WO2016148176A1 - ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法 - Google Patents

ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法 Download PDF

Info

Publication number
WO2016148176A1
WO2016148176A1 PCT/JP2016/058276 JP2016058276W WO2016148176A1 WO 2016148176 A1 WO2016148176 A1 WO 2016148176A1 JP 2016058276 W JP2016058276 W JP 2016058276W WO 2016148176 A1 WO2016148176 A1 WO 2016148176A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
photosensitive resin
positive photosensitive
cured film
Prior art date
Application number
PCT/JP2016/058276
Other languages
English (en)
French (fr)
Inventor
此島陽平
日比野利保
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016515557A priority Critical patent/JPWO2016148176A1/ja
Publication of WO2016148176A1 publication Critical patent/WO2016148176A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders

Definitions

  • the present invention relates to a positive photosensitive resin composition, a cured film obtained by curing the positive photosensitive resin composition, a TFT substrate having the cured film, an interlayer insulating film having the cured film, and a display device including the TFT substrate and / or the interlayer insulating film. And a manufacturing method thereof.
  • various insulating films and passivation films in a TFT (Thin FILM Transistor) manufacturing process are generally formed by CVD of a highly insulating inorganic material such as silicon carbide, silicon nitride, aluminum oxide, tantalum oxide, or titanium oxide.
  • the film is manufactured by the method.
  • the CVD method is expensive, a photosensitive organic insulating material that can be manufactured by a photolithography method that is less expensive than the CVD method has been actively studied (Patent Documents 1 to 3).
  • Patent Document 4 a transparent insulating film obtained by combining a metal oxide such as titanium oxide or zirconium oxide with siloxane or acrylic resin has been studied.
  • the present invention provides a positive type photosensitive film that can obtain a cured film and a display device that have remarkably little development residue, high transparency, high chemical resistance, high dielectric constant, and low leakage current (high insulation). It is an object to provide a conductive resin composition.
  • a positive photosensitive resin composition having the configurations described in [1] to [14] below.
  • a positive photosensitive resin composition comprising a group compound.
  • the aromatic compound (C) having a hydroxyl group and / or a thiol group has at least one of a phenyl group, a fluorene group, and a naphthyl group, and has a phenolic hydroxyl group and / or a thiophenol group.
  • a positive photosensitive resin composition is represented by the general formula (1) and / or the general formula (2).
  • .l 1 representing at least one having organic groups a group selected from an organic group of up to R 1 ⁇ R 5 a hydrogen atom or a C 1-20 each independently l 2 represents an integer of 0 to 4.
  • l 1 and l 2 may be the same or different, m 1 and m 2 represent an integer of 0 to 4.
  • m 1 and m 2 are the same or different.
  • P, q, and r are each an integer of 0 to 10.
  • X is a divalent to octavalent organic group having at least one group selected from a hydroxyl group and a thiol group.
  • R 6 is a 4 to 14 valent organic group
  • R 7 is a 2 to 12 valent organic group
  • R 8 and R 9 are each independently a hydrogen atom, a phenolic hydroxyl group, a carboxyl group
  • the metal oxide particles (A) contain at least one selected from titanium, zirconium, barium, tungsten, tantalum, and yttrium, and have a particle diameter of 1 nm to 30 nm [1] to [5]
  • the positive photosensitive resin composition according to any one of the above.
  • Photosensitive resin composition. [8] A cured film obtained by curing the positive photosensitive resin composition according to any one of [1] to [7].
  • a TFT substrate comprising the cured film according to [8] or [9].
  • An interlayer insulating film comprising the cured film according to [8] or [9].
  • a display device having at least one of a TFT substrate and an interlayer insulating film, wherein the TFT substrate and the interlayer insulating film have the cured film according to claim 8 or 9.
  • the display device according to [12] comprising the interlayer insulating film according to [11] between the transparent electrodes.
  • a transparent insulating film having significantly less residue during alkali development, good pattern processability, and high dielectric constant, insulation and chemical resistance is obtained. It is done. Furthermore, a thin film transistor substrate having a transparent insulating film having a high dielectric constant, insulating properties, and chemical resistance can be manufactured.
  • the positive photosensitive resin composition of the present invention comprises (A) metal oxide particles, (B) one or more polymers selected from (B) polyimide precursor, polybenzoxazole precursor, polyimide, and polybenzoxazole, (C) An aromatic compound having a hydroxyl group and / or a thiol group is contained.
  • the positive photosensitive resin composition of the present invention contains (A) at least one metal oxide particle composed of any metal element of titanium, zirconium, barium, tantalum, yttrium, or hafnium as metal oxide particles. It is preferable to do. These metal oxide particles have a common relative dielectric constant (hereinafter referred to as ⁇ r ) of 20 or more.
  • ⁇ r common relative dielectric constant
  • the metal oxide particles may be composite metal oxide particles containing two or more metals included in the group of metals. Further, (A) the metal oxide particles may be a mixture of metal oxide particles having different compositions.
  • (A) As a method for measuring the relative dielectric constant of metal oxide particles, a coaxial probe method capable of measuring a powder of metal oxide particles as it is, a pellet is formed by pressing a powder, and sandwiched between two electrodes Examples include the parallel plate capacitor method to be measured. These measurement methods can be measured by using an impedance analyzer (such as Agilent 4294A) or an LCR meter (such as Agilent 4285A) and a dedicated jig (such as Agilent 85070E or 16451B / 16453A).
  • an impedance analyzer such as Agilent 4294A
  • an LCR meter such as Agilent 4285A
  • a dedicated jig such as Agilent 85070E or 16451B / 16453A.
  • Examples of the metal oxide particles (A) include titanium oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, yttrium oxide, and zirconium oxide particles.
  • distribution technique in a nanometer level is advancing, and each particle
  • the particle diameter of the metal oxide particles is preferably 1 nm to 30 nm as the number average particle diameter.
  • the number average particle diameter is preferably 1 nm or more, more preferably 3 nm or more in that the crystal structure of the metal oxide particles is maintained, the relative dielectric constant as expressed by the theoretical value is exhibited, and the relative dielectric constant of a cured film or the like can be improved.
  • 30 nm or less is preferable at the point which can improve the transparency, homogeneity, and insulation of a cured film.
  • the number average particle diameter of the metal oxide particles may be calculated from the specific surface area of the metal oxide.
  • Specific surface area is defined as the sum of the surface areas contained in a unit mass of powder.
  • a specific method for measuring the specific surface area is the BET method, which can be measured using a specific surface area measuring device (such as HM model 1201 manufactured by Mounttech).
  • the metal oxide particles may be surface-modified for the purpose of improving the dispersibility in the positive photosensitive resin composition.
  • the surface modification include coating with silicon oxide and coating with a surface modifier, which is an organic compound having an alkoxysilyl group, an isocyanate group, or a carboxyl group.
  • the content of the (A) metal oxide particles in the positive photosensitive resin composition of the present invention is preferably 30% by mass or more and more preferably 50% by mass or more with respect to all components other than the organic solvent.
  • Metal oxide particles can be pulverized or dispersed using a disperser such as a bead mill by procuring a powder of particles having an appropriate size.
  • a disperser such as a bead mill by procuring a powder of particles having an appropriate size.
  • commercially available nanoparticle powders include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.) or STR-100N. (Titanium oxide; manufactured by Sakai Chemical Industry Co., Ltd.).
  • the metal oxide particles can also be obtained as a dispersion dispersed in a liquid.
  • silicon oxide-titanium oxide particles include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” “TR-520", “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529, “Optlake” TR-544 or “Optlake” TR-550 Kogyo Co., Ltd.).
  • Nanouse registered trademark
  • the positive photosensitive resin composition of the present invention contains at least one polymer selected from (B) a polyimide precursor, a polybenzoxazole precursor, polyimide, and polybenzoxazole.
  • polyimide is preferably used from the viewpoint of chemical resistance. More preferably, a polyimide having a structural unit represented by the general formula (3) is used.
  • the polyimide precursor and the polybenzoxazole precursor have a structural unit represented by the following general formula (4). Two or more of these may be contained, or a resin obtained by copolymerizing the structural unit represented by the general formula (3) and the structural unit represented by the following general formula (4) may be used.
  • R 10 represents a divalent to octavalent organic group
  • R 11 represents a divalent to octavalent organic group
  • R 12 and R 13 represent a phenolic hydroxyl group, a sulfonic acid group, a thiol group, or COOR 14 may be single or different
  • R 14 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, j and k being 0 Represents an integer of ⁇ 6, where j + k> 0.
  • R 10- (R 12 ) i represents an acid residue.
  • R 10 is a divalent to octavalent organic group, and from the viewpoint of chemical resistance, R 10 is preferably an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group.
  • At least one polymer selected from (B) a polyimide precursor, a polybenzoxazole precursor, and a polyimide has 5 to 100,000 as a structural unit.
  • R 6- (R 8 ) s represents a structural component of the acid dianhydride and represents a residue of the acid dianhydride.
  • R 6 is a 4- to 14-valent organic group, and among these, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable from the viewpoint of chemical resistance.
  • pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride
  • Anhydride 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2 ', 3,3'-benzophenone Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dian
  • R 15 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 16 and R 17 each independently represents a hydrogen atom, a hydroxyl group or a thiol group.
  • the acid component examples include dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis (carboxyphenyl) hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid.
  • dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis (carboxyphenyl) hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid.
  • tetracarboxylic acids such as acid, trimesic acid, diphenyl ether tricarboxylic acid, biphenyl tricarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 2,2 ′, 3,3′-benzophenone tetracarboxylic acid, 2 , 2-bis (3,4-dica Boxyphenyl) hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis (2,3- Dicarboxy
  • R 15 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 16 and R 17 each represent a hydrogen atom, a hydroxyl group or a thiol group.
  • one or two carboxy groups correspond to the R 12 group in the general formula (4).
  • the hydrogen atoms of the dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid exemplified above are substituted with R 12 groups, hydroxyl groups, sulfonic acid groups, thiol groups, etc. More preferred is substitution of ⁇ 4.
  • These acids can be used as they are, or as acid anhydrides and active esters.
  • R 11 of (R 9) t and the general formula (4) - - R 7 in the general formula (3) (R 13) j represents the residue of a diamine.
  • R 7 and R 11 are each a divalent to octavalent organic group, and among them, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable from the viewpoint of chemical resistance.
  • diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzine, m-phenylenediamine, p -Phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) bipheny
  • R 15 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 16 to R 19 each represent a hydrogen atom, a hydroxyl group or a thiol group.
  • Preferred examples of such monoamines include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy- 4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4- Aminobenzoic acid, 4-aminosalicylic acid, 5-amino Lithic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-a
  • acid anhydrides examples include acids such as phthalic anhydride, maleic anhydride, nadic acid anhydride, cyclohexanedicarboxylic acid anhydride, and 3-hydroxyphthalic acid anhydride.
  • the content of the end-capping agent such as monoamine, acid anhydride, acid chloride, and monocarboxylic acid described above is based on 100 mol% of the total acid and amine components constituting the resin from the viewpoint of solubility in the developer. From 2 to 25 mol% is preferable.
  • the end-capping agent introduced into the resin can be easily detected by the following method.
  • a resin into which an end-capping agent has been introduced is dissolved in an acidic solution and decomposed into an amine component and an acid component, which are constituent units of the resin, and this is measured by gas chromatography (GC) or 13 C-NMR measurement.
  • GC gas chromatography
  • 13 C-NMR measurement 13 C-NMR measurement.
  • PPC pyrolysis gas chromatography
  • a method for producing a polyimide precursor for example, a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature, a diester is obtained by tetracarboxylic dianhydride and an alcohol, and then reacting in the presence of an amine and a condensing agent And a method in which a diester is obtained by tetracarboxylic dianhydride and an alcohol, and then the remaining dicarboxylic acid is acid chlorideed and reacted with an amine.
  • the production method can be obtained by subjecting a bisaminophenol compound and a dicarboxylic acid to a condensation reaction. Specifically, a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC) is reacted with an acid, and a bisaminophenol compound is added thereto, or a solution of a bisaminophenol compound added with a tertiary amine such as pyridine is added to a dicarboxylic acid. There is a method of dropping a solution of dichloride.
  • a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC)
  • DCC dicyclohexylcarbodiimide
  • the polyimide precursor obtained by the above-mentioned method can be obtained by dehydration and ring closure by heating or chemical treatment such as acid or base.
  • polybenzoxazole it can be obtained by subjecting the polybenzoxazole precursor obtained by the above method to dehydration and ring closure by heating or chemical treatment such as acid or base.
  • the (B) polyimide precursor, polybenzoxazole precursor, polyimide, and polybenzoxazole of the present invention is preferably a polyimide because it can be fired at a low temperature.
  • the polyimide precursor needs to be baked at 250 ° C. or higher, and the polybenzoxazole precursor has to be baked at 300 ° C. or higher.
  • polyimide may have a closed ring structure, sufficient heat resistance and mechanical properties can be obtained even when firing at 200 ° C. or lower.
  • the positive photosensitive resin composition of the present invention contains (C) an aromatic compound having a hydroxyl group and / or a thiol group (hereinafter sometimes referred to as compound (C)).
  • compound (C) an aromatic compound having a hydroxyl group and / or a thiol group
  • the solubility of the exposed portion of the film formed from the positive photosensitive composition in the developer can be improved, and the residue can be reduced.
  • these compounds (C) have any of a phenyl group, a fluorene group, and a naphthyl group, and have a phenolic hydroxyl group and / or a thiophenol group. It is preferable that Further, from the viewpoint of contrast by suppressing solubility in a developing solution in an unexposed area, a compound having the structure of the above general formula (1) and / or general formula (2) is more preferable.
  • BPFL bisphenol fluorene
  • BCF biscresol fluorene
  • BPEF bisphenoxyethanol fluorene
  • fluorene group-containing resins WR-301 and V-259ME examples include the following compounds. Examples include, but are not limited to, bisphenol fluorene (BPFL), biscresol fluorene (BCF), bisphenoxyethanol fluorene (BPEF), and fluorene group-containing resins WR-301 and V-259ME.
  • the content of the compound (C) in the positive photosensitive resin composition of the present invention is not particularly limited, but is preferably 1 part by mass or more with respect to 100 parts by mass of the (A) metal oxide particles from the viewpoint of reducing development residue. 3 parts by mass or more is more preferable. Moreover, 50 mass parts or less are preferable from a viewpoint of maintaining the ratio of the metal oxide particle in a cured film, and achieving a high dielectric constant and a low leak current characteristic, and 20 mass parts or less are more preferable.
  • the positive photosensitive resin composition of the present invention may contain a quinonediazide compound in order to impart photosensitivity.
  • a quinonediazide compound By containing the quinonediazide compound, it is possible to impart positive photosensitivity in which the exposed portion is removed with a developer.
  • the quinonediazide compound a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
  • one or more naphthoquinonediazide compounds can be used in combination.
  • the quinonediazide compound can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
  • a compound having a phenolic hydroxyl group As the naphthoquinone diazide sulfonic acid chloride used as a raw material, 4-naphthoquinone diazide sulfonic acid chloride or 5-naphthoquinone diazide sulfonic acid chloride can be used. Since 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide wavelength range and is therefore suitable for exposure in a wide wavelength range. It is preferable to select a 4-naphthoquinone diazide sulfonic acid ester compound or a 5-naphthoquinone diazide sulfonic acid ester compound depending on the wavelength to be exposed. A combination of 4-naphthoquinone diazide sulfonic acid ester compound and 5-naphthoquinone diazide sulfonic acid ester compound can also be used.
  • the content of the quinonediazide compound in the positive photosensitive resin composition of the present invention is not particularly limited, but from the viewpoint of resolution, it is preferably 1 part by mass or more with respect to 100 parts by mass of (A) metal oxide particles, and 15 parts by mass. The above is more preferable. Moreover, 90 mass parts or less are preferable from a viewpoint which suppresses the coloring with the compatibility loss at the time of a polymer and decomposition
  • the positive photosensitive resin composition of the present invention may contain a thermal crosslinking agent in order to improve chemical resistance. Since such a thermal crosslinking agent has a crosslinking reaction temperature lower than 250 ° C. and a high crosslinking reactivity, the chemical resistance of the resulting cured film can be improved. In particular, even when baked at a low temperature of 250 ° C. or lower, a cured film having sufficient chemical resistance can be obtained.
  • thermal cross-linking agent used in the present invention examples include ML-26X, ML-24X, ML-236TMP, 4-methylol 3M6C, ML-, which have one group represented by the following general formula (5).
  • MC ML-TBC (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and the like.
  • DML-MBPC having two groups represented by the following general formula (5) DML-MBOC, DML-OCHP, DML-PC, DML-PCHP, DML-PTBP, DML-34X, DML-EP, DML-POP, DML-OC, dimethylol-Bis-C, dimethylol-BisOC-P, DML- BisOC-Z, DML-BisOCHP-Z, DML-PFP, DML-PSBP, DML-MB25, DML-MTrisPC, DML-Bis25X-34XL, DML-Bis25X-PCHP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.) ), Nikarac MX-290 (trade name, manufactured by Sanwa Chemical Co., Ltd.) 2,6-dimethoxymethyl-4-t-
  • TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), TML-BP, TML-HQ, TML-pp-BPF, having four groups represented by the following general formula (5)
  • Examples include TML-BPA, TMOM-BP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), Nicalak MX-280, Nicalac MX-270 (all trade name, manufactured by Sanwa Chemical Co., Ltd.), and the like.
  • HML-TPPHBA, HML-TPHAP, HMOM-HAP above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Nicarak MW-100LM above, etc. having 6 groups represented by the following general formula (5) Trade name, manufactured by Sanwa Chemical Co., Ltd.).
  • R 20 represents an organic group having 1 to 6 carbon atoms.
  • those containing 2 to 4 groups represented by the above general formula (5) are preferable, and particularly preferably those having two groups represented by the above general formula (5).
  • 46DMOC, 46DMOEP above, trade name, manufactured by Asahi Organic Materials Co., Ltd.
  • DML-MBPC DML-MBOC
  • DML-OCHP DML-PC
  • DML-PCHP DML-PTBP
  • DML-34X DML-EP
  • DML-POP dimethylol-BisOC-P
  • DML-PFP DML-PSBP
  • DML-MTrisPC trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Nicalak MX-290 trade name, Sanwa Co., Ltd.
  • 2,6-dimethoxymethyl-4-t-butylphenol 2,6-dimethoxymethyl-p-cresol
  • 2,6-diacetoxy There is a methyl -p- cresol.
  • TriML-P and TriML-35XL (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.) have three groups represented by the general formula (5).
  • TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), TML-pp-BPF, TML-BPA, TMOM-BP (having four groups represented by the general formula (5))
  • there are trade names, manufactured by Honshu Chemical Industry Co., Ltd., Nikarac MX-280, and Nikalac MX-270 (trade names, manufactured by Sanwa Chemical Co., Ltd.).
  • DML-PC, DML-PTBP, Nicalak MX-270, and Nicalak MX-280 which are compounds having the group represented by the above general formula (5), are more preferable.
  • the thermal cross-linking agent is mixed with an unsubstituted one or a large amount, the cross-linking of the resin composition may not sufficiently proceed.
  • the purity of the thermal crosslinking agent of this invention is 80% or more, and it is more preferable in it being 95% or more. If the purity is 80% or higher, the crosslinking reaction of the resin composition can be sufficiently performed to reduce the number of unreacted groups that are water-absorbing groups, so that the water absorption of the resin composition can be reduced.
  • a method of collecting only the target product by recrystallization, distillation or the like can be mentioned.
  • the purity of the thermal crosslinking agent can be determined by a liquid chromatography method.
  • the positive photosensitive resin composition of the present invention may contain a solvent.
  • the solvent is preferably an alcoholic compound, an ester compound or an ether compound in order to uniformly dissolve each component of the composition.
  • examples of the solvent include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diacetone alcohol, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, and 3-methoxy-3-methylbutanol.
  • 3-methoxy-3-methylbutanol acetate 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, ethyl acetoacetate or ⁇ -butyrolactone is mentioned.
  • the positive photosensitive resin composition of the present invention may contain a surfactant.
  • the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether.
  • Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants
  • a surfactant made of a polymer is exemplified.
  • Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-352, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Silicone surfactants such as Japan Co., Ltd.).
  • the positive photosensitive resin composition of the present invention may contain an additive such as a stabilizer or an antifoaming agent as necessary.
  • the solid concentration of the positive photosensitive resin composition of the present invention may be appropriately determined according to the coating method and the like, but the solid concentration is generally 1 to 50% by mass or less.
  • the following method is exemplified as a typical production method of the positive photosensitive resin composition of the present invention.
  • A A dispersion of metal oxide particles is weighed, and a solvent is added to the dispersion if necessary and stirred.
  • Compound (C) and other additives are added to the mixture in a suitable solvent and dissolved by stirring. Thereafter, the polymer (B) is added and further stirred for 20 minutes to 3 hours. In order to remove foreign substances as necessary, the obtained solution is filtered to obtain a positive photosensitive resin composition.
  • the positive photosensitive resin composition of the present invention is applied onto a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating, A film is formed by prebaking with a heating device such as an oven. Pre-baking is performed at 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • an exposure tool such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (hereinafter referred to as PLA) to apply light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure dose conversion) to the desired mask. Irradiate through or without.
  • the exposure light source is not limited, and ultraviolet rays such as i-line, g-line, or h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, or the like can be used.
  • post-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven.
  • the exposed portion is dissolved by development, and a positive pattern can be obtained.
  • a developing method a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable.
  • the developer include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates, and borates; amines such as 2-diethylaminoethanol, monoethanolamine, and diethanolamine; and tetra Examples thereof include an aqueous solution containing a quaternary ammonium salt such as methylammonium hydroxide or choline.
  • the film is preferably rinsed with water, and then dried and baked at 50 to 150 ° C. Thereafter, this film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured film.
  • the thickness of the resulting cured film can be adjusted and used in the range of 0.1 to 10 ⁇ m depending on the application.
  • the transmittance at a wavelength of 400 to 800 nm when the film thickness is 0.3 ⁇ m is 90% or more
  • the leakage current is 10 ⁇ 6 A / cm 2 or less
  • the ratio The dielectric constant is preferably 6.0 or more.
  • the obtained cured film needs to sufficiently transmit visible light in order to impart performance of a display element such as a liquid crystal display, and the transmittance at a wavelength of 400 to 800 nm is preferably 80% or more.
  • the cured film obtained by curing the positive photosensitive resin composition of the present invention includes a touch panel protective film, various hard coat materials, a TFT substrate planarizing film, a color filter overcoat, an antireflection film, a passivation film, and the like. These can be used for various protective films and optical filters, insulating films for touch panels, insulating films for TFT substrates, photo spacers for color filters, gate insulating films for TFT substrates, interlayer insulating films, and the like. In particular, it can be suitably used for a TFT substrate by taking advantage of a high relative dielectric constant, insulation, chemical resistance and resolution, and can be suitably used as a gate insulating film for TFT substrate and an interlayer insulating film. That is, the TFT substrate of the present invention has the cured film of the present invention.
  • the interlayer insulating film of the present invention is characterized by having the cured film of the present invention.
  • interlayer insulating film refers to a film that obstructs current conduction between electrodes.
  • electrodes include, but are not limited to, transparent electrodes such as ITO, zinc oxide and tin oxide, and mesh electrodes using gold, silver, copper and the like.
  • the TFT substrate of the present invention and the interlayer insulating film of the present invention can be suitably used for display devices. That is, the display device of the present invention includes the TFT substrate of the present invention and / or the interlayer insulating film of the present invention. Further, the interlayer insulating film of the present invention can be suitably used between the transparent electrodes of the display device.
  • the TFT substrate of the present invention and the interlayer insulating film of the present invention can be suitably used in a method for manufacturing a display device. That is, the manufacturing method of the display device of the present invention is characterized by comprising the TFT substrate of the present invention and / or the interlayer insulating film of the present invention.
  • DAA diacetone alcohol
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • EAA ethyl acetoacetate
  • MEK methyl ethyl ketone
  • TMAH tetramethylammonium hydroxide
  • MEA monoethanolamine
  • DMSO dimethyl sulfoxide.
  • dispersions (A1 to A3) of (A) metal oxide particles having the composition shown in Table 1 were prepared.
  • Synthesis Example 2 Preparation of Titanium Oxide Dispersion (A2) 13.7 g of methyltrimethoxysilane (KBM-13; manufactured by Shin-Etsu Chemical Co., Ltd.), 6.59 g of trimethoxysilane succinic anhydride (KBM-967TR-) 1; manufactured by Shin-Etsu Chemical Co., Ltd.), 31.2 g of naphthyltrimethoxysilane (Z6874; manufactured by Toray Dow Corning Co., Ltd.), 0.026 g of phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and purified water (Wa 14.0 g of Mitsuru Pure Chemical Co., Ltd.) was charged and stirred at 40 ° C.
  • KBM-13 methyltrimethoxysilane
  • KBM-967TR- trimethoxysilane succinic anhydride
  • Z6874 manufactured by Toray Dow Corning Co., Ltd.
  • the temperature of the oil bath was set to 70 ° C., and a mixture of 254 g of titanium oxide nanoparticles (“Optlake” TR-550; manufactured by Catalytic Chemical Co., Ltd.) and 130 g of DAA was added dropwise over about 30 minutes.
  • the temperature of the oil bath was set to 120 ° C., and after the temperature in the flask reached 100 ° C., the mixture was stirred for 3 hours, and then the heating was stopped to complete the reaction.
  • the flask was ice-cooled and cooled to room temperature, an anion exchange resin and a cation exchange resin were added, and the mixture was stirred for 10 hours. Finally, the ion exchange resin was removed by filtration to obtain a titanium oxide dispersion (A2) which is a silane-modified titania sol.
  • Synthesis Example 3 Preparation of Silane Modified Barium Titanate Dispersion (A3) 340 g DAA, 5 g 2-acryloyloxyethyl-phthalic acid (HOA-MPL; manufactured by Kyoeisha Chemical Co., Ltd.) and 97 g barium titanate particles (T -BTO-020RF; manufactured by Toda Kogyo Co., Ltd .; number average particle size 20 nm).
  • the temperature of the oil bath was set to 70 ° C. and stirred for 1 hour. After 1 hour, the temperature of the oil bath was set to 120 ° C, and after the temperature in the flask reached 100 ° C, the mixture was stirred for 3 hours, and then the heating was stopped to complete the reaction. After completion of the reaction, the flask was cooled with ice and cooled to room temperature, an anion exchange resin was added, and the mixture was stirred for 10 hours. Finally, the ion exchange resin was removed by filtration to obtain a silane-modified barium titanate sol (A3).
  • A3 silane-modified barium titanate sol
  • Synthesis Example 4 Synthesis of hydroxyl group-containing diamine compound 18.3 g (0.05 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF; manufactured by Central Glass Co., Ltd.) was added to acetone. 100 mL and 17.4 g (0.3 mol) of propylene oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved and cooled to ⁇ 15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of acetone was added dropwise thereto. After completion of dropping, the mixture was stirred at ⁇ 15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
  • BAHF 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • Synthesis Example 7 Synthesis of Polybenzoxazole Precursor (B3) 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF; manufactured by Central Glass Co., Ltd.) under a dry nitrogen stream 3 g (0.05 mol) was dissolved in 50 g of NMP and 26.4 g (0.3 mol) of glycidyl methyl ether, and the temperature of the solution was cooled to ⁇ 15 ° C.
  • BAHF Polybenzoxazole Precursor
  • quinonediazide compound (P1) TrisP-HAP (manufactured by Honshu Chemical Industry Co., Ltd.), 15.31 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl chloride 40.28 g under a dry nitrogen stream. (0.15 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this, 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. After dropping, the mixture was stirred at 30 ° C. for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (P1) represented by the following formula.
  • BYK-333 (manufactured by Big Chemie Japan) was used as the surfactant.
  • Example 1 Under yellow light, 2.236 g of the zirconia dispersion (A1) was diluted with 0.245 g of EAA and 2.975 g of EL, 0.952 g of PGMEA to give 0.170 g of polyimide polymer (B1), 0 104 g quinonediazide compound (P1), 0.052 g thermal crosslinking agent (MX-270), 0.021 g phenolic compound (BPFL), 0.005 g polymerization inhibitor (Irganox 245), 0.140 g surface activity An agent (a 1% by mass solution of BYK-333 in PGMEA (corresponding to a concentration of 200 ppm)) was added and stirred.
  • the obtained positive photosensitive resin composition was evaluated by the following methods.
  • Table 1 shows the composition of the obtained positive photosensitive resin composition (1), and Table 3 shows the results of each evaluation.
  • parenthesis in Table 1 shows the mass%.
  • the resin composition was spin-coated on a substrate using a spin coater (1H-360S; manufactured by Mikasa Co., Ltd.) and then heated at 90 ° C. using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.). Pre-baking was performed for 2 minutes to prepare a pre-baked film having a thickness of 0.50 ⁇ m.
  • a glass substrate hereinafter referred to as ITO substrate
  • ITO substrate a glass substrate (hereinafter referred to as ITO substrate) provided with an ITO thin film was used.
  • the resulting pre-baked film was exposed at 2000 J / m 2 with a gap of 100 ⁇ m through a gray scale mask having a transmittance of 1 to 60% using PLA as an ultrahigh pressure mercury lamp as a light source.
  • TMAH aqueous 2.38 mass% tetramethylammonium hydroxide
  • the exposure amount that forms a 100 ⁇ m line-and-space pattern in a one-to-one width after exposure and development was defined as the optimum exposure amount.
  • the exposure amount was measured with an I-line illuminometer.
  • the minimum pattern dimension ( ⁇ m) after development at the optimum exposure amount was measured and used as the resolution.
  • the resin composition was spin-coated on a 5 cm square Tempax glass substrate (manufactured by AGC Techno Glass Co., Ltd.) using a spin coater and then pre-baked at 90 ° C. for 2 minutes using a hot plate. A 40 ⁇ m pre-baked film was prepared. The obtained pre-baked film was subjected to shower development with a 2.38% TMAH aqueous solution for 60 seconds using an automatic developing device, then rinsed with water for 30 seconds, and then exposed to the whole surface with an ultrahigh pressure mercury lamp at 2000 J / m 2 . Finally, it was baked for 30 minutes at 230 ° C. in air using an oven (IHPS-222; manufactured by Espec Corp.) to produce a cured film having a thickness of 0.3 ⁇ m.
  • IHPS-222 manufactured by Espec Corp.
  • the transmittance (%) at 400 to 800 nm was measured using an ultraviolet-visible spectrophotometer (UV-260; manufactured by Shimadzu Corporation), and the lowest value between 400 and 800 was measured. The transmittance was evaluated at 800 nm.
  • a pre-baked film having a film thickness of 0.40 ⁇ m was produced by the same method as the evaluation of pattern processability.
  • the obtained pre-baked film was shower-developed with a 2.38 mass% TMAH aqueous solution for 60 seconds using an automatic developing device, then rinsed with water for 30 seconds, and then exposed at 2000 J / m 2 with an ultrahigh pressure mercury lamp.
  • the obtained cured film is immersed in a 5.0 mass% oxalic acid aqueous solution for 5 minutes at room temperature, washed with water for 1 minute, and then adhered to the ITO cured film according to JIS K5600-5-6 (established in 1999). Sex was evaluated.
  • the obtained cured film was cut vertically and horizontally at 1 mm intervals using a cutter knife to produce 100 squares of 1 mm ⁇ 1 mm.
  • an eraser JIS S6050 (2002) Revision and 2008 supplement 1) Passed product
  • the peeled area ratio was classified into 5 stages, and 3 or more was regarded as acceptable.
  • the cured film obtained after immersion in chemicals was measured for film thickness ( ⁇ m) with a surfcom stylus type film thickness measuring device, and then aluminum (purity 99.99% or more) on the cured film with a vacuum deposition device. was deposited on an area of about 1 cm 2 to obtain a measurement sample.
  • Each electrode terminal is brought into contact with aluminum and ITO, and a leakage current (log [A / cm 2 ]) is measured after application for 60 seconds at 15 V using a semiconductor measuring device (KEITHLEY4200-SCS; manufactured by Keithley Instruments). did.
  • a measurement sample was prepared by the same method as the insulation evaluation. Each electrode terminal is brought into contact with aluminum and ITO, respectively, and the capacitance at a frequency of 1 MHz in the measurement target area is measured with an impedance analyzer (4294A; manufactured by Agilent Technologies) and a sample holder (16451B; manufactured by Agilent Technologies). ). The relative dielectric constant was calculated as the relative dielectric constant from the dimensions of the capacitance and the measurement target region.
  • a pre-baked film having a film thickness of 0.40 ⁇ m was produced by the same method as the evaluation of pattern processability.
  • the resulting pre-baked film was exposed at 2000 J / m 2 with a gap of 100 ⁇ m through a gray scale mask having a transmittance of 1 to 60% using PLA as an ultrahigh pressure mercury lamp as a light source.
  • an automatic developing device AD-2000; manufactured by Takizawa Sangyo Co., Ltd.
  • shower development is performed for 60 seconds with an aqueous 2.38 mass% tetramethylammonium hydroxide (hereinafter, TMAH) solution, followed by rinsing with water for 30 seconds. did.
  • TMAH aqueous 2.38 mass% tetramethylammonium hydroxide
  • Residual area ratio is less than 5% 4: Residual area ratio is 5-14% 3: Residual area ratio is 15-24% 2: Residual area ratio is 25 to 49% 1: Residual area ratio is 50 to 64% 0: Residual area ratio 65 to 100%.
  • a TFT substrate having the structure shown in FIG. 1 was produced.
  • a gate electrode 2 was formed on a glass substrate 1 (thickness 0.7 mm) by vacuum evaporation of chromium with a thickness of 5 nm and then gold with a thickness of 50 nm through a metal mask by a resistance heating method.
  • the positive photosensitive resin composition was spin-coated and prebaked at 90 ° C. for 2 minutes using a hot plate to prepare a prebaked film having a thickness of 0.40 ⁇ m.
  • the obtained pre-baked film was subjected to shower development with a 2.38% TMAH aqueous solution for 60 seconds using an automatic developing device, then rinsed with water for 30 seconds, and exposed to the whole surface with an ultrahigh pressure mercury lamp at 2000 J / m 2 . Finally, baking was performed in air at 230 ° C. for 30 minutes using an oven (IHPS-222; manufactured by Espec Corp.) to obtain a gate insulating film having a film thickness of 0.3 ⁇ m. On the substrate 1 on which the gate insulating layer 3 was formed, gold was vacuum deposited so as to have a thickness of 50 nm. Next, a positive resist solution was dropped and applied using a spinner, and then dried on a hot plate at 90 ° C.
  • the obtained resist film was irradiated with ultraviolet rays through a photomask using an exposure machine. Subsequently, the substrate was immersed in an alkaline aqueous solution, the ultraviolet irradiation part was removed, and a resist film patterned into an electrode shape was obtained. The obtained substrate was immersed in a gold etching solution (manufactured by Aldrich, Gold etchant, standard), and the gold in the portion where the resist film was removed was dissolved and removed. The obtained substrate was immersed in acetone, the resist was removed, washed with pure water, and dried on a hot plate at 100 ° C. for 30 minutes. Thus, gold source / drain electrodes 4 and 5 having an electrode width (channel width) of 0.2 mm, an electrode interval (channel length) of 20 ⁇ m, and a thickness of 50 nm were obtained.
  • poly-3-hexylthiophene (P3HT, manufactured by Aldrich, regioregular) is applied to the substrate on which the electrode is formed by an inkjet method, and heat treatment is performed on a hot plate at 150 ° C. for 30 minutes in a nitrogen stream.
  • P3HT poly-3-hexylthiophene
  • PIJL-1 manufactured by Cluster Technology Co., Ltd.
  • Table 1 shows the composition of the obtained positive photosensitive resin composition
  • Table 3 shows the evaluation results.
  • Example 2 to Example 3 (A) Positive type photosensitive resin compositions were obtained in the same manner as in Example 1 except that the metal oxide particles were changed to A2 or A3, and evaluated in the same manner as in Example 1. Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 4 to Example 5 A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the polymer was changed to B2 or B3, and the same evaluation as in Example 1 was performed.
  • Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 6 to Example 7 (C) In the same manner as in Example 1, except that the compound having any one of a phenyl group, a fluorene group, and a naphthyl group and having a phenolic hydroxyl group and / or a thiophenol group is replaced with C2 or C3, Each photosensitive resin composition was obtained and evaluated in the same manner as in Example 1. Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 8> A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the quinonediazide compound was changed to P2, and the same evaluation as in Example 1 was performed. Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 9 A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the quinonediazide compound was changed to a combination of P1 and P2, and the same evaluation as in Example 1 was performed.
  • Table 1 shows the composition of the obtained positive photosensitive resin composition
  • Table 3 shows the evaluation results.
  • Example 10 to Example 11 A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the thermal crosslinking agent Nicalac MX-270 was changed to Nicalac MW-100LM and HMOM-HAP, and the same evaluation as in Example 1 was performed. .
  • Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 12 to Example 13 A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the aromatic compound having a hydroxyl group and / or a thiol group was changed to C4 or C5, and the same evaluation as in Example 1 was performed. Did. Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 14 The same evaluation as in Example 1 was performed by changing the amount of the zirconia dispersion (A1) to 1.118 g, the amount of EAA to 1.025 g, and the amount of the polyimide polymer (B1) to 0.518 g.
  • Table 1 shows the composition of the obtained positive photosensitive resin composition
  • Table 3 shows the evaluation results.
  • Example 15 Under yellow light, 3.193 g of zirconia dispersion (A1) was diluted with 0.775 g of EAA and 1.785 g of EL, 1.051 g of PGMEA to give 0.013 g of polyimide polymer (B1), 0 0.021 g of a quinonediazide compound (P1), 0.021 g of a phenolic compound (BPFL), and 0.140 g of a surfactant (a 1% by mass solution of BYK-333 in PGMEA (corresponding to a concentration of 200 ppm)) were added and stirred. Next, it filtered with a 0.2 micrometer filter, and obtained the positive photosensitive resin composition. About the obtained positive photosensitive resin composition, evaluation similar to Example 1 was performed. Table 1 shows the composition of the obtained positive photosensitive resin composition, and Table 3 shows the evaluation results.
  • Example 1 A positive photosensitive resin composition was obtained in the same manner as in Example 1 except that the compound (C) was not added, and evaluated in the same manner as in Example 1.
  • Table 2 shows the composition of the obtained positive photosensitive resin composition, and Table 4 shows the evaluation results.
  • parenthesis in Table 2 shows the mass%.
  • the cured films obtained from the positive photosensitive resin compositions of Comparative Examples 1 to 3 have more development residues as the characteristics of the display element are significantly reduced. I was not satisfied.
  • the cured film obtained from the positive photosensitive resin composition of Comparative Example 4 did not satisfy the characteristics because the insulating properties were extremely low and there were many development residues.
  • Substrate 2 Gate electrode 3: Gate insulating layer 4: Gold source / drain electrode 5: Gold source / drain electrode 6: Poly-3-hexylthiophene film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明は、現像加工時の残渣が顕著に少なく、高透明、高耐薬品性、高誘電率および低リーク電流に優れた性質を有する硬化膜を得ることが可能な、ポジ型感光性樹脂組成物を提供する。本発明は、(A)金属酸化物粒子、(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマー、(C)水酸基および/またはチオール基を有する芳香族化合物を含むことを特徴とするポジ型感光性樹脂組成物である。

Description

ポジ型感光性樹脂組成物、硬化膜、TFT基板、層間絶縁膜、表示装置、およびその製造方法
 本発明は、ポジ型感光性樹脂組成物とそれを硬化した硬化膜、その硬化膜を有するTFT基板、その硬化膜を有する層間絶縁膜、そのTFT基板および/または層間絶縁膜を具備する表示装置、およびその製造方法に関する。
 近年、ディスプレイ産業やタッチパネル産業の成長と共に、感光性透明材料の重要性が高まっており、液晶ディスプレイの低価格化に伴う製造プロセスの簡略化や、低価格材料への代替が進んでいる。例えば、TFT(Thin FILM Transistor(薄膜トランジスタ))の製造工程における種々の絶縁膜およびパッシベーション膜は、一般に、炭化珪素、窒化珪素、酸化アルミニウム、酸化タンタル又は酸化チタン等の絶縁性の高い無機材料をCVD法により成膜して製造している。しかしながらCVD法は高コストであることから、CVD法と比べて安価なフォトリソグラフィ法による製造が可能な、感光性有機絶縁材料の検討が盛んに行われている(特許文献1~3)。
 また、光学部材用途として、酸化チタンや酸化ジルコニウムといった金属酸化物と、シロキサンやアクリル樹脂とを複合して得られる透明絶縁膜も検討されている(特許文献4)。
特開2011-186069号公報 特開2007-43055号公報 特開2007-316531号公報 特開2011-151164号公報
 しかしながら、従来の感光性有機絶縁材料は無機材料に比べて誘電率が低く、かつ絶縁性に劣るため、特に絶縁膜として用いる場合にトランジスタの立ち上がり電圧の上昇、リーク電流の増大等の、ディスプレイの表示性能低下につながる問題があった。上記の金属酸化物と樹脂との複合材料であればこれら問題は改善されるが、近年要請されている高容量化達成のためには、多量の金属酸化物粒子を樹脂に添加することが必要となる。この場合、パターン加工における現像液への溶解性が低下し、現像残渣を生じる問題が発生する。現像残渣が多量に存在すると、パターン加工により表示素子のパッド部を開口する際、配線に不具合を生じさせ、ディスプレイの表示性能の低下を引き起こすといった重大な問題が発生する。
 そこで本発明は、現像残渣が顕著に少なく、高透明、高耐薬品性、高誘電率および低リーク電流(高絶縁性)に優れた硬化膜および表示装置を得ることが可能な、ポジ型感光性樹脂組成物を提供することを課題とする。
 上記課題を解決するため、本発明のポジ型感光性樹脂組成物、硬化膜、TFT基板、層間絶縁膜、表示装置およびその製造方法は、以下[1]~[14]に記載した構成からなる。
[1](A)金属酸化物粒子、(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマー、(C)水酸基および/またはチオール基を有する芳香族化合物を含むことを特徴とするポジ型感光性樹脂組成物。
[2]前記(C)水酸基および/またはチオール基を有する芳香族化合物が、フェニル基、フルオレン基、ナフチル基のいずれか1種以上を有し、かつフェノール性水酸基および/ またはチオフェノール基を有する化合物である[1]に記載のポジ型感光性樹脂組成物。
[3]前記(C)水酸基および/またはチオール基を有する芳香族化合物が一般式(1)および/または一般式(2)で表されることを特徴とする[1]または[2]に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(一般式(1)および(2)中、R~Rはそれぞれ独立に水素原子または炭素数1~20までの有機基より選ばれる基を少なくとも一つ有する有機基を表す。l、lは0~4の整数を表す。l、lは同じでも異なっていても良い。m、mは0~4の整数を表す。m、mは同じでも異なっていても良い。p、q、rは0~10までの整数を示す。Xは水酸基、チオール基より選ばれる基を少なくとも一つ有する2~8価の有機基を示す。)
[4]前記(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーが、ポリイミドである[1]~[3]に記載のポジ型感光性樹脂組成物。
[5]前記ポリイミドが一般式(3)で表される構造単位を有する[1]~[4]のいずれかに記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、Rは4~14価の有機基、Rは2~12価の有機基、RおよびRはそれぞれ独立に水素原子または、フェノール性水酸基、カルボキシル基、スルホン酸基、チオール基、炭素数1~20までの有機基より選ばれる基を少なくとも一つ有する有機基を表し、それぞれ単一のものであっても異なるものが混在していてもよい。sおよびtは0~10までの整数を示す。)
[6]前記(A)金属酸化物粒子が、チタン、ジルコニウム、バリウム、タングステン、タンタル、イットリウムから選ばれる少なくとも1種類を含んでなり、粒子径が1nm~30nmである[1]~[5]のいずれかに記載のポジ型感光性樹脂組成物。
[7]前記(A)金属酸化物粒子の含有量が、有機溶媒以外の全成分に対して30質量%以上90質量%以下である[1]~[6]のいずれかに記載のポジ型感光性樹脂組成物。
[8][1]~[7]のいずれかに記載のポジ型感光性樹脂組成物を硬化した硬化膜。
[9]波長400~800nmにおける透過率が80%以上である[8]に記載の硬化膜。
[10][8]または[9]に記載の硬化膜を有することを特徴とするTFT基板。
[11][8]または[9]に記載の硬化膜を有することを特徴とする層間絶縁膜。
[12]TFT基板および層間絶縁膜のうち少なくともいずれかを有する表示装置であって、前記TFT基板および層間絶縁膜が請求項8または9に記載の硬化膜を有することを特徴とする表示装置。
[13][11]に記載の層間絶縁膜を透明電極間に有することを特徴とする[12]に記載の表示装置。
[14]TFT基板および層間絶縁膜のうち少なくともいずれかを有する表示装置を製造する方法であって、前記TFT基板および層間絶縁膜が請求項8または9に記載の硬化膜を有することを特徴とする表示装置の製造方法。
 本発明のポジ型感光性樹脂組成物によれば、アルカリ現像時の残渣が顕著に少なく、パターン加工性が良好であり、高い誘電率と絶縁性、耐薬品性を有する透明な絶縁膜が得られる。さらに、高い誘電率と絶縁性、耐薬品性を有する透明な絶縁膜を有する薄膜トランジスタ基板を製造できる。
TFT基板の構造を示す概念図である。
 本発明のポジ型感光性樹脂組成物は、(A)金属酸化物粒子、(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマー、(C)水酸基および/またはチオール基を有する芳香族化合物を含有する。
 本発明のポジ型感光性樹脂組成物は、(A)金属酸化物粒子として、チタン、ジルコニウム、バリウム、タンタル、イットリウム、ハフニウムのいずれかの金属元素から成る金属酸化物粒子を少なくとも1種を含有することが好ましい。これらの金属酸化物粒子は比誘電率(以下εと記載する)が20以上となることで共通する。ここで、(A)金属酸化物粒子は、上記金属の群に含まれる2種以上の金属を含む複合金属酸化物粒子であってもよい。また(A)金属酸化物粒子は、異なる組成の金属酸化物粒子の混合物であってもよい。(A)金属酸化物粒子の比誘電率測定法としては、金属酸化物粒子の粉体をそのまま測定できる同軸プローブ法、粉体を加圧成形してペレットを作成し、2つの電極で挟んで測定する平行板コンデンサ法などが挙げられる。これらの測定法は、インピーダンス・アナライザ(Agilent社製4294Aなど)やLCRメータ(Agilent社製4285Aなど)と専用の治具(Agilent社製85070Eまたは16451B/16453Aなど)を用いることで測定できる。
 (A)金属酸化物粒子を含有することにより、ポジ型感光性樹脂組成物に紫外線を照射し加熱して形成される、硬化膜の比誘電率および絶縁性が向上する。
 (A)金属酸化物粒子としては、例えば、酸化チタン、チタン酸バリウム、硫酸バリウム、酸化バリウム、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウム又は酸化ジルコニウム粒子等が挙げられるが、硬化膜等の比誘電率を向上させるため、比誘電率(ε)が20以上である酸化チタン(ε=115)、酸化ジルコニウム(ε=30)、チタン酸バリウム(ε=400)、または酸化ハフニウム(ε=25)の各粒子がより好ましい。また、ナノメートルレベルでの分散技術が進んでおり、市販品として入手容易の観点から、酸化チタン、酸化ジルコニウム、またはチタン酸バリウムの各粒子がさらに好ましい。
 (A)金属酸化物粒子の粒子径は、数平均粒子径として、1nm~30nmが好ましい。数平均粒子径は、金属酸化物粒子の結晶構造が維持されて理論値通りの比誘電率が発現し、硬化膜等の比誘電率を向上できる点で、1nm以上が好ましく、3nm以上がより好ましい。硬化膜の透明度、均質性および絶縁性を向上できる点で30nm以下が好ましい。
 金属酸化物粒子の数平均粒子径は、金属酸化物の比表面積から求められる算出法が挙げられる。比表面積は、単位質量の粉体に含まれる表面積の総和として定義される。比表面積の測定法としてはBET法が挙げられ、比表面積測定装置(Mountech社製 HM model-1201など)を用いて測定することができる。
 (A)金属酸化物粒子は、ポジ型感光性樹脂組成物中における分散性の向上を目的として、表面修飾が施されていても構わない。表面修飾としては、例えば、酸化ケイ素による被覆や、アルコキシシリル基、イソシアネート基若しくはカルボキシル基を有する有機化合物である、表面修飾剤による被覆が挙げられる。
 本発明のポジ型感光性樹脂組成物中の(A)金属酸化物粒子の含有量は、有機溶媒以外の全成分に対して、30質量%以上が好ましく、50質量%以上がより好ましい。(A)金属酸化物粒子の含有量が30質量%以上であると、硬化膜の硬度が向上し、50質量%以上であるとさらに比誘電率が向上する。また、(A)金属酸化物粒子の含有量は、有機溶媒以外の全成分に対して、90質量%以下が好ましく、70質量%以下がより好ましい。90質量%以下であると、現像液に対する溶解性が向上し、さらに70質量%以下であると、リーク電流が低減し、絶縁性が向上する。
 (A)金属酸化物粒子は適当な大きさの粒子の粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散することができる。市販品のナノ粒子粉体としては、例えば、T-BTO-020RF(チタン酸バリウム;戸田工業株式会社製)、UEP-100(酸化ジルコニウム;第一稀元素化学工業株式会社製)又はSTR-100N(酸化チタン;堺化学工業株式会社製)が挙げられる。
 また、(A)金属酸化物粒子は、液中に分散した分散体としても入手することができる。酸化ケイ素-酸化チタン粒子としては、例えば、“オプトレイク”(登録商標)TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-544又は“オプトレイク”TR-550(いずれも日揮触媒化成工業(株)製)が挙げられる。酸化ジルコニウム粒子としては、例えば、“バイラール”登録商標Zr-C20(平均粒径=20nm;多木化学(株)製)、ZSL-10A(平均粒径=60-100nm;第一稀元素株式会社製)、“ナノユース”(登録商標)OZ-30M(平均粒径=7nm;日産化学工業(株)製)、SZR-M(堺化学(株)製)又はHXU-120JC(住友大阪セメント(株)製)、NANO ZR-010(ソーラー(株)製)が挙げられる。
 本発明のポジ型感光性樹脂組成物は、(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーを含有する。本発明に用いられる(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーのうち、耐薬品性の観点から、ポリイミドが好ましく用いられる。より好ましくは、上記一般式(3)で表される構造単位を有するポリイミドが用いられる。
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体は下記一般式(4)で表される構造単位を有する。これらを2種以上含有してもよいし、上記一般式(3)で表される構造単位および下記一般式(4)で表される構造単位を共重合した樹脂を用いてもよい。
Figure JPOXMLDOC01-appb-C000007
(一般式(4)中、R10は2~8価の有機基、R11は2~8価の有機基を表す。R12およびR13はフェノール性水酸基、スルホン酸基、チオール基、またはCOOR14を表し、それぞれ単一のものであっても異なるものが混在していてもよい。R14は水素原子または炭素数1~20の1価の炭化水素基を示す。jおよびkは0~6の整数を表す。ただしj+k>0である)
 また、上記一般式(4)中、R10-(R12は酸の残基を表す。R10は2~8価の有機基であり、なかでも耐薬品性の観点から、芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。
 本発明における(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミドより選ばれる1種以上のポリマーは、構造単位として5~100,000有することが好ましい。また、一般式(3)または一般式(4)で表される構造単位に加えて、他の構造単位を有してもよい。この場合、耐薬品性を向上させる点から一般式(3)または一般式(4)で表される構造単位を、全構造単位中50mol%以上有することが好ましい。
 上記一般式(3)中、R-(Rは酸二無水物の構造成分を表しており、この酸二無水物の残基を表す。Rは4~14価の有機基であり、なかでも耐薬品性の観点から、芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。
 酸二無水物として具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物および下記に示した構造の酸二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物などを挙げることができる。これらは単独で又は2種以上を組み合わせて使用される。
Figure JPOXMLDOC01-appb-C000008
 上記式中、R15は酸素原子、C(CF、C(CHまたはSOを表す。R16およびR17はそれぞれ独立に水素原子、水酸基またはチオール基を表す。
 酸成分としては、ジカルボン酸の例としてテレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸など、トリカルボン酸の例としてトリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸など、テトラカルボン酸の例としてピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸および下記に示した構造の芳香族テトラカルボン酸や、ブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの脂肪族のテトラカルボン酸などを挙げることができる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000009
 上記式中、R15は酸素原子、C(CF、C(CHまたはSOを表す。R16およびR17はそれぞれ水素原子、水酸基またはチオール基を表す。これらのうち、トリカルボン酸、テトラカルボン酸では1つまたは2つのカルボキシ基が一般式(4)におけるR12基に相当する。また、現像液に対する溶解性の観点から、上に例示したジカルボン酸、トリカルボン酸、テトラカルボン酸の水素原子を、一般式(4)におけるR12基や水酸基、スルホン酸基、チオール基などで1~4個置換したものがより好ましい。これらの酸は、そのまま、あるいは酸無水物、活性エステルとして使用できる。
 上記一般式(3)中のR-(Rおよび上記一般式(4)のR11-(R13はジアミンの残基を表す。RおよびR11はそれぞれ2~8価の有機基であり、なかでも耐薬品性の観点から芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。
 ジアミンの具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸あるいはこれらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミンおよび下記に示した構造のジアミンなどが挙げられる。これらは単独で又は2種以上を組み合わせて使用される。
Figure JPOXMLDOC01-appb-C000010
 上記式中、R15は酸素原子、C(CF、C(CHまたはSOを表す。R16~R19はそれぞれ水素原子、水酸基またはチオール基を表す。)
 これらのジアミンは、ジアミンとして、または対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。
 また、これらの樹脂の末端を前述の酸性基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸により封止することで、主鎖末端に酸性基を有する樹脂を得ることができる。
 このようなモノアミンの好ましい例としては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよい。
 また、このような酸無水物、酸クロリド、モノカルボン酸の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシ基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシ基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。これらを2種以上用いてもよい。
 上記したモノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤の含有量は、現像液への溶解性の観点から、樹脂を構成する酸およびアミン成分の総和100モル%に対して、2~25モル%が好ましい。
 樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、13C-NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトル及び13C-NMRスペクトル測定することで検出することが可能である。
 本発明の(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーは公知の方法により合成される。
 ポリイミド前駆体の製造方法として例えば、低温中でテトラカルボン酸二無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後アミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、アミンと反応させる方法などが挙げられる。
 ポリベンゾオキサゾール前駆体の場合、製造方法としては、ビスアミノフェノール化合物とジカルボン酸を縮合反応させることで得ることができる。具体的には、ジシクロヘキシルカルボジイミド(DCC)のような脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物を加える方法やピリジンなどの3級アミンを加えたビスアミノフェノール化合物の溶液にジカルボン酸ジクロリドの溶液を滴下する方法などがある。
 ポリイミドの場合、前述の方法で得られたポリイミド前駆体を加熱あるいは酸や塩基などの化学処理で脱水閉環することにより得ることができる。
 ポリベンゾオキサゾールの場合、前述の方法で得られたポリベンゾオキサゾール前駆体を加熱あるいは酸や塩基などの化学処理で脱水閉環することにより得ることができる。
 本発明の(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーは、低温焼成可能な点でポリイミドが好ましい。前駆体構造から閉環させるためにポリイミド前駆体は250℃以上、ポリベンゾオキサゾール前駆体は300℃以上の焼成が必要で、それ以下の温度の焼成では得られた硬化膜の耐熱性、機械特性が低下する場合があるのに対し、ポリイミドは既閉環構造のため200℃以下の焼成でも十分な耐熱性、機械特性を得ることができる。
 本発明のポジ型感光性樹脂組成物は、(C)水酸基および/またはチオール基を有する芳香族化合物(以下、化合物(C)という場合がある。)を含有する。これら化合物(C)を含有することにより、ポジ型感光性組成物により形成された膜の露光部の現像液に対する溶解性を向上させ、残渣を低減することができる。加熱形成後の硬化膜の絶縁性向上の観点から、これら化合物(C)としては、フェニル基、フルオレン基、ナフチル基のいずれかを有し、かつフェノール性水酸基および/ またはチオフェノール基を有する化合物であることが好ましい。また、未露光部での現像液に対する溶解性を抑制することによるコントラストの観点から、上述の一般式(1)および/または一般式(2)の構造を有する化合物であることがさらに好ましい。
 具体的には、以下の化合物があげられる。ビスフェノールフルオレン(BPFL)、ビスクレゾールフルオレン(BCF)、ビスフェノキシエタノールフルオレン(BPEF)や、フルオレン基含有樹脂であるWR-301、V-259MEなどが挙げられるが、これらに限らない。
 本発明のポジ型感光性樹脂組成物における化合物(C)の含有量は特に制限されないが、現像残渣低減の観点から、(A)金属酸化物粒子100質量部に対して1質量部以上が好ましく、3質量部以上がより好ましい。また、硬化膜中の金属酸化物粒子の割合を維持し、高誘電率、低リーク電流特性を達成する観点から50質量部以下が好ましく、20質量部以下がより好ましい。
 また、本発明のポジ型感光性樹脂組成物は、感光性を付与するため、キノンジアジド化合物を含有しても構わない。キノンジアジド化合物を含有することにより、露光部が現像液で除去されるポジ型の感光性を付与することができる。キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物が好ましい。また、本発明では1種類以上のナフトキノンジアジド化合物を組み合わせて用いることもできる。
 フェノール性水酸基を有する化合物の具体例としては、下記式で表される化合物(いずれも本州化学工業(株)から入手できる。化学式の下の記載は製品名である。)が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 キノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。原料となるナフトキノンジアジドスルホン酸クロリドとしては、4-ナフトキノンジアジドスルホン酸クロリドあるいは5-ナフトキノンジアジドスルホン酸クロリドを用いることができる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4-ナフトキノンジアジドスルホン酸エステル化合物、5-ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物を組み合わせて用いることもできる。
 本発明のポジ型感光性樹脂組成物におけるキノンジアジド化合物の含有量は特に制限されないが、解像度の観点から、(A)金属酸化物粒子100質量部に対して1質量部以上が好ましく、15質量部以上がより好ましい。また、ポリマーとの相溶性低下や、熱硬化時の分解による着色を抑制し、ポジ型感光性樹脂組成物や硬化膜の透明性をより向上させる観点から90質量部以下が好ましく、70質量部以下がより好ましい。
 本発明のポジ型感光性樹脂組成物は、耐薬品性向上のため、熱架橋剤を含有しても構わない。かかる熱架橋剤は架橋反応温度が250℃よりも低く、かつ架橋反応性が高いため、得られる硬化膜の耐薬品性を向上させることができる。特に250℃以下の低温で焼成した場合にも、十分な耐薬品性を有する硬化膜を得ることができる。
 本発明で使用される熱架橋剤としては、たとえば、下記一般式(5)で表される基を1つ有するものとしてML-26X、ML-24X、ML-236TMP、4-メチロール3M6C、ML-MC、ML-TBC(以上、商品名、本州化学工業(株)製)等があげられる。
 また、下記一般式(5)で表される基を2つ有するものとしてDM-BI25X-F、46DMOC、46DMOIPP、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-OC、ジメチロール-Bis-C、ジメチロール-BisOC-P、DML-BisOC-Z、DML-BisOCHP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP(以上、商品名、本州化学工業(株)製)、ニカラックMX-290(商品名、(株)三和ケミカル製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール等があげられる
 また、下記一般式(5)で表される基を3つ有するものとしてTriML-P、TriML-35XL、TriML-TrisCR-HAP(以上、商品名、本州化学工業(株)製)等があげられる。下記一般式(5)で表される基を4つ有するものとしてTM-BIP-A(商品名、旭有機材工業(株)製)、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP(以上、商品名、本州化学工業(株)製)、ニカラックMX-280、ニカラックMX-270(以上、商品名、(株)三和ケミカル製)等があげられる。下記一般式(5)で表される基を6つ有するものとしてHML-TPPHBA、HML-TPHAP、HMOM-HAP(以上、商品名、本州化学工業(株)製)、ニカラックMW-100LM(以上、商品名、(株)三和ケミカル製)が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、R20は炭素数1~6の有機基を表す。
 これらのうち、本発明では上記一般式(5)で表される基を2~4つ含有するものが好ましく、特に好ましくは、上記一般式(5)で表される基を2つ有するものとして46DMOC、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC(以上、商品名、本州化学工業(株)製)、ニカラックMX-290(商品名、(株)三和ケミカル製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾールがある。上記一般式(5)で表される基を3つ有するものとしてTriML-P、TriML-35XL(以上、商品名、本州化学工業(株)製)がある。上記一般式(5)で表される基を4つ有するものとしてTM-BIP-A(商品名、旭有機材工業(株)製)、TML-pp-BPF、TML-BPA、TMOM-BP(以上、商品名、本州化学工業(株)製)、ニカラックMX-280、ニカラックMX-270(以上、商品名、(株)三和ケミカル製)がある。
 また、さらに好ましくは上述の上記一般式(5)で表される基を有する化合物である、DML-PC、DML-PTBP、ニカラックMX-270、ニカラックMX-280が挙げられる。
 熱架橋剤は、未置換のものや多量化したものが混入すると、樹脂組成物の架橋が十分に進まない場合がある。このため、本発明の熱架橋剤の純度は80%以上であることが好ましく、95%以上であるとより好ましい。純度が80%以上であれば、樹脂組成物の架橋反応を十分に行い、吸水基である未反応基を少なくすることができるため、樹脂組成物の吸水性を小さくすることができる。高純度の熱架橋剤を得るためには、再結晶、蒸留などを行い、目的物だけを集める方法があげられる。熱架橋剤の純度は液体クロマトグラフィー法により求めることができる。
 本発明のポジ型感光性樹脂組成物は溶媒を含有しても構わない。溶媒としては組成物の各成分を均一に溶解するため、アルコール性化合物、エステル系化合物又はエーテル系化合物が好ましい。溶媒としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ダイアセトンアルコール、エチレングリコールモノノルマルブチルエーテル、酢酸2-エトキシエチル、1-メトキシプロピル-2-アセテート、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブタノールアセテート、3-メトキシブチルアセテート、1,3-ブチレングリコルジアセテート,エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、アセト酢酸エチル又はγ―ブチロラクトンが挙げられる。
 本発明のポジ型感光性樹脂組成物は、界面活性剤を含有しても構わない。界面活性剤としては、例えば、シリコーン系界面活性剤、オルガノポリシロキサン系等のケイ素系界面活性剤、フッ素系界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウリレートもしくはポリエチレングリコールジステアレート等のノニオン系界面活性剤ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤又はアクリル系若しくはメタクリル系の重合物からなる界面活性剤が挙げられる。市販品の界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475若しくはF477(いずれも大日本インキ化学工業(株)製)又はNBX-15若しくはFTX-218(いずれも(株)ネオス製)等のフッ素系界面活性剤、BYK-352、BYK-333、BYK-301、BYK-331、BYK-345若しくはBYK-307(いずれもビックケミー・ジャパン(株)製)等のシリコーン系界面活性剤が挙げられる。
 本発明のポジ型感光性樹脂組成物は、必要に応じて、安定剤または消泡剤等の添加剤を含有しても構わない。
 本発明のポジ型感光性樹脂組成物の固形分濃度は、塗布方法等に応じて適宜決定すればよいが、固形分濃度を1~50質量%以下とすることが一般的である。
 本発明のポジ型感光性樹脂組成物の代表的な製造方法については以下の方法が例示される。(A)金属酸化物粒子の分散液を秤量し、そこに必要に応じて溶媒を加えて撹拌する。その混合物に化合物(C)および他の添加剤を適当な溶媒に加え、撹拌して溶解させる。その後、(B)ポリマーを加えさらに20分~3時間撹拌する。必要に応じて異物を除去するため、得られた溶液をろ過し、ポジ型感光性樹脂組成物が得られる。
 本発明のポジ型感光性樹脂組成物を用いた硬化膜の形成方法について、例を挙げて説明する。
 本発明のポジ型感光性樹脂組成物を、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング又はスリットコーティング等の公知の方法によって下地基板上に塗布し、ホットプレート又はオーブン等の加熱装置でプリベークし、膜を形成する。プリベークは、50~150℃で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとすることが好ましい。
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(以下、PLA)等の露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を所望のマスクを介して又は介さずに照射する。露光光源に制限はなく、i線、g線若しくはh線等の紫外線、KrF(波長248nm)レーザー又はArF(波長193nm)レーザー等を用いることができる。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、150~450℃で1時間程度加熱する露光後ベークを行っても構わない。
 パターニング露光後、現像により露光部が溶解し、ポジ型パターンを得ることができる。現像方法としては、シャワー、ディッピング又はパドル等の方法で、現像液に5秒~10分間浸漬する方法が好ましい。現像液としては、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩若しくはホウ酸塩等の無機アルカリ;2-ジエチルアミノエタノール、モノエタノールアミン若しくはジエタノールアミン等のアミン類;およびテトラメチルアンモニウムヒドロキサイド若しくはコリン等の4級アンモニウム塩を含む水溶液が挙げられる。現像後は、膜を水でリンスすることが好ましく、続いて50~150℃で乾燥ベークを行ってもよい。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、120~280℃で1時間程度熱硬化することにより、硬化膜が得られる。
 得られる硬化膜の膜厚は用途に応じ、膜厚を0.1~10μmの範囲で調製して用いることができる。ここで、高誘電絶縁膜としての性能を付与する観点から、膜厚0.3μmとしたときの波長400~800nmにおける透過率が90%以上、リーク電流が10-6A/cm以下、比誘電率が6.0以上であることが好ましい。また、得られる硬化膜は、液晶ディスプレイなどの表示素子の性能を付与するため、可視光を十分に透過させる必要があり、波長400~800nmにおける透過率は80%以上であることが好ましい。
 本発明のポジ型感光性樹脂組成物を硬化して得られる硬化膜は、タッチパネル用保護膜、各種ハードコート材、TFT基板用平坦化膜、カラーフィルター用オーバーコート、反射防止フィルム、パッシベーション膜等の各種保護膜および光学フィルター、タッチパネル用絶縁膜、TFT基板用絶縁膜、カラーフィルター用フォトスペーサー、TFT基板用ゲート絶縁膜、層間絶縁膜等に用いることができる。特に、高い比誘電率、絶縁性、耐薬品性および解像度を活かし、TFT基板に好適に用いることができ、中でもTFT基板用ゲート絶縁膜や層間絶縁膜として好適に用いることができる。すなわち、本発明のTFT基板は本発明の硬化膜を有することを特徴とする。また、本発明の層間絶縁膜は本発明の硬化膜を有することを特徴とする。
 ここでいう層間絶縁膜とは、電極間での通電を阻害する膜のことである。電極の例としては、ITOや酸化亜鉛、酸化スズなどの透明電極や金、銀、銅等を使用したメッシュ状の電極が挙げられるが、これに限るものではない。
 本発明のTFT基板や本発明の層間絶縁膜は表示装置に好適に用いることができる。すなわち、本発明の表示装置は本発明のTFT基板および/または本発明の層間絶縁膜を具備することを特徴とする。また、本発明の層間絶縁膜は表示装置の透明電極間に好適に用いることができる。
 本発明のTFT基板や本発明の層間絶縁膜は表示装置の製造方法に好適に用いることができる。すなわち、本発明の表示装置の製造方法は、本発明のTFT基板および/または本発明の層間絶縁膜を具備することを特徴とする。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。
 用いた溶媒の略記は以下のとおりである。
DAA : ダイアセトンアルコール
PGMEA : プロピレングリコールモノメチルエーテルアセテート
PGME : プロピレングリコールモノメチルエーテル
EAA : エチルアセトアセテート
MEK : メチルエチルケトン
TMAH : テトラメチルアンモニウムヒドロオキサイド
MEA : モノエタノールアミン
DMSO : ジメチルスルホキシド。
 また、(A)金属酸化物粒子として、ジルコニアナノ粒子(NANO ZR-010;ソーラー(株)製;数平均粒子径5nm、ε=30)、酸化チタンナノ粒子(“オプトレイク”TR-550;触媒化成(株)製;数平均粒子径10nm、ε=115)およびチタン酸バリウムナノ粒子(T-BTO-020RF;戸田工業(株)製;数平均粒子径20nm、ε=400)を用いた。また、表1に示す配合の(A)金属酸化物粒子の分散体(A1~A3)を調製した。
 <合成例1> ジルコニア分散体(A1)の調製
 200gのジルコニアナノ粒子(ジルコニアナノ粒子のMEK30質量%分散液)に、140gのEAAを加え、ロータリーエバポレーターにて40℃1時間濃縮し、溶剤をMEKからEAAに置換し、ジルコニア分散体(A1)を得た。
 <合成例2> 酸化チタン分散体(A2)の調製
 13.7gのメチルトリメトキシシラン(KBM-13;信越化学(株)製)、6.59gの無水コハク酸トリメトキシシラン(KBM-967TR-1;信越化学(株)製)、31.2gのナフチルトリメトキシシラン(Z6874;東レ・ダウコーニング(株)製)、リン酸(和光純薬(株)製)0.026gおよび精製水(和光純薬(株)製)14.0gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、254gの酸化チタンナノ粒子(“オプトレイク”TR-550;触媒化成株式会社製)と130gのDAAとの混合物を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂および陽イオン交換樹脂をそれぞれ加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタニアゾルである、酸化チタン分散体(A2)を得た。
 <合成例3> シラン修飾チタン酸バリウム分散体(A3)の調製
 340gのDAA、5gの2-アクリロイロキシエチル-フタル酸(HOA-MPL;共栄社化学製)および97gのチタン酸バリウム粒子(T-BTO-020RF;戸田工業(株)製;数平均粒子径20nm)を混合した。次に、ビーズミル(ウルトラアペックスミルUAM-015;寿工業(株)製)のベッセル内に400gのジルコニアビーズ((株)ニッカトー製;YTZボール;寸法φ0.05mm)を充填し、ローターを回転させながら、上記混合液をベッセル内に送液、循環させて無機粒子の分散を行った。ローターの周速を9.5m/sとして2時間分散し、チタン酸バリウムDAAゾルを得た。
 131gの上記のチタン酸バリウムDAAゾル、13.7gのメチルトリメトキシシラン(KBM-13;信越化学(株)製)、6.59gの無水コハク酸トリメトキシシラン(KBM-967TR-1;信越化学(株)製)、31.2gのナフチルトリメトキシシラン(Z6874;東レ・ダウコーニング(株)製)、リン酸(和光純薬(株)製)0.026gおよび精製水(和光純薬(株)製)14.0gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、1時間撹拌した。1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂を加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタン酸バリウムゾル(A3)を得た。
 <合成例4> ヒドロキシル基含有ジアミン化合物合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF;セントラル硝子(株)製)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド(東京化成(株)製)17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド(東京化成(株)製)20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間攪拌し、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素(和光純薬(株)製)を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物を得た。
Figure JPOXMLDOC01-appb-C000014
 <合成例5> ポリイミドポリマー(B1)の合成
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF;セントラル硝子(株)製)29.3g(0.08モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3-アミノフェノール3.27g(0.03モル)をN-メチル-2-ピロリドン(NMP)150gに溶解した。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(ODPA;マナック(株)製)31.0g(0.1モル)をNMP50gとともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミドポリマー(B1)を得た。
 <合成例6> ポリイミド前駆体(B2)の合成
 乾燥窒素気流下、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(ODPA;マナック(株)製)6.20g(0.02モル)をNMP100gに溶解させた。ここに合成例4で得られたヒドロキシル基含有ジアミン化合物9.07g(0.015モル)と1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン0.25g(0.001モル)とをNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に末端封止剤として4-アミノフェノール0.87g(0.008モル)をNMP5gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を10分かけて滴下した。滴下後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水1Lに投入して白色沈殿を得た。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリイミド前駆体(B2)を得た。
 <合成例7> ポリベンゾオキサゾール前駆体(B3)の合成
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF;セントラル硝子(株)製)18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド(日本農薬(株)製)7.4g(0.025モル)、イソフタル酸クロリド(東京化成(株)製)5.1g(0.025モル)をNMP25gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、-15℃で6時間撹拌を続けた。反応終了後、メタノールを10質量%含んだ水3Lに溶液を投入して白色の沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリベンゾオキサゾール前駆体(B3)を得た。
 <合成例8> キノンジアジド化合物(P1)の合成
 乾燥窒素気流下、TrisP-HAP(本州化学工業(株)製)、15.31g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド40.28g(0.15モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.18gを系内が35℃以上にならないように滴下した。滴下後、30℃で2時間攪拌した。トリエチルアミン塩をろ過し、ろ液を水に投入させた。その後析出した沈殿を真空乾燥機で乾燥し、下記式で表されるキノンジアジド化合物(P1)を得た。
Figure JPOXMLDOC01-appb-C000015
 <合成例9> キノンジアジド化合物(P2)の合成
 乾燥窒素気流下、TrisP-PA(本州化学工業(株)製)21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド33.58g(0.125モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩をろ過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(P2)を得た。
Figure JPOXMLDOC01-appb-C000016
 <合成例10> 熱架橋剤HMOM-HAPの精製
 熱架橋剤HMOM-HAP(本州化学工業(株)製;純度80% )の20%プロピレングリコールモノメチルエーテル溶液をエバポレーターで濃縮し、50%プロピレングリコールモノメチルエーテル溶液にした。この溶液を2日間放置し、白色の結晶を得た。得られたHMOM-HAPの純度は、高速液体クロマトグラフィー(島津製作所(株)製)で、カラムにODSを、展開溶媒にアセトニトリル:水=70:30を用い、254nmで分析したところ、純度98%であることが判った。その構造を下に示す。
Figure JPOXMLDOC01-appb-C000017
 その他、各実施例、比較例で使用した製品として、熱架橋剤としては、ニカラックMX-270、ニカラックMW-100LM(以上、三和ケミカル(株)製)、化合物(C)あるいはその比較例としては、フルオレン、ビスフェノールフルオレン((C1);BPFL)、ビスクレゾールフルオレン((C2);BCF)、ビスフェノキシエタノールフルオレン((C3);BPEF)(以上、JFEケミカル(株)製)、N-ヒドロキシスクシイミド(NHS)(大阪合成有機化学研究所製)、WR-301(C4)(ADEKA(株)製)、V-259ME(C5)(新日鐵化学(株)製)を用いた。
 また、界面活性剤としては、BYK-333(ビッグケミー・ジャパン製)を用いた。
 <実施例1>
 黄色灯下にて、2.236gのジルコニア分散体(A1)を、0.245gのEAAおよび2.975gのEL、0.952gのPGMEAで希釈し、0.170gのポリイミドポリマー(B1)、0.104gのキノンジアジド化合物(P1)、0.052gの熱架橋剤(MX-270)、0.021gのフェノール性化合物(BPFL)、0.005gの重合禁止剤(Irganox245)、0.140gの界面活性剤(BYK-333のPGMEA1質量%溶液(濃度200ppmに相当))を加え、撹拌した。次に、0.2μmのフィルターでろ過を行い、ポジ型感光性樹脂組成物を得た。得られたポジ型感光性樹脂組成物について、下記方法で透過率、解像度、絶縁性、比誘電率、耐薬品性および現像残渣を評価した。得られたポジ型感光性樹脂組成物(1)の組成を表1に、各評価の結果を表3に、それぞれ示す。なお、表1中の括弧内の値は質量%を示す。
 [解像度評価]
 樹脂組成物を基板上にスピンコーター(1H-360S;ミカサ(株)製)を用いてスピンコートした後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて90℃で2分間プリベークし、膜厚0.50μmのプリベーク膜を作製した。基板としては、ITO薄膜が施されたガラス基板(以下、ITO基板)を用いた。得られたプリベーク膜に、PLAを用いて超高圧水銀灯を光源として、1~60%までの透過率を有するグレースケールマスクを介して、100μmのギャップで2000J/mにて露光した。その後、自動現像装置(AD-2000;滝沢産業(株)製)を用いて、2.38質量%水酸化テトラメチルアンモニウム(以下、TMAH)水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。露光および現像後、100μmのラインアンドスペースパターンを1対1の幅に形成する露光量を、最適露光量とした。露光量はI線照度計で測定した。
 最適露光量における現像後の最小パターン寸法(μm)を測定し、これを解像度とした。
 [透過率評価]
 樹脂組成物を5cm角のテンパックスガラス基板(AGCテクノグラス(株)製)上に、スピンコーターを用いてスピンコートした後、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜について、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした後、超高圧水銀灯で2000J/mにて全面露光した。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3μmの硬化膜を作製した。
 得られた硬化膜について、紫外-可視分光光度計(UV-260;島津製作所(株)製)を用いて、400~800nmにおける透過率(%)を測定し、この間の最も低い値を400~800nmにおける透過率とし、評価した。
 [熱硬化前の耐薬品性評価]
 パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜について、自動現像装置を用いて2.38質量%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした後、超高圧水銀灯で2000J/mにて全面露光した。得られた硬化膜を5.0質量%のシュウ酸水溶液に5分間室温で浸漬し、1分間水で洗浄してから、JIS K5600-5-6(1999年制定)に従ってITO硬化膜への接着性を評価した。
 具体的には、得られた硬化膜を、カッターナイフを用いて1mm間隔で縦横に切断して1mm×1mmのマス目を100個作製した。全てのマス目が覆われるようにセロハン粘着テープ(セロテープ(登録商標)、No.405、ニチバン製、幅=18mm、粘着力=3.7N/10mm)を貼り付け、消しゴム(JIS S6050(2002年改正及び2008年追補1)合格品)で擦って密着させた。セロハン粘着テープの一端を持ち、これを基板に対して直角を保ちながら瞬間的に剥離した後のマス目の残存数を確認し、剥離したマス目の割合すなわち剥離面積比率を求めた。以下の評価基準に基づき、剥離面積比率を5段階に区分し、3以上を合格とした。
5 : 剥離面積比率 が  0%
4 : 剥離面積比率 が  5%未満
3 : 剥離面積比率 が  5~ 14%
2 : 剥離面積比率 が 15~ 34%
1 : 剥離面積比率 が 35~ 64%
0 : 剥離面積比率 が 65~100%。
 [熱硬化後の耐薬品性評価]
 パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製し、得られたプリベーク膜について、自動現像装置を用いて2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で1分間リンスし、超高圧水銀灯で2000J/mにて全面露光した。得られた硬化膜を230℃で30分間ベークした。この試料をTOK-106(MEA:DMSO=7:3水溶液)に120秒間50℃を浸漬し、また別の試料を28質量%王水(塩酸:硝酸=1:3水溶液)に120秒間50℃で浸漬した後、それぞれの試料を1分間水で洗浄してから、上記の熱硬化前と同じ方法にてITO硬化膜への接着性を評価した。
 [絶縁性評価]
 パターン加工性の評価と同様の方法で、10cm×10cmのITO基板上に膜厚0.40μmのプリベーク膜を作製し、ホットプレートを用いて160℃で5分間のミドルベークを行い、ミドルベーク膜を作製した。得られたミドルベーク膜を、5質量%シュウ酸水溶液に室温で5分間浸漬させてから、水で1分間洗浄した。次に、230℃のオーブンで30分間ベークし、2.38質量%TMAH水溶液に80秒間室温で浸漬し、また別の試料をTOK-106(MEA:DMSO=7:3水溶液)に120秒間50℃で浸漬し、また別の試料を28質量%王水(塩酸:硝酸=1:3水溶液)に120秒間50℃で浸漬した後、水で1分間洗浄した。得られた薬品浸漬後の硬化膜を、サーフコム触針式膜厚測定装置にて膜厚(μm)を測定した後、硬化膜上に真空蒸着装置にて、アルミニウム(純度99.99%以上)を約1cmの面積に蒸着し、測定サンプルを得た。
 各電極端子を、アルミニウムとITOとにそれぞれ接触させ、半導体測定装置(KEITHLEY4200-SCS;ケースレーインスツルメンツ社製)を用いて15Vで60秒印加後のリーク電流(log[A/cm])を測定した。
 [比誘電率評価]
 絶縁性評価と同様の方法で、測定サンプルを作製した。各電極端子をアルミニウムとITOとにそれぞれ接触させ、測定対象領域の周波数1MHzにおける静電容量をインピーダンスアナライザー(4294A;アジレントテクノロージー(株)製)およびサンプルホルダー(16451B;アジレントテクノロージー(株)製)を用いて測定した。比誘電率は静電容量と測定対象領域との寸法から、比誘電率として算出した。
 [残渣評価]
 パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜に、PLAを用いて超高圧水銀灯を光源として、1~60%までの透過率を有するグレースケールマスクを介して、100μmのギャップで2000J/mにて露光した。その後、自動現像装置(AD-2000;滝沢産業(株)製)を用いて、2.38質量%水酸化テトラメチルアンモニウム(以下、TMAH)水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。露光および現像後、230℃で30分間ベークした。ダイヤモンドカッターを用いて上記の最適露光量のパターンについて、縦横に切断し、1mm四方のサンプルを作製した。10μm四方のパターンにつき上方及び断面から走査電子顕微鏡(S-4800;日立ハイテクノロジーズ(株))により観察し、残渣の有無について調べた。具体的には、残膜及び残渣の占める面積の割合を算出し、残渣面積比率を求めた。以下の評価基準に基づき、残渣面積比率を5段階に区分し、4以上を合格とした。
5 : 残渣面積比率 が  5%未満
4 : 残渣面積比率 が  5~ 14%
3 : 残渣面積比率 が 15~ 24%
2 : 残渣面積比率 が 25~ 49%
1 : 残渣面積比率 が 50~ 64%
0 : 残渣面積比率 が 65~100%。
 [TFT特性評価]
 図1に示す構造のTFT基板を作製した。ガラス製の基板1(厚み0.7mm)上に、抵抗加熱法により、メタルマスクを介して、クロムを厚み5nm、続いて金を厚み50nmで真空蒸着し、ゲート電極2を形成した。次に上記(解像度の評価)と同様に、ポジ型感光性樹脂組成物をスピンコート塗布し、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜について、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、超高圧水銀灯で2000J/mにて全面露光した。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3μmのゲート絶縁膜を得て、それをゲート絶縁層3とした。このゲート絶縁層3が形成された基板1上に、金を厚み50nmになるように真空蒸着した。次に、ポジ型レジスト溶液を滴下し、スピナーを用いて塗布した後、90℃のホットプレートで乾燥し、レジスト膜を形成した。得られたレジスト膜に対して、露光機を用いて、フォトマスクを通して紫外線照射を行った。続いて、基板をアルカリ水溶液に浸漬し、紫外線照射部を除去し、電極形状にパターン加工されたレジスト膜を得た。得られた基板を金エッチング液(アルドリッチ社製、Gold etchant,standard)中に浸漬し、レジスト膜が除去された部分の金を溶解・除去した。得られた基板をアセトン中に浸漬し、レジストを除去した後、純水で洗浄し、100℃のホットプレートで30分間乾燥した。このようにして、電極の幅(チャネル幅)0.2mm、電極の間隔(チャネル長)20μm、厚み50nmの金ソース・ドレイン電極4および5を得た。
 次に、電極が形成された基板上に、ポリ-3-ヘキシルチオフェン(P3HT、アルドリッチ社製、レジオレギュラー)をインクジェット法により塗布し、ホットプレート上で窒素気流下、150℃、30分間の熱処理を行い、P3HT膜6をチャネル層とするFETを作製した。この際、インクジェット装置に、簡易吐出実験セットPIJL-1(クラスターテクノロジー株式会社製)を用いた。
 次に、上記FETのゲート電圧を+30から-30Vへ掃引したときのI-Vカーブにおいて、電流Iの値が急激に起ち上がる値(Von)を読みとった。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ株式会社製)を用い、大気中で測定した。Vonが10V以下を合格とした。
 得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例2~実施例3>
 (A)金属酸化物粒子をA2もしくはA3に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例4~実施例5>
 (B)ポリマーをB2もしくはB3に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例6~実施例7>
 (C)フェニル基、フルオレン基、ナフチル基のいずれかを有し、かつフェノール性水酸基および/またはチオフェノール基を有する化合物をC2もしくはC3に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例8>
 キノンジアジド化合物をP2に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例9>
 キノンジアジド化合物をP1とP2の組み合わせに変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例10~実施例11>
 熱架橋剤ニカラックMX-270をニカラックMW-100LM、HMOM-HAPに変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例12~実施例13>
 (C)水酸基および/またはチオール基を有する芳香族化合物をC4もしくはC5に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例14>
 ジルコニア分散体(A1)の量を1.118g、EAAの量を1.025g、ポリイミドポリマー(B1)の量を0.518gに変えて、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <実施例15>
 黄色灯下にて、3.193gのジルコニア分散体(A1)を、0.775gのEAAおよび1.785gのEL、1.051gのPGMEAで希釈し、0.013gのポリイミドポリマー(B1)、0.021gのキノンジアジド化合物(P1)、0.021gのフェノール性化合物(BPFL)、0.140gの界面活性剤(BYK-333のPGMEA1質量%溶液(濃度200ppmに相当))を加え、撹拌した。次に、0.2μmのフィルターでろ過を行い、ポジ型感光性樹脂組成物を得た。得られたポジ型感光性樹脂組成物について、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表1に、評価結果を表3に、それぞれ示す。
 <比較例1>
 化合物(C)を加えない以外は実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表2に、評価結果を表4に、それぞれ示す。なお、表2中の括弧内の値は質量%を示す。
 <比較例2~比較例3>
 化合物(C)について、フルオレン基を持たない構造の化合物に変えて、実施例1と同様の方法で、ポジ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたポジ型感光性樹脂組成物の組成を表2に、評価結果を表4に、それぞれ示す。
 表4の結果から明らかなように、比較例1~比較例3の各ポジ型感光性樹脂組成物より得られる硬化膜は、表示素子としての特性を著しく低下させるほど現像残渣が多く、特性を満足していなかった。また、比較例4のポジ型感光性樹脂組成物より得られる硬化膜は、絶縁性が著しく低く、現像残渣が多いため、特性を満足していなかった。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
1:基板
2:ゲート電極
3:ゲート絶縁層
4:金ソース・ドレイン電極
5:金ソース・ドレイン電極
6:ポリ-3-ヘキシルチオフェン膜

Claims (14)

  1. (A)金属酸化物粒子、(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマー、(C)水酸基および/またはチオール基を有する芳香族化合物を含むことを特徴とするポジ型感光性樹脂組成物。
  2. 前記(C)水酸基および/またはチオール基を有する芳香族化合物が、フェニル基、フルオレン基、ナフチル基のいずれか1種以上を有し、かつフェノール性水酸基および/ またはチオフェノール基を有する化合物である請求項1に記載のポジ型感光性樹脂組成物。
  3. 前記(C)水酸基および/またはチオール基を有する芳香族化合物が一般式(1)または一般式(2)で表される請求項1または2に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)および(2)中、R~Rはそれぞれ独立に水素原子または炭素数1から20までの有機基より選ばれる基を少なくとも一つ有する有機基を表す。l、lは0~4の整数を表す。l、lは同じでも異なっていても良い。m、mは0~4の整数を表す。m、mは同じでも異なっていても良い。p、q、rは0から10までの整数を示す。Xは水酸基、チオール基より選ばれる基を少なくとも一つ有する2から8価の有機基を示す。)
  4. 前記(B)ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾールより選ばれる1種以上のポリマーが、ポリイミドである請求項1~3のいずれかに記載のポジ型感光性樹脂組成物。
  5. 前記のポリイミドが一般式(3)で表される構造単位を有する請求項4に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、Rは4~14価の有機基、Rは2~12価の有機基、RおよびRはそれぞれ独立に水素原子または、フェノール性水酸基、カルボキシル基、スルホン酸基、チオール基、炭素数1~20までの有機基から選ばれる基を少なくとも一つ有する有機基を表し、それぞれ単一のものであっても異なるものが混在していてもよい。sおよびtは0~10までの整数を示す。)
  6. 前記(A)金属酸化物粒子が、チタン、ジルコニウム、バリウム、タングステン、タンタル、イットリウムから選ばれる少なくとも1種類を含んでなり、粒子径が1nm~30nmである請求項1~5のいずれかに記載のポジ型感光性樹脂組成物。
  7. 前記(A)金属酸化物粒子の含有量が、有機溶媒以外の全成分に対して30質量%以上、90質量%以下である請求項1~6のいずれかに記載のポジ型感光性樹脂組成物。
  8. 請求項1~7のいずれかに記載のポジ型感光性樹脂組成物を硬化した硬化膜。
  9. 波長400~800nmにおける透過率が80%以上である請求項8に記載の硬化膜。
  10. 請求項8または9に記載の硬化膜を有することを特徴とするTFT基板。
  11. 請求項8または9に記載の硬化膜を有することを特徴とする層間絶縁膜。
  12. TFT基板および層間絶縁膜のうち少なくともいずれかを有する表示装置であって、前記TFT基板および層間絶縁膜が請求項8または9に記載の硬化膜を有することを特徴とする表示装置。
  13. 請求項11に記載の層間絶縁膜を透明電極間に有することを特徴とする請求項12に記載の表示装置。
  14. TFT基板および層間絶縁膜のうち少なくともいずれかを有する表示装置を製造する方法であって、前記TFT基板および層間絶縁膜が請求項8または9に記載の硬化膜を有することを特徴とする表示装置の製造方法。
PCT/JP2016/058276 2015-03-19 2016-03-16 ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法 WO2016148176A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515557A JPWO2016148176A1 (ja) 2015-03-19 2016-03-16 ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056043 2015-03-19
JP2015-056043 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148176A1 true WO2016148176A1 (ja) 2016-09-22

Family

ID=56919893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058276 WO2016148176A1 (ja) 2015-03-19 2016-03-16 ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2016148176A1 (ja)
TW (1) TW201642044A (ja)
WO (1) WO2016148176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220835A1 (ja) * 2018-05-14 2019-11-21 Jsr株式会社 パターン形成方法及び感放射線性組成物
WO2022121888A1 (zh) * 2020-12-09 2022-06-16 清华大学 钛锆氧化物纳米粒子、光刻胶、光刻胶的图案化方法及生成印刷电路板的方法
CN116107163A (zh) * 2022-12-28 2023-05-12 上海玟昕科技有限公司 一种含纳米粒子的正性光刻胶组合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127374A (ja) * 1991-11-01 1993-05-25 Sumitomo Chem Co Ltd ポジ型感放射線性レジスト組成物
JP2001354853A (ja) * 2000-06-13 2001-12-25 Mitsui Chemicals Inc 高屈折率材料組成物
JP2002202593A (ja) * 2000-10-31 2002-07-19 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、ポジ型感光性樹脂組成物の製造方法及び半導体装置
JP2003075997A (ja) * 2001-06-22 2003-03-12 Toray Ind Inc ポジ型感光性樹脂組成物
JP2005208465A (ja) * 2004-01-26 2005-08-04 Toray Ind Inc ポジ型感光性樹脂組成物
WO2005088396A1 (ja) * 2004-03-12 2005-09-22 Toray Industries, Inc. ポジ型感光性樹脂組成物、それを用いたレリーフパターン、及び固体撮像素子
JP2007016214A (ja) * 2005-06-09 2007-01-25 Toray Ind Inc 樹脂組成物およびそれを用いた表示装置
JP2007246651A (ja) * 2006-03-15 2007-09-27 Toray Ind Inc 樹脂組成物、それを用いたレリーフパターンの形成方法
JP2010049227A (ja) * 2008-08-25 2010-03-04 Korea Kumho Petrochem Co Ltd ポジティブ型感光性樹脂組成物、パターン形成方法および半導体素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127374A (ja) * 1991-11-01 1993-05-25 Sumitomo Chem Co Ltd ポジ型感放射線性レジスト組成物
JP2001354853A (ja) * 2000-06-13 2001-12-25 Mitsui Chemicals Inc 高屈折率材料組成物
JP2002202593A (ja) * 2000-10-31 2002-07-19 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、ポジ型感光性樹脂組成物の製造方法及び半導体装置
JP2003075997A (ja) * 2001-06-22 2003-03-12 Toray Ind Inc ポジ型感光性樹脂組成物
JP2005208465A (ja) * 2004-01-26 2005-08-04 Toray Ind Inc ポジ型感光性樹脂組成物
WO2005088396A1 (ja) * 2004-03-12 2005-09-22 Toray Industries, Inc. ポジ型感光性樹脂組成物、それを用いたレリーフパターン、及び固体撮像素子
JP2007016214A (ja) * 2005-06-09 2007-01-25 Toray Ind Inc 樹脂組成物およびそれを用いた表示装置
JP2007246651A (ja) * 2006-03-15 2007-09-27 Toray Ind Inc 樹脂組成物、それを用いたレリーフパターンの形成方法
JP2010049227A (ja) * 2008-08-25 2010-03-04 Korea Kumho Petrochem Co Ltd ポジティブ型感光性樹脂組成物、パターン形成方法および半導体素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220835A1 (ja) * 2018-05-14 2019-11-21 Jsr株式会社 パターン形成方法及び感放射線性組成物
JPWO2019220835A1 (ja) * 2018-05-14 2021-05-27 Jsr株式会社 パターン形成方法及び感放射線性組成物
JP7327392B2 (ja) 2018-05-14 2023-08-16 Jsr株式会社 パターン形成方法及び感放射線性組成物
WO2022121888A1 (zh) * 2020-12-09 2022-06-16 清华大学 钛锆氧化物纳米粒子、光刻胶、光刻胶的图案化方法及生成印刷电路板的方法
CN116107163A (zh) * 2022-12-28 2023-05-12 上海玟昕科技有限公司 一种含纳米粒子的正性光刻胶组合物

Also Published As

Publication number Publication date
TW201642044A (zh) 2016-12-01
JPWO2016148176A1 (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6787124B2 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
JP4735778B1 (ja) ポジ型感光性樹脂組成物
JP5660249B1 (ja) ポリイミド前駆体、ポリイミド、それを用いたフレキシブル基板、カラーフィルタおよびその製造方法、ならびにフレキシブル表示デバイス
WO2016052323A1 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP5387801B1 (ja) 基板及びそれを用いたタッチパネル部材
JP6819292B2 (ja) ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法
JP6206071B2 (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
KR20160062006A (ko) 폴리이미드 전구체, 그것으로부터 얻어지는 폴리이미드 수지막, 및 그것을 포함하는 표시 소자, 광학 소자, 수광 소자, 터치 패널, 회로 기판, 유기 el 디스플레이, 및 유기 el 소자 및 컬러 필터의 제조 방법
JP2008208342A (ja) 樹脂組成物、硬化膜、および硬化膜を有するカラーフィルタ
JP2009020246A (ja) 感光性樹脂組成物、これを用いた絶縁性樹脂パターンの製造方法および有機電界発光素子
JP4333219B2 (ja) 感光性樹脂組成物および耐熱性樹脂膜の製造方法
JP2016072246A (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP7140108B2 (ja) 導電層付きフィルムおよびタッチパネル
JP2015078254A (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
WO2019065351A1 (ja) 感光性樹脂組成物、硬化膜、硬化膜を具備する素子、硬化膜を具備する有機el表示装置、硬化膜の製造方法、および有機el表示装置の製造方法
WO2003100522A1 (fr) Composition de resine photosensible et procede de preparation d'une couche mince de resine thermoresistante
TW201817749A (zh) 負型感光性樹脂組成物、硬化膜、具備硬化膜之元件、具備元件之顯示裝置、及有機el顯示器
WO2016076205A1 (ja) 感放射線性樹脂組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法及び表示素子
WO2016148176A1 (ja) ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法
JPWO2019065164A1 (ja) ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
EP2902846B1 (en) Positive photosensitive resin composition
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
JP2009175651A (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜およびそれを用いた半導体装置、表示体装置。
JP2004126547A (ja) 感光性樹脂前駆体組成物
JP2011133615A (ja) ポジ型感光性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016515557

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765005

Country of ref document: EP

Kind code of ref document: A1