WO2016151851A1 - バッテリ充電装置、及び、バッテリ充電装置の制御方法 - Google Patents

バッテリ充電装置、及び、バッテリ充電装置の制御方法 Download PDF

Info

Publication number
WO2016151851A1
WO2016151851A1 PCT/JP2015/059422 JP2015059422W WO2016151851A1 WO 2016151851 A1 WO2016151851 A1 WO 2016151851A1 JP 2015059422 W JP2015059422 W JP 2015059422W WO 2016151851 A1 WO2016151851 A1 WO 2016151851A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
generator
phase angle
energization
rotation speed
Prior art date
Application number
PCT/JP2015/059422
Other languages
English (en)
French (fr)
Inventor
武明 杉本
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2015/059422 priority Critical patent/WO2016151851A1/ja
Priority to EP15853625.0A priority patent/EP3276785B1/en
Priority to JP2016513925A priority patent/JP6121624B2/ja
Priority to US15/100,595 priority patent/US10256651B2/en
Publication of WO2016151851A1 publication Critical patent/WO2016151851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/243Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with on/off action
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a battery charger and a method for controlling the battery charger.
  • a battery charging device that charges a battery by converting alternating current generated by an alternating current generator that rotates in conjunction with an engine into direct current by a switching element and applying the direct current to the battery (for example, JP, 2012-39817, A).
  • This conventional battery charger determines an energization phase angle that defines energization timing of a switching element for supplying a charging current from an AC generator to a battery, and controls energization of the switching element based on the energization phase angle.
  • the energization phase angle for outputting a desired charging current also changes.
  • the rotational speed of the AC generator is changed from 1000 rpm to 10,000 rpm
  • the energization phase angle for outputting the charging current of 50 A is also changed from 76 degrees to 94 degrees (FIG. 8).
  • the conventional battery charger treats the energization phase angle as fixed even when the rotational speed of the AC generator changes. For example, even when the rotational speed of the AC generator was changed from 1000 rpm to 10,000 rpm, the energization phase angle was fixed at 80 degrees (FIG. 8).
  • an object of the present invention is to provide a battery charging device that can supply a predetermined charging current to a battery and more appropriately control the battery voltage to a target voltage.
  • a battery charger includes: A converter that converts alternating current output from the alternating current generator into direct current by a switching element and supplies the direct current to the battery; Based on a signal corresponding to the rotation of the AC generator, a rotation speed acquisition unit that acquires the rotation speed of the AC generator; An output for determining an energization phase angle that defines an energization timing of the switching element of the conversion unit for supplying a charging current from the AC generator to the battery, and for controlling energization of the switching element based on the energization phase angle
  • a control unit The output control unit Defining the relationship between the charging current of the battery and the energization phase angle, and defining the relationship between the rotation speed of the AC generator and a correction value for correcting the energization phase angle according to the rotation speed; Have a table, The output control unit The energization phase angle and the correction value are acquired by referring to the table based on the charging current to be output and the rotation
  • the output control unit The energization phase angle is corrected by adding the correction value to the energization phase angle defined in the table.
  • the correction value is defined to increase as the rotational speed of the AC generator increases.
  • the battery charger is A temperature sensor for detecting a temperature inside or outside the battery charger;
  • the table further defines the relationship between the correction value and the temperature detected by the temperature sensor,
  • the output control unit The correction value is acquired by referring to the table based on the rotation speed acquired by the rotation speed acquisition unit and the temperature detected by the temperature sensor.
  • the table further defines a relationship between the correction value and a load current flowing in a load circuit connected to the battery,
  • the output control unit acquires the correction value by referring to the table based on the rotation speed acquired by the rotation speed acquisition unit and the load current.
  • the rotation speed acquisition unit acquires the rotation speed of the AC generator based on a pulsar signal induced in a pulsar coil as the AC generator rotates.
  • the battery charger is A phase detector for detecting the phase of the AC voltage output by the AC generator;
  • the output control unit determines the energization phase angle with respect to the phase detected by the phase detection unit.
  • the phase detector The phase of the AC voltage is detected based on a comparison result signal corresponding to a result of comparing the AC voltage output from the AC generator with a threshold voltage.
  • the battery charger is A zero-cross signal generation circuit that outputs the comparison result signal based on a result of comparing the AC voltage output from the AC generator with the threshold voltage is further provided.
  • the output control unit The switching element is phase-controlled based on the energization phase angle corrected with the correction value.
  • a method for controlling a battery charging device includes: A converter that converts alternating current output from the alternating current generator into direct current by a switching element and supplies the direct current to the battery, and a rotation that acquires the rotational speed of the alternating current generator based on a signal corresponding to the rotation of the alternating current generator A power acquisition phase angle that defines a power supply timing of the switching element of the conversion unit for supplying a charging current from the AC generator to the battery, and based on the power supply phase angle
  • An output control unit that controls energization, the output control unit prescribing a relationship between the charging current of the battery and the energization phase angle, and according to the rotational speed of the AC generator and the rotational speed
  • a battery charging device is based on a conversion unit that converts alternating current output from an alternating current generator into direct current by a switching element and supplies the direct current to the battery, and a signal corresponding to rotation of the alternating current generator.
  • the energization phase angle that defines the energization timing of the switching element of the rotation speed acquisition unit that acquires the rotation speed of the AC generator and the conversion unit for supplying the charging current from the AC generator to the battery is determined.
  • an output control unit for controlling energization of the switching element based on.
  • the output control unit defines the relationship between the charging current of the battery and the energization phase angle, and also defines the relationship between the rotational speed of the AC generator and a correction value for correcting the energization phase angle according to the rotation number. To have a table.
  • the output control unit acquires the energization phase angle and the correction value by referring to the table based on the charging current to be output and the rotation speed acquired by the rotation speed acquisition unit, and corrects the energization phase angle. Correct by value.
  • the energization phase angle that defines the energization timing of the switching element is corrected according to the rotational speed of the AC generator.
  • the battery charging device corrects the energization phase angle that defines the energization timing of the switching element in accordance with the rotation speed, even if the rotation speed of the AC generator changes, so that the predetermined charging is performed.
  • Current can be supplied from the alternator to the battery.
  • the battery charging device of the present invention it is possible to supply a predetermined charging current to the battery and more appropriately control the battery voltage to the target voltage.
  • FIG. 1 is a diagram illustrating a configuration example of a battery charging system 1000 including a battery charging device 100 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the conversion unit CN shown in FIG.
  • FIG. 3 is a timing chart showing an example of the switching operation of the switching elements Q1 to Q3.
  • FIG. 4 is a timing chart showing an example of the operation when the energization phase angle of the switching element Q1 is changed.
  • FIG. 5 is a diagram illustrating an example of a basic characteristic that is a relationship between the charging current and the energization phase angle defined by the table Y of the output control unit X illustrated in FIG. 1.
  • FIG. 1 is a diagram illustrating a configuration example of a battery charging system 1000 including a battery charging device 100 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the conversion unit CN shown in FIG.
  • FIG. 3 is a timing chart showing an example of
  • FIG. 6 is a diagram illustrating an example of a correction characteristic that is a relationship between the rotational speed of the AC generator M and the correction value of the energization phase angle, which is defined by the table Y of the output control unit X illustrated in FIG. 1.
  • FIG. 7 shows an example of the relationship between the rotation speed of the AC generator M, the energization phase angle corrected according to the rotation speed of the AC generator M, and the charging current in the battery charging device 100 shown in FIG.
  • FIG. 8 is a diagram illustrating an example of the relationship among the rotational speed of the AC generator, the energization phase angle, and the charging current in conventional battery charging.
  • the battery charging system 1000 includes an alternating current generator M, a battery B, a battery charging device 100 that converts alternating current output from the alternating current generator M into direct current, and supplies the direct current to the battery B, and charging that the battery charging device 100 outputs.
  • a charging current detection circuit ID for detecting current, a fuse F for preventing overcurrent from flowing through the battery B, and a load circuit Load connected in parallel with the battery B are provided (FIG. 1).
  • the fuse F is connected in series with the battery B between the output terminal TOUT of the battery charger 100 and the ground terminal TGND.
  • the load circuit Load is connected in parallel with the battery B between the output terminal TOUT and the ground terminal TGND.
  • the charging current output from the battery charging device 100 is supplied to the load circuit Load and the battery B.
  • the U-phase, V-phase, and W-phase output sections of the AC generator M are connected to input terminals TIN1, TIN2, and TIN3 of the battery charger 100.
  • the AC voltages AC1, AC2, and AC3 are supplied to the input terminals TIN1, TIN2, and TIN3 of the battery charging device 100, respectively.
  • the AC generator M generates AC power by rotating in conjunction with an engine such as a vehicle, for example.
  • the AC generator M outputs the generated AC power to the battery charging device 100.
  • the AC generator M is a three-phase AC generator.
  • a pulsar coil H is attached to the stator side of the AC generator M.
  • This pulsar coil H is a coil wound around an iron core (not shown) having a magnetic pole part. Further, for example, a plurality of reluctators are attached to the rotor side of the AC generator M. For example, three relaxors are attached to the outer periphery of the rotor of the AC generator M every 120 °.
  • This pulsar coil H outputs a pulsar signal SP when the reluctator passes in the vicinity of the magnetic pole portion of the iron core of the pulsar coil H, for example, as the AC generator M rotates. That is, the pulsar coil H generates a pulsar signal SP indicating the number of rotations (rpm) of the rotor generated by the rotation of the rotor of the AC generator M.
  • the generated pulsar signal SP is output to the pulse input terminal TIN4 of the battery charger 100.
  • the positive electrode of the battery B is connected to the output terminal TOUT of the battery charger 100 via the fuse F.
  • the negative electrode of the battery B is connected to the ground terminal TGND of the battery charger 100.
  • the negative electrode of the battery B is grounded to the vehicle body of the vehicle on which the battery charging device 100 is mounted (connected to the ground terminal TGND).
  • the battery charging device 100 converts the alternating current output from the alternating current generator M into direct current and supplies it to the battery B (FIG. 1).
  • the battery charging device 100 includes a converter (conversion circuit) CN that converts alternating current output from the alternating current generator M into direct current and supplies it to the battery B, alternating current voltages AC1 to AC3 output from the alternating current generator M, and threshold values. And a zero-cross signal generation circuit ZG that outputs comparison result signals DC1 to DC3 based on the result of comparing the voltages.
  • a converter conversion circuit
  • the conversion unit CN is composed of, for example, a three-phase bridge rectifier circuit including switching elements Q1 to Q6 (FIG. 2).
  • the converter CN converts the alternating current output from the alternating current generator M into direct current by the switching elements Q1 to Q6 and supplies the direct current to the battery B.
  • the switching elements Q1 to Q6 are, for example, FETs (Field-Effect-Transistors) (FIG. 2).
  • the switching element Q1 is connected between the output terminal TOUT and the U-phase output of the AC generator M.
  • the switching element Q2 is connected between the output terminal TOUT and the V-phase output of the AC generator M.
  • the switching element Q3 is connected between the output terminal TOUT and the W-phase output of the AC generator M.
  • the switching element Q4 is connected between the U-phase output of the AC generator M and the ground terminal TGND.
  • the switching element Q5 is connected between the V-phase output of the AC generator M and the ground terminal TGND.
  • the switching element Q6 is connected between the W-phase output of the AC generator M and the ground terminal TGND.
  • These switching elements Q1 to Q6 are switched and driven by gate signals SG1 to SG6 output from the control circuit CON.
  • the converter CN turns on / off each of the switching elements Q1 to Q6 in accordance with the gate signals SG1 to SG6 output from the control circuit CON, and converts the AC output from the AC generator M to DC. Convert. As a result, the charging current supplied to the battery B and the load circuit Load via the output terminal TOUT is controlled.
  • the battery charging device 100 charges the battery B by converting the AC power output from the AC generator M into DC power by the switching elements Q1 to Q6 and supplying the DC power to the battery B.
  • the battery charging device 100 performs the retard control for delaying the timing (energization timing) of the switching operation of the switching elements Q1 to Q6 with respect to the AC output of the AC generator M, or the advance angle control for advancing.
  • the charging state (or discharging state) of the battery B is controlled.
  • the zero cross signal generation circuit ZG is connected to the input terminals TIN1 to TIN3 and the control circuit CON. As described above, the zero cross signal generation circuit ZG outputs the comparison result signals DC1 to DC3 based on the result of comparing the AC voltages AC1 to AC3 output from the AC generator M with the threshold voltage.
  • the zero-cross signal generation circuit ZG outputs a comparison result signal DC1 (DC2, DC3) having a “High” level VH.
  • the zero-cross signal generation circuit ZG outputs a comparison result signal DC1 (DC2, DC3) having a “Low” level VL lower than VH.
  • a value near the ground voltage (0 V) is selected as the threshold voltage.
  • the comparison result signal DC1 (DC2, DC3) becomes the “High” level VH.
  • the comparison result signal DC1 (DC2, DC3) becomes the “Low” level VL.
  • the signal detection circuit SD detects a pulsar signal SP that is induced in the pulsar coil H with the rotation of the alternator M and is input via the input terminal TIN4, and is synchronized with the rotation of the alternator M. Is generated. Then, the signal detection circuit SD outputs the generated pulsar signal SPD to the control circuit CON.
  • the battery charging device 100 includes the above-described control circuit CON that controls the conversion unit CN based on the comparison result signals DC1 to DC3.
  • the control circuit CON includes, for example, a phase detection unit (phase detection circuit) FD, a rotation speed acquisition unit (rotation speed acquisition circuit) RA, an output control unit (output control circuit) X, and a charging current acquisition unit (charging current).
  • An acquisition circuit) IA (FIG. 1).
  • the phase detector FD detects the phases of the AC voltages AC1 to AC3 output from the AC generator M.
  • the phase detector FD detects the phases of the AC voltages AC1 to AC3 based on the comparison result signals DC1 to DC3, for example.
  • the comparison result signals DC1 to DC3 are signals according to the result of comparing the AC voltages AC1 to AC3 output from the AC generator M with a preset threshold voltage.
  • a value near the ground voltage (0 V) is selected as the threshold voltage.
  • the phase detection unit FD detects that the timing when the comparison result signal DC1 (DC2, DC3) becomes the “High” level VH is a phase in which the AC voltage AC1 (AC2, AC3) changes from negative to positive.
  • the phase detection unit FD detects that the timing when the comparison result signal DC1 (DC2, DC3) becomes the “Low” level VL is a phase in which the AC voltage AC1 (AC2, AC3) changes from positive to negative.
  • phase detector FD detects the phases of the AC voltages AC1 to AC3 output from the AC generator M.
  • the rotation speed acquisition unit RA acquires the rotation speed of the AC generator M based on a signal corresponding to the rotation of the AC generator M.
  • the rotation speed acquisition unit RA rotates the alternator M based on the pulsar signal SP (the pulsar signal SPD output from the signal detection circuit SD) induced in the pulsar coil H as the alternator M rotates. Get the number.
  • the rotational speed acquisition unit RA acquires the rotational speed (rpm) of the AC generator M by, for example, counting the pulsar signal SPD per unit time generated by the signal detection circuit SD.
  • the rotation speed acquisition unit RA outputs the acquired rotation speed of the AC generator M to the output control unit X.
  • the rotation speed acquisition unit RA is not limited to a configuration that acquires the rotation speed of the AC generator M based on the pulser signal SP output from the pulser coil H (the pulser signal SPD output from the signal detection circuit SD). What is necessary is just the structure which acquires the rotation speed of the machine M.
  • a Hall IC may be installed in the AC generator M.
  • the rotation speed acquisition unit RA acquires the rotation speed of the AC generator M based on a signal output from the installed Hall IC.
  • the rotation speed acquisition unit RA may acquire the rotation speed of the AC generator M based on a signal indicating the rotation speed supplied from the host ECU (Engine / Control / Unit).
  • the output control unit X determines the energization phase angle with respect to the phases of the AC voltages AC1 to AC3 detected by the phase detection unit FD.
  • This energization phase angle defines the energization timing of the switching elements Q1 to Q6 of the converter CN for supplying the charging current from the AC generator M to the battery B.
  • the output control unit X controls energization of the switching elements Q1 to Q6 based on the determined energization phase angle. As will be described later, this determined energization phase angle is corrected according to the rotational speed of the AC generator M.
  • the energization timing (energization phase angle) of the switching operation of the switching elements Q1 to Q3 will be described below with reference to FIGS.
  • the switching elements Q1 to Q3 are controlled to be energized (ON) in a period corresponding to a phase angle of 180 °, and the on duty of the gate signals SG1 to SG3 is fixed to 50%. Is shown.
  • FIG. 3 shows the switching operation of the switching elements Q1 to Q3 as an example.
  • the switching operations of the switching elements Q4 to Q6 are such that the switching element Q1 and the switching element Q4 are turned on / off complementarily, the switching element Q2 and the switching element Q5 are complementarily turned on / off, and the switching element Q3 This is executed so that the switch element Q6 is turned on / off in a complementary manner.
  • the pulsar signal SPD has a waveform that falls at the timing of the time when the phase of the AC voltage AC3 of the AC generator M becomes 0 ° (the comparison result signal DC3 rises).
  • the gate signals SG1 to SG applied to the gates of the switching elements Q1 to Q3 have a pulse width corresponding to a half cycle (180 ° phase angle) of the AC voltages AC1 to AC3.
  • the energization phase angle is, for example, the gate signals SG1 to SG applied to the gates of the switching elements Q1 to Q3 on the basis of the phase of 90 ° from the phase rising of the AC voltages AC1 to AC3 of the AC generator M. Is defined at the rise timing (turn-on timing).
  • the present invention is not limited to this example, and which part of the phase of the AC voltages AC1 to AC3 of the AC generator M is used as a reference for the energization phase angle is arbitrary.
  • the energization phase angle defines at least the relative relationship between the phase of the AC voltages AC1 to AC3 of the AC generator M and the phase of the gate signals SG1 to SG applied to the gates of the switching elements Q1 to Q3. Is.
  • the switching element Q1 is energized at the timing when the comparison result signal DC1 rises from the “Low” level VL to the “High” level VH (the timing at which the AC voltage AC1 becomes equal to or higher than a predetermined threshold voltage). Turn on.
  • the switching element Q1 is turned off at the timing when the comparison result signal DC1 falls from the “High” level VH to the “Low” level VL (the timing when the AC voltage AC1 becomes less than the threshold voltage).
  • the energization phase angle with respect to the phase of the AC voltage AC1 is set so that the switching element Q1 is energized at the timing when the AC voltage AC1 becomes equal to or higher than the threshold voltage.
  • each of the switching elements Q2 and Q3 is also turned on / off according to the comparison result signals DC2 and DC3, similarly to the switching element Q1. That is, on / off of each of the switching elements Q2 and Q3 is controlled based on the energization phase angle with respect to the phase of the AC voltages AC2 and AC3 detected by the phase detector FD.
  • the switching elements Q4 to Q6 are controlled in such a manner that the switching element Q1 and the switching element Q4 are complementarily turned on / off, and the switching element Q2 and the switching element Q5 are complementarily turned on / off.
  • the switching element Q3 and the switching element Q6 are executed in a complementary manner.
  • the comparison result signal DC1 is at the “High” level during the period when the switching element Q1 is in the ON state (the energization timing of the switching element Q1).
  • the period during which the battery B is charged changes according to the relationship with the period of VH.
  • the period during which the battery B is charged changes according to the energization phase angle (the energization timing of the switching element Q1) with respect to the phase of the AC voltage AC1 (comparison result signal DC1).
  • the rate at which the output power from the U phase of the AC generator M is supplied to the battery B changes, and the charging current output from the output terminal TOUT also changes.
  • the charging current supplied to the battery B can be controlled, and the charging of the battery B can be controlled.
  • the battery charging device 100 uses the gate signals SG1 to SG1 that define the switching operation timing (energization timing) of the switching elements Q1 to Q6 with respect to the AC voltages AC1, AC2, and AC3 output from the AC generator M.
  • the current value of the charging current is controlled by controlling the energization phase angle of SG6.
  • the output control unit X has a table Y (FIG. 1).
  • This table Y defines, for example, the characteristics shown in FIGS.
  • the table Y defines the relationship between the charging current of the battery B and the energization phase angle (basic characteristics in FIG. 5). For example, for a charging current of 50 A, the energization phase angle is set to 75 degrees.
  • this table Y defines the relationship between the rotational speed of the AC generator M and a correction value for correcting the energization phase angle in accordance with this rotational speed (basic characteristics in FIG. 6).
  • the correction value is defined so as to increase as the rotational speed of the AC generator M increases (FIG. 6).
  • the output control unit X acquires the energization phase angle and the correction value by referring to the table Y based on the charging current to be output and the rotation speed acquired by the rotation speed acquisition unit RA.
  • the energization phase angle is corrected with the correction value.
  • the output control unit X corrects the energization phase angle by adding a correction value to the energization phase angle defined in the table Y.
  • the output control unit X controls the phases of the switching elements Q1 to Q6 based on the energization phase angle corrected with the correction value.
  • the battery charging device 100 may further include a temperature sensor AS that detects the temperature inside or outside the battery charging device 100 (FIG. 1).
  • the temperature sensor AS detects the temperature inside the battery charger 100.
  • the table Y may further define the relationship between the correction value and the temperature detected by the temperature sensor AS.
  • the output control unit X refers to the table Y based on the rotation speed acquired by the rotation speed acquisition unit RA and the temperature detected by the temperature sensor AS, thereby acquiring the correction value of the energization phase angle. May be.
  • the output control unit X performs phase control of the switching elements Q1 to Q6 based on the energization phase angle corrected by the correction value.
  • the table Y may further define the relationship between the correction value and the load current flowing in the load circuit Load connected to the battery B.
  • the battery charging system 1000 further includes a detection circuit (not shown) for detecting the load current.
  • the output control unit X may acquire the correction value of the energization phase angle by referring to the table Y based on the rotation speed and the load current acquired by the rotation speed acquisition unit RA. Also in this case, the output control unit X controls the phases of the switching elements Q1 to Q6 based on the energization phase angle corrected with the correction value.
  • the phase detection unit FD of the battery charging device 100 detects the phases of the AC voltages AC1 to AC3 based on the comparison result signals DC1 to DC3.
  • the rotation speed acquisition unit RA of the battery charging device 100 acquires the rotation speed of the AC generator M based on the pulsar signal SPD output from the signal detection circuit SD.
  • the output control unit X of the battery charging apparatus 100 determines the energization phase angle with respect to the phases of the AC voltages AC1 to AC3 detected by the phase detection unit FD (FIG. 5).
  • the output control unit X acquires the energization phase angle and the correction value by referring to the table Y based on the charging current to be output and the rotation speed acquired by the rotation speed acquisition unit RA.
  • the energization phase angle is corrected with the correction value. That is, the energization phase angle that defines the energization timing of the switching element is corrected according to the rotational speed of the AC generator.
  • the output control unit X controls the phases of the switching elements Q1 to Q6 based on the energization phase angle corrected with the correction value.
  • the correction value also changes, so that the switching elements Q1 to Q6 are controlled with the energization phase angle corrected with the correction value corresponding to the changed rotational speed.
  • the battery charging apparatus 100 supplies a predetermined charging current to the battery by performing phase control of the switching elements Q1 to Q6 based on the energization phase angle corrected by the correction value, and more appropriately.
  • the battery voltage can be controlled to the target voltage.
  • the battery charger 100 converts the alternating current output from the alternating current generator into direct current by the switching element and supplies it to the battery, and the alternating current based on the signal corresponding to the rotation of the alternating current generator.
  • An energization phase angle that defines the energization timing of the switching element of the converter CN for supplying the charging current from the AC generator to the battery is determined, and the energization phase angle is determined.
  • an output control unit X that controls energization of the switching element based on the angle.
  • the output controller X defines the relationship between the charging current of the battery and the energization phase angle, and the relationship between the rotation speed of the AC generator and the correction value for correcting the energization phase angle according to the rotation speed. It has a table Y to be defined.
  • the output control unit X acquires the energization phase angle and the correction value by referring to the table Y on the basis of the charging current to be output and the rotation speed acquired by the rotation speed acquisition unit RA. Correct the corner with the correction value.
  • the energization phase angle that defines the energization timing of the switching element is corrected according to the rotational speed of the AC generator.
  • the battery charging device corrects the energization phase angle that defines the energization timing of the switching element according to the rotation speed, even if the rotation speed of the AC generator changes, thereby obtaining a predetermined value. Charging current can be supplied from the alternator to the battery (FIG. 5).
  • the battery charging device of the present invention it is possible to supply a predetermined charging current to the battery and more appropriately control the battery voltage to the target voltage.

Abstract

バッテリ充電装置は、交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、前記交流発電機の回転に応じた信号に基づいて、前記交流発電機の回転数を取得する回転数取得部と、前記交流発電機から前記バッテリに充電電流を供給するための前記変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、前記通電位相角に基づいて前記スイッチング素子の通電を制御する出力制御部と、を備えており、前記出力制御部は、前記バッテリの充電電流と前記通電位相角との関係を規定し、且つ前記交流発電機の回転数と前記回転数に応じて前記通電位相角を補正するための補正値との関係を規定する、テーブルを有しており、前記出力制御部は、出力すべき充電電流と、前記回転数取得部により取得された回転数と、に基づいて、前記テーブルを参照することにより、前記通電位相角と前記補正値とを取得し、前記通電位相角を前記補正値で補正している。

Description

バッテリ充電装置、及び、バッテリ充電装置の制御方法
 本発明は、バッテリ充電装置、及び、バッテリ充電装置の制御方法に関する。
 従来、例えば、車両などにおいて、エンジンに連動して回転する交流発電機が発電した交流をスイッチング素子で直流に変換してバッテリに印加することにより、バッテリを充電するバッテリ充電装置がある(例えば、特開2012-39817号公報参照)。
 この従来のバッテリ充電装置は、交流発電機からバッテリに充電電流を供給するためのスイッチング素子の通電タイミングを規定する通電位相角を決定し、この通電位相角に基づいてスイッチング素子の通電を制御する。
 これにより、交流発電機からバッテリに充電電流が供給される。
 既述の従来のバッテリ充電装置において、交流発電機の回転数が変化すると、所望の充電電流を出力するための通電位相角も変化する。例えば、交流発電機の回転数が1000rpmから10000rpmに変化すると、50Aの充電電流を出力するための通電位相角も76度から94度に変化する(図8)。
 しかし、従来のバッテリ充電装置は、交流発電機の回転数が変化しても通電位相角を固定として扱っていた。例えば、交流発電機の回転数が1000rpmから10000rpmに変化しても、通電位相角を80度に固定していた(図8)。
 したがって、従来のバッテリ充電装置では、交流発電機の回転数が変化しても、通電位相角を変更しないため、所定の充電電流をバッテリに供給できずに、バッテリ電圧を目標電圧にすることができない問題があった。 
 そこで、本発明は、所定の充電電流をバッテリに供給して、より適切にバッテリ電圧を目標電圧に制御することが可能なバッテリ充電装置を提供することを目的とする。
 本発明の一態様に係る実施例に従ったバッテリ充電装置は、
 交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、
 前記交流発電機の回転に応じた信号に基づいて、前記交流発電機の回転数を取得する回転数取得部と、
 前記交流発電機から前記バッテリに充電電流を供給するための前記変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、前記通電位相角に基づいて前記スイッチング素子の通電を制御する出力制御部と、を備え、
 前記出力制御部は、
 前記バッテリの充電電流と前記通電位相角との関係を規定し、且つ前記交流発電機の回転数と前記回転数に応じて前記通電位相角を補正するための補正値との関係を規定する、テーブルを有し、
 前記出力制御部は、
 出力すべき充電電流と、前記回転数取得部により取得された回転数と、に基づいて、前記テーブルを参照することにより、前記通電位相角と前記補正値とを取得し、前記通電位相角を前記補正値で補正する
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記出力制御部は、
 前記テーブルに規定された通電位相角に前記補正値を加算することにより、前記通電位相角を補正する
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記テーブルにおいて、前記補正値は、前記交流発電機の回転数の増加に伴って、増加するように規定されている
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記バッテリ充電装置は、
 前記バッテリ充電装置の内部又は外部の温度を検出する温度センサをさらに備え、
 前記テーブルは、前記補正値と、前記温度センサが検出した温度との関係を、さらに規定し、
 前記出力制御部は、
 前記回転数取得部により取得された回転数及び前記温度センサが検出した温度に基づいて、前記テーブルを参照することにより、前記補正値を取得する
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記テーブルは、前記補正値と、前記バッテリに接続される負荷回路に流れる負荷電流との関係を、さらに規定し、
 前記出力制御部は、前記回転数取得部により取得された回転数及び前記負荷電流に基づいて、前記テーブルを参照することにより、前記補正値を取得する
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記回転数取得部は、前記交流発電機の回転に伴ってパルサコイルに誘起されるパルサ信号に基づいて、前記交流発電機の回転数を取得することを特徴とする。
 前記バッテリ充電装置において、
 前記バッテリ充電装置は、
 前記交流発電機が出力する交流電圧の位相を検出する位相検出部をさらに備え、
 前記出力制御部は、前記位相検出部により検出された位相に対する前記通電位相角を決定することを特徴とする。
 前記バッテリ充電装置において、
 前記位相検出部は、
 前記交流発電機が出力する交流電圧と閾値電圧とを比較した結果に応じた比較結果信号に基づいて、前記交流電圧の位相を検出する
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記バッテリ充電装置は、
 前記交流発電機が出力する交流電圧と前記閾値電圧とを比較した結果に基づいて、前記比較結果信号を出力するゼロクロス信号生成回路を、さらに備える
 ことを特徴とする。
 前記バッテリ充電装置において、
 前記出力制御部は、
 前記補正値で補正した前記通電位相角に基づいて、前記スイッチング素子を位相制御することを特徴とする。
 本発明の一態様に係る実施例に従ったバッテリ充電装置の制御方法は、
 交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、前記交流発電機の回転に応じた信号に基づいて、前記交流発電機の回転数を取得する回転数取得部と、前記交流発電機から前記バッテリに充電電流を供給するための前記変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、前記通電位相角に基づいて前記スイッチング素子の通電を制御する出力制御部と、を備え、前記出力制御部は、前記バッテリの充電電流と前記通電位相角との関係を規定し、且つ前記交流発電機の回転数と前記回転数に応じて前記通電位相角を補正するための補正値との関係を規定する、テーブルを有するバッテリ充電装置の制御方法であって、
 前記出力制御部が、出力すべき充電電流と、前記回転数取得部により取得された回転数と、に基づいて、前記テーブルを参照することにより、前記通電位相角と前記補正値とを取得し、前記通電位相角を前記補正値で補正する
 ことを特徴とする。
 本発明の一態様に係るバッテリ充電装置は、交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、交流発電機の回転に応じた信号に基づいて、交流発電機の回転数を取得する回転数取得部と、交流発電機からバッテリに充電電流を供給するための変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、この通電位相角に基づいてスイッチング素子の通電を制御する出力制御部と、を備える。
 出力制御部は、バッテリの充電電流と通電位相角との関係を規定し、且つ交流発電機の回転数と、当該回転数に応じた通電位相角を補正するための補正値との関係を規定するテーブルを、有する。出力制御部は、出力すべき充電電流と、回転数取得部により取得された回転数とに基づいて、テーブルを参照することにより、通電位相角と補正値とを取得し、通電位相角を補正値で補正する。
 これにより、交流発電機の回転数に応じて、スイッチング素子の通電タイミングを規定する通電位相角が補正される。
 このように、本発明に係るバッテリ充電装置は、交流発電機の回転数が変化しても、回転数に応じてスイッチング素子の通電タイミングを規定する通電位相角を補正することで、所定の充電電流を交流発電機からバッテリに供給することができる。
 すなわち、本発明に係るバッテリ充電装置によれば、所定の充電電流をバッテリに供給して、より適切にバッテリ電圧を目標電圧に制御することができる。
図1は、本発明の実施形態におけるバッテリ充電装置100を含むバッテリ充電システム1000の構成例を示す図である。 図2は、図1に示す変換部CNの構成の一例を示す回路図である。 図3は、スイッチング素子Q1~Q3のスイッチング動作の一例を示すタイミングチャートである。 図4は、スイッチング素子Q1の通電位相角を変化させた場合の動作の一例を示すタイミングチャートである。 図5は、図1に示す出力制御部XのテーブルYで規定される、充電電流と通電位相角との関係である基本特性の一例を示す図である。 図6は、図1に示す出力制御部XのテーブルYで規定される、交流発電機Mの回転数と通電位相角の補正値との関係である補正特性の一例を示す図である。 図7は、図1に示すバッテリ充電装置100における、交流発電機Mの回転数と、交流発電機Mの回転数に応じて補正された通電位相角と、充電電流との関係の一例を示す図である。 図8は、従来のバッテリ充電における、交流発電機の回転数と、通電位相角と、充電電流との関係の一例を示す図である。
 以下、本発明に係る実施形態について図面に基づいて説明する。
第1の実施形態
 バッテリ充電システム1000は、交流発電機Mと、バッテリBと、交流発電機Mから出力された交流を直流に変換してバッテリBに供給するバッテリ充電装置100と、バッテリ充電装置100が出力する充電電流を検出する充電電流検出回路IDと、バッテリBに過電流が流れないようにするためのヒューズFと、バッテリBと並列に接続される負荷回路Loadと、を備える(図1)。
 ヒューズFは、バッテリ充電装置100の出力端子TOUTと接地端子TGNDとの間で、バッテリBと直列に接続されている。
 負荷回路Loadは、出力端子TOUTと接地端子TGNDとの間で、バッテリBと並列に接続されている。そして、バッテリ充電装置100が出力する充電電流は、この負荷回路LoadとバッテリBとに供給される。
 交流発電機MのU相、V相、W相の出力部は、バッテリ充電装置100の入力端子TIN1、TIN2、TIN3に接続されている。交流電圧AC1、AC2、AC3は、それぞれ、バッテリ充電装置100の入力端子TIN1、TIN2、TIN3に供給される。
 この交流発電機Mは、例えば、車両等のエンジンに連動して回転することにより、交流電力を発電する。交流発電機Mは、発電した交流電力をバッテリ充電装置100に出力する。なお、図1の例では、交流発電機Mは、3相交流発電機である。
 また、例えば、交流発電機Mのステータ側には、パルサコイルHが取り付けられている。
 このパルサコイルHは、磁極部を備えた鉄心(図示せず)に巻かれたコイルである。また、例えば、交流発電機Mのロータ側には複数の複数のリラクタが取り付けられている。例えば、3個のリラクタが、120°ごとに交流発電機Mのロータの外周に取り付けられている。
 このパルサコイルHは、例えば交流発電機Mの回転に伴って、リラクタがパルサコイルHの鉄心の磁極部の近傍を通過する際にパルサ信号SPを出力する。すなわち、パルサコイルHは、交流発電機Mのロータの回転により発生するロータの回転数(rpm)を示すパルサ信号SPを生成する。生成されたパルサ信号SPは、バッテリ充電装置100のパルス入力端子TIN4に出力される。
 バッテリ充電装置100の出力端子TOUTには、バッテリBの正電極がヒューズFを介して接続されている。バッテリ充電装置100の接地端子TGNDには、バッテリBの負電極が接続されている。例えば、バッテリBの負電極は、バッテリ充電装置100が搭載された車両の車体に接地されている(接地端子TGNDに接続されている)。
 ここで、既述のように、バッテリ充電装置100は、交流発電機Mから出力された交流を直流に変換してバッテリBに供給する(図1)。
 このバッテリ充電装置100は、交流発電機Mから出力された交流を直流に変換してバッテリBに供給する変換部(変換回路)CNと、交流発電機Mが出力する交流電圧AC1~AC3と閾値電圧とを比較した結果に基づいて、比較結果信号DC1~DC3を出力するゼロクロス信号生成回路ZGと、を備える。
 変換部CNは、例えば、スイッチング素子Q1~Q6を備えた3相ブリッジ整流回路から構成されている(図2)。この変換部CNは、交流発電機Mから出力された交流をスイッチング素子Q1~Q6により直流に変換してバッテリBに供給する。
 上記スイッチング素子Q1~Q6は、例えばFET(Field Effect Transistor)である(図2)。
 例えば、スイッチング素子Q1は、出力端子TOUTと交流発電機MのU相出力との間に接続されている。また、スイッチング素子Q2は、出力端子TOUTと交流発電機MのV相出力との間に接続されている。また、スイッチング素子Q3は、出力端子TOUTと交流発電機MのW相出力との間に接続されている。
 また、スイッチング素子Q4は、交流発電機MのU相出力と接地端子TGNDとの間に接続されている。また、スイッチング素子Q5は、交流発電機MのV相出力と接地端子TGNDとの間に接続されている。また、スイッチング素子Q6は、交流発電機MのW相出力と接地端子TGNDとの間に接続されている。
 これらのスイッチング素子Q1~Q6は、制御回路CONから出力されるゲート信号SG1~SG6によりスイッチング駆動する。
 このように、変換部CNは、制御回路CONから出力されるゲート信号SG1~SG6に応じて、スイッチング素子Q1~Q6のそれぞれをオン/オフさせて、交流発電機M出力された交流を直流に変換する。これにより、出力端子TOUTを介してバッテリB及び負荷回路Loadに供給される充電電流が制御されることとなる。
 すなわち、バッテリ充電装置100は、交流発電機Mから出力された交流電力をスイッチング素子Q1~Q6により直流電力に変換してバッテリBに供給することで、バッテリBを充電する。
 本実施形態では、バッテリ充電装置100は、スイッチング素子Q1~Q6のスイッチング動作のタイミング(通電タイミング)を交流発電機Mの交流出力に対して遅らせる遅角制御、または進ませる進角制御を行うことにより、バッテリBの充電状態(または放電状態)を制御している。
 また、ゼロクロス信号生成回路ZGは、入力端子TIN1~TIN3および制御回路CONに接続される。既述のように、ゼロクロス信号生成回路ZGは、交流発電機Mが出力する交流電圧AC1~AC3と閾値電圧とを比較した結果に基づいて、比較結果信号DC1~DC3を出力する。
 例えば、ゼロクロス信号生成回路ZGは、交流電圧AC1(AC2、AC3)が予め定められた閾値電圧以上の場合は、“High”レベルVHである比較結果信号DC1(DC2、DC3)を出力する。
 一方、ゼロクロス信号生成回路ZGは、交流電圧AC1(AC2、AC3)が閾値電圧未満の場合は、VHよりも低い“Low”レベルVLである比較結果信号DC1(DC2、DC3)を出力する。
 ここで、閾値電圧には、例えば、接地電圧(0V)近傍の値が選択される。この場合、交流電圧AC1(AC2、AC3)は、正の値であるとき、比較結果信号DC1(DC2、DC3)が“High”レベルVHになる。一方、交流電圧AC1(AC2、AC3)は、負の値であるとき、比較結果信号DC1(DC2、DC3)が“Low”レベルVLになる。
 また、信号検出回路SDは、交流発電機Mの回転に伴ってパルサコイルHに誘起され入力端子TIN4を介して入力されたパルサ信号SPを検出し、交流発電機Mの回転に同期したパルサ信号SPDを生成する。そして、信号検出回路SDは、生成したパルサ信号SPDを制御回路CONに出力する。
 また、バッテリ充電装置100は、比較結果信号DC1~DC3に基づいて、変換部CNを制御する既述の制御回路CONを備える。
 この制御回路CONは、例えば、位相検出部(位相検出回路)FDと、回転数取得部(回転数取得回路)RAと、出力制御部(出力制御回路)Xと、充電電流取得部(充電電流取得回路)IAと、備える(図1)。
 位相検出部FDは、交流発電機Mが出力する交流電圧AC1~AC3の位相を検出する。
 この位相検出部FDは、例えば、比較結果信号DC1~DC3に基づいて、交流電圧AC1~AC3の位相を検出する。なお、比較結果信号DC1~DC3は、既述のように、交流発電機Mが出力する交流電圧AC1~AC3と予め設定された閾値電圧とを比較した結果に応じた信号である。
 ここで、既述のように、例えば、閾値電圧には、接地電圧(0V)が近傍の値が選択される。
 この場合、交流電圧AC1(AC2、AC3)は、正の値であるとき、比較結果信号DC1(DC2、DC3)が“High”レベルVHになる。
 したがって、位相検出部FDは、比較結果信号DC1(DC2、DC3)が“High”レベルVHになるタイミングが、交流電圧AC1(AC2、AC3)が負から正になる位相であることを検出する。
 一方、交流電圧AC1(AC2、AC3)は、負の値であるとき、比較結果信号DC1(DC2、DC3)が“Low”レベルVLになる。
 したがって、位相検出部FDは、比較結果信号DC1(DC2、DC3)が“Low”レベルVLになるタイミングが、交流電圧AC1(AC2、AC3)が正から負になる位相であることを検出する。
 このようにして、位相検出部FDは、交流発電機Mが出力する交流電圧AC1~AC3の位相を検出する。
 また、回転数取得部RAは、交流発電機Mの回転に応じた信号に基づいて、交流発電機Mの回転数を取得する。
 例えば、この回転数取得部RAは、交流発電機Mの回転に伴ってパルサコイルHに誘起されるパルサ信号SP(信号検出回路SDが出力するパルサ信号SPD)に基づいて、交流発電機Mの回転数を取得する。
 本実施形態では、回転数取得部RAは、例えば、信号検出回路SDが生成した単位時間当たりのパルサ信号SPDをカウントすることにより、交流発電機Mの回転数(rpm)を取得する。
 そして、回転数取得部RAは、出力制御部Xに、取得した交流発電機Mの回転数を出力する。
 なお、回転数取得部RAは、パルサコイルHの出力するパルサ信号SP(信号検出回路SDが出力するパルサ信号SPD)に基づいて交流発電機Mの回転数を取得する構成に限られず、少なくとも交流発電機Mの回転数を取得する構成であれればよい。
 例えば、交流発電機MにホールICを設置するようにしてもよい。この場合、回転数取得部RAは、設置されたホールICが出力する信号に基づいて、交流発電機Mの回転数を取得することとなる。
 また、回転数取得部RAは、上位ECU(Engine Control Unit)から供給される回転数を示す信号に基づいて、交流発電機Mの回転数を取得してもよい。
 また、出力制御部Xは、位相検出部FDにより検出された交流電圧AC1~AC3の位相に対する通電位相角を決定する。この通電位相角は、交流発電機MからバッテリBに充電電流を供給するための変換部CNのスイッチング素子Q1~Q6の通電タイミングを規定する。そして、出力制御部Xは、決定した通電位相角に基づいてスイッチング素子Q1~Q6の通電を制御する。なお、後述のように、この決定した通電位相角は、交流発電機Mの回転数に応じて、補正される。
 ここで、スイッチング素子Q1~Q3のスイッチング動作の通電タイミング(通電位相角)について、図3および図4を用いて以下に説明する。なお、図3の例は、スイッチング素子Q1~Q3を180°の位相角に相当する期間において通電(オン)状態とする制御を行い、ゲート信号SG1~SG3のオンデューティを50%に固定した場合を示している。
 図3においては、一例として、スイッチング素子Q1~Q3のスイッチング動作を記載している。なお、スイッチング素子Q4~Q6のスイッチング動作は、スイッチング素子Q1とスイッチ素子Q4とが相補的にオン/オフし、スイッチング素子Q2とスイッチ素子Q5とが相補的にオン/オフし、スイッチング素子Q3とスイッチ素子Q6とが相補的にオン/オフするように、実行される。
 図3に示す例では、パルサ信号SPDは、交流発電機Mの交流電圧AC3の位相が0°となる(比較結果信号DC3が立ち上がる)時刻のタイミングで立ち下がる波形を有している。また、スイッチング素子Q1~Q3のゲートに印加されるゲート信号SG1~SGは、交流電圧AC1~AC3の半周期(180°の位相角)に相当するパルス幅を有している。
 ここで、通電位相角は、例えば、交流発電機Mの交流電圧AC1~AC3の位相の立ち上がりから90°の位相を基準とした、スイッチング素子Q1~Q3のゲートに印加されるゲート信号SG1~SGの立ち上がりのタイミング(オンするタイミング)で定義される。ただし、この例に限定されず、交流発電機Mの交流電圧AC1~AC3の位相のどの部分を、通電位相角の基準にするかは、任意である。すなわち、通電位相角は、少なくとも、交流発電機Mの交流電圧AC1~AC3の位相と、スイッチング素子Q1~Q3のゲートに印加されるゲート信号SG1~SGの位相との相対的な関係を規定するものである。
 例えば、図3において、比較結果信号DC1が、“Low”レベルVLから“High”レベルVHに立ち上がるタイミング(交流電圧AC1が予め定められた閾値電圧以上になるタイミング)で、スイッチング素子Q1が通電してオン状態になる。
 また、比較結果信号DC1が、“High”レベルVHから“Low”レベルVLに立ち下がるタイミング(交流電圧AC1が閾値電圧未満になるタイミング)で、スイッチング素子Q1がオフ状態になっている。
 すなわち、この図3においては、交流電圧AC1が閾値電圧以上になるタイミングで、スイッチング素子Q1が通電するように、交流電圧AC1の位相に対する通電位相角が設定されている。
 なお、スイッチング素子Q2、Q3のそれぞれについても、スイッチング素子Q1と同様に、比較結果信号DC2、DC3のそれぞれに応じてオン/オフしている。すなわち、スイッチング素子Q2、Q3のそれぞれについても、位相検出部FDにより検出された交流電圧AC2、AC3の位相に対する通電位相角に基づいて、オン/オフが制御されている。
 また、既述のように、スイッチング素子Q4~Q6の制御は、スイッチング素子Q1とスイッチ素子Q4とが相補的にオン/オフし、スイッチング素子Q2とスイッチ素子Q5とが相補的にオン/オフし、スイッチング素子Q3とスイッチ素子Q6とが相補的にオン/オフするように、実行される。
 また、図4に示すように、スイッチング素子Q1のスイッチング周波数が一定であっても、スイッチング素子Q1がオン状態である期間(スイッチング素子Q1の通電タイミング)と、比較結果信号DC1が“High”レベルVHである期間と、の関係に応じて、バッテリBが充電される期間が変化する。
 換言すれば、交流電圧AC1(比較結果信号DC1)の位相に対する通電位相角(スイッチング素子Q1の通電タイミング)に応じて、バッテリBが充電される期間が変化する。これにより、交流発電機MのU相からの出力電力がバッテリBに供給される割合が変化して、出力端子TOUTから出力される充電電流も変化することとなる。
 このように、スイッチング素子Q1~Q6の通電タイミング(通電位相角)を制御することで、バッテリBに供給する充電電流を制御することができ、バッテリBの充電を制御できる。
 上記のように、バッテリ充電装置100は、交流発電機Mが出力する交流電圧AC1、AC2、AC3に対して、スイッチング素子Q1~Q6のスイッチング動作のタイミング(通電タイミング)を規定するゲート信号SG1~SG6の通電位相角を制御することにより、充電電流の電流値を制御する。
 ここで、この出力制御部Xは、テーブルYを有する(図1)。このテーブルYは、例えば、図5および図6に示す特性を規定する。
 例えば、テーブルYは、バッテリBの充電電流と通電位相角との関係を規定する(図5の基本特性)。例えば、充電電流が50Aに対しては、通電位相角が75度に設定されている。
 さらに、例えば、このテーブルYは、交流発電機Mの回転数と、この回転数に応じて通電位相角を補正するための補正値との関係を規定する(図6の基本特性)。なお、このテーブルYにおいて、例えば、補正値は、交流発電機Mの回転数の増加に伴って、増加するように規定される(図6)。
 さらに、出力制御部Xは、出力すべき充電電流と、回転数取得部RAにより取得された回転数と、に基づいて、テーブルYを参照することにより、通電位相角と補正値とを取得し、通電位相角を補正値で補正する。
 例えば、出力制御部Xは、テーブルYに規定された通電位相角に補正値を加算することにより、通電位相角を補正する。
 そして、出力制御部Xは、補正値で補正した通電位相角に基づいて、スイッチング素子Q1~Q6を位相制御する。
 なお、バッテリ充電装置100は、バッテリ充電装置100の内部又は外部の温度を検出する温度センサASをさらに備えるようにしてもよい(図1)。図1の例では、温度センサASは、バッテリ充電装置100の内部の温度を検出するようになっている。
 この場合、テーブルYは、例えば、補正値と、温度センサASが検出した温度との関係を、さらに規定するようにしてもよい。
 そして、出力制御部Xは、回転数取得部RAにより取得された回転数及び温度センサASが検出した温度に基づいて、テーブルYを参照することにより、通電位相角の補正値を取得するようにしてもよい。
 この場合も、出力制御部Xは、補正値で補正した通電位相角に基づいて、スイッチング素子Q1~Q6を位相制御することとなる。
 また、テーブルYは、補正値と、バッテリBに接続される負荷回路Loadに流れる負荷電流との関係を、さらに規定するようにしてもよい。この場合、バッテリ充電システム1000は、負荷電流を検出するための検出回路(図示せず)をさらに備えることとなる。
 そして、出力制御部Xは、回転数取得部RAにより取得された回転数及び負荷電流に基づいて、テーブルYを参照することにより、通電位相角の補正値を取得するようにしてもよい。この場合も、出力制御部Xは、補正値で補正した通電位相角に基づいて、スイッチング素子Q1~Q6を位相制御することとなる。
 次に、以上のような構成を有するバッテリ充電装置100の制御方法の一例について説明する。
 例えば、バッテリ充電装置100の位相検出部FDが、比較結果信号DC1~DC3に基づいて、交流電圧AC1~AC3の位相を検出する。
 さらに、バッテリ充電装置100の回転数取得部RAが、信号検出回路SDが出力するパルサ信号SPDに基づいて、交流発電機Mの回転数を取得する。
 ここで、バッテリ充電装置100の出力制御部Xは、位相検出部FDにより検出された交流電圧AC1~AC3の位相に対する通電位相角を決定する(図5)。
 さらに、出力制御部Xは、出力すべき充電電流と、回転数取得部RAにより取得された回転数と、に基づいて、テーブルYを参照することにより、通電位相角と補正値とを取得し、通電位相角を補正値で補正する。すなわち、交流発電機の回転数に応じて、スイッチング素子の通電タイミングを規定する通電位相角が補正される。
 そして、出力制御部Xは、補正値で補正した通電位相角に基づいて、スイッチング素子Q1~Q6を位相制御する。なお、交流発電機Mの回転数が変化した場合には、補正値も変わるため、変化した回転数に対応する補正値で補正した通電位相角で、スイッチング素子Q1~Q6が制御されることとなる。
 これにより、本発明に係るバッテリ充電装置100は、補正値で補正した通電位相角に基づいて、スイッチング素子Q1~Q6を位相制御することで、所定の充電電流をバッテリに供給して、より適切にバッテリ電圧を目標電圧に制御することができる。
 以上のように、バッテリ充電装置100は、交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、交流発電機の回転に応じた信号に基づいて、交流発電機の回転数を取得する回転数取得部RAと、交流発電機からバッテリに充電電流を供給するための変換部CNのスイッチング素子の通電タイミングを規定する通電位相角を決定し、この通電位相角に基づいてスイッチング素子の通電を制御する出力制御部Xと、を備える。
 出力制御部Xは、バッテリの充電電流と通電位相角との関係を規定し、且つ交流発電機の回転数と、当該回転数に応じた通電位相角を補正するための補正値との関係を規定するテーブルYを、有する。出力制御部Xは、出力すべき充電電流と、回転数取得部RAにより取得された回転数とに基づいて、テーブルYを参照することにより、通電位相角と補正値とを取得し、通電位相角を補正値で補正する。
 これにより、交流発電機の回転数に応じて、スイッチング素子の通電タイミングを規定する通電位相角が補正される。
 以上のように、本発明に係るバッテリ充電装置は、交流発電機の回転数が変化しても、回転数に応じてスイッチング素子の通電タイミングを規定する通電位相角を補正することで、所定の充電電流を交流発電機からバッテリに供給することができる(図5)。
 すなわち、本発明に係るバッテリ充電装置によれば、所定の充電電流をバッテリに供給して、より適切にバッテリ電圧を目標電圧に制御することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (11)

  1.  交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、
     前記交流発電機の回転に応じた信号に基づいて、前記交流発電機の回転数を取得する回転数取得部と、
     前記交流発電機から前記バッテリに充電電流を供給するための前記変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、前記通電位相角に基づいて前記スイッチング素子の通電を制御する出力制御部と、を備え、
     前記出力制御部は、
     前記バッテリの充電電流と前記通電位相角との関係を規定し、且つ前記交流発電機の回転数と前記回転数に応じて前記通電位相角を補正するための補正値との関係を規定する、テーブルを有し、
     前記出力制御部は、
     出力すべき充電電流と、前記回転数取得部により取得された回転数と、に基づいて、前記テーブルを参照することにより、前記通電位相角と前記補正値とを取得し、前記通電位相角を前記補正値で補正する
     ことを特徴とするバッテリ充電装置。
  2.  前記出力制御部は、
     前記テーブルに規定された通電位相角に前記補正値を加算することにより、前記通電位相角を補正する
     ことを特徴とする請求項1に記載のバッテリ充電装置。
  3.  前記テーブルにおいて、前記補正値は、前記交流発電機の回転数の増加に伴って、増加するように規定されている
     ことを特徴とする請求項1に記載のバッテリ充電装置。
  4.  前記バッテリ充電装置は、
     前記バッテリ充電装置の内部又は外部の温度を検出する温度センサをさらに備え、
     前記テーブルは、前記補正値と、前記温度センサが検出した温度との関係を、さらに規定し、
     前記出力制御部は、
     前記回転数取得部により取得された回転数及び前記温度センサが検出した温度に基づいて、前記テーブルを参照することにより、前記補正値を取得する
     ことを特徴とする請求項1に記載のバッテリ充電装置。
  5.  前記テーブルは、前記補正値と、前記バッテリに接続される負荷回路に流れる負荷電流との関係を、さらに規定し、
     前記出力制御部は、前記回転数取得部により取得された回転数及び前記負荷電流に基づいて、前記テーブルを参照することにより、前記補正値を取得する
     ことを特徴とする請求項1に記載のバッテリ充電装置。
  6.  前記回転数取得部は、前記交流発電機の回転に伴ってパルサコイルに誘起されるパルサ信号に基づいて、前記交流発電機の回転数を取得することを特徴とする請求項1に記載のバッテリ充電装置。
  7.  前記バッテリ充電装置は、
     前記交流発電機が出力する交流電圧の位相を検出する位相検出部をさらに備え、
     前記出力制御部は、前記位相検出部により検出された位相に対する前記通電位相角を決定することを特徴とする請求項1に記載のバッテリ充電装置。
  8.  前記位相検出部は、
     前記交流発電機が出力する交流電圧と閾値電圧とを比較した結果に応じた比較結果信号に基づいて、前記交流電圧の位相を検出する
     ことを特徴とする請求項7に記載のバッテリ充電装置。
  9.  前記バッテリ充電装置は、
     前記交流発電機が出力する交流電圧と前記閾値電圧とを比較した結果に基づいて、前記比較結果信号を出力するゼロクロス信号生成回路を、さらに備える
     ことを特徴とする請求項8に記載のバッテリ充電装置。
  10.  前記出力制御部は、
     前記補正値で補正した前記通電位相角に基づいて、前記スイッチング素子を位相制御することを特徴とする請求項1に記載のバッテリ充電装置。
  11.  交流発電機から出力された交流をスイッチング素子により直流に変換してバッテリに供給する変換部と、前記交流発電機の回転に応じた信号に基づいて、前記交流発電機の回転数を取得する回転数取得部と、前記交流発電機から前記バッテリに充電電流を供給するための前記変換部のスイッチング素子の通電タイミングを規定する通電位相角を決定し、前記通電位相角に基づいて前記スイッチング素子の通電を制御する出力制御部と、を備え、前記出力制御部は、前記バッテリの充電電流と前記通電位相角との関係を規定し、且つ前記交流発電機の回転数と前記回転数に応じて前記通電位相角を補正するための補正値との関係を規定する、テーブルを有するバッテリ充電装置の制御方法であって、
     前記出力制御部が、出力すべき充電電流と、前記回転数取得部により取得された回転数と、に基づいて、前記テーブルを参照することにより、前記通電位相角と前記補正値とを取得し、前記通電位相角を前記補正値で補正する
     ことを特徴とするバッテリ充電装置の制御方法。
PCT/JP2015/059422 2015-03-26 2015-03-26 バッテリ充電装置、及び、バッテリ充電装置の制御方法 WO2016151851A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/059422 WO2016151851A1 (ja) 2015-03-26 2015-03-26 バッテリ充電装置、及び、バッテリ充電装置の制御方法
EP15853625.0A EP3276785B1 (en) 2015-03-26 2015-03-26 Battery charging device and battery charging device control method
JP2016513925A JP6121624B2 (ja) 2015-03-26 2015-03-26 バッテリ充電装置、及び、バッテリ充電装置の制御方法
US15/100,595 US10256651B2 (en) 2015-03-26 2015-03-26 Battery charging device and method of controlling battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059422 WO2016151851A1 (ja) 2015-03-26 2015-03-26 バッテリ充電装置、及び、バッテリ充電装置の制御方法

Publications (1)

Publication Number Publication Date
WO2016151851A1 true WO2016151851A1 (ja) 2016-09-29

Family

ID=56977913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059422 WO2016151851A1 (ja) 2015-03-26 2015-03-26 バッテリ充電装置、及び、バッテリ充電装置の制御方法

Country Status (4)

Country Link
US (1) US10256651B2 (ja)
EP (1) EP3276785B1 (ja)
JP (1) JP6121624B2 (ja)
WO (1) WO2016151851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022173040A (ja) * 2021-05-06 2022-11-17 深▲せん▼市斗索科技有限公司 交流の整流と昇降圧回路及びその方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233072A (ja) * 2001-02-01 2002-08-16 Honda Motor Co Ltd 自動車用電源装置
JP2009011016A (ja) * 2007-06-26 2009-01-15 Yamaha Motor Electronics Co Ltd 発電制御装置及び鞍乗型車両
JP2012039817A (ja) 2010-08-10 2012-02-23 Shindengen Electric Mfg Co Ltd 位相制御装置、バッテリ充電装置、及び位相制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1313833B1 (it) * 1999-10-28 2002-09-23 St Microelectronics Srl Circuito di controllo della corrente di fine carica delle batteriespecialmente per batterie al litio
FR2855677B1 (fr) * 2003-05-30 2016-11-04 Valeo Equip Electr Moteur Circuit de commande a modulation en largeur d'impulsions pour machine electrique multi mode et machine electrique multi mode equipee d'un tel circuit de commande
JP4359760B2 (ja) * 2003-10-31 2009-11-04 国産電機株式会社 磁石発電機を備えた発電装置
US8159179B2 (en) * 2006-03-30 2012-04-17 Shindengen Electric Manufacturing Co., Ltd. Battery charging device, three-phase voltage generating circuit, three-phase voltage generation method and delay angle control method
JP4894417B2 (ja) * 2006-08-30 2012-03-14 国産電機株式会社 発電装置
EP2706657B1 (en) 2011-05-06 2018-06-06 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control apparatus and brushless motor control method
JP6117599B2 (ja) * 2013-04-08 2017-04-19 本田技研工業株式会社 車両用バッテリ充電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233072A (ja) * 2001-02-01 2002-08-16 Honda Motor Co Ltd 自動車用電源装置
JP2009011016A (ja) * 2007-06-26 2009-01-15 Yamaha Motor Electronics Co Ltd 発電制御装置及び鞍乗型車両
JP2012039817A (ja) 2010-08-10 2012-02-23 Shindengen Electric Mfg Co Ltd 位相制御装置、バッテリ充電装置、及び位相制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276785A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022173040A (ja) * 2021-05-06 2022-11-17 深▲せん▼市斗索科技有限公司 交流の整流と昇降圧回路及びその方法
US11955903B2 (en) 2021-05-06 2024-04-09 SHENZHEN DOSO Technology Ltd. Rectification and boost-buck control system for alternating current

Also Published As

Publication number Publication date
EP3276785B1 (en) 2019-11-27
EP3276785A4 (en) 2018-12-26
EP3276785A1 (en) 2018-01-31
US20180006480A1 (en) 2018-01-04
US10256651B2 (en) 2019-04-09
JPWO2016151851A1 (ja) 2017-04-27
JP6121624B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
US7944161B2 (en) DC bus discharge in an electric motor system
WO2012153637A1 (ja) ブラシレスモータ制御装置、およびブラシレスモータ制御方法
JP5817021B2 (ja) モータ駆動回路、およびそれを備えるモータユニット
US9490742B2 (en) Motor control apparatus
JP5434873B2 (ja) 車両用回転電機
JP5464367B2 (ja) 車両用回転電機
JP5144337B2 (ja) ブラシレスモータ制御装置及びブラシレスモータ
US9762156B2 (en) Control apparatus for rotating electric machine
JP5464368B2 (ja) 車両用回転電機
CN107968617B (zh) 旋转电机的控制装置以及控制方法
US11658600B2 (en) Motor controller, motor system and method for controlling motor
JP6121624B2 (ja) バッテリ充電装置、及び、バッテリ充電装置の制御方法
JP6544141B2 (ja) モータ駆動装置
US11804797B2 (en) Motor controller, motor system and method for controlling motor
JP5594306B2 (ja) 車両用回転電機
JP6044854B2 (ja) 電動工具
JP2014036539A (ja) インバータ装置及びインバータ装置のスイッチングタイミング補正方法
US8829834B2 (en) Motor driving control apparatus and method, and motor using the same
JP5846142B2 (ja) 車両用回転電機
WO2015181884A1 (ja) バッテリ充電装置
US11716045B2 (en) Motor controller, motor system and method for controlling motor
JP6006677B2 (ja) サイリスタ起動装置
WO2016084295A1 (ja) モータ駆動装置
JP2013146136A (ja) 電動機
JP5614908B2 (ja) ブラシレスモータ制御装置、およびブラシレスモータ制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513925

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015853625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15100595

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015853625

Country of ref document: EP