JP5464367B2 - 車両用回転電機 - Google Patents

車両用回転電機 Download PDF

Info

Publication number
JP5464367B2
JP5464367B2 JP2010209487A JP2010209487A JP5464367B2 JP 5464367 B2 JP5464367 B2 JP 5464367B2 JP 2010209487 A JP2010209487 A JP 2010209487A JP 2010209487 A JP2010209487 A JP 2010209487A JP 5464367 B2 JP5464367 B2 JP 5464367B2
Authority
JP
Japan
Prior art keywords
timing
voltage
determination unit
mos
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010209487A
Other languages
English (en)
Other versions
JP2012065496A (ja
Inventor
晴美 堀畑
英明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010209487A priority Critical patent/JP5464367B2/ja
Priority to FR1158131A priority patent/FR2965124B1/fr
Priority to DE201110053557 priority patent/DE102011053557A1/de
Priority to US13/235,732 priority patent/US8896275B2/en
Publication of JP2012065496A publication Critical patent/JP2012065496A/ja
Application granted granted Critical
Publication of JP5464367B2 publication Critical patent/JP5464367B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Description

本発明は、乗用車やトラック等に搭載される車両用回転電機に関する。
従来から、複数のスイッチング素子を有する電力変換器を用いて電機子巻線の出力電圧を整流するようにした電力変換装置を備えた車両用発電機が知られている(例えば、特許文献1参照。)。この電力変換装置では、例えば上アームのスイッチング素子がオン動作しているか否かの診断を、(1)上アームダイオードがオン状態であること、(2)上アームのスイッチング素子のゲート指令がオンになっていること、(3)相電圧が所定の範囲(V4以下)にあること、を確認することで行っている。
特開2010−110176号公報(第5−14頁、図1−15)
ところで、特許文献1に開示された電力変換装置では、ダイオード通電期間に合わせて各スイッチング素子が正常にオン動作しているか否かを診断することはできるが、同期整流動作開始までの異常の有無、特に各スイッチング素子が短絡故障しているか否かを正確に判断することはできないという問題があった。
特許文献1には、スイッチング素子を用いた同期整流動作に移行した後に各スイッチング素子の動作を診断する手法が記載されているが、エンジン始動直後や何らかの原因によって同期整流が中断された後に同期整流を開始する条件については記載がない。相電圧波形が乱れているタイミングやスイッチング素子が短絡故障しているときに不用意に同期整流を開始すると、上アームと下アームを介してバッテリの端子間を短絡するおそれがあるため、少なくともこのような短絡のおそれがないことを確認した後に同期整流を開始することが望ましい。スイッチング素子の短絡故障さえ発生していなければ、仮にオープン故障が発生していたとしてもダイオード整流が行われるため、発電動作は継続することができる。
本発明は、このような点に鑑みて創作されたものであり、その目的は、短絡故障が生じていないことを確実に確認した後にスイッチング素子を用いた同期整流を開始することができる車両用回転電機を提供することにある。
上述した課題を解決するために、本発明の車両用回転電機は、2相以上の相巻線を有する電機子巻線と、ダイオードが並列接続されたスイッチング素子によって構成される複数の上アームおよび下アームを有するブリッジ回路を構成し、電機子巻線の誘起電圧を整流するスイッチング部と、スイッチング素子のオンオフタイミングを設定するオンオフタイミング設定部と、オンオフタイミング設定部によって設定されたオンオフタイミングでスイッチング素子を駆動するスイッチング素子駆動部と、相巻線の相電圧が第1のしきい値に達した後第2の閾値に達するまでを通電期間としたときに、上アームに対応する通電期間と下アームに対応する通電期間とが交互に到来することを検出した場合に、オンオフタイミング設定部とスイッチング素子駆動部とによってスイッチング素子をオンオフ制御する同期整流動作を開始するタイミングとして判定する同期制御開始判定部とを備えている。
上アームと下アームのそれぞれの通電期間が交互に現れることを検出することにより、上アームのスイッチング素子と下アームのスイッチング素子の両方が短絡していないことを確かめた後にスイッチング素子を用いた同期整流を開始することが可能となる。
また、上述した同期制御開始判定部は、通電期間の開始タイミングに同期したカウントを行うことにより、上アームに対応する通電期間と下アームに対応する通電期間とが交互に到来することを検出することが望ましい。これにより、同期整流動作に入る直前の状態を確認した後に同期整流動作を開始することが可能となる。
また、上述した同期制御開始判定部は、連続する2つの通電期間の間隔が電気角で1周期以下であるときに、同期整流動作を開始するタイミングとして判定することが望ましい。これにより、スイッチング素子に短絡故障が生じていないことをさらに正確に判定することが可能となる。
また、上述した同期制御開始判定部は、交互に到来する通電期間の回数が、機械角で1回転に相当する回数以上であるときに、同期整流動作を開始するタイミングとして判定することが望ましい。このように、回転子が1回転する範囲について相電圧波形を調べることにより、スイッチング素子の短絡の有無だけでなく、磁気回路の異常の有無も確認することができる。
また、上述した同期制御開始判定部は、バッテリに接続される出力端子の電圧が正常範囲として設定された所定範囲に含まれる場合に、同期整流動作を開始するタイミングとして判定することが望ましい。これにより、出力電圧が正常範囲を外れて低い場合や高い場合には同期制御を開始しないようにすることができる。
また、上述したスイッチング素子の過熱異常状態を検出する過熱異常検出部をさらに備え、同期制御開始判定部は、過熱異常検出部によって過熱異常状態が検出されていない場合に、同期整流動作を開始するタイミングとして判定することが望ましい。これにより、異常発熱時に同期制御を開始しないようにすることができる。
また、上述した同期制御開始判定部は、バッテリに接続される出力端子の電圧がサージ電圧発生の基準となる基準電圧を超えたときに、下アームのスイッチング素子をオンすることにより、出力端子の電圧を低下させる保護動作を行うロードダンプ保護部をさらに備え、同期制御開始判定部は、ロードダンプ保護部による保護動作中でないときに、同期整流動作を開始するタイミングとして判定することが望ましい。これにより、ロードダンプ保護動作中は同期制御を開始しないようにすることができる。
また、上述した同期制御開始判定部は、バッテリに接続される出力端子の電圧の所定時間あたりの変動値が所定値よりも小さい場合に、同期整流動作を開始するタイミングとして判定することが望ましい。出力電圧の変動が大きく通電期間の変化が大きい場合には、スイッチング素子のオンオフタイミング(特にオフタイミング)の正確な設定が難しい。このような場合に同期制御を開始しないようにすることで、スイッチング素子のオンオフタイミングの誤設定を回避することができる。
また、上述したオンオフタイミング設定部は、同期制御開始判定部によって同期整流動作を開始するタイミングとして判定される前であっても、スイッチング素子のオフタイミングの設定を行っており、同期制御開始判定部は、オフタイミングから通電期間の終了時点までの長さが所定値よりも長い場合に、同期整流動作を開始するタイミングとして判定することが望ましい。オフタイミングから通電期間の終了時点までの長さが極端に短い場合には何らかの異常が発生していると考えられる。このような場合に同期制御を開始しないようにすることで、スイッチング素子のオンオフタイミングの誤設定を回避することができる。
一実施形態の車両用発電機の構成を示す図である。 整流器モジュールの構成を示す図である。 制御回路の詳細構成を示す図である。 上MOS VDS検出部による電圧比較の具体例を示す図である。 下MOS VDS検出部による電圧比較の具体例を示す図である。 温度検出部による温度検出結果の具体例を示す図である。 制御部の詳細構成を示す図である。 制御部によって行う同期制御の動作タイミング図である。 同期制御開始判定を行うために必要な構成を示す図である。 同期制御開始判定の動作タイミングを示す図である。
以下、本発明の車両用回転電機を適用した一実施形態の車両用発電機について、図面を参照しながら説明する。図1は、一実施形態の車両用発電機の構成を示す図である。図1に示すように、本実施形態の車両用発電機1は、2つの固定子巻線(電機子巻線)2、3、界磁巻線4、2つの整流器モジュール群5、6、発電制御装置7を含んで構成されている。2つの整流器モジュール群5、6がスイッチング部に対応する。
一方の固定子巻線2は、多相巻線(例えばX相巻線、Y相巻線、Z相巻線からなる三相巻線)であって、固定子鉄心(図示せず)に巻装されている。同様に、他方の固定子巻線3は、多相巻線(例えばU相巻線、V相巻線、W相巻線からなる三相巻線)であって、上述した固定子鉄心に、固定子巻線2に対して電気角で30度ずらした位置に巻装されている。本実施形態では、これら2つの固定子巻線2、3と固定子鉄心によって固定子が構成されている。
界磁巻線4は、固定子鉄心の内周側に対向配置された界磁極(図示せず)に巻装されて回転子を構成している。励磁電流を流すことにより、界磁極が磁化される。界磁極が磁化されたときに発生する回転磁界によって固定子巻線2、3が交流電圧を発生する。
一方の整流器モジュール群5は、一方の固定子巻線2に接続されており、全体で三相全波整流回路(ブリッジ回路)が構成され、固定子巻線2に誘起される交流電流を直流電流に変換する。この整流器モジュール群5は、固定子巻線2の相数に対応する数(三相巻線の場合には3個)の整流器モジュール5X、5Y、5Zを備えている。整流器モジュール5Xは、固定子巻線2に含まれるX相巻線に接続されている。整流器モジュール5Yは、固定子巻線2に含まれるY相巻線に接続されている。整流器モジュール5Zは、固定子巻線2に含まれるZ相巻線に接続されている。
他方の整流器モジュール群6は、一方の固定子巻線3に接続されており、全体で三相全波整流回路(ブリッジ回路)が構成され、固定子巻線3に誘起される交流電流を直流電流に変換する。この整流器モジュール群6は、固定子巻線3の相数に対応する数(三相巻線の場合には3個)の整流器モジュール6U、6V、6Wを備えている。整流器モジュール6Uは、固定子巻線3に含まれるU相巻線に接続されている。整流器モジュール6Vは、固定子巻線3に含まれるV相巻線に接続されている。整流器モジュール6Wは、固定子巻線3に含まれるW相巻線に接続されている。
発電制御装置7は、F端子を介して接続された界磁巻線4に流す励磁電流を制御する励磁制御回路であって、励磁電流を調整することにより車両用発電機1の出力電圧(各整流器モジュールの出力電圧)VB が調整電圧Vreg になるように制御する。例えば、発電制御装置7は、出力電圧VB が調整電圧Vreg よりも高くなったときに界磁巻線4への励磁電流の供給を停止し、出力電圧VB が調整電圧Vreg よりも低くなったときに界磁巻線4に励磁電流の供給を行うことにより、出力電圧VB が調整電圧Vreg になるように制御する。また、発電制御装置7は、通信端子Lおよび通信線を介してECU8(外部制御装置)と接続されており、ECU8との間で双方向のシリアル通信(例えば、LIN(Local Interconnect Network)プロトコルを用いたLIN通信)を行い、通信メッセージを送信あるいは受信する。
本実施形態の車両用発電機1はこのような構成を有しており、次に、整流器モジュール5X等の詳細について説明する。
図2は、整流器モジュール5Xの構成を示す図である。なお、他の整流器モジュール5Y、5Z、6U、6V、6Wも同じ構成を有している。図2に示すように、整流器モジュール5Xは、2つのMOSトランジスタ50、51、制御回路54を備えている。MOSトランジスタ50は、ソースが固定子巻線2のX相巻線に接続され、ドレインが充電線12を介してを電気負荷10やバッテリ9の正極端子に接続された上アーム(ハイサイド側)のスイッチング素子である。MOSトランジスタ51は、ドレインがX相巻線に接続され、ソースがバッテリ9の負極端子(アース)に接続された下アーム(ローサイド側)のスイッチング素子である。これら2つのMOSトランジスタ50、51からなる直列回路がバッテリ9の正極端子と負極端子の間に配置され、これら2つのMOSトランジスタ50、51の接続点にX相巻線が接続されている。また、MOSトランジスタ50、51のそれぞれのソース・ドレイン間にはダイオードが並列接続されている。このダイオードはMOSトランジスタ50、51の寄生ダイオード(ボディダイオード)によって実現されるが、別部品としてのダイオードをさらに並列接続するようにしてもよい。なお、上アームおよび下アームの少なくとも一方を、MOSトランジスタ以外のスイッチング素子を用いて構成するようにしてもよい。
図3は、制御回路54の詳細構成を示す図である。図3に示すように、制御回路54は、制御部100、電源160、出力電圧検出部110、上MOS VDS検出部120、下MOS VDS検出部130、温度検出部150、ドライバ170、172を備えている。
電源160は、発電制御装置7から界磁巻線4に励磁電流が供給されるタイミングで動作を開始し、制御回路54に含まれる各素子に動作電圧を供給するとともに、励磁電流の供給が停止されたときに動作電圧の供給を停止する。この電源102の起動、停止は、制御部100からの指示に応じて行われる。
ドライバ170は、出力端子(G1)がハイサイド側のMOSトランジスタ50のゲートに接続されており、MOSトランジスタ50をオンオフする駆動信号を生成する。同様に、ドライバ172は、出力端子(G2)がローサイド側のMOSトランジスタ51のゲートに接続されており、MOSトランジスタ51をオンオフする駆動信号を生成する。
出力電圧検出部110は、例えば差動増幅器とその出力をデジタルデータに変換するアナログ−デジタル変換器によって構成されており、車両用発電機1(あるいは整流器モジュール5X)の出力端子(B端子)の電圧に対応するデータを出力する。なお、アナログ−デジタル変換器は、制御部100側に設けるようにしてもよい。
上MOS VDS検出部120は、ハイサイド側のMOSトランジスタ50のドレイン・ソース間電圧VDSを検出し、検出したドレイン・ソース間電圧VDSを所定のしきい値と比較してその大小に応じた信号を出力する。
図4は、上MOS VDS検出部120による電圧比較の具体例を示す図である。図4において、横軸はドレイン側の出力電圧VB を基準としたドレイン・ソース間電圧VDSを示している。また、縦軸は上MOS VDS検出部120から出力される信号の電圧レベルを示している。図4に示すように、相電圧VP が高くなって出力電圧VB よりも0.3V以上高くなるとVDSが0.3V以上になるため、上MOS VDS検出部120の出力信号がローレベル(0V)からハイレベル(5V)に変化する。その後、相電圧VP が出力電圧VB よりも1.0V以上低くなるとVDSが−1.0V以下になるため、上MOS VDS検出部120の出力信号がハイレベルからローレベルに変化する。
上述した出力電圧VB よりも0.3V高い値V10(図8)が、第1のしきい値に対応している。この第1のしきい値は、ダイオード通電期間の開始時点を確実に検出するためのものであり、出力電圧VB にオン時のMOSトランジスタ50のドレイン・ソース間電圧VDSを加算した値よりも高く、出力電圧VB にMOSトランジスタ50と並列接続されたダイオードの順方向電圧VFを加算した値よりも低い値に設定されている。また、上述した出力電圧VB よりも1.0V低い値V20(図8)が第2のしきい値に対応している。この第2のしきい値は、ダイオード通電期間の終了時点を確実に検出するためのものであり、出力電圧VB よりも低い値に設定されている。相電圧VP が第1のしきい値に達した後に第2のしきい値に達するまでを上アームの「オン期間」としている。このオン期間が特許請求の範囲における「通電期間」に対応する。なお、このオン期間は、MOSトランジスタ50がオフ状態のときに実際にダイオードに通電される「ダイオード通電期間」とは開始時点と終了時点がずれているが、本実施形態の同期制御はこのオン期間に基づいて行われる。
下MOS VDS検出部130は、ローサイド側のMOSトランジスタ51のドレイン・ソース間電圧VDSを検出し、検出したドレイン・ソース間電圧VDSを所定のしきい値と比較してその大小に応じた信号を出力する。
図5は、下MOS VDS検出部130による電圧比較の具体例を示す図である。図5において、横軸はドレイン側のバッテリ負極端子電圧であるグランド端子電圧VGND を基準としたドレイン・ソース間電圧VDSを示している。また、縦軸は下MOS VDS検出部130から出力される信号の電圧レベルを示している。図5に示すように、相電圧VP が低くなってグランド電圧VGND よりも0.3V以上低くなるとVDSが−0.3V以下になるため、下MOS VDS検出部130の出力信号がローレベル(0V)からハイレベル(5V)に変化する。その後、相電圧VP がグランド電圧VGND よりも1.0V以上高くなるとVDSが1.0V以上になるため、下MOS VDS検出部130の出力信号がハイレベルからローレベルに変化する。
上述したグランド電圧VGND よりも0.3V低い値V11(図8)が、第1のしきい値に対応している。この第1のしきい値は、ダイオード通電期間の開始時点を確実に検出するためのものであり、グランド電圧VGND からオン時のMOSトランジスタ51のドレイン・ソース間電圧VDSを減算した値よりも低く、グランド電圧VGND からMOSトランジスタ51と並列接続されたダイオードの順方向電圧VFを減算した値よりも高い値に設定されている。また、上述した出力電圧VB よりも1.0V高い値V21(図8)が第2のしきい値に対応している。この第2のしきい値は、ダイオード通電期間の終了時点を確実に検出するためのものであり、グランド電圧VGND よりも高い値に設定されている。相電圧VP が第1のしきい値に達した後に第2のしきい値に達するまでを下アームの「オン期間」としている。このオン期間が特許請求の範囲における「通電期間」に対応する。なお、このオン期間は、MOSトランジスタ51がオフ状態のときに実際にダイオードに通電される「ダイオード通電期間」とは開始時点と終了時点がずれているが、本実施形態の同期整流はこのオン期間に基づいて行われる。
温度検出部150は、例えばMOSトランジスタ50、51の近傍に配置されたダイオードの順方向電圧に基づいてMOSトランジスタ50、51の温度を検出し、温度が高いときにハイレベル、低いときにローレベルの信号を出力する。この温度検出部150は、制御部100に含ませるようにしてもよい。
図6は、温度検出部150による温度検出結果の具体例を示す図である。図6において、横軸は温度(°C)を示している。また、縦軸は温度検出部150から出力される信号の電圧レベルを示している。図6に示すように、温度が上昇していって200°C以上になると、温度検出部150の出力信号がローレベル(0V)からハイレベル(5V)に変化する。その後、温度が低下していって170°Cよりも低くなると、温度検出部150の出力信号がハイレベルからローレベルに変化する。
制御部100は、同期整流動作を開始するタイミングの判定、同期整流を実施するためのMOSトランジスタ50、51のオン/オフタイミングの設定、このオン/オフタイミングの設定に対応したドライバ170、172の駆動、ロードダンプ保護動作移行タイミングの判定および保護動作の実施などを行う。
図7は、制御部100の詳細構成を示す図である。図7に示すように、制御部100は、回転数演算部101、同期制御開始判定部102、上MOSオンタイミング判定部103、下MOSオンタイミング判定部104、目標電気角設定部105、上MOS・TFB時間演算部106、上MOSオフタイミング演算部107、下MOS・TFB時間演算部108、下MOSオフタイミング演算部109、ロードダンプ判定部111、電源起動・停止判定部112を備えている。これらの各構成は、例えばメモリ等に記憶された所定の動作プログラムをCPUで実行することにより実現されるが、各構成をハードウエアを用いて実現するようにしてもよい。また、各構成の具体的な動作内容については後述する。
上述した上MOSオンタイミング判定部103、下MOSオンタイミング判定部104、目標電気角設定部105、上MOS・TFB時間演算部106、上MOSオフタイミング演算部107、下MOS・TFB時間演算部108、下MOSオフタイミング演算部109がオンオフタイミング設定部に、ドライバ170、172がスイッチング素子駆動部に、温度検出部150が過熱異常検出部に、ロードダンプ判定部111がロードダンプ保護部にそれぞれ対応する。
本実施形態の整流器モジュール5X等はこのような構成を有しており、次にその動作を説明する。
(1)電源起動・停止判定
電源起動・停止判定部112は、発電制御装置7のF端子から界磁巻線4に供給されるPWM信号(励磁電流)の有無を監視し、PWM信号の出力が30μ秒継続したときに電源160に起動を指示する。また、電源起動・停止判定部112は、PWM信号の出力が1秒継続したときに電源160に停止を指示する。このようにして、界磁巻線4に励磁電流の供給が開始されたときに整流器モジュール5X等が動作を開始し、励磁電流の供給が停止したときに動作を停止するため、車両用発電機1の発電時のみ整流器モジュール5X等を動作させることで無駄な電力消費を抑えることができる。
(2)同期制御動作
図8は、制御部100によって行う同期整流制御(同期制御)の動作タイミング図である。図8において、「上アーム・オン期間」は上MOS VDS検出部120の出力信号を、「上MOSオン期間」はハイサイド側のMOSトランジスタ50のオン/オフタイミングを、「下アーム・オン期間」は下MOS VDS検出部130の出力信号を、「下MOSオン期間」はローサイド側のMOSトランジスタ51のオン/オフタイミングをそれぞれ示している。また、TFB1 、TFB2 、目標電気角、ΔTについては後述する。
上MOSオンタイミング判定部103は、上MOS VDS検出部120の出力信号(上アーム・オン期間)を監視しており、この出力信号のローレベルからハイレベルへの立ち上がりをハイサイド側のMOSトランジスタ50のオンタイミングとして判定し、ドライバ170に指示を送る。ドライバ170は、この指示に応じてMOSトランジスタ50をオンする。
上MOSオフタイミング演算部107は、MOSトランジスタ50がオンされてから所定時間経過後をMOSトランジスタ50のオフタイミングとして判定し、ドライバ170に指示を送る。ドライバ170は、この指示に応じてMOSトランジスタ50をオフする。
このオフタイミングを決定する所定時間は、上アーム・オン期間の終了時点(上MOS VDS検出部120の出力信号がハイレベルからローレベルに立ち下がる時点)よりも「目標電気角」だけ早くなるように、その都度可変設定される。
この目標電気角は、MOSトランジスタ50を常時オフしてダイオードを通して整流を行う場合を考えたときに、このダイオード整流における通電期間の終了時点よりもMOSトランジスタ50のオフタイミングが遅くならないようにするためのマージンであり、目標電気角設定部105によって設定される。目標電気角設定部105は、回転数演算部101によって演算された回転数に基づいて目標電気角を設定する。この目標電気角は、回転数に関係なく一定でもよいが、より望ましくは、低回転領域および高回転領域において目標電気角を大きく、その中間領域において目標電気角を小さく設定するようにしてもよい。
なお、回転数演算部101は、下MOS VDS検出部130の出力信号の立ち上がり周期あるいは立ち下がり周期に基づいて回転数を演算している。下MOS VDS検出部130の出力信号を用いることにより、車両用発電機1の出力電圧VB の変動に関係なく、安定した回転数検出が可能になる。
同様に、下MOSオンタイミング判定部104は、下MOS VDS検出部130の出力信号(下アーム・オン期間)を監視しており、この出力信号のローレベルからハイレベルへの立ち上がりをローサイド側のMOSトランジスタ51のオンタイミングとして判定し、ドライバ172に指示を送る。ドライバ172は、この指示に応じてMOSトランジスタ51をオンする。
下MOSオフタイミング演算部109は、MOSトランジスタ51がオンされてから所定時間経過後をMOSトランジスタ51のオフタイミングとして判定し、ドライバ172に指示を送る。ドライバ172は、この指示に応じてMOSトランジスタ51をオフする。
このオフタイミングを決定する所定時間は、下アーム・オン期間の終了時点(下MOS VDS検出部130の出力信号がハイレベルからローレベルに立ち下がる時点)よりも「目標電気角」だけ早くなるように、その都度可変設定される。
この目標電気角は、MOSトランジスタ51を常時オフしてダイオードを通して整流を行う場合を考えたときに、このダイオード整流における通電期間の終了時点よりもMOSトランジスタ51のオフタイミングが遅くならないようにするためのマージンであり、目標電気角設定部105によって設定される。
ところで、実際には、上アーム・オン期間や下アーム・オン期間の終了時点は、MOSトランジスタ50、51をオフする時点ではわかっていないため、上MOSオフタイミング演算部107や下MOSオフタイミング演算部109は、半周期前の情報をフィードバックすることにより、MOSトランジスタ50やMOSトランジスタ51のオフタイミングの設定精度を上げている。
例えば、ハイサイド側のMOSトランジスタ50のオフタイミングは以下のようにして設定される。下MOS・TFB時間演算部108は、半周期前のローサイド側のMOSトランジスタ51をオフしてから下アーム・オン期間の終了時点までの時間TFB2 (図8)を演算し、上MOSオフタイミング演算部107は、このTFB2 から目標電気角を差し引いたΔTを求める。回転等が安定していればT2と目標電気角とが等しくなってΔT=0となるはずであるが、(1)車両の加減速に伴う回転変動、(2)エンジン回転の脈動、(3)電気負荷の変動、(4)所定のプログラムを実行して制御部100を実現する場合の動作クロック周期の変動、(5)ドライバ170、172にMOSトランジスタ50、51をオフする指示を出してから実際にオフされるまでのターンオフ遅れ、などに伴ってΔTが0にならないことが多い。
そこで、上MOSオフタイミング演算部107は、半周期前に下MOSオフタイミング演算部109で用いられた下MOSオン期間をΔTに基づいて補正して上MOSオン期間を設定し、MOSトランジスタ50のオフタイミングを決定している。具体的には、補正係数をαとしたときに、上MOSオン期間は、以下の式で設定される。
(上MOSオン期間)=(半周期前の下MOSオン期間)+ΔT×α
同様に、ローサイド側のMOSトランジスタ51のオフタイミングは以下のようにして設定される。上MOS・TFB時間演算部106は、半周期前のハイサイド側のMOSトランジスタ51をオフしてから上アーム・オン期間の終了時点までの時間TFB1 (図8)を演算し、下MOSオフタイミング演算部109は、このTFB1 から目標電気角を差し引いたΔTを求める。下MOSオフタイミング演算部109は、半周期前に上MOSオフタイミング演算部107で用いられた上MOSオン期間をΔTに基づいて補正して下MOSオン期間を設定し、MOSトランジスタ51のオフタイミングを決定している。具体的には、補正係数をαとしたときに、下MOSオン期間は、以下の式で設定される。
(下MOSオン期間)=(半周期前の上MOSオン期間)+ΔT×α
このようにして、ダイオード整流を行う場合と同じ周期で、ハイサイド側のMOSトランジスタ50とローサイド側のMOSトランジスタ51が交互にオンされ、MOSトランジスタ20、51を用いた低損失の整流動作が行われる。
(3)同期制御の開始判定
次に、上述した同期制御に移行するか否かの判定動作について説明する。整流器モジュール5X等が起動された直後や、何らかの異常が発生して同期制御を一旦中断した後は、所定の同期制御開始条件を満たす場合に同期制御に移行する。同期制御開始判定部102は、同期制御開始条件を満たすか否かの判定を行い、満たすと判断した場合にその旨の通知が上MOSオンタイミング判定部103と下MOSオンタイミング判定部104に送られる。以後、上述した同期制御が実施されて、MOSトランジスタ50、51が交互にオンされる。
同期制御開始条件としては、以下の(1)〜(6)が用いられる。
(1)上アーム・オン期間と下アーム・オン期間(図8)が上下連続して32回発生する。なお、32回は、8極の回転子を想定し、機械角2回転分に相当する値である。この値は、1回転に相当する値である16や、3回転以上に相当する値、あるいは機械角1回転の整数倍に相当する値以外に変更してもよい。
(2)出力電圧VB が正常範囲である7Vより高く18Vよりも低い範囲に含まれる。なお、12V系の車両システムを想定して正常範囲の下限値を7V、上限値を18Vとしたが、これらの下限値および上限値は適宜変更するようにしてもよい。また、24V系等の車両システムでは、発電電圧に合わせて下限値および上限値を変更する必要がある。
(3)MOSトランジスタ50、51が過熱状態でない。
(4)ロードダンプ保護動作中でない。
(5)出力電圧VB の変動が0.5V/200μ秒よりも小さい。なお、同期制御を開始したときにこの変動がどの程度許容されるかは、使用する素子やプログラムによって変化するため、この変動の許容値は、使用する素子等に応じて適宜変更するようにしてもよい。
(6)TFB1、TFB2がともに15μ秒より長い。なお、これらの期間がどの程度以下になると異常といえるかは、異常の発生原因等によって変化するため、この許容値(15μ秒)は、異常発生原因等に応じて適宜変更するようにしてもよい。また、TFB1、TFB2は、上MOS・TFB時間演算部106、下MOS・TFB時間演算部108によって同期制御動作中に演算されるものとして説明したが、同期制御開始前であってもこれらの演算は行われており、同期制御の開始判定に用いられる。
図9は、上記の同期制御開始判定を行うために必要な構成を示す図である。ロードダンプ判定部111は、出力電圧VB が20Vを超えたときに、車両用発電機1の出力端子やバッテリ端子が外れてサージ電圧が発生するロードダンプを検出し、ドライバ170、172に指示を送ってハイサイド側のMOSトランジスタ50をオフするとともに、ローサイド側のMOSトランジスタ51をオンするロードダンプ保護動作を開始する。また、ロードダンプ判定部111は、一旦20Vよりも高くなった出力電圧VB が低下して17Vより低くなったときに、ロードダンプ保護動作を終了する。なお、ロードダンプ保護動作の開始あるいは終了時にMOSトランジスタ50、51のオン/オフによって新たなサージ電圧が発生することを避けるため、ロードダンプ保護判定部111は、図8に示す下アーム・オン期間の間にロードダンプ保護動作の開始あるいは終了を行うようにしている。ロードダンプ判定部111は、ロードダンプ保護動作中はハイレベル、それ以外のときにローレベルとなる信号を同期制御開始判定部102に向けて出力する。
B 範囲判定部113は、出力電圧検出部110によって検出された出力電圧VB が7〜18Vの範囲に含まれているか否かを判定し、含まれている場合にはローレベル、含まれていない場合(7V以下か18V以上の場合)にはハイレベルの信号を出力する。VB 変動判定部114は、出力電圧検出部110によって検出された出力電圧VB の変動が0.5V/200μ秒よりも小さいか否かを判定し、小さい場合にはローレベル、大きい場合にはハイレベルの信号を出力する。TFB時間判定部115は、上MOS・TFB時間演算部106によって検出されたTFB1 と、下MOS・TFB時間演算部108によって検出されたTFB2 のそれぞれが15μ秒よりも長いか否かを判定し、長い場合にはローレベル、以下の場合にハイレベルの信号を出力する。なお、図9では、VB 範囲判定部113、VB 変動判定部114、TFB時間判定部115を同期制御開始判定部102の外部に設けたが、同期制御開始判定部102に内蔵するようにしてもよい。また、上述した例では、(1)〜(6)の全ての条件を満たす場合に同期制御を開始する場合を想定したが、(2)〜(6)の少なくとも一つと(1)とを組み合わせて同期制御開始条件としてもよい。
図10は、同期制御開始判定の動作タイミングを示す図である。図10において、「カウント値」は上アーム・オン期間と下アーム・オン期間のそれぞれの立ち上がり(開始タイミング)に同期したカウント値を、「TFB時間フラグ」はTFB時間判定部115の出力を、「電圧範囲フラグ」はVB 範囲判定部113の出力を、「LDフラグ」はロードダンプ判定部111の出力を、「過熱フラグ」は温度検出部150の出力を、「電圧変動フラグ」はVB 変動判定部114の出力をそれぞれ示している。
同期制御開始判定部102は、上アーム・オン期間と下アーム・オン期間のそれぞれの立ち上がりに同期したカウント動作を行い、このカウント動作のカウント値が「32」に達したときに同期制御開始を示す信号(ローレベルが同期制御開始を示し、ハイレベルが同期制御停止を示している)を上MOSオンタイミング判定部103および下MOSオンタイミング判定部104に入力する。上MOSオンタイミング判定部103および下MOSオンタイミング判定部104では、同期制御開始を示す信号が入力されると、MOSトランジスタ50、51を交互にオンする同期制御を開始する。
ところで、同期制御開始判定部102は、上アーム・オン期間と下アーム・オン期間の立ち上がりの間隔が電気角で1周期以下であること、TFB時間判定部115、VB 範囲判定部113、ロードダンプ判定部111、温度検出部150、VB 変動判定部114の各出力(TFB時間フラグ、電圧範囲フラグ、LDフラグ、過熱フラグ、電圧変更フラグ)が全てローレベルであること、を条件に上述したカウント動作を継続する。反対に、同期制御開始判定部102は、カウント値が32に達するまでに、上アーム・オン期間と下アーム・オン期間の立ち上がりの間隔が電気角で1周期を超えたり、TFB時間判定部115、VB 範囲判定部113、ロードダンプ判定部111、温度検出部150、VB 変動判定部114のいずれかの出力がハイレベルになった場合には、カウント値を0にリセットし、カウント動作継続の条件を満たすようになってからカウント動作を再開する。
このように、本実施形態の車両用発電機1では、上アームと下アームのそれぞれのオン期間が交互に現れることを検出することにより、上アーム(ハイサイド側)のMOSトランジスタ50と下アーム(ローサイド側)のMOSトランジスタ51の両方が短絡していないことを確かめた後にMOSトランジスタ50、51を用いた同期整流を開始することが可能となる。
特に、連続する2つのオン期間の間隔が電気角で1周期以下である場合に、同期整流動作を開始するタイミングとして判定することにより、MOSトランジスタ50、51に短絡故障が生じていないことをさらに正確に判定することが可能となる。あるいは、交互に到来するオン期間の回数が、機械角で1回転に相当する回数以上であるときに、同期整流動作を開始するタイミングとして判定しており、回転子が1回転する範囲について相電圧波形を調べることにより、MOSトランジスタ50、51の短絡の有無だけでなく、磁気回路の異常の有無も確認することができる。
また、出力電圧VB が正常範囲として設定された所定範囲に含まれる場合に、同期整流動作を開始するタイミングとして判定することにより、出力電圧VB が正常範囲を外れて低い場合や高い場合には同期制御を開始しないようにすることができる。また、過熱異常状態が検出されていない場合に同期整流動作を開始するタイミングとして判定することにより、異常発熱時に同期制御を開始しないようにすることができる。保護動作中でないときに同期整流動作を開始するタイミングとして判定することにより、ロードダンプ保護動作中は同期制御を開始しないようにすることができる。
また、出力電圧VB の変動が大きくオン期間の変化が大きい場合には、MOSトランジスタ50のオンオフタイミング(特にオフタイミング)の正確な設定が難しい。このような場合に同期制御を開始しないようにすることで、MOSトランジスタ50のオンオフタイミングの誤設定を回避することができる。
また、MOSトランジスタ50、51のオフタイミングから通電期間(上アーム・オン期間や下アーム・オン期間)の終了時点までの長さ(TFB1、TFB2)が所定値よりも長い場合に同期整流動作を開始するタイミングとして判定している。TFB1、TFB2が極端に短い場合には何らかの異常が発生していると考えられる。このような場合に同期制御を開始しないようにすることで、MOSトランジスタ50、51のオンオフタイミングの誤設定を回避することができる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態では、2つの固定子巻線2、3と2つの整流器モジュール群5、6を備えるようにしたが、一方の固定子巻線2と一方の整流器モジュール群5を備える車両用発電機についても本発明を適用することができる。
また、上述した実施形態では、各整流器モジュール5X等を用いて整流動作(発電動作)を行う場合について説明したが、MOSトランジスタ50、51のオン/オフタイミングを変更することにより、バッテリ9から印加される直流電流を交流電流に変換して固定子巻線2、3に供給して電動動作を行わせる車両用回転電機に本発明を適用することができる。
また、上述した実施形態では、2つの整流器モジュール群5、6のそれぞれに3つの整流器モジュールを含ませるようにしたが、整流器モジュールの数は3以外であってもよい。
上述したように、本発明によれば、上アームと下アームのそれぞれのオン期間が交互に現れることを検出することにより、上アームのMOSトランジスタ50と下アームのMOSトランジスタ51の両方が短絡していないことを確かめた後にMOSトランジスタ50、51を用いた同期整流を開始することが可能となる。
1 車両用発電機
2、3 固定子巻線
4 界磁巻線
5、6 整流器モジュール群
5X、5Y、5Z、6U、6V、6W 整流器モジュール
7 発電制御装置
8 ECU
9 バッテリ
10 電気負荷
12 充電線
50、51 MOSトランジスタ
54 制御回路
100 制御部
101 回転数演算部
102 同期制御開始判定部
103 上MOSオンタイミング判定部
104 下MOSオンタイミング判定部
105 目標電気角設定部
106 上MOS・TFB時間演算部
107 上MOSオフタイミング演算部
108 下MOS・TFB時間演算部
109 下MOSオフタイミング演算部
110 出力電圧検出部
111 ロードダンプ判定部
112 電源起動・停止判定部
113 VB 範囲判定部
114 VB 変動判定部
115 TFB時間判定部
120 上MOS VDS検出部
130 下MOS VDS検出部
150 温度検出部
160 電源

Claims (9)

  1. 2相以上の相巻線を有する電機子巻線と、
    ダイオードが並列接続されたスイッチング素子によって構成される複数の上アームおよび下アームを有するブリッジ回路を構成し、前記電機子巻線の誘起電圧を整流するスイッチング部と、
    前記スイッチング素子のオンオフタイミングを設定するオンオフタイミング設定部と、
    前記オンオフタイミング設定部によって設定されたオンオフタイミングで前記スイッチング素子を駆動するスイッチング素子駆動部と、
    前記相巻線の相電圧が第1のしきい値に達した後第2の閾値に達するまでを通電期間としたときに、前記上アームに対応する前記通電期間と前記下アームに対応する前記通電期間とが交互に到来することを検出した場合に、前記オンオフタイミング設定部と前記スイッチング素子駆動部とによって前記スイッチング素子をオンオフ制御する同期整流動作を開始するタイミングとして判定する同期制御開始判定部と、
    を備えることを特徴とする車両用回転電機。
  2. 請求項1において、
    前記同期制御開始判定部は、前記通電期間の開始タイミングに同期したカウントを行うことにより、前記上アームに対応する前記通電期間と前記下アームに対応する前記通電期間とが交互に到来することを検出することを特徴とする車両用回転電機。
  3. 請求項1または2において、
    前記同期制御開始判定部は、連続する2つの前記通電期間の間隔が電気角で1周期以下であるときに、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  4. 請求項3において、
    前記同期制御開始判定部は、交互に到来する前記通電期間の回数が、機械角で1回転に相当する回数以上であるときに、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  5. 請求項1〜4のいずれかにおいて、
    前記同期制御開始判定部は、バッテリに接続される出力端子の電圧が正常範囲として設定された所定範囲に含まれる場合に、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  6. 請求項1〜5のいずれかにおいて、
    前記スイッチング素子の過熱異常状態を検出する過熱異常検出部をさらに備え、
    前記同期制御開始判定部は、前記過熱異常検出部によって過熱異常状態が検出されていない場合に、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  7. 請求項1〜6のいずれかにおいて、
    前記同期制御開始判定部は、バッテリに接続される出力端子の電圧がサージ電圧発生の基準となる基準電圧を超えたときに、前記下アームのスイッチング素子をオンすることにより、前記出力端子の電圧を低下させる保護動作を行うロードダンプ保護部をさらに備え、
    前記同期制御開始判定部は、前記ロードダンプ保護部による保護動作中でないときに、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  8. 請求項1〜7のいずれかにおいて、
    前記同期制御開始判定部は、バッテリに接続される出力端子の電圧の所定時間あたりの変動値が所定値よりも小さい場合に、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
  9. 請求項1〜8のいずれかにおいて、
    前記オンオフタイミング設定部は、前記同期制御開始判定部によって同期整流動作を開始するタイミングとして判定される前であっても、前記スイッチング素子のオフタイミングの設定を行っており、
    前記同期制御開始判定部は、前記オフタイミングから前記通電期間の終了時点までの長さが所定値よりも長い場合に、前記同期整流動作を開始するタイミングとして判定することを特徴とする車両用回転電機。
JP2010209487A 2010-09-17 2010-09-17 車両用回転電機 Expired - Fee Related JP5464367B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010209487A JP5464367B2 (ja) 2010-09-17 2010-09-17 車両用回転電機
FR1158131A FR2965124B1 (fr) 2010-09-17 2011-09-13 Machine electrique rotative pour vehicule
DE201110053557 DE102011053557A1 (de) 2010-09-17 2011-09-13 Drehende elektrische Maschine für ein Fahrzeug
US13/235,732 US8896275B2 (en) 2010-09-17 2011-09-19 Vehicle rotary electric machine capable of safely starting synchronous rectification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209487A JP5464367B2 (ja) 2010-09-17 2010-09-17 車両用回転電機

Publications (2)

Publication Number Publication Date
JP2012065496A JP2012065496A (ja) 2012-03-29
JP5464367B2 true JP5464367B2 (ja) 2014-04-09

Family

ID=45769070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209487A Expired - Fee Related JP5464367B2 (ja) 2010-09-17 2010-09-17 車両用回転電機

Country Status (4)

Country Link
US (1) US8896275B2 (ja)
JP (1) JP5464367B2 (ja)
DE (1) DE102011053557A1 (ja)
FR (1) FR2965124B1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353725B2 (ja) * 2010-01-20 2013-11-27 株式会社デンソー 車両用発電機
JP5569295B2 (ja) * 2010-09-24 2014-08-13 株式会社デンソー 車両用回転電機
WO2014089556A1 (en) * 2012-12-07 2014-06-12 Remy Technologies, Llc Method and system for load dump protection in an electrical machine
DE102014106218B4 (de) * 2013-05-09 2021-11-25 Denso Corporation Drehende elektrische Maschine für ein Fahrzeug
DE102013208968A1 (de) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Kraftfahrzeugbordnetz mit aktivem Brückengleichrichter und Überspannungsschutz bei Lastabwurf, Gleichrichteranordnung, zugehöriges Betriebsverfahren und Mittel zu dessen Implementierung
JP6123627B2 (ja) * 2013-10-16 2017-05-10 株式会社デンソー 車両用回転電機
JP6301240B2 (ja) * 2014-02-07 2018-03-28 本田技研工業株式会社 車両用バッテリ充電装置
JP6565983B2 (ja) * 2016-09-12 2019-08-28 株式会社デンソー 回転電機の制御装置
CN114679072A (zh) * 2022-04-12 2022-06-28 电子科技大学 一种车用同步整流转速检测的直接频率跟踪方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840880B2 (ja) * 2000-06-23 2006-11-01 株式会社デンソー 界磁巻線型回転電機の制御装置
JP2004343949A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd モータ制御装置
JP3818303B2 (ja) * 2004-07-28 2006-09-06 株式会社日立製作所 ブラシレスモータの制御装置及びこの制御装置を使用した機器
JP4275704B2 (ja) 2007-03-13 2009-06-10 三菱電機株式会社 車両用電力変換装置
JP4438879B2 (ja) * 2008-03-19 2010-03-24 Tdk株式会社 同期整流型dc/dcコンバータ
JP5144406B2 (ja) * 2008-07-07 2013-02-13 三菱電機株式会社 電力変換装置及びエレベータ制御装置
JP2010104088A (ja) * 2008-10-21 2010-05-06 Seiko Epson Corp 整流制御装置、全波整流回路、受電装置、電子機器、無接点電力伝送システムおよび整流制御方法
JP4903191B2 (ja) * 2008-10-31 2012-03-28 三菱電機株式会社 車両用電力変換装置
JP5353725B2 (ja) * 2010-01-20 2013-11-27 株式会社デンソー 車両用発電機
JP5510802B2 (ja) * 2010-02-23 2014-06-04 株式会社デンソー 車両用発電機
JP5434696B2 (ja) * 2010-03-08 2014-03-05 株式会社デンソー 車両用発電機
JP4965685B2 (ja) * 2010-04-15 2012-07-04 三菱電機株式会社 車両用電力変換装置
FR2962270A1 (fr) * 2010-06-30 2012-01-06 Denso Corp Machine électrique tournante améliorée pour assurer une protection contre les coupures d'alimentation électrique
DE102011051642A1 (de) * 2010-07-09 2012-03-29 Denso Corporation Drehende elektrische Maschine mit verbessertem Last-Abwurf-Schutz
JP5569295B2 (ja) * 2010-09-24 2014-08-13 株式会社デンソー 車両用回転電機
JP5434873B2 (ja) * 2010-09-30 2014-03-05 株式会社デンソー 車両用回転電機
JP5464368B2 (ja) * 2010-10-08 2014-04-09 株式会社デンソー 車両用回転電機
JP5573585B2 (ja) * 2010-10-15 2014-08-20 株式会社デンソー 車両用回転電機
JP5573587B2 (ja) * 2010-10-20 2014-08-20 株式会社デンソー 車両用回転電機

Also Published As

Publication number Publication date
JP2012065496A (ja) 2012-03-29
US20120068671A1 (en) 2012-03-22
FR2965124B1 (fr) 2016-02-05
FR2965124A1 (fr) 2012-03-23
DE102011053557A1 (de) 2012-03-22
US8896275B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
JP5464367B2 (ja) 車両用回転電機
JP5573587B2 (ja) 車両用回転電機
JP5434873B2 (ja) 車両用回転電機
JP5569295B2 (ja) 車両用回転電機
JP5573585B2 (ja) 車両用回転電機
JP5464368B2 (ja) 車両用回転電機
JP5641448B2 (ja) 車両用回転電機
JP5447261B2 (ja) 車両用発電機
JP5846139B2 (ja) 車両用回転電機
JP5966980B2 (ja) 車両用回転電機
JP5494445B2 (ja) 車両用回転電機
JP5594306B2 (ja) 車両用回転電機
JP5488265B2 (ja) 車両用発電機
JP5924229B2 (ja) 車両用回転電機
JP5846142B2 (ja) 車両用回転電機
JP5408060B2 (ja) 車両用発電機
JP5896298B2 (ja) 車両用回転電機
JP2015106943A (ja) 車両用回転電機
JP6119531B2 (ja) 車両用回転電機
JP5585270B2 (ja) 車両用発電機
JP2014087195A (ja) 車両用回転電機
JP5751227B2 (ja) 車両用回転電機
JP5828404B2 (ja) 車両用回転電機
JP6406143B2 (ja) 車両用回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R151 Written notification of patent or utility model registration

Ref document number: 5464367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees