WO2016152337A1 - 車両及び車両の制御方法 - Google Patents

車両及び車両の制御方法 Download PDF

Info

Publication number
WO2016152337A1
WO2016152337A1 PCT/JP2016/054655 JP2016054655W WO2016152337A1 WO 2016152337 A1 WO2016152337 A1 WO 2016152337A1 JP 2016054655 W JP2016054655 W JP 2016054655W WO 2016152337 A1 WO2016152337 A1 WO 2016152337A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
capacity
pulley
lower limit
braking
Prior art date
Application number
PCT/JP2016/054655
Other languages
English (en)
French (fr)
Inventor
大城 岩佐
広宣 宮石
盛弼 柳
徹也 泉
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2017507607A priority Critical patent/JP6353972B2/ja
Priority to CN201680016092.XA priority patent/CN107429825B/zh
Priority to KR1020177025736A priority patent/KR101994018B1/ko
Priority to US15/559,031 priority patent/US10724633B2/en
Priority to EP16768240.0A priority patent/EP3276216B1/en
Publication of WO2016152337A1 publication Critical patent/WO2016152337A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/918Continuously variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio

Definitions

  • the present invention relates to a vehicle and a vehicle control method.
  • WO2011 / 145222A discloses a technique for improving the shift response by temporarily reducing the command pressure of the primary pressure at the start of the downshift of the belt type continuously variable transmission.
  • the primary pressure is reduced during downshifting, and the differential pressure between the primary pressure and the secondary pressure is increased, so that the transmission speed can be improved.
  • the gear ratio can be easily shifted to the lowest gear ratio, that is, the maximum gear ratio until the vehicle stops, and the vehicle startability can be improved. . Therefore, when down-shifting the belt type continuously variable transmission, it is desirable to reduce the primary pressure as much as possible from the viewpoint of shift response.
  • the input torque to the belt-type continuously variable transmission increases as regeneration is performed by the motor generator during deceleration. Then, it is necessary to set the target hydraulic pressure of the primary pulley and the target hydraulic pressure of the secondary pulley so that the belt-type continuously variable transmission can transmit such input torque.
  • the present invention has been made in view of such a technical problem, and a vehicle capable of achieving both improvement in fuel consumption due to regeneration in the motor generator and shift response even during sudden braking during downshifting. And it aims at providing the control method of a vehicle.
  • a vehicle includes a motor generator, a primary pulley to which the driving force of the motor generator is transmitted, and the groove width is changed by controlling the primary pressure, and the groove width is controlled by controlling the secondary pressure.
  • a variator having a secondary pulley to be changed, the primary pulley and a belt wound around the secondary pulley, and a control unit that controls the primary pressure and the secondary pressure.
  • the control unit sets the target hydraulic pressure of the secondary pressure and the target hydraulic pressure of the primary pressure as follows when the variator is downshifted in a state where there is no acceleration request from the driver.
  • the control unit as the torque capacity guaranteed by the secondary pulley at the time of the downshift, a cooperative regenerative capacity capable of transmitting torque input to the variator accompanying regeneration by the motor generator, and braking
  • the target hydraulic pressure of the secondary pressure is set based on a first guaranteed capacity including a first braking capacity capable of transmitting torque input to the variator when braking.
  • the control unit includes a second guarantee capacity including the cooperative regeneration capacity and a second brake capacity set lower than the first brake capacity as a torque capacity to be guaranteed by the primary pulley during the downshift. Based on the capacity, a target hydraulic pressure for the primary pressure is set.
  • the groove width is changed by controlling the motor generator and the primary pulley and the secondary pressure in which the driving force of the motor generator is transmitted and the primary pressure is changed to change the groove width.
  • a vehicle control method for controlling the primary pressure and the secondary pressure in a vehicle comprising: a secondary pulley to be operated; a variator having the primary pulley and a belt wound around the secondary pulley;
  • a vehicle control method including setting the target hydraulic pressure of the secondary pressure and the target hydraulic pressure of the primary pressure as follows when the variator is downshifted in the absence of an acceleration request from a person Is done.
  • the cooperative regeneration capacity capable of transmitting the torque input to the variator accompanying the regeneration by the motor generator, and the braking when the brake is applied
  • setting a target hydraulic pressure of the secondary pressure based on a first guaranteed capacity including a first braking capacity capable of transmitting a torque input to the variator, and the primary pulley during the downshift
  • Setting a target hydraulic pressure of the primary pressure based on a second guaranteed capacity including the cooperative regenerative capacity and a second brake capacity set lower than the first brake capacity, , Including a vehicle control method.
  • the target oil pressure of the primary pressure and the target oil pressure of the secondary pressure are set based on the cooperative regeneration capacity at the time of downshift, it is input to the variator along with regeneration by the motor generator. Even if the torque increases, the belt does not slip.
  • the target hydraulic pressure of the secondary pressure is set based on the first braking capacity at the time of downshift, the belt holding force corresponding to the first braking capacity is generated by the secondary pulley. Can do. Accordingly, since the belt is pulled from the primary pulley side toward the secondary pulley side, the belt clamping force corresponding to the first braking capacity can also be generated by the primary pulley. For this reason, according to these aspects, the belt does not slip during sudden braking.
  • the target hydraulic pressure of the primary pressure is set based on the primary guaranteed capacity including the second braking capacity that is set lower than the first braking capacity, by reducing the primary pressure, The differential pressure between the primary pressure and the secondary pressure can be increased. Therefore, according to these aspects, the shift response can be improved.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the first embodiment.
  • FIG. 2 is an explanatory diagram of the input torque to the transmission during deceleration.
  • FIG. 3 is an explanatory diagram of pulley thrust during deceleration.
  • FIG. 4 is a diagram illustrating a comparative example of setting of the pulley thrust during deceleration.
  • FIG. 5 is a diagram illustrating an example of setting a lower limit during deceleration in the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of control in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a timing chart in the first embodiment.
  • FIG. 8 is a flowchart illustrating an example of control according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a timing chart according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • the vehicle includes an engine 1 and a motor generator 2 as drive sources.
  • the output rotation of the engine 1 or the motor generator 2 is transmitted to the drive wheels 6 through the forward / reverse switching mechanism 3, the transmission 4, and the final reduction mechanism 5.
  • the engine 1 is provided with a control target unit 10 that is a control target for controlling the engine 1.
  • the control target unit 10 includes, for example, a fuel injection valve and a throttle valve.
  • the control target unit 10 operates the engine 1 with a desired torque based on a command from the engine control unit 84 and rotates the output shaft 11.
  • the 1st clutch 12 which interrupts
  • the motor generator 2 is driven by the electric power output from the inverter 21.
  • the regenerative power of the motor generator 2 is input to the inverter 21.
  • Inverter 21 operates motor generator 2 with a desired torque based on a command from motor control unit 83.
  • the motor generator 2 is constituted by a synchronous rotating electric machine driven by, for example, a three-phase alternating current.
  • Inverter 21 is connected to battery 22.
  • the forward / reverse switching mechanism 3 is provided between a drive source including the engine 1 and the motor generator 2 and the transmission 4.
  • the forward / reverse switching mechanism 3 switches the rotational direction of rotation input from the output shaft 23 between the forward rotation direction corresponding to forward travel and the reverse rotation direction corresponding to backward travel, and inputs the rotational direction to the transmission 4.
  • the forward / reverse switching mechanism 3 includes a forward clutch 31 and a reverse brake 32.
  • the forward clutch 31 is connected when the rotation direction is the forward rotation direction
  • the reverse brake 32 is connected when the rotation direction is the reverse rotation direction.
  • One of the forward clutch 31 and the reverse brake 32 is configured as a second clutch that intermittently rotates between the engine 1 and the motor generator 2 and the transmission 4.
  • the transmission 4 includes a transmission output shaft 41, a primary pulley 42, a secondary pulley 43, and a belt 44 wound around the primary pulley 42 and the secondary pulley 43.
  • the primary pulley 42 is also simply referred to as a pulley 42
  • the secondary pulley 43 is also simply referred to as a pulley 43.
  • the transmission 4 is a variator composed of a belt-type continuously variable transmission mechanism that changes the winding diameter of the belt 44 by changing the groove width between the pulley 42 and the pulley 43.
  • the primary pulley 42 includes a fixed pulley 42a and a movable pulley 42b.
  • the primary pressure that is the pulley pressure supplied to the primary hydraulic chamber 45
  • the movable pulley 42b is operated, and the groove width of the primary pulley 42 is changed.
  • the driving force of the motor generator 2 is transmitted to the primary pulley 42 via the forward / reverse switching mechanism 3.
  • the primary pressure is referred to as PRI pressure.
  • the secondary pulley 43 includes a fixed pulley 43a and a movable pulley 43b. By controlling the secondary pressure that is the pulley pressure supplied to the secondary hydraulic chamber 46, the movable pulley 43 b is operated and the groove width of the secondary pulley 43 is changed.
  • the secondary pressure is referred to as SEC pressure.
  • the belt 44 has a V-shaped sheave surface formed by a fixed pulley 42 a and a movable pulley 42 b of the primary pulley 42, and a V-shape formed by a fixed pulley 43 a and a movable pulley 43 b of the secondary pulley 43. Wound around the sheave surface.
  • the final deceleration mechanism 5 transmits the output rotation from the transmission output shaft 41 to the drive wheels 6.
  • the final reduction mechanism 5 includes a plurality of gear trains 52 and a differential gear 56.
  • An axle 51 is connected to the differential gear 56 to rotate the drive wheels 6.
  • the drive wheel 6 is provided with a brake 61.
  • the braking force of the brake 61 is controlled by the brake actuator 62 based on a command from the brake control unit 82.
  • the brake actuator 62 controls the braking force of the brake 61 based on the brake fluid pressure generated by the master cylinder 64 converting the depression force of the brake pedal 63.
  • Hydraulic pressure from the transmission hydraulic pressure control unit 7 is supplied to the primary pulley 42 and the secondary pulley 43 of the transmission 4.
  • the transmission hydraulic pressure control unit 7 includes an oil pump 70, a regulator valve 71, a line pressure solenoid 72, a line pressure oil passage 73, a first pressure regulating valve 74, a PRI pressure solenoid 75, a PRI pressure oil passage 76, A second pressure regulating valve 77, a SEC pressure solenoid 78, and a SEC pressure oil passage 79 are provided.
  • the regulator valve 71 controls the hydraulic pressure generated by the oil discharged from the oil pump 70 to the line pressure PL.
  • the line pressure solenoid 72 operates the regulator valve 71.
  • the line pressure PL is supplied to the first pressure regulating valve 74 and the second pressure regulating valve 77 through the line pressure oil passage 73.
  • the first pressure regulating valve 74 is operated by the PRI pressure solenoid 75 and supplies the PRI pressure to the PRI pressure oil passage 76.
  • the second pressure regulating valve 77 is operated by the SEC pressure solenoid 78 and supplies the SEC pressure to the SEC pressure oil passage 79.
  • the line pressure solenoid 72, the PRI pressure solenoid 75, and the SEC pressure solenoid 78 operate according to a command from the CVT control unit 81 to control each hydraulic pressure. Therefore, the transmission hydraulic pressure control unit 7 controls the line pressure PL, PRI pressure and SEC pressure together with the CVT control unit 81.
  • the CVT control unit 81, the brake control unit 82, the motor control unit 83, and the engine control unit 84 are connected together with the hybrid control module 80 via a CAN 90 that can communicate with each other.
  • Signals from the PRI pressure sensor 88 and the SEC pressure sensor 89 are input to the CVT control unit 81.
  • the PRI pressure sensor 88 detects an actual PRI pressure that is the actual pressure of the PRI pressure
  • the SEC pressure sensor 89 detects an actual SEC pressure that is the actual pressure of the SEC pressure.
  • Signals from the brake sensor 65 and the accelerator opening sensor 85 are also input to the CVT control unit 81 via the hybrid control module 80.
  • the CVT control unit 81 also receives signals from the primary rotation sensor and the secondary rotation sensor.
  • the CVT control unit 81 controls the line pressure PL, PRI pressure and SEC pressure together with the transmission hydraulic pressure control unit 7 as described above by sending a command to the transmission hydraulic pressure control unit 7 based on the input signal.
  • the hybrid control module 80 manages the energy consumption of the entire vehicle and controls the driving of the engine 1 and the motor generator 2 so as to increase the energy efficiency.
  • the hybrid control module 80 receives signals from a brake sensor 65 that detects the depression force of the brake pedal 63 and an accelerator opening sensor 85 that detects the depression amount of the accelerator pedal.
  • the acceleration request by the driver can be detected by the accelerator opening sensor 85.
  • the hybrid control module 80 receives signals from the vehicle speed sensor 86, the inhibitor switch sensor 87, and the like, and information from each control unit via the CAN 90.
  • the hybrid control module 80 calculates a target driving torque and a target braking torque from these signals and information. Since the remainder obtained by subtracting the regenerative braking torque that is the maximum regenerative torque that can be generated by the motor generator 2 from the target braking torque is the hydraulic braking torque, the target braking torque is the sum of the regenerative braking torque and the hydraulic braking torque. Is done. The hybrid control module 80 performs regeneration with the motor generator 2 during deceleration.
  • the brake control unit 82 outputs a drive command to the brake actuator 62 based on the control command from the hybrid control module 80.
  • the brake control unit 82 acquires information on the brake fluid pressure generated by the brake actuator 62 and sends it to the hybrid control module 80.
  • the motor control unit 83 outputs a target power running command that is a positive torque command or a target regeneration command that is a negative torque command to the inverter 21 based on a control command from the hybrid control module 80.
  • the motor control unit 83 acquires actual motor drive torque information by detecting the actual current value applied to the motor generator 2 and sends it to the hybrid control module 80.
  • the engine control unit 84 outputs a command to the control target unit 10 based on the control command from the hybrid control module 80.
  • the engine control unit 84 sends actual engine drive torque information obtained from the rotational speed of the engine 1 and the fuel injection amount to the hybrid control module 80.
  • FIG. 2 illustrates an example of input torque during deceleration when the brake pedal 63 is depressed with the accelerator pedal released to stop after deceleration.
  • the cooperative regeneration torque is a torque for performing regeneration by the motor generator 2 and is a negative torque.
  • the cooperative regenerative torque is the above-described regenerative braking torque.
  • the braking torque is a torque for braking the vehicle and is a negative torque.
  • the braking torque is the aforementioned hydraulic braking torque.
  • the input torque to the transmission 4 that is, the cooperative regeneration torque and the braking torque become zero.
  • the cooperative regeneration torque remains zero, and the driving torque indicated by the positive torque is set.
  • the second clutch is brought into the slip state before the vehicle speed becomes zero, and the driving torque is set to the creep torque when the vehicle speed is zero.
  • the transmission 4 does not need to transmit cooperative regenerative torque at the time of deceleration, but in this embodiment, the transmission 4 is configured so that the motor generator 2 can appropriately regenerate. It is necessary to transmit cooperative regenerative torque during deceleration.
  • the vehicle startability when the vehicle stops after decelerating can be improved by downshifting the transmission 4 that returns the gear ratio to the low side such as the lowest gear ratio.
  • FIG. 3 is an explanatory diagram of pulley thrust during deceleration. At the time of deceleration, it is the same as described in FIG. FIG. 3 shows the pulley thrust generated according to the pulley pressure for each of the pulley 42 and the pulley 43.
  • the minimum thrust Fmin is a pulley thrust according to the lower limit set value of the pulley pressure.
  • a torque capacity corresponding to the pulley thrust is secured.
  • an upper limit U and a lower limit L are set for the pulley thrust.
  • the upper limit U is determined according to strength and oil balance.
  • the lower limit L is set in accordance with a guaranteed capacity that is a torque capacity that is guaranteed in a downshift performed in a state where there is no acceleration request from the driver. Specifically, the guaranteed capacity is necessary to guarantee the transmission of torque input to the transmission 4 and prevent the belt 44 from slipping during a downshift performed in the absence of an acceleration request from the driver.
  • the minimum torque capacity is necessary to guarantee the transmission of torque input to the transmission 4 and prevent the belt 44 from slipping during a downshift performed in the absence of an acceleration request from the driver.
  • the pulley thrust is set based on the lower limit L for each of the pulley 42 and the pulley 43. Specifically, the pulley thrust is set to the sum of the lower limit L and the shift thrust.
  • the shift thrust can be set within a range of magnitude obtained by subtracting the lower limit L from the upper limit U.
  • the pulley thrust is set by setting the target hydraulic pressure. Therefore, the setting of the pulley thrust can be said to be the setting of the target hydraulic pressure.
  • the lower limit L can be said to be a thrust that generates the above-described guaranteed capacity. For this reason, for each of the pulley 42 and the pulley 43, the pulley thrust is set based on the guaranteed capacity by being set based on the lower limit L.
  • the lower limit L can be set to, for example, a first lower limit L1 shown in parentheses.
  • the first lower limit L1 is the sum of the basic thrust FA and the first corrected thrust FB1.
  • the basic thrust FA and the first corrected thrust FB1 are as follows.
  • the basic thrust FA is a thrust set on the basis of the input torque to the transmission 4, and thus the cooperative regeneration torque and the braking torque as described with reference to FIG.
  • the first correction thrust FB1 is a thrust set based on a correction factor to be further considered in addition to the basic thrust FA.
  • the correction factor includes, for example, a hydraulic safety factor.
  • the correction element includes a loss generated in the oil pump 70 when supplying hydraulic pressure, and inertia torque of the engine 1 and the motor generator 2.
  • the correction element further includes preventing the belt 44 from slipping during sudden braking.
  • the sudden braking is a case where the brake pedal 63 is depressed more than a predetermined amount within a predetermined time, for example, when the brake pedal 63 is fully depressed due to an instantaneous operation.
  • a sudden braking correction element prevention of slipping of the belt 44 at the time of sudden braking as a correction element.
  • the sudden braking correction factor is considered when the brake pedal 63 is depressed regardless of whether or not sudden braking is actually performed. This is to prepare for a case where sudden braking is actually performed. Therefore, when the brake pedal 63 is depressed, the sudden braking thrust is set in the first corrected thrust FB1 based on the sudden braking correction element. The sudden braking thrust ensures that the belt 44 is prevented from slipping against the worst inertia torque generated in response to the sudden braking.
  • the basic thrust FA is larger than the case where the transmission 4 is required to transmit the cooperative regenerative torque when decelerating.
  • the lower limit L is increased accordingly, and accordingly, it becomes difficult to secure the shift thrust.
  • the downshift of the transmission 4 may not be completed during deceleration. As a result, the vehicle startability may be deteriorated. Further, when the downshift of the transmission 4 is not completed, the rotational speed of the motor generator 2 is lower than when the downshift of the transmission 4 is completed. As a result, the energy regeneration amount of the motor generator 2 may be reduced.
  • FIG. 4 is a diagram showing a comparative example of setting of the pulley thrust during deceleration. At the time of deceleration, it is the same as described in FIG. In this example, in order to improve the shift response of the transmission 4, the lower limit L is ignored in the primary pulley 42, and the pulley thrust is reduced to the minimum thrust Fmin. As a result, the differential pressure between the PRI pressure and the SEC pressure can be increased, so that the shift response of the transmission 4 can be improved.
  • the belt 44 may slip as follows. That is, in this case, by reducing the PRI pressure, the primary pulley 42 operates to increase the groove width. Further, as a result of the tension of the belt 44 being lowered accordingly, the secondary pulley 43 operates so that the groove width is narrowed. At this time, the volume of the secondary hydraulic chamber 46 increases.
  • the actual pulley thrust of the secondary pulley 43 decreases as shown in the figure.
  • the clamping force of the belt 44 in the secondary pulley 43 is reduced, and the belt 44 may slip.
  • the oil discharge amount of the oil pump 70 using the engine 1 as a drive source also decreases as the rotational speed of the engine 1 decreases. For this reason, sufficient oil supply to the secondary hydraulic chamber 46 is not performed, and the belt 44 may slip.
  • a lower limit L is set as described below.
  • FIG. 5 is a diagram illustrating a setting example of the lower limit L during deceleration in the present embodiment. At the time of deceleration, it is the same as described in FIG. For the primary pulley 42, the lower limit L is set to the sum of the basic thrust FA and the second corrected thrust FB2.
  • the second corrected thrust FB2 is a thrust obtained by adding the following changes to the first corrected thrust FB1. That is, the second corrected thrust FB2 is a thrust to which a low set thrust, which is a thrust set lower than the sudden braking thrust during deceleration, is applied instead of the sudden braking thrust.
  • the second corrected thrust FB2 is set lower than the first corrected thrust FB1 of the pulley 42 shown in FIG. 3, and as a result, the lower limit L of the pulley 42 is set to the second lower limit L2 lower than the first lower limit L1. .
  • the PRI pressure can be set low as much as the lower limit L of the pulley 42 decreases from the first lower limit L1 to the second lower limit L2. Therefore, since the differential pressure between the PRI pressure and the SEC pressure can be increased, the shift response of the transmission 4 can be improved.
  • the low set thrust is set lower than the sudden braking thrust and set to the target value by gradually lowering the low set thrust from the sudden braking thrust during deceleration.
  • the target value is zero, for example, and can be set in advance based on experiments or the like.
  • the second lower limit L2 gradually decreases from the first lower limit L1 due to such a decrease in the low set thrust, and is set to the target lower limit when the low set thrust is set to the target value.
  • the setting of the lower limit L in the present embodiment is performed by the CVT control unit 81 as specifically described below.
  • the CVT control unit 81 is referred to as CVTCU 81.
  • FIG. 6 is an example of control performed by the CVTCU 81 and is a diagram illustrating an example of a method for setting the lower limit L in the primary pulley 42 in a flowchart.
  • the CVTCU 81 can repeatedly execute the processing of this flowchart every minute time.
  • step S11 the CVTCU 81 determines whether or not the accelerator pedal is OFF, that is, whether or not the accelerator pedal is released. In step S11, the CVTCU 81 makes such a determination, thereby determining whether or not there is an acceleration request from the driver.
  • step S11 If the determination is negative in step S11, the process proceeds to step S19. In this case, the lower limit L described with reference to FIG. 5 is not set, and the CVTCU 81 sets the lower limit L to the first lower limit L1 for the primary pulley 42. After step S19, the process of this flowchart is once ended.
  • step S11 determines whether or not the deceleration Low is being returned. Whether or not the vehicle is decelerating low can be determined, for example, by determining whether or not the brake pedal 63 is depressed and whether the target gear ratio is lower than the actual gear ratio. Whether or not the vehicle is returning to low speed may be further determined by determining whether or not the vehicle speed is greater than a predetermined value.
  • the predetermined value is, for example, zero.
  • step S12 determines whether or not the lower limit L of the pulley 42 is the first lower limit L1. If the determination is affirmative in step S13, the process proceeds to step S14.
  • step S14 the CVTCU 81 determines whether or not the actual SEC pressure is greater than the sum of the first guaranteed capacity pressure and the predetermined value ⁇ .
  • the first guaranteed capacity pressure is a pulley pressure that generates the first lower limit L1, and the first guaranteed capacity is generated by generating the first lower limit L1.
  • the predetermined value ⁇ is a value for setting a margin for the actual SEC pressure when comparing the actual SEC pressure and the first guaranteed capacity pressure, and can be set in advance based on experiments or the like. If a negative determination is made in step S14, the process proceeds to step S19.
  • step S14 If the determination in step S14 is affirmative, the process proceeds to step S15. In this case, the CVTCU 81 sets the lower limit L for the primary pulley 42 to the second lower limit L2.
  • step S16 the CVTCU 81 determines whether or not the second lower limit L2 is the target lower limit. If the process proceeds to step S16 through an affirmative determination in step S13, a negative determination is made in step S16, and the process proceeds to step S17.
  • step S17 the CVTCU 81 lowers the second lower limit L2 for the pulley 42. Specifically, in step S17, the CVTCU 81 lowers the second lower limit L2 by a predetermined degree by reducing the low set thrust from the sudden braking thrust by a predetermined degree.
  • step S18 the CVTCU 81 determines whether or not the actual SEC pressure is equal to or lower than the first guaranteed capacity pressure. If a negative determination is made in step S18, the processing of this flowchart is temporarily ended.
  • step S13 a negative determination is made in step S13, and steps S14 and S15 are skipped. If the second lower limit L2 is not the target lower limit, a negative determination is made in step S16, so that the second lower limit L2 is lowered in step S17. And if it is negative determination by step S18, the same process will be repeated.
  • the second lower limit L2 is gradually lowered toward the target lower limit.
  • the second lower limit L2 becomes the target lower limit
  • the thrust for the sudden braking thrust is excluded from the second lower limit L2.
  • an affirmative determination is made in step S16, and the process proceeds to step S18.
  • step S18 If a positive determination is made in step S18, the process proceeds to step S19. Therefore, in this case, the setting of the lower limit L described in FIG. 5 is stopped.
  • step S19 by setting the lower limit L of the pulley 42 to be switched from the current value to the first lower limit L1, the lower limit L can be set without gradually changing.
  • the change before the timing T1 will be described. Before the timing T1, the accelerator opening starts to decrease and then becomes zero. As a result, the accelerator pedal is released.
  • a transmission line indicated by a dotted line indicates a final target transmission ratio.
  • the shift line is switched to the setting when the accelerator opening is zero, according to the change in the accelerator opening.
  • the gear ratio indicated by the shift line changes stepwise.
  • the target speed change ratio indicated by the broken line gradually changes toward the speed change ratio indicated by the speed change line, and the actual speed change ratio indicated by the solid line also changes accordingly.
  • the SEC pressure lower limit indicated by a dotted line is the SEC pressure that generates the lower limit L of the pulley 43, and changes according to the input torque to the transmission 4, and thus the accelerator opening. Specifically, the SEC pressure lower limit generates the first lower limit L1.
  • the SEC pressure command value indicated by the solid line changes according to the target gear ratio with the SEC pressure lower limit indicated by the dotted line as the lower limit value.
  • the actual SEC pressure indicated by a thin line changes according to the SEC pressure command value. In other words, the SEC pressure command value is the target hydraulic pressure of the SEC pressure.
  • the PRI pressure lower limit indicated by a dotted line is a PRI pressure that generates the lower limit L of the pulley 42, and changes according to the input torque to the transmission 4, and thus the accelerator opening.
  • the PRI pressure lower limit indicated by a dotted line generates the first lower limit L1 or the second lower limit L2, as will be described later.
  • the PRI pressure command value indicated by the solid line changes according to the target gear ratio with the PRI pressure lower limit indicated by the dotted line as the lower limit value.
  • the actual PRI pressure changes according to the PRI pressure command value.
  • the PRI pressure command value is the target hydraulic pressure of the PRI pressure.
  • the vehicle speed will drop slowly as the accelerator pedal is released. Therefore, the deceleration of the vehicle is started by releasing the accelerator pedal.
  • the depression of the brake pedal 63 is started. From the timing T1, the brake pedal force increases, and the vehicle speed starts to decrease much more than before the timing T1.
  • the lower limit of the SEC pressure indicated by the dotted line increases by an amount corresponding to the sudden braking thrust.
  • the SEC pressure command value also increases.
  • the PRI pressure lower limit indicated by the alternate long and short dash line indicates the PRI pressure that generates the target lower limit of the second lower limit L2.
  • timing T2 it is determined that the target gear ratio is lower than the actual gear ratio and that the vehicle is returning to the low speed. For this reason, from the timing T2, the SEC pressure command value is further increased by an amount corresponding to the shift thrust. From timing T2 to timing T3, low return is promoted by increasing the SEC pressure of the PRI pressure and the SEC pressure.
  • the actual SEC pressure indicated by the thin line changes according to the SEC pressure command value indicated by the solid line, and as a result, becomes greater than the sum of the SEC pressure lower limit and the predetermined value ⁇ at timing T3. For this reason, the PRI pressure lower limit indicated by the dotted line gradually decreases from the timing T3. In accordance with this, the PRI pressure command value indicated by the solid line also decreases. As a result, the actual primary pressure also decreases. Thereby, Low return can be promoted on the primary pulley 42 side.
  • the PRI pressure lower limit indicated by the dotted line generates the first lower limit L1 for the pulley 42 until the timing T3, and generates the second lower limit L2 for the pulley 42 from the timing T3.
  • the PRI pressure lower limit indicated by the dotted line becomes the PRI pressure lower limit indicated by the alternate long and short dash line at timing T4.
  • the SEC pressure command value indicated by the solid line becomes the SEC pressure lower limit indicated by the dotted line at timing T4, and the actual SEC pressure indicated by the thin line becomes the SEC pressure lower limit indicated by the dotted line at timing T5.
  • the PRI pressure lower limit indicated by the dotted line is increased again by the amount corresponding to the sudden braking thrust from the PRI pressure lower limit indicated by the alternate long and short dash line, and the PRI pressure command value indicated by the solid line is also increased accordingly. . Therefore, the actual PRI pressure is also increased.
  • the SEC pressure command value indicated by the solid line is also increased again to ensure the shift thrust.
  • Timing T5 From timing T5, the same change as the change between timing T2 and timing T5 is repeated, and the Low return is promoted.
  • the Low return control can be terminated at timing T11 when the vehicle speed becomes zero.
  • a lower limit value may be set to the magnitude of the decrease gradient, that is, the degree of decrease according to time.
  • the lower limit value can be set within a range that does not give such a sense of incongruity.
  • the actual PRI pressure decreases too rapidly, the undershoot of the actual PRI pressure increases.
  • the actual PRI pressure becomes less than the PRI pressure lower limit indicated by the one-dot broken line, and the primary pulley 42 Slip may occur.
  • an upper limit value may be set for the magnitude of the decrease gradient for the actual PRI pressure. Accordingly, it is possible to prevent the belt 44 from slipping at the primary pulley 42 as described above.
  • the first lower limit generates the first guaranteed capacity.
  • the first guaranteed capacity is a guaranteed capacity generated by the first lower limit L1.
  • the thrust corresponding to the cooperative regenerative torque generates a cooperative regenerative capacity capable of transmitting the torque input to the transmission 4 as the motor generator 2 regenerates.
  • the sudden braking thrust of the first corrected thrust FB1 constituting the first lower limit L1 is changed in accordance with sudden braking, which is an example of braking in this case, when sudden braking, which is an example of braking, is performed.
  • sudden braking which is an example of braking
  • a first braking capacity capable of transmitting torque input to the machine 4 is generated.
  • the first lower limit L1 generates the first guaranteed capacity, and the first guaranteed capacity includes the cooperative regeneration capacity and the first braking capacity.
  • the second lower limit is as follows.
  • the second lower limit generates the second guaranteed capacity.
  • the second guaranteed capacity is a guaranteed capacity generated by the second lower limit L2.
  • the thrust corresponding to the cooperative regeneration torque in the basic thrust FA constituting the second lower limit L2 generates a cooperative regeneration capacity as in the case of the first lower limit L1.
  • the low set thrust among the second corrected thrust FB2 constituting the second lower limit L2 generates a second braking capacity that is set lower than the first braking capacity.
  • the second lower limit L2 generates the second guaranteed capacity, and the second guaranteed capacity includes the cooperative regeneration capacity and the second braking capacity.
  • the vehicle according to the present embodiment includes a motor generator 2, a transmission 4 having a pulley 42, a pulley 43, and a belt 44, a transmission hydraulic pressure control unit 7 that controls PRI pressure and SEC pressure, and a CVTCU 81.
  • the CVTCU 81 performs the following setting when the transmission 4 is downshifted when the accelerator pedal is OFF, that is, when there is no acceleration request from the driver.
  • the CVTCU 81 sets the pulley thrust of the secondary pulley 43 as the lower limit L based on the first lower limit L1 that is the sum of the basic thrust FA and the first corrected thrust FB1. Further, the CVTCU 81 sets the pulley thrust of the primary pulley 42 as the lower limit L based on the second lower limit L2 that is the sum of the basic thrust FA and the second corrected thrust FB2.
  • the CVTCU 81 uses the torque capacity and the target hydraulic pressure, sets the target hydraulic pressure of the SEC pressure based on the first guaranteed capacity including the cooperative regeneration capacity and the first braking capacity as the guaranteed capacity. Further, the CVTCU 81 sets the target hydraulic pressure of the PRI pressure based on the second guaranteed capacity including the cooperative regeneration capacity and the second braking capacity as the guaranteed capacity.
  • the target hydraulic pressure of the PRI pressure and the target hydraulic pressure of the SEC pressure are set based on the cooperative regeneration capacity at the time of downshift. Even if the torque input to the machine 4 increases, the belt 44 does not slip.
  • the target hydraulic pressure of the SEC pressure is set based on the first braking capacity at the time of downshift, so that the clamping force of the belt 44 corresponding to the first braking capacity is set to the secondary pulley. 43 can be generated. Accordingly, since the belt 44 is pulled from the pulley 42 side toward the pulley 43 side, the hydraulic pressure corresponding to the first braking capacity is not applied to the primary pulley 42, and the first braking capacity is adjusted. The clamping force of the belt 44 can be generated by the primary pulley 42. For this reason, according to the vehicle having such a configuration, the belt 44 does not slip during sudden braking.
  • the target hydraulic pressure of the PRI pressure is set based on the second braking capacity that is set lower than the first braking capacity. Therefore, by reducing the PRI pressure, the PRI pressure The differential pressure between the SEC pressure and the SEC pressure can be increased. Therefore, according to the vehicle having such a configuration, the shift response can be improved.
  • the CVTCU 81 sets the low set thrust lower than the sudden braking thrust during the downshift. In other words, the CVTCU 81 sets the second braking capacity lower than the first braking capacity during the downshift.
  • the CVTCU 81 sets the second braking capacity lower than the first braking capacity, when the actual SEC pressure becomes less than the SEC pressure lower limit that is the first guaranteed capacity pressure, as shown at timing T5 in FIG.
  • the transmission hydraulic pressure control unit 7 increases the actual PRI pressure from the actual PRI pressure when the actual SEC pressure becomes less than the lower limit of the SEC pressure.
  • the tension of the belt 44 decreases as the actual PRI pressure decreases, and as a result, the volume of the secondary hydraulic chamber 46 increases accordingly, thereby suppressing the actual SEC pressure from decreasing. be able to. For this reason, it is possible to prevent the belt 44 from slipping as a result of a decrease in the clamping force of the belt 44 in the secondary pulley 43.
  • the CVTCU 81 responds to the sudden braking thrust from the PRI pressure lower limit indicated by the one-dot chain line in FIG. Increase the actual PRI pressure by that amount. In other words, the CVTCU 81 increases the second braking capacity to the first braking capacity by increasing the actual PRI pressure by the transmission hydraulic pressure control unit 7 when the actual SEC pressure becomes less than the first guaranteed capacity pressure. Increase.
  • the CVTCU 81 having such a configuration, it is possible to reliably prevent a decrease in the actual SEC pressure, and thus it is possible to prevent the belt 44 from slipping as a result of a decrease in the clamping force of the belt 44 in the secondary pulley 43. be able to.
  • the vehicle according to the present embodiment is configured in the same manner as the vehicle according to the first embodiment, except that CVTCU 81 is further configured as described below.
  • FIG. 8 is an example of control performed by the CVTCU 81 and is a diagram illustrating an example of a method for setting the lower limit L in the secondary pulley 43 in a flowchart.
  • the CVTCU 81 can repeatedly execute the processing of this flowchart every minute time.
  • step S21 and step S22 processing similar to that in step S11 and step S12 is performed as illustrated.
  • step S21 or step S22 If the determination in step S21 or step S22 is negative, the process proceeds to step S24. In this case, the CVTCU 81 sets the SEC pressure lower limit to the first capacity guarantee pressure.
  • step S21 or step S22 If the determination in step S21 or step S22 is affirmative, the process proceeds to step S23.
  • the CVTCU 81 sets the SEC pressure lower limit to the sum of the first capacity guarantee pressure and the predetermined value ⁇ .
  • the predetermined value ⁇ is set as follows.
  • the reduction rate is limited so as to decrease at a predetermined decrease gradient.
  • the SEC pressure is a hydraulic pressure that controls the clamping force for preventing the belt 44 from slipping, so that the SEC pressure is insufficient due to a sudden change so that the belt 44 does not slip.
  • the predetermined value ⁇ increases the SEC pressure lower limit by the amount of undershoot that may occur when the actual SEC pressure is reduced to a target such as the first capacity guarantee pressure at a predetermined decrease rate. Is set to As a result, the actual SEC pressure can be prevented from falling below the original lower limit of the SEC pressure, that is, the first guaranteed capacity pressure.
  • the target gear ratio becomes lower than the actual gear ratio, and it is determined that the vehicle is returning to the low speed. For this reason, from timing T3, the SEC pressure lower limit is changed from the SEC pressure lower limit indicated by the dotted line to the SEC pressure lower limit indicated by the thick line.
  • the SEC pressure lower limit indicated by the bold line is set to the SEC pressure lower limit indicated by the dotted line, that is, the sum of the first capacity guarantee pressure and the predetermined value ⁇ .
  • the SEC pressure command value indicated by the solid line becomes the SEC pressure lower limit indicated by the bold line
  • the SEC pressure command value is regulated to the SEC pressure lower limit indicated by the bold line.
  • the PRI pressure command value indicated by the solid line is in a state where it does not fall down by the amount corresponding to the predetermined value ⁇ .
  • the decrease in the actual PRI pressure and the actual SEC pressure, which are performed from the timing T3 in order to ensure the shift thrust with the primary pulley 42, are suppressed as compared with the case of the first embodiment.
  • the actual SEC pressure from becoming lower than the SEC pressure lower limit indicated by the dotted line, that is, the first guaranteed capacity pressure.
  • the PRI pressure command value and the SEC pressure command value from fluctuating so as to repeatedly increase and decrease.
  • step S14 and step S18 of the flowchart shown in FIG. 6 when the lower limit L of the primary pulley 42 is set, the SEC pressure lower limit indicated by the dotted line, that is, the first capacity guarantee pressure is equal to the actual SEC pressure. It becomes a comparison object.
  • the actual PRI pressure is increased at the timing T5 shown in FIG.
  • the actual pressure may not change according to the command value in each of the pulley 42 and the pulley 43 due to a response delay of the hydraulic pressure or a difference in pressure receiving area between the pulley 42 and the pulley 43.
  • a change in the gear ratio occurs, which may give the driver a feeling of strangeness.
  • the command value fluctuates so as to repeat increase / decrease
  • a change in the gear ratio also occurs repeatedly, which may further increase the sense of discomfort given to the driver.
  • the CVTCU 81 sets the SEC pressure command value with the value obtained by adding the predetermined value ⁇ to the first capacity guarantee pressure as the SEC pressure lower limit, so the actual SEC pressure is equal to or less than the first capacity guarantee pressure. Can be avoided. For this reason, it is possible to prevent the driver from feeling uncomfortable due to the change in the gear ratio that occurs as described above.
  • the downshift of the transmission 4 performed in a state where there is no acceleration request from the driver is performed when the brake pedal 63 is depressed.
  • the downshift of the transmission 4 performed in a state where there is no acceleration request from the driver may be performed when the brake pedal 63 is not depressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明は、モータジェネレータ(2)と、変速機(4)と、変速油圧コントロールユニット(7)及びCVTコントロールユニット(CVTCU(81))と、を備える車両に関する。CVTCU(81)は、運転者からの加速要求がない状態で行われる変速機のダウンシフトの際に、下限として、基本推力と第1補正推力との和である第1下限に基づいて、セカンダリプーリ(43)のプーリ推力を設定する。また、CVTCU(81)は、下限として、基本推力と第2補正推力との和である第2下限に基づいて、プライマリプーリ(42)のプーリ推力を設定する。

Description

車両及び車両の制御方法
 本発明は、車両及び車両の制御方法に関する。
 WO2011/145222Aには、ベルト式無段変速機のダウンシフトの開始時に、プライマリ圧の指示圧を一時的に低下させることで、変速応答性を高める技術が開示されている。
 ベルト式無段変速機では、ダウンシフトの際にプライマリ圧を低下させ、プライマリ圧とセカンダリ圧との差圧を大きくすることで、変速速度を向上させることができる。これにより、例えば停車を意図した急制動が行われた場合において、停車までの間に変速比を最Low変速比すなわち最大変速比まで変速させ易くすることができ、車両発進性を高めることができる。したがって、ベルト式無段変速機のダウンシフトに際し、変速応答性の観点からはプライマリ圧を極力低下させることが望ましい。
 ところが、ベルト式無段変速機に加え、駆動源及び発電機としてモータジェネレータを備える車両では、減速時にモータジェネレータで回生を行うことに伴い、ベルト式無段変速機への入力トルクが増大する。そして、このような入力トルクをベルト式無段変速機が伝達することができるようにプライマリプーリの目標油圧及びセカンダリプーリの目標油圧を設定する必要がある。
 このため、ベルト式無段変速機とモータジェネレータとを備える車両では、ダウンシフトに際し、プライマリ圧を低下させると、プライマリプーリにおけるベルトの挟持力が低下するためベルトが滑る虞がある。また、このベルト滑りを防止すべく、モータジェネレータの回生量を低下させることで回生に必要なベルトの挟持力を低減し、ベルト滑りを防止することもできるが、回生量が低下するため燃費が損なわれる虞がある。
 本発明は、このような技術的課題に鑑みてなされたもので、ダウンシフトに際し、急制動時であってもモータジェネレータでの回生による燃費向上と変速応答性とを両立させることが可能な車両及び車両の制御方法を提供することを目的とする。
 本発明のある態様の車両は、モータジェネレータと、前記モータジェネレータの駆動力が伝達され、プライマリ圧を制御することにより溝幅が変更されるプライマリプーリと、セカンダリ圧を制御することにより溝幅が変更されるセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられたベルトと、を有するバリエータと、前記プライマリ圧と前記セカンダリ圧とを制御する制御部と、を備える。前記制御部は、運転者からの加速要求がない状態で行われる前記バリエータのダウンシフトの際に、前記セカンダリ圧の目標油圧と前記プライマリ圧の目標油圧とを次のように設定する。すなわち、前記制御部は、前記ダウンシフトの際に前記セカンダリプーリで保証するトルク容量として、前記モータジェネレータで回生を行うことに伴い前記バリエータに入力されるトルクを伝達可能な協調回生容量と、制動された場合に制動に伴い前記バリエータに入力されるトルクを伝達可能な第1制動容量と、を含む第1保証容量に基づいて、前記セカンダリ圧の目標油圧を設定する。また、前記制御部は、前記ダウンシフトの際に前記プライマリプーリで保証するトルク容量として、前記協調回生容量と、前記第1制動容量より低く設定される第2制動容量と、を含む第2保証容量に基づいて、前記プライマリ圧の目標油圧を設定する。
 本発明の別の態様によれば、モータジェネレータと、前記モータジェネレータの駆動力が伝達されプライマリ圧を制御することにより溝幅が変更されるプライマリプーリとセカンダリ圧を制御することにより溝幅が変更されるセカンダリプーリと前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられたベルトとを有するバリエータと、を備える車両において前記プライマリ圧と前記セカンダリ圧とを制御するための車両の制御方法であって、運転者からの加速要求がない状態で行われる前記バリエータのダウンシフトの際に、前記セカンダリ圧の目標油圧と前記プライマリ圧の目標油圧とを次のように設定することを含む車両の制御方法が提供される。すなわち、前記ダウンシフトの際に前記セカンダリプーリで保証するトルク容量として、前記モータジェネレータで回生を行うことに伴い前記バリエータに入力されるトルクを伝達可能な協調回生容量と、制動された場合に制動に伴い前記バリエータに入力されるトルクを伝達可能な第1制動容量と、を含む第1保証容量に基づいて、前記セカンダリ圧の目標油圧を設定することと、前記ダウンシフトの際に前記プライマリプーリで保証するトルク容量として、前記協調回生容量と、前記第1制動容量より低く設定される第2制動容量と、を含む第2保証容量に基づいて、前記プライマリ圧の目標油圧を設定することと、を含む車両の制御方法が提供される。
 これらの態様によれば、ダウンシフトの際に、協調回生容量に基づいて、プライマリ圧の目標油圧とセカンダリ圧の目標油圧を設定するので、モータジェネレータで回生を行うことに伴いバリエータに入力されるトルクが増大しても、ベルトが滑ることはない。
 また、これらの態様によれば、ダウンシフトの際に、第1制動容量に基づいてセカンダリ圧の目標油圧を設定するので、第1制動容量に応じたベルトの挟持力をセカンダリプーリで発生させることができる。また、これに応じて、プライマリプーリ側からセカンダリプーリ側に向かってベルトが引っ張られるので、第1制動容量に応じたベルトの挟持力をプライマリプーリでも発生させることができる。このため、これらの態様によれば、急制動時にベルトが滑ることもない。
 したがって、これらの態様によれば、急制動時であってもモータジェネレータでの回生による燃費向上を図ることができる。
 また、これらの態様によれば、プライマリ圧の目標油圧は、第1制動容量より低く設定される第2制動容量を含むプライマリ保証容量に基づいて設定されるので、プライマリ圧を低下させることで、プライマリ圧とセカンダリ圧との差圧を大きくすることもできる。したがって、これらの態様によれば、変速応答性を高めることもできる。
図1は、第1実施形態の車両の概略構成図である。 図2は、減速時の変速機への入力トルクの説明図である。 図3は、減速時のプーリ推力の説明図である。 図4は、減速時のプーリ推力の設定の比較例を示す図である。 図5は、第1実施形態における減速時の下限の設定例を示す図である。 図6は、第1実施形態における制御の一例をフローチャートで示す図である。 図7は、第1実施形態におけるタイミングチャートの一例を示す図である。 図8は、第2実施形態における制御の一例をフローチャートで示す図である。 図9は、第2実施形態におけるタイミングチャートの一例を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
 図1は、本実施形態の車両の概略構成図である。車両は駆動源としてエンジン1及びモータジェネレータ2を備える。エンジン1又はモータジェネレータ2の出力回転は、前後進切替機構3、変速機4、終減速機構5を介して駆動輪6へと伝達される。
 エンジン1には、エンジン1を制御するにあたっての制御対象となる制御対象部10が設けられる。制御対象部10は例えば、燃料噴射弁やスロットル弁を含む。制御対象部10は、エンジンコントロールユニット84の指令に基づいてエンジン1を所望のトルクで動作させ、出力軸11を回転させる。エンジン1とモータジェネレータ2との間には、これらの間の回転を断続する第1クラッチ12が備えられる。
 モータジェネレータ2は、インバータ21から出力される電力により駆動される。モータジェネレータ2の回生電力は、インバータ21に入力される。インバータ21は、モータコントロールユニット83の指令に基づいてモータジェネレータ2を所望のトルクで動作させる。モータジェネレータ2は、例えば三相交流により駆動される同期型回転電機により構成される。インバータ21は、バッテリ22に接続される。
 前後進切替機構3は、エンジン1及びモータジェネレータ2からなる駆動源と変速機4との間に備えられる。前後進切替機構3は、前進走行に対応する正転方向と後退走行に対応する逆転方向との間で、出力軸23から入力される回転の回転方向を切り替え、変速機4へと入力する。
 前後進切替機構3は具体的には、前進クラッチ31と後退ブレーキ32とを備える。前進クラッチ31は、回転方向を正転方向とする場合に連結され、後退ブレーキ32は、回転方向を逆転方向とする場合に連結される。前進クラッチ31及び後退ブレーキ32の一方は、エンジン1及びモータジェネレータ2と変速機4と間の回転を断続する第2クラッチとして構成される。
 変速機4は、変速機出力軸41と、プライマリプーリ42と、セカンダリプーリ43と、プライマリプーリ42及びセカンダリプーリ43に巻き掛けられたベルト44と、を有する。以下では、プライマリプーリ42を単にプーリ42とも称し、セカンダリプーリ43を単にプーリ43とも称す。変速機4は、プーリ42とプーリ43との溝幅をそれぞれ変更することでベルト44の巻掛け径を変更して変速を行うベルト式無段変速機構からなるバリエータである。
 プライマリプーリ42は、固定プーリ42aと可動プーリ42bとを備える。プライマリ油圧室45に供給されるプーリ圧であるプライマリ圧を制御することにより、可動プーリ42bが作動し、プライマリプーリ42の溝幅が変更される。プライマリプーリ42には、前後進切替機構3を介して、モータジェネレータ2の駆動力が伝達される。以下では、プライマリ圧をPRI圧と称す。
 セカンダリプーリ43は、固定プーリ43aと可動プーリ43bとを備える。セカンダリ油圧室46に供給されるプーリ圧であるセカンダリ圧を制御することにより、可動プーリ43bが作動し、セカンダリプーリ43の溝幅が変更される。以下では、セカンダリ圧をSEC圧と称す。
 ベルト44は、プライマリプーリ42の固定プーリ42aと可動プーリ42bとにより形成されるV字形状をなすシーブ面と、セカンダリプーリ43の固定プーリ43aと可動プーリ43bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。
 終減速機構5は、変速機出力軸41からの出力回転を駆動輪6に伝達する。終減速機構5は、複数の歯車列52及びディファレンシャルギア56を備える。ディファレンシャルギア56には車軸51が連結され、駆動輪6を回転する。
 駆動輪6には、ブレーキ61が備えられる。ブレーキ61の制動力は、ブレーキコントロールユニット82からの指令に基づいて、ブレーキアクチュエータ62により制御される。ブレーキアクチュエータ62は、マスタシリンダ64がブレーキペダル63の踏力を変換して発生させたブレーキ液圧をもとにして、ブレーキ61の制動力を制御する。
 変速機4のプライマリプーリ42及びセカンダリプーリ43には、変速油圧コントロールユニット7からの油圧が供給される。
 変速油圧コントロールユニット7は、オイルポンプ70と、レギュレータ弁71と、ライン圧ソレノイド72と、ライン圧油路73と、第1調圧弁74と、PRI圧ソレノイド75と、PRI圧油路76と、第2調圧弁77と、SEC圧ソレノイド78と、SEC圧油路79と、を備える。
 レギュレータ弁71は、オイルポンプ70から吐出されるオイルにより発生する油圧をライン圧PLに制御する。ライン圧ソレノイド72は、レギュレータ弁71を動作させる。ライン圧PLは、ライン圧油路73により第1調圧弁74及び第2調圧弁77に供給される。第1調圧弁74は、PRI圧ソレノイド75により動作されて、PRI圧油路76にPRI圧を供給する。第2調圧弁77は、SEC圧ソレノイド78に動作されて、SEC圧油路79にSEC圧を供給する。
 ライン圧ソレノイド72、PRI圧ソレノイド75及びSEC圧ソレノイド78は、CVTコントロールユニット81からの指令に応じて動作し、各油圧を制御する。したがって、変速油圧コントロールユニット7は、CVTコントロールユニット81とともに、ライン圧PL、PRI圧及びSEC圧を制御する。
 CVTコントロールユニット81と、ブレーキコントロールユニット82と、モータコントロールユニット83と、エンジンコントロールユニット84とは、ハイブリッドコントロールモジュール80と共に、互いに通信可能なCAN90を介して接続される。
 CVTコントロールユニット81には、PRI圧センサ88、SEC圧センサ89からの信号が入力される。PRI圧センサ88はPRI圧の実圧である実PRI圧を検出し、SEC圧センサ89はSEC圧の実圧である実SEC圧を検出する。CVTコントロールユニット81には、ハイブリッドコントロールモジュール80を介して、ブレーキセンサ65やアクセル開度センサ85からの信号も入力される。CVTコントロールユニット81には、このほかプライマリ回転センサ及びセカンダリ回転センサ等からの信号も入力される。
 CVTコントロールユニット81は、入力された信号に基づいて変速油圧コントロールユニット7に指令を送ることで、上述したように変速油圧コントロールユニット7とともにライン圧PL、PRI圧及びSEC圧を制御する。
 ハイブリッドコントロールモジュール80は、車両全体の消費エネルギを管理し、エネルギ効率が高くなるようにエンジン1及びモータジェネレータ2の駆動を制御する。
 ハイブリッドコントロールモジュール80には、ブレーキペダル63の踏力を検出するブレーキセンサ65や、アクセルペダルの踏み込み量を検出するアクセル開度センサ85からの信号が入力される。運転者による加速要求は、アクセル開度センサ85によって検出することができる。ハイブリッドコントロールモジュール80には、このほか車速センサ86やインヒビタスイッチセンサ87等からの信号及びCAN90を介して各コントロールユニットからの情報が入力される。
 ハイブリッドコントロールモジュール80は、これらの信号及び情報から、目標駆動トルクと目標制動トルクとを算出する。目標制動トルクから、モータジェネレータ2で発生可能な最大限の回生トルクである回生制動トルク分を差し引いた残りが液圧制動トルクなので、目標制動トルクは、回生制動トルクと液圧制動トルクの総和とされる。ハイブリッドコントロールモジュール80は、減速時にモータジェネレータ2で回生を行う。
 ブレーキコントロールユニット82は、ハイブリッドコントロールモジュール80からの制御指令に基づいて、ブレーキアクチュエータ62に駆動指令を出力する。ブレーキコントロールユニット82は、ブレーキアクチュエータ62で発生しているブレーキ液圧の情報を取得してハイブリッドコントロールモジュール80に送る。
 モータコントロールユニット83は、ハイブリッドコントロールモジュール80からの制御指令に基づいて、正のトルク指令である目標力行指令、又は負のトルク指令である目標回生指令をインバータ21に出力する。モータコントロールユニット83は、モータジェネレータ2に印加する実電流値等を検出することで、実モータ駆動トルク情報を取得し、ハイブリッドコントロールモジュール80に送る。
 エンジンコントロールユニット84は、ハイブリッドコントロールモジュール80からの制御指令に基づき、制御対象部10に対し指令を出力する。エンジンコントロールユニット84は、エンジン1の回転速度や燃料噴射量等により得られる実エンジン駆動トルク情報をハイブリッドコントロールモジュール80に送る。
 次に、減速時の変速機4への入力トルクについて、図2を用いて説明する。図2では、アクセルペダルが解放された状態でブレーキペダル63が踏み込まれることで、減速後停車する場合の減速時の入力トルクの一例について説明する。
 減速時には、モータジェネレータ2が、協調回生トルクに応じて回生を行う。このため減速時には、変速機4が伝達するトルクとして協調回生トルクが設定される。協調回生トルクは、モータジェネレータ2で回生を行うためのトルクであり、負のトルクとなる。協調回生トルクは具体的には、前述の回生制動トルクである。
 減速時には、ブレーキ61が、制動トルクに応じて制動を行う。このため、減速時には、変速機4が伝達するトルクとして制動トルクも設定される。制動トルクは、車両の制動を行うためのトルクであり、負のトルクとなる。制動トルクは具体的には、前述の液圧制動トルクである。
 車速が低下していくと、変速機4への入力トルク、すなわち協調回生トルク及び制動トルクはゼロになる。車速がさらに低下すると、協調回生トルクはゼロのままになり、正のトルクで示される駆動トルクが設定される。そして、車速がゼロになる前に第2クラッチをスリップ状態にし、車速がゼロの場合に駆動トルクがクリープトルクに設定される。
 仮に車両がモータジェネレータ2を備えていないとすると、変速機4は減速時に協調回生トルクを伝達する必要はないが、本実施形態では、モータジェネレータ2が適切に回生を行えるよう、変速機4が減速時に協調回生トルクを伝達する必要がある。
 また、減速時には、変速比を最Low変速比などLow側に戻す変速機4のダウンシフトを行うことで、減速後停車した場合の車両発進性を高めることができる。ところが、減速時に協調回生トルクを伝達する必要がある場合、次に説明するように、変速機4のダウンシフトを行うための変速推力を確保し難くなる。
 図3は、減速時のプーリ推力の説明図である。減速時は、図2で説明したのと同様である。図3では、プーリ42及びプーリ43それぞれにつき、プーリ圧に応じて発生するプーリ推力を示す。最低推力Fminは、プーリ圧の下限設定値に応じたプーリ推力である。
 プーリ42及びプーリ43それぞれでは、プーリ推力に応じたトルク容量が確保される。プーリ42及びプーリ43それぞれにつき、プーリ推力には上限U及び下限Lが設定される。
 上限Uは、強度や油量収支に応じて決まってくる。下限Lは、運転者からの加速要求がない状態で行われるダウンシフトの際に保証するトルク容量である保証容量に応じて設定される。保証容量は具体的には、運転者からの加速要求がない状態で行われるダウンシフトの際に、変速機4に入力されるトルクの伝達を保証し、ベルト44の滑りを防止するために必要な最小トルク容量である。
 プーリ42及びプーリ43それぞれにつき、プーリ推力は、下限Lに基づき設定される。具体的には、プーリ推力は下限Lと変速推力との和に設定される。変速推力は、上限Uから下限Lを減算して得られる大きさの範囲内で設定することができる。プーリ推力の設定は具体的には、目標油圧の設定により行われる。したがって、プーリ推力の設定は換言すれば、目標油圧の設定といえる。
 下限Lは、上述の保証容量を発生させる推力といえる。このため、プーリ42及びプーリ43それぞれにつき、プーリ推力は下限Lに基づき設定されることで、保証容量に基づき設定される。
 プーリ42及びプーリ43それぞれにつき、下限Lは具体的には例えば、括弧書きで示す第1下限L1に設定することができる。第1下限L1は、基本推力FAと第1補正推力FB1との和である。基本推力FAと第1補正推力FB1とは次の通りである。
 すなわち、基本推力FAは、変速機4への入力トルク、したがって図2で説明したように協調回生トルクと制動トルクとに基づき設定される推力である。第1補正推力FB1は、基本推力FAに加えてさらに考慮すべき補正要素に基づき設定される推力である。
 補正要素には具体的には例えば、油圧安全率が含まれる。また、補正要素には、油圧供給の際にオイルポンプ70で発生するロスや、エンジン1やモータジェネレータ2のイナーシャトルクが含まれる。補正要素には、さらに急制動時のベルト44の滑り防止が含まれる。
 急制動時は、ブレーキペダル63が所定時間内に所定量よりも大きく踏み込まれた場合であり、例えば瞬間的な動作によるブレーキペダル63の最大踏み込み時である。以下では、補正要素としての急制動時のベルト44の滑り防止を単に急制動補正要素と称す。
 急制動補正要素は、急制動が実際に行われたか否かに関わらず、ブレーキペダル63が踏み込まれた場合に考慮される。急制動が実際に行われた場合に備えるためである。このため、ブレーキペダル63が踏み込まれた場合には、急制動補正要素に基づき、第1補正推力FB1に急制動用推力が設定される。急制動用推力は、急制動に応じて発生する最悪イナーシャトルクに対しベルト44の滑り防止を保証する。
 ところで、本実施形態の車両では、変速機4が減速時に協調回生トルクを伝達する必要がある分、その必要がない場合よりも基本推力FAが大きくなる。結果、これに応じて下限Lも大きくなるので、その分、変速推力を確保し難くなる。
 変速推力が不十分の場合、減速時に変速機4のダウンシフトが完了しない可能性がある。結果、車両発進性が悪化する可能性がある。また、変速機4のダウンシフトが完了しない場合、変速機4のダウンシフトが完了する場合よりも、モータジェネレータ2の回転速度は低下する。結果、モータジェネレータ2のエネルギ回生量が低下する可能性がある。
 このため、例えば次に説明するようにして、変速機4の変速応答性を高めることも考えられる。
 図4は、減速時のプーリ推力の設定の比較例を示す図である。減速時は、図2で説明したのと同様である。この例では、変速機4の変速応答性を高めるために、プライマリプーリ42において下限Lを無視し、最低推力Fminまでプーリ推力を低下させる。これにより、PRI圧とSEC圧との差圧を大きくすることができるので、変速機4の変速応答性を高めることができる。
 ところが、このようにプーリ推力を設定した場合、次のようにしてベルト44の滑りが発生する可能性がある。すなわちこの場合には、PRI圧を低下させることで、プライマリプーリ42は溝幅が広がるように動作する。また、これに応じてベルト44の張力が低下する結果、セカンダリプーリ43は溝幅が狭まるように動作する。そしてこのときに、セカンダリ油圧室46の体積が増加する。
 セカンダリ油圧室46の体積増加に対してセカンダリ油圧室46へのオイル供給が追い付かないと、図示のようにセカンダリプーリ43の実プーリ推力が低下する。結果、セカンダリプーリ43におけるベルト44の挟持力が低下し、ベルト44の滑りが発生する可能性がある。特に、アクセルペダルが解放されている場合には、エンジン1の回転速度の低下に伴い、エンジン1を駆動源とするオイルポンプ70のオイル吐出量も低下する。このため、セカンダリ油圧室46への十分なオイル供給が行われず、ベルト44の滑りが発生する可能性がある。
 そこで、本実施形態の車両では、次に説明するように下限Lを設定する。
 図5は、本実施形態における減速時の下限Lの設定例を示す図である。減速時は、図2で説明したのと同様である。プライマリプーリ42につき、下限Lは基本推力FAと第2補正推力FB2との和に設定される。
 第2補正推力FB2は、第1補正推力FB1に対して次のような変更を加えた推力である。すなわち、第2補正推力FB2は、急制動用推力の代わりに、減速時に急制動用推力よりも低く設定される推力である低設定推力を適用した推力である。
 このため、第2補正推力FB2は、図3に示すプーリ42の第1補正推力FB1より低く設定され、この結果、プーリ42の下限Lが第1下限L1より低い第2下限L2に設定される。これにより、プーリ42の下限Lが第1下限L1から第2下限L2に低下する分、PRI圧を低く設定することができる。したがって、PRI圧とSEC圧との差圧を大きくすることができるので、変速機4の変速応答性を高めることができる。
 低設定推力は具体的には、減速時に低設定推力を急制動用推力から次第に低下させることで、急制動用推力より低く設定されるとともに、目標値に設定される。目標値は例えばゼロであり、実験等に基づき予め設定することができる。第2下限L2は、このような低設定推力の低下によって第1下限L1から次第に低下し、低設定推力が目標値に設定された場合に目標下限に設定される。
 本実施形態における下限Lの設定は、CVTコントロールユニット81によって具体的には次に説明するように行われる。以下では、CVTコントロールユニット81をCVTCU81と称す。
 図6は、CVTCU81が行う制御の一例であって、プライマリプーリ42における下限Lの設定方法の一例をフローチャートで示す図である。CVTCU81は、本フローチャートの処理を微小時間毎に繰り返し実行することができる。
 ステップS11で、CVTCU81は、アクセルペダルがOFFであるか否か、すなわちアクセルペダルが解放されているか否かを判定する。ステップS11で、CVTCU81は、このような判定を行うことで、運転者からの加速要求がないか否かを判定する。
 ステップS11で否定判定であれば、処理はステップS19に進む。この場合、図5で説明した下限Lの設定は行われず、CVTCU81は、プライマリプーリ42につき下限Lを第1下限L1に設定する。ステップS19の後には、本フローチャートの処理は一旦終了する。
 ステップS11で肯定判定であれば、処理はステップS12に進む。この場合、CVTCU81は、減速Low戻り中であるか否かを判定する。減速Low戻り中であるか否かは例えば、ブレーキペダル63が踏み込まれており、且つ目標変速比が実変速比よりもLow側にあるか否かを判定することで判定することができる。減速Low戻り中であるか否かはさらに、車速が所定値より大きいか否かを判定することで判定されてよい。所定値は例えばゼロである。
 ステップS12で否定判定であれば、処理はステップS19に進む。ステップS12で肯定判定であれば、減速時に変速機4のダウンシフトが行われていると判断され、処理はステップS13に進む。この場合、CVTCU81は、プーリ42の下限Lが第1下限L1であるか否かを判定する。ステップS13で肯定判定であれば、処理はステップS14に進む。
 ステップS14で、CVTCU81は、実SEC圧が、第1保証容量圧と所定値αとの和より大きいか否かを判定する。第1保証容量圧は、第1下限L1を発生させるプーリ圧であり、第1下限L1を発生させることで第1保証容量を発生させる。所定値αは、実SEC圧と第1保証容量圧とを比較するにあたり、実SEC圧に対して余裕を設定するための値であり、実験等に基づき予め設定することができる。ステップS14で否定判定であれば、処理はステップS19に進む。
 ステップS14で肯定判定であれば、処理はステップS15に進む。この場合、CVTCU81は、プライマリプーリ42につき下限Lを第2下限L2に設定する。
 ステップS16で、CVTCU81は、第2下限L2が目標下限であるか否かを判定する。ステップS13の肯定判定を経てステップS16に進んだ場合は、ステップS16で否定判定され、処理はステップS17に進む。
 ステップS17で、CVTCU81は、プーリ42につき第2下限L2を低下させる。ステップS17で、CVTCU81は具体的には、低設定推力を急制動用推力から所定の度合いで低下させることで、第2下限L2を所定の度合いで低下させる。
 ステップS18で、CVTCU81は、実SEC圧が第1保証容量圧以下であるか否かを判定する。ステップS18で否定判定であれば、本フローチャートの処理は一旦終了する。
 この場合、その後のルーチンで、処理がステップS13に進む場合には、ステップS13で否定判定され、ステップS14及びステップS15はスキップされる。そして、第2下限L2が目標下限でなければステップS16で否定判定される結果、ステップS17で第2下限L2が低下される。そして、ステップS18で否定判定であれば、同様の処理が繰り返される。
 これにより、第2下限L2は目標下限に向けて徐々に低下される。そして、第2下限L2が目標下限になることで、低設定推力の目標値がゼロの場合には、急制動用推力分の推力が第2下限L2から除外される。第2下限L2が目標下限になった場合には、ステップS16で肯定判定され、処理はステップS18に進む。
 ステップS18で肯定判定された場合、処理はステップS19に進む。したがって、この場合には、図5で説明した下限Lの設定は中止される。ステップS19では、プーリ42の下限Lを現在値から第1下限L1に切り替えるように設定することで、徐々に変化させることなく下限Lを設定することができる。
 次に、減速Low戻り中の各種パラメータの変化を示すタイミングチャートの一例について、図7を用いて説明する。
 まず、タイミングT1前の変化について説明する。タイミングT1前では、アクセル開度が減少し始め、その後ゼロになる。結果、アクセルペダルが解放される。
 変速機4の変速比につき、点線で示す変速線は、最終目標変速比を示す。変速線は、アクセル開度の変化に応じて、アクセル開度がゼロの場合の設定に切り替えられる。結果、変速線が示す変速比はステップ的に変化する。破線で示す目標変速比は、変速線が示す変速比に向かって次第に変化し、これに応じて実線で示す実変速比も変化する。
 SEC圧につき、点線で示すSEC圧下限は、プーリ43の下限Lを発生させるSEC圧であり、変速機4への入力トルク、したがってアクセル開度に応じて変化する。SEC圧下限は具体的には、第1下限L1を発生させる。実線で示すSEC圧指令値は、点線で示すSEC圧下限を下限値として目標変速比に応じて変化する。細線で示す実SEC圧は、SEC圧指令値に応じて変化する。SEC圧指令値は、換言すればSEC圧の目標油圧である。
 PRI圧につき、点線で示すPRI圧下限は、プーリ42の下限Lを発生させるPRI圧であり、変速機4への入力トルク、したがってアクセル開度に応じて変化する。点線で示すPRI圧下限は、後述するように第1下限L1又は第2下限L2を発生させる。実線で示すPRI圧指令値は、点線で示すPRI圧下限を下限値として目標変速比に応じて変化する。なお、図示しないが実PRI圧は、PRI圧指令値に応じて変化する。PRI圧指令値は、換言すればPRI圧の目標油圧である。
 車速は、アクセルペダルが解放されることで緩やかに低下する。したがって、アクセルペダルが解放されることで、車両の減速が開始される。
 タイミングT1では、ブレーキペダル63の踏み込みが開始される。タイミングT1からは、ブレーキ踏力が増加し、タイミングT1前よりも車速が大きく低下し始める。
 タイミングT1では、点線で示すSEC圧下限が、急制動用推力に応じた分だけ大きくなる。また、これに応じてSEC圧指令値も大きくなる。点線で示すPRI圧下限及び実線で示すPRI圧指令値についても同様である。一点鎖線で示すPRI圧下限は、第2下限L2の目標下限を発生させるPRI圧を示す。
 タイミングT1からは、制動及び回生が行われ、変速機4への入力トルクが増加する。このため、タイミングT1からは、点線で示すSEC圧下限がさらに、変速機4への入力トルクの増加に応じて大きくなる。また、これに応じてSEC圧指令値も大きくなる。点線で示すPRI圧下限及び実線で示すPRI圧指令値についても同様である。
 タイミングT2では、目標変速比が実変速比よりLow側になり、減速Low戻り中と判定される。このため、タイミングT2からは、変速推力に応じた分だけSEC圧指令値がさらに高められる。タイミングT2からタイミングT3までは、PRI圧及びSEC圧のうちSEC圧を高めることでLow戻りが促進される。
 タイミングT2からは、細線で示す実SEC圧が、点線で示すSEC圧下限と所定値αとの和とより大きいか否か、換言すれば、第1保証容量圧と所定値αとの和とより大きいか否かが判定される。
 細線で示す実SEC圧は、実線で示すSEC圧指令値に応じて変化する結果、タイミングT3でSEC圧下限と所定値αとの和より大きくなる。このため、タイミングT3からは、点線で示すPRI圧下限が次第に低下する。また、これに応じて実線で示すPRI圧指令値も低下する。結果、実プライマリ圧も低下する。これにより、プライマリプーリ42側でLow戻りを促進することができる。
 タイミングT3からは、プライマリプーリ42側でLow戻りを促進する分、セカンダリプーリ43側でLow戻りを促進する必要がなくなる。このため、タイミングT3からは、実線で示すSEC圧指令値が変速推力に応じた分だけ次第に低下され、これに応じて細線で示す実SEC圧も次第に低下する。このとき、SEC圧指令値は、PRI圧指令値の変化に応じて次第に変化する。
 点線で示すPRI圧下限は、タイミングT3になるまではプーリ42につき第1下限L1を発生させ、タイミングT3からはプーリ42につき第2下限L2を発生させる。点線で示すPRI圧下限は、タイミングT4で一点鎖線で示すPRI圧下限になる。
 実線で示すSEC圧指令値は、タイミングT4で点線に示すSEC圧下限になり、細線で示す実SEC圧は、タイミングT5で点線で示すSEC圧下限になる。このため、タイミングT5では、点線で示すPRI圧下限が、一点鎖線で示すPRI圧下限から急制動用推力に応じた分だけ再び高められ、これに応じて実線で示すPRI圧指令値も高められる。したがって、実PRI圧も高められる。タイミングT5では、実線で示すSEC圧指令値も変速推力を確保するために再び高められる。
 タイミングT2からタイミングT5では、このようにしてLow戻りが促進される結果、実変速比がLow側に向かって変化する。さらに、タイミングT3からタイミングT5では、実SEC圧を抑制しながら変速推力を確保するので、プーリ42及びプーリ43の油量収支で油量不足が発生することを回避することができ、Low戻り性が向上する。
 タイミングT5からは、タイミングT2及びタイミングT5間の変化と同様の変化が繰り返され、Low戻りが促進される。Low戻りの制御は、車速がゼロになるタイミングT11で終了することができる。
 ところで、タイミングT3からは、実SEC圧を抑制しながら変速推力を確保するために、実PRI圧の素早い低下が望まれる。
 このため、実PRI圧に対しては、低下勾配の大きさ、すなわち時間に応じた低下度合いに下限値を設定してもよい。これにより、実PRI圧の低下が緩やかになり過ぎないようにすることができる。結果、変速応答性が低くなることで運転者に違和感を与えることを抑制することができる。下限値はこのような違和感を与えない範囲内で設定することができる。
 一方、実PRI圧の低下が急になり過ぎると、実PRI圧のアンダーシュートが大きくなる。この場合、タイミングT5で、実線で示すPRI圧指令値に応じて実PRI圧を増大させようとした際に、実PRI圧が一点破線で示すPRI圧下限未満となり、プライマリプーリ42でベルト44の滑りが発生する可能性がある。
 このため、実PRI圧に対しては、低下勾配の大きさに上限値を設定してもよい。これにより、上述のようしてプライマリプーリ42でベルト44の滑りが発生する事態も防止することができる。
 次に、図5等で前述した第1下限L1及び第2下限L2についてさらに説明する。
 ここで、第1下限は第1保証容量を発生させる。第1保証容量は、第1下限L1によって発生する保証容量である。
 第1下限L1を構成する基本推力FAのうち協調回生トルクに応じた分の推力は、モータジェネレータ2で回生を行うことに伴い変速機4に入力されるトルクを伝達可能な協調回生容量を発生させる。
 また、第1下限L1を構成する第1補正推力FB1のうち急制動用推力は、制動された場合の一例である急制動された場合に、この場合の制動の一例である急制動に伴い変速機4に入力されるトルクを伝達可能な第1制動容量を発生させる。
 このため、第1下限L1は第1保証容量を発生させ、第1保証容量は協調回生容量と第1制動容量とを含む。
 第2下限については、次の通りである。
 ここで、第2下限は第2保証容量を発生させる。第2保証容量は、第2下限L2によって発生する保証容量である。
 第2下限L2を構成する基本推力FAのうち協調回生トルクに応じた分の推力は、第1下限L1の場合と同様、協調回生容量を発生させる。
 また、第2下限L2を構成する第2補正推力FB2のうち低設定推力は、第1制動容量より低く設定される第2制動容量を発生させる。
 このため、第2下限L2は第2保証容量を発生させ、第2保証容量は協調回生容量と第2制動容量とを含む。
 次に、本実施形態の車両の主な作用効果について説明する。本実施形態の車両は、モータジェネレータ2と、プーリ42とプーリ43とベルト44とを有する変速機4と、PRI圧とSEC圧とを制御する変速油圧コントロールユニット7及びCVTCU81と、を備える。
 CVTCU81は、アクセルペダルがOFFの状態、すなわち運転者からの加速要求がない状態で行われる変速機4のダウンシフトの際に、次のような設定を行う。
 すなわち、CVTCU81は、下限Lとして、基本推力FAと第1補正推力FB1との和である第1下限L1に基づいて、セカンダリプーリ43のプーリ推力を設定する。また、CVTCU81は、下限Lとして、基本推力FAと第2補正推力FB2との和である第2下限L2に基づいて、プライマリプーリ42のプーリ推力を設定する。
 トルク容量や目標油圧を用いて換言すれば、CVTCU81は、保証容量として、協調回生容量と第1制動容量とを含む第1保証容量に基づいて、SEC圧の目標油圧を設定する。また、CVTCU81は、保証容量として、協調回生容量と第2制動容量とを含む第2保証容量に基づいて、PRI圧の目標油圧を設定する。
 このような構成の車両によれば、ダウンシフトの際に、協調回生容量に基づいてPRI圧の目標油圧とSEC圧の目標油圧とを設定するので、モータジェネレータ2で回生を行うことに伴い変速機4に入力されるトルクが増大しても、ベルト44が滑ることはない。
 また、このような構成の車両によれば、ダウンシフトの際に、第1制動容量に基づいてSEC圧の目標油圧を設定するので、第1制動容量に応じたベルト44の挟持力をセカンダリプーリ43で発生させることができる。また、これに応じて、プーリ42側からプーリ43側に向かってベルト44が引っ張られるので、第1制動容量に応じた油圧をプライマリプーリ42に作用させなくても、第1制動容量に応じたベルト44の挟持力をプライマリプーリ42で発生させることができる。このため、このような構成の車両によれば、急制動時にベルト44が滑ることもない。
 したがって、このような構成の車両によれば、急制動時であってもモータジェネレータ2での回生による燃費向上を図ることができる。
 また、このような構成の車両によれば、PRI圧の目標油圧は、第1制動容量より低く設定される第2制動容量に基づいて設定されるので、PRI圧を低下させることで、PRI圧とSEC圧との差圧を大きくすることもできる。したがって、このような構成の車両によれば、変速応答性を高めることもできる。
 本実施形態の車両では、CVTCU81は、ダウンシフトの際に低設定推力を急制動用推力より低く設定する。換言すれば、CVTCU81は、ダウンシフトの際に第2制動容量を第1制動容量より低く設定する。CVTCU81は、第2制動容量を第1制動容量より低く設定するに際して、図7のタイミングT5に示すように、実SEC圧が第1保証容量圧であるSEC圧下限未満になった場合には、変速油圧コントロールユニット7によって、実SEC圧がSEC圧下限未満になった時点の実PRI圧より実PRI圧を増大させる。
 このような構成の車両によれば、実PRI圧の低下に伴いベルト44の張力が低下し、これに応じてセカンダリ油圧室46の体積が増加する結果、実SEC圧が低下することを抑制することができる。このため、セカンダリプーリ43においてベルト44の挟持力が低下する結果、ベルト44の滑りが発生することを抑制することができる。
 本実施形態の車両では、CVTCU81は、実SEC圧がSEC圧下限未満になった場合には、変速油圧コントロールユニット7によって、図7において一点鎖線で示すPRI圧下限から急制動用推力に応じた分だけ実PRI圧を増大させる。換言すれば、CVTCU81は、実SEC圧が第1保証容量圧未満になった場合には、変速油圧コントロールユニット7によって、実PRI圧を増大させることで、第2制動容量を第1制動容量まで増大させる。
 このような構成のCVTCU81によれば、実SEC圧の低下を確実に防止することができるので、セカンダリプーリ43においてベルト44の挟持力が低下する結果、ベルト44の滑りが発生することを防止することができる。
(第2実施形態)
 本実施形態の車両は、CVTCU81がさらに以下で説明するように構成される点以外、第1実施形態の車両と同様に構成される。
 図8は、CVTCU81が行う制御の一例であって、セカンダリプーリ43における下限Lの設定方法の一例をフローチャートで示す図である。CVTCU81は、本フローチャートの処理を微小時間毎に繰り返し実行することができる。
 ステップS21及びステップS22では、図示のようにステップS11及びステップS12と同様の処理が行われる。
 ステップS21又はステップS22で否定判定であった場合、処理はステップS24に進む。この場合、CVTCU81は、SEC圧下限を第1容量保証圧に設定する。
 ステップS21及びステップS22で肯定判定であった場合、処理はステップS23に進む。この場合、CVTCU81は、SEC圧下限を第1容量保証圧と所定値βとの和に設定する。所定値βは、次のように設定される。
 ここで、SEC圧に対しては、例えばステップ的に低下指示がなされても、所定の低下勾配で低下するように低下率に制限がかけられている。これは、SEC圧は、ベルト44が滑らないようにするための挟持力を司る油圧であることから、急変することによってSEC圧が不足し、ベルト44が滑らないようにするためである。
 このため、所定値βは、所定の低下率で実SEC圧を第1容量保証圧など目標まで低下させようとした場合に発生し得るアンダーシュートの大きさの分だけ、SEC圧下限が大きくなるように設定されている。これにより、実SEC圧が元のSEC圧下限すなわち第1保証容量圧を下回らないようにすることができる。ステップS23又はステップS24の後には、本フローチャートの処理を一旦終了する。
 次に、減速Low戻り中の各種パラメータの変化を示す本実施形態のタイミングチャートの一例について、図9を用いて説明する。
 タイミングT1からタイミングT3までの各種パラメータの変化は、図7の場合と同様である。
 タイミングT3では、目標変速比が実変速比よりLow側になり、減速Low戻り中と判定される。このため、タイミングT3からは、SEC圧下限が、点線で示すSEC圧下限から太線で示すSEC圧下限に変更される。太線で示すSEC圧下限は、点線で示すSEC圧下限すなわち第1容量保証圧と所定値βとの和に設定される。
 その後、実線で示すSEC圧指令値が太線で示すSEC圧下限になると、SEC圧指令値は太線で示すSEC圧下限に規制される。また、実線で示すPRI圧指令値が所定値βに応じた分だけ、低下し切らない状態になる。
 このため、本実施形態では、プライマリプーリ42で変速推力を確保するためにタイミングT3から行われる実PRI圧及び実SEC圧の低下が、第1実施形態の場合よりも抑制される。これにより、実SEC圧が、点線で示すSEC圧下限すなわち第1保証容量圧以下にならないようにすることができる。結果、PRI圧指令値及びSEC圧指令値が、増減を繰り返すように変動しないようにすることができる。
 なお、前述した図6に示すフローチャートのステップS14やステップS18からわかるように、プライマリプーリ42の下限Lを設定する際には、点線で示すSEC圧下限すなわち第1容量保証圧が実SEC圧の比較対象となる。
 次に、本実施形態の車両の主な作用効果について説明する。
 ここで、第1実施形態の場合、図7に示すタイミングT5で実PRI圧を増大させることになる。ところがこの場合には、油圧の応答遅れやプーリ42及びプーリ43間の受圧面積の相違などから、プーリ42及びプーリ43それぞれにおいて、実圧が指令値通りに変化しない場合がある。結果、変速比の変動が発生し、運転者に違和感を与える可能性がある。特に、指令値が増減を繰り返すように変動する場合には、変速比の変動も繰り返し発生する結果、運転者に与える違和感がさらに増大する可能性がある。
 本実施形態の車両によれば、CVTCU81は、第1容量保証圧に所定値βを加算した値をSEC圧下限として、SEC圧指令値を設定するので、実SEC圧が第1容量保証圧以下にならないようにすることができる。このため、上述したようにして発生する変速比の変動によって、運転者に違和感を与えることを防止することができる。
 同様の変更は、第1実施形態の車両において、図7に示すタイミングT5で実PRI圧を増大させるようにCVTCU81を構成した場合だけでなく、このようにCVTCU81を構成しない場合にも適用することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば上述した実施形態では、運転者からの加速要求がない状態で行われる変速比のLow戻りすなわち変速機4のダウンシフトが、ブレーキペダル63が踏み込まれているときに行われる場合について説明した。しかしながら、運転者からの加速要求がない状態で行われる変速機4のダウンシフトは、ブレーキペダル63が踏み込まれていないときに行われるものであってもよい。
 本願は2015年3月23日に日本国特許庁に出願された特願2015-59517に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  モータジェネレータと、
     前記モータジェネレータの駆動力が伝達され、プライマリ圧を制御することにより溝幅が変更されるプライマリプーリと、セカンダリ圧を制御することにより溝幅が変更されるセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられたベルトと、を有するバリエータと、
     前記プライマリ圧と前記セカンダリ圧とを制御する制御部と、
    を備える車両であって、
     前記制御部は、運転者からの加速要求がない状態で行われる前記バリエータのダウンシフトの際に、
      前記ダウンシフトの際に前記セカンダリプーリで保証するトルク容量として、前記モータジェネレータで回生を行うことに伴い前記バリエータに入力されるトルクを伝達可能な協調回生容量と、制動された場合に制動に伴い前記バリエータに入力されるトルクを伝達可能な第1制動容量と、を含む第1保証容量に基づいて、前記セカンダリ圧の目標油圧を設定し、
      前記ダウンシフトの際に前記プライマリプーリで保証するトルク容量として、前記協調回生容量と、前記第1制動容量より低く設定される第2制動容量と、を含む第2保証容量に基づいて、前記プライマリ圧の目標油圧を設定する、
    車両。
  2.  請求項1に記載の車両であって、
     前記制御部は、
      前記ダウンシフトの際に前記第2制動容量を前記第1制動容量より低く設定し、
      前記第2制動容量を前記第1制動容量より低く設定するに際して、前記セカンダリ圧の実圧が前記第1保証容量を発生させる第1保証容量圧未満になった場合には、前記セカンダリ圧の実圧が前記第1保証容量圧未満になった時点の前記プライマリ圧の実圧より前記プライマリ圧の実圧を増大させる、
    車両。
  3.  請求項2に記載の車両であって、
     前記制御部は、前記セカンダリ圧の実圧が前記第1保証容量を発生させる第1保証容量圧未満になった場合には、前記プライマリ圧の実圧を増大させることで、前記第2制動容量を前記第1制動容量まで増大させる、
    車両。
  4.  請求項1から3いずれか1項に記載の車両であって、
     前記制御部は、前記第1保証容量を発生させる第1保証容量圧に所定値を加算した値を下限値として、前記セカンダリ圧の目標油圧を設定する、
    車両。
  5.  モータジェネレータと、前記モータジェネレータの駆動力が伝達されプライマリ圧を制御することにより溝幅が変更されるプライマリプーリとセカンダリ圧を制御することにより溝幅が変更されるセカンダリプーリと前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられたベルトとを有するバリエータと、を備える車両において前記プライマリ圧と前記セカンダリ圧とを制御するための車両の制御方法であって、
     運転者からの加速要求がない状態で行われる前記バリエータのダウンシフトの際に、
      前記ダウンシフトの際に前記セカンダリプーリで保証するトルク容量として、前記モータジェネレータで回生を行うことに伴い前記バリエータに入力されるトルクを伝達可能な協調回生容量と、制動された場合に制動に伴い前記バリエータに入力されるトルクを伝達可能な第1制動容量と、を含む第1保証容量に基づいて、前記セカンダリ圧の目標油圧を設定することと、
      前記ダウンシフトの際に前記プライマリプーリで保証するトルク容量として、前記協調回生容量と、前記第1制動容量より低く設定される第2制動容量と、を含む第2保証容量に基づいて、前記プライマリ圧の目標油圧を設定することと、
     を含む、
    車両の制御方法。
PCT/JP2016/054655 2015-03-23 2016-02-18 車両及び車両の制御方法 WO2016152337A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017507607A JP6353972B2 (ja) 2015-03-23 2016-02-18 車両及び車両の制御方法
CN201680016092.XA CN107429825B (zh) 2015-03-23 2016-02-18 车辆及车辆的控制方法
KR1020177025736A KR101994018B1 (ko) 2015-03-23 2016-02-18 차량 및 차량의 제어 방법
US15/559,031 US10724633B2 (en) 2015-03-23 2016-02-18 Vehicle and method for controlling the same
EP16768240.0A EP3276216B1 (en) 2015-03-23 2016-02-18 Vehicle and vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059517 2015-03-23
JP2015-059517 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152337A1 true WO2016152337A1 (ja) 2016-09-29

Family

ID=56978223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054655 WO2016152337A1 (ja) 2015-03-23 2016-02-18 車両及び車両の制御方法

Country Status (6)

Country Link
US (1) US10724633B2 (ja)
EP (1) EP3276216B1 (ja)
JP (1) JP6353972B2 (ja)
KR (1) KR101994018B1 (ja)
CN (1) CN107429825B (ja)
WO (1) WO2016152337A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095742A1 (ja) * 2018-11-07 2020-05-14 ジヤトコ株式会社 無段変速機の制御装置
WO2021106758A1 (ja) * 2019-11-29 2021-06-03 ジヤトコ株式会社 自動変速機の制御装置及び制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX358334B (es) * 2015-03-20 2018-08-15 Nissan Motor Dispositivo de control de velocidad regenerativo de vehículo.
JP6879196B2 (ja) * 2017-12-27 2021-06-02 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
KR102532321B1 (ko) * 2018-03-23 2023-05-15 현대자동차주식회사 무단변속기 차량의 풀리 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248371A (ja) * 2005-03-10 2006-09-21 Fujitsu Ten Ltd 車両制御装置、無段変速機制御装置及びその制御方法
JP2008155891A (ja) * 2006-12-26 2008-07-10 Toyota Motor Corp ハイブリッド駆動装置の制御装置
JP2013086649A (ja) * 2011-10-18 2013-05-13 Jatco Ltd ハイブリッド車両の制御装置
WO2014148124A1 (ja) * 2013-03-22 2014-09-25 ジヤトコ株式会社 ベルト式無段変速機の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612074B2 (en) * 2010-05-07 2013-12-17 GM Global Technology Operations LLC Regenerative braking control in vehicles
DE112010005587T5 (de) 2010-05-21 2013-03-14 Toyota Jidosha Kabushiki Kaisha Schaltsteuervorrichtung eines Fahrzeuges
JP5646941B2 (ja) * 2010-10-01 2014-12-24 ジヤトコ株式会社 コーストストップ車両
JP5691602B2 (ja) * 2011-02-15 2015-04-01 日産自動車株式会社 無段変速機の変速制御装置及び制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248371A (ja) * 2005-03-10 2006-09-21 Fujitsu Ten Ltd 車両制御装置、無段変速機制御装置及びその制御方法
JP2008155891A (ja) * 2006-12-26 2008-07-10 Toyota Motor Corp ハイブリッド駆動装置の制御装置
JP2013086649A (ja) * 2011-10-18 2013-05-13 Jatco Ltd ハイブリッド車両の制御装置
WO2014148124A1 (ja) * 2013-03-22 2014-09-25 ジヤトコ株式会社 ベルト式無段変速機の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095742A1 (ja) * 2018-11-07 2020-05-14 ジヤトコ株式会社 無段変速機の制御装置
WO2021106758A1 (ja) * 2019-11-29 2021-06-03 ジヤトコ株式会社 自動変速機の制御装置及び制御方法

Also Published As

Publication number Publication date
CN107429825B (zh) 2019-05-21
KR20170117517A (ko) 2017-10-23
JPWO2016152337A1 (ja) 2017-12-21
EP3276216B1 (en) 2019-01-02
EP3276216A1 (en) 2018-01-31
CN107429825A (zh) 2017-12-01
US20180080553A1 (en) 2018-03-22
EP3276216A4 (en) 2018-05-02
KR101994018B1 (ko) 2019-06-27
JP6353972B2 (ja) 2018-07-04
US10724633B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6402240B2 (ja) 車両制御装置、及び車両の制御方法
JP6353972B2 (ja) 車両及び車両の制御方法
JP2010163157A (ja) ベルト式無段変速機の制御装置
JP6357582B2 (ja) 車両及び車両の制御方法
JP6614597B2 (ja) ハイブリッド車両の制御装置
JP6379281B2 (ja) 無段変速機の制御装置、およびその制御方法
JP2018069960A (ja) 電動車両の制御装置
JP6770317B2 (ja) パワートレインの制御装置及びパワートレインの制御方法
JP6546816B2 (ja) ポンプシステム及びポンプシステムの制御方法
JP6379063B2 (ja) 車両及び車両の制御方法
JP5960658B2 (ja) フライホイール回生システム及びその制御方法
JP6476026B2 (ja) 車両及び車両の制御方法
JP2016141388A (ja) フライホイール回生システム、及びその制御方法
JP6019013B2 (ja) 車両制御装置、及び車両制御方法
JP2018071680A (ja) 無段変速機の制御装置
WO2015019788A1 (ja) フライホイール回生システム及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507607

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768240

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177025736

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE