯体は1種を単独で用いても2種以上を併用してもよい。
 ニッケル錯体を構成する配位子としてのアミン化合物としては、メチルアミン、エチルアミン等のモノアルキルアミン化合物、ジエチルアミン等のジアルキルアミン化合物、トリエチルアミン等のトリアルキルアミン化合物、エチレンジアミン等のアルキレンジアミン化合物、アミノアルコールなどが挙げられる。
 ある実施態様では、ニッケル錯体はアルキレンジアミン化合物の2分子がニッケル原子に配位したものであってもよく、エチレンジアミンの2分子がニッケル原子に配位したもの(ビス(エチレンジアミン)ニッケル(II))であってもよい。なお、このニッケル錯体は水又はアルコール溶媒に可溶である。
 ある実施態様では、ニッケル錯体は配位子としてアミノアルコールを含むものであってもよい。配位子としてアミノアルコールを含むニッケル錯体は、水と有機溶媒の両方に可溶である。
 ニッケル錯体を有機溶媒に可溶にすることで、ニッケル錯体を含む組成物の溶媒として有機溶媒を用いることが可能になる。その結果、水系溶媒を用いると表面張力によって均一な組成物層の形成が困難な基板の上にもニッケルの導体を形成することができる。このため、撥水性の基板上に導体を形成する場合に好適である。
 溶媒に対する溶解性の観点からは、ニッケル原子に配位するアミノアルコールの分子の数は4~6であることが好ましい。ニッケル原子に配位するアミノアルコールの分子の数が大きいほど溶媒に対する溶解性が上昇する傾向にある。
 アミノアルコールは、アルカン骨格にアミノ基とヒドロキシ基が結合した化合物であり、アルカン骨格中のアミノ基とヒドロキシ基の位置は特に制限されない。アミノアルコールとして具体的には、2-アミノエタノール、2-アミノ-1-プロパノール、2-アミノ-2-メチル-1-プロパノール、メタノールアミン、ジメチルエタノールアミン、N-メチルエタノールアミン、プロパノールアミン等が挙げられる。
 ある実施態様では、ニッケル錯体はカウンターアニオンと塩を形成していてもよい。ニッケル錯体と塩を形成するカウンターアニオンの種類を選択することで、ニッケル錯体を有機溶媒に可溶にすることができる。例えば、上述した水又はアルコール溶媒に可溶であるエチレンジアミンのニッケル錯体を、非極性の有機溶媒に可溶にすることができる。
 ニッケル錯体と塩を形成しうるカウンターアニオンは、有機溶媒への溶解性を高める観点からは分子量が大きいものほど好ましい。
 ある実施態様では、カウンターアニオンは分子中に炭化水素基を有する化合物であってもよく、炭化水素基とハロゲン原子とを有する化合物であってもよい。炭化水素基としてはアルキル基、アリール基等が挙げられる。炭化水素基の炭素数は特に制限されないが、たとえば、カウンターアニオン(2分子で塩を形成する場合はその合計)の炭素数が20以上であってもよく、40以上であってもよい。分子中に炭化水素基とハロゲン原子とを有するカウンターアニオンとして具体的には、テトラフェニルホウ酸イオンが挙げられる。
 ある実施態様では、ニッケル錯体とカウンターアニオンを含む塩は、ニッケル錯体1分子と、カウンターアニオン2分子とを含む塩であってもよい。
 組成物中のニッケル錯体の含有率は特に制限されないが、例えば組成物全体の5質量%~90質量%の範囲内であってよく、10質量%~80質量%の範囲内であることが好ましい。
(溶媒)
 組成物に含まれる溶媒は、ニッケル錯体又はその塩を溶解しうるものであれば、特に制限されない。溶媒は、水であっても有機溶媒であってもよい。有機溶媒としては、メタノール、エタノール、アミノエタノール等のアルコール系溶剤、シクロヘキサノン等のケトン系溶剤、ジメチルホルムアミド等のアミド系溶剤、テルピネオール等のテルペン系溶剤、エステル系溶剤などが挙げられる。基板に対する影響の少なさ、環境への親和性等の観点からは、極性有機溶媒が好ましく、アルコール系溶剤がより好ましい。溶媒は1種を単独で用いても2種以上を併用してもよい。
 溶媒の沸点は特に制限されないが、大気圧における沸点が150℃未満であってもよく、130℃未満であってもよく、100℃以下であってもよい。
 組成物は、ニッケル錯体と溶媒以外の成分を必要に応じて含んでもよい。このような成分としては、粘度調整剤、着色剤等が挙げられる。
 上記方法で使用する基板は特に制限されず、電子部品装置の配線基板として一般的なものを使用できる。例えば、半導体基板、ガラス基板、セラミック基板、樹脂基板、これらの複合体等が挙げられる。さらには、セルロースナノファイバを利用したペーパーデバイスに用いる基板等が挙げられる。上記方法では導体の形成が光照射により行われるため、焼成等の熱処理に適しない材料からなる基板であっても導体を形成することができる。
 基板上に組成物層を形成する方法は、特に制限されない。例えば、スピンコート法、印刷法等が挙げられる。組成物層は基板上に一様に形成しても、パターン状に形成してもよい。光照射される際の組成物層は、溶媒を含んでいても、溶媒を含んでいない(溶媒が揮発している)状態であってもよい。
 上記方法で光照射に使用する光は、紫外線、可視光線、赤外線及び近赤外線から選択されることが好ましく、ニッケル錯体の分解とニッケルの析出を生じさせるものであれば特に制限されない。光源は、大気中で良好な導体を形成する観点からは赤外線レーザ及び近赤外線レーザが好ましく、COレーザ及びErレーザ(より具体的には、YAG及びYVO)がより好ましい。また、キセノンランプ及びエキシマランプを用いてもよい。光照射は組成物層に対して一様に実施しても、パターン状に実施してもよい。
 上記方法は、光照射によりニッケルが析出した部分以外の組成物層を除去する工程を含んでもよい。例えば、組成物層に含まれるニッケル錯体を溶解しうる溶剤を用いて組成物層を除去してもよい。
 上記方法で得られるニッケルの導体は、さらに金属めっき等の処理を施してもよい。金属めっきを施すことで、導体の厚みを増すことができる。金属めっきに用いる金属は特に制限されず、銅、ニッケル、スズ、金、銀、これらの合金等が挙げられる。また、ニッケルを金属めっきの材料として用いてもよい。金属めっきを行う方法は特に制限されず、無電解めっきでも電解めっきでもよい。めっきの方法は、特に制限されるものではない。例えば、電解めっき浴の組成としては硫酸系めっき浴、有機酸系めっき浴等が挙げられる。
 上記方法で得られるニッケルの導体は、金属めっきで金属を析出させるための触媒膜(下地)として用いるものであっても、ニッケル単独で導体として用いるものであってもよい。
 金属めっきによりニッケルの導体の上に形成される膜の厚みは特に制限されず、例えば、1μm~100μmの範囲から選択してもよい。金属めっきにより形成される膜の厚みは、金属めっきを実施する条件により制御できる。
 上記方法では光照射によりパターン幅の均一性に優れる導体を形成することができるため、パターン状の導体を形成するのに適している。上記方法では、従来の手法より細かなパターンを形成することが可能となり、より高い性能を備える素子(回路)や配線を提供することが可能となる。
 パターン状の導体を形成する方法としては、組成物層にレーザをパターン状に直接照射して照射領域にニッケルの導体を形成する方法(ダイレクトパターニング)でも、パターン状に組成物層を形成し、次いで全面にレーザを照射してニッケルに導体を形成する方法でもよい。これらの方法では不要な導体を除去するためのエッチングのプロセスを必要とせず、エッチング廃液などが生じないため環境にも優しい。パターン状に組成物層を形成する方法としては、スクリーン印刷、オフセット印刷などの配線形成に一般に使用される印刷法のほか、さらに微細な配線を形成可能なマイクロコンタクトプリンティングが挙げられる。
 マイクロコンタクトプリンティングによりパターン状の導体を形成する方法としては、例えば、PDMS(ポリジメチルシロキサン)からなるスタンパーに付着させた組成物を基板に転写してパターン状の組成物層を形成し、光照射によりニッケルを析出させる方法が挙げられる。
 上記方法により形成される導体は、種々の用途に用いることができる。例えば、電子機器類に用いられる配線基板の素子又は配線を形成する方法として好適に用いることができる。また、低エネルギーで導体を形成できるため、樹脂フィルム、ガラス薄板、ペーパーデバイス等の従来の方法では導体の形成が困難であった基板への導体形成にも好適に用いることができる。
 上記方法の応用例のひとつとして、ガラスからなるインターポーザ(ガラスインターポーザ)への貫通電極の形成が挙げられる。インターポーザは基板と半導体素子との間に配置される部材であり、基板と半導体素子を電気的に接続する貫通電極を備える。インターポーザの材質としては樹脂、シリコン等が一般に用いられる。ガラスインターポーザは樹脂、シリコン等からなるインターポーザに比べて熱膨張係数、耐熱性、絶縁性、製造コスト等の面で有利である一方、貫通電極の形成工程に耐えうるほどに強度が十分でないという問題がある。
 上記方法によれば、ガラス薄板を損なうことなく貫通電極を形成することができる。ガラスインターポーザへの貫通電極の形成は、例えば、ガラス薄板にレーザ加工により貫通孔を形成し、次いで貫通孔の内部に導体形成用の組成物を付与し、光照射によりニッケルを析出させることで行うことができる。
 さらに、上記方法の応用例のひとつとして、チップ部品の外部電極又は内部電極の形成が挙げられる。
 チップ部品の外部電極は、例えば、内部電極が形成されたセラミック積層体を準備し、セラミック積層体の外部電極を形成すべき部分に導体形成用組成物を付与し、光照射によりニッケルを析出させた後、金属めっきを実施することにより形成することができる。
 チップ部品の内部電極は、例えば、セラミックグリーンシートの内部電極を形成すべき部分に導体形成用組成物を付与し、光照射によりニッケルを析出させた後、金属めっきを実施することにより形成することができる。なお、内部電極の形成されたセラミックグリーンシートを積層し、焼成した後に外部電極を形成することによりチップ部品を作製することができる。
<配線基板の製造方法>
 本開示の配線基板の製造方法は、基板と、前記基板上に配置されるニッケル配線とを備える配線基板の製造方法であって、ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む。
 上記方法で使用される材料、組成物層の形成方法、光照射条件その他の項目の詳細及び好ましい態様は、上述した導体の製造方法におけるものと同様である。
<導体形成用組成物>
 本開示の導体形成用組成物は、ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む。
 上記組成物を用いることで、ニッケルの酸化を抑えながらニッケルの導体を形成することができる。上記組成物の詳細及び好ましい態様は、上述した導体の製造方法に用いる組成物の詳細及び好ましい態様と同様である。
 以下、上述した導体の製造方法について実施例を参照してより詳細に説明するが、本開示はこれらの実施例に制限されるものではない。
(1-1)組成物1の調製
 ギ酸ニッケル(II)二水和物0.368g(2mmol)をエタノール3.76gに加えた。次いで、エチレンジアミン(EDA)0.24g(6mmol)を撹拌しながら加え、さらに30分間撹拌して、紫色のニッケル錯体溶液を得た。得られた溶液を組成物1とした。
(1-2)組成物2の調製
 上記(1-1)にて得たニッケル錯体の溶液に、カウンターアニオンの前駆体としてテトラフェニルホウ酸ナトリウム(TPB)0.773g(2.26mmol)を10.0gの水に溶解させたものを加えると、直後に白色の沈殿が生じた。この沈殿を自然ろ過にて回収し、その後デシケーターにて乾燥させることで、ニッケル錯体とテトラフェニルホウ酸イオンの塩を得た。得られたニッケル錯体とテトラフェニルホウ酸イオンの塩0.04gと、1-プロパノール0.5g及び2-アミノエタノール0.5gを混合し、30分常温(25℃)で撹拌して、ニッケル錯体とテトラフェニルホウ酸イオンの塩の溶液(淡黄色)を得た。得られた溶液を組成物2とした。
(1-3)組成物3の調製
 ギ酸ニッケル(II)二水和物0.827g(445mmol)を、2-アミノ-1-メチル-1-プロパノール(AMP)2.40gとメタノール4.50gの混合液に加え、24時間撹拌して、青色のニッケル錯体溶液を得た。得られた溶液を組成物3とした。
(1-4)アルミナ基板への導体形成
 調製した組成物1~3を用いて、スピンコート法(2000rpm、30秒)により、アルミナ基板上に組成物層を形成した。次いで、組成物層にCOレーザをパターン状に照射(焦点距離:155mm、出力:3.2W、スキャンスピード:20mm/秒、パターン幅:200μm)して、ニッケルを析出させた。光照射後、ニッケルが析出しなかった部分の組成物層をアセトンでエッチングすることで取り除いた。以上の工程は、大気中で実施した。
(1-5)X線回折測定
 上記(1-4)において光照射した領域のX線回折(XRD)測定を行ったところ、ニッケルに由来するピークが明瞭に観察された一方、酸化ニッケルに由来するピークは観察されなかった。この結果から、析出物が高純度のニッケルであることが確認できた。
(1-6)無電解めっき
 上記(1-5)において、組成物2を用いてニッケルをパターン状に析出させたアルミナ基板に対し、無電解めっき(銅及びニッケル)を実施した。その結果、めっき時間の経過とともにニッケルの上に銅又はニッケルが析出して、パターンの線幅を一定に維持しながら膜厚が増していく様子が確認できた。
 無電解めっきの開始から30分後の導体の膜厚をレーザ顕微鏡により測定したところ、1.83μm(銅)、5.81μm(ニッケル)であった。
(1-7)電解めっき
 上記(1-5)において、組成物2を用いてニッケルをパターン状に析出させたアルミナ基板に対し、電解めっき(銅及びニッケル)を実施したところ、ニッケルの上に銅又はニッケルが析出して膜厚が増していく様子が確認できた。
 電解めっきの開始から10分後の導体の膜厚をレーザ顕微鏡により測定したところ、1.5μm(銅)、1.8μm(ニッケル)であった。
 電解銅めっき浴としては、10g/L~100g/Lのピロリン酸銅、80g/L~300g/Lのピロリン酸カリウム、0ml/L~10ml/Lの28%アンモニア水を含み、pHが7.5~10.0であるものを用いた。浴温は15℃~60℃とし、電流密度は0.05A/dm~2.00A/dmとした。
 電解ニッケルめっき浴としては、250g/L~450g/Lの硫酸ニッケル、35g/L~55g/Lのホウ酸、30g/L~60g/Lの塩化ニッケルを含み、pHが3.5~5.0であるものを用いた。浴温は40~75℃とし、電流密度は0.05A/dm~2.00A/dmとした。
(1-8)ガラス基板への導体形成
 ガラス基板の表面と導体との密着性を発現させるための処理を行った。具体的には、粒径約100nmのコロイダルシリカ分散液をエタノールで希釈したもの(40質量%)の皮膜をガラス基板上にスピンコート法にて形成し、100℃で10分間乾燥した。次いで、テトラエトキシシラン(TEOS)のゾル溶液(10質量%)の皮膜をスピンコート法にてコロイダルシリカ皮膜の上に形成し、500℃で30分間焼結した。処理後のガラス基板に対し、アルミナ基板と同様にして導体を形成した。形成した胴体は、ガラス基板に対する密着性に優れていた。
 以上の結果から、本開示の方法によれば酸化を抑えながらニッケルの導体を形成できることがわかった。
 日本国特許出願第2018-099681号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (23)

  1.  ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む導体の製造方法。
  2.  前記析出したニッケルの上に金属めっきを施す工程をさらに含む、請求項1に記載の導体の製造方法。
  3.  前記光照射がCOレーザ、Erレーザ、キセノンランプ及びエキシマランプからなる群より選択される少なくとも1種を用いて行われる、請求項1又は請求項2に記載の導体の製造方法。
  4.  前記光照射がパターン状に行われる、請求項1~請求項3のいずれか1項に記載の導体の製造方法。
  5.  大気中で行われる、請求項1~請求項4のいずれか1項に記載の導体の製造方法。
  6.  前記ニッケル錯体が配位子としてアミン化合物を含む、請求項1~請求項5のいずれか1項に記載の導体の製造方法。
  7.  前記ニッケル錯体が配位子としてアミノアルコールを含む、請求項1~請求項6のいずれか1項に記載の導体の製造方法。
  8.  前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、請求項1~請求項7のいずれか1項に記載の導体の製造方法。
  9.  前記溶媒が有機溶媒である、請求項1~請求項8のいずれか1項に記載の導体の製造方法。
  10.  基板と、前記基板上に配置されるニッケル配線とを備える配線基板の製造方法であり、ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む組成物を前記基板に付与して組成物層を形成する工程と、前記組成物層に光照射を行ってニッケルを析出させる工程と、を含む配線基板の製造方法。
  11.  前記析出したニッケルの上に金属めっきを施す工程をさらに含む、請求項10に記載の配線基板の製造方法。
  12.  前記光照射がCOレーザ、Erレーザ、キセノンランプ及びエキシマランプからなる群より選択される少なくとも1種を用いて行われる、請求項10又は請求項11に記載の配線基板の製造方法。
  13.  前記光照射がパターン状に行われる、請求項10~請求項12のいずれか1項に記載の配線基板の製造方法。
  14.  大気中で行われる、請求項10~請求項13のいずれか1項に記載の配線基板の製造方法。
  15.  前記ニッケル錯体が配位子としてアミン化合物を含む、請求項10~請求項14のいずれか1項に記載の配線基板の製造方法。
  16.  前記ニッケル錯体が配位子としてアミノアルコールを含む、請求項10~請求項15のいずれか1項に記載の配線基板の製造方法。
  17.  前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、請求項10~請求項16のいずれか1項に記載の配線基板の製造方法。
  18.  前記溶媒が有機溶媒である、請求項10~請求項17のいずれか1項に記載の配線基板の製造方法。
  19.  ニッケル錯体と、前記ニッケル錯体を溶解しうる溶媒とを含む導体形成用組成物。
  20.  前記ニッケル錯体が配位子としてアミン化合物を含む、請求項19に記載の導体形成用組成物。
  21.  前記ニッケル錯体が配位子としてアミノアルコールを含む、請求項19又は請求項20に記載の導体形成用組成物。
  22.  前記ニッケル錯体がカウンターアニオンと有機溶媒に可溶な塩を形成している、請求項19~請求項21のいずれか1項に記載の導体形成用組成物。
  23.  前記溶媒が有機溶媒である、請求項19~請求項22のいずれか1項に記載の導体形成用組成物。
PCT/JP2019/018573 2018-05-24 2019-05-09 導体の製造方法、配線基板の製造方法及び導体形成用組成物 WO2019225340A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521150A JP7340179B2 (ja) 2018-05-24 2019-05-09 導体の製造方法、配線基板の製造方法及び導体形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099681 2018-05-24
JP2018099681 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225340A1 true WO2019225340A1 (ja) 2019-11-28

Family

ID=68616000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018573 WO2019225340A1 (ja) 2018-05-24 2019-05-09 導体の製造方法、配線基板の製造方法及び導体形成用組成物

Country Status (2)

Country Link
JP (1) JP7340179B2 (ja)
WO (1) WO2019225340A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205686A (ja) * 1989-02-06 1990-08-15 Fuji Photo Film Co Ltd 金属材料パターンの形成方法
JP2010500476A (ja) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド 金属積層板の製造方法
JP2014031577A (ja) * 2012-07-11 2014-02-20 Osaka Univ 金属パターン形成用組成物及び金属パターン形成方法
WO2016152722A1 (ja) * 2015-03-24 2016-09-29 昭和電工株式会社 導電パターン形成用組成物及び導電パターン形成方法
WO2017135330A1 (ja) * 2016-02-03 2017-08-10 学校法人工学院大学 金属膜形成用組成物および金属膜形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119431A (ja) * 1997-10-08 1999-04-30 Kobe Steel Ltd 金属パターンの形成方法
JP5051754B2 (ja) * 2007-05-22 2012-10-17 新日鐵化学株式会社 導体層形成用組成物、導体層の形成方法および回路基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205686A (ja) * 1989-02-06 1990-08-15 Fuji Photo Film Co Ltd 金属材料パターンの形成方法
JP2010500476A (ja) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド 金属積層板の製造方法
JP2014031577A (ja) * 2012-07-11 2014-02-20 Osaka Univ 金属パターン形成用組成物及び金属パターン形成方法
WO2016152722A1 (ja) * 2015-03-24 2016-09-29 昭和電工株式会社 導電パターン形成用組成物及び導電パターン形成方法
WO2017135330A1 (ja) * 2016-02-03 2017-08-10 学校法人工学院大学 金属膜形成用組成物および金属膜形成方法

Also Published As

Publication number Publication date
JPWO2019225340A1 (ja) 2021-10-21
JP7340179B2 (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
KR101263003B1 (ko) 도전선 패턴 형성을 위한 은 오르가노 졸 잉크
KR100711505B1 (ko) 도전막 형성을 위한 은 페이스트
KR100709724B1 (ko) 도전막 형성을 위한 금속 페이스트
WO2014024630A1 (ja) 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
JP2009295965A (ja) 導電性インク用の二金属ナノ粒子
CN104024351A (zh) 导电金属和方法
KR20110027487A (ko) 금속 패턴 형성용 조성물 및 이를 이용한 금속 패턴 형성방법
WO2012074200A2 (ko) 저온소결 전도성 금속막 및 이의 제조방법
US8304062B2 (en) Electrical conductors and methods of making and using them
KR20200018583A (ko) 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품
JP5446097B2 (ja) 導電性基板及びその製造方法
WO2013115300A1 (ja) 金属微粒子を含む膜の導体化方法
JP7175532B2 (ja) 金属膜形成用組成物および金属膜形成方法
JP7340179B2 (ja) 導体の製造方法、配線基板の製造方法及び導体形成用組成物
CN107113970A (zh) 印刷配线板用基板、印刷配线板和制作印刷配线板用基板的方法
JP7072812B2 (ja) 導体の製造方法、配線基板の製造方法及び導体形成用組成物
JP2020113706A (ja) 導電性パターン領域付構造体及びその製造方法
JP7130631B2 (ja) 導体の製造方法、配線基板の製造方法及び導体形成用組成物の製造方法
TWI757412B (zh) 銀奈米粒子的製造方法
EP4056365A1 (en) Structure with conductive pattern and method for manufacturing same
TWI756467B (zh) 覆銀玻璃粉末及其製造方法
KR101116752B1 (ko) 이산화루테늄 나노분말 및 이의 제조방법
TWI591051B (zh) 導電油墨以及導電層的製造方法
CN105440801A (zh) 一种导电墨水及基于该导电墨水的印制电路的制备方法
Sun et al. An conductive ink based on silver oxide complex for low-temperature sintering with dense conductive paths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807313

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020521150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807313

Country of ref document: EP

Kind code of ref document: A1