WO2016152534A1 - 車両用油圧制御装置および油圧制御方法 - Google Patents

車両用油圧制御装置および油圧制御方法 Download PDF

Info

Publication number
WO2016152534A1
WO2016152534A1 PCT/JP2016/057416 JP2016057416W WO2016152534A1 WO 2016152534 A1 WO2016152534 A1 WO 2016152534A1 JP 2016057416 W JP2016057416 W JP 2016057416W WO 2016152534 A1 WO2016152534 A1 WO 2016152534A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
oil pump
pressure
flow rate
oil
Prior art date
Application number
PCT/JP2016/057416
Other languages
English (en)
French (fr)
Inventor
清水 豊
秀策 片倉
太田 雄介
智之 小池
行宣 犬田
陽子 吉岡
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to EP16768437.2A priority Critical patent/EP3276221A4/en
Priority to CN201680014553.XA priority patent/CN107429822B/zh
Priority to KR1020177025916A priority patent/KR20170118163A/ko
Priority to US15/561,470 priority patent/US10837547B2/en
Publication of WO2016152534A1 publication Critical patent/WO2016152534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle hydraulic control device including a first oil pump driven by a traveling drive source and a second oil pump driven by an electric motor.
  • the present invention provides a vehicle hydraulic control device capable of suppressing power consumption in an electric motor that drives a second oil pump while securing a necessary line pressure when stopping the second oil pump. With the goal.
  • the vehicle hydraulic control device of the present invention includes a first oil pump, a second oil pump, a pressure regulating valve, and a hydraulic controller.
  • the first oil pump is driven by a travel drive source to discharge hydraulic oil.
  • the second oil pump is driven by an electric motor different from the travel drive source and discharges hydraulic oil.
  • the pressure regulating valve regulates the first oil pump discharge pressure and / or the second oil pump discharge pressure.
  • the hydraulic controller shifts from a state in which the travel drive source is stopped and the second oil pump is being driven to a state in which the travel drive source is started and the second oil pump is stopped during pressure regulation by the pressure regulating valve.
  • the travel drive source is started and the second oil pump is stopped from the state in which the travel drive source is stopped and the second oil pump is driven during pressure regulation by the pressure regulating valve.
  • the second oil pump is activated.
  • the oil discharge flow rate is reduced.
  • the total flow rate being equal to or greater than the pressure regulation limit flow rate of the pressure regulating valve is a state where the amount of oil supplied to the pressure regulating valve is excessive, and the hydraulic oil discharge flow rate of the first oil pump is sufficiently high. It means increasing.
  • the hydraulic oil discharge flow rate of the second oil pump is reduced, the hydraulic oil flow rate necessary for securing the necessary line pressure can be covered by the total oil amount. Furthermore, if the hydraulic oil discharge flow rate of the second oil pump is reduced at the timing when the total flow rate is equal to or higher than the pressure regulation limit flow rate of the pressure regulating valve, the necessary line pressure can be secured only by the first oil pump discharge pressure. The hydraulic oil discharge flow rate of the second oil pump can be reduced before. As a result, the second oil pump is not driven unnecessarily, and the power consumption in the electric motor that drives the second oil pump can be suppressed while ensuring the necessary line pressure.
  • FIG. 1 is an overall system diagram showing a hybrid vehicle to which a control device of an embodiment is applied. It is a hydraulic circuit diagram showing a hydraulic control circuit provided in the hybrid vehicle of the embodiment. It is a flowchart which shows the flow of the electric oil pump stop process performed with the integrated controller of an Example.
  • the accelerator opening from stop ⁇ start electric oil pump stop, hydraulic oil pump hydraulic oil discharge flow, mechanical oil pump hydraulic oil discharge flow, total flow, It is a time chart which shows each characteristic of an actual line pressure.
  • FIG. 1 is an overall system diagram illustrating a hybrid vehicle (an example of a vehicle) to which the control device of the embodiment is applied.
  • the overall system configuration of the hybrid vehicle according to the embodiment will be described below with reference to FIG.
  • the vehicle hydraulic control apparatus of the embodiment is applied to the hybrid vehicle shown in FIG.
  • the drive system of this hybrid vehicle includes an engine Eng, a first clutch CL1, a motor / generator MG, a second clutch CL2, a continuously variable transmission CVT, a final gear FG, a left drive wheel LT, and a right drive. And a wheel RT.
  • the engine Eng is a traveling drive source, for example, an engine structure capable of lean combustion.
  • the engine Eng is controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug.
  • the engine Eng is engaged with the first clutch CL1 and is started by the motor torque from the motor / generator MG.
  • the first clutch CL1 is interposed between the engine Eng and the motor / generator MG.
  • the first clutch CL1 for example, a dry clutch that is normally released (normally open) by an urging force of a diaphragm spring is used, and complete engagement / semi-engagement / release between the engine Eng and the motor / generator MG is performed. If the first clutch CL1 is completely engaged, the motor torque and the engine torque are transmitted to the second clutch CL2. If the first clutch CL1 is in the released state, only the motor torque is transmitted to the second clutch CL2. Note that complete fastening / semi-fastening / release control is performed by stroke control for the hydraulic actuator.
  • the motor / generator MG has an AC synchronous motor structure serving as a travel drive source.
  • the motor / generator MG performs a drive torque control and a rotational speed control at the time of start and travel, and a battery BAT for vehicle kinetic energy by regenerative brake control at the time of braking and deceleration. Is to be collected. Furthermore, it is used here as an engine starting motor.
  • the second clutch CL2 is a frictional engagement element interposed between the motor / generator MG and the left and right drive wheels LT, RT.
  • the second clutch CL2 is engaged at the time of start and travel drive source (engine Eng and / or motor / generator MG). ) Is transmitted to the left and right drive wheels LT, RT.
  • the second clutch CL2 is constituted by a wet multi-plate friction clutch by hydraulic operation, and complete engagement / slip engagement / release is controlled by the second clutch hydraulic pressure.
  • the second clutch CL2 of the embodiment uses the forward clutch FC and the reverse brake RB provided in the forward / reverse switching mechanism of the continuously variable transmission CVT using planetary gears. That is, during forward travel, the forward clutch FC is the second clutch CL2, and during reverse travel, the reverse brake RB is the second clutch CL2.
  • the continuously variable transmission CVT is a belt type continuously variable transmission having a primary pulley Pri, a secondary pulley Sec, and a pulley belt V spanned between the primary pulley Pri and the secondary pulley Sec. It is a power transmission member that transmits the driving force of the driving source (engine Eng and / or motor / generator MG) to the left and right driving wheels LT, RT.
  • the primary pulley Pri and the secondary pulley Sec change the pulley width while holding the pulley belt V by supplying hydraulic pressure, and change the diameter of the surface holding the pulley belt V to change the gear ratio (pulley ratio). Control freely.
  • an input gear of a mechanical oil pump O / P (first oil pump) is connected to the motor output shaft MGout of the motor / generator MG via a chain CH.
  • This mechanical oil pump O / P is an oil pump that is driven by a rotational driving force of a travel drive source, basically a motor / generator MG, and supplies hydraulic pressure.
  • a gear pump or a vane pump is used.
  • this mechanical oil pump O / P can discharge hydraulic oil regardless of the rotation direction of the motor / generator MG.
  • an electric oil pump M / O / P (second oil pump) that supplies hydraulic pressure by being driven by the rotational driving force of a sub motor S / M (electric motor) provided separately from the motor / generator MG. Is provided.
  • This electric oil pump M / O / P has a three-phase AC motor structure, and can control the discharge flow rate of hydraulic oil by controlling the rotational speed.
  • the mechanical oil pump O / P and the electric oil pump M / O / P are used to supply hydraulic pressure (control pressure) to be supplied to the first and second clutches CL1 and CL2 and the continuously variable transmission CVT. It is OIL.
  • OIL hydraulic supply source
  • the sub motor S / M is stopped and the electric oil pump M / O / P is stopped.
  • the sub oil motor S / M is driven to drive the electric oil pump M / O / P. To discharge.
  • the first clutch CL1, the motor / generator MG, and the second clutch CL2 constitute a one-motor / two-clutch drive system.
  • the main drive modes of this drive system are “EV mode” and “HEV”. Mode ".
  • the “EV mode” is an electric vehicle mode in which the first clutch CL1 is released, the second clutch CL2 is engaged, and only the motor / generator MG is used as a travel drive source.
  • the “HEV mode” is a hybrid vehicle mode in which the first and second clutches CL1 and CL2 are engaged and the engine Eng and the motor / generator MG are used as a driving source.
  • the hybrid vehicle control system of the embodiment includes an inverter INV, a battery BAT, an integrated controller 10, a transmission controller 11, a clutch controller 12, an engine controller 13, and a motor controller 14. And a battery controller 15.
  • the inverter INV performs DC / AC conversion and generates a drive current for the motor / generator MG. Further, the output rotation of the motor / generator MG is reversed by reversing the phase of the generated drive current.
  • the battery BAT is a chargeable / dischargeable secondary battery, and supplies power to the motor / generator MG and charges power regenerated by the motor / generator MG.
  • the integrated controller 10 includes a battery state (here, input from the battery controller 15), an accelerator opening (here, detected by the accelerator opening sensor 21), and a vehicle speed (here, a value synchronized with the transmission output speed).
  • the target drive torque corresponding to the driver's requested driving force is calculated from the transmission output speed sensor 22.
  • command values for the actuators are calculated and transmitted to the controllers 11-15.
  • the integrated controller 10 is configured so that the engine Eng and the motor / generator MG are stopped and the electric oil pump M / O / P is driven during the pressure adjustment by the line pressure regulating valve 104 described later. And / or a hydraulic controller that starts the motor / generator MG and shifts to a state in which the electric oil pump M / O / P is stopped.
  • the transmission controller 11 performs shift control so as to achieve a shift command from the integrated controller 10.
  • This shift control is performed by controlling the hydraulic pressure supplied to the primary pulley Pri and the secondary pulley Sec of the continuously variable transmission CVT using the line pressure PL supplied via the hydraulic control circuit 100 as a source pressure.
  • the surplus pressure generated when the hydraulic pressure supplied from the line pressure PL to the primary pulley Pri and the hydraulic pressure supplied to the secondary pulley Sec is generated is used for cooling and lubrication of the first clutch CL1 and the second clutch CL2.
  • the clutch controller 12 includes a second clutch input rotational speed (detected by the motor rotational speed sensor 23), a second clutch output rotational speed (detected by the second clutch output rotational speed sensor 24), a clutch oil temperature (operating oil temperature sensor 25). Detected by). Further, the clutch controller 12 performs first clutch control and second clutch control so as to achieve the first clutch control command and the second clutch control command from the integrated controller 10.
  • the first clutch control is performed by controlling the hydraulic pressure supplied to the first clutch CL1, using the line pressure PL supplied via the hydraulic control circuit 100 as a source pressure.
  • the second clutch control is performed by controlling the hydraulic pressure supplied to the second clutch CL2 using the line pressure PL supplied via the hydraulic control circuit 100 as a source pressure.
  • the surplus pressure generated when the hydraulic pressure supplied from the line pressure PL to the first clutch CL1 and the hydraulic pressure supplied to the second clutch CL2 is generated by cooling the first clutch CL1 and the second clutch CL2. Turned to lubrication.
  • a circuit for supplying a control hydraulic pressure using the line pressure PL as a source pressure to the primary pulley Pri, the secondary pulley Sec, and the second clutch CL2 of the continuously variable transmission CVT is referred to herein as a “transmission mechanism hydraulic system Sup”.
  • a circuit for cooling and lubricating the second clutch CL2 is referred to herein as a “transmission mechanism cooling / lubricating system Lub” (see FIG. 2).
  • the engine controller 13 inputs the engine speed (detected by the engine speed sensor 26), and controls the torque of the engine Eng so as to achieve an engine torque command value corresponding to the target engine torque from the integrated controller 10. .
  • the motor controller 14 inputs the motor rotation speed (detected by the motor rotation speed sensor 23), and the motor controller 14 achieves a motor torque command value and a motor rotation speed command value corresponding to the target motor torque from the integrated controller 10. / Control generator MG.
  • the battery controller 15 manages the state of charge of the battery BAT and transmits the information to the integrated controller 10.
  • the state of charge of battery BAT is calculated based on the power supply voltage detected by battery voltage sensor 15a and the battery temperature detected by battery temperature sensor 15b.
  • FIG. 2 is a hydraulic circuit diagram showing a hydraulic control circuit provided in the hybrid vehicle of the embodiment. The detailed configuration of the hydraulic control circuit according to the embodiment will be described below with reference to FIG.
  • the hydraulic control circuit 100 regulates the discharge pressure of a hydraulic pressure supply source OIL composed of a mechanical oil pump O / P and an electric oil pump M / O / P to a line pressure PL, and supplies the line pressure PL to a hydraulic system Sup for a transmission mechanism.
  • a hydraulic pressure supply source OIL composed of a mechanical oil pump O / P and an electric oil pump M / O / P
  • a line pressure PL supplies the line pressure PL to a hydraulic system Sup for a transmission mechanism.
  • surplus pressure generated when the hydraulic pressure is supplied to the transmission mechanism hydraulic system Sup is supplied to the cooling / lubricating system Lub of the transmission mechanism.
  • the hydraulic control circuit 100 by switching the switching valve 107, the hydraulic oil discharged from the electric oil pump M / O / P is directly supplied to the cooling / lubricating system Lub of the transmission mechanism. That is, as shown in FIG.
  • the hydraulic control circuit 100 includes a mechanical oil pump O / P, an electric oil pump M / O / P, a first oil passage 101, and a first flapper valve 101a.
  • the first oil passage 101 is connected to the discharge port 110a, and the suction circuit 109a that sucks the hydraulic oil collected in the oil pan 108 is connected to the suction port 110b.
  • the mechanical oil pump O / P is driven by the driving drive source (basically the motor / generator MG) being driven to rotate and sucks hydraulic oil from the oil pan 108 via the suction circuit 109a. Hydraulic oil is discharged into the oil passage 101. The discharge flow rate at this time depends on the rotational speed of the travel drive source.
  • the second oil passage 102 is connected to the discharge port 111a, and the suction circuit 109a that sucks the hydraulic oil collected in the oil pan 108 is connected to the suction port 111b.
  • the electric oil pump M / O / P is driven by the rotational drive of the sub motor S / M, sucks the hydraulic oil from the oil pan 108 via the suction circuit 109a, and flows into the second oil passage 102. Is discharged.
  • the discharge flow rate of the electric oil pump M / O / P depends on the pump rotation speed.
  • the first oil passage 101 has one end connected to the discharge port 110a of the mechanical oil pump O / P and the other end provided with a first flapper valve 101a.
  • the first oil passage 101 is an oil passage through which hydraulic oil discharged from the mechanical oil pump O / P flows, and the oil pressure in the first oil passage 101 (hereinafter referred to as “first oil pressure P1”) is so-called.
  • the hydraulic pressure (first oil pump discharge pressure) is supplied from the mechanical oil pump O / P.
  • the first oil passage 101 communicates with the third oil passage 103 when the first flapper valve 101a is opened.
  • the second oil passage 102 is an oil passage through which hydraulic oil discharged from the electric oil pump M / O / P flows, and a hydraulic pressure in the second oil passage 102 (hereinafter referred to as “second hydraulic pressure P2”)
  • the oil pressure is supplied from a so-called electric oil pump M / O / P (second oil pump discharge pressure).
  • the second oil passage 102 communicates with the third oil passage 103 when the second flapper valve 102a is opened.
  • the second oil passage 102 is provided with a switching valve 107 at an intermediate position.
  • the middle position of the second oil passage 102 is divided, one is connected to the switching valve input port 107 a of the switching valve 107, and the other is connected to the switching valve output port 107 b of the switching valve 107.
  • the second oil passage 102 is provided with a second pressure sensor 27 for detecting the second oil pressure P2 and a pressure leak valve 27a.
  • the pressure leak valve 27a is opened and the hydraulic oil in the second oil passage 102 is drained. ing.
  • the first flapper valve 101a is a valve for preventing the backflow of hydraulic oil to the mechanical oil pump O / P side
  • the first hydraulic pressure P1 is the hydraulic pressure in the third oil passage 103 (hereinafter, “third hydraulic pressure P3”). It has the characteristic of opening when it becomes larger than.
  • the second flapper valve 102a is a valve for preventing the backflow of hydraulic oil to the electric oil pump M / O / P side, and has a characteristic of opening when the second hydraulic pressure P2 becomes larger than the third hydraulic pressure P3.
  • the magnitude of the third oil pressure P3 is determined by the higher one of the first oil pressure P1 and the second oil pressure P2.
  • the first and second flapper valves 101a and 102a the one corresponding to the higher one of the first oil pressure P1 and the second oil pressure P2 opens, and the other closes.
  • the third hydraulic pressure P3 becomes the same size as the hydraulic pressure with the flapper valve opened.
  • the first and second flapper valves 101a and 102a open at the same opening degree when there is no hydraulic pressure difference between the first hydraulic pressure P1 and the second hydraulic pressure P2. If either one of the first oil pressure P1 and the second oil pressure P2 increases from a state where there is no oil pressure difference, the opening degree of the flapper valve corresponding to the higher oil pressure is determined based on this oil pressure difference. Gradually it grows and the other flapper valve closes gradually.
  • One end of the third oil passage 103 is divided into two branches, one of which is connected to the first flapper valve 101a, the other is connected to the second flapper valve 102a, Inflow of hydraulic oil from both of the second oil passages 102 is enabled.
  • the other end of the third oil passage 103 is connected to the input port 104 a of the line pressure regulating valve 104. That is, the third oil passage 103 is an oil passage through which hydraulic oil discharged from the hydraulic supply source OIL (mechanical oil pump O / P and / or electric oil pump M / O / P) flows.
  • OIL mechanical oil pump O / P and / or electric oil pump M / O / P
  • the third hydraulic pressure P3 which is the hydraulic pressure in the oil passage 103, becomes the original pressure of the line pressure PL regulated by the line pressure regulating valve 104.
  • the line pressure regulating valve 104 is a pressure regulating valve (pressure regulating valve) that regulates the third hydraulic pressure P3 and generates a line pressure PL to be supplied to the transmission hydraulic system Sup. That is, the line pressure regulating valve 104 regulates the first hydraulic pressure P1 and / or the second hydraulic pressure so that the pressure regulation target value is reached.
  • the third oil passage 103 is connected to the input port 104a, and the line pressure oil passage 105 connected to the transmission mechanism hydraulic system Sup is connected to the output port 104b.
  • the line pressure adjusting valve 104 adjusts the line pressure PL by moving the spool according to an instruction value from the integrated controller 10 and allowing the hydraulic oil in the third oil passage 103 to escape to a drain circuit (not shown).
  • the upper limit of the amount of hydraulic fluid released to the drain circuit is determined by the opening area of the drain port through which hydraulic fluid is released. For this reason, the hydraulic fluid flowing in from the input port 104a is excessive, and the amount of relief (drain amount) necessary for setting the line pressure PL to the pressure regulation target value exceeds the upper limit of the amount of relief at the line pressure regulating valve 104. Then, the hydraulic oil is not allowed to escape, and the actual line pressure PL R (actual hydraulic pressure in the line pressure oil passage 105) exceeds the pressure regulation target value.
  • the line pressure oil passage 105 is an oil passage for supplying the line pressure PL regulated by the line pressure regulating valve 104 to the transmission mechanism hydraulic system Sup.
  • a pressure regulating valve 105a is provided in the line pressure oil passage 105, and surplus pressure obtained by subtracting the hydraulic pressure required for the transmission hydraulic system Sup from the line pressure PL is released to the cooling / lubricating system Lub of the transmission mechanism.
  • the line pressure oil passage 105 is provided with a line pressure sensor 28 for detecting a line pressure PL (actual line pressure PL R ).
  • the line pressure PL regulated by the line pressure regulating valve 104 is It is monitored by the line pressure sensor 28.
  • One end of the cooling system oil passage 106 is connected to the cooling side port 107c of the switching valve 107, the other end is connected to the cooling / lubricating system Lub of the transmission mechanism, and when the switching valve 107 is switched to the cooling mode, the electric oil
  • the hydraulic oil discharged from the pump M / O / P is supplied to the cooling / lubricating system Lub of the transmission mechanism.
  • the hydraulic oil used in the cooling / lubricating system Lub of the transmission mechanism is collected in the oil pan 108 via the drain circuit 109b.
  • the switching valve 107 is provided in the second oil passage 102 and supplies hydraulic oil discharged from the electric oil pump M / O / P to the third oil passage 103 based on a switching command from the integrated controller 10.
  • the hydraulic oil discharged from the electric oil pump M / O / P is supplied to the cooling / lubricating system Lub of the transmission mechanism. That is, the switching valve 107 has an on / off solenoid and a switching valve.
  • the switching valve input port 107a is communicated with the switching valve output port 107b, the second oil passage 102 is completely opened. Further, when the switching valve input port 107 a is communicated with the cooling side port 107 c, the second oil passage 102 is switched to the cooling system oil passage 106.
  • the transmission mechanism hydraulic system Sup includes a transmission pressure regulating valve 112 a provided in the line pressure oil passage 105 and a second clutch pressure regulating valve 112 b provided in the line pressure oil passage 105. Yes.
  • the transmission pressure regulating valve 112a regulates the hydraulic pressure supplied to the primary pulley Pri and the secondary pulley Sec using the line pressure PL as the original pressure, and supplies the hydraulic pressure to the primary pulley Pri and the secondary pulley Sec. .
  • the hydraulic pressure supplied to the forward clutch FC and the reverse brake RB is adjusted by the second clutch pressure adjusting valve 112b with the line pressure PL as the original pressure, and the hydraulic pressure is supplied to the forward clutch FC and the reverse brake RB.
  • FIG. 3 is a flowchart illustrating the flow of the electric oil pump stop process executed by the integrated controller of the embodiment.
  • This electric oil pump stop process is premised on the execution of idle stop control when the travel drive source (engine Eng and motor / generator MG) and sub motor S / M are all stopped.
  • step S1 it is determined whether a driving force request from the driver has occurred. If YES (the driving force is requested), the hydraulic pressure supply from the hydraulic pressure supply source OIL is necessary, and the process proceeds to step S2. If NO (no driving force request), the idle stop control is continued and step S1 is repeated. Here, the generation of the driving force request is determined when the accelerator pedal is depressed.
  • step S2 following the determination that the driving force is requested in step S1, the accelerator opening is detected, and the process proceeds to step S3.
  • the accelerator opening is detected by the accelerator opening sensor 21.
  • the travel drive source engine Eng, motor / generator MG
  • the travel drive source is started according to the requested drive force from the driver that appears at the detected accelerator opening. Note that one or both of the engine Eng and the motor / generator MG are driven as the travel drive source, and are determined according to the required drive force.
  • step S3 following the detection of the accelerator opening in step S2, it is determined whether or not the accelerator opening detected in step S2 is larger than a preset target switching threshold APO th . If YES (accelerator opening> target switching threshold APO th ), it is determined that the opening is high and the process proceeds to step S4. In the case of NO (accelerator opening ⁇ target switching threshold APO th ), the process proceeds to step S5 on the assumption that the opening is a low opening.
  • the “target switching threshold value APO th ” is a threshold value that discriminates whether the drive source torque (engine torque, motor torque) increase speed (change speed) after starting the traveling drive source is fast or slow. Set to If the accelerator opening is larger than the target switching threshold APO th, it is determined that the drive source torque rise speed is fast. If the accelerator opening is equal to or less than the target switching threshold APO th , the driving source torque rise speed is slow. Judge.
  • step S4 following the determination of accelerator opening> target switching threshold APO th in step S3, the target value (target hydraulic pressure PL t) of the second hydraulic pressure P2 that is the hydraulic pressure supplied from the electric oil pump M / O / P. ) Is set to “required line pressure PL ne ”, the sub-motor S / M is driven to start the electric oil pump M / O / P, and the pressure regulation target value at the line pressure regulating valve 104 is set to the second Set to “required line pressure PL ne ”, which is the target oil pressure PL t of the oil pressure P2, and proceed to step S6.
  • the hydraulic oil discharge oil amount (proportional to the rotation speed) of the electric oil pump M / O / P is set to the second hydraulic pressure.
  • the “necessary line pressure PL ne ” means a power transmission member (second clutch CL2, second clutch CL2,...) Arranged in a driving force transmission path from the travel drive source (engine Eng and motor / generator MG) to the left and right drive wheels LT, RT. This is the minimum hydraulic pressure required to properly control the continuously variable transmission (CVT) and changes in proportion to the driver's required driving force that appears in the accelerator opening.
  • CVT continuously variable transmission
  • step S5 following the determination of accelerator opening ⁇ target switching threshold APO th in step S3, the target value (target hydraulic pressure PL t) of the second hydraulic pressure P2 that is the hydraulic pressure supplied from the electric oil pump M / O / P. ) was set to a value obtained by adding a predetermined plus value ⁇ necessary line pressure PL ne ( "required line pressure PL ne + plus value ⁇ "), by driving the sub motor S / M electric oil pump M / O / While starting P, the pressure regulation target value at the line pressure regulating valve 104 is set to “required line pressure PL ne + addition value ⁇ ” that is the target hydraulic pressure PL t of the second hydraulic pressure P2, and the process proceeds to step S6.
  • a predetermined plus value ⁇ necessary line pressure PL ne "required line pressure PL ne + plus value ⁇ "
  • the target hydraulic pressure PL t of the second hydraulic pressure P2 is “required line pressure PL ne + addition value ⁇ ”
  • the “addition value ⁇ ” is a difference between the target hydraulic pressure PL t and the necessary line pressure PL ne, and is set to a larger value as the driver's driving force requirement is lower and the necessary line pressure PL ne is lower.
  • the required line pressure PL ne is set according to the required driving force from the driver appearing in the accelerator opening, and becomes lower as the required driving force is lower. Therefore, by setting the “addition value ⁇ ” to a larger value as the required line pressure PL ne is lower, the target hydraulic pressure PL t of the second hydraulic pressure P2 when the accelerator opening ⁇ the target switching threshold value is obtained from the driver. The smaller the required driving force, the higher the value is set.
  • the drive responsiveness to the command of the electric oil pump M / O / P driven by the sub motor S / M is a mechanical oil pump O / P driven by a travel drive source (engine Eng, motor / generator MG). It is higher than the drive response to the command. Therefore, the rotational speed of the electric oil pump M / O / P rises almost simultaneously with the command output, but the rotational speed of the mechanical oil pump O / P rises with a time lag with respect to the command output. That is, in step S2, a start command is output to the travel drive source, and the travel drive source (engine Eng, motor / generator MG) is started to drive the mechanical oil pump O / P.
  • step S4 or step S5 a drive command is output to the sub motor S / M, and the sub motor S / M is driven to drive the electric oil pump M / O / P.
  • the hydraulic oil discharge oil amount of the electric oil pump M / O / P first rises, and the hydraulic oil discharge oil amount of the mechanical oil pump O / P rises after a delay.
  • the “actual line pressure PL R ” is detected by the line pressure sensor 28.
  • step S7 following the detection of the actual line pressure PL R at step S6, the actual line pressure PL R detected in the step S6, the pressure regulating at line pressure regulating valve 104 which is set in step S4 or step S5 It is determined whether or not the target value has been exceeded. If YES (actual line pressure PL R > pressure adjustment target value), the sum of the hydraulic oil discharge flow rate from the mechanical oil pump O / P and the hydraulic oil discharge flow rate from the electric oil pump M / O / P Assuming that the flow rate (the flow rate of hydraulic fluid flowing through the third oil passage 103) has reached the pressure regulation limit flow rate of the line pressure regulating valve 104, the flow proceeds to step S8.
  • YES actual line pressure PL R > pressure adjustment target value
  • step S8 following the determination that the actual line pressure PL R > the pressure regulation target value in step S7, the actual line pressure PL R is detected again, and the process proceeds to step S9.
  • step S9 following the detection of the actual line pressure PL R at step S8, a value obtained by subtracting the required line pressure PL ne from the actual line pressure PL R detected in the step S8, the hydraulic securing quality threshold ⁇ greater than or equal to the preset It is determined whether or not. YES - in the case of (the actual line pressure PL R required line pressure PL ne ⁇ hydraulic ensured threshold beta), the process proceeds to step S10 as the actual line pressure PL R has risen sufficiently.
  • the “hydraulic pressure securing threshold ⁇ ” is the total flow rate of the hydraulic oil discharge flow rate from the mechanical oil pump O / P and the hydraulic oil discharge flow rate from the electric oil pump M / O / P (third oil passage) 103 is a value that can be determined to have increased sufficiently to cover the amount of hydraulic oil necessary for securing the necessary line pressure PLne , and is arbitrarily set.
  • step S10 it is assumed that the hydraulic oil discharge flow rate of the mechanical oil pump O / P is sufficiently increased following the determination that the actual line pressure PL R ⁇ the necessary line pressure PL ne ⁇ the hydraulic pressure securing threshold value ⁇ in step S9. Then, the hydraulic oil discharge flow rate of the electric oil pump M / O / P is decreased, and the process proceeds to step S11. At this time, the decreasing gradient (decreasing speed change) of the hydraulic oil discharge flow rate is set to a predetermined value set in advance. In order to reduce the hydraulic oil discharge flow rate, the target rotational speed of the electric oil pump M / O / P is reduced.
  • step S11 following the lowering of the hydraulic oil discharge flow rate of the electric oil pump M / O / P in step S10, detects the actual line pressure PL R again, the process proceeds to step S12.
  • step S12 following the detection of the actual line pressure PL R at step S11, the actual line pressure PL R detected in the step S11, it is determined whether it is with or maintained to decrease. As in the case of YES (the actual line pressure PL R lowering or maintenance) may decrease the effect of the operating oil discharge flow rate of the electric oil pump M / O / P, the process proceeds to step S13. NO in the case of (the actual line pressure PL R increases) as there is no lowering effect of the operating oil discharge flow rate of the electric oil pump M / O / P, the process returns to step S10, while maintaining the lower gradient electric oil pump M Continue to decrease the hydraulic oil discharge flow rate of / O / P.
  • step S13 following the determination of the actual line pressure PL R reduction or maintenance in step S12, so as not too low the actual line pressure PL R, the electric oil pump M / O / P operating oil discharge flow rate lowering of The gradient (decrease speed change) is changed so as to be gentle, and the process proceeds to step S14.
  • the downward gradient is changed by making it gentle by a preset value.
  • step S14 following the change of the down slope at Step S13, and detects the actual line pressure PL R again, the process proceeds to step S15.
  • step S15 following the detection of the actual line pressure PL R at step S14, it is determined whether the actual line pressure PL R detected in the step S14 is maintained. YES In the case of (the actual line pressure PL R maintenance) has a lower slope of the hydraulic oil discharge flow rate of the electric oil pump M / O / P, the balance of the rising slope of the hydraulic oil flow rate of the mechanical oil pump O / P Since it is taken, the process proceeds to step S16.
  • step S16 while subsequent to the judgment of the actual line pressure PL R maintenance in step S15, and maintained down gradient of the working oil discharge flow rate of the electric oil pump M / O / P (the reduction rate change), the electric oil pump M The reduction in the hydraulic oil discharge flow rate of / O / P is continued, and the process proceeds to step S17.
  • FIG. 4 shows the control apparatus according to the embodiment in which the accelerator opening from the vehicle stop to the start to the electric oil pump stop, the hydraulic oil discharge flow rate of the electric oil pump, and the hydraulic oil discharge of the mechanical oil pump at the time of high opening start. It is a time chart which shows each characteristic of flow volume, total flow volume, and actual line pressure.
  • FIG. 4 shows the operation of stopping the electric oil pump at the start of the high opening degree of the embodiment.
  • step S1 shown in FIG. 3 is repeated.
  • idle stop control is performed, and the engine Eng, the motor / generator MG, and the sub motor S / M, which are travel drive sources, are all stopped. Therefore, both the mechanical oil pump O / P and the electric oil pump M / O / P are stopped, and the hydraulic oil in the hydraulic control circuit 100 is stopped by stopping the hydraulic supply from the hydraulic supply source OIL. Escapes due to a leak or the like.
  • step S1 the traveling drive source (engine Eng, the motor / generator MG) Is started.
  • the traveling drive source engine Eng, the motor / generator MG
  • the process proceeds from step S3 to step S4, and the target hydraulic pressure PL t of the second hydraulic pressure P2 is set to “necessary line pressure PL ne.
  • the pressure regulation target value of the line pressure regulating valve 104 is also set to “necessary line pressure PL ne ”.
  • the hydraulic oil discharge amount of the electric oil pump M / O / P is a value at which the second hydraulic pressure P2 maintains the “necessary line pressure PL ne ”.
  • the drive response to the command of the electric oil pump M / O / P is higher than the drive response to the command of the mechanical oil pump O / P. Therefore, only the electric oil pump M / O / P is driven at time t 1 , and only the hydraulic oil discharged from the electric oil pump M / O / P flows into the third oil passage 103.
  • the total flow rate of the hydraulic oil discharge flow rate from the mechanical oil pump O / P and the hydraulic oil discharge flow rate from the electric oil pump M / O / P (the hydraulic oil flow rate flowing through the third oil passage 103) is It corresponds to the hydraulic oil discharge flow rate from the electric oil pump M / O / P.
  • the hydraulic pressure of the third oil passage 103 the total oil amount flowing (third hydraulic P3) is pressure regulated by the line pressure regulator valve 104, the actual line pressure PL R is "necessary line pressure PL ne".
  • the hydraulic oil discharge flow rate of the electric oil pump M / O / P is set to a value that maintains the “required line pressure PL ne ” regardless of the increasing hydraulic oil discharge flow rate of the mechanical oil pump O / P. Continue to be.
  • step S10 when the process proceeds to step S10 and the reduction of the hydraulic oil discharge flow rate of the electric oil pump M / O / P is started, the hydraulic oil discharge flow rate is reduced with a predetermined decreasing gradient. Then, the process proceeds to step S11 ⁇ step S12, the electric oil pump M / O / P result of lowering the hydraulic oil delivery rate of the actual line pressure PL R is determined whether or not reduced or maintained.
  • the amount of decrease in hydraulic oil discharge flow rate of the electric oil pump M / O / P is, if falls below the amount of increase in the hydraulic oil discharge flow rate of the mechanical oil pump O / P, the actual line pressure PL R continues to rise .
  • the decrease of the hydraulic oil discharge flow rate of the electric oil pump M / O / P is, if exceeds the amount of increase in the hydraulic oil discharge flow rate of the mechanical oil pump O / P, the actual line pressure PL R decreases. Furthermore, lowering the amount of working oil discharge flow rate of the electric oil pump M / O / P is, if the equivalent amount of increase in the hydraulic oil discharge flow rate of the mechanical oil pump O / P, the actual line pressure PL R is maintained .
  • step S13 proceeds to step S14 ⁇ step S15, a result of the gradual lowering gradient, the actual line pressure PL Determine whether R is maintained.
  • the down slope is steep (the hydraulic oil discharge flow rate decreases rapidly)
  • the decrease in the hydraulic oil discharge flow rate of the electric oil pump M / O / P is the operation of the mechanical oil pump O / P. will exceed the increase in the oil discharge flow rate, the actual line pressure PL R continues to decrease.
  • the electric oil pump M / O / P is reduced so that the decrease in the hydraulic oil discharge flow rate of the electric oil pump M / O / P is equal to the increase in the hydraulic oil discharge flow rate of the mechanical oil pump O / P. Adjust the decreasing slope of the hydraulic fluid discharge flow rate of / P.
  • the process proceeds to step S16, while maintaining the lower gradient, to continue the reduction of the working oil discharge flow rate of the electric oil pump M / O / P. That is, the actual line pressure PL R, while maintaining the value of the time began to lower the working oil discharge flow rate of the electric oil pump M / O / P, reducing the working oil discharge flow rate of the electric oil pump M / O / P
  • the actual line pressure PL R at least the hydraulic securing quality threshold ⁇ fraction than the required line pressure PL ne can be maintained at a high value, after lowering the start of the working oil discharge flow rate of the electric oil pump M / O / P Even if the required driving force increases and the necessary line pressure PL ne increases, the actual line pressure can be prevented from falling below the necessary line pressure PL ne .
  • step S17 the time at t 5 the time, when the working oil discharge flow rate of the electric oil pump M / O / P reaches zero, it is determined as YES in step S17, the sub motor S / M to stop the electric oil pump M / O Stop hydraulic supply from / P completely.
  • the total flow rate of the hydraulic oil discharge flow rate of the mechanical oil pump O / P and the hydraulic oil discharge flow rate of the electric oil pump M / O / P is adjusted by the line pressure regulating valve 104.
  • the pressure limit flow rate is exceeded, the hydraulic oil discharge flow rate of the electric oil pump M / O / P is reduced.
  • the total oil amount being equal to or greater than the pressure regulation limit flow rate indicates that the amount of hydraulic oil supplied to the line pressure regulating valve 104 is excessive with respect to the amount of oil that can be regulated by the line pressure regulating valve 104. It is in a state. That is, it means that the hydraulic oil discharge flow rate of the mechanical oil pump O / P is sufficiently increased.
  • the hydraulic oil discharge flow rate of this mechanical oil pump O / P may pulsate.
  • the total flow rate of the hydraulic oil discharge flow rate of the mechanical oil pump O / P and the hydraulic oil discharge flow rate of the electric oil pump M / O / P also pulsates. However, it may exceed or fall below the pressure regulation limit flow.
  • the hydraulic oil discharge flow rate of the electric oil pump M / O / P is reduced, and if the total flow rate falls below the pressure regulation limit flow rate, the electric oil pump M / O / P Increase the hydraulic oil discharge flow.
  • the hydraulic oil discharge flow rate of the electric oil pump M / O / P repeatedly decreases and increases in accordance with the pulsation of the mechanical oil pump O / P, and becomes unstable. Further, when the working oil discharge flow rate of the electric oil pump M / O / P becomes unstable, the actual line pressure PL R also cause so-called oil vibration is generated varies, the equal to the driver gear ratio is varied There is a risk of discomfort.
  • the target hydraulic pressure PL t of the second hydraulic pressure P2 is set to a relatively low value.
  • the required line pressure PL ne is assumed. For this reason, the hydraulic oil discharge flow rate of the electric oil pump M / O / P is lowered, and a large difference between the total flow rate before the mechanical oil pump O / P is driven and the pressure regulation limit flow rate can be secured. .
  • the actual line pressure PL R exceeds the pressure control target value of the line pressure regulator valve 104
  • the actual line pressure PL R and the required line pressure The hydraulic oil discharge flow rate of the electric oil pump M / O / P is not decreased until the difference from PL ne becomes equal to or greater than the hydraulic pressure securing threshold value ⁇ . That is, when the driver's required driving force is high, the target hydraulic pressure PL t of the second hydraulic pressure P2 is set to “necessary line pressure PL ne ”, and the hydraulic oil discharge flow rate of the electric oil pump M / O / P at the start of control is set.
  • the total flow rate at the start of the decrease in the hydraulic oil discharge flow rate of the electric oil pump M / O / P greatly exceeds the pressure regulation limit flow rate. Therefore, even if pulsation occurs in the hydraulic oil discharge flow rate of the mechanical oil pump O / P, the total flow rate can be prevented from falling below the pressure regulation limit flow rate, and the hydraulic oil discharge flow rate of the electric oil pump M / O / P can be stabilized. Can be reduced. Thus, suppressing the fluctuation of the actual line pressure PL R, the gear ratio can be reduced uncomfortable feeling to equal to the driver varies.
  • the total flow rate of the hydraulic oil discharge flow rate of the mechanical oil pump O / P and the hydraulic oil discharge flow rate of the electric oil pump M / O / P is the pressure regulation limit flow rate of the line pressure regulating valve 104. That reached, is judged by elevated than the actual line pressure PL R-adjusting pressure target value which is a real pressure value according to the line pressure regulating valve 104. Therefore, the state of the total flow rate can be easily grasped, and the accuracy of stop control of the electric oil pump M / O / P can be easily improved.
  • FIG. 5 is a diagram illustrating the control device according to the embodiment in which the accelerator opening from the vehicle stop to the start to the electric oil pump stop, the hydraulic oil discharge flow rate of the electric oil pump, and the hydraulic oil discharge of the mechanical oil pump at the time of low opening start. It is a time chart which shows each characteristic of flow volume, total flow volume, and actual line pressure.
  • FIG. 5 shows each characteristic of flow volume, total flow volume, and actual line pressure.
  • step S1 shown in FIG. 3 is repeated.
  • idle stop control is performed, and the engine Eng, the motor / generator MG, and the sub motor S / M, which are travel drive sources, are all stopped. Therefore, both the mechanical oil pump O / P and the electric oil pump M / O / P are stopped, and the hydraulic oil in the hydraulic control circuit 100 is stopped by stopping the hydraulic supply from the hydraulic supply source OIL. Escapes due to a leak or the like.
  • step S1 the traveling drive source (engine Eng, the motor / generator MG ) Is started.
  • the accelerator opening degree at time t 11 time since below the target switching threshold APO th, the process proceeds to step S3 ⁇ step S5, the target oil pressure PL t of the second hydraulic P2, "required line pressure PL ne Set “+ addition value ⁇ ” to drive the sub motor S / M.
  • the pressure regulation target value of the line pressure regulating valve 104 is also set to “required line pressure PL ne + addition value ⁇ ”.
  • hydraulic oil is discharged from the electric oil pump M / O / P, and the hydraulic oil discharge flow rate of the electric oil pump M / O / P is such that the second hydraulic pressure P2 is “necessary line pressure PL ne + addition value ⁇ ”.
  • the drive response to the command of the electric oil pump M / O / P is higher than the drive response to the command of the mechanical oil pump O / P. Therefore, only the electric oil pump M / O / P is driven at time t 11 , and only the hydraulic oil discharged from the electric oil pump M / O / P flows into the third oil passage 103.
  • the total flow rate of the hydraulic oil discharge flow rate from the mechanical oil pump O / P and the hydraulic oil discharge flow rate from the electric oil pump M / O / P (the hydraulic oil flow rate flowing through the third oil passage 103) is It corresponds to the hydraulic oil discharge flow rate from the electric oil pump M / O / P.
  • the hydraulic pressure of the third oil passage 103 the total oil amount flowing (third hydraulic P3) is pressure regulated by the line pressure regulator valve 104, the actual line pressure PL R is "required line pressure PL ne + plus value ⁇ "become.
  • the hydraulic oil discharge flow rate of the mechanical oil pump O / P begins to rise. Thereby, the total flow rate starts to increase.
  • the total flow rate immediately after starting to rise is less than the pressure regulation limit flow rate in the line pressure regulating valve 104 because the hydraulic oil discharge flow rate of the mechanical oil pump O / P is small. Therefore, the pressure can be appropriately adjusted in the line pressure regulating valve 104.
  • the surplus with respect to the pressure regulation target value is released to the drain circuit, and the actual line pressure PL R is maintained at "required line pressure PL ne + plus value ⁇ ".
  • the hydraulic oil discharge flow rate of the electric oil pump M / O / P is maintained at “required line pressure PL ne + addition value ⁇ ” regardless of the hydraulic oil discharge flow rate of the mechanical oil pump O / P.
  • the total oil amount reaches the pressure regulation limit flow rate at the line pressure regulating valve 104 as the hydraulic oil discharge flow rate of the mechanical oil pump O / P increases.
  • the accelerator opening is relatively low, and the driver's required driving force at the start is low. Therefore, the drive torque increase speed after the start of the travel drive source (engine Eng, motor / generator MG) becomes relatively slow, and the increase gradient of the hydraulic oil discharge flow rate of the mechanical oil pump O / P is shown in FIG. It will be more gradual than when starting at a high opening.
  • the target hydraulic pressure PL t of the second hydraulic pressure P2 is set to “required line pressure PL ne + addition value ⁇ ”, and hydraulic oil discharge of the electric oil pump M / O / P is performed.
  • the flow rate is set to a value at which the second hydraulic pressure P2 maintains this “required line pressure PL ne + addition value ⁇ ”. Therefore, it is possible to keep small the total amount of oil in the control start point (time t 11 time), the difference between the tone pressure limit flow rate at line pressure regulating valve 104. This prevents the time required for the total flow rate to reach the pressure regulation limit flow rate from becoming redundant, even if the rising gradient of the hydraulic oil discharge flow rate of the mechanical oil pump O / P is gradual. M / O / P drive time can be prevented from increasing.
  • the actual line pressure PL R is originally has become necessary line pressure PL ne + plus value ⁇ or more, the value obtained by subtracting the required line pressure PL ne from the actual line pressure PL R, that is, the actual line pressure PL R
  • the difference from the necessary line pressure PL ne is larger than the oil pressure securing threshold value ⁇ . Therefore, immediately lowering of the hydraulic oil discharge flow rate of the electric oil pump M / O / P is started from the time t 14 time.
  • step S17 the time t at 15 time points, when the hydraulic oil discharge flow rate of the electric oil pump M / O / P reaches zero, it is determined as YES in step S17, the sub motor S / M to stop the electric oil pump M / O Stop hydraulic supply from / P completely.
  • the target oil pressure PL t of the second pressure P2 is a discharge pressure of the electric oil pump M / O / P, is set to require the line pressure PL ne or more.
  • the total flow rate becomes the pressure regulation limit flow rate from the timing when the hydraulic oil discharge flow rate of the mechanical oil pump O / P starts to increase with the start of the travel drive source (engine Eng, motor / generator MG), time to actual line pressure PL R exceeds the target hydraulic pressure PL t can be prevented from being redundant. For this reason, the drive time of the electric oil pump M / O / P can be further shortened, and the power consumption for driving the sub motor S / M can be suppressed.
  • the target hydraulic pressure PL t pressure regulation target value of the second hydraulic pressure P2.
  • the actual line pressure PL R exceeds the target hydraulic pressure PL t, total flow by suppressing the increase in the time until it can be determined that has reached the adjusted pressure limit flow rate, the electric oil pump M / O / P of the driving time Can be shortened.
  • PL t is set to a higher value as the required driving force from the driver is smaller.
  • the lower the driver's required drive force the slower the drive source torque rise rate from the travel drive source (engine Eng, motor / generator MG), and the hydraulic oil discharge flow rate of the mechanical oil pump O / P
  • the ascending slope becomes gradual.
  • the hydraulic oil discharge flow rate of the electric oil pump M / O / P can be increased in advance by setting the target hydraulic pressure PL t of the second hydraulic pressure P2 to a higher value as the required driving force is smaller. even gentle rising slope of the mechanical oil pump O / P, it is possible to keep a higher value than the required line pressure PL ne actual line pressure PL R at the control start time. As a result, the actual line pressure PL R exceeds the target hydraulic pressure PL t, it is possible to shorten the time until the total flow rate reaches the adjusted pressure limit flow rate. And the drive time of electric oil pump M / O / P can be shortened.
  • a first oil pump (mechanical oil pump O / P) driven by a travel drive source (motor / generator MG) to discharge hydraulic oil
  • a second oil pump (electric oil pump M / O / P) driven by an electric motor (sub motor S / M) different from the travel drive source (motor / generator MG) and discharging hydraulic oil
  • a pressure regulating valve (line pressure regulating valve 104) for regulating the first oil pump discharge pressure (first hydraulic pressure P1) and / or the second oil pump discharge pressure (second hydraulic pressure P2);
  • the travel drive source (motor / generator MG) is stopped and the second oil pump (electric oil pump M / O / P) is driven.
  • a hydraulic controller for starting the travel drive source (motor / generator MG) and stopping the second oil pump (electric oil pump M / O / P) from a state.
  • the hydraulic controller includes a hydraulic oil discharge flow rate of the first oil pump (mechanical oil pump O / P) and a hydraulic oil discharge flow rate of the second oil pump (electric oil pump M / O / P).
  • a configuration in which the hydraulic oil discharge flow rate of the second oil pump (electric oil pump M / O / P) is reduced when the total flow rate is equal to or higher than the pressure regulation limit flow rate of the pressure regulating valve (line pressure regulating valve 104); did.
  • the hydraulic controller determines that the total flow rate has reached the pressure regulation limit flow rate, the actual pressure regulation value (actual line pressure PL R ) by the pressure regulation valve (line pressure regulation valve 104). Is determined based on the fact that the pressure rises above the pressure regulation target value. Thereby, in addition to the effect of (1), the state of the total flow rate can be easily grasped, and the accuracy of stop control of the electric oil pump M / O / P can be easily improved.
  • the hydraulic controller (integrated controller 10) is configured so that the second oil pump discharge pressure (second hydraulic pressure P2) before the hydraulic oil discharge flow rate of the second oil pump (electric oil pump M / O / P) is reduced.
  • the target hydraulic pressure PL t and configured to be set to the desired line pressure PL ne or more.
  • the second hydraulic pressure P2 at the start of the travel drive source (motor / generator MG) can be set to a value equal to or higher than the required line pressure PL ne.
  • the time from when the hydraulic fluid discharge flow rate of the pump O / P occurs until the total flow rate reaches the pressure regulation limit flow rate can be shortened, and the drive time of the electric oil pump M / O / P can be prevented from becoming redundant. .
  • the hydraulic controller integrated controller 10
  • the required driving force from the driver is small, and configured to be set to a large value the target oil pressure PL t.
  • the total flow rate is the pressure regulation limit flow rate. The increase in the time until reaching the value can be suppressed, and the drive time of the electric oil pump M / O / P can be prevented from becoming redundant.
  • the hydraulic controller (integrated controller 10) reduces the hydraulic oil discharge flow rate of the second oil pump (electric oil pump M / O / P)
  • the second oil pump (electric oil pump M / O) / P) is configured to maintain the actual pressure regulation value (actual line pressure PL R ) by the pressure regulating valve (line pressure regulating valve 104) at the start of the decrease in the hydraulic oil discharge flow rate.
  • the actual line pressure PLR must be the required line pressure PL R even if a further acceleration request occurs while the hydraulic oil discharge flow rate of the electric oil pump M / O / P is decreasing. It can prevent falling below ne .
  • the mechanical oil pump O / P is connected to the motor output shaft MGout of the motor / generator MGout via the chain CH and is basically driven by the motor / generator MG.
  • the invention is not limited to this.
  • this mechanical oil pump O / P for example, even if it has an engine Eng and a motor / generator MG as a travel drive source, it is connected to the output shaft of the engine Eng and driven by the engine Eng. Also good.
  • the scene for starting the travel drive source is a scene for starting the engine Eng to obtain engine torque from a state where the engine Eng is stopped in order to run the EV while the ignition switch is ON.
  • the motor / generator MG may be stopped and only the engine Eng may be driven. At this time, the mechanical oil pump O / P is substantially driven by the engine Eng. At this time, the motor / generator MG does not output motor torque, but is only accompanied by rotation of the engine Eng.
  • the actual line pressure PL R is, the time of starting the decrease in the hydraulic oil discharge flow rate of the electric oil pump M / O / P
  • this invention is not restricted to this. For example, if a predetermined condition is satisfied, to release the maintenance state of the real line pressure PL R, it may be lowered to the required line pressure PL ne. Thus, it is possible to shorten the time the actual line pressure PL R is higher than the required line pressure PL ne state, it is possible to suppress the power consumption of the sub motor S / M.
  • the “predetermined condition” means that the elapsed time after the drive force request is generated is a predetermined time or more, the vehicle speed is a predetermined vehicle speed or more, and the like.
  • the predetermined time and the predetermined vehicle speed are set to values that can be predicted that no further driving force request from the driver will be generated, and are obtained in advance through experiments or the like.
  • the vehicle hydraulic control device of the present invention is applied to a hybrid vehicle having an engine Eng and a motor / generator MG.
  • the present invention is not limited to this.
  • the present invention can also be applied to an electric vehicle having only a motor / generator MG as a travel drive source, an engine vehicle having only an engine Eng, a plug-in hybrid vehicle, a fuel cell vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 油圧制御装置は、モータ/ジェネレータ(MG)によって駆動される機械式オイルポンプ(O/P)と、サブモータ(S/M)によって駆動される電動オイルポンプ(M/O/P)と、ライン圧調圧弁(104)と、を備える。モータ/ジェネレータ(MG)が停止し且つ電動オイルポンプ(M/O/P)が駆動している状態から、モータ/ジェネレータ(MG)を始動して電動オイルポンプ(M/O/P)を停止させる状態へ移行させる場合に、機械式オイルポンプ(O/P)の吐出流量と電動オイルポンプ(M/O/P)の吐出流量との合計流量が、ライン圧調圧弁(104)の調圧限界流量以上となったときに、電動オイルポンプ(M/O/P)の吐出流量を低下させる。

Description

車両用油圧制御装置および油圧制御方法
 本発明は、走行駆動源によって駆動される第1オイルポンプと、電動モータによって駆動される第2オイルポンプと、を備えた車両用油圧制御装置に関するものである。
 従来、走行駆動源によって駆動される第1オイルポンプと、走行駆動源の自動停止中に駆動される電動モータによって駆動される第2オイルポンプと、を備え、走行駆動源の再始動に伴って第2オイルポンプを停止する車両用油圧制御装置が知られている(例えば、特許文献1参照)。
 従来の油圧制御装置では、走行駆動源の再始動により、第1オイルポンプの駆動が開始した後、第1オイルポンプ吐出圧によって必要な油圧(必要ライン圧)を確保したと判断できる所定時間が経過したら第2オイルポンプを停止している。
 しかしながら、この場合では、必要ライン圧を確保することはできるものの、第2オイルポンプの駆動時間が長くなってしまい、電力消費量が増大するという問題が生じていた。
 一方、第2オイルポンプの停止タイミングが早すぎれば、第1オイルポンプ吐出圧が十分に出ておらず、必要ライン圧を確保することができずにクラッチや無段変速機といった動力伝達部材にスリップが発生することがある。
 本発明は、第2オイルポンプを停止する際、必要ライン圧を確保しつつ、第2オイルポンプを駆動する電動モータでの電力消費量を抑制することができる車両用油圧制御装置を提供することを目的とする。
特開2001-099282号公報
 本発明の車両用油圧制御装置は、第1オイルポンプと、第2オイルポンプと、調圧弁と、油圧コントローラと、を備えている。
 前記第1オイルポンプは、走行駆動源によって駆動されて作動油を吐出する。
 前記第2オイルポンプは、走行駆動源とは別の電動モータによって駆動されて作動油を吐出する。
 前記調圧弁は、第1オイルポンプ吐出圧及び/又は第2オイルポンプ吐出圧を調圧する。
 前記油圧コントローラは、調圧弁による調圧中に、走行駆動源が停止し且つ第2オイルポンプが駆動している状態から、走行駆動源を始動して第2オイルポンプを停止させる状態へ移行する際、第1オイルポンプの作動油吐出流量と第2オイルポンプの作動油吐出流量との合計流量が、調圧弁の調圧限界流量以上のとき、第2オイルポンプの作動油吐出流量を低下する。
 本発明の車両用油圧制御装置では、調圧弁による調圧中に、走行駆動源が停止し且つ第2オイルポンプが駆動している状態から、走行駆動源を始動して第2オイルポンプを停止させる状態へ移行する際、第1オイルポンプの作動油吐出流量と第2オイルポンプの作動油吐出流量との合計流量が、調圧弁の調圧限界流量以上のときに、第2オイルポンプの作動油吐出流量が低下される。
 ここで、上記合計流量が、調圧弁の調圧限界流量以上であるということは、調圧弁に対する供給油量が過剰になっている状態であり、第1オイルポンプの作動油吐出流量が十分に増大していることを意味している。これにより、第2オイルポンプの作動油吐出流量が低減しても、上記合計油量によって必要ライン圧の確保に必要な作動油流量を賄うことができる。
 さらに、上記合計流量が調圧弁の調圧限界流量以上でのタイミングで、第2オイルポンプの作動油吐出流量を低下すれば、第1オイルポンプ吐出圧のみで必要ライン圧を確保できるようになる前に第2オイルポンプの作動油吐出流量を低下させることができる。
 この結果、第2オイルポンプを不要に駆動することがなくなり、必要ライン圧を確保しつつ、第2オイルポンプを駆動する電動モータでの電力消費量を抑制することができる。
実施例の制御装置が適用されたハイブリッド車両を示す全体システム図である。 実施例のハイブリッド車両に備えられた油圧制御回路を示す油圧回路図である。 実施例の統合コントローラにて実行される電動オイルポンプ停止処理の流れを示すフローチャートである。 実施例の制御装置において、高開度発進時における、停止→発進→電動オイルポンプ停止までのアクセル開度・電動オイルポンプの作動油吐出流量・機械式オイルポンプの作動油吐出流量・合計流量・実ライン圧の各特性を示すタイムチャートである。 実施例の制御装置において、低開度発進時における、停止→発進→電動オイルポンプ停止までのアクセル開度・電動オイルポンプの作動油吐出流量・機械式オイルポンプの作動油吐出流量・合計流量・実ライン圧の各特性を示すタイムチャートである。
 以下、本発明の車両用油圧制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
 (実施例)
 まず、実施例の車両用油圧制御装置の構成を、「ハイブリッド車両の全体システム構成」、「油圧制御回路の詳細構成」、「電動オイルポンプ停止処理構成」に分けて説明する。
 [ハイブリッド車両の全体システム構成]
 図1は、実施例の制御装置が適用されたハイブリッド車両(車両の一例)を示す全体システム図である。以下、図1に基づいて、実施例のハイブリッド車両の全体システム構成を説明する。
 実施例の車両用油圧制御装置は、図1に示すハイブリッド車両に適用されている。このハイブリッド車両の駆動系は、エンジンEngと、第1クラッチCL1と、モータ/ジェネレータMGと、第2クラッチCL2と、無段変速機CVTと、ファイナルギアFGと、左駆動輪LTと、右駆動輪RTと、を備えている。
 前記エンジンEngは、走行駆動源であり、例えば希薄燃焼可能なエンジン構造である。このエンジンEngは、スロットルアクチュエータによる吸入空気量と、インジェクタによる燃料噴射量と、点火プラグによる点火時期、の制御により、エンジントルクが指令値と一致するように制御される。また、このエンジンEngは、第1クラッチCL1を締結し、モータ/ジェネレータMGからのモータトルクによって始動される。
 前記第1クラッチCL1は、エンジンEngとモータ/ジェネレータMGとの間の位置に介装される。この第1クラッチCL1としては、例えば、ダイアフラムスプリングによる付勢力にて常時解放(ノーマルオープン)の乾式クラッチが用いられ、エンジンEngからモータ/ジェネレータMG間の完全締結/半締結/解放を行なう。この第1クラッチCL1が完全締結状態ならモータトルクとエンジントルクが第2クラッチCL2へと伝達され、解放状態ならモータトルクのみが第2クラッチCL2へと伝達される。なお、完全締結/半締結/解放の制御は、油圧アクチュエータに対するストローク制御にて行われる。
 前記モータ/ジェネレータMGは、走行駆動源となる交流同期モータ構造であり、発進時や走行時に駆動トルク制御や回転数制御を行うと共に、制動時や減速時に回生ブレーキ制御による車両運動エネルギーのバッテリBATへの回収を行なうものである。さらに、ここではエンジン始動モータとしても用いられる。
 前記第2クラッチCL2は、モータ/ジェネレータMGと左右駆動輪LT,RTとの間に介装された摩擦締結要素であり、発進時に締結されて走行駆動源(エンジンEng及び/又はモータ/ジェネレータMG)の駆動力を左右駆動輪LT,RTへと伝達する発進クラッチ(動力伝達部材)である。
 この第2クラッチCL2は、ここでは油圧作動による湿式の多板摩擦クラッチから構成され、第2クラッチ油圧により完全締結/スリップ締結/解放が制御される。実施例の第2クラッチCL2は、遊星ギアによる無段変速機CVTの前後進切替機構に設けられた前進クラッチFCと後退ブレーキRBを流用している。つまり、前進走行時には、前進クラッチFCが第2クラッチCL2とされ、後退走行時には、後退ブレーキRBが第2クラッチCL2とされる。
 前記無段変速機CVTは、プライマリプーリPriと、セカンダリプーリSecと、このプライマリプーリPriとセカンダリプーリSecの間に掛け渡されたプーリベルトVと、を有するベルト式無段変速機であり、走行駆動源(エンジンEng及び/又はモータ/ジェネレータMG)の駆動力を左右駆動輪LT,RTへと伝達する動力伝達部材である。プライマリプーリPriとセカンダリプーリSecは、それぞれ油圧が供給されることでプーリベルトVを挟持しつつプーリ幅を変更し、プーリベルトVを挟持する面の径を変更して変速比(プーリ比)を自在に制御する。
 さらに、モータ/ジェネレータMGのモータ出力軸MGoutには、チェーンCHを介して機械式オイルポンプO/P(第1オイルポンプ)の入力ギアが接続されている。この機械式オイルポンプO/Pは、走行駆動源、基本的にはモータ/ジェネレータMGの回転駆動力によって駆動されて油圧供給を行うオイルポンプであり、例えばギアポンプやベーンポンプ等が用いられる。また、この機械式オイルポンプO/Pは、モータ/ジェネレータMGの回転方向に拘らず作動油の吐出が可能となっている。
 さらに、ここでは、モータ/ジェネレータMGとは別に設けられたサブモータS/M(電動モータ)の回転駆動力によって駆動されて油圧供給を行う電動オイルポンプM/O/P(第2オイルポンプ)が設けられている。
 この電動オイルポンプM/O/Pは、三相交流モータ構造であり、回転数制御による作動油の吐出流量の制御が可能となっている。
 そして、この機械式オイルポンプO/Pと電動オイルポンプM/O/Pは、第1,第2クラッチCL1,CL2及び無段変速機CVTへ供給する作動油圧(制御圧)を作り出す油圧供給源OILとなっている。この油圧供給源OILでは、機械式オイルポンプO/Pからの吐出流量が十分であるときはサブモータS/Mを停止して電動オイルポンプM/O/Pを停止させる。また、機械式オイルポンプO/Pからの吐出流量が低下すると、サブモータS/Mを駆動して電動オイルポンプM/O/Pを駆動させ、この電動オイルポンプM/O/Pからも作動油を吐出させる。
 そして、このハイブリッド車両は、第1クラッチCL1とモータ/ジェネレータMGと第2クラッチCL2により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な駆動態様として「EVモード」と「HEVモード」を有する。
 前記「EVモード」は、第1クラッチCL1を解放し、第2クラッチCL2を締結してモータ/ジェネレータMGのみを走行駆動源に有する電気自動車モードである。
 前記「HEVモード」は、第1,第2クラッチCL1,CL2を締結してエンジンEngとモータ/ジェネレータMGを走行駆動源に有するハイブリッド車モードである。
 実施例のハイブリッド車両の制御系は、図1に示すように、インバータINVと、バッテリBATと、統合コントローラ10と、変速機コントローラ11と、クラッチコントローラ12と、エンジンコントローラ13と、モータコントローラ14と、バッテリコントローラ15と、を備えている。
 前記インバータINVは、直流/交流の変換を行い、モータ/ジェネレータMGの駆動電流を生成する。また生成する駆動電流の位相を逆転することでモータ/ジェネレータMGの出力回転を反転する。
 前記バッテリBATは、充放電可能な二次電池であり、モータ/ジェネレータMGへの電力供給と、モータ/ジェネレータMGが回生した電力の充電を行う。
 前記統合コントローラ10は、バッテリ状態(ここでは、バッテリコントローラ15から入力)、アクセル開度(ここでは、アクセル開度センサ21により検出)、及び車速(ここでは、変速機出力回転数に同期した値、変速機出力回転数センサ22により検出)から運転者の要求駆動力に応じた目標駆動トルクを演算する。そして、その結果に基づき各アクチュエータ(モータ/ジェネレータMG、エンジンEng、第1クラッチCL1、第2クラッチCL2、無段変速機CVT)に対する指令値を演算し、各コントローラ11~15へと送信する。
 また、この統合コントローラ10は、後述するライン圧調圧弁104による調圧中に、エンジンEng及びモータ/ジェネレータMGが停止し且つ電動オイルポンプM/O/Pが駆動している状態から、エンジンEng及び/又はモータ/ジェネレータMGを始動して電動オイルポンプM/O/Pを停止させる状態へと移行させる油圧コントローラである。
 前記変速機コントローラ11は、統合コントローラ10からの変速指令を達成するように変速制御を行なう。この変速制御は、油圧制御回路100を介して供給されたライン圧PLを元圧として、無段変速機CVTのプライマリプーリPriと、セカンダリプーリSecに供給する油圧を制御することで行われる。
 そして、ライン圧PLからプライマリプーリPriに供給する油圧と、セカンダリプーリSecに供給する油圧とを作り出した際に生じた余剰圧は、第1クラッチCL1や第2クラッチCL2の冷却や潤滑に回される。
 前記クラッチコントローラ12は、第2クラッチ入力回転数(モータ回転数センサ23により検出)、第2クラッチ出力回転数(第2クラッチ出力回転数センサ24により検出)、クラッチ油温(作動油温センサ25により検出)を入力する。また、このクラッチコントローラ12は、統合コントローラ10からの第1クラッチ制御指令及び第2クラッチ制御指令を達成するように、第1クラッチ制御、第2クラッチ制御をそれぞれ行う。この第1クラッチ制御は、油圧制御回路100を介して供給されたライン圧PLを元圧として、第1クラッチCL1に供給される油圧を制御することで行われる。また、第2クラッチ制御は、油圧制御回路100を介して供給されたライン圧PLを元圧として、第2クラッチCL2に供給される油圧を制御することで行われる。
 そして、ライン圧PLから第1クラッチCL1に供給される油圧と、第2クラッチCL2に供給される油圧とを作り出した際に生じた余剰圧は、第1クラッチCL1や第2クラッチCL2の冷却や潤滑に回される。
 なお、無段変速機CVTのプライマリプーリPri、セカンダリプーリSec、第2クラッチCL2に対し、ライン圧PLを元圧とした制御油圧を供給する回路を、ここでは「変速機構用油圧系Sup」という。また、第2クラッチCL2の冷却や潤滑を行う回路を、ここでは「変速機構の冷却/潤滑系Lub」という(図2参照)。
 前記エンジンコントローラ13は、エンジン回転数(エンジン回転数センサ26により検出)を入力すると共に、統合コントローラ10からの目標エンジントルクに対応したエンジントルク指令値を達成するようにエンジンEngのトルク制御を行なう。
 前記モータコントローラ14は、モータ回転数(モータ回転数センサ23により検出)を入力すると共に、統合コントローラ10からの目標モータトルクに対応したモータトルク指令値やモータ回転数指令値を達成するようにモータ/ジェネレータMGの制御を行なう。
 前記バッテリコントローラ15は、バッテリBATの充電状態を管理し、その情報を統合コントローラ10へと送信する。なお、バッテリBATの充電状態は、バッテリ電圧センサ15aが検出する電源電圧と、バッテリ温度センサ15bが検出するバッテリ温度とに基づいて演算される。
 [油圧制御回路の詳細構成]
 図2は、実施例のハイブリッド車両に備えられた油圧制御回路を示す油圧回路図である。以下、図2に基づいて、実施例の油圧制御回路の詳細構成を説明する。
 前記油圧制御回路100は、機械式オイルポンプO/Pと電動オイルポンプM/O/Pからなる油圧供給源OILの吐出圧をライン圧PLに調圧し、変速機構用油圧系Supに供給する。また、この油圧制御回路100では、変速機構用油圧系Supに油圧供給した際に生じた余剰圧を、変速機構の冷却/潤滑系Lubに供給する。さらに、この油圧制御回路100では、切替弁107を切り替えることで、電動オイルポンプM/O/Pから吐出された作動油を変速機構の冷却/潤滑系Lubに直接供給する。
 すなわち、実施例の油圧制御回路100は、図2に示すように、機械式オイルポンプO/Pと、電動オイルポンプM/O/Pと、第1油路101と、第1フラッパー弁101aと、第2油路102と、第2フラッパー弁102aと、第3油路103と、ライン圧調圧弁104と、ライン圧油路105と、冷却系油路106と、切替弁107と、を有している。
 前記機械式オイルポンプO/Pは、吐出ポート110aに第1油路101が接続され、吸込ポート110bにオイルパン108に回収された作動油を吸い込む吸込回路109aが接続されている。そして、この機械式オイルポンプO/Pは、走行駆動源(基本的にモータ/ジェネレータMG)が回転駆動することで駆動し、吸込回路109aを介してオイルパン108から作動油を吸い込み、第1油路101へと作動油を吐出する。このときの吐出流量は、走行駆動源の回転数に依存する。
 前記電動オイルポンプM/O/Pは、吐出ポート111aに第2油路102が接続され、吸込ポート111bにオイルパン108に回収された作動油を吸い込む吸込回路109aが接続されている。そして、この電動オイルポンプM/O/Pは、サブモータS/Mが回転駆動することで駆動し、吸込回路109aを介してオイルパン108から作動油を吸い込み、第2油路102へと作動油を吐出する。
 ここで、電動オイルポンプM/O/Pの吐出流量は、ポンプ回転数に依存する。つまり、電動オイルポンプM/O/Pが一回転することで、この電動オイルポンプM/O/Pから吐出する流量は決まっており、ポンプ回転数とポンプ吐出流量はある回転数(流量)までは比例関係になっている。
 前記第1油路101は、一端が機械式オイルポンプO/Pの吐出ポート110aに接続され、他端に第1フラッパー弁101aが設けられている。この第1油路101は、機械式オイルポンプO/Pから吐出された作動油が流れる油路であり、この第1油路101における油圧(以下、「第1油圧P1」という)が、いわゆる機械式オイルポンプO/Pから供給される油圧(第1オイルポンプ吐出圧)となる。この第1油路101は、第1フラッパー弁101aが開くと、第3油路103と連通する。
 前記第2油路102は、一端が電動オイルポンプM/O/Pの吐出ポート111aに接続され、他端に第2フラッパー弁102aが設けられている。この第2油路102は、電動オイルポンプM/O/Pから吐出された作動油が流れる油路であり、この第2油路102における油圧(以下、「第2油圧P2」という)が、いわゆる電動オイルポンプM/O/Pから供給される油圧(第2オイルポンプ吐出圧)となる。この第2油路102は、第2フラッパー弁102aが開くと、第3油路103と連通する。
 また、この第2油路102は、途中位置に切替弁107が介装されている。つまり、第2油路102は途中位置が分断され、一方が切替弁107の切替弁入力ポート107aに接続され、他方が切替弁107の切替弁出力ポート107bに接続されている。
 さらに、この第2油路102には、第2油圧P2を検出する第2圧力センサ27と、圧力リーク弁27aとが設けられている。そして、第2圧力センサ27によって監視されている第2油圧P2が所定のリリーフ圧Preに達したら、圧力リーク弁27aが開いて、第2油路102内の作動油をドレンするようになっている。
 前記第1フラッパー弁101aは、機械式オイルポンプO/P側への作動油の逆流を防止する弁であり、第1油圧P1が第3油路103における油圧(以下、「第3油圧P3」という)よりも大きくなったら開放する特性を有する。また、前記第2フラッパー弁102aは、電動オイルポンプM/O/P側への作動油の逆流を防止する弁であり、第2油圧P2が第3油圧P3よりも大きくなったら開放する特性を有する。
 ここで、第3油圧P3の大きさは、第1油圧P1と第2油圧P2のうち高い方の油圧で決まる。つまり、この第1,第2フラッパー弁101a,102aは、第1油圧P1と第2油圧P2のうち高い方の油圧に対応した方が開き、他方が閉じる。これにより、第3油圧P3は、フラッパー弁が開いた方の油圧と同じ大きさになる。
 なお、第1,第2フラッパー弁101a,102aは、第1油圧P1と第2油圧P2の間に油圧差がないときには両方とも同一の開度で開く。そして、油圧差がない状態から、第1油圧P1と第2油圧P2のうちいずれか一方の油圧が高くなったら、この油圧差に基づいて、高い方の油圧に対応したフラッパー弁の開度が次第に大きくなっていき、他方のフラッパー弁が次第に閉まっていく。
 前記第3油路103は、一端が二股に分かれており、二股に分かれたうちの一方が第1フラッパー弁101aに接続され、他方が第2フラッパー弁102aに接続され、第1油路101と第2油路102の双方からの作動油の流入を可能としている。そして、この第3油路103の他端は、ライン圧調圧弁104の入力ポート104aに接続されている。すなわち、この第3油路103は、油圧供給源OIL(機械式オイルポンプO/P及び/又は電動オイルポンプM/O/P)から吐出された作動油が流れる油路であり、この第3油路103における油圧である第3油圧P3は、ライン圧調圧弁104によって調圧されるライン圧PLの元圧になる。
 前記ライン圧調圧弁104は、第3油圧P3を調圧して、変速機構用油圧系Supへ供給するライン圧PLを作り出す圧力調整弁(調圧弁)である。すなわち、このライン圧調圧弁104では、第1油圧P1及び/又は第2油圧が調圧目標値になるように調圧する。
 このライン圧調圧弁104は、入力ポート104aに第3油路103が接続され、出力ポート104bに変速機構用油圧系Supに繋がるライン圧油路105が接続されている。そして、このライン圧調圧弁104では、統合コントローラ10からの指示値によってスプールを移動させ、第3油路103内の作動油を図示しないドレン回路に逃がすことで、ライン圧PLを調圧する。
 ここで、ライン圧調圧弁104では、作動油を逃がすドレンポートの開口面積等により、ドレン回路への作動油の逃がし量の上限が決まっている。そのため、入力ポート104aから流入する作動油が過剰であり、ライン圧PLを調圧目標値にするために必要な逃がし量(ドレン量)が、ライン圧調圧弁104での逃がし量の上限を超えると、作動油を逃がし切れず、実ライン圧PLR(ライン圧油路105における実油圧)が、調圧目標値を上回る。
 前記ライン圧油路105は、ライン圧調圧弁104によって調圧されたライン圧PLを変速機構用油圧系Supに供給する油路である。ライン圧油路105には、圧力調整弁105aが設けられ、ライン圧PLから変速機構用油圧系Supに必要な油圧を差し引いた余剰圧を、変速機構の冷却/潤滑系Lubに逃がすようになっている。
 なお、このライン圧油路105には、ライン圧PL(実ライン圧PLR)を検出するライン圧センサ28が設けられており、ライン圧調圧弁104によって調圧されたライン圧PLは、このライン圧センサ28によって監視されている。
 前記冷却系油路106は、一端が切替弁107の冷却側ポート107cに接続され、他端が変速機構の冷却/潤滑系Lubに繋がり、切替弁107が冷却モードに切り替えられた際、電動オイルポンプM/O/Pから吐出された作動油を、変速機構の冷却/潤滑系Lubへ供給する。
 なお、変速機構の冷却/潤滑系Lubにて使用された作動油は、ドレン回路109bを介してオイルパン108に回収される。
 前記切替弁107は、第2油路102に設けられ、統合コントローラ10からの切替指令に基づいて、電動オイルポンプM/O/Pから吐出された作動油を第3油路103へ供給させたり、電動オイルポンプM/O/Pから吐出された作動油を変速機構の冷却/潤滑系Lubへ供給させたりする。
 すなわち、この切替弁107は、オン・オフソレノイドと切替バルブを有しており、切替弁入力ポート107aを切替弁出力ポート107bに連通させたとき、第2油路102が完全開通する。また、切替弁入力ポート107aを冷却側ポート107cに連通させたとき、第2油路102は冷却系油路106に切り替えられる。
 なお、前記変速機構用油圧系Supは、ライン圧油路105に設けられた変速機用調圧弁112aと、ライン圧油路105に設けられた第2クラッチ用調圧弁112bと、を有している。そして、変速機用調圧弁112aにより、ライン圧PLを元圧にしてプライマリプーリPriやセカンダリプーリSecに供給される油圧が調圧された上、プライマリプーリPriやセカンダリプーリSecに油圧供給がなされる。また、第2クラッチ用調圧弁112bにより、ライン圧PLを元圧にして前進クラッチFCや後退ブレーキRBに供給される油圧が調圧された上、前進クラッチFCや後退ブレーキRBに油圧供給がなされる。
 [電動オイルポンプ停止処理構成]
 図3は、実施例の統合コントローラにて実行される電動オイルポンプ停止処理の流れを示すフローチャートである。以下、実施例の電動オイルポンプ停止処理構成を表す図3の各ステップについて説明する。なお、この電動オイルポンプ停止処理は、走行駆動源(エンジンEng及びモータ/ジェネレータMG)とサブモータS/Mを全て停止したアイドルストップ制御になったら実行することを前提とする。
 ステップS1では、運転者からの駆動力要求が発生したか否かを判断する。YES(駆動力要求あり)の場合には、油圧供給源OILからの油圧供給が必要としてステップS2へ進む。NO(駆動力要求なし)の場合には、アイドルストップ制御を継続するとして、ステップS1を繰り返す。
 ここで、駆動力要求の発生は、アクセルペダルの踏み込み動作が生じたことで判断する。
 ステップS2では、ステップS1での駆動力要求ありとの判断に続き、アクセル開度を検出して、ステップS3へ進む。
 ここで、アクセル開度は、アクセル開度センサ21によって検出する。また、このとき、検出したアクセル開度に現れる運転者からの要求駆動力に応じて走行駆動源(エンジンEng、モータ/ジェネレータMG)を始動する。なお、走行駆動源として駆動するのは、エンジンEngとモータ/ジェネレータMGのうち、いずれか一方又は双方であり、要求駆動力に応じて決める。
 ステップS3では、ステップS2のアクセル開度の検出に続き、このステップS2において検出したアクセル開度が、予め設定した目標切替閾値APOthより大きいか否かを判断する。YES(アクセル開度>目標切替閾値APOth)の場合には、高開度発進であるとしてステップS4へ進む。NO(アクセル開度≦目標切替閾値APOth)の場合には、低開度発進であるとしてステップS5へ進む。
 ここで、「目標切替閾値APOth」とは、走行駆動源の始動後における駆動源トルク(エンジントルク、モータトルク)の上昇速度(変化速度)が速いか遅いかを区分する閾値であり、任意に設定される。アクセル開度がこの目標切替閾値APOthよりも大きければ、駆動源トルクの上昇速度が速いと判断し、アクセル開度がこの目標切替閾値APOth以下であれば、駆動源トルクの上昇速度が遅いと判断する。
 ステップS4では、ステップS3でのアクセル開度>目標切替閾値APOthとの判断に続き、電動オイルポンプM/O/Pから供給される油圧である第2油圧P2の目標値(目標油圧PLt)を、「必要ライン圧PLne」に設定し、サブモータS/Mを駆動して電動オイルポンプM/O/Pを始動すると共に、ライン圧調圧弁104での調圧目標値を、第2油圧P2の目標油圧PLtである「必要ライン圧PLne」に設定し、ステップS6へ進む。
 ここで、第2油圧P2の目標油圧PLtを「必要ライン圧PLne」設定することで、電動オイルポンプM/O/Pの作動油吐出油量(回転数に比例)は、第2油圧P2を「必要ライン圧PLne」(=目標油圧PLt)に維持するように制御される。
 また、「必要ライン圧PLne」とは、走行駆動源(エンジンEng及びモータ/ジェネレータMG)から左右駆動輪LT,RTまでの駆動力伝達経路に配置された動力伝達部材(第2クラッチCL2、無段変速機CVT)を適切に制御するために必要な最低限の油圧であり、アクセル開度に現れる運転者の要求駆動力に比例して変化する。
 ステップS5では、ステップS3でのアクセル開度≦目標切替閾値APOthとの判断に続き、電動オイルポンプM/O/Pから供給される油圧である第2油圧P2の目標値(目標油圧PLt)を、必要ライン圧PLneに所定の上乗せ値αを加算した値(「必要ライン圧PLne+上乗せ値α」)に設定し、サブモータS/Mを駆動して電動オイルポンプM/O/Pを始動すると共に、ライン圧調圧弁104での調圧目標値を、第2油圧P2の目標油圧PLtである「必要ライン圧PLne+上乗せ値α」に設定し、ステップS6へ進む。
 ここで、第2油圧P2の目標油圧PLtを「必要ライン圧PLne+上乗せ値α」に設定することで、電動オイルポンプM/O/Pの作動油吐出油量(回転数に比例)は、第2油圧P2を「必要ライン圧PLne+上乗せ値α」(=目標油圧PLt)に維持するように制御される。
 また、「上乗せ値α」とは、目標油圧PLtと必要ライン圧PLneとの差異であり、運転者の駆動力要求が低く、必要ライン圧PLneが低いほど大きい値に設定される。このとき、必要ライン圧PLneは、アクセル開度に現れる運転者からの要求駆動力に応じて設定され、この要求駆動力が低いほど、低くなる。そのため、「上乗せ値α」をこの必要ライン圧PLneが低いほど大きい値に設定することで、アクセル開度≦目標切替閾値のときの第2油圧P2の目標油圧PLtは、運転者からの要求駆動力が小さいほど高い値に設定されることとなる。
 ここで、サブモータS/Mによって駆動される電動オイルポンプM/O/Pの指令に対する駆動応答性は、走行駆動源(エンジンEng、モータ/ジェネレータMG)によって駆動される機械式オイルポンプO/Pの指令に対する駆動応答性よりも高くなっている。そのため、電動オイルポンプM/O/Pの回転数は、指令の出力とほぼ同時に立ち上がるが、機械式オイルポンプO/Pの回転数は、指令の出力に対してタイムラグを持って立ち上がる。
 すなわち、ステップS2において、走行駆動源に対して始動指令が出力され、走行駆動源(エンジンEng、モータ/ジェネレータMG)が始動することで、機械式オイルポンプO/Pが駆動される。一方、ステップS4又はステップS5において、サブモータS/Mに対して駆動指令が出力され、サブモータS/Mが駆動することで、電動オイルポンプM/O/Pが駆動される。このとき、先に電動オイルポンプM/O/Pの作動油吐出油量が立ち上り、遅れて機械式オイルポンプO/Pの作動油吐出油量が立ち上る。
 ステップS6では、ステップS4での目標油圧PLt=必要ライン圧PLneとの設定、又は、ステップS5での目標油圧PLt=必要ライン圧PLne+上乗せ値αとの設定のいずれかに続き、実ライン圧PLRを検出し、ステップS7へ進む。
 ここで、「実ライン圧PLR」は、ライン圧センサ28によって検出される。
 ステップS7では、ステップS6での実ライン圧PLRの検出に続き、このステップS6において検出された実ライン圧PLRが、ステップS4又はステップS5において設定されたライン圧調圧弁104での調圧目標値を上回ったか否かを判断する。YES(実ライン圧PLR>調圧目標値)の場合には、機械式オイルポンプO/Pからの作動油吐出流量と、電動オイルポンプM/O/Pからの作動油吐出流量との合計流量(第3油路103を流れる作動油流量)が、ライン圧調圧弁104の調圧限界流量に達したとして、ステップS8へ進む。NO(実ライン圧PLR≦調圧目標値)の場合には、上記合計流量が、ライン圧調圧弁104の調圧限界流量に達していないとして、ステップS6へ戻り、電動オイルポンプM/O/P及び機械式オイルポンプO/Pの駆動を継続する。
 ステップS8では、ステップS7での実ライン圧PLR>調圧目標値との判断に続き、再度実ライン圧PLRを検出し、ステップS9へ進む。
 ステップS9では、ステップS8での実ライン圧PLRの検出に続き、このステップS8において検出された実ライン圧PLRから必要ライン圧PLneを差し引いた値が、予め設定した油圧確保閾値β以上であるか否かを判断する。YES(実ライン圧PLR-必要ライン圧PLne≧油圧確保閾値β)の場合には、実ライン圧PLRが十分に上昇したとしてステップS10へ進む。NO(実ライン圧PLR-必要ライン圧PLne<油圧確保閾値β)の場合には、実ライン圧PLRが十分に上昇していないとしてステップS8へ戻り、電動オイルポンプM/O/P及び機械式オイルポンプO/Pの駆動を継続する。
 ここで、「油圧確保閾値β」とは、機械式オイルポンプO/Pからの作動油吐出流量と、電動オイルポンプM/O/Pからの作動油吐出流量との合計流量(第3油路103を流れる作動油流量)が、必要ライン圧PLneの確保に必要な作動油流量を賄う程度に十分上昇したと判断できる値であり、任意に設定する。
 ステップS10では、ステップS9での実ライン圧PLR-必要ライン圧PLne≧油圧確保閾値βとの判断に続き、機械式オイルポンプO/Pの作動油吐出流量が十分に増大しているとして、電動オイルポンプM/O/Pの作動油吐出流量を低下させ、ステップS11へ進む。
 このとき、作動油吐出流量の下げ勾配(低下速度変化)は、予め設定した所定値とする。また、作動油吐出流量を低下させるには、電動オイルポンプM/O/Pの目標回転数を低下させる。
 ステップS11では、ステップS10での電動オイルポンプM/O/Pの作動油吐出流量の低下に続き、再度実ライン圧PLRを検出し、ステップS12へ進む。
 ステップS12では、ステップS11での実ライン圧PLRの検出に続き、このステップS11において検出された実ライン圧PLRが低下した又は維持されているか否かを判断する。YES(実ライン圧PLR低下又は維持)の場合には、電動オイルポンプM/O/Pの作動油吐出流量の低下効果があるとして、ステップS13へ進む。NO(実ライン圧PLR上昇)の場合には、電動オイルポンプM/O/Pの作動油吐出流量の低下効果がないとして、ステップS10へと戻り、下げ勾配を維持したまま電動オイルポンプM/O/Pの作動油吐出流量の低下を継続する。
 ステップS13では、ステップS12での実ライン圧PLR低下又は維持との判断に続き、実ライン圧PLRが低下しすぎないように、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配(低下速度変化)を緩やかになるように変更し、ステップS14へ進む。
 ここで、下げ勾配の変更は、予め設定した値分緩やかにすることで行う。
 ステップS14では、ステップS13での下げ勾配の変更に続き、再度実ライン圧PLRを検出し、ステップS15へ進む。
 ステップS15では、ステップS14での実ライン圧PLRの検出に続き、このステップS14において検出された実ライン圧PLRが維持されているか否かを判断する。YES(実ライン圧PLR維持)の場合には、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配と、機械式オイルポンプO/Pの作動油流量の上昇勾配とのバランスが取れているとしてステップS16へ進む。NO(実ライン圧PLR低下)の場合には、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配が、機械式オイルポンプO/Pの作動油流量の上昇勾配よりも急激であるとして、ステップS13へ戻り、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配(低下速度変化)がさらに緩やかになるように変更する。
 ステップS16では、ステップS15での実ライン圧PLR維持との判断に続き、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配(低下速度変化)を維持したまま、電動オイルポンプM/O/Pの作動油吐出流量の低下を継続し、ステップS17へ進む。
 ステップS17では、ステップS16での電動オイルポンプM/O/Pの作動油吐出流量の低下継続に続き、この電動オイルポンプM/O/Pの作動油吐出流量がゼロになったか否かを判断する。YES(電動オイルポンプ作動油吐出流量=ゼロ)の場合には、第2油圧P2はゼロになったとして、サブモータS/Mを停止して電動オイルポンプM/O/Pを停止し、エンドへ進む。NO(電動オイルポンプ作動油吐出流量≠ゼロ)の場合には、第2油圧P2がゼロではないとして、ステップS16へ戻り、電動オイルポンプM/O/Pの作動油吐出流量の低下を継続する。
 次に、実施例の車両用油圧制御装置における作用を、「高開度発進時の電動オイルポンプ停止作用」と、「低開度発進時の電動オイルポンプ停止作用」とに分けて説明する。
 [高開度発進時の電動オイルポンプ停止作用]
 図4は、実施例の制御装置において、高開度発進時における、車両停止→発進→電動オイルポンプ停止までのアクセル開度・電動オイルポンプの作動油吐出流量・機械式オイルポンプの作動油吐出流量・合計流量・実ライン圧の各特性を示すタイムチャートである。以下、図4に基づき、実施例の高開度発進時の電動オイルポンプ停止作用を説明する。
 図4に示す時刻t1以前では、アクセル開度がゼロであり、駆動力要求が生じていない。そのため、図3に示すステップS1を繰り返す。なお、このときアイドルストップ制御が行われ、走行駆動源であるエンジンEng及びモータ/ジェネレータMGと、サブモータS/Mは全て停止されている。そのため、機械式オイルポンプO/P及び電動オイルポンプM/O/Pは、いずれも停止しており、油圧供給源OILからの油圧供給が一切停止することで、油圧制御回路100内の作動油はリーク等により抜ける。
 時刻t1時点においてアクセルペダルが踏み込まれると、駆動力要求が生じたとして、ステップS1→ステップS2へと進んでアクセル開度が検出されると共に、走行駆動源(エンジンEng、モータ/ジェネレータMG)が始動される。
 ここで、時刻t1時点におけるアクセル開度は、目標切替閾値APOthを上回っているので、ステップS3→ステップS4へと進み、第2油圧P2の目標油圧PLtを、「必要ライン圧PLne」に設定し、サブモータS/Mを駆動する。
 また、ライン圧調圧弁104の調圧目標値も、「必要ライン圧PLne」に設定される。 
 これにより、電動オイルポンプM/O/Pから作動油が吐出され、電動オイルポンプM/O/Pの作動油吐出油量が、第2油圧P2が「必要ライン圧PLne」を維持する値になる。
 また、ここで、電動オイルポンプM/O/Pの指令に対する駆動応答性は、機械式オイルポンプO/Pの指令に対する駆動応答性よりも高い。そのため、時刻t1時点では、電動オイルポンプM/O/Pのみが駆動し、第3油路103へは、電動オイルポンプM/O/Pから吐出された作動油のみが流れ込む。このため、機械式オイルポンプO/Pからの作動油吐出流量と、電動オイルポンプM/O/Pからの作動油吐出流量との合計流量(第3油路103を流れる作動油流量)は、電動オイルポンプM/O/Pからの作動油吐出流量と一致する。
 さらに、この合計油量が流れる第3油路103の油圧(第3油圧P3)は、ライン圧調圧弁104によって調圧され、実ライン圧PLRが「必要ライン圧PLne」になる。
 そして、時刻t2時点において、機械式オイルポンプO/Pからの作動油の吐出が開始すると、機械式オイルポンプO/Pの作動油吐出流量が上昇し始める。これにより、上記合計流量も上昇を開始する。
 しかしながら、上昇を開始した直後の合計流量は、機械式オイルポンプO/Pの作動油吐出流量が少ないため、ライン圧調圧弁104における調圧限界流量を下回っている。そのため、ライン圧調圧弁104において適切に調圧可能であり、このライン圧調圧弁104に供給された合計油量のうち、調圧目標値に対する余剰分がドレン回路へと逃がされ、実ライン圧PLRは「必要ライン圧PLne」に維持される。一方、電動オイルポンプM/O/Pの作動油吐出流量は、増加していく機械式オイルポンプO/Pの作動油吐出流量に拘わらず、「必要ライン圧PLne」を維持する値に設定され続ける。
 時刻t3時点において、機械式オイルポンプO/Pの作動油吐出流量の上昇に伴い、合計油量がライン圧調圧弁104での調圧限界流量に達したら、このライン圧調圧弁104に供給されている油量が過剰となり、ライン圧調圧弁104での適切な調圧ができなくなる。つまり、実ライン圧PLRを調圧目標値にするために必要な逃がし量(ドレン量)が、ライン圧調圧弁104での逃がし量の上限を超えてしまい、ライン圧油路105へと流れる作動油量が上昇する。この結果、実ライン圧PLRが「必要ライン圧PLne」(=調圧目標値)以上になる。これにより、ステップS6→ステップS7→ステップS8へと進む。
 このとき、走行駆動源(エンジンEng、モータ/ジェネレータMG)の回転は上昇し続け、これに伴って機械式オイルポンプO/Pの作動油吐出油量は増加する。そのため、上記合計油量も増加し、実ライン圧PLRは上昇し続ける。
 そして、時刻t4時点において、上昇した実ライン圧PLRから必要ライン圧PLneを差し引いた値、つまり、実ライン圧PLRと必要ライン圧PLneとの差異が、油圧確保閾値βに達したら、合計油量が必要ライン圧PLneの確保に必要な程度に十分増加したとして、ステップS9→ステップS10へと進む。そして、電動オイルポンプM/O/Pの作動油吐出流量の低下を開始する。
 一方、ステップS10へと進んで電動オイルポンプM/O/Pの作動油吐出流量の低下を開始する際、この作動油吐出流量を所定の下げ勾配で低下させる。そして、ステップS11→ステップS12へと進み、電動オイルポンプM/O/Pの作動油吐出流量を低下した結果、実ライン圧PLRが低下又は維持されたか否かを判断する。
 ここで、電動オイルポンプM/O/Pの作動油吐出流量の低下量が、機械式オイルポンプO/Pの作動油吐出流量の増加量を下回れば、実ライン圧PLRは上昇を継続する。また、電動オイルポンプM/O/Pの作動油吐出流量の低下量が、機械式オイルポンプO/Pの作動油吐出流量の増加量を上回れば、実ライン圧PLRが低下する。さらに、電動オイルポンプM/O/Pの作動油吐出流量の低下量が、機械式オイルポンプO/Pの作動油吐出流量の増加量と同等であれば、実ライン圧PLRが維持される。
 そして、実ライン圧PLRが低下又は維持されれば、ステップS13へと進んで上記下げ勾配を緩やかにし、ステップS14→ステップS15へと進んで、下げ勾配を緩やかにした結果、実ライン圧PLRが維持されるか否かを判断する。
 ここで、下げ勾配が急(作動油吐出流量の低下速度変化が速い)な場合は、電動オイルポンプM/O/Pの作動油吐出流量の低下量が、機械式オイルポンプO/Pの作動油吐出流量の増加量を上回ってしまい、実ライン圧PLRが低下し続ける。そのため、電動オイルポンプM/O/Pの作動油吐出流量の低下量と、機械式オイルポンプO/Pの作動油吐出流量の増加量とが同等になるように、この電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配を調整する。
 そして、実ライン圧PLRが維持されれば、ステップS16へと進んで、上記下げ勾配を維持したまま、電動オイルポンプM/O/Pの作動油吐出流量の低下を継続する。すなわち、実ライン圧PLRを、電動オイルポンプM/O/Pの作動油吐出流量を低下し始めたときの値に維持したまま、電動オイルポンプM/O/Pの作動油吐出流量を低下させる。
 これにより、実ライン圧PLRを、必要ライン圧PLneよりも少なくとも油圧確保閾値β分は高い値に維持することができ、電動オイルポンプM/O/Pの作動油吐出流量の低下開始後、要求駆動力が増加して必要ライン圧PLneが上昇しても、実ライン圧が必要ライン圧PLneを下回ることを防止できる。特に、発進直後では、さらなる加速要求(アクセルペダルの踏み増し)が生じやすい。しかしながら、実ライン圧PLRを必要ライン圧PLneより高い値に維持することで、さらなる要求駆動力の増加に対して、変速制御や無段変速機CVTにおける挟持力の増大を行うことができる。
 そして、時刻t5時点において、電動オイルポンプM/O/Pの作動油吐出流量がゼロになったら、ステップS17においてYESと判断し、サブモータS/Mを停止してこの電動オイルポンプM/O/Pからの油圧供給を完全に停止する。
 このように、実施例の制御装置では、機械式オイルポンプO/Pの作動油吐出流量と電動オイルポンプM/O/Pの作動油吐出流量との合計流量が、ライン圧調圧弁104の調圧限界流量以上のとき、電動オイルポンプM/O/Pの作動油吐出流量を低下する。
 ここで、上記合計油量が調圧限界流量以上であるとは、ライン圧調圧弁104に供給される作動油量が、ライン圧調圧弁104での調圧可能な油量に対して過剰になっている状態である。つまり、機械式オイルポンプO/Pの作動油吐出流量が十分に増大していることを意味している。これにより、この時刻t4時点において、電動オイルポンプM/O/Pの作動油吐出流量を低減しても、必要ライン圧PLneを確保するために必要な作動油流量を賄うことができる。
 また、このタイミングにおいて電動オイルポンプM/O/Pの作動油吐出流量を低下すれば、機械式オイルポンプO/Pの作動油吐出流量のみで必要ライン圧PLneを確保することができるようになる前に電動オイルポンプM/O/Pの作動油吐出流量の低下を開始させることができる。
 この結果、必要ライン圧PLneを確保して、ライン圧PLが変動する油振を防止しながらも、電動オイルポンプM/O/Pの不要な駆動を抑制して、電動オイルポンプM/O/Pを駆動するサブモータS/Mでの電力消費量を抑えることができる。
 また、運転者の駆動力要求が大きいとき(アクセル開度>目標切替閾値APOth)には、機械式オイルポンプO/Pの作動油吐出流量が増大する際の上昇勾配が比較的急になる。このため、この機械式オイルポンプO/Pの作動油吐出流量が脈動する場合がある。そして、機械式オイルポンプO/Pの作動油吐出流量が脈動すると、機械式オイルポンプO/Pの作動油吐出流量と電動オイルポンプM/O/Pの作動油吐出流量との合計流量も脈動し、調圧限界流量を超えたり下回ったりすることがある。そして、この合計流量が調圧限界流量を超えれば、電動オイルポンプM/O/Pの作動油吐出流量が低下させ、合計流量が調圧限界流量を下回れば、電動オイルポンプM/O/Pの作動油吐出流量が上昇させる。
 このように、機械式オイルポンプO/Pの脈動に合わせて電動オイルポンプM/O/Pの作動油吐出流量が低下と上昇を繰り返してしまい、不安定になる。さらに、電動オイルポンプM/O/Pの作動油吐出流量が不安定になると、実ライン圧PLRも変動していわゆる油振が発生してしまい、変速比が変動する等して運転者に違和感を与えるおそれがある。
 これに対し、実施例では、運転者の要求駆動力が高い場合、つまりアクセル開度が目標切替閾値APOthよりも大きいときには、第2油圧P2の目標油圧PLtを比較的低い値に設定し、ここでは必要ライン圧PLneとする。
 このため、電動オイルポンプM/O/Pの作動油吐出流量が低くなり、機械式オイルポンプO/Pが駆動する前の合計流量と、調圧限界流量との差異を大きく確保することができる。
 これにより、上記合計流量が調圧限界流量を超える頃には、機械式オイルポンプO/Pの作動油吐出流量が多くなっており、機械式オイルポンプO/Pの脈動が抑えられて、合計流量が調圧限界流量を超えたり下回ったりすることを防止できる。そして、実ライン圧PLRの変動を抑え、変速比が変動する等して運転者に与える違和感を低減することができる。
 特に、この実施例では、合計流量が調圧限界流量を超えた後、つまり実ライン圧PLRがライン圧調圧弁104の調圧目標値を超えてから、実ライン圧PLRと必要ライン圧PLneとの差異が、油圧確保閾値β以上になるまで電動オイルポンプM/O/Pの作動油吐出流量を低下させない。
 すなわち、運転者の要求駆動力が高い場合、第2油圧P2の目標油圧PLtを「必要ライン圧PLne」に設定し、制御開始時の電動オイルポンプM/O/Pの作動油吐出流量を抑えて、合計流量と調圧限界流量との差異を大きく確保する。さらに、合計流量が調圧限界流量を超えた後、実ライン圧PLRと必要ライン圧PLneとの差異が油圧確保閾値β以上になったら、電動オイルポンプM/O/Pの作動油吐出流量の低下を開始する。
 これにより、電動オイルポンプM/O/Pの作動油吐出流量の低下を開始する時点での合計流量が、調圧限界流量を大幅に上回ることになる。そのため、機械式オイルポンプO/Pの作動油吐出流量に脈動が生じても、合計流量が調圧限界流量を下回ることを防止でき、電動オイルポンプM/O/Pの作動油吐出流量を安定して低下させることができる。これにより、実ライン圧PLRの変動を抑え、変速比が変動する等して運転者に与える違和感を低減することができる。
 また、この実施例では、機械式オイルポンプO/Pの作動油吐出流量と、電動オイルポンプM/O/Pの作動油吐出流量との合計流量が、ライン圧調圧弁104の調圧限界流量に達したことを、このライン圧調圧弁104による実調圧値である実ライン圧PLRが調圧目標値よりも上昇したことによって判断している。
 そのため、合計流量の状態を容易に把握することができ、容易に電動オイルポンプM/O/Pの停止制御の精度向上を図ることができる。
 [低開度発進時の電動オイルポンプ停止作用]
 図5は、実施例の制御装置において、低開度発進時における、車両停止→発進→電動オイルポンプ停止までのアクセル開度・電動オイルポンプの作動油吐出流量・機械式オイルポンプの作動油吐出流量・合計流量・実ライン圧の各特性を示すタイムチャートである。以下、図5に基づき、実施例の低開度発進時の電動オイルポンプ停止作用を説明する。
 図5に示す時刻t11以前では、アクセル開度がゼロであり、駆動力要求が生じていない。そのため、図3に示すステップS1を繰り返す。なお、このときアイドルストップ制御が行われ、走行駆動源であるエンジンEng及びモータ/ジェネレータMGと、サブモータS/Mは全て停止されている。そのため、機械式オイルポンプO/P及び電動オイルポンプM/O/Pは、いずれも停止しており、油圧供給源OILからの油圧供給が一切停止することで、油圧制御回路100内の作動油はリーク等により抜ける。
 時刻t11時点において、アクセルペダルが踏み込まれると、駆動力要求が生じたとして、ステップS1→ステップS2へと進んでアクセル開度が検出されると共に、走行駆動源(エンジンEng、モータ/ジェネレータMG)が始動される。
 ここで、時刻t11時点におけるアクセル開度は、目標切替閾値APOthを下回っているので、ステップS3→ステップS5へと進み、第2油圧P2の目標油圧PLtを、「必要ライン圧PLne+上乗せ値α」に設定し、サブモータS/Mを駆動する。
 また、ライン圧調圧弁104の調圧目標値も、「必要ライン圧PLne+上乗せ値α」に設定される。
 これにより、電動オイルポンプM/O/Pから作動油が吐出され、電動オイルポンプM/O/Pの作動油吐出流量が、第2油圧P2が「必要ライン圧PLne+上乗せ値α」を維持する値になる。
 また、ここで、電動オイルポンプM/O/Pの指令に対する駆動応答性は、機械式オイルポンプO/Pの指令に対する駆動応答性よりも高い。そのため、時刻t11時点では、電動オイルポンプM/O/Pのみが駆動し、第3油路103へは、電動オイルポンプM/O/Pから吐出された作動油のみが流れ込む。このため、機械式オイルポンプO/Pからの作動油吐出流量と、電動オイルポンプM/O/Pからの作動油吐出流量との合計流量(第3油路103を流れる作動油流量)は、電動オイルポンプM/O/Pからの作動油吐出流量と一致する。
 さらに、この合計油量が流れる第3油路103の油圧(第3油圧P3)は、ライン圧調圧弁104によって調圧されて、実ライン圧PLRが「必要ライン圧PLne+上乗せ値α」になる。
 そして、時刻t12時点において、機械式オイルポンプO/Pからの作動油の吐出が開始すると、機械式オイルポンプO/Pの作動油吐出流量が上昇し始める。これにより、上記合計流量は上昇を開始する。
 しかしながら、上昇を開始した直後の合計流量は、機械式オイルポンプO/Pの作動油吐出流量が少ないため、ライン圧調圧弁104における調圧限界流量を下回っている。そのため、ライン圧調圧弁104において適切に調圧可能であり、このライン圧調圧弁104に供給された合計油量のうち、調圧目標値に対する余剰分がドレン回路へと逃がされ、実ライン圧PLRは「必要ライン圧PLne+上乗せ値α」に維持される。一方、電動オイルポンプM/O/Pの作動油吐出流量は、機械式オイルポンプO/Pの作動油吐出流量に拘わらず、「必要ライン圧PLne+上乗せ値α」に維持される。
 時刻t13時点において、機械式オイルポンプO/Pの作動油吐出流量の上昇に伴い、合計油量がライン圧調圧弁104での調圧限界流量に達する。
 ここで、図5に示す低開度発進時では、アクセル開度が比較的低く、発進時における運転者の要求駆動力が低い。そのため、走行駆動源(エンジンEng、モータ/ジェネレータMG)の始動後における駆動トルクの上昇速度が比較的遅くなり、機械式オイルポンプO/Pの作動油吐出流量の上昇勾配が、図4に示す高開度発進時よりも緩やかになる。
 しかし、この実施例では、低開度発進時において、第2油圧P2の目標油圧PLtを、「必要ライン圧PLne+上乗せ値α」とし、電動オイルポンプM/O/Pの作動油吐出流量が、第2油圧P2がこの「必要ライン圧PLne+上乗せ値α」を維持する値に設定する。
 そのため、制御開始時点(時刻t11時点)における合計油量と、ライン圧調圧弁104での調圧限界流量との差異を小さくしておくことができる。これにより、機械式オイルポンプO/Pの作動油吐出流量の上昇勾配が緩やかであっても、合計流量が調圧限界流量に達するまでの時間が冗長になることを防止して、電動オイルポンプM/O/Pの駆動時間が増大することを防止できる。
 また、この時刻t13時点において、合計油量がライン圧調圧弁104での調圧限界流量に達したことから、合計油量がライン圧調圧弁104での調圧限界流量に達し、このライン圧調圧弁104に供給されている油量が過剰となってライン圧調圧弁104での適切な調圧ができなくなる。この結果、実ライン圧PLRが「必要ライン圧PLne+上乗せ値α」(=調圧目標値)以上になる。これにより、ステップS6→ステップS7→ステップS8へと進む。
 このとき、実ライン圧PLRは、そもそも必要ライン圧PLne+上乗せ値α以上となっており、実ライン圧PLRから必要ライン圧PLneを差し引いた値、つまり、実ライン圧PLRと必要ライン圧PLneとの差異は、油圧確保閾値βより大きくなっている。
 そのため、時刻t14時点から直ちに電動オイルポンプM/O/Pの作動油吐出流量の低下が開始される。
 なお、時刻t14以降において、電動オイルポンプM/O/Pの作動油吐出流量の低下動作は、上記高開度発進時と同様であるため、詳細な説明を省略する。すなわち、電動オイルポンプM/O/Pの作動油吐出流量の下げ勾配を調整し、実ライン圧PLRを、電動オイルポンプM/O/Pの作動油吐出流量を低下し始めたときの値に維持したまま、電動オイルポンプM/O/Pの作動油吐出流量を低下させていく。
 そして、時刻t15時点において、電動オイルポンプM/O/Pの作動油吐出流量がゼロになったら、ステップS17においてYESと判断し、サブモータS/Mを停止してこの電動オイルポンプM/O/Pからの油圧供給を完全に停止する。
 このように、実施例の制御装置では、電動オイルポンプM/O/Pの吐出圧である第2油圧P2の目標油圧PLtを、必要ライン圧PLne以上の値に設定している。これにより、走行駆動源(エンジンEng、モータ/ジェネレータMG)の始動に伴う機械式オイルポンプO/Pの作動油吐出流量が上昇を開始するタイミングから、合計流量が調圧限界流量になって、実ライン圧PLRが目標油圧PLtを上回るまでの時間が冗長になることを防止できる。このため、電動オイルポンプM/O/Pの駆動時間をさらに短縮し、サブモータS/Mを駆動させるための電力消費量を抑制することができる。
 特に、この実施例では、アクセル開度が目標切替閾値APOth以下のとき、すなわち、運転者の要求駆動力が所定閾値以下のときには、第2油圧P2の目標油圧PLt(調圧目標値)を、必要ライン圧PLneよりも大きい値(必要ライン圧PLne+上乗せ値α)に設定している。
 そのため、要求駆動力が低く、機械式オイルポンプO/Pの作動油吐出流量の上昇勾配が緩やかな場合であっても、電動オイルポンプM/O/Pの作動油吐出油量を多くしておくことができる。その結果、実ライン圧PLRが目標油圧PLtを上回り、合計流量が調圧限界流量に達したと判断できるまでの時間の増大を抑制して、電動オイルポンプM/O/Pの駆動時間を短縮することができる。
 しかも、この実施例では、目標油圧PLtと必要ライン圧PLneとの差異である「上乗せ値α」を、必要ライン圧PLneが低いほど大きい値に設定し、第2油圧P2の目標油圧PLtを、運転者からの要求駆動力が小さいほど高い値に設定する。
 ここで、運転者の要求駆動力が低いほど、走行駆動源(エンジンEng、モータ/ジェネレータMG)からの駆動源トルクの上昇速度が遅くなり、機械式オイルポンプO/Pの作動油吐出流量の上昇勾配が緩やかになる。
 これに対し、第2油圧P2の目標油圧PLtを要求駆動力が小さいほど高い値に設定することで、電動オイルポンプM/O/Pの作動油吐出流量を予め高くしておくことができ、機械式オイルポンプO/Pの上昇勾配が緩やかであっても、制御開始時点での実ライン圧PLRを必要ライン圧PLneに比べて高い値にしておくことができる。この結果、実ライン圧PLRが目標油圧PLtを上回り、合計流量が調圧限界流量に達するまでの時間を短くすることができる。そして、電動オイルポンプM/O/Pの駆動時間を短縮することができる。
 次に、効果を説明する。
 実施例の車両用油圧制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 走行駆動源(モータ/ジェネレータMG)によって駆動されて作動油を吐出する第1オイルポンプ(機械式オイルポンプO/P)と、
 前記走行駆動源(モータ/ジェネレータMG)とは別の電動モータ(サブモータS/M)によって駆動されて作動油を吐出する第2オイルポンプ(電動オイルポンプM/O/P)と、
 第1オイルポンプ吐出圧(第1油圧P1)及び/又は第2オイルポンプ吐出圧(第2油圧P2)を調圧する調圧弁(ライン圧調圧弁104)と、
 前記調圧弁(ライン圧調圧弁104)による調圧中に、前記走行駆動源(モータ/ジェネレータMG)が停止し且つ前記第2オイルポンプ(電動オイルポンプM/O/P)が駆動している状態から、前記走行駆動源(モータ/ジェネレータMG)を始動して前記第2オイルポンプ(電動オイルポンプM/O/P)を停止させる状態へ移行する油圧コントローラ(統合コントローラ10)と、を備え、
 前記油圧コントローラ(統合コントローラ10)は、前記第1オイルポンプ(機械式オイルポンプO/P)の作動油吐出流量と前記第2オイルポンプ(電動オイルポンプM/O/P)の作動油吐出流量との合計流量が、前記調圧弁(ライン圧調圧弁104)の調圧限界流量以上のとき、前記第2オイルポンプ(電動オイルポンプM/O/P)の作動油吐出流量を低下する構成とした。
 これにより、第2オイルポンプ(電動オイルポンプM/O/P)を停止する際、必要ライン圧PLneを確保しつつ、第2オイルポンプ(電動オイルポンプM/O/P)を駆動する電動モータ(サブモータS/M)での電力消費量を抑制することができる。
 (2) 前記油圧コントローラ(統合コントローラ10)は、前記合計流量が前記調圧限界流量に達したことを、前記調圧弁(ライン圧調圧弁104)による実調圧値(実ライン圧PLR)が調圧目標値よりも上昇したことによって判断する構成とした。
 これにより、(1)の効果に加え、合計流量の状態を容易に把握することができ、容易に電動オイルポンプM/O/Pの停止制御の精度向上を図ることができる。
 (3) 前記油圧コントローラ(統合コントローラ10)は、前記第2オイルポンプ(電動オイルポンプM/O/P)の作動油吐出流量を低下させる前、第2オイルポンプ吐出圧(第2油圧P2)の目標油圧PLtを、必要ライン圧PLne以上の値に設定する構成とした。
 これにより、(1)又は(2)の効果に加え、走行駆動源(モータ/ジェネレータMG)の始動時における第2油圧P2を必要ライン圧PLne以上の値にすることができ、機械式オイルポンプO/Pの作動油吐出流量が発生してから、合計流量が調圧限界流量に達するまでの時間を短くし、電動オイルポンプM/O/Pの駆動時間が冗長になることを防止できる。
 (4) 前記油圧コントローラ(統合コントローラ10)は、運転者からの要求駆動力が小さいほど、前記目標油圧PLtを大きい値に設定する構成とした。
 これにより、(3)の効果に加え、運転者の要求駆動力が小さくて、機械式オイルポンプO/Pの作動油吐出流量の上昇勾配が緩やかであっても、合計流量が調圧限界流量に達するまでの時間の増大を抑制し、電動オイルポンプM/O/Pの駆動時間が冗長になることを防止できる。また、運転者の要求駆動力が大きくて、機械式オイルポンプO/Pの作動油吐出流量が脈動しても、電動オイルポンプM/O/Pの作動油吐出流量の低下と上昇を繰り返すことを防止して、運転者へ与える違和感を低減することができる。
 (5) 前記油圧コントローラ(統合コントローラ10)は、前記第2オイルポンプ(電動オイルポンプM/O/P)の作動油吐出流量を低下させる間、前記第2オイルポンプ(電動オイルポンプM/O/P)の作動油吐出流量の低下を開始した時点での前記調圧弁(ライン圧調圧弁104)による実調圧値(実ライン圧PLR)を維持する構成とした。
 これにより、(1)から(4)の効果に加え、電動オイルポンプM/O/Pの作動油吐出流量の低下中にさらなる加速要求が生じても、実ライン圧PLRが必要ライン圧PLneを下回ることを防止できる。
 以上、本発明の車両用油圧制御装置を実施例に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例では、電動オイルポンプM/O/Pの作動油吐出流量を低下させる際、時間と共に徐々に低下させる例を示したが、本発明はこれに限らない。所定の低下条件(合計流量がライン圧調圧弁104の調圧限界流量に達したこと)が成立したら、このタイミングでサブモータS/Mを停止して、電動オイルポンプM/O/Pからの作動油の吐出を停止してもよい。
 また、実施例では、機械式オイルポンプO/Pがモータ/ジェネレータMGのモータ出力軸MGoutにチェーンCHを介して連結され、モータ/ジェネレータMGによって基本的に駆動される例を示したが、本発明はこれに限らない。この機械式オイルポンプO/Pとしては、例えば、エンジンEngとモータ/ジェネレータMGを走行駆動源に有していても、エンジンEngの出力軸に連結され、エンジンEngによって駆動されるものであってもよい。
 この場合において、走行駆動源を始動するシーンとは、イグニッションスイッチがON状態でEV走行をするためにエンジンEngが停止している状態から、エンジントルクを得るべくエンジンEngを始動するシーンや、エンジンEngが駆動されている状態から、EV走行やコースト走行回生を行うために一旦エンジンEngを停止し、その後エンジンEngを再始動するシーン等がある。
 また、本実施例のように、機械式オイルポンプO/Pがモータ/ジェネレータMGに連結されていても、このモータ/ジェネレータMGを停止し、エンジンEngのみを駆動している場合もある。このとき、機械式オイルポンプO/Pは、実質的にエンジンEngによって駆動されることになる。なお、このときモータ/ジェネレータMGは、モータトルクを出力せず、エンジンEngの回転に連れまわるのみである。
 実施例では、電動オイルポンプM/O/Pの作動油吐出流量がゼロになるまで、実ライン圧PLRが、電動オイルポンプM/O/Pの作動油吐出流量の低下を開始した時点の値を維持する例を示したが、本発明はこれに限らない。例えば、所定の条件が成立したら、実ライン圧PLRの維持状態を解除して、必要ライン圧PLneまで低下させてもよい。これにより、実ライン圧PLRが必要ライン圧PLneより高い状態とする時間を短縮することができ、サブモータS/Mの消費電力量を抑えることができる。
 なお、「所定の条件」とは、駆動力要求が生じてからの経過時間が所定時間以上になることや、車速が所定の車速以上になること等である。この場合の所定時間や所定車速とは、運転者からのさらなる駆動力要求が発生しないことが予測できる値に設定され、実験等により予め求めておく。
 また、実施例では、本発明の車両用油圧制御装置をエンジンEngとモータ/ジェネレータMGを有するハイブリッド車両に適用する例を示したが、本発明はこれに限らない。走行駆動源としてモータ/ジェネレータMGのみを搭載した電気自動車や、エンジンEngのみを搭載したエンジン車、さらにプラグインハイブリッド車や燃料電池車等であっても本発明を適用することができる。

Claims (6)

  1.  走行駆動源によって駆動されて作動油を吐出する第1オイルポンプと、
     前記走行駆動源とは別の電動モータによって駆動されて作動油を吐出する第2オイルポンプと、
     第1オイルポンプ吐出圧及び/又は第2オイルポンプ吐出圧を調圧する調圧弁と、
     前記調圧弁による調圧中に、前記走行駆動源が停止し且つ前記第2オイルポンプが駆動している状態から、前記走行駆動源を始動して前記第2オイルポンプを停止させる状態へ移行する油圧コントローラと、を備え、
     前記油圧コントローラは、前記第1オイルポンプの作動油吐出流量と前記第2オイルポンプの作動油吐出流量との合計流量が、前記調圧弁の調圧限界流量以上のとき、前記第2オイルポンプの作動油吐出流量を低下する、
     車両用油圧制御装置。
  2.  請求項1に記載された車両用油圧制御装置において、
     前記油圧コントローラは、前記合計流量が前記調圧限界流量に達したことを、前記調圧弁による実調圧値が調圧目標値よりも上昇したことによって判断する、
     車両用油圧制御装置。
  3.  請求項1又は請求項2に記載された車両用油圧制御装置において、
     前記油圧コントローラは、前記第2オイルポンプの作動油吐出流量を低下させる前、第2オイルポンプ吐出圧の目標油圧を、必要ライン圧以上の値に設定する、
     車両用油圧制御装置。
  4.  請求項3に記載された車両用油圧制御装置において、
     前記油圧コントローラは、運転者からの要求駆動力が小さいほど、前記目標油圧を大きい値に設定する、
     車両用油圧制御装置。
  5.  請求項1から請求項4のいずれか一項に記載された車両用油圧制御装置において、
     前記油圧コントローラは、前記第2オイルポンプの作動油吐出流量を低下させる間、前記第2オイルポンプの作動油吐出流量の低下を開始した時点での前記調圧弁による実調圧値を維持する、
     車両用油圧制御装置。
  6.  走行駆動源によって駆動されて作動油を吐出する第1オイルポンプと、前記走行駆動源とは別の電動モータによって駆動されて作動油を吐出する第2オイルポンプと、第1オイルポンプ吐出圧及び/又は第2オイルポンプ吐出圧を調圧する調圧弁と、を備えた車両用油圧供給装置において、
     前記走行駆動源が停止し且つ前記第2オイルポンプが駆動している状態から、前記走行駆動源を始動して前記第2オイルポンプを停止させる状態へ移行する場合に、前記第1オイルポンプの作動油吐出流量と前記第2オイルポンプの作動油吐出流量との合計流量が、前記調圧弁の調圧限界流量以上となったときに、前記第2オイルポンプの作動油吐出流量を低下させる、油圧制御方法。
PCT/JP2016/057416 2015-03-26 2016-03-09 車両用油圧制御装置および油圧制御方法 WO2016152534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16768437.2A EP3276221A4 (en) 2015-03-26 2016-03-09 Oil pressure control device for vehicle and oil pressure control method
CN201680014553.XA CN107429822B (zh) 2015-03-26 2016-03-09 车辆用油压控制装置及油压控制方法
KR1020177025916A KR20170118163A (ko) 2015-03-26 2016-03-09 차량용 유압 제어 장치 및 유압 제어 방법
US15/561,470 US10837547B2 (en) 2015-03-26 2016-03-09 Oil pressure control device for vehicle and oil pressure control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065276 2015-03-26
JP2015065276A JP6410648B2 (ja) 2015-03-26 2015-03-26 車両用油圧制御装置

Publications (1)

Publication Number Publication Date
WO2016152534A1 true WO2016152534A1 (ja) 2016-09-29

Family

ID=56977302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057416 WO2016152534A1 (ja) 2015-03-26 2016-03-09 車両用油圧制御装置および油圧制御方法

Country Status (6)

Country Link
US (1) US10837547B2 (ja)
EP (1) EP3276221A4 (ja)
JP (1) JP6410648B2 (ja)
KR (1) KR20170118163A (ja)
CN (1) CN107429822B (ja)
WO (1) WO2016152534A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407080B2 (ja) * 2015-03-26 2018-10-17 ジヤトコ株式会社 車両用発進制御装置
JP6506804B2 (ja) 2017-08-10 2019-04-24 本田技研工業株式会社 油圧制御装置
US11460106B2 (en) * 2017-12-28 2022-10-04 Nissan Motor Co., Ltd. Continuously variable transmission and method for controlling continuously variable transmission
DE102018208580A1 (de) * 2018-05-30 2019-12-05 Robert Bosch Gmbh Verfahren zur Steuerung eines hydraulischen Bremssystems
KR20200061854A (ko) * 2018-11-26 2020-06-03 현대자동차주식회사 Dct용 오일펌프 제어방법
CN109733381B (zh) * 2019-01-31 2020-08-14 中国第一汽车股份有限公司 一种在车辆停机滑行过程中的电动泵控制方法
KR102645052B1 (ko) * 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
JP7228500B2 (ja) * 2019-11-12 2023-02-24 本田技研工業株式会社 油圧制御装置
JP7176540B2 (ja) * 2020-01-16 2022-11-22 トヨタ自動車株式会社 油圧供給システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240110A (ja) * 2002-02-18 2003-08-27 Aisin Aw Co Ltd 車輌の制御装置
JP2003294120A (ja) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd ハイブリッド車両の油圧供給装置
JP2011196501A (ja) * 2010-03-23 2011-10-06 Hitachi Automotive Systems Ltd 自動変速機の油圧供給装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267079B2 (ja) * 1997-04-18 2009-05-27 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 圧力制御弁
JP3827926B2 (ja) 1999-07-29 2006-09-27 本田技研工業株式会社 エンジン自動停止車両の自動変速機用油圧回路及び油圧制御装置
JP4576714B2 (ja) * 2000-12-28 2010-11-10 アイシン・エィ・ダブリュ株式会社 オイルポンプの駆動制御装置
DE10233089A1 (de) * 2002-07-19 2004-02-05 Daimlerchrysler Ag Getriebe mit stufenlos veränderbarer Übersetzung
US20040179962A1 (en) * 2003-03-12 2004-09-16 Hopper Mark L. System and method for regulating pressure in an automatic transmission
JP5252171B2 (ja) * 2007-09-19 2013-07-31 アイシン・エィ・ダブリュ株式会社 車両用制御装置
DE112009001536T5 (de) * 2008-11-20 2011-04-14 Aisin AW Co., Ltd., Anjo-shi Leistungsübertragungsvorrichtung und Fahrzeug mit dieser
JP5501937B2 (ja) * 2010-11-02 2014-05-28 ジヤトコ株式会社 ハイブリッド車両の制御装置
WO2012111096A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 車両用オイル供給装置の制御装置
CN103380044B (zh) * 2011-02-17 2016-08-10 艾里逊变速箱公司 用于混合变速箱的调制控制系统和方法
JP5740293B2 (ja) * 2011-12-08 2015-06-24 ジヤトコ株式会社 車両制御装置および車両の制御方法
JP5769025B2 (ja) * 2011-12-19 2015-08-26 ジヤトコ株式会社 車両用ライン圧制御装置
WO2014054724A1 (ja) * 2012-10-04 2014-04-10 日産自動車株式会社 ハイブリッド車両の始動制御装置
JP5983466B2 (ja) * 2013-03-06 2016-08-31 トヨタ自動車株式会社 車両の油圧制御装置
US9616883B2 (en) * 2013-03-21 2017-04-11 Nissan Motor Co., Ltd. Hybrid vehicle
KR101510331B1 (ko) * 2013-04-01 2015-04-07 현대자동차 주식회사 자동변속기의 펌프모터 제어장치 및 방법
US9970540B2 (en) * 2016-06-02 2018-05-15 GM Global Technology Operations LLC Transmission fluid pressure control systems and methods for continuously variable transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240110A (ja) * 2002-02-18 2003-08-27 Aisin Aw Co Ltd 車輌の制御装置
JP2003294120A (ja) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd ハイブリッド車両の油圧供給装置
JP2011196501A (ja) * 2010-03-23 2011-10-06 Hitachi Automotive Systems Ltd 自動変速機の油圧供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276221A4 *

Also Published As

Publication number Publication date
CN107429822A (zh) 2017-12-01
US10837547B2 (en) 2020-11-17
US20180119800A1 (en) 2018-05-03
JP6410648B2 (ja) 2018-10-24
EP3276221A4 (en) 2018-05-16
JP2016183766A (ja) 2016-10-20
CN107429822B (zh) 2019-06-07
KR20170118163A (ko) 2017-10-24
EP3276221A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6410648B2 (ja) 車両用油圧制御装置
JP6407080B2 (ja) 車両用発進制御装置
JP6478756B2 (ja) 車両用油圧制御装置
WO2016152531A1 (ja) 車両用油圧制御装置及び車両用油圧制御方法
EP2905192B1 (en) Startup control device for hybrid vehicle
JP6265273B2 (ja) 車両用油圧制御装置
JP6354427B2 (ja) 車両用油圧制御装置
JP6393907B2 (ja) 車両用油圧制御装置
JP6377465B2 (ja) 無段変速機の油圧制御装置
JP6497873B2 (ja) 無段変速機の油圧制御装置
JP2007002933A (ja) 油圧制御装置、変速制御装置及び車両制御装置
JP2009041689A (ja) 油圧制御装置及びそれを用いた車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025916

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE