WO2016152154A1 - フェノール樹脂発泡体及びその製造方法 - Google Patents

フェノール樹脂発泡体及びその製造方法 Download PDF

Info

Publication number
WO2016152154A1
WO2016152154A1 PCT/JP2016/001671 JP2016001671W WO2016152154A1 WO 2016152154 A1 WO2016152154 A1 WO 2016152154A1 JP 2016001671 W JP2016001671 W JP 2016001671W WO 2016152154 A1 WO2016152154 A1 WO 2016152154A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
resin foam
compound
mass
less
Prior art date
Application number
PCT/JP2016/001671
Other languages
English (en)
French (fr)
Inventor
雅人 浜島
滋美 向山
健 井原
寿 三堀
義人 深沢
Original Assignee
旭化成建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20151403.1A priority Critical patent/EP3677623A1/en
Application filed by 旭化成建材株式会社 filed Critical 旭化成建材株式会社
Priority to CA2978851A priority patent/CA2978851C/en
Priority to AU2016237952A priority patent/AU2016237952B2/en
Priority to JP2017507506A priority patent/JP6208399B2/ja
Priority to KR1020197016153A priority patent/KR20190065490A/ko
Priority to CN201680009535.2A priority patent/CN107207758A/zh
Priority to KR1020177020076A priority patent/KR102190552B1/ko
Priority to RU2017133124A priority patent/RU2673528C1/ru
Priority to KR1020217006815A priority patent/KR20210029303A/ko
Priority to US15/556,390 priority patent/US20180044494A1/en
Priority to EP16768059.4A priority patent/EP3275925B1/en
Publication of WO2016152154A1 publication Critical patent/WO2016152154A1/ja
Priority to US16/524,549 priority patent/US20190352484A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • B32B17/064
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/202Ternary blends of expanding agents of physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Definitions

  • the present invention relates to a phenol resin foam and a method for producing the same.
  • heat insulating materials for residential use fiber-based heat insulating materials such as glass wool and rock wool, and foamed plastic heat insulating materials in which styrene resin, urethane resin and phenol resin are foamed are known.
  • the phenol resin foam is an excellent heat insulating material for residential use that has low gas permeability and hardly changes the heat insulating performance over a long period of time.
  • the heat insulation performance of a phenol resin foam is greatly affected by the type and state of the compound contained in the bubbles.
  • chlorofluorocarbon (CFC) having a low thermal conductivity has been used as the compound used in the phenol resin foam.
  • CFC was abolished by the Montreal Protocol adopted in 1987 because it contributes greatly to the destruction of the ozone layer and climate change.
  • HFC hydrofluorocarbon
  • the conversion to hydrofluorocarbon (HFC) having a relatively low ozone depletion coefficient as the above compound has progressed.
  • HFC hydrofluorocarbon
  • a compound having a low thermal conductivity, a low ozone depletion potential, and a low global warming potential, such as CFC and HFC has been desired.
  • Patent Document 1 Patent Document 2, Patent Document 3, and Patent Document 4 include chlorinated or non-chlorinated hydrofluoroolefins as compounds having a low ozone depletion coefficient, a low global warming coefficient, and flame retardancy. It is disclosed.
  • Patent Document 1 Patent Document 2, Patent Document 3, and Patent Document 4, many chlorinated or non-chlorinated hydrofluoroolefins are disclosed, among which 1-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoro-1-propene, 2,3,3,3-tetrafluoro-1-propene, 1,1,1,4,4,4-hexafluoro-2-butene are ozone It is described that the destruction coefficient and the global warming coefficient are low, and it can be used as a foamed plastic heat insulating material.
  • the present invention provides a phenolic resin foam having a low environmental load (low ozone depletion coefficient and global warming coefficient), high compressive strength, and excellent handling properties during construction and cost required for fixing, and production thereof. It aims to provide a method.
  • the present inventors have used specific compounds, and by setting the density, closed cell ratio, and 10% compressive strength to specific ranges, the load on the environment is reduced. It has been found that a phenol resin foam having a low compression strength, a high compressive strength, and an excellent handling property during construction and cost required for fixing can be obtained, and the present invention has been completed.
  • the present invention contains at least one selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons, and has a density of 20 kg / m 3 or more and 100 kg / m 3 or less.
  • the present invention provides a phenol resin foam characterized by having a closed cell ratio of 80% or more and 99% or less, and 10% compressive strength and the above density satisfy the relationship of the following formula.
  • C ⁇ 0.5X-7 (Wherein C represents 10% compressive strength (N / cm 2 ), and X represents density (kg / m 3 ))
  • At least one selected from the group consisting of the chlorinated hydrofluoroolefin and the non-chlorinated hydrofluoroolefin is 1-chloro-3,3,3-trifluoropropene, 2-chloro-3,3,3- Trifluoropropene, 1,3,3,3-tetrafluoro-1-propene, 2,3,3,3-tetrafluoro-1-propene and 1,1,1,4,4,4-hexafluoro-2 -Preferably at least one selected from the group consisting of butenes.
  • the halogenated hydrocarbon is preferably isopropyl chloride.
  • it preferably contains a hydrocarbon having 6 or less carbon atoms.
  • the content of at least one of chlorinated hydrofluoroolefin, non-chlorinated hydrofluoroolefin and halogenated hydrocarbon is such that the chlorinated hydrofluoroolefin, the non-chlorinated hydrofluoroolefin, the halogenated hydrocarbon and the above It is preferably 30% by mass or more based on the total amount of hydrocarbons having 6 or less carbon atoms.
  • the nitrogen-containing compound is preferably a compound selected from the group consisting of urea, melamine, nuclidine, pyridine, hexamethylenetetramine and mixtures thereof.
  • the phenol resin foam preferably has an absolute value of dimensional change after 2.0 cycles of dry and wet cycles of 2.0 mm or less.
  • the above-mentioned phenol resin foam preferably has a brittleness of 50% or less determined in accordance with JIS A 9511 (2003) 5.1.4.
  • the present invention is a phenolic resin foam laminate having face materials on the first surface and the second surface of the phenol resin foam, each of the face materials having gas permeability.
  • a phenolic resin foam laminate is provided.
  • the present invention provides at least one selected from the group consisting of a phenol resin, a surfactant, a curing catalyst, and a chlorinated hydrofluoroolefin, a non-chlorinated hydrofluoroolefin, and a halogenated hydrocarbon on the face material.
  • a method for producing a phenol resin foam comprising foaming and curing a foamable phenol resin composition to be contained, wherein the phenol resin has a weight average molecular weight Mw of 400 or more and 3000 or less determined by gel permeation chromatography. The viscosity at 40 ° C.
  • the viscosity increasing rate constant of the phenol resin is 0.05 (1 / min) or more and 0.5 (1 / min) or less.
  • the density of the foam is 20 kg / m 3 or more and 100 kg / m 3 or less.
  • the closed cell ratio of the phenol resin foam is 80% or more and 99% or less, and the 10% compressive strength of the phenol resin foam and the density of the phenol resin foam satisfy the relationship of the following formula.
  • the loss tangent tan ⁇ at 40 ° C. of the phenol resin is preferably 0.5 or more and 40.0 or less, and the loss tangent tan ⁇ at 60 ° C. is preferably 2.0 or more and 90.0 or less.
  • the phenol resin foam of the present invention has the above-described configuration, the environmental load is low, the compressive strength is high, and the handling property during construction and the cost required for fixing are excellent. Moreover, according to the manufacturing method of the phenol resin foam of this invention, the phenol resin foam of this invention which has the said structure can be manufactured easily.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. Note that the present invention is not limited to the following embodiments.
  • the phenol resin foam of this embodiment contains at least one selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons, and has a density of 20 kg / m 3 or more and 100 kg / m 3 or less, the closed cell ratio is 80% or more and 99% or less, and 10% compressive strength and the above density satisfy the relationship of the following formula.
  • At least one compound or mixture selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins and halogenated hydrocarbons may be referred to as “compound ⁇ ”.
  • the compound ⁇ included in the phenol resin foam of the present embodiment has a low ozone depletion coefficient and a global warming coefficient
  • the phenol resin foam of the present embodiment has a low environmental load.
  • the chlorinated hydrofluoroolefin or the non-chlorinated hydrofluoroolefin is not particularly limited, but from the viewpoint of low thermal conductivity and foamability, 1-chloro-3,3,3-trifluoropropene, 2- Chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoro-1-propene, 2,3,3,3-tetrafluoro-1-propene, 1,1,1,4 4,4-hexafluoro-2-butene and the like are preferable.
  • the halogenated hydrocarbon is not particularly limited, but from the viewpoint of low thermal conductivity, low ozone depletion coefficient, low global warming coefficient and boiling point, halogenated hydrocarbons containing at least one hydrogen element, two or more types
  • the halogenated hydrocarbon not containing a halogen atom or the halogenated hydrocarbon not containing a fluorine atom is preferred, and isopropyl chloride is more preferred.
  • the compound ⁇ may include one compound selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons, or may include a combination of a plurality of types. Good.
  • the phenol resin foam of this embodiment may further contain hydrocarbons, carbon dioxide and the like (preferably hydrocarbons).
  • the hydrocarbon examples include hydrocarbons having 6 or less carbon atoms. That is, the phenol resin foam of the present embodiment includes, for example, carbon in addition to at least one compound selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons.
  • the hydrocarbon of several 6 or less may be included.
  • Specific examples of the hydrocarbon having 6 or less carbon atoms include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, and 2,3-dimethyl.
  • Examples include butane and cyclohexane.
  • pentanes such as normal pentane, isopentane, cyclopentane, and neopentane, or butanes of normal butane, isobutane, and cyclobutane are preferably used.
  • the said hydrocarbon may be used independently and may be used in combination of 2 or more types.
  • the phenol resin foam of this embodiment is not specifically limited,
  • the single compound which consists of 1 type of said compound (alpha) may be included, multiple types of said compound (alpha), or at least 1 type of said compound
  • the compound ⁇ and at least one of the above hydrocarbons may be included.
  • the phenol resin foam of this embodiment contains the at least 1 sort (s) of compound selected from the group which consists of a chlorinated hydrofluoroolefin and a non-chlorinated hydrofluoroolefin, and a halogenated hydrocarbon.
  • the phenol resin foam of the present embodiment has, for example, at least one compound ⁇ and at least one compound from the viewpoint of obtaining a foam having a small average cell diameter and a high closed cell ratio and high compressive strength. It is preferable to contain a hydrocarbon (in particular, one or two of the above-mentioned compounds ⁇ as the first component and the above-mentioned hydrocarbon (for example, pentanes such as cyclopentane and isopentane) as the second component.
  • a hydrocarbon in particular, one or two of the above-mentioned compounds ⁇ as the first component and the above-mentioned hydrocarbon (for example, pentanes such as cyclopentane and isopentane) as the second component.
  • the content of the compound ⁇ is not particularly limited, but the average cell diameter is small, the closed cell ratio is high, From the viewpoint of low conductivity, for example, 30% by mass or more (for example, 30% by mass or more and 100% by mass or less) with respect to the total amount (100% by mass) of the compound ⁇ and the hydrocarbon having 6 or less carbon atoms. More preferably 40% by mass or more and 100% by mass or less, further preferably 50% by mass or more and 100% by mass or less, particularly preferably 60% by mass or more and 100% by mass or less, and particularly preferably 70% by mass or more and 100% by mass or less. Most preferably, it is 80 mass% or more and 100 mass% or less.
  • a nitrogen-containing compound is added to the phenol resin as a formaldehyde catcher agent for reducing the amount of formaldehyde diffused from the phenol resin foam or for the purpose of imparting flexibility to the phenol resin foam. May be.
  • nitrogen-containing compound for example, a compound selected from the group consisting of urea, melamine, nuclidine, pyridine, hexamethylenetetramine and a mixture thereof can be used, and urea is preferably used.
  • Additives other than nitrogen-containing compounds include nitrogen, helium, argon, metal oxide, metal hydroxide, metal carbonate, talc, kaolin, quartzite powder, quartz sand, mica, calcium silicate powder, wollastonite, glass powder Glass beads, fly ash, silica fume, graphite, aluminum powder and the like can be added. Calcium oxide, magnesium oxide, aluminum oxide, zinc oxide, etc. as metal oxides, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, etc.
  • a silane type compound and a siloxane type compound can also be added as additives other than a nitrogen-containing compound. These may be used alone or in combination. Hexamethyldisilazane, dimethoxydimethylsilane, or the like may be used as the silane compound, and hexamethyldisiloxane may be used as the siloxane compound. Since the silane compound and the siloxane compound have nonpolarity, they are not easily mixed with a phenol resin having polarity. For this reason, since many bubble nuclei are formed, a foam having a small bubble diameter and a high closed cell ratio can be obtained.
  • the nitrogen-containing compound and additives other than the nitrogen-containing compound may be used alone or in combination of two or more.
  • the density of the phenol resin foam in the present embodiment is 20 kg / m 3 or more and 100 kg / m 3 or less, preferably 20 kg / m 3 or more and 70 kg / m 3 or less, more preferably 20 kg / m 3 or more and 40 kg / m 2 or less. m 3 or less, more preferably 22 kg / m 3 or more and 35 kg / m 3 or less, and most preferably 23 kg / m 3 or more and 28 kg / m 3 or less.
  • the density is lower than 20 kg / m 3 , the cell membrane is thin, and the cell membrane is easily broken during foaming, so that it is difficult to obtain a high closed cell structure, and the compressive strength is extremely reduced.
  • the density says the value measured by the method as described in "(2) Foam density" of below-mentioned (evaluation).
  • the density can be adjusted by, for example, the ratio of the compound ⁇ and the hydrocarbon, the ratio of the curing catalyst, the foaming temperature, the molecular weight of the phenol resin, the reaction rate, the viscosity of the phenol resin, and the like.
  • the present inventors can set physical properties such as closed cell ratio and compressive strength within a specific range by using a phenol resin having a production condition, particularly a specific range of Mw, viscosity, viscosity increase rate constant, and tan ⁇ . It was found that by satisfying the physical property values, a phenol resin foam having a high compressive strength and excellent in handling property during construction and cost required for fixing can be obtained.
  • the closed cell ratio of the phenol resin foam in the present embodiment is 80% or more and 99% or less, preferably 85% or more and 99% or less, more preferably 88% or more and 99% or less, and particularly preferably 90% or more and 99% or less. preferable. If the closed cell ratio is too low, the hydrocarbons and compound ⁇ contained in the bubbles are easily replaced with air, so that the heat insulation performance after a long period of time is deteriorated and the bubble film is easily broken. This is not preferable because of a decrease in thickness.
  • the said closed cell rate says the value measured by the method as described in "(3) closed cell rate" of (evaluation) mentioned later.
  • the closed cell ratio can be adjusted by, for example, the viscosity of the phenol resin, the type and ratio of the compound ⁇ and the hydrocarbon, the curing conditions, the oven temperature during foam curing, and the like.
  • the 10% compressive strength of the phenolic resin foam in the present embodiment is not particularly limited, but the strength of the phenolic resin foam and the density of the phenolic resin foam are not increased too much (the weight is not increased too much, the manufacturing cost is reduced). from the viewpoint of high not too), for example, 6N / cm is preferably 2 or more 50 N / cm 2 or less, more preferably 8N / cm 2 or more 50 N / cm 2 or less, more preferably 10 N / cm 2 or more 40N / cm 2 Or less, particularly preferably 12 N / cm 2 or more and 40 N / cm 2 or less, and most preferably 15 N / cm 2 or more and 40 N / cm 2 or less.
  • the 10% compressive strength is a value measured by the method described in “(4) 10% compressive strength” in (Evaluation) described later.
  • the 10% compressive strength is, for example, the molecular weight, the viscosity, the reaction rate of the phenol resin, the type and ratio of the compound ⁇ and the hydrocarbon, the curing conditions (for example, the addition amount of the curing catalyst and the heating time), the foaming conditions ( For example, it can be adjusted by the oven temperature), the structure of the foam (such as a structure having no pores in the bubble film), and the like.
  • the 10% compression strength and the density satisfy the relationship of the following formula from the viewpoints of strength against compression, handling properties at the time of construction, and cost reduction at the time of fixing.
  • C ⁇ 0.5X-7 (Wherein C represents the 10% compressive strength (N / cm 2 ) and X represents the density (kg / m 3 ))
  • the left side (C) of the above formula is larger than the right side (0.5X-7) by 0.5 or more from the viewpoint that it is more excellent in the strength against compression and the handling property at the time of construction and the cost reduction at the time of fixing. It is preferably 0.8 or more, more preferably 1.0 or more, and particularly preferably 1.5 or more.
  • the absolute value of the dimensional change amount (absolute value of the dimensional change amount) after 3 cycles of repeated wet and dry cycles of the phenol resin foam is preferably 2.0 mm or less, more preferably 1.6 mm or less, Preferably it is 1.3 mm or less, Most preferably, it is 1.0 mm or less. If the absolute value of the dimensional change is larger than 2.0 mm, if the phenol resin foam shrinks due to repeated drying and wetting after applying the phenol resin foam, there will be a gap in the joint of the heat insulation board made of the foam. Since the heat insulation performance of a building will be impaired, it is not preferable.
  • the absolute value of the dimensional change amount is a value measured by the method described in “(5) Absolute value of dimensional change amount after 3 cycles of repeated wet and dry” in (Evaluation) described later.
  • the absolute value of the dimensional change amount includes, for example, the molecular weight and reaction rate of the phenol resin, the type and ratio of the compound ⁇ and the hydrocarbon, the addition amount of the curing catalyst, the curing time of the phenol resin, the oven temperature at the time of foam curing, etc. Can be adjusted.
  • the brittleness of the phenolic resin foam in this embodiment is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, particularly preferably 20% or less, and particularly preferably 15% or less. Most preferably, it is 10% or less. If the brittleness is greater than 50%, the production cost increases, which is not preferable. Furthermore, when processing a board made of a phenol resin foam during construction, the foam tends to be easily chipped, which is not preferable.
  • the brittleness is a value measured by the method described in “(6) Brittleness” in (Evaluation) described later.
  • the brittleness can be adjusted by, for example, the composition and ratio of the phenol resin, the presence or absence of an additive such as a nitrogen-containing compound and a plasticizer, the density of the phenol resin foam, the cross-linking density of the phenol resin in the phenol resin foam, and the like.
  • the phenol resin foam in the present embodiment foams and cures a foamable phenol resin composition containing, for example, a phenol resin and a compound ⁇ (preferably a phenol resin, a surfactant, a curing catalyst, and a compound ⁇ ).
  • a foamable phenol resin composition containing, for example, a phenol resin and a compound ⁇ (preferably a phenol resin, a surfactant, a curing catalyst, and a compound ⁇ ).
  • the foamable phenol resin composition may further contain a hydrocarbon, and may contain additives such as a nitrogen-containing compound, a plasticizer, a flame retardant, a curing aid, a silane compound, and a siloxane compound. Also good.
  • a plasticizer such as phthalate ester may be added.
  • the method for producing a phenol resin foam of the present embodiment is, for example, a phenol resin foam in which a foamable phenol resin composition containing a phenol resin, a surfactant, a curing catalyst, and a compound ⁇ is foamed and cured on a face material.
  • the weight average molecular weight Mw of the phenol resin determined by gel permeation chromatography is 400 or more and 3000 or less, and the viscosity of the phenol resin at 40 ° C.
  • the manufacturing method whose viscosity increase rate constant of the said phenol resin is 0.05 (1 / min) or more and 0.5 (1 / min) or less may be sufficient.
  • the phenol resin can be obtained, for example, by polymerizing a compound having a phenyl group and a compound having an aldehyde group or a derivative thereof by heating in a temperature range of 40 ° C. to 100 ° C. with an alkali catalyst.
  • Examples of the compound having a phenyl group used for the preparation of the phenol resin include phenol, resorcinol, catechol, o-, m- or p-cresol, xylenols, ethylphenols, p-tertbutylphenol and the like. . Of these, phenol, o-, m- or p-cresol is preferable, and phenol is most preferable.
  • a compound having a phenyl group a compound having a binuclear phenyl group can also be used. These compounds having a phenyl group may be used alone or in combination of two or more.
  • the “molar amount of the compound having a phenyl group” is the sum of the molar amounts of the compounds having each phenyl group to be used.
  • a value obtained by adding 2 to the number of moles of the compound having a binuclear phenyl group is used as the molar amount of the compound having a binuclear phenyl group.
  • the “molar amount of the compound having a phenyl group” is calculated.
  • Examples of the compound having an aldehyde group or a derivative thereof used for the preparation of the phenol resin include formaldehyde, paraformaldehyde, 1,3,5-trioxane, tetraoxymethylene and the like. Of these, formaldehyde and paraformaldehyde are preferable. These compounds having an aldehyde group or derivatives thereof may be used alone or in combination of two or more. When a compound having two or more aldehyde groups or a derivative thereof is used, the “molar amount of the compound having an aldehyde group or a derivative thereof” is the sum of the molar amounts of the compound having each aldehyde group or the derivative thereof used.
  • the “molar amount of the compound having an aldehyde group or a derivative thereof” is calculated using the value obtained by dividing the weight of the paraformaldehyde used by 30 and using 1,3,5-trioxane.
  • the “molar amount of a compound having an aldehyde group or a derivative thereof” is calculated using a value obtained by adding 3 to the number of moles of 1,3,5-trioxane to be used.
  • the “molar amount of the compound or derivative thereof” is calculated using a value obtained by adding 4 to the number of moles of tetraoxymethylene used.
  • Molar ratio of the compound having an aldehyde group or a derivative thereof to the compound having a phenyl group used for the preparation of the phenol resin Is preferably 1.5 or more and 3 or less, more preferably 1.6 or more and 2.7 or less, still more preferably 1.7 or more and 2.5 or less, and most preferably 1.8 or more and 2. 2 or less.
  • the strength of the phenol resin foam can be maintained by suppressing the reduction in the strength of the cell membrane during foaming. Moreover, since the amount of the compound having an aldehyde group or a derivative thereof necessary for crosslinking between the phenol nuclei is sufficient and the crosslinking can proceed sufficiently, the strength of the cell membrane of the phenol resin foam is increased. It is possible to improve the closed cell ratio.
  • the phenol resin When the molar ratio of the compound having an aldehyde group or the derivative thereof to the compound having a phenyl group is 3 or less, the phenol resin is easily cross-linked, the strength of the cell membrane of the phenol resin foam is increased, and the closed cell ratio is improved. Can be achieved.
  • the phenol resin has a weight average molecular weight Mw determined by gel permeation chromatography according to the method described in “(7) Weight average molecular weight Mw of phenol resin” in (Evaluation), which will be described later. It is preferably 500 or more and 3000 or less, more preferably 700 or more and 3000 or less, particularly preferably 1000 or more and 2700 or less, and most preferably 1500 or more and 2500 or less.
  • the weight average molecular weight Mw is less than 400, a large amount of addition reaction sites remain in the phenol nucleus, so that the calorific value after mixing the curing catalyst with the phenol resin increases, so that chlorinated hydrofluoroolefin, non-chlorinated hydrofluoro
  • the phenol resin plasticized by at least one selected from the group consisting of olefins and halogenated hydrocarbons becomes high in temperature and further decreases in viscosity. As a result, bubble foaming is induced at the time of foaming, and the compressive strength is lowered because the closed cell ratio is lowered.
  • the weight average molecular weight Mw is not sufficiently large, when the phenol resin is foamed, the cell membrane is not sufficiently stretched, so that the compressive strength tends to decrease. Furthermore, since the viscosity of the phenol resin is reduced as described above, bubbles are easily coalesced at the time of foam curing, resulting in a poor foam having a large average cell diameter with many voids. On the other hand, when the weight average molecular weight Mw is larger than 3000, the viscosity of the phenol resin becomes too high, and it is difficult to obtain a necessary expansion ratio, which is not preferable.
  • produced at the time of hardening of a phenol resin will fall, and there exists a possibility that compressive strength may fall, without sufficient hardening reaction advancing.
  • the viscosity of the phenol resin at 40 ° C. is preferably, for example, 1000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less. Further, from the viewpoint of improving the closed cell ratio and decreasing the average cell diameter, it is more preferably 5000 mPa ⁇ s to 50000 mPa ⁇ s, and particularly preferably 7000 mPa ⁇ s to 30000 mPa ⁇ s. If the viscosity of the phenol resin is too low (for example, less than 5000 mPa ⁇ s), the cell nuclei tend to be too large because the cell nuclei in the phenol resin are united during foam curing.
  • the viscosity at 40 ° C. is a value measured by the method described in “Evaluation” (8) “Viscosity of phenol resin at 40 ° C.”.
  • the viscosity at 40 ° C. can be adjusted, for example, by adding a weight average molecular weight Mw, a moisture content, a plasticizer, or the like of the phenol resin.
  • the viscosity increase rate constant of the phenol resin is preferably, for example, 0.05 (1 / min) or more and 0.5 (1 / min) or less, more preferably 0.05 (1 / min) or more and 0.4 (1 / Min) or less, more preferably 0.07 (1 / min) or more and 0.35 (1 / min) or less, most preferably 0.08 (1 / min) or more and 0.3 (1 / min) or less.
  • the viscosity increase rate constant is less than 0.05 (1 / min)
  • the curing reaction of the phenol resin does not proceed sufficiently at the time of foaming, and bubbles are broken, resulting in a poor foam. Will fall.
  • the viscosity increase rate constant is larger than 0.5 (1 / min), the heat of reaction accompanying the curing of the phenolic resin becomes excessive in the early stage of foaming, so that the heat is stored in the foam and the foaming pressure increases. Too much bubbles induce bubble breakage and compressive strength decreases.
  • the viscosity increase rate constant is a value measured by the method described in “(9) Viscosity increase rate constant” in (Evaluation) described later.
  • the viscosity increase rate constant is, for example, the type and ratio of a compound having a phenyl group or a compound having an aldehyde group or a derivative thereof when synthesizing a phenol resin, the weight average molecular weight Mw of the phenol resin, the amount of nitrogen-containing compound added, It can be adjusted by the addition amount of the curing catalyst.
  • the tan ⁇ (loss tangent) at 40 ° C. of the phenol resin is not particularly limited, but is preferably 0.5 or more and 40.0 or less, and more preferably 0.5 or more and 35 from the viewpoint of closed cell ratio and compressive strength. 0.0 or less, more preferably 0.5 or more and 30.0 or less.
  • the tan ⁇ (loss tangent) at 50 ° C. of the phenol resin is not particularly limited, but is preferably 1.25 or more and 65.0 or less, more preferably 2.0 or more, from the viewpoint of closed cell ratio and compressive strength. It is 60.0 or less, More preferably, it is 4.0 or more and 55.0 or less.
  • the tan ⁇ (loss tangent) at 60 ° C. of the phenol resin is not particularly limited, but is preferably 2.0 or more and 90.0 or less, more preferably 2.0 or more and 80 from the viewpoint of closed cell ratio and compressive strength. 0.0 or less, more preferably 4.0 or more and 70.0 or less.
  • the phenol resin preferably has a loss tangent tan ⁇ at 40 ° C. of 0.5 or more and 40.0 or less and a loss tangent tan ⁇ at 60 ° C. of 2.0 or more and 90.0 or less, and the loss at 40 ° C.
  • the loss tangent tan ⁇ in the range of 40 ° C. to 60 ° C. is (40 ° C., 0.5) and (40 ° C., 40.40) on the graph in which the horizontal axis represents temperature and the vertical axis represents loss tangent tan ⁇ .
  • the above four points on the graph with temperature on the horizontal axis and loss tangent tan ⁇ on the vertical axis are (40 ° C., 0.5), (40 ° C., 35.0), (60 ° C., 2.0), (60 ° C, 80.0) is more preferred, most preferably (40 ° C, 0.5), (40 ° C, 30.0), (60 ° C, 4.0), (60 ° C, 70.0). It is. Even when the phenol resin has the same viscosity, the behavior during heating changes depending on the difference in the cross-linked state and the additives.
  • tan ⁇ is the ratio between the loss elastic modulus and the storage elastic modulus, the larger this value, the more easily the phenol resin expands during foaming, and the smaller the value, the more likely the phenol resin breaks during foaming. Therefore, if the loss tangent tan ⁇ of the phenol resin is larger than the above range, the bubble growth rate becomes too fast with respect to the foaming pressure, so that bubble breakage is induced and the closed cell ratio and compressive strength are reduced. End up. Moreover, since it becomes difficult to apply
  • tan ⁇ (loss tangent) refers to a value measured by the method described in “(10) tan ⁇ ” in (Evaluation) described later.
  • the tan ⁇ is, for example, the type and ratio of a compound having a phenyl group or a compound having an aldehyde group or a derivative thereof when synthesizing a phenol resin, a weight average molecular weight Mw of the phenol resin, a moisture content in the phenol resin, a plasticizer, etc. It can adjust with the additive etc.
  • Examples of the compound ⁇ include those described above.
  • content of the said compound (alpha) in the said foamable phenol resin composition is not specifically limited, From a viewpoint of thermal conductivity, for example with respect to the total amount (100 mass%) of the said phenol resin and the said surfactant, 0.5 mass% or more and 25 mass% or less is preferable, More preferably, it is 2 mass% or more and 20 mass% or less, More preferably, it is 3 mass% or more and 18 mass% or less, Most preferably, it is 3 mass% or more and 15 mass% or less. It is.
  • the total content of the compound ⁇ and / or the hydrocarbon is not particularly limited.
  • the total content of the phenol resin and the surfactant (3.0% by mass) is 3.0% by mass. % To 25.0% by mass, more preferably 3.0% to 22.5% by mass, still more preferably 5.0% to 20.0% by mass, particularly Preferably they are 6.0 mass% or more and 18.0 mass% or less, Most preferably, they are 6.0 mass% or more and 15.0 mass% or less. If the amount added is less than 3.0% by mass, it will be very difficult to obtain the required foaming ratio, and the density will be too high, and it will not be possible to obtain a good foam.
  • the viscosity of the phenol resin is lowered due to the plasticizing effect of the compound ⁇ , and excessive foaming occurs due to excessive addition amount, and the foam bubbles are torn. This is not preferable because the closed cell ratio is lowered and physical properties such as long-term heat insulation performance and compressive strength are lowered.
  • inorganic gas such as nitrogen and argon as a cell nucleating agent is combined with the compound ⁇ and / or the hydrocarbon as a cell nucleating agent. It is preferably added in a range of 0.05% to 5.0% in terms of mass with respect to the amount, more preferably 0.05% to 3.0%, and still more preferably 0.1% to 2. It is 5% or less, particularly preferably 0.1% or more and 1.5% or less, and most preferably 0.3% or more and 1.0% or less.
  • the addition amount is less than 0.05%, the effect as a cell nucleating agent cannot be sufficiently achieved, and if the addition amount exceeds 5.0%, the foaming pressure becomes too high during the foam curing process of the phenol resin foam. For this reason, the bubbles of the foam are broken, which is not preferable because the foam becomes a poor foam having a closed cell ratio and a low compressive strength.
  • the nitrogen-containing compound may be added directly in the middle of the reaction of the phenol resin or at a timing near the end point, or the one previously reacted with formaldehyde is mixed with the phenol resin. May be.
  • the content of the nitrogen-containing compound is not particularly limited, for example, from the viewpoint of reducing the compound having an aldehyde group diffused from the phenol resin foam or a derivative thereof, and the flexibility of the phenol resin foam, for example, the total amount of the phenol resin 1 mass% or more and 15 mass% or less is preferable with respect to (100 mass%), More preferably, it is 2 mass% or more and 10 mass% or less, Most preferably, it is 3 mass% or more and 8 mass% or less.
  • plasticizer examples include phthalate esters and glycols such as ethylene glycol and diethylene glycol. Among them, phthalate esters are preferably used. In addition, aliphatic hydrocarbons or alicyclic hydrocarbons, or mixtures thereof may be used. The said plasticizer may be used independently and may be used in combination of 2 or more types.
  • the flame retardant examples include bromine compounds such as tetrabromobisphenol A and decabromodiphenyl ether which are generally used as flame retardants, aromatic phosphate esters, aromatic condensed phosphate esters, halogenated phosphate esters, Examples thereof include phosphorus or phosphorus compounds such as red phosphorus, antimony compounds such as ammonium polyphosphate, antimony trioxide, and antimony pentoxide.
  • the said flame retardant may be used independently and may be used in combination of 2 or more types.
  • nonionic surfactants are effective, for example, a copolymer of ethylene oxide and propylene oxide.
  • These surfactants may be used alone or in combination of two or more. Although the usage-amount of the said surfactant is not specifically limited, It is preferably used in 0.3 to 10 mass parts with respect to 100 mass parts of said phenol resins.
  • the curing catalyst may be an acidic curing catalyst that can cure the phenol resin, and for example, an acid anhydride curing catalyst is preferable.
  • an acid anhydride curing catalyst phosphoric anhydride and aryl sulfonic anhydride are preferable.
  • aryl sulfonic anhydride examples include toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, substituted phenol sulfonic acid, xylenol sulfonic acid, substituted xylenol sulfonic acid, dodecyl benzene sulfonic acid, benzene sulfonic acid, and naphthalene sulfonic acid. These may be used alone or in combination of two or more.
  • the curing catalyst may be diluted with a solvent such as ethylene glycol or diethylene glycol.
  • the usage-amount of the said curing catalyst is not specifically limited, It is preferably used in 3 to 30 mass parts with respect to 100 mass parts of said phenol resins. Moreover, 3 to 30 mass parts may be sufficient with respect to the total amount (100 mass parts) of the said phenol resin and the said surfactant.
  • curing aid examples include resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like.
  • the said hardening adjuvant may be used independently and may be used in combination of 2 or more types.
  • the foamable phenolic resin composition is not particularly limited.
  • the phenolic resin, the surfactant, the compound ⁇ , the hydrocarbon, the curing catalyst, the nitrogen-containing compound, the plasticizer, and other materials. Can be obtained by mixing.
  • the phenol resin foam is, for example, continuously discharged on the face material that travels the foamable phenol resin composition described above, and the surface of the foamable phenol resin composition that is opposite to the face in contact with the face material. It can be obtained by a continuous production method including covering the surface with another face material and foaming and heat-curing the foamable phenol resin composition.
  • the foamable phenolic resin composition described above is poured into a mold having an inner surface coated with a face material, or into a mold having a release agent applied thereto, and foamed and heat-cured. It can also be obtained by a batch production system. The phenol resin foam obtained by the batch production method can be sliced in the thickness direction and used as necessary.
  • the laminated board (laminated board containing a face material and a phenol resin foam) which laminated
  • the phenol resin foam laminate may have one face material, or two face materials (on the first surface (upper surface) and the second surface (lower surface) of the phenol resin foam). May have a face material (upper surface material and lower surface material) provided on the surface.
  • the face material is preferably provided in a form in contact with the phenol resin foam.
  • the face material is not particularly limited, except for moisture generated during foaming and curing of the foamable phenolic resin composition (moisture contained in the phenol resin, moisture generated during the curing reaction (dehydration condensation reaction), etc.) From the standpoint of preventing bubble breakage due to the water vapor contained in the bubbles and the internal pressure becoming too high, and further improving the closed cell rate, for example, a face material having gas permeability is preferable.
  • the face material having gas permeability examples include synthetic nonwoven fabrics such as polyester nonwoven fabric (polyethylene terephthalate nonwoven fabric, etc.), polyamide nonwoven fabric (nylon nonwoven fabric, etc.), glass fiber nonwoven fabric, glass fiber paper, papers, Examples thereof include a metal film having a penetrating hole (a metal foil and paper having a penetrating hole, a laminate obtained by bonding and reinforcing glass cloth or glass fiber).
  • PET fiber nonwoven fabric, glass fiber nonwoven fabric, and aluminum having penetrating holes are preferable from the viewpoints of flame retardancy, adhesion strength of face material, and prevention of exudation of foamable phenolic resin composition.
  • the metal film which has the hole penetrated can be manufactured by processes, such as opening the hole penetrated in the thickness direction.
  • moisture is easily dissipated from the phenol resin foam during foam curing by the gas-permeable face material, and therefore, bubble breakage due to water vapor can be suppressed.
  • the phenol resin foam has face materials on the first surface (upper surface) and the second surface (lower surface), and the two face materials are both gas permeable.
  • the gas permeability in the surface material, the transmittance of oxygen measured according to ASTM D3985-95 refers to a face material is 4.5cm 3 / 24h ⁇ m 2 or more.
  • the face material has flexibility, for example, for the purpose of preventing breakage of the face material during production.
  • the flexible face material include synthetic fiber nonwoven fabric, synthetic fiber woven fabric, glass fiber paper, glass fiber woven fabric, glass fiber nonwoven fabric, glass fiber mixed paper, paper, metal film (having through holes) Metal film) or a combination thereof.
  • the face material may contain a flame retardant in order to impart flame retardancy.
  • the flame retardant examples include bromine compounds such as tetrabromobisphenol A and decabromodiphenyl ether, aromatic phosphoric acid esters, aromatic condensed phosphoric acid esters, halogenated phosphoric acid esters, red phosphorus and other phosphorous or phosphorous compounds, ammonium polyphosphate
  • Antimony compounds such as antimony trioxide and antimony pentoxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and carbonates such as calcium carbonate and sodium carbonate can be used.
  • the flame retardant may be kneaded into the fibers of the face material, or may be added to a binder of face materials such as acrylic, polyvinyl alcohol, vinyl acetate, epoxy, and unsaturated polyester.
  • the face material may be surface-treated with a water repellent or an asphalt waterproofing agent such as a fluororesin, silicone resin, wax emulsion, paraffin, or acrylic resin paraffin wax combined system.
  • a water repellent or an asphalt waterproofing agent such as a fluororesin, silicone resin, wax emulsion, paraffin, or acrylic resin paraffin wax combined system.
  • the temperature of the foamable phenol resin composition when the foamable phenol resin composition is discharged onto a face material is preferably, for example, 25 ° C. or more and 50 ° C. or less, more preferably 30 ° C. or more and 45 ° C. or less. .
  • the said temperature being 50 degrees C or less, foaming occurs moderately and a smooth foam board is obtained.
  • the said temperature is 25 degreeC or more, hardening occurs moderately and foaming and hardening occur with good balance.
  • the foam phenolic resin composition sandwiched between two face materials can foam between the two face materials.
  • the following first oven and second oven can be used.
  • the first oven for example, an endless steel belt type double conveyor or a slat type double conveyor is used, and foaming and curing are performed in an atmosphere of 60 ° C. or higher and 110 ° C. or lower.
  • an uncured foam can be cured while being formed into a plate shape to obtain a partially cured foam.
  • the first oven may have a uniform temperature over the entire area, or may have a plurality of temperature zones.
  • the second oven preferably generates hot air of 70 ° C. or more and 120 ° C. or less to post-cure the foam partially cured in the first oven.
  • Partially cured foam boards may be stacked at regular intervals using spacers or trays. If the temperature in the second oven is too high, the pressure inside the bubbles of the foam will be too high, leading to bubble breakage, and if it is too low, it may take too much time for the phenol resin reaction to proceed. 80 ° C. or higher and 110 ° C. or lower is more preferable.
  • the internal temperature of the phenol resin foam is preferably 60 ° C. or more and 105 ° C. or less, more preferably 70 ° C. or more and 100 ° C.
  • the internal temperature of the phenol resin foam can be measured, for example, by adding a thermocouple and a data recording function to the foamable phenol resin composition in the oven.
  • the phenol resin is plasticized due to the high compatibility of the compound ⁇ with the phenol resin, and thus there is a concern that the increase in viscosity associated with the curing reaction of the phenol resin may be canceled in the foam curing step. Is done. As a result, there is a concern that the phenol resin foam cannot obtain sufficient hardness by heating in the oven as in the prior art. For this reason, it is preferable to lengthen the sum total of the residence time in the first and second ovens as compared with the case where conventional hydrocarbons are used.
  • the total residence time in the first and second ovens is preferably, for example, 3 minutes to 60 minutes, more preferably 5 minutes to 45 minutes, particularly preferably 5 minutes to 30 minutes, and most preferably 7 minutes. It is 20 minutes or less. If the residence time in the oven is too short, the phenolic resin foam will come out of the oven in an uncured state, resulting in a poor phenolic resin foam with poor dimensional stability. If the residence time in the oven is too long, the drying of the phenolic resin foam will proceed too much and the moisture content will be too low, so there is a concern that the board will be warped by inhaling a large amount of atmospheric moisture after leaving the oven. It is not preferable.
  • the foaming and curing method of the foamable phenol resin composition for obtaining the phenol resin foam of the present embodiment is not limited to the above-described method.
  • the phenol resin foam of the present invention can be used as, for example, a heat insulating material for residential building materials, industrial use, or industrial use.
  • a phenolic resin foam that has a low environmental load, a high compressive strength, and is excellent in handling property during construction and cost required for fixing.
  • the sample was placed in a Tedlar bag for 10 minutes in a temperature controller adjusted to 81 ° C.
  • 100 ⁇ L of gas generated in the Tedlar bag was sampled and subjected to GC / MS analysis under the following measurement conditions to identify the type of the compound ⁇ and / or the hydrocarbon in the phenol resin foam.
  • the presence / absence of chlorinated hydrofluoroolefin, non-chlorinated hydrofluoroolefin and halogenated hydrocarbon was confirmed from the GC / MS analysis results.
  • the types of chlorinated hydrofluoroolefin, non-chlorinated hydrofluoroolefin and halogenated hydrocarbon were identified from the retention time and mass spectrum determined in advance.
  • the kind was calculated
  • the detection sensitivity of the generated gas components was measured with a standard gas, and the composition ratio was calculated from the detection area area and detection sensitivity of each gas component obtained by GC / MS.
  • the mass ratio of each gas component was calculated from the composition ratio and molar mass of each identified gas component.
  • test piece is left in an atmosphere of a temperature of 50 ° C. and a relative humidity of 35%. did.
  • One cycle was from 24 hours after the start of the test, and the test piece was left until 3 cycles were completed.
  • the end of cycle 3 is 72 hours after the start of the test.
  • the dimensions of the test piece in the horizontal (W) and vertical (L) directions were measured to obtain A 72W and A 72L .
  • the absolute value of the dimensional change after three cycles of drying and wetting was calculated as in the following formulas (2) and (3).
  • the absolute value of the dimensional change after three cycles of wet and dry cycles is the greater of the absolute values of the dimensional change in the vertical and horizontal directions.
  • variety and horizontal direction of a test body mean the direction orthogonal to the thickness direction of a product.
  • Absolute value of dimensional change in the width direction after 3 cycles of wet and dry cycles
  • the absolute value of the longitudinal dimensional change after dry-wet repeated 3 cycles
  • Brittleness Brittleness was calculated as follows based on JIS A 9511 (2003) 5.1.4.
  • the test equipment has a door attached to one side of the box and a shaft attached to the outside of the central part of the 197 mm side of a smoked wooden box with an inside diameter of 191 x 197 x 197 mm that can be sealed so that dust does not come out of the box Rotating at 60 ⁇ 2 rotations per minute.
  • Weight average molecular weight Mw of phenol resin Measured by gel permeation chromatography (GPC) under the following conditions, and used in Examples and Comparative Examples from calibration curves obtained from standard substances (standard polystyrene, 2-hydroxybenzyl alcohol and phenol) shown later. The weight average molecular weight Mw of the phenol resin was determined. Preprocessing: About 10 mg of phenol resin was dissolved in 1 ml of N, N dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) and filtered through a 0.2 ⁇ m membrane filter as a measurement solution.
  • GPC gel permeation chromatography
  • Measurement condition Measuring device: Shodex System 21 (manufactured by Showa Denko KK) Column: Shodex asahipak GF-310HQ (7.5 mm ID x 30 cm) Eluent: 0.1% by mass of lithium bromide was dissolved in N, N dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) and used.
  • Standard polystyrene (“Shodex standard SL-105” manufactured by Showa Denko KK), 2-hydroxybenzyl alcohol (manufactured by Sigma Aldrich, 99% product), phenol (manufactured by Kanto Chemical Co., Ltd., special grade)
  • Viscosity of phenol resin at 40 ° C. 0.5 ml of phenol resin was weighed and set in a rotational viscometer (manufactured by Toki Sangyo Co., Ltd., model R-100, rotor part 3 ° ⁇ R-14). The rotation speed of the rotor was set so that the viscosity of the phenol resin to be measured was in the range of 50 to 80% with respect to the measurement upper limit viscosity of the apparatus.
  • the measurement temperature was 40 ° C., and the viscosity value 3 minutes after the start of measurement was taken as the measurement value.
  • Viscosity increase rate constant To the phenol resin used in Examples and Comparative Examples having a mass of 10 g, a curing catalyst of 70% by mass of xylene sulfonic acid and 30% by mass of diethylene glycol was accurately weighed and added to the phenol resin. And mix well at 20 ° C. for 1 minute. Set 0.5 ml of a mixture of the above phenol resin and curing catalyst in a rotational viscometer (manufactured by Toki Sangyo Co., Ltd., R-100 type, rotor part 3 ° ⁇ R-14), and set the viscosity at 40 ° C. for 30 seconds. Measure at intervals.
  • the time between 4 minutes and 10 minutes is regarded as a straight line, and this “slope (1 / (minute))” is obtained, and this “slope” is defined as “viscosity increase rate constant”.
  • the value after 5 minutes was read and used as the value of tan ⁇ .
  • the measurement was performed with the gap between the upper and lower parallel plates being 0.5 mm, the strain amount being 10%, and the frequency being 50 Hz.
  • the measurement temperature can be adjusted by adjusting the oven temperature so that the thermocouple installed in the oven and on the back side of the lower parallel plate has a predetermined temperature. It was adjusted.
  • the obtained tan ⁇ at 40 ° C., tan ⁇ at 50 ° C., and ⁇ at 60 ° C. were plotted on a graph with the horizontal axis representing temperature and the vertical axis representing tan ⁇ , to prepare a graph.
  • reaction solution was cooled to 30 ° C., and a 50% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added until the pH reached 6.4.
  • the resulting reaction solution was concentrated using a thin film evaporator until the water content in the phenolic resin was 7.4% by mass.
  • the viscosity at 40 ° C. was 22000 mPa ⁇ s.
  • the phenol resins B to L were obtained in the same manner as the phenol resin A except that the above was changed.
  • Example 1 A mixture containing ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants in a mass ratio of 50% by mass and 50% by mass, respectively, with respect to 100 parts by mass of phenol resin A. It mixed in the ratio of the mass part. 11 parts by mass of Compound A shown in Table 2 is added to 100 parts by mass of the phenol resin mixed with the surfactant, and 14 parts by mass of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol is added as a curing catalyst. And mixing with a mixing head adjusted to 25 ° C. to obtain a foamable phenolic resin composition.
  • the obtained foamable phenol resin composition was supplied onto a moving face material (lower face material).
  • the foamable phenolic resin composition supplied on the face material is sandwiched between two face materials at the same time the surface opposite to the surface in contact with the face material is covered with another face material (upper surface material).
  • it was introduced into a first oven having a slat type double conveyor heated to 85 ° C.
  • the foamable phenol resin composition is cured with a residence time of 15 minutes, and then cured in an oven at 110 ° C. for 2 hours to obtain a phenol resin foam, and the phenol resin foam in which the phenol resin foam is laminated on the face material A laminate was obtained.
  • the glass fiber nonwoven fabric (Brand name "Dura Glass Type DH70 (basis weight 70g / m ⁇ 2 >)", the Jonesmanville company make) was used for the upper surface material and the lower surface material.
  • Example 2 In the same manner as in Example 1, except that Compound B was used in place of Compound A and 9 parts by mass of Compound B was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 3 In the same manner as in Example 1, except that Compound C was used instead of Compound A, and Compound C was added in an amount of 8.5 parts by mass to 100 parts by mass of the phenol resin mixed with the surfactant, A phenol resin foam laminate was obtained.
  • Example 4 Compound D was used in place of Compound A, and 14 parts by mass of Compound D was added to 100 parts by mass of a phenol resin mixed with a surfactant.
  • a polyester nonwoven fabric (trade name “Span” A phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that Bond E05030 basis weight 30 g / m 2 ", manufactured by Asahi Kasei Fibers Corporation) was used.
  • Example 5 In the same manner as in Example 1 except that Compound E was used instead of Compound A and 6 parts by mass of Compound E was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 6 In the same manner as in Example 1, except that Compound F was used instead of Compound A and 8 parts by mass of Compound F was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 7 In the same manner as in Example 1, except that Compound G was used instead of Compound A and 11 parts by mass of Compound G was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 8 The phenol resin B was used as the phenol resin, and 11 parts by mass of the compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant, and the polyester nonwoven fabric (trade name “Spunbond” was used as the top and bottom materials.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that E05030 basis weight 30 g / m 2 ( made by Asahi Kasei Fibers Co., Ltd.) was used.
  • Example 9 Using phenol resin C as the phenol resin and adding 11 parts by mass of compound A to 100 parts by mass of the phenol resin mixed with a surfactant, polyester nonwoven fabric (trade name “Spunbond”) A phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that E05030 basis weight 30 g / m 2 ", manufactured by Asahi Kasei Fibers Co., Ltd.) was used.
  • Example 10 A phenol resin foam and a phenol resin foam were obtained in the same manner as in Example 1 except that phenol resin D was used as the phenol resin and 12 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 11 As in Example 1, except that phenol resin D and compound F were used instead of compound A as the phenol resin, and 6 parts by mass of compound F were added to 100 parts by mass of the phenol resin mixed with the surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 12 A phenol resin foam and a phenol resin foam were obtained in the same manner as in Example 1 except that phenol resin E was used as the phenol resin and 12 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 13 As in Example 1, except that phenol resin E and compound D were used instead of compound A as the phenol resin, and 15 parts by mass of compound D was added to 100 parts by mass of the phenol resin mixed with the surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 14 As in Example 1, except that phenol resin E and compound F instead of compound A were used as the phenol resin, and 7 parts by mass of compound F was added to 100 parts by mass of the phenol resin mixed with the surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 15 As in Example 1, except that phenol resin E and compound G are used in place of compound A as phenol resin, and 12 parts by mass of compound G are added to 100 parts by mass of phenol resin mixed with a surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 16 Using phenol resin F as a phenol resin, compound B instead of compound A, adding 9 parts by mass of compound B to 100 parts by mass of a phenol resin mixed with a surfactant, polyester as an upper surface material and a lower surface material A phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that a non-woven fabric (trade name “Spunbond E05030 basis weight 30 g / m 2 ” manufactured by Asahi Kasei Fibers Co., Ltd.) was used. .
  • a non-woven fabric trade name “Spunbond E05030 basis weight 30 g / m 2 ” manufactured by Asahi Kasei Fibers Co., Ltd.
  • Example 17 The phenol resin foam and the phenol resin foam were the same as in Example 1 except that phenol resin G was used as the phenol resin and 13 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 18 In the same manner as in Example 1, except that Compound H was used in place of Compound A and 7 parts by mass of Compound H was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 19 In the same manner as in Example 1, except that Compound I was used in place of Compound A and 11 parts by mass of Compound I was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 20 In the same manner as in Example 1, except that Compound J was used instead of Compound A and 11 parts by mass of Compound J was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 21 In the same manner as in Example 1, except that Compound K was used in place of Compound A and 11 parts by mass of Compound K was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 22 As in Example 1, except that phenol resin E and compound L were used instead of compound A as the phenol resin, and 9 parts by mass of compound L was added to 100 parts by mass of the phenol resin mixed with the surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 23 Except that phenol resin E and compound M were used in place of compound A as the phenol resin, and 9 parts by mass of compound M was added to 100 parts by mass of phenol resin mixed with a surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 24 In the same manner as in Example 1, except that Compound N was used in place of Compound A, and 10 parts by mass of Compound N was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 25 A foamable phenol resin composition was prepared in the same manner as in Example 1 except that phenol resin E was used as the phenol resin and 10 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. Obtained.
  • the foamable phenolic resin composition was poured into an aluminum mold having an inner dimension of 1000 mm, a width of 1000 mm, and a thickness of 1000 mm, the inside of which was covered with a face material, and was sealed. The periphery and upper and lower surfaces of the mold were fixed with clamps so as not to spread due to foaming pressure. It was introduced into an oven heated to 85 ° C. and cured for 60 minutes.
  • the phenol resin foam was taken out of the mold and heated in an oven at 110 ° C. for 5 hours to obtain a block-shaped phenol resin foam.
  • the used face material is the same as in Example 1.
  • the obtained block-shaped phenol resin foam was sliced at a thickness of 50 mm from the center in the thickness direction to obtain a plate-shaped phenol resin foam.
  • Example 26 A phenol resin was used in the same manner as in Example 1 except that an aluminum sheet reinforced with glass fiber having gas permeability in which through holes having a diameter of 0.5 mm were pre-drilled at intervals of 20 mm was used as the upper surface material and the lower surface material. A foam and a phenol resin foam laminate were obtained.
  • Example 27 A phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 2 parts by mass of hexamethyldisiloxane was added to 100 parts by mass of the phenol resin mixed with a surfactant.
  • Example 28 In the same manner as in Example 1, except that Compound G was used instead of Compound A, and 2 parts by mass of hexamethyldisiloxane was added to 100 parts by mass of the phenol resin mixed with the surfactant, A phenol resin foam laminate was obtained.
  • Example 29 In the same manner as in Example 1 except that Compound I was used instead of Compound A, and 2 parts by mass of hexamethyldisiloxane was added to 100 parts by mass of the phenol resin mixed with the surfactant, A phenol resin foam laminate was obtained.
  • Example 30 Compound O is used in place of Compound A, 7 parts by mass of Compound O is added to 100 parts by mass of the phenol resin mixed with the surfactant, and plastic is added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of phthalate was added as an agent.
  • Example 31 Compound P is used in place of Compound A, and 7 parts by mass of Compound P is added to 100 parts by mass of the phenol resin mixed with the surfactant, and plastic is added to 100 parts by mass of the phenol resin with which the surfactant is mixed.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of phthalate was added as an agent.
  • Example 32 The phenol resin D was used as the phenol resin, the compound O was used instead of the compound A, and 7 parts by mass of the compound O was added to 100 parts by mass of the phenol resin mixed with the surfactant, and the surfactant was mixed.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of a phthalate ester was added as a plasticizer to 100 parts by mass of the phenol resin.
  • Example 33 In the same manner as in Example 1, except that Compound Q was used instead of Compound A and 7 parts by mass of Compound Q was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 34 Using phenol resin E as the phenol resin, using compound R instead of compound A, 9 parts by mass of compound R was added to 100 parts by mass of the phenol resin mixed with the surfactant, and the surfactant was mixed.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of a phthalate ester was added as a plasticizer to 100 parts by mass of the phenol resin.
  • Example 35 Example 1 except that phenol resin F was used as the phenol resin, compound S was used instead of compound A, and 10 parts by mass of compound S was added to 100 parts by mass of the phenol resin mixed with the surfactant. Thus, a phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 36 Compound T is used in place of Compound A, 6 parts by mass of Compound T is added to 100 parts by mass of the phenol resin mixed with the surfactant, and plastic is added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of phthalate was added as an agent.
  • Example 37 In the same manner as in Example 1, except that Compound U was used instead of Compound A and 7 parts by mass of Compound U was added to 100 parts by mass of the phenol resin mixed with the surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 38 Compound V is used in place of Compound A, 6 parts by mass of Compound V is added to 100 parts by mass of the phenol resin mixed with the surfactant, and plastic is added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of phthalate was added as an agent.
  • Example 39 Example 1 except that phenol resin B was used as the phenol resin, compound W was used instead of compound A, and 10 parts by mass of compound W was added to 100 parts by mass of the phenol resin mixed with the surfactant. Thus, a phenol resin foam and a phenol resin foam laminate were obtained.
  • Example 40 Compound X is used in place of Compound A, 11 parts by mass of Compound X is added to 100 parts by mass of the phenol resin mixed with the surfactant, and plastic is added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of phthalate was added as an agent.
  • Example 41 The phenol resin F was used as the phenol resin, the compound Y was used instead of the compound A, and 7 parts by mass of the compound Y was added to 100 parts by mass of the phenol resin mixed with the surfactant, and the surfactant was mixed.
  • a phenol resin foam and a phenol resin foam laminate were obtained in the same manner as in Example 1 except that 1 part by mass of a phthalate ester was added as a plasticizer to 100 parts by mass of the phenol resin.
  • Example 42 In the same manner as in Example 1, except that Compound Z was used instead of Compound A and 10 parts by mass of Compound Z was added to 100 parts by mass of the phenol resin mixed with a surfactant, a phenol resin foam and a phenol resin A foam laminate was obtained.
  • Example 1 A phenol resin foam and a phenol resin foam were obtained in the same manner as in Example 1 except that phenol resin H was used as the phenol resin, and 11 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 2 The phenol resin foam and the phenol resin foam were the same as in Example 1 except that phenol resin I was used as the phenol resin and 11 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 3 A phenol resin foam and a phenol resin foam were obtained in the same manner as in Example 1 except that phenol resin J was used as the phenol resin, and 11 parts by mass of compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 4 A phenol resin foam and a phenol resin foam were obtained in the same manner as in Example 1 except that phenol resin K was used as the phenol resin and 10 parts by mass of Compound A was added to 100 parts by mass of the phenol resin mixed with the surfactant. A body laminate was obtained.
  • Example 5 As in Example 1, except that phenol resin L and compound B were used instead of compound A as the phenol resin, and 9 parts by mass of compound B was added to 100 parts by mass of the phenol resin mixed with the surfactant. A phenol resin foam and a phenol resin foam laminate were obtained.
  • Tables 3, 4 and 5 show the resins used in the phenol resin foams obtained in the above Examples and Comparative Examples, their properties, compounds, and the properties and evaluation results of the obtained phenol resin foams.
  • the phenol resin foams of Examples 1 to 32 were excellent in compression strength, the heat insulating material did not become too heavy, had excellent handling properties, and improved efficiency during construction. Moreover, there were few members and a housing used when fixing a phenol resin foam, and it was excellent also in the cost at the time of construction. In addition, the phenol resin foams of Examples 1 to 32 are dented or cracked when walking on the floor during construction or maintenance in a building in which the phenol resin foam is constructed on a floor surface or a flat roof. There was no problem of entering. On the other hand, the phenolic resin foams of Comparative Examples 1 to 5 had low compressive strength with respect to density and lacked strength against compression. In particular, the phenol resin foams of Comparative Examples 1 and 3 to 5 had low closed cell ratio and poor thermal conductivity.
  • the phenolic resin foam of the present embodiment has a low environmental load, a high compressive strength, and is excellent in handling properties during construction and cost required for fixing, and therefore is suitably used as a heat insulating material for residential use. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

 本願発明の目的は、環境への負荷が低く、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体及びその製造方法を提供することにある。本願発明のフェノール樹脂発泡体は、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、独立気泡率が80%以上99%以下であり、10%圧縮強さと前記密度とが下記式の関係を満たすことを特徴とする。 C≧0.5X-7(式中、Cは10%圧縮強さ(N/cm2)を表し、Xは密度(kg/m3)を表す)

Description

フェノール樹脂発泡体及びその製造方法
 本発明は、フェノール樹脂発泡体及びその製造方法に関する。
 近年、省エネに関する意識向上、及び次世代省エネ基準の義務化等により、住宅の気密性能、断熱性能の向上が求められてきている。このような住宅の気密性能及び断熱性能向上の要求に伴い、必要とされる断熱材の厚みが増すことが予想されるが、室内の居住スペースの圧迫や壁体内の空間に制限があることから断熱材の厚みが増すことに伴う設計変更が必要となるといった問題が生じていた。
 ここで、住宅用途の断熱材としてはグラスウール、ロックウールをはじめとする繊維系の断熱材やスチレン樹脂、ウレタン樹脂、フェノール樹脂を発泡させた発泡プラスチック系の断熱材が知られている。中でも、フェノール樹脂発泡体は、ガス透過性が低く、長期間に渡り断熱性能が変化しにくい優れた住宅用途の断熱材である。また、フェノール樹脂発泡体は、気泡内に内包される化合物の種類や状態によって断熱性能が大きく影響を受けることが知られている。
 そして、従来、フェノール樹脂発泡体に用いる上記化合物としては、熱伝導率が低いクロロフルオロカーボン(CFC)が使用されていた。しかし、CFCは、オゾン層の破壊や気候変動に大きく寄与することから1987年に採択されたモントリオール議定書により使用が廃止された。この結果、上記化合物としてオゾン破壊係数が比較的低いハイドロフルオロカーボン(HFC)などへ転換が進んだ。しかしながら、依然として高い地球温暖化係数を有していることから、CFCやHFCのように熱伝導率が低く、オゾン破壊係数が低く、且つ地球温暖化係数が低い化合物が望まれていた。
 特許文献1、特許文献2、特許文献3、特許文献4には、オゾン破壊係数が低く、地球温暖化係数が低く、かつ難燃性である化合物として、塩素化又は非塩素化ハイドロフルオロオレフィンが開示されている。
特表2010-522819号公報 特開2013-064139号公報 特開2011-504538号公報 特開2007-070507号公報
 特許文献1、特許文献2、特許文献3、特許文献4において、多くの塩素化又は非塩素化ハイドロフルオロオレフィンが開示されているが、中でも1-クロロ-3,3,3-トリフルオロプロペン、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、1,1,1,4,4,4-ヘキサフルオロ-2-ブテンはオゾン破壊係数及び地球温暖化係数が低く、さらに発泡プラスチック系断熱材に利用できることが記載されている。しかしながら、これらの化合物は、オゾン破壊係数及び温暖化係数が低いものの、極性が高いため、フェノール樹脂発泡体に使用する場合、親水基である水酸基を有するフェノール樹脂を可塑化し、圧縮強さや独立気泡率を低下させるといった課題があった。このため、従来の炭化水素を使用したフェノール樹脂発泡体の技術を単純に上記塩素化または非塩素化ハイドロフルオロオレフィンに置き換えた場合には圧縮強度及び独立気泡率の低い粗悪な発泡体となってしまう場合があった。一方、従来の技術では圧縮強さを上げるためにはフェノール樹脂発泡体の密度を高くする必要があるため、重量が大きくなり、施工時のハンドリング性の悪化や、他の部材や躯体を用いてフェノール樹脂発泡体を固定することによるコストの高騰などの問題が生じる場合があった。
 従って、本発明は、環境への負荷が低く(オゾン破壊係数及び温暖化係数が低く)、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、特定の化合物を用い、密度、独立気泡率、及び10%圧縮強さを特定の範囲とすることにより、環境への負荷が低く、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、独立気泡率が80%以上99%以下であり、10%圧縮強さと上記密度とが下記式の関係を満たすことを特徴とするフェノール樹脂発泡体を提供する。
C≧0.5X-7
(式中、Cは10%圧縮強さ(N/cm2)を表し、Xは密度(kg/m3)を表す)
 上記塩素化ハイドロフルオロオレフィン及び上記非塩素化ハイドロフルオロオレフィンからなる群より選択される少なくとも1種と、上記ハロゲン化炭化水素とを含有することが好ましい。
 上記塩素化ハイドロフルオロオレフィン及び上記非塩素化ハイドロフルオロオレフィンからなる群より選択される少なくとも1種が、1-クロロ-3,3,3-トリフルオロプロペン、2-クロロ-3,3,3-トリフルオロプロペン、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン及び1,1,1,4,4,4-ヘキサフルオロ-2-ブテンからなる群より選択される少なくとも1種であることが好ましい。
 上記ハロゲン化炭化水素が、イソプロピルクロリドであることが好ましい。
 さらに、炭素数6以下の炭化水素を含むことが好ましい。
 塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる上記少なくとも1種の含有量が、上記塩素化ハイドロフルオロオレフィン、上記非塩素化ハイドロフルオロオレフィン、上記ハロゲン化炭化水素及び上記炭素数6以下の炭化水素の合計量に対して、30質量%以上であることが好ましい。
 さらに、含窒素化合物を含むことが好ましい。
 上記含窒素化合物が、尿素、メラミン、ヌクリジン、ピリジン、ヘキサメチレンテトラミン及びこれらの混合物からなる群より選択される化合物であることが好ましい。
 上記フェノール樹脂発泡体は、乾湿繰り返し3サイクル後の寸法変化量の絶対値が、2.0mm以下であることが好ましい。
 上記フェノール樹脂発泡体は、JIS A 9511(2003)5.1.4に準拠して求められる脆性が、50%以下であることが好ましい。
 さらに、本発明は、上記フェノール樹脂発泡体の第1の面上及び第2の面上に面材を有するフェノール樹脂発泡体積層板であって、上記面材が何れもガス透過性を有することを特徴とするフェノール樹脂発泡体積層板を提供する。
 さらに、本発明は、面材上で、フェノール樹脂、界面活性剤、硬化触媒、並びに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、ゲル浸透クロマトグラフィーによって求められる上記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、上記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、上記フェノール樹脂の粘度上昇速度定数が0.05(1/分)以上0.5(1/分)以下であり、上記フェノール樹脂発泡体の密度が20kg/m3以上100kg/m3以下であり、上記フェノール樹脂発泡体の独立気泡率が80%以上99%以下であり、上記フェノール樹脂発泡体の10%圧縮強さと上記フェノール樹脂発泡体の上記密度とが下記式の関係を満たすことを特徴とするフェノール樹脂発泡体の製造方法を提供する。
C≧0.5X-7
(式中、Cは10%圧縮強さ(N/cm2)を表し、Xは密度(kg/m3)を表す)
 上記フェノール樹脂の40℃における損失正接tanδが0.5以上40.0以下であり、且つ60℃における損失正接tanδが2.0以上90.0以下であることが好ましい。
 本発明のフェノール樹脂発泡体は、上記構成を有するため、環境への負荷が低く、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れる。
 また、本発明のフェノール樹脂発泡体の製造方法によれば、上記構成を有する本発明のフェノール樹脂発泡体を容易に製造することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではない。
 本実施形態のフェノール樹脂発泡体は、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、独立気泡率が80%以上99%以下であり、10%圧縮強さと上記密度とが下記式の関係を満たす。
C≧0.5X-7
(式中、Cは10%圧縮強さ(N/cm2)を表し、Xは密度(kg/m3)を表す)
 なお、本明細書において、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種の化合物又は混合物を、「化合物α」と称する場合がある。
 ここで、本実施形態のフェノール樹脂発泡体が含む化合物αは、オゾン破壊係数及び地球温暖化係数が低いので、本実施形態のフェノール樹脂発泡体は環境への負荷が低い。
 上記塩素化ハイドロフルオロオレフィン又は上記非塩素化ハイドロフルオロオレフィンとしては、特に限定されないが、熱伝導率の低さや発泡性の観点から、1-クロロ-3,3,3-トリフルオロプロペン、2-クロロ-3,3,3-トリフルオロプロペン、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン等が好ましい。
 また、上記ハロゲン化炭化水素としては、特に限定されないが熱伝導率の低さやオゾン破壊係数及び温暖化係数が低さや沸点の観点から、水素元素を少なくとも一つ含むハロゲン化炭化水素、2種類以上のハロゲン原子を含まないハロゲン化炭化水素、又はフッ素原子を含まないハロゲン化炭化水素が好ましく、より好ましくはイソプロピルクロリドである。
 上記化合物αは、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される1種の化合物を含んでいてもよいし、複数種を組み合わせて含んでいてもよい。
 本実施形態のフェノール樹脂発泡体は、炭化水素、二酸化炭素など(好ましくは炭化水素)をさらに含んでいてもよい。
 上記炭化水素としては、例えば、炭素数が6以下の炭化水素が挙げられる。すなわち、本実施形態のフェノール樹脂発泡体は、例えば、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素のからなる群より選択される少なくとも1種の化合物の他に、さらに炭素数6以下の炭化水素を含んでいてもよい。上記炭素数6以下の炭化水素としては、具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン等を挙げることができる。中でも、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン等のペンタン類、又はノルマルブタン、イソブタン、シクロブタンのブタン類が好適に用いられる。上記炭化水素は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 本実施形態のフェノール樹脂発泡体は、特に限定されないが、例えば、1種の上記化合物αからなる単一の化合物を含んでいてもよいし、複数種の上記化合物α、又は少なくとも1種の上記化合物αと少なくとも1種の上記炭化水素とを含んでいてもよい。中でも、本実施形態のフェノール樹脂発泡体は、塩素化ハイドロフルオロオレフィン及び非塩素化ハイドロフルオロオレフィンからなる群より選択される少なくとも1種の化合物と、ハロゲン化炭化水素とを含むことが好ましい。また、本実施形態のフェノール樹脂発泡体は、平均セル径が小さく、独立気泡率及び圧縮強度が高い発泡体が得られるという観点から、例えば、少なくとも1種の上記化合物αと少なくとも1種の上記炭化水素(特に、第1成分として1種又は2種の上記化合物α、第2成分として上記炭化水素(例えばシクロペンタン、イソペンタンなどのペンタン類)を含むことが好ましい。
 本実施形態のフェノール樹脂発泡体に上記炭素数6以下の炭化水素が含まれる場合には、上記化合物αの含有量は、特に限定されないが、平均セル径が小さく、独立気泡率が高く、熱伝導率が低くなるという観点から、例えば、上記化合物αと炭素数6以下の炭化水素の合計量(100質量%)に対して、30質量%以上(例えば、30質量%以上100質量%以下)が好ましく、より好ましくは40質量%以上100質量%以下、さらに好ましくは50質量%以上100質量%以下、とりわけ好ましくは60質量%以上100質量%以下、特に好ましくは70質量%以上100質量%以下、最も好ましくは80質量%以上100質量%以下である。
 本実施形態において、フェノール樹脂発泡体から放散されるホルムアルデヒド量を低減するためのホルムアルデヒドキャッチャー剤としてや、フェノール樹脂発泡体に柔軟性を付与することを目的に、フェノール樹脂に含窒素化合物を添加してもよい。
 上記含窒素化合物としては、例えば、尿素、メラミン、ヌクリジン、ピリジン、ヘキサメチレンテトラミン及びこれらの混合物からなる群より選択される化合物等が使用できるが、尿素が好適に用いられる。含窒素化合物以外の添加剤としては、窒素、ヘリウム、アルゴン、金属酸化物、金属水酸化物、金属炭酸化物、タルク、カオリン、珪石粉、珪砂、マイカ、珪酸カルシウム粉、ワラストナイト、ガラス粉、ガラスビーズ、フライアッシュ、シリカフューム、グラファイト、アルミ粉等を添加することができる。金属酸化物としては酸化カルシウム、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等、金属水酸化物としては水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等、金属炭酸化物としては炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸亜鉛等が使用できる。また、含窒素化合物以外の添加剤としてシラン系化合物、シロキサン系化合物を添加することもできる。これらは単独で用いても良いし、組み合わせて用いても良い。前記シラン系化合物としては、ヘキサメチルジシラザン、及びジメトキシジメチルシラン等を用いてもよく、前記シロキサン系化合物としては、ヘキサメチルジシロキサン等を用いてもよい。前記シラン系化合物、シロキサン化合物は非極性を有するため、極性を有するフェノール樹脂と混ざりにくい。このため、多くの気泡核が形成されことから気泡径が小さく、高い独立気泡率を有するフォームを得ることができる。上記含窒素化合物、及び上記含窒素化合物以外の添加物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 本実施形態におけるフェノール樹脂発泡体の密度は、20kg/m3以上100kg/m3以下であり、好ましくは20kg/m3以上70kg/m3以下であり、より好ましくは20kg/m3以上40kg/m3以下であり、さらに好ましくは22kg/m3以上35kg/m3以下であり、最も好ましくは23kg/m3以上28kg/m3以下である。密度が20kg/m3よりも低いと気泡膜が薄い為、発泡時に気泡膜が破れやすくなることから高い独立気泡構造を得ることが困難となり、圧縮強さが極端に低下する。また、密度が100kg/m3より高いと樹脂をはじめとする固形成分由来の固体の熱伝導が大きくなり断熱性能が低下する。
 なお、上記密度は、後述の(評価)の「(2)発泡体密度」に記載の方法により測定される値をいう。上記密度は、例えば、上記化合物αや上記炭化水素の割合、硬化触媒の割合、発泡温度、フェノール樹脂の分子量、反応速度、フェノール樹脂の粘度等により調整できる。
 本発明者らは、従来の炭化水素を含むフェノール樹脂発泡体中の炭化水素を、単に化合物αに置き換えた場合には、フェノール樹脂発泡体の発泡硬化工程における、フェノール樹脂の硬化反応に伴う粘度上昇分が、化合物αのフェノール樹脂に対する高い相溶性によって打ち消されてしまい、相対的に気泡の成長速度が速くなってしまうことを見出した。そのため、炭化水素を化合物αに置き換えただけでは、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体が得られにくいことを見出した。そして、鋭意検討を重ねたところ、その原因として、独立気泡率、圧縮強さが、高くなりすぎたり、低くなりすぎたりすることと関連があることを見出した。
 さらに、本発明者らは、製造条件、特に特定の範囲のMw、粘度、粘度上昇速度定数、tanδのフェノール樹脂を使用することによって、独立気泡率、圧縮強さ等の物性値を特定の範囲とすることができ、そして物性値を満たすことで、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体が得られることを見出した。
 本実施形態におけるフェノール樹脂発泡体の独立気泡率は、80%以上99%以下であり、85%以上99%以下が好ましく、88%以上99%以下がさらに好ましく、90%以上99%以下が特に好ましい。独立気泡率が低すぎると、気泡に内包された炭化水素や化合物αが空気と置換しやすくなることから、長期間経過後の断熱性能が悪化したり、気泡膜が破れ易くなることにより圧縮強さが低下したりするため好ましくない。
 なお、上記独立気泡率は、後述の(評価)の「(3)独立気泡率」に記載の方法により測定される値をいう。上記独立気泡率は、例えば、フェノール樹脂の粘度、上記化合物αや上記炭化水素の種類や割合、硬化条件、発泡硬化時のオーブン温度等により調整できる。
 本実施形態におけるフェノール樹脂発泡体の10%圧縮強さは、特に限定されないが、フェノール樹脂発泡体の強度やフェノール樹脂発泡体の密度を高くしすぎない(重量を重くしすぎない、製造コストを高くしすぎない)という観点から、例えば、6N/cm2以上50N/cm2以下が好ましく、より好ましくは8N/cm2以上50N/cm2以下、さらに好ましくは10N/cm2以上40N/cm2以下であり、特に好ましくは12N/cm2以上40N/cm2以下であり、最も好ましくは15N/cm2以上40N/cm2以下である。
 なお、上記10%圧縮強さは、後述の(評価)の「(4)10%圧縮強さ」に記載の方法により測定される値をいう。上記10%圧縮強さは、例えば、フェノール樹脂の分子量、粘度、反応速度、上記化合物αや上記炭化水素の種類や割合、硬化条件(例えば、硬化触媒の添加量や加熱時間)、発泡条件(例えば、オーブン温度)、発泡体の構造(気泡膜に孔がない構造等)等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、圧縮に対する強度、及び施工時のハンドリング性と固定時にかかるコスト低減の観点から、上記10%圧縮強さと上記密度とが下記式の関係を満たす。
C≧0.5X-7
(式中、Cは上記10%圧縮強さ(N/cm2)を表し、Xは上記密度(kg/m3)を表す)
 中でも、圧縮に対する強度、及び施工時のハンドリング性と固定時にかかるコスト低減に一層優れるという観点から、上記式の左辺(C)が、右辺(0.5X-7)よりも、0.5以上大きいことが好ましく、0.8以上大きいことがより好ましく、1.0以上大きいことがさらに好ましく、1.5以上大きいことが特に好ましい。
 また、上記式の関係を満たし、且つ密度が20kg/m3以上であると、発泡体の強度に優れ、フェノール樹脂発泡体は、フェノール樹脂発泡体が床面や平屋根に施工された建築物において、施工時やメンテナンス時に上を歩行する際に、表面がへこむ、または亀裂が入るといった問題が生じにくい。
 本実施形態におけるフェノール樹脂発泡体の乾湿繰り返し3サイクル後の寸法変化量の絶対値(寸法変化量の絶対値)は、2.0mm以下であることが好ましく、より好ましくは1.6mm以下、さらに好ましくは1.3mm以下、最も好ましくは1.0mm以下である。寸法変化量の絶対値が2.0mmより大きいとフェノール樹脂発泡体を施工した後に乾湿繰り返しによりフェノール樹脂発泡体が収縮した場合には発泡体よりなる断熱ボードの接合部に隙間が空いてしまうため建物の断熱性能が損なわれてしまうため好ましくない。一方、フェノール樹脂発泡体が膨張した場合にはボードの接合部がせりあがってしまうため、壁面の平滑性が損なわれてしまい、外観が悪くなるため好ましくない。
 なお、上記寸法変化量の絶対値は、後述の(評価)の「(5)乾湿繰り返し3サイクル後の寸法変化量の絶対値」に記載の方法により測定される値をいう。上記寸法変化量の絶対値は、例えば、フェノール樹脂の分子量や反応速度、上記化合物αや上記炭化水素の種類や割合、硬化触媒の添加量やフェノール樹脂の硬化時間、発泡硬化時のオーブン温度等により調整できる。
 本実施形態におけるフェノール樹脂発泡体の脆性は、50%以下であることが好ましく、より好ましくは40%以下、さらに好ましくは30%以下、とりわけ好ましくは20%以下、特に好ましくは15%以下であり、最も好ましくは10%以下である。脆性が50%より大きいと、生産コストが高くなるため好ましくない。さらに、施工時にフェノール樹脂発泡体よりなるボードを加工する際に、発泡体が欠けやすくなる傾向にあるため好ましくない。
 なお、上記脆性は、後述の(評価)の「(6)脆性」に記載の方法により測定される値をいう。上記脆性は、例えば、フェノール樹脂の組成や割合、含窒素化合物や可塑剤等の添加剤の有無、フェノール樹脂発泡体の密度、フェノール樹脂発泡体中のフェノール樹脂の架橋密度等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、例えば、フェノール樹脂、及び化合物α(好ましくは、フェノール樹脂、界面活性剤、硬化触媒、及び化合物α)を含む発泡性フェノール樹脂組成物を、発泡及び硬化させることにより製造することができる。上記発泡性フェノール樹脂組成物は、さらに、炭化水素を含んでいてもよいし、含窒素化合物、可塑剤、難燃剤、硬化助剤、シラン系化合物、シロキサン系化合物等の添加剤を含んでいてもよい。また、より精密に発泡及び硬化速度を制御するためにはフタル酸エステルのような可塑剤を添加しても良い。
 本実施形態のフェノール樹脂発泡体の製造方法は、例えば、面材上で、フェノール樹脂、界面活性剤、硬化触媒及び化合物αを含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、ゲル浸透クロマトグラフィーによって求められる上記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、上記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、かつ上記フェノール樹脂の粘度上昇速度定数が0.05(1/分)以上0.5(1/分)以下である製造方法であってもよい。
 上記フェノール樹脂は、例えば、フェニル基を有する化合物とアルデヒド基を有する化合物またはその誘導体を原料として、アルカリ触媒により40℃以上100℃以下の温度範囲で加熱して重合させることによって得られる。
 上記フェノール樹脂の調製に用いられる上記フェニル基を有する化合物としては、例えば、フェノール、レゾルシノール、カテコール、o-、m-又はp-クレゾール、キシレノール類、エチルフェノール類、p-tertブチルフェノール等が挙げられる。中でも、フェノール、o-、m-又はp-クレゾールが好ましく、最も好ましくはフェノールである。フェニル基を有する化合物としては、2核のフェニル基を有する化合物も使用できる。これらフェニル基を有する化合物は、単独又は2種類以上で用いてもよい。
 2種類以上のフェニル基を有する化合物を用いる場合、「フェニル基を有する化合物のモル量」は、用いる各フェニル基を有する化合物のモル量の総和である。また、2核のフェニル基を有する化合物を用いる場合には、2核のフェニル基を有する化合物のモル数に2を積算した値を、2核のフェニル基を有する化合物のモル量として用いて「フェニル基を有する化合物のモル量」を計算する。
 上記フェノール樹脂の調製に用いられる上記アルデヒド基を有する化合物またはその誘導体としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、1,3,5-トリオキサン、テトラオキシメチレン等が挙げられる。中でも、ホルムアルデヒド及びパラホルムアルデヒドが好ましい。これらアルデヒド基を有する化合物またはその誘導体は、単独又は2種類以上で用いてもよい。
 2種類以上のアルデヒド基を有する化合物またはその誘導体を用いる場合「アルデヒド基を有する化合物またはその誘導体のモル量」は、用いる各アルデヒド基を有する化合物またはその誘導体のモル量の総和である。なお、パラホルムアルデヒドを用いる場合の「アルデヒド基を有する化合物またはその誘導体のモル量」は、用いるパラホルムアルデヒドの重量を30で除した値を用いて計算し、1,3,5-トリオキサンを用いる場合の「アルデヒド基を有する化合物またはその誘導体のモル量」は、用いる1,3,5-トリオキサンのモル数に3を積算した値を用いて計算し、テトラオキシメチレンを用いる場合の「アルデヒド基を有する化合物またはその誘導体のモル量」は、用いるテトラオキシメチレンのモル数に4を積算した値を用いて計算する。
 上記フェノール樹脂の調製に用いられる、上記フェニル基を有する化合物に対する上記アルデヒド基を有する化合物またはその誘導体のモル比(アルデヒド基を有する化合物またはその誘導体のモル量/フェニル基を有する化合物のモル量)は、好ましくは1.5以上3以下であり、より好ましくは1.6以上2.7以下であり、さらに好ましくは1.7以上2.5以下であり、最も好ましくは1.8以上2.2以下である。フェニル基を有する化合物に対するアルデヒド基を有する化合物またはその誘導体のモル比が1.5以上であることにより、発泡時の気泡膜強度低下を抑えてフェノール樹脂発泡体の強度を保つことができる。また、フェノール核同士を架橋させるために必要となるアルデヒド基を有する化合物またはその誘導体の量が充足されて十分に架橋を進行させることができるので、フェノール樹脂発泡体の気泡膜の強度を高めて独立気泡率の向上を図ることができる。フェニル基を有する化合物に対するアルデヒド基を有する化合物またはその誘導体のモル比が3以下であることにより、フェノール樹脂を架橋し易くさせ、フェノール樹脂発泡体の気泡膜の強度を高めて独立気泡率の向上を図ることができる。
 上記フェノール樹脂は、後述する(評価)の「(7)フェノール樹脂の重量平均分子量Mw」に記載の方法により、ゲル浸透クロマトグラフィーによって求められる重量平均分子量Mwが、例えば、400以上3000以下であることが好ましく、より好ましくは500以上3000以下、さらに好ましくは700以上3000以下、特に好ましくは1000以上2700以下、最も好ましくは1500以上2500以下である。重量平均分子量Mwが400より小さいとフェノール核に付加反応部位が多く残ってしまうことからフェノール樹脂に硬化触媒を混合した後の発熱量が大きくなるため、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群からなる群より選択される少なくとも1種によって可塑化されたフェノール樹脂が高温となりさらに粘度が低下してしまう。この結果、発泡時に気泡の破泡を誘発し、独立気泡率が低下することから圧縮強さが低下してしまう。また、重量平均分子量Mwが十分大きくなっていないとフェノール樹脂が発泡する際気泡膜に十分な延伸がかからなくなることから圧縮強さが低下してしまう傾向がある。さらに、上述のようにフェノール樹脂の粘度が低下することから発泡硬化時に気泡の合一化が発生しやすくなりボイドが多く、平均セル径が大きな粗悪なフォームとなってしまう。また、重量平均分子量Mwが3000より大きいとフェノール樹脂の粘度が高くなりすぎることから、必要な発泡倍率を得ることが困難となるため好ましくない。また、フェノール樹脂中の低分子量成分が少なくなることからフェノール樹脂の硬化時に発生する熱量が低下してしまい、充分な硬化反応が進行せずに圧縮強さが低下してしまう懸念がある。
 上記フェノール樹脂の40℃における粘度は、例えば、1000mPa・s以上100000mPa・s以下が好ましい。また、独立気泡率の向上や平均セル径低下の観点から、より好ましくは5000mPa・s以上50000mPa・s以下であり、7000mPa・s以上30000mPa・s以下が特に好ましい。フェノール樹脂の粘度が低すぎると(例えば、5000mPa・sより小さいと)、フェノール樹脂中の気泡核が発泡硬化時に合一化してしまうためセル径が大きくなりすぎてしまう傾向にある。さらには発泡圧によって気泡膜が容易に破れてしまうことから独立気泡率の悪化を招いてしまう傾向にある。フェノール樹脂の粘度が高すぎると(例えば、100000mPa・sより大きいと)、発泡速度が遅くなることから必要な発泡倍率を得ることができなくなってしまうため好ましくない。
 なお、上記40℃における粘度は、(評価)の(8)の「40℃におけるフェノール樹脂の粘度」に記載の方法により測定される値をいう。上記40℃における粘度は、例えば、フェノール樹脂の重量平均分子量Mwや水分率、可塑剤等の添加等により調整できる。
 上記フェノール樹脂の粘度上昇速度定数は、例えば、0.05(1/分)以上0.5(1/分)以下が好ましく、より好ましくは0.05(1/分)以上0.4(1/分)以下、さらに好ましくは0.07(1/分)以上0.35(1/分)以下、最も好ましくは0.08(1/分)以上0.3(1/分)以下である。粘度上昇速度定数が0.05(1/分)未満であると、発泡時にフェノール樹脂の硬化反応が十分進まないために、気泡が破泡してしまい粗悪なフォームになってしまうことから圧縮強さが低下してしまう。さらに、フェノール樹脂の架橋反応が十分に進行しないことから、発泡体中の樹脂部の強度が低下してしまうことから、十分な圧縮強さが発現しない懸念がある。粘度上昇速度定数が0.5(1/分)より大きいと、発泡初期においてフェノール樹脂の硬化に伴う反応熱が過大になることによりこれらの熱が発泡体中に蓄熱され、発泡圧が高くなりすぎるために気泡の破泡を誘発してしまい圧縮強さが低下してしまう。
 なお、上記粘度上昇速度定数は、後述の(評価)の「(9)粘度上昇速度定数」に記載の方法により測定される値をいう。上記粘度上昇速度定数は、例えば、フェノール樹脂を合成する際のフェニル基を有する化合物やアルデヒド基を有する化合物またはその誘導体の種類や割合、フェノール樹脂の重量平均分子量Mw、含窒素化合物の添加量、硬化触媒の添加量等により調整できる。
 上記フェノール樹脂の40℃におけるtanδ(損失正接)は、特に限定されないが、独立気泡率及び圧縮強さの観点から例えば、0.5以上40.0以下が好ましく、より好ましくは0.5以上35.0以下、さらに好ましくは0.5以上30.0以下である。
 上記フェノール樹脂の50℃におけるtanδ(損失正接)は、特に限定されないが、独立気泡率及び圧縮強さの観点から、例えば、1.25以上65.0以下が好ましく、より好ましくは2.0以上60.0以下、さらに好ましくは4.0以上55.0以下である。
 上記フェノール樹脂の60℃におけるtanδ(損失正接)は、特に限定されないが、独立気泡率及び圧縮強さの観点から例えば、2.0以上90.0以下が好ましく、より好ましくは2.0以上80.0以下、さらに好ましくは4.0以上70.0以下である。
 中でも、上記フェノール樹脂は40℃における損失正接tanδが0.5以上40.0以下であり、且つ60℃における損失正接tanδが2.0以上90.0以下であることが好ましく、40℃における損失正接tanδ、50℃における損失正接tanδ、及び60℃における損失正接tanδが、横軸に温度、縦軸に損失正接tanδをとったグラフ上で(40℃、0.5)、(40℃、40.0)、(60℃、2.0)、(60℃、90.0)の4点から成る四角形(4点の座標を線分で結んでできた四角形)の辺上又は内側にあることがより好ましく、40℃以上60℃以下の範囲における損失正接tanδが、横軸に温度、縦軸に損失正接tanδをとったグラフ上で(40℃、0.5)、(40℃、40.0)、(60℃、2.0)、(60℃、90.0)の4点から成る四角形(4点の座標を線分で結んでできた四角形)の辺上又は内側にあることがさらに好ましい。すなわち、40℃における損失正接tanδ、50℃における損失正接tanδ、及び60℃における損失正接tanδが、横軸に温度、縦軸に損失正接tanδをとったグラフ上でy=0.075x-2.5の直線とy=2.5x-60の直線との間又は各直線上にあることがより好ましく、40℃以上60℃以下の範囲における損失正接tanδが、横軸に温度、縦軸に損失正接tanδをとったグラフ上でy=0.075x-2.5の直線とy=2.5x-60の直線との間又は各直線上にあることがさらに好ましい。
 横軸に温度、縦軸に損失正接tanδをとったグラフ上の上記4点としては、(40℃、0.5)、(40℃、35.0)、(60℃、2.0)、(60℃、80.0)がより好ましく、最も好ましくは(40℃、0.5)、(40℃、30.0)、(60℃、4.0)、(60℃、70.0)である。
 フェノール樹脂は同じ粘度であっても架橋状態の違いや添加剤により加熱時の挙動が変化する。tanδは損失弾性率と貯蔵弾性率との比であるため、この値が大きいほど発泡時にフェノール樹脂が伸びやすくなり、小さいほど発泡時にフェノール樹脂が破断しやすくなる傾向にある。従って、フェノール樹脂の損失正接tanδが上記範囲より大きいと、発泡圧に対して気泡の成長速度が速くなりすぎてしまうことから破泡を誘発してしまい、独立気泡率や圧縮強さが低下してしまう。また、発泡時にフェノール樹脂に延伸がかかりにくくなるために高い圧縮強さが発現しなくなってしまうといった懸念もある。損失正接tanδが上記範囲より小さいと発泡時にフェノール樹脂が破断しやすくなるために、フェノール樹脂発泡体の気泡膜や骨格部分が切れてしまうため構造が不連続となってしまい、圧縮強さが低下してしまう傾向にある。
 なお、本明細書において、tanδ(損失正接)は、後述の(評価)の「(10)tanδ」に記載の方法により測定される値をいう。上記tanδは、例えば、フェノール樹脂を合成する際のフェニル基を有する化合物やアルデヒド基を有する化合物またはその誘導体の種類や割合、フェノール樹脂の重量平均分子量Mw、フェノール樹脂中の水分率、可塑剤等の添加物等により調整できる。
 上記化合物αとしては、上述のものが挙げられる。
 上記発泡性フェノール樹脂組成物中の上記化合物αの含有量は、特に限定されないが、熱伝導率の観点から、例えば、上記フェノール樹脂及び上記界面活性剤の総量(100質量%)に対して、0.5質量%以上25質量%以下が好ましく、より好ましくは2質量%以上20質量%以下、さらに好ましくは3質量%以上18質量%以下であり、特に好ましくは3質量%以上15質量%以下である。
 本実施形態において、上記化合物α及び/又は上記炭化水素の合計含有量は、特に限定されないが、例えば、上記フェノール樹脂及び上記界面活性剤の総量(100質量%)に対して、3.0質量%以上25.0質量%以下の範囲で添加することが好ましく、より好ましくは3.0質量%以上22.5質量%以下、さらに好ましくは5.0質量%以上20.0質量%以下、特に好ましくは6.0質量%以上18.0質量%以下、最も好ましくは6.0質量%以上15.0質量%以下である。添加量が3.0質量%未満であると、必要な発泡倍率を得ることが非常に困難となり密度が高すぎる発泡体となってしまい、良好な発泡体が得られなくなるため好ましくない。添加量が25.0質量%超であると、化合物αの可塑化効果によりフェノール樹脂の粘度が低下してしまうことと、添加量が多すぎることによる過剰発泡が起きて発泡体の気泡が破れてしまい、独立気泡率が低下し長期断熱性能や圧縮強さ等の物性が低下してしまうため好ましくない。
 本実施形態においてフェノール樹脂可塑化に伴う独立気泡率や圧縮強度の低下を改善するために、気泡核剤として化合物αと共に窒素、アルゴン等の無機ガスを上記化合物α及び/又は上記炭化水素の合計量に対して質量換算で0.05%以上5.0%以下の範囲で添加することが好ましく、より好ましくは0.05%以上3.0%以下、さらに好ましくは0.1%以上2.5%以下、特に好ましくは0.1%以上1.5%以下、最も好ましくは0.3%以上1.0%以下である。添加量が0.05%未満であると気泡核剤としての効果十分にできなくなり、添加量が5.0%超であるとフェノール樹脂発泡体の発泡硬化過程において発泡圧が高くなりすぎてしまうことから発泡体の気泡が破れてしまい、独立気泡率や圧縮強度が低い粗悪な発泡体となってしまうため好ましくない。
 上記含窒素化合物としては、上述のものが挙げられる。
 上記含窒素化合物としては、一般的に知られているように、フェノール樹脂の反応の途中または終点付近のタイミングで直接添加してもよいし、予めホルムアルデヒドと反応させたものをフェノール樹脂に混合してもよい。
 上記含窒素化合物の含有量は、特に限定されないが、フェノール樹脂発泡体から拡散されるアルデヒド基を有する化合物またはその誘導体の低減や、フェノール樹脂発泡体の柔軟性の観点から例えば、上記フェノール樹脂全量(100質量%)に対して、1質量%以上15質量%以下が好ましく、より好ましくは2質量%以上10質量%以下であり、特に好ましくは3質量%以上8質量%以下である。
 上記可塑剤としては、例えば、フタル酸エステル類やグリコール類であるエチレングリコール、ジエチレングリコールなどが挙げられるが、中でもフタル酸エステルが好適に用いられる。また、脂肪族炭化水素または脂環式炭化水素、またはそれらの混合物を用いてもよい。上記可塑剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記難燃剤としては、例えば、難燃剤として一般的に使用されているテトラブロモビスフェノールA、デカブロモジフェニルエーテル等の臭素化合物、芳香族リン酸エステル、芳香族縮合リン酸エステル、ハロゲン化リン酸エステル、赤リン等のリン又はリン化合物、ポリリン酸アンモニウム、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物が挙げられる。上記難燃剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記界面活性剤としては、一般にフェノール樹脂発泡体の製造に使用されるものを使用できるが、中でもノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドとの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油の縮合物、アルキレンオキサイドとノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合物、アルキルエーテル部分の炭素数が14~22のポリオキシエチレンアルキルエーテル、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、ポリジメチルシロキサン等のシリコーン系化合物、ポリアルコール類等が好ましい。これらの界面活性剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記界面活性剤の使用量は、特に限定されないが、上記フェノール樹脂100質量部に対して、0.3質量部以上10質量部以下の範囲で好ましく使用される。
 上記硬化触媒としては、フェノール樹脂を硬化できる酸性の硬化触媒であればよいが、例えば、無水酸硬化触媒が好ましい。上記無水酸硬化触媒としては、無水リン酸や無水アリールスルホン酸が好ましい。上記無水アリールスルホン酸としては、トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、置換フェノールスルホン酸、キシレノールスルホン酸、置換キシレノールスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸等が挙げられ、これらを一種類で用いても、二種類以上組み合わせてもよい。上記硬化触媒は、エチレングリコール、ジエチレングリコール等の溶媒で希釈してもよい。
 上記硬化触媒の使用量は、特に限定されないが、上記フェノール樹脂100質量部に対して、3質量部以上30質量部以下の範囲で好ましく使用される。また、上記フェノール樹脂及び上記界面活性剤の総量(100質量部)に対して、3質量部以上30質量部以下であってもよい。
 上記硬化助剤としては、例えば、レゾルシノール、クレゾール、サリゲニン(o-メチロールフェノール)、p-メチロールフェノール等が挙げられる。上記硬化助剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記発泡性フェノール樹脂組成物は、特に限定されないが、例えば、上記フェノール樹脂、上記界面活性剤、上記化合物α、上記炭化水素、上記硬化触媒、上記含窒素化合物、上記可塑剤やその他の材料等を、混合することにより得ることができる。
 フェノール樹脂発泡体は、例えば、上述の発泡性フェノール樹脂組成物を走行する面材上に連続的に吐出することと、発泡性フェノール樹脂組成物の、面材と接触する面とは反対側の面を他の面材で被覆することと、発泡性フェノール樹脂組成物を発泡及び加熱硬化させることとを含む連続生産方式により得ることができる。また、そのほかの実施形態としては、上述の発泡性フェノール樹脂組成物を、面材によって内側が被覆された型枠内、または離型剤が塗布された型枠内に流し込み、発泡及び加熱硬化させるバッチ生産方式によって得ることもできる。前記バッチ生産方式によって得られたフェノール樹脂発泡体は、必要に応じて厚み方向にスライスして用いることもできる。
 なお、本明細書において、面材上にフェノール樹脂発泡体が積層した積層板(面材とフェノール樹脂発泡体を含む積層板)を、フェノール樹脂発泡体積層板と称する場合がある。フェノール樹脂発泡体積層板は、1枚の面材を有していてもよいし、2枚の面材(フェノール樹脂発泡体の第1の面上(上面)及び第2の面上(下面)に設けられた面材(上面材及び下面材))を有していてもよい。上記面材は、フェノール樹脂発泡体に接する形態で設けられていることが好ましい。
 上記面材は、特に限定されないが、発泡性フェノール樹脂組成物の発泡及び硬化時に発生する水分(フェノール樹脂中に含まれる水分、硬化反応(脱水縮合反応)中に発生する水分など)を除き、気泡内に水蒸気が含まれて内圧が高くなりすぎることによる破泡を防止し、独立気泡率をより向上させる観点から、例えば、ガス透過性を有する面材が好ましい。ガス透過性を有する上記面材としては、例えば、ポリエステル製不織布(ポリエチレンテレフタレート製不織布等)、ポリアミド製不織布(ナイロン製不織布等)等の合成繊維不織布、ガラス繊維不織布、ガラス繊維紙、紙類、貫通する孔を有する金属フィルム(貫通する孔を有する金属箔と紙、ガラスクロスやガラス繊維を張り合わせ補強した積層物)等が挙げられる。中でも、難燃性、面材付着強度、発泡性フェノール樹脂組成物の染み出し防止の観点から、PET繊維不織布、ガラス繊維不織布、貫通する孔を有するアルミが好ましい。なお、貫通する孔を有する金属フィルムは、厚み方向に貫通する孔をあける等の処理により製造することができる。上記フェノール樹脂発泡体積層板は、ガス透過性を有する面材により発泡硬化中に水分がフェノール樹脂発泡体から放散されやすくなることから、水蒸気による気泡の破泡を抑制できる。このような観点から上記フェノール樹脂発泡体は第1の面(上面)及び第2の面(下面)に面材を有し、2枚の面材が何れもガス透過性であることが好ましい。
 上記面材におけるガス透過性とは、ASTM D3985-95に準拠して測定される酸素の透過率が4.5cm3/24h・m2以上である面材をいう。
 上記面材は、例えば、生産時の面材破断を防止する目的で、可撓性を有していることが好ましい。可撓性を有する面材としては、例えば、合成繊維不織布、合成繊維織布、ガラス繊維紙、ガラス繊維織布、ガラス繊維不織布、ガラス繊維混抄紙、紙類、金属フィルム(貫通する孔を有する金属フィルム)または、これらの組合せ等が挙げられる。上記面材は難燃性を付与するために難燃剤を含有していてもよい。上記難燃剤としては、テトラブロモビスフェノールA、デカブロモジフェニルエーテル等の臭素化合物、芳香族リン酸エステル、芳香族縮合リン酸エステル、ハロゲン化リン酸エステル、赤リン等のリン又はリン化合物、ポリリン酸アンモニウム、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、炭酸カルシウム、炭酸ナトリウム等の炭酸塩を用いることができる。上記難燃剤は、上記面材の繊維中に練りこまれていてもよく、アクリル、ポリビニルアルコール、酢酸ビニル、エポキシ、不飽和ポリエステル等の面材のバインダーに添加されていてもよい。また、上記面材は、フッ素樹脂系、シリコーン樹脂系、ワックスエマルジョン系、パラフィン系、アクリル樹脂パラフィンワックス併用系などの撥水剤やアスファルト系防水処理剤によって表面処理されていてもよい。これらの撥水剤や防水処理剤は、単独で用いてもよいし、上記難燃剤を添加し面材に塗布してもよい。
 面材上に上記発泡性フェノール樹脂組成物を吐出する際の、上記発泡性フェノール樹脂組成物の温度は、例えば、25℃以上50℃以下が好ましく、より好ましくは30℃以上45℃以下である。上記温度が50℃以下であることにより、適度に発泡が起こり、平滑な発泡板が得られる。上記温度が25℃以上であることにより、適度に硬化が起こり、発泡及び硬化がバランスよく起こる。
 二枚の面材に挟まれた発泡体フェノール樹脂組成物は、二枚の面材間で発泡することができる。この発泡したフェノール樹脂組成物(発泡体)を硬化させるには、例えば、下記の第1のオーブン及び第2のオーブンを用いることができる。
 第1のオーブンは、例えば、無端スチールベルト型ダブルコンベアまたはスラット型ダブルコンベアが使用され、60℃以上110℃以下の雰囲気下で発泡、硬化が行われる。このオーブン内で、未硬化の発泡体を板状に成形しながら硬化させ、部分硬化した発泡体を得ることができる。第1オーブン内は全域に渡って均一な温度であってもよいし、複数の温度ゾーンを有していてもよい。
 第2のオーブンは、70℃以上120℃以下の熱風を発生させ、第1オーブンで部分硬化した発泡体を後硬化させるものであることが好ましい。部分硬化した発泡体ボードはスペーサーやトレイを用いて一定の間隔で重ねてもよい。第2オーブン内の温度は高すぎると発泡体の気泡内部の圧力が高くなりすぎるため破泡を誘発してしまい、低すぎるとフェノール樹脂の反応が進ませるのに時間がかかりすぎる恐れがあるため、80℃以上110℃以下がより好ましい。
 また、第1、第2オーブン内において、フェノール樹脂発泡体の内部温度は60℃以上105℃以下が好ましく、より好ましくは70℃以上100℃以下、さらに好ましくは75℃以上95℃以下、最も好ましくは75℃以上90℃以下である。フェノール樹脂発泡体の内部温度は例えばオーブン内の発泡性フェノール樹脂組成物に熱電対とデータ記録機能を入れることによって測定できる。
 化合物αを用いる場合には、化合物αのフェノール樹脂に対する高い相溶性によりフェノール樹脂が可塑化してしまうため、発泡硬化の工程においてフェノール樹脂の硬化反応に伴う粘度上昇分が打ち消されてしまうことが懸念される。この結果、従来技術と同様のオーブン内加熱ではフェノール樹脂発泡体が十分な硬度が得られなくなることが懸念される。このため、第1及び第2のオーブン内の滞留時間の合計を従来の炭化水素を用いた場合と比較して長くすることが好ましい。第1及び第2オーブン内の合計滞留時間としては、例えば、3分以上60分以下が好ましく、より好ましくは5分以上45分以下、特に好ましくは5分以上30分以下、最も好ましくは7分以上20分以下である。オーブン内の滞留時間が短すぎるとフェノール樹脂発泡体の未硬化の状態でオーブンから出てきてしまうため、寸法安定性が悪い粗悪なフェノール樹脂発泡体となる。オーブン内の滞留時間が長すぎると、フェノール樹脂発泡体の乾燥が進みすぎて含水率が低くなりすぎるため、オーブンから出た後に大気の湿気を多量に吸い込み、ボードが反ってしまう懸念があるため好ましくない。
 なお、本実施形態のフェノール樹脂発泡体を得るための発泡性フェノール樹脂組成物の発泡及び硬化方法は、上述の方法に限定されない。
 本発明のフェノール樹脂発泡体は、例えば、住宅建材用、工業用又は産業用の断熱材等として用いることができる。
 以上、本実施形態に係る製造方法によれば、環境負荷が少なく、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるフェノール樹脂発泡体を提供することができる。
 以下実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(評価)
 実施例及び比較例中のフェノール樹脂、フェノール樹脂発泡体について、以下の項目の測定及び評価を行った。
(1)フェノール樹脂発泡体中の化合物α及び/又は炭化水素の種類同定
 はじめに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から面材を剥がし、フェノール樹脂発泡体試料約10gと金属製やすりとを10L容器(製品名「テドラーバック」)に入れて密封し、窒素5Lを注入した。テドラーバックの上からヤスリを用いて試料を削り、細かく粉砕した。続いて、試料をテドラーバックに入れたまま、81℃に温調された温調機内に10分間入れた。テドラーバック中で発生したガスを100μL採取し、以下に示す測定条件にて、GC/MS分析を行い、フェノール樹脂発泡体中の上記化合物α及び/又は上記炭化水素の種類を同定した。
 塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素の有無を、GC/MSの分析結果より確認した。塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素の種類は、事前に求めた保持時間とマススペクトルから同定した。上記炭化水素については、保持時間とマススペクトルによって種類を求めた。別途、発生したガス成分の検出感度を各々標準ガスによって測定し、GC/MSで得られた各ガス成分の検出エリア面積と検出感度より、組成比を算出した。同定した各ガス成分の組成比とモル質量より各ガス成分の質量比を算出した。
(GC/MS測定条件)
ガスクロマトグラフィー:アジレント・テクノロジー社製「Agilent7890型」
カラム:ジーエルサイエンス社製「InertCap 5」(内径0.25mm、膜厚5μm、長さ30m)
キャリアガス:ヘリウム
流量:1.1ml/分
注入口の温度:150℃
注入方法:スプリット法(1:50)
試料の注入量:100μl
カラム温度:-60℃5分間保持、50℃/分で150℃まで昇温し、2.8分保持
質量分析:日本電子株式会社製「Q1000GC型」
イオン化方法:電子イオン化法(70eV)
スキャン範囲:m/Z=10~500
電圧:-1300V
イオン源温度:230℃
インターフェース温度:150℃
(2)発泡体密度
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から、20cm角のボードを切り出し、面材を取り除いて、フェノール樹脂発泡体の質量と見かけ容積を測定した。求めた質量及び見かけ容積を用いて、JIS K 7222に従い、密度(見かけ密度)を算出した。
(3)独立気泡率
 ASTM D 2856-94(1998)Aを参考に、以下の方法で測定した。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板中のフェノール樹脂発泡体の厚み方向中央部から、約25mm角の立方体試片を切り出した。厚みが薄く25mmの均質な厚みの試片が得られない場合は、切り出した約25mm角の立方体試片表面を約1mmずつスライスし均質な厚みを有する試片を用いた。各辺の長さをノギスにより測定し、見かけ体積(V1:cm3)を計測すると共に試片の質量(W:有効数字4桁,g)を測定した。引き続き、エアーピクノメーター(東京サイエンス社、商品名「MODEL1000」)を使用し、ASTM D 2856のA法に記載の方法に従い、試片の閉鎖空間体積(V2:cm3)を測定した。
 また、上述の(3)平均セル径の測定法に従い平均セル径(t:cm)を計測すると共に、上記試片の各辺の長さより、試片の表面積(A:cm2)を計測した。
 t及びAより、式VA=(A×t)/1.14により、試片表面の切断された気泡の開孔体積(VA:cm3)を算出した。また、固形フェノール樹脂の密度は1.3g/cm3とし、試片に含まれる気泡壁を構成する固体部分の体積(VS:cm3)を式VS=試片質量(W)/1.3により、算出した。
 下記式(1)により独立気泡率を算出した。
  独立気泡率(%)=〔(V2-VS)/(V1-VA-VS)〕×100 (1)
 同一製造条件の発泡体サンプルについて6回測定し、その平均値を代表値とした。
(4)10%圧縮強さ
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から、長さ100mm、幅100mmの試験片を切り出し、面材を取り除いて試験片を得た。得た試験片を、温度23℃、相対湿度50%の雰囲気下で、24時間間隔で行う2回の秤量値の差が0.1%以下になるまで養生した。養生後の試験片をJIS K 7220に準拠して10%圧縮強さを求めた。
(5)乾湿繰り返し3サイクル後の寸法変化量の絶対値
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から、長さ300mm、幅300mmの試験片を切り出し、面材を取り除いて試験片を得た。得た試験片を、温度23℃、相対湿度50%の雰囲気下に2週間放置した。その後、試験片の横(W)及び縦(L)方向の寸法を測定し試験開始時の寸法A0W、A0Lを得た。試験開始より12時間は試験片を温度50℃、相対湿度95%雰囲気化に放置し、試験開始より12時間後から24時間後までは試験片を温度50℃、相対湿度35%雰囲気下に放置した。試験開始から24時間後までを1サイクルとし、3サイクル終了するまで試験片を放置した。3サイクル終了は試験開始より72時間後である。3サイクル終了後、つまり試験開始より72時間後の試験片の横(W)及び縦(L)方向の寸法を測定しA72W、A72Lを得た。乾湿繰り返し3サイクル後の寸法変化量の絶対値は、下記式(2)、(3)のようにして算出した。乾湿繰り返し3サイクル後の寸法変化量の絶対値は縦、横方向の寸法変化量の絶対値いずれかの大きいものをいう。また、試験体の幅及び横方向とは製品の厚み方向に直交する方向をいう。
乾湿繰り返し3サイクル後の幅方向の寸法変化量の絶対値=|A72W-A0W| (2)
乾湿繰り返し3サイクル後の縦方向の寸法変化量の絶対値=|A72L-A0L| (3)
(6)脆性
 脆性はJIS A 9511(2003)5.1.4に準拠して、以下のようにして算出した。実施例及び比較例で得られたフェノール樹脂発泡体積層板から表面の面材をはがし、一つの面に面材をはがした面を含むように25±1.5mmの立方体状に切り出した試験片を12個作製し、質量を±1%の精度で測定した。試験装置は、箱の一面にドアを付け、ほこりが箱の外に出ないように密閉できる、内径が191×197×197mmの樫製の木箱の197mm面の中央部の外側にシャフトを取り付け、毎分60±2回転で回転できるものとした。乾燥した比重0.65、寸法19±0.8mmの樫製のさいころ24個を試験片と一緒に測定装置に入れて密閉した後、木箱を600±3回転させた。回転終了後、箱の中身を注意深くJIS Z 8801の網ふるい呼び寸法9.5mmの網に移し、ふるい分けをして小片を取り除き、網から残った試験片を採取し、質量を測定した。脆性は以下の式によって求めた。
 脆性(%)=100×(m0-m1)/m0
(ここで、m0:試験前の試験片の質量(g)、m1:試験後の試験片の質量(g))
(7)フェノール樹脂の重量平均分子量Mw
 ゲル浸透クロマトグラフィー(GPC)測定により以下のような条件で測定を行い、後に示す標準物質(標準ポリスチレン、2-ヒドロキシベンジルアルコール及びフェノール)によって得られた検量線より実施例及び比較例で用いたフェノール樹脂の重量平均分子量Mwを求めた。
前処理:
 フェノール樹脂約10mgをN,Nジメチルホルムアミド(和光純薬工業株式会社製、高速液体クロマトグラフ用)1mlに溶解し、0.2μmメンブレンフィルターでろ過したものを測定溶液として用いた。
測定条件:
 測定装置:Shodex System21(昭和電工株式会社製)
 カラム:Shodex asahipak GF-310HQ(7.5mmI.D.×30cm)
 溶離液:臭化リチウム0.1質量%をN,Nジメチルホルムアミド(和光純薬工業株式会社製、高速液体クロマトグラフ用)に溶解し使用した。
 流量:0.6ml/min
 検出器:RI検出器
 カラム温度:40℃
 標準物質:標準ポリスチレン(昭和電工株式会社製「Shodex standard SL-105」)、2-ヒドロキシベンジルアルコール(シグマアルドリッチ社製、99%品)、フェノール(関東化学株式会社製、特級)
(8)40℃におけるフェノール樹脂の粘度
 フェノール樹脂0.5mlを量りとり、回転粘度計(東機産業株式会社製、R-100型、ローター部は3°×R-14)にセットした。測定するフェノール樹脂の粘度が、装置の測定上限粘度に対して50~80%の範囲になるようにローターの回転数を設定した。測定温度を40℃とし、測定開始から3分間後の粘度の値を測定値とした。
(9)粘度上昇速度定数
 質量10gの実施例及び比較例で用いたフェノール樹脂に、キシレンスルホン酸70質量%及びジエチレングリコール30質量%の硬化触媒をフェノール樹脂に対して10質量%精秤して添加し、20℃で1分間よく混合する。
 上記フェノール樹脂と硬化触媒の混合物0.5mlを回転粘度計(東機産業株式会社製、R-100型、ローター部は3°×R-14)にセットし、40℃での粘度を30秒間隔で測定する。測定の結果のX軸を粘度測定開始からの時間(分)、Y軸を粘度(mPa・s)の対数とした片対数プロットする。時間が4分から10分の間を直線とみなし、この「傾き(1/(分)」を求める。この「傾き」を「粘度上昇速度定数」とした。
(10)tanδ
 粘弾性測定装置(商品名「ARES」、TAインスツルメンツ社製)に、50mmφのアルミ製のパラレルプレート型治具を装着した。上下に設置された2つのパラレルプレートのうち、下側のパラレルプレートにフェノール樹脂を約2ml設置した。その後、パラレルプレートのギャップを0.5mmとしてパラレルプレートの周囲からはみ出した樹脂をスパチェラで掻き取った。続いて、パラレルプレートを囲うようにオーブンを設置した。温度を40℃、50℃、60℃に設定し、後に示す測定条件にてそれぞれの温度にてtanδの測定を行った。測定は設定温度に達した後、5分後の値を読み取りtanδの値とした。
 測定は上記上下のパラレルプレートのギャップを0.5mm、歪み量を10%、周波数50Hzで測定を行った。また、測定温度の調整は上記オーブン内と下側のパラレルプレートの裏面に設置された熱電対のうち、下側のパラレルプレートの裏側に設置された熱電対が所定温度になるようにオーブン温度を調整した。
 得られた40℃におけるtanδ、50℃におけるtanδ、60℃におけるδを、横軸を温度、縦軸をtanδとするグラフにプロットし、グラフを作成した。
<フェノール樹脂Aの合成>
 反応器に52質量%ホルムアルデヒド水溶液3500kgと99質量%フェノール2743kgを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで50質量%水酸化ナトリウム水溶液を反応液のpHが8.7になるまで加えた。反応液を1.5時間かけて85℃まで昇温し、その後オストワルド粘度が73センチストークス(=73×10-62/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を400kg添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.4になるまで添加した。得られた反応液を薄膜蒸発機によってフェノール樹脂中の水分率が7.4質量%となるまで濃縮処理した結果、40℃における粘度は22000mPa・sであった。
 表1に示す52質量%のホルムアルデヒド水溶液の仕込み量、99質量%フェノールの仕込み量、オストワルド粘度、尿素の添加量、薄膜蒸発機を用いてフェノール樹脂中の水分率を調整して40℃における粘度を変更した以外はフェノール樹脂Aと同様にしてフェノール樹脂B~Lを得た。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 フェノール樹脂A100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体及びポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50質量%、50質量%で含有する混合物を2.0質量部の割合で混合した。上記界面活性剤が混合されたフェノール樹脂100質量部に対して、表2に示す化合物Aを11質量部、硬化触媒としてキシレンスルホン酸80質量%とジエチレングリコール20質量%との混合物14質量部を添加し、25℃に温調したミキシングヘッドで混合し、発泡性フェノール樹脂組成物を得た。
 得られた発泡性フェノール樹脂組成物を、移動する面材(下面材)上に供給した。面材上に供給した発泡性フェノール樹脂組成物は、面材と接触する面とは反対側の面が、他の面材(上面材)で被覆されると同時に、二枚の面材で挟み込まれるようにして、85℃に加熱されたスラット型ダブルコンベアを有する第1のオーブンに導入された。発泡性フェノール樹脂組成物は、15分の滞留時間で硬化させた後、110℃のオーブンで2時間キュアしてフェノール樹脂発泡体とし、面材上にフェノール樹脂発泡体が積層したフェノール樹脂発泡体積層板を得た。
 なお、上面材及び下面材はガラス繊維不織布(商品名「Dura Glass Type DH70(坪量70g/m2)」、ジョーンズマンビル社製)を使用した。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 化合物Aの代わりに化合物Bを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Bを9質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例3)
 化合物Aの代わりに化合物Cを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Cを8.5質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例4)
 化合物Aの代わりに化合物Dを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Dを14質量部添加したこと、上面材及び下面材として、ポリエステル製不織布(商品名「スパンボンドE05030 坪量30g/m2」、旭化成せんい株式会社製)を使用したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例5)
 化合物Aの代わりに化合物Eを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Eを6質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例6)
 化合物Aの代わりに化合物Fを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Fを8質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例7)
 化合物Aの代わりに化合物Gを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Gを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例8)
 フェノール樹脂としてフェノール樹脂Bを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを11質量部添加したこと、上面材及び下面材として、ポリエステル製不織布(商品名「スパンボンドE05030 坪量30g/m2」、旭化成せんい株式会社製)を使用したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例9)
 フェノール樹脂としてフェノール樹脂Cを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを11質量部添加したこと、上面材及び下面材として、ポリエステル製不織布(商品名「スパンボンドE05030 坪量30g/m2」、旭化成せんい(株)製)を使用したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例10)
 フェノール樹脂としてフェノール樹脂Dを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを12質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例11)
 フェノール樹脂としてフェノール樹脂D、化合物Aの代わりに化合物Fを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Fを6質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例12)
 フェノール樹脂としてフェノール樹脂Eを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを12質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例13)
 フェノール樹脂としてフェノール樹脂E、化合物Aの代わりに化合物Dを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Dを15質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例14)
 フェノール樹脂としてフェノール樹脂E、化合物Aの代わりに化合物Fを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Fを7質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例15)
 フェノール樹脂としてフェノール樹脂E、化合物Aの代わりに化合物Gを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Gを12質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例16)
 フェノール樹脂としてフェノール樹脂F、化合物Aの代わりに化合物Bを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Bを9質量部添加したこと、上面材及び下面材として、ポリエステル製不織布(商品名「スパンボンドE05030 坪量30g/m2」、旭化成せんい株式会社製)を使用したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例17)
 フェノール樹脂としてフェノール樹脂Gを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを13質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例18)
 化合物Aの代わりに化合物Hを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Hを7質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例19)
 化合物Aの代わりに化合物Iを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Iを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例20)
 化合物Aの代わりに化合物Jを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Jを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例21)
 化合物Aの代わりに化合物Kを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Kを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例22)
 フェノール樹脂としてフェノール樹脂E、化合物Aの代わりに化合物Lを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Lを9質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例23)
 フェノール樹脂としてフェノール樹脂E、化合物Aの代わりに化合物Mを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Mを9質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例24)
 化合物Aの代わりに化合物Nを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Nを10質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例25)
 フェノール樹脂としてフェノール樹脂Eを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して、化合物Aを10質量部添加したこと以外は実施例1と同様にして発泡性フェノール樹脂組成物を得た。この発泡性フェノール樹脂組成物を、面材によって内側が被覆された内寸縦1000mm、横1000mm、厚さ1000mmのアルミ製の型枠内に流し込み、密閉した。型枠の周囲及び上下面は発泡圧によって広がらないようにクランプによって固定した。85℃に加熱されたオーブン内に導入し、60分間硬化させた。その後、フェノール樹脂発泡体を型枠より取り出し、110℃のオーブンで5時間加熱してブロック状のフェノール樹脂発泡体を得た。使用した面材は実施例1と同じである。得られたブロック状のフェノール樹脂発泡体を厚み方向の中心部より厚さ50mmでスライスし、板状のフェノール樹脂発泡体を得た。
(実施例26)
 上面材及び下面材として、直径0.5mmの貫通孔を20mm間隔で事前穿孔したガス透過性を有する、ガラス繊維で補強されたアルミシートを使用したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例27)
 ヘキサメチルジシロキサンを界面活性剤が混合されたフェノール樹脂100質量部に対して2質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例28)
 化合物Aの代わりに化合物Gを用い、ヘキサメチルジシロキサンを界面活性剤が混合されたフェノール樹脂100質量部に対して2質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例29)
 化合物Aの代わりに化合物Iを用い、ヘキサメチルジシロキサンを界面活性剤が混合されたフェノール樹脂100質量部に対して2質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例30)
 化合物Aの代わりに化合物Oを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Oを7質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例31)
 化合物Aの代わりに化合物Pを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Pを7質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例32)
 フェノール樹脂としてフェノール樹脂Dを用い、化合物Aの代わりに化合物Oを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Oを7質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例33)
 化合物Aの代わりに化合物Qを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Qを7質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例34)
 フェノール樹脂としてフェノール樹脂Eを用い、化合物Aの代わりに化合物Rを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Rを9質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例35)
 フェノール樹脂としてフェノール樹脂Fを用い、化合物Aの代わりに化合物Sを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Sを10質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例36)
 化合物Aの代わりに化合物Tを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Tを6質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例37)
 化合物Aの代わりに化合物Uを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Uを7質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例38)
 化合物Aの代わりに化合物Vを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Vを6質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例39)
 フェノール樹脂としてフェノール樹脂Bを用い、化合物Aの代わりに化合物Wを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Wを10質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例40)
 化合物Aの代わりに化合物Xを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Xを11質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例41)
 フェノール樹脂としてフェノール樹脂Fを用い、化合物Aの代わりに化合物Yを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Yを7質量部添加し、界面活性剤が混合されたフェノール樹脂100質量部に対して可塑剤としてフタル酸エステルを1質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(実施例42)
 化合物Aの代わりに化合物Zを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Zを10質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(比較例1)
 フェノール樹脂としてフェノール樹脂Hを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(比較例2)
 フェノール樹脂としてフェノール樹脂Iを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(比較例3)
 フェノール樹脂としてフェノール樹脂Jを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを11質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(比較例4)
 フェノール樹脂としてフェノール樹脂Kを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Aを10質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
(比較例5)
 フェノール樹脂としてフェノール樹脂L、化合物Aの代わりに化合物Bを用い、界面活性剤が混合されたフェノール樹脂100質量部に対して化合物Bを9質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体、フェノール樹脂発泡体積層板を得た。
 上記実施例及び比較例で得られたフェノール樹脂発泡体で使用した樹脂とその特性、化合物及び得られたフェノール樹脂発泡体の特性及び評価結果を表3、4及び5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~32のフェノール樹脂発泡体は、圧縮に対する強度に優れる上、断熱材の重量が重くなりすぎず、ハンドリング性にも優れ、施工時の効率が向上した。また、フェノール樹脂発泡体を固定する際にもちいる部材や躯体が少なく、施工時のコスト面でも優れていた。
 また、実施例1~32のフェノール樹脂発泡体は、フェノール樹脂発泡体が床面や平屋根に施工された建築物において、施工時やメンテナンス時に上を歩行する際に、表面がへこむ、または亀裂が入るといった問題も生じなかった。
 一方、比較例1~5のフェノール樹脂発泡体は、密度に対する圧縮強さが低く、圧縮に対する強度が不足していた。特に、比較例1、3~5のフェノール樹脂発泡体は、独立気泡率が低く、熱伝導率も悪かった。
 本実施形態のフェノール樹脂発泡体は、環境への負荷が低く、圧縮強さが高く、且つ施工時のハンドリング性と固定時にかかるコストに優れるため、住宅用途の断熱材等に好適に用いることができる。

Claims (13)

  1.  塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有し、
     密度が20kg/m3以上100kg/m3以下であり、
     独立気泡率が80%以上99%以下であり、
     10%圧縮強さと前記密度とが下記式の関係を満たすことを特徴とするフェノール樹脂発泡体。
    C≧0.5X-7
    (式中、Cは10%圧縮強さ(N/cm2)を表し、Xは密度(kg/m3)を表す)
  2.  前記塩素化ハイドロフルオロオレフィン及び前記非塩素化ハイドロフルオロオレフィンからなる群より選択される少なくとも1種と、前記ハロゲン化炭化水素とを含有する、請求項1に記載のフェノール樹脂発泡体。
  3.  前記塩素化ハイドロフルオロオレフィン及び前記非塩素化ハイドロフルオロオレフィンからなる群より選択される少なくとも1種が、1-クロロ-3,3,3-トリフルオロプロペン、2-クロロ-3,3,3-トリフルオロプロペン、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン及び1,1,1,4,4,4-ヘキサフルオロ-2-ブテンからなる群より選択される少なくとも1種である、請求項1又は2に記載のフェノール樹脂発泡体。
  4.  前記ハロゲン化炭化水素がイソプロピルクロリドである、請求項1から3の何れか1項に記載のフェノール樹脂発泡体。
  5.  炭素数6以下の炭化水素をさらに含む、請求項1から4の何れか1項に記載のフェノール樹脂発泡体。
  6.  塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される前記少なくとも1種の含有量が、前記塩素化ハイドロフルオロオレフィン、前記非塩素化ハイドロフルオロオレフィン、前記ハロゲン化炭化水素及び前記炭素数6以下の炭化水素の合計量に対して、30質量%以上である、請求項5に記載のフェノール樹脂発泡体。
  7.  含窒素化合物をさらに含む、請求項1から6の何れか1項に記載のフェノール樹脂発泡体。
  8.  前記含窒素化合物が、尿素、メラミン、ヌクリジン、ピリジン、ヘキサメチレンテトラミン及びこれらの混合物からなる群より選択される化合物である、請求項7に記載のフェノール樹脂発泡体。
  9.  乾湿繰り返し3サイクル後の寸法変化量の絶対値が、2.0mm以下である、請求項1から8の何れか1項に記載のフェノール樹脂発泡体。
  10.  JIS A 9511(2003)5.1.4に準拠して求められる脆性が50%以下である、請求項1から9の何れか1項に記載のフェノール樹脂発泡体。
  11.  請求項1から10の何れか1項に記載のフェノール樹脂発泡体の第1の面上及び第2の面上に面材を有するフェノール樹脂発泡体積層板であって、
     前記面材が何れもガス透過性を有することを特徴とするフェノール樹脂発泡体積層板。
  12.  面材上で、フェノール樹脂、界面活性剤、硬化触媒、並びに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン及びハロゲン化炭化水素からなる群より選択される少なくとも1種を含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、
     ゲル浸透クロマトグラフィーによって求められる前記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、
     前記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、
     前記フェノール樹脂の粘度上昇速度定数が0.05(1/分)以上0.5(1/分)以下であることを特徴とする請求項1に記載のフェノール樹脂発泡体の製造方法。
  13.  前記フェノール樹脂の40℃における損失正接tanδが0.5以上40.0以下であり、且つ60℃における損失正接tanδが2.0以上90.0以下である、請求項12に記載のフェノール樹脂発泡体の製造方法。
PCT/JP2016/001671 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法 WO2016152154A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN201680009535.2A CN107207758A (zh) 2015-03-24 2016-03-23 酚醛树脂发泡体及其制造方法
CA2978851A CA2978851C (en) 2015-03-24 2016-03-23 Phenolic resin foam and method for producing same
AU2016237952A AU2016237952B2 (en) 2015-03-24 2016-03-23 Phenol resin foam and method for producing same
JP2017507506A JP6208399B2 (ja) 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法
KR1020197016153A KR20190065490A (ko) 2015-03-24 2016-03-23 페놀 수지 발포체 및 그 제조 방법
EP20151403.1A EP3677623A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same
KR1020177020076A KR102190552B1 (ko) 2015-03-24 2016-03-23 페놀 수지 발포체 및 그 제조 방법
US15/556,390 US20180044494A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same
KR1020217006815A KR20210029303A (ko) 2015-03-24 2016-03-23 페놀 수지 발포체 및 그 제조 방법
RU2017133124A RU2673528C1 (ru) 2015-03-24 2016-03-23 Пенопласт на основе фенольной смолы и способ его получения
EP16768059.4A EP3275925B1 (en) 2015-03-24 2016-03-23 Phenol resin foam and method for producing same
US16/524,549 US20190352484A1 (en) 2015-03-24 2019-07-29 Method of producing phenolic resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061561 2015-03-24
JP2015-061561 2015-03-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/556,390 A-371-Of-International US20180044494A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same
US16/524,549 Division US20190352484A1 (en) 2015-03-24 2019-07-29 Method of producing phenolic resin foam

Publications (1)

Publication Number Publication Date
WO2016152154A1 true WO2016152154A1 (ja) 2016-09-29

Family

ID=56978203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001671 WO2016152154A1 (ja) 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法

Country Status (10)

Country Link
US (2) US20180044494A1 (ja)
EP (2) EP3275925B1 (ja)
JP (2) JP6208399B2 (ja)
KR (3) KR102190552B1 (ja)
CN (1) CN107207758A (ja)
AU (1) AU2016237952B2 (ja)
CA (1) CA2978851C (ja)
RU (1) RU2673528C1 (ja)
TW (1) TWI655237B (ja)
WO (1) WO2016152154A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094767A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡板
JP2018095867A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体およびその製造方法
JP2018095871A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びフェノール樹脂発泡体の製造方法
JP2018123292A (ja) * 2017-01-27 2018-08-09 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
JP2018144244A (ja) * 2017-03-01 2018-09-20 積水化学工業株式会社 発泡樹脂積層体
JP2019085522A (ja) * 2017-11-09 2019-06-06 旭化成建材株式会社 フェノール樹脂発泡板およびその製造方法
JP7458587B2 (ja) 2018-07-30 2024-04-01 キングスパン・ホールディングス・(アイアールエル)・リミテッド フェノール発泡体及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102254A (ko) * 2014-01-24 2016-08-29 아사히 가세이 겐자이 가부시키가이샤 페놀 수지 발포체 및 그 제조 방법
WO2019066504A2 (ko) * 2017-09-26 2019-04-04 (주)엘지하우시스 열경화성 발포체 및 이의 제조방법
KR102231779B1 (ko) * 2017-09-26 2021-03-24 (주)엘지하우시스 열경화성 발포체 및 이의 제조방법
JP7011048B2 (ja) * 2018-03-30 2022-01-26 旭化成建材株式会社 フェノール樹脂発泡体積層板およびその製造方法
CN109553918A (zh) * 2018-11-20 2019-04-02 苏州宏久航空防热材料科技有限公司 一种尿素和三聚氰胺增强增韧氧化石墨烯改性酚醛树脂泡沫及其制备方法
CN111875816B (zh) * 2020-09-08 2023-01-06 沙县宏盛塑料有限公司 一种凹凸结构酚醛树脂微球及其制备方法
CN112831083A (zh) * 2021-02-26 2021-05-25 禹城京都新材料科技有限公司 一种增韧酚醛泡沫的合成方法
TWI801964B (zh) * 2021-08-13 2023-05-11 日商旭化成建材股份有限公司 酚樹脂發泡體

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503547A (ja) * 1994-06-09 1997-04-08 オウェンス コーニング ファイバーグラス コーポレイション ブレンドした界面活性剤を用いて製造した非cfc発泡体
WO2000001761A1 (fr) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Mousse phenolique
JP2002037910A (ja) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd 発泡性フェノール系レゾール樹脂組成物及びその製造方法
JP2007070506A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070507A (ja) * 2005-09-08 2007-03-22 Asahi Organic Chem Ind Co Ltd 発泡性レゾール型フェノール樹脂成形材料およびフェノール樹脂発泡体
JP2010522819A (ja) * 2007-03-29 2010-07-08 アーケマ・インコーポレイテッド ヒドロクロロフルオロオレフィンの発泡剤組成物
JP2011504538A (ja) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444098A (en) * 1992-07-13 1995-08-22 Recticel Mainly closed cell phenolic foam and process for producing this foam
TR199802266T2 (xx) * 1996-05-10 1999-03-22 Shishiai-Kabushikigaisha Enerji de�i�im bile�imi.
TWI482748B (zh) * 2005-06-24 2015-05-01 Honeywell Int Inc 含有經氟取代之烯烴之組合物
EP1922356B1 (en) * 2005-09-08 2012-10-03 Kingspan Holdings (IRL) Limited A phenolic foam
CA2681838C (en) * 2007-03-29 2015-05-26 Arkema Inc. Blowing agent composition of hydrofluoropropene and hydrochlorofluoroolefin
CN104059613A (zh) * 2008-07-30 2014-09-24 霍尼韦尔国际公司 含有二氟甲烷和氟取代的烯烃的组合物
RU2540308C2 (ru) * 2010-03-26 2015-02-10 Асахи Касеи Констракшн Матириалс Корпорейшн Ламинированный лист вспененной фенольной смолы и способ его производства
JP5894926B2 (ja) * 2010-10-18 2016-03-30 旭化成建材株式会社 フェノール樹脂発泡板
CN103443302B (zh) * 2011-03-18 2015-04-15 新日铁住金株式会社 钢管的淬火方法
PL2714786T3 (pl) * 2011-05-25 2016-04-29 Du Pont Piany fenolowe ze środkiem porotwórczym 1, 1, 1, 4, 4, 4-heksafluoro- 2-butenem
US20130210946A1 (en) * 2012-02-10 2013-08-15 Honeywell International Inc. Blowing agents, foam premixes and foams containing halogenated olefin blowing agent and adsorbent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503547A (ja) * 1994-06-09 1997-04-08 オウェンス コーニング ファイバーグラス コーポレイション ブレンドした界面活性剤を用いて製造した非cfc発泡体
WO2000001761A1 (fr) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Mousse phenolique
JP2002037910A (ja) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd 発泡性フェノール系レゾール樹脂組成物及びその製造方法
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法
JP2007070506A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070507A (ja) * 2005-09-08 2007-03-22 Asahi Organic Chem Ind Co Ltd 発泡性レゾール型フェノール樹脂成形材料およびフェノール樹脂発泡体
JP2010522819A (ja) * 2007-03-29 2010-07-08 アーケマ・インコーポレイテッド ヒドロクロロフルオロオレフィンの発泡剤組成物
JP2011504538A (ja) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094767A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡板
JP2018095867A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体およびその製造方法
JP2018095871A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びフェノール樹脂発泡体の製造方法
JP7016686B2 (ja) 2016-12-10 2022-02-07 積水化学工業株式会社 フェノール樹脂発泡体およびその製造方法
JP7016689B2 (ja) 2016-12-10 2022-02-07 積水化学工業株式会社 フェノール樹脂発泡体の製造方法
JP2018123292A (ja) * 2017-01-27 2018-08-09 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
JP2018144244A (ja) * 2017-03-01 2018-09-20 積水化学工業株式会社 発泡樹脂積層体
JP2019085522A (ja) * 2017-11-09 2019-06-06 旭化成建材株式会社 フェノール樹脂発泡板およびその製造方法
JP7014566B2 (ja) 2017-11-09 2022-02-01 旭化成建材株式会社 フェノール樹脂発泡板およびその製造方法
JP7458587B2 (ja) 2018-07-30 2024-04-01 キングスパン・ホールディングス・(アイアールエル)・リミテッド フェノール発泡体及びその製造方法

Also Published As

Publication number Publication date
CA2978851A1 (en) 2016-09-29
EP3275925A4 (en) 2018-01-31
KR20190065490A (ko) 2019-06-11
JP6208399B2 (ja) 2017-10-04
JP2017226854A (ja) 2017-12-28
CA2978851C (en) 2019-07-16
TW201638198A (zh) 2016-11-01
US20190352484A1 (en) 2019-11-21
EP3677623A1 (en) 2020-07-08
EP3275925A1 (en) 2018-01-31
KR20210029303A (ko) 2021-03-15
TWI655237B (zh) 2019-04-01
KR102190552B1 (ko) 2020-12-14
RU2673528C1 (ru) 2018-11-27
AU2016237952A1 (en) 2017-09-28
KR20170099964A (ko) 2017-09-01
US20180044494A1 (en) 2018-02-15
AU2016237952B2 (en) 2018-08-09
EP3275925B1 (en) 2020-05-06
JPWO2016152154A1 (ja) 2017-05-25
CN107207758A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6208399B2 (ja) フェノール樹脂発泡体及びその製造方法
JP6518729B2 (ja) フェノール樹脂発泡体及びその製造方法
JP6505644B2 (ja) フェノール樹脂発泡体及びその製造方法
KR20200118120A (ko) 페놀 수지 발포체 적층판 및 그 제조 방법
JP7050579B2 (ja) フェノール樹脂発泡体積層板及びその製造方法
JP7014566B2 (ja) フェノール樹脂発泡板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507506

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020076

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2978851

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15556390

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016768059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016237952

Country of ref document: AU

Date of ref document: 20160323

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017133124

Country of ref document: RU