WO2019220835A1 - パターン形成方法及び感放射線性組成物 - Google Patents

パターン形成方法及び感放射線性組成物 Download PDF

Info

Publication number
WO2019220835A1
WO2019220835A1 PCT/JP2019/016189 JP2019016189W WO2019220835A1 WO 2019220835 A1 WO2019220835 A1 WO 2019220835A1 JP 2019016189 W JP2019016189 W JP 2019016189W WO 2019220835 A1 WO2019220835 A1 WO 2019220835A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
sensitive composition
particles
mass
acid
Prior art date
Application number
PCT/JP2019/016189
Other languages
English (en)
French (fr)
Inventor
一憲 酒井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2020519522A priority Critical patent/JP7327392B2/ja
Publication of WO2019220835A1 publication Critical patent/WO2019220835A1/ja
Priority to US17/095,796 priority patent/US20210063872A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention relates to a pattern forming method and a radiation sensitive composition.
  • Common radiation-sensitive compositions used for microfabrication by lithography include electromagnetic waves such as deep ultraviolet rays (eg, ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet rays (EUV), and electron beams (EB).
  • An acid is generated in the exposed area by exposure of a charged particle beam or the like, and a chemical reaction using this acid as a catalyst causes a difference in dissolution rate in the developing solution between the exposed area and the unexposed area, thereby forming a pattern on the substrate.
  • the formed pattern can be used as a mask or the like in substrate processing.
  • Such radiation-sensitive compositions are required to improve resist performance as processing technology becomes finer.
  • the types of polymers, acid generators, and other components used in the composition, the molecular structure, and the like have been studied, and further their combinations have been studied in detail (Japanese Patent Laid-Open No. 11-125907, (See JP-A-8-146610 and JP-A-2000-298347).
  • Such particles can absorb EUV light and the like to generate secondary electrons and promote the generation of acid from the acid generator by the action of the secondary electrons, thereby improving the sensitivity. Conceivable.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a pattern forming method and a radiation-sensitive composition excellent in sensitivity and scum suppression.
  • the invention made in order to solve the above-described problems includes a particle mainly composed of a metal oxide (hereinafter also referred to as “[A] particle”), a radical scavenger (hereinafter referred to as “[B ] Radical scavenger “and an organic solvent (hereinafter also referred to as” [C] organic solvent ”) (hereinafter also referred to as” radiation sensitive composition (X) ").
  • a pattern forming method comprising: a step of processing; a step of exposing the film formed by the coating step with extreme ultraviolet rays or an electron beam; and a step of developing the film after the exposure step.
  • Another invention made in order to solve the above-described problems includes particles ([A] particles) containing a metal oxide as a main component, a radical scavenger ([B] radical scavenger), and an organic solvent ([C]).
  • Radiation-sensitive composition radiation-sensitive composition (X)).
  • a pattern with suppressed scum can be formed with high sensitivity. Therefore, these can be suitably used for forming a fine resist pattern in the lithography process of various electronic devices such as semiconductor devices and liquid crystal devices that are expected to be further miniaturized in the future.
  • the pattern forming method includes a step of applying a radiation sensitive composition (X) containing [A] particles, [B] radical scavenger and [C] organic solvent directly or indirectly to a substrate (hereinafter referred to as “coating”). Process ”), a step of exposing the film formed by the coating step with EUV or EB (hereinafter, also referred to as“ exposure step ”), and a step of developing the film after the exposure step (hereinafter, referred to as“ exposure step ”). Also referred to as “development process”. According to the pattern forming method, a pattern in which scum is suppressed can be formed with high sensitivity. Hereinafter, each step will be described.
  • the radiation sensitive composition (X) is applied directly or indirectly to the substrate. This forms a film.
  • the radiation sensitive composition (X) will be described.
  • the radiation sensitive composition (X) contains [A] particles, [B] radical scavenger and [C] organic solvent.
  • the radiation-sensitive composition (X) preferably contains a radiation-sensitive acid generator (hereinafter also referred to as “[D] acid generator”), and other components within a range not impairing the effects of the present invention. May be contained.
  • the radiation sensitive composition (X) is excellent in sensitivity and scum suppression by containing [A] particles, [B] radical scavenger and [C] organic solvent.
  • the reason why the radiation-sensitive composition (X) has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be inferred as follows, for example. That is, it is considered that the [B] radical scavenger suppresses the [A] particles from being crosslinked and insolubilized unnecessarily by, for example, radical reaction, and as a result, scum suppression is improved. In addition, this makes the insolubility in the developing solution in the exposed portion uniform, so that the sensitivity is considered to be improved.
  • each component will be described.
  • the particles are particles mainly composed of a metal oxide.
  • the radiation sensitive composition (X) contains a plurality of [A] particles.
  • Metal oxide refers to a compound containing a metal atom and an oxygen atom.
  • the “main component” means a substance having the highest content rate among substances constituting the particles, preferably a content rate of 50% by mass or more, more preferably 60% by mass or more.
  • the radiation-sensitive composition (X) can form a pattern by changing the solubility of the [A] particles in the developer by exposure of the formed film.
  • Metal oxide [A]
  • Examples of the metal atom constituting the metal oxide of the particles include Group 3 to Group 16 metal atoms.
  • Group 3 metal atoms include scandium, yttrium, lanthanum, cerium, and the like.
  • Examples of Group 4 metal atoms include titanium, zirconium, hafnium, and the like.
  • Examples of Group 5 metal atoms include vanadium, niobium, and tantalum.
  • Examples of Group 6 metal atoms include chromium, molybdenum, and tungsten.
  • Examples of Group 7 metal atoms include manganese and rhenium.
  • Group 8 metal atoms include iron, ruthenium, osmium, Examples of Group 9 metal atoms include cobalt, rhodium, iridium, Group 10 metal atoms include nickel, palladium, platinum, and the like.
  • Group 11 metal atoms include copper, silver, and gold.
  • Group 12 metal atoms include zinc, cadmium, mercury, etc.
  • Examples of Group 13 metal atoms include aluminum, gallium, and indium.
  • Group 14 metal atoms include germanium, tin, lead, etc. Antimony, bismuth, etc. as group 15 metal atoms, Examples of the Group 16 metal atom include tellurium.
  • the metal atom is preferably a Group 3 to Group 15 metal atom, more preferably a Group 3 to Group 5, Group 8 to Group 10 or Group 12 to Group 14 metal atom. , Group 4, Group 9, Group 10, Group 12 or Group 14 metal atoms are more preferable, and an atom of at least one of zirconium, hafnium, zinc, tin, nickel and cobalt is particularly preferable.
  • the metal oxide may contain other atoms than [m] metal atom and oxygen atom.
  • the other atoms include semi-metal atoms such as boron and silicon, carbon atoms, hydrogen atoms, nitrogen atoms, phosphorus atoms, sulfur atoms, and halogen atoms.
  • the content (mass%) of the metalloid atom in the metal oxide is usually smaller than the content of the [m] metal atom.
  • the lower limit of the total content of [m] metal atom and oxygen atom in the metal oxide is preferably 30% by mass, more preferably 50% by mass, further preferably 70% by mass, and particularly preferably 90% by mass.
  • the upper limit of the total content is preferably 99.9% by mass.
  • the lower limit of the metal oxide content in the [A] particles is preferably 60% by mass, more preferably 80% by mass, and still more preferably 95% by mass. Moreover, 100 mass% may be sufficient as the content rate of the said metal oxide. By making the content rate of the said metal oxide into the said range, the sensitivity and scum suppression of a radiation sensitive composition (X) can be improved more.
  • the particles may contain one or more of the above metal oxides.
  • [A] particles for example, a metal compound having a hydrolyzable group, a hydrolyzate or hydrolysis condensate thereof, or a metal-containing compound (hereinafter, also referred to as “[z] metal-containing compound”). And the like (hereinafter also referred to as “[A1] particles”).
  • the metal-containing compound is a metal compound having a hydrolyzable group (hereinafter also referred to as “metal compound (I)”), a hydrolyzate or hydrolysis condensate of metal compound (I), or a combination thereof.
  • Metal compound (I) can be used individually by 1 type or in combination of 2 or more types.
  • hydrolyzable group examples include a halogen atom, an alkoxy group, and an acyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and a butoxy group.
  • acyloxy group examples include an acetoxy group, an ethylyloxy group, a propionyloxy group, a butyryloxy group, a t-butyryloxy group, a 1,1-dimethylpropylcarbonyloxy group, an n-hexylcarbonyloxy group, and an n-octylcarbonyloxy group. Can be mentioned.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an isopropoxy group.
  • the hydrolysis condensate of the metal compound (I) has a hydrolyzable group as long as the effects of the present invention are not impaired. It may be a hydrolytic condensate with a compound containing a metal atom and a metalloid atom. That is, the hydrolysis condensate of metal compound (I) may contain a metalloid atom within a range not impairing the effects of the present invention. Examples of the metalloid atom include boron and silicon.
  • the content rate of the metalloid atom in the hydrolysis condensate of metal compound (I) is usually less than 50 atomic% with respect to the total of metal atoms and metalloid atoms in the hydrolysis condensate.
  • As an upper limit of the content rate of the said half-metal atom 30 atomic% is preferable with respect to the sum total of the metal atom and half-metal atom in the said hydrolysis-condensation product, and 10 atomic% is more preferable.
  • Examples of the metal compound (I) include a compound represented by the following formula (A) (hereinafter also referred to as “metal compound (I-1)”).
  • metal compound (I-1) a compound represented by the following formula (A) (hereinafter also referred to as “metal compound (I-1)”).
  • M is the above [m] metal atom.
  • L is a ligand.
  • a is an integer of 0-2.
  • Y is a hydrolyzable group selected from a halogen atom, an alkoxy group and an acyloxy group.
  • b is an integer of 2 to 6.
  • L is a ligand not corresponding to Y.
  • Examples of the [m] metal atom represented by M include metal atoms similar to those exemplified as the [m] metal atom constituting the metal oxide contained in the [A] particle.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include hydroxo ligand, carboxy ligand, amide ligand, ammonia and the like.
  • amide ligand examples include unsubstituted amide ligand (NH 2 ), methylamide ligand (NHMe), dimethylamide ligand (NMe 2 ), diethylamide ligand (NEt 2 ), and dipropylamide. And a ligand (NPr 2 ).
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, hydrocarbon having ⁇ bond, and diphosphine.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • Examples of the ⁇ -diketone include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and the like.
  • ⁇ -ketoester examples include acetoacetate ester, ⁇ -alkyl substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • Examples of the ⁇ -dicarboxylic acid ester include malonic acid diester, ⁇ -alkyl substituted malonic acid diester, ⁇ -cycloalkyl substituted malonic acid diester, ⁇ -aryl substituted malonic acid diester, and the like.
  • hydrocarbon having a ⁇ bond examples include chain olefins such as ethylene and propylene; Cyclic olefins such as cyclopentene, cyclohexene, norbornene; Chain dienes such as butadiene and isoprene; Cyclic dienes such as cyclopentadiene, methylcyclopentadiene, pentamethylcyclopentadiene, cyclohexadiene, norbornadiene; Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, hexamethylbenzene, naphthalene, and indene.
  • chain olefins such as ethylene and propylene
  • Cyclic olefins such as cyclopentene, cyclohexene, norbornene
  • Chain dienes such as butadiene and isoprene
  • Cyclic dienes such as cyclopentadiene, methylcyclopen
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • Examples of the halogen atom represented by Y include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group represented by Y include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a t-butoxy group.
  • Examples of the acyloxy group represented by Y include an acetoxy group, propionyloxy group, n-butyryloxy group, i-butyryloxy group, t-butyryloxy group, 1,1-dimethylpropylcarbonyloxy group, n-hexylcarbonyloxy group, and n-octylcarbonyloxy group.
  • Y is preferably an alkoxy group, more preferably an isopropoxy group.
  • A is preferably 0 or 1, more preferably 0.
  • b 3 or 4 is preferable and 4 is more preferable.
  • the metal-containing compound is preferably a metal alkoxide that is neither hydrolyzed nor hydrolyzed.
  • Examples of the metal-containing compound include zirconium / tetra-n-butoxide, zirconium / tetra-n-propoxide, zirconium / tetraisopropoxide, hafnium / tetraethoxide, indium / triisopropoxide, and hafnium / tetraisopropoxide.
  • [A] particles include, for example, a ligand derived from the above [m] metal atom and an organic acid (hereinafter also referred to as “[a] organic acid”) (hereinafter referred to as “[p] ligand”). (Hereinafter also referred to as “[A2] particles”) and the like.
  • [a] organic acid hereinafter also referred to as “[p] ligand”.
  • [A2] particles examples include [a] organic acids and ions derived from [a] organic acids.
  • the [p] ligand is considered to be coordinated to the [m] metal atom in the [A2] particle.
  • organic acid refers to an organic compound exhibiting acidity
  • organic compound refers to a compound having at least one carbon atom
  • the particle-containing composition contains a metal oxide containing [m] metal atom and [a] organic acid or a ligand such as ion derived from [a] organic acid.
  • the sensitivity and scum suppression of (X) can be further improved. This is because, for example, the presence of the [a] organic acid in the vicinity of the surface of the [A2] particle due to the interaction with the [m] metal atom improves the solubility or dispersibility of the [A2] particle in the solvent. Conceivable.
  • the lower limit of the pKa of the organic acid is preferably 0, more preferably 1, more preferably 1.5, and particularly preferably 3.
  • the upper limit of the pKa is preferably 7, more preferably 6, more preferably 5.5, and particularly preferably 5.
  • the pKa of [a] the organic acid is the first acid dissociation constant, that is, the common logarithm of the reciprocal of the dissociation constant for the dissociation of the first proton.
  • the organic acid may be a low molecular compound or a high molecular compound, but a low molecular compound is preferable from the viewpoint of adjusting the interaction with the [m] metal atom to be moderately weak.
  • the low molecular compound means a compound having a molecular weight of 1,500 or less
  • the high molecular compound means a compound having a molecular weight of more than 1,500.
  • the lower limit of the molecular weight of the organic acid is preferably 50, more preferably 80.
  • the upper limit of the molecular weight is preferably 1,000, more preferably 500, still more preferably 400, and particularly preferably 300.
  • organic acid examples include carboxylic acid, sulfonic acid, sulfinic acid, organic phosphinic acid, organic phosphonic acid, phenols, enol, thiol, acid imide, oxime, sulfonamide and the like.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, oleic acid, acrylic acid, methacrylic acid, trans-2,3-dimethylacrylic acid, stearic acid, linoleic acid, linolenic acid, arachidonic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, pentafluoropropionic acid Monocarboxylic acids such as gallic acid and shikimic acid; Dicarboxylic acids such as oxalic acid, malonic acid, maleic acid, methylmalonic acid, fumaric acid, a
  • sulfonic acid examples include benzenesulfonic acid and p-toluenesulfonic acid.
  • sulfinic acid examples include benzenesulfinic acid and p-toluenesulfinic acid.
  • organic phosphinic acid examples include diethylphosphinic acid, methylphenylphosphinic acid, diphenylphosphinic acid and the like.
  • organic phosphonic acid examples include methylphosphonic acid, ethylphosphonic acid, t-butylphosphonic acid, cyclohexylphosphonic acid, and phenylphosphonic acid.
  • phenols examples include monovalent phenols such as phenol, cresol, 2,6-xylenol, and naphthol; Divalent phenols such as catechol, resorcinol, hydroquinone, 1,2-naphthalenediol; Examples thereof include trivalent or higher phenols such as pyrogallol and 2,3,6-naphthalenetriol.
  • Examples of the enol include 2-hydroxy-3-methyl-2-butene and 3-hydroxy-4-methyl-3-hexene.
  • Examples of the thiol include mercaptoethanol and mercaptopropanol.
  • the acid imide examples include carboxylic acid imides such as maleimide and succinimide; Examples thereof include sulfonic acid imides such as di (trifluoromethanesulfonic acid) imide and di (pentafluoroethanesulfonic acid) imide.
  • Examples of the oxime include aldoximes such as benzaldoxime and salicylaldoxime; Examples thereof include ketoximes such as diethyl ketoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • sulfonamide examples include methylsulfonamide, ethylsulfonamide, benzenesulfonamide, and toluenesulfonamide.
  • the organic acid is preferably a carboxylic acid, more preferably a monocarboxylic acid, and even more preferably methacrylic acid from the viewpoint of further improving the sensitivity and scum suppression of the radiation-sensitive composition (X).
  • the [A2] particles may contain one or more [p] ligands.
  • the lower limit of the [m] metal atom content in the [A2] particles is preferably 1% by mass, more preferably 5% by mass, and even more preferably 10% by mass.
  • 99 mass% is preferable, 95 mass% is more preferable, and 90 mass% is further more preferable.
  • the lower limit of the content of the [p] ligand in the [A2] particles is preferably 1% by mass, more preferably 5% by mass, and even more preferably 10% by mass.
  • an upper limit of the said content rate 90 mass% is preferable, 70 mass% is more preferable, and 50 mass% is further more preferable.
  • the [A2] particles may contain one or more [p] ligands.
  • the particles preferably further include a ligand (hereinafter also referred to as “[q] ligand”) derived from a base (hereinafter also referred to as “[b] base”).
  • a ligand hereinafter also referred to as “[q] ligand”
  • [b] base examples of the [q] ligand include [b] base and ions derived from [b] base.
  • the [q] ligand is considered to be coordinated to the [m] metal atom in the [A2] particle.
  • base refers to a substance exhibiting basicity, and includes Arrhenius base, Bronsted base and Lewis base.
  • an organic compound such as a nitrogen-containing compound containing a nitrogen atom having an unshared electron pair, a phosphorus-containing compound containing a phosphorus atom having an unshared electron pair, etc.
  • examples thereof include salts and metal carbonates.
  • organic compounds are preferred, and nitrogen-containing compounds are more preferred.
  • nitrogen-containing compounds examples include amine compounds represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, or these groups Represents a ring structure having 3 to 20 ring members formed by combining two or more of each other together with the nitrogen atom to which they are bonded.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 , R 2 or R 3 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and 1 to 3 carbon atoms. Valent alicyclic hydrocarbon group, monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the like.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, and t-butyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • Examples of the substituent of the hydrocarbon group include a hydroxy group, a halogen atom, a nitro group, a cyano group, and an amino group.
  • Examples of the ring structure having 3 to 20 ring members constituted by combining two or more of R 1 , R 2 and R 3 with each other include, for example, an azacyclopropane structure, an azacyclobutane structure, an azacyclopentane structure, an azacyclohexane structure Azacycloalkane structures such as An azabicycloalkane structure such as an azabicyclo [2.2.2] octane structure, an azabicyclo [2.2.1] heptane structure; A nitrogen atom-containing aliphatic heterocyclic structure such as an azaoxacycloalkane structure such as an azaoxacyclohexane structure; Examples include pyrrole structures, imidazole structures, pyrazole structures, pyridine structures, pyrazine structures, pyrimidine structures, pyridazine structures, quinoline structures, isoquinoline structures, acridine structures, and phenanthroline structures.
  • amine compound examples include tertiary amines such as triethylamine, diisopropylethylamine, tri-n-butylamine, tri-n-octylamine, N-methylpyrrolidine, and N-ethylpiperidine; Secondary amines such as pyrrolidine, piperidine, di-n-butylamine, di-n-octylamine, morpholine; monoamine compounds such as primary amines such as n-butylamine, n-octylamine, aniline and toluidine, Diamine compounds such as hexamethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 1,4-diazabicyclo [2.2.2] octane; Aromatic heterocyclic amine compounds such as pyridine, pyrrole, imidazole, pyrazine, and triazine are exemplified.
  • Secondary amines such as pyr
  • the lower limit of the pKb of the base is preferably 2, more preferably 2.5, and even more preferably 3.
  • the upper limit of the pKb is preferably 12, more preferably 9, and even more preferably 6.
  • pKb refers to the common logarithm of the reciprocal of the base dissociation constant (Kb) at 25 ° C. of the base.
  • the lower limit of the boiling point of the base is preferably 70 ° C, more preferably 80 ° C, further preferably 90 ° C, and particularly preferably 100 ° C.
  • the upper limit of the boiling point is preferably 400 ° C., more preferably 200 ° C., further preferably 150 ° C., and particularly preferably 130 ° C.
  • the lower limit of the molecular weight of the base is preferably 70, more preferably 80, still more preferably 90, and particularly preferably 100.
  • the upper limit of the molecular weight is preferably 500, more preferably 400, still more preferably 300, and particularly preferably 200.
  • the lower limit of the content of the [q] ligand in the [A2] particle is preferably 1% by mass, more preferably 5% by mass, and 10% by mass. Is more preferable.
  • the upper limit of the said content rate 90 mass% is preferable, 70 mass% is more preferable, and 50 mass% is further more preferable.
  • the [A2] particles may contain one or more [q] ligands.
  • Examples of other constituents in the [A2] particles include ligands other than [p] ligand and [q] ligand, and semimetal atoms such as boron and silicon.
  • ligands other than [p] ligand and [q] ligand include ligands other than [p] ligand and [q] ligand, and semimetal atoms such as boron and silicon.
  • the ligand etc. which were illustrated as a monodentate ligand of L of the said Formula (A), and a polydentate ligand, etc. are mentioned, for example.
  • the upper limit of the content of other ligands and metalloid atoms in the particles is preferably 20% by mass, and more preferably 5% by mass. As a minimum of the above-mentioned content, it is 0.1 mass%, for example.
  • particles containing [m] metal atoms and [p] ligands are preferred, and particles containing [m] metal atoms, [p] ligands and [q] ligands are more preferred.
  • particles containing at least one atom of zirconium, hafnium, zinc, tin, nickel and cobalt, a ligand derived from methacrylic acid, and a ligand derived from triethylamine are more preferable.
  • the [A] particles can be synthesized by, for example, a method of performing a hydrolysis-condensation reaction using the following [z] metal-containing compound, a method of performing a ligand exchange reaction using the [z] metal-containing compound, and the like. it can.
  • the “hydrolysis condensation reaction” means that the hydrolyzable group of the [z] metal-containing compound is hydrolyzed to be converted to —OH, and the resulting two —OH are dehydrated and condensed to —O—. Refers to the reaction in which is formed.
  • [A] When using [a] organic acid for the synthesis
  • the upper limit of the amount [a] of the organic acid used is preferably 1,000 parts by weight, more preferably 700 parts by weight, and still more preferably 500 parts by weight with respect to 100 parts by weight of the [z] metal-containing compound. 400 parts by weight is particularly preferred.
  • a compound that can be a multidentate ligand represented by L in the compound of the above formula (A) or a cross-linked ligand A compound that can be a ligand may be added.
  • the compound that can be a bridging ligand include compounds having a plurality of hydroxy groups, isocyanate groups, amino groups, ester groups, and amide groups.
  • Examples of the method for performing the hydrolysis condensation reaction using the [z] metal-containing compound include a method in which the [z] metal-containing compound is subjected to a hydrolysis condensation reaction in a solvent containing water. In this case, you may add the other compound which has a hydrolysable group as needed.
  • the lower limit of the amount of water used for this hydrolysis-condensation reaction is preferably 0.2-fold mol, more preferably 1-fold mol, and 3-fold mol based on the hydrolyzable group possessed by the [z] metal-containing compound. Further preferred.
  • the upper limit of the amount of water is preferably 20 times mol, more preferably 15 times mol, and even more preferably 10 times mol.
  • the amount of water in the hydrolysis-condensation reaction in the above range, the content of the metal oxide in the obtained [A] particles can be increased. As a result, the sensitivity and scum of the radiation-sensitive composition (X) Suppression can be further improved.
  • Examples of a method for performing a ligand exchange reaction using a [z] metal-containing compound include a method of mixing a [z] metal-containing compound and [a] an organic acid. In this case, it may be mixed in a solvent or may be mixed without using a solvent. Moreover, in the said mixing, you may add bases, such as a triethylamine, as needed. The amount of the base added is, for example, from 1 part by mass to 200 parts by mass with respect to 100 parts by mass of the total amount of the [z] metal-containing compound and the [a] organic acid.
  • the lower limit of the amount of the organic acid used is 10 masses per 100 parts by mass of the [z] metal-containing compound. Part is preferable, and 30 parts by mass is more preferable.
  • the upper limit of the amount of the organic acid used is preferably 1,000 parts by weight, more preferably 700 parts by weight, further preferably 500 parts by weight, and 400 parts by weight with respect to 100 parts by weight of the [z] metal-containing compound. Is particularly preferred.
  • the usage-amount of the said organic acid By making the usage-amount of the said organic acid into the said range, the content rate of the [a] organic acid in the [A] particle
  • grains obtained can be adjusted to an appropriate thing, As a result, a radiation sensitive composition (X ) And scum suppression can be further improved.
  • the solvent used for the synthesis reaction of the particles is not particularly limited, and for example, the same solvents as those exemplified as the [C] organic solvent described later can be used.
  • alcohol solvents, ether solvents, ester solvents or hydrocarbon solvents are preferred, alcohol solvents, ether solvents or ester solvents are more preferred, polyhydric alcohol partial ether solvents, monocarboxylic acids.
  • An ester solvent or a cyclic ether solvent is more preferable, and propylene glycol monoethyl ether, ethyl acetate, or tetrahydrofuran is particularly preferable.
  • the organic solvent used may be removed after the reaction, but the [C] organic solvent of the radiation-sensitive composition (X) is not removed after the reaction. It can also be.
  • the lower limit of the temperature of the particle synthesis reaction is preferably 0 ° C, more preferably 10 ° C.
  • 150 degreeC is preferable and 100 degreeC is more preferable.
  • the lower limit of the synthesis reaction time of the particles is preferably 1 minute, more preferably 10 minutes, and even more preferably 1 hour.
  • the upper limit of the time is preferably 100 hours, more preferably 50 hours, and even more preferably 10 hours.
  • grains are obtained by wash
  • the upper limit of the average particle diameter of [A] particles is preferably 20 nm, more preferably 15 nm, further preferably 10 nm, particularly preferably 8 nm, further particularly preferably 5 nm, and most preferably 3 nm.
  • the lower limit of the average particle diameter is preferably 0.5 nm, and more preferably 1 nm.
  • the lower limit of the content of the particles is preferably 50% by mass, more preferably 70% by mass, and more preferably 80% by mass with respect to all components other than the [C] organic solvent in the radiation-sensitive composition (X). % Is more preferable, and 85% by mass is particularly preferable. As an upper limit of the said content, 99 mass% is preferable and 95 mass% is more preferable.
  • Radiation sensitive composition (X) may contain 1 type or 2 types or more of [A] particle
  • radical scavenger is a compound that can capture the generated radical and suppress the radical chain reaction.
  • radical scavenger examples include a stable nitroxyl radical compound, a sulfide compound, a quinone compound, a phenol compound, an amine compound, and a phosphite compound.
  • stable nitroxyl radical compounds include piperidine 1-oxyl free radical, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-oxo-2,2,6,6-tetramethylpiperidine 1- Oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-maleimide- 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-phosphonoxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 3-carboxy-2,2,5,5- And tetramethylpyrrolidine 1-oxyl free radical.
  • sulfide compound examples include phenothiazine, pentaerythritol-tetrakis (3-laurylthiopropionate), didodecyl sulfide, dioctadecyl sulfide, didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate. , Dodecyl octadecyl thiodipropionate, 2-mercaptobenzimidazole, and the like.
  • quinone compound examples include benzoquinone, 2,5-diphenyl-p-benzoquinone, p-toluquinone, p-xyloquinone, 2-hydroxy-1,4-naphthoquinone and the like.
  • phenol compound examples include hydroquinone, 4-methoxyphenol, 4-tert-butoxyphenol, catechol, 4-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, 2,6-di-tert-butyl- 4-Methylphenol, 2,6-di-tert-butyl-m-cresol, pyrogallol, 2-naphthol and the like can be mentioned.
  • amine compound examples include N- (2,2,6,6-tetramethyl-4-piperidyl) dodecyl succinimide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl).
  • phosphite compound examples include triisodecyl phosphite, diphenylisodecyl phosphite, triphenyl phosphite, and trinonylphenyl phosphite.
  • radical scavenger in addition to the above compounds, for example, a high molecular weight radical scavenger such as “Kimasorb 2020” from BASF, “Adeka Stab LA-68” from ADEKA, etc. can be used.
  • a radical nitroxyl radical compound, a sulfide compound, a quinone compound, a phenol compound, an amine compound, or a combination thereof is preferable as the radical scavenger.
  • the lower limit of the content of the radical scavenger is preferably 0.01 parts by weight, more preferably 0.1 parts by weight, and even more preferably 1 part by weight with respect to 100 parts by weight of the [A] particles. Part by mass is particularly preferable, 4 parts by mass is further particularly preferable, and 5 parts by mass is most preferable.
  • the upper limit of the content is preferably 50 parts by mass, more preferably 20 parts by mass, further preferably 15 parts by mass, particularly preferably 10 parts by mass, still more preferably 9 parts by mass, and most preferably 8 parts by mass.
  • the organic solvent may be an organic solvent that can dissolve or disperse at least [A] particles, [B] radical scavenger, and other components such as [D] acid generator contained as necessary. If it does not specifically limit. [C] 1 type (s) or 2 or more types can be used for an organic solvent.
  • organic solvent examples include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • the alcohol solvent examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as isopropyl alcohol, 4-methyl-2-pentanol, and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate (PGMEA); Polycarboxylic acid diester solvents such as diethyl oxalate; Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • Polyhydric alcohol carboxylate solvents such as propylene glycol acetate
  • Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate (PGMEA)
  • Polycarboxylic acid diester solvents such as diethyl oxalate
  • Examples thereof include carbonate solvents such as dimethyl carbonate and die
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • ester solvents are preferred, polyhydric alcohol partial ether carboxylate solvents are more preferred, and PGMEA is even more preferred.
  • the acid generator is a component that generates an acid upon irradiation with radiation. [D] By the action of the acid generated from the acid generator, changes in the solubility of the [A] particles in the radiation-sensitive composition (X) in the developer can be further promoted. Scum suppression can be further improved.
  • Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, triphenylsulfonium camphorsulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium nonafluoro-n-butane Sulfonate, triphenylsulfonium 1,1,2,2-tetrafluoro-6- (1-adamantanecarbonyloxy) -hex
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- Examples include 1,1,2,2-tetrafluoroethane sulfonate, diphenyl iodonium camphor sulfonate, bis (4-tert-butylphenyl) iodonium nonafluoro-n-butane sulfonate, and the like.
  • N-sulfonyloxyimide compounds include N- (trifluoromethylsulfonyloxy) -1,8-naphthalimide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene- 2,3-dicarboximide, N- (nonafluoro-n-butylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (perfluoro-n-octyl) Sulfonyloxy) -1,8-naphthalimide, N- (perfluoro-n-octylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2- Bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethylsulfonyloxy) bicyclo
  • the acid generator is preferably an onium salt compound or an N-sulfonyloxyimide compound, more preferably a sulfonium salt or an N-sulfonyloxyimide compound, and a triphenylsulfonium salt or an N-sulfonyloxyimide compound. More preferred are compounds, with triphenylsulfonium nonafluoro-n-butane-1-sulfonate or N- (trifluoromethylsulfonyloxy) -1,8-naphthalimide being particularly preferred.
  • the lower limit of the content of the [D] acid generator is other than the [C] organic solvent of the radiation sensitive composition (X). 1 mass% is preferable with respect to all the components, 4 mass% is more preferable, and 8 mass% is further more preferable. As an upper limit of the said content, 40 mass% is preferable, 30 mass% is more preferable, and 20 mass% is further more preferable.
  • the lower limit of the content of the [D] acid generator is preferably 1 part by mass with respect to 100 parts by mass of the [A] particles. 4 mass parts is more preferable, and 8 mass parts is further more preferable. As an upper limit of the said content, 40 mass parts is preferable, 30 mass parts is more preferable, and 20 mass parts is further more preferable.
  • [D] By making content of an acid generator into the said range, the sensitivity and scum suppression of radiation sensitive composition (X) can be improved more. [D] 1 type (s) or 2 or more types can be used for an acid generator.
  • examples of other components include a radiation sensitive radical generator, an acid diffusion controller, and a surfactant.
  • the radiation sensitive composition (X) may use 1 type (s) or 2 or more types of other components.
  • the radiation-sensitive radical generator is a component that generates radicals upon irradiation with radiation.
  • a known compound can be used as the radiation-sensitive radical generator.
  • the content of the radiation-sensitive radical generator can be variously set within a range not impairing the effects of the present invention.
  • the acid diffusion controlling agent controls the diffusion phenomenon in the film of the acid generated from the [D] acid generator or the like by exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region.
  • the storage stability of the radiation-sensitive composition (X) is further improved, and the resolution is further improved. Furthermore, a change in the line width of the pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, and a radiation-sensitive composition excellent in process stability can be obtained.
  • Examples of the acid diffusion controller include a nitrogen atom-containing compound, a photodegradable base that generates a weak acid upon irradiation with radiation, and the like.
  • nitrogen atom-containing compound examples include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; monoamines such as aromatic amines such as aniline; Diamines such as ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, Polyamines such as polyethyleneimine and polyallylamine, Amine compounds such as polymers such as dimethylaminoethylacrylamide, Amide group-containing compounds such as formamide and N-methylformamide, Urea compounds such as urea and methylurea, Pyridine compounds such as pyridine and 2-methylpyridine; morpholine compounds such as N-propylmorpholine and N- (undecylcarbonyloxyethyl) morpholine; nitrogen-containing heterocyclic compounds such as pyrazine and pyrazole; Examples thereof include nitrogen-containing heterocyclic compounds having an acid
  • Examples of the photodegradable base include onium salt compounds that lose acid diffusion controllability by exposure.
  • Examples of such onium salt compounds include triphenylsulfonium salts and diphenyliodonium salts.
  • photodegradable base examples include triphenylsulfonium salicylate and triphenylsulfonium 10-camphor sulfonate.
  • the lower limit of the content of the acid diffusion control agent is relative to all components other than the [C] organic solvent of the radiation sensitive composition (X). 0.1% by mass is preferable, 0.3% by mass is more preferable, and 1% by mass is more preferable. As an upper limit of the said content, 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • the lower limit of the content of the acid diffusion control agent is preferably 0.1 parts by mass with respect to 100 parts by mass of the [A] particles. .3 parts by mass is more preferable, and 1 part by mass is more preferable.
  • the upper limit of the said content 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
  • the sensitivity and scum suppression of the radiation-sensitive composition (X) can be further improved.
  • a surfactant is a component that exhibits an effect of improving coating properties, striation and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol Nonionic surfactants such as distearate are listed.
  • Examples of commercially available surfactants include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation sensitive composition (X) is, for example, a mixture of [A] particles, [B] radical scavenger and [C] organic solvent, and [D] acid generator, and other components as required.
  • the resultant mixture can be prepared by filtering with a filter having a pore size of about 0.2 ⁇ m.
  • a filter having a pore size of about 0.2 ⁇ m As a minimum of solid content concentration of radiation sensitive composition (X), 0.1 mass% is preferred, 0.5 mass% is more preferred, 1 mass% is still more preferred, and 3 mass% is especially preferred.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 7% by mass.
  • Solid content concentration refers to the concentration (% by mass) of all components of the radiation-sensitive composition (X) other than the [C] organic solvent.
  • the coating process will be described. Specifically, after coating the radiation-sensitive composition (X) so that the resulting film has a desired thickness to form a coating film, the coating film is pre-baked (PB) as necessary. A film is formed by volatilizing the organic solvent and the like therein.
  • the method for applying the radiation-sensitive composition (X) to the substrate is not particularly limited, and appropriate application means such as spin coating, cast coating, roll coating, etc. can be employed. Examples of the substrate include a silicon wafer and a wafer coated with aluminum. In order to maximize the potential of the radiation-sensitive composition, an organic or inorganic antireflection film may be formed on the substrate.
  • the lower limit of the average thickness of the film formed in this step is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
  • the lower limit of the PB temperature is usually 30 ° C, preferably 35 ° C, more preferably 40 ° C.
  • As an upper limit of PB temperature it is 140 degreeC normally and 100 degreeC is preferable.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 24 hours, preferably 1 hour, more preferably 600 seconds, and even more preferably 300 seconds.
  • a protective film can be provided on the formed film, for example, in order to prevent the influence of basic impurities contained in the environmental atmosphere. Further, as described later, when immersion exposure is performed in the exposure step, an immersion protective film may be provided on the formed film in order to avoid direct contact between the immersion medium and the film.
  • the film obtained in the coating step is exposed with EUV or EB.
  • the film is irradiated with radiation through a mask having a predetermined pattern.
  • radiation irradiation through an immersion medium such as water, that is, immersion exposure may be employed as necessary.
  • a developer is used to develop the film after the exposure step. Thereby, a predetermined pattern is formed.
  • the developer include an aqueous alkali solution and an organic solvent-containing solution. That is, the development method may be alkali development or organic solvent development.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4. 3.0] -5-nonene and the like, an alkaline aqueous solution in which at least one of alkaline compounds is dissolved, and the like.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • Examples of the organic solvent in the organic solvent-containing liquid include the same organic solvents exemplified as the [C] organic solvent of the radiation-sensitive composition (X).
  • a solvent selected from the group consisting of alcohol solvents, hydrocarbon solvents and ester solvents is preferable, and a solvent selected from the group consisting of isopropyl alcohol, 4-methyl-2-pentanol, toluene and butyl acetate. Is more preferable.
  • the lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • a surfactant may be added to the developer as necessary.
  • a surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant, or the like can be used.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • the substrate after the development is preferably rinsed with a rinse liquid such as water or alcohol and then dried.
  • a rinse liquid such as water or alcohol
  • the rinsing method for example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinsing liquid for a certain period of time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
  • B-1 Hydroquinone (compound represented by the following formula (B-1))
  • B-2 4-methoxyphenol (compound represented by the following formula (B-2))
  • B-3 2,6-di-tert-butyl-4-methylphenol (compound represented by the following formula (B-3))
  • B-4 2-hydroxy-1,4-naphthoquinone (compound represented by the following formula (B-4))
  • B-5 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (compound represented by the following formula (B-5))
  • B-6 Phenothiazine (compound represented by the following formula (B-6))
  • B-7 N, N′-di-sec-butyl-1,4-phenylenediamine (compound represented by the following formula (B-7))
  • Example 1 [A] 100 parts by mass of (A-1) as particles, [B] 20 parts by mass of (B-1) as a radical scavenger, [C] (C-1) and [D] acid generation as an organic solvent 10 parts by mass of (D-1) as an agent was mixed to obtain a mixed solution having a solid content concentration of 5% by mass. The resulting mixture was filtered through a membrane filter having a pore size of 0.20 ⁇ m to prepare a radiation sensitive composition (R-2).
  • a radiation sensitive composition shown in Table 2 below was spin coated on a silicon wafer with a simple spin coater, and then PB was performed at 40 ° C. for 60 seconds to form a film having an average thickness of 50 nm. Next, this film was exposed and patterned using a vacuum ultraviolet light exposure apparatus (NA: 0.3, dipole illumination, 30 nm Space 60 nm Pitch pattern mask). EUV light irradiation uses a mask pattern for forming a line-and-space pattern (1L1S) in which a line part having a line width of 50 nm and a space part having a spacing of 50 nm formed between adjacent line parts are 1: 1. Used. After developing with toluene, the negative pattern was formed by drying.
  • NA vacuum ultraviolet light exposure apparatus
  • the line and space pattern (1L1S) can form a pattern with an exposure amount of 30 mJ / cm 2 or less
  • the pattern is “A” (very good), and with an exposure amount of 30 mJ / cm 2 or less.
  • “B” if it can form a pattern in can not be formed below the exposure amount 30 mJ / cm 2 ultra 40 mJ / cm 2 a (good), If you are unable to form a pattern with less exposure dose 40 mJ / cm 2 "C "(Not good).
  • a pattern in which scum is suppressed can be formed with high sensitivity. Therefore, these can be suitably used for forming a fine resist pattern in the lithography process of various electronic devices such as semiconductor devices and liquid crystal devices that are expected to be further miniaturized in the future.

Abstract

感度及びスカム抑制性に優れるパターン形成方法及び感放射線性組成物の提供を目的とする。本発明は、基板に直接又は間接に、金属酸化物を主成分とする粒子、ラジカル捕捉剤及び有機溶媒を含有する感放射線性組成物を塗工する工程と、上記塗工工程により形成された膜を極端紫外線又は電子線で露光する工程と、上記露光工程後の膜を現像する工程とを備えるパターン形成方法である。また、別の本発明は、金属酸化物を主成分とする粒子と、ラジカル捕捉剤と、有機溶媒とを含有する感放射線性組成物である。

Description

パターン形成方法及び感放射線性組成物
 本発明は、パターン形成方法及び感放射線性組成物に関する。
 リソグラフィーによる微細加工に用いられる一般的な感放射線性組成物は、遠紫外線(例えばArFエキシマレーザー光、KrFエキシマレーザー光等)、極端紫外線(EUV)等の電磁波や、電子線(EB)等の荷電粒子線などの露光により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部及び未露光部で現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。形成されたパターンは、基板加工におけるマスク等として用いることができる。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求されている。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類、分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
 また、最近では、特にEUV又はEBに対する感度を向上させることが要求され、この要求に対して、感放射線性組成物の成分として、金属酸化物を主成分とする粒子を用いることが検討されている。このような粒子は、EUV光等を吸収して二次電子を発生し、この二次電子の作用により酸発生剤等からの酸の発生を促進することによって、感度を向上させることができると考えられる。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 しかし、このような粒子を用いる感放射線性組成物によっても、未だ要求される感度のレベルには到達していない。また、半導体デバイス、液晶デバイス等の各種電子デバイス用に広範囲のパターンを形成する場合、現像の際にパターン間に膜が残存し、スカムが抑制できないという不都合がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、感度及びスカム抑制性に優れるパターン形成方法及び感放射線性組成物を提供することにある。
 上記課題を解決するためになされた発明は、基板に直接又は間接に、金属酸化物を主成分とする粒子(以下、「[A]粒子」ともいう)、ラジカル捕捉剤(以下、「[B]ラジカル捕捉剤」ともいう)及び有機溶媒(以下、「[C]有機溶媒」ともいう)を含有する感放射線性組成物(以下、「感放射線性組成物(X)」ともいう)を塗工する工程と、上記塗工工程により形成された膜を極端紫外線又は電子線で露光する工程と、上記露光工程後の膜を現像する工程とを備えるパターン形成方法である。
 上記課題を解決するためになされた別の発明は、金属酸化物を主成分とする粒子([A]粒子)と、ラジカル捕捉剤([B]ラジカル捕捉剤)と、有機溶媒([C]有機溶媒)とを含有する感放射線性組成物(感放射線性組成物(X))である。
 本発明のパターン形成方法及び感放射線性組成物によれば、高い感度で、スカムが抑制されたパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイス、液晶デバイス等の各種電子デバイスのリソグラフィー工程における微細なレジストパターン形成に好適に用いることができる。
<パターン形成方法>
 当該パターン形成方法は、基板に直接又は間接に[A]粒子、[B]ラジカル捕捉剤及び[C]有機溶媒を含有する感放射線性組成物(X)を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成された膜をEUV又はEBで露光する工程(以下、「露光工程」ともいう)と、上記露光工程後の膜を現像する工程(以下、「現像工程」ともいう)とを備える。当該パターン形成方法によれば、高い感度で、スカムが抑制されたパターンを形成することができる。以下、各工程について説明する。
<塗工工程>
 本工程では、基板に直接又は間接に感放射線性組成物(X)を塗工する。これにより膜を形成する。以下、感放射線性組成物(X)について説明する。
<感放射線性組成物>
 感放射線性組成物(X)は、[A]粒子、[B]ラジカル捕捉剤及び[C]有機溶媒を含有する。感放射線性組成物(X)は、感放射線性酸発生剤(以下、「[D]酸発生剤」ともいう)を含有することが好ましく、本発明の効果を損なわない範囲において、その他の成分を含有していてもよい。
 感放射線性組成物(X)は、[A]粒子、[B]ラジカル捕捉剤及び[C]有機溶媒を含有することで、感度及びスカム抑制性に優れる。感放射線性組成物(X)が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[B]ラジカル捕捉剤により、[A]粒子が例えばラジカル的な反応により架橋して不必要に不溶化することが抑制され、その結果、スカム抑制性が向上すると考えられる。また、これにより、露光部における現像液への不溶解性が均質化されるので、感度が向上すると考えられる。以下、各成分について説明する。
<[A]粒子>
 [A]粒子は、金属酸化物を主成分とする粒子である。感放射線性組成物(X)は、[A]粒子を複数個含有する。「金属酸化物」とは、金属原子と酸素原子とを含む化合物をいう。「主成分」とは、粒子を構成する物質のうち最も含有率が高いものをいい、好ましくは含有率が50質量%以上、より好ましくは60質量%以上であるものをいう。[A]粒子は、金属酸化物を主成分としているので、放射線を吸収して二次電子を生成することができ、この二次電子の作用によって[D]酸発生剤等の分解による酸の発生が促進される。その結果、感放射線性組成物(X)の感度を高いものとすることができる。感放射線性組成物(X)は、形成された膜の露光によって、[A]粒子の現像液への溶解性が変化することにより、パターンを形成することができる。
(金属酸化物)
 [A]粒子の金属酸化物を構成する金属原子(以下、「[m]金属原子」ともいう)としては、例えば第3族~第16族の金属原子等が挙げられる。
 第3族の金属原子としては、例えばスカンジウム、イットリウム、ランタン、セリウム等が、
 第4族の金属原子としては、例えばチタン、ジルコニウム、ハフニウム等が、
 第5族の金属原子としては、例えばバナジウム、ニオブ、タンタル等が、
 第6族の金属原子としては、例えばクロム、モリブデン、タングステン等が、
 第7族の金属原子としては、マンガン、レニウム等が、
 第8族の金属原子としては、鉄、ルテニウム、オスミウム等が、
 第9族の金属原子としては、コバルト、ロジウム、イリジウム等が、
 第10族の金属原子としては、ニッケル、パラジウム、白金等が、
 第11族の金属原子としては、銅、銀、金等が、
 第12族の金属原子としては、亜鉛、カドミウム、水銀等が、
 第13族の金属原子としては、アルミニウム、ガリウム、インジウム等が、
 第14族の金属原子としては、ゲルマニウム、スズ、鉛等が、
 第15族の金属原子としては、アンチモン、ビスマス等が、
 第16族の金属原子としては、テルル等が挙げられる。
 [m]金属原子としては、第3族~第15族の金属原子が好ましく、第3族~第5族、第8族~第10族又は第12族~第14族の金属原子がより好ましく、第4族、第9族、第10族、第12族又は第14族の金属原子がさらに好ましく、ジルコニウム、ハフニウム、亜鉛、スズ、ニッケル及びコバルトの少なくともいずれかの原子が特に好ましい。
 上記金属酸化物は、[m]金属原子及び酸素原子以外のその他の原子を含んでもよい。上記その他の原子としては、例えばホウ素、ケイ素等の半金属原子、炭素原子、水素原子、窒素原子、リン原子、硫黄原子、ハロゲン原子等が挙げられる。但し、上記金属酸化物が半金属原子を含む場合、上記金属酸化物における半金属原子の含有率(質量%)は、通常[m]金属原子の含有率よりも小さい。
 上記金属酸化物における[m]金属原子及び酸素原子の合計含有率の下限としては、30質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、90質量%が特に好ましい。一方、上記合計含有率の上限としては、99.9質量%が好ましい。上記[m]金属原子及び酸素原子の合計含有率を上記範囲とすることで、[A]粒子による二次電子の発生をより効果的に促進でき、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。なお、上記[m]金属原子及び酸素原子の合計含有率は、100質量%であってもよい。
 [A]粒子における金属酸化物の含有率の下限としては、60質量%が好ましく、80質量%がより好ましく、95質量%がさらに好ましい。また、上記金属酸化物の含有率は、100質量%であってもよい。上記金属酸化物の含有率を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。[A]粒子は、上記金属酸化物を1種又は2種以上含有していてもよい。
 [A]粒子としては、例えば加水分解性基を有する金属化合物、その加水分解物若しくは加水分解縮合物又はこれらの組み合わせである金属含有化合物(以下、「[z]金属含有化合物」ともいう)に由来するもの(以下、「[A1]粒子」ともいう)等が挙げられる。
([z]金属含有化合物)
 [z]金属含有化合物は、加水分解性基を有する金属化合物(以下、「金属化合物(I)」ともいう)、金属化合物(I)の加水分解物若しくは加水分解縮合物又はこれらの組み合わせである。金属化合物(I)は、1種単独で又は2種以上組み合わせて使用できる。
 上記加水分解性基としては、例えばハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。
 上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、ブトキシ基等が挙げられる。
 上記アシロキシ基としては、例えばアセトキシ基、エチリルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、t-ブチリルオキシ基、1,1-ジメチルプロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、n-オクチルカルボニルオキシ基等が挙げられる。
 上記加水分解性基としては、アルコキシ基が好ましく、イソプロポキシ基がより好ましい。
 [z]金属含有化合物が金属化合物(I)の加水分解縮合物である場合には、この金属化合物(I)の加水分解縮合物は、本発明の効果を損なわない限り、加水分解性基を有する金属原子及び半金属原子を含む化合物との加水分解縮合物であってもよい。すなわち、金属化合物(I)の加水分解縮合物には、本発明の効果を損なわない範囲内で半金属原子が含まれていてもよい。上記半金属原子としては、例えばホウ素、ケイ素等が挙げられる。金属化合物(I)の加水分解縮合物における半金属原子の含有率は、この加水分解縮合物中の金属原子及び半金属原子の合計に対し、通常50原子%未満である。上記半金属原子の含有率の上限としては、上記加水分解縮合物中の金属原子及び半金属原子の合計に対し、30原子%が好ましく、10原子%がより好ましい。
 金属化合物(I)としては、例えば下記式(A)で表される化合物(以下、「金属化合物(I-1)」ともいう)等が挙げられる。このような金属化合物(I-1)を用いることで、安定な金属酸化物を形成でき、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(A)中、Mは、上記[m]金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは互いに同一又は異なる。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは互いに同一又は異なる。なお、LはYに該当しない配位子である。
 Mで表される[m]金属原子としては、例えば[A]粒子が含む金属酸化物を構成する[m]金属原子として例示したものと同様の金属原子等が挙げられる。
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。
 上記単座配位子としては、例えばヒドロキソ配位子、カルボキシ配位子、アミド配位子、アンモニア等が挙げられる。
 上記アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。
 上記多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、π結合を有する炭化水素、ジホスフィン等が挙げられる。
 上記ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 上記β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。
 上記β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 上記β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 上記π結合を有する炭化水素としては、例えば
 エチレン、プロピレン等の鎖状オレフィン;
 シクロペンテン、シクロヘキセン、ノルボルネン等の環状オレフィン;
 ブタジエン、イソプレン等の鎖状ジエン;
 シクロペンタジエン、メチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン;
 ベンゼン、トルエン、キシレン、ヘキサメチルベンゼン、ナフタレン、インデン等の芳香族炭化水素などが挙げられる。
 上記ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Yで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Yで表されるアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基等が挙げられる。
 Yで表されるアシロキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、n-ブチリルオキシ基、i-ブチリルオキシ基、t-ブチリルオキシ基、1,1-ジメチルプロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、n-オクチルカルボニルオキシ基等が挙げられる。
 Yとしては、アルコキシ基が好ましく、イソプロポキシ基がより好ましい。
 aとしては、0又は1が好ましく、0がより好ましい。bとしては、3又は4が好ましく、4がより好ましい。a及びbをそれぞれ上記数値とすることで、[A]粒子における金属酸化物の含有率を高め、[A]粒子による二次電子の発生をより効果的に促進できる。その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
 [z]金属含有化合物としては、加水分解も加水分解縮合もしていない金属アルコキシドが好ましい。
 [z]金属含有化合物としては、ジルコニウム・テトラn-ブトキシド、ジルコニウム・テトラn-プロポキシド、ジルコニウム・テトライソプロポキシド、ハフニウム・テトラエトキシド、インジウム・トリイソプロポキシド、ハフニウム・テトライソプロポキシド、ハフニウム・テトラブトキシド、タンタル・ペンタエトキシド、タンタル・ペンタブトキシド、タングステン・ペンタメトキシド、タングステン・ペンタブトキシド、タングステン・ヘキサエトキシド、タングステン・ヘキサブトキシド、塩化鉄、亜鉛・ジイソプロポキシド、酢酸亜鉛二水和物、オルトチタン酸テトラブチル、チタン・テトラn-ブトキシド、チタン・テトラn-プロポキシド、ジルコニウム・ジn-ブトキシド・ビス(2,4-ペンタンジオナート)、チタン・トリn-ブトキシド・ステアレート、ビス(シクロペンタジエニル)ハフニウムジクロリド、ビス(シクロペンタジエニル)タングステンジクロリド、ジアセタト[(S)-(-)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル]ルテニウム、ジクロロ[エチレンビス(ジフェニルホスフィン)]コバルト、チタンブトキシドオリゴマー、アミノプロピルトリメトキシチタン、アミノプロピルトリエトキシジルコニウム、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシジルコニウム、γ-グリシドキシプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリエトキシジルコニウム、トリエトキシモノ(アセチルアセトナート)チタン、トリ-n-プロポキシモノ(アセチルアセトナート)チタン、トリ-i-プロポキシモノ(アセチルアセトナート)チタン、トリエトキシモノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシモノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシモノ(アセチルアセトナート)ジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)ジルコニウム、トリ(3-メタクリロキシプロピル)メトキシジルコニウム、トリ(3-アクリロキシプロピル)メトキシジルコニウム、スズ・テトライソプロポキシド、スズ・テトラブトキシド、酸化ランタン、酸化イットリウム等が挙げられる。これらの中で、金属アルコキシド又は金属アシロキシドが好ましく、金属アルコキシドがより好ましく、チタン、ジルコニウム、ハフニウム、タンタル、タングステン又はスズのアルコキシドがさらに好ましい。
 また、[A]粒子としては、例えば上記[m]金属原子及び有機酸(以下、「[a]有機酸」ともいう)に由来する配位子(以下、「[p]配位子」ともいう)を含むもの(以下、「[A2]粒子」ともいう)等が挙げられる。[p]配位子としては、例えば[a]有機酸、[a]有機酸に由来するイオン等が挙げられる。[p]配位子は、[A2]粒子中で、上記[m]金属原子に配位結合等しているものと考えられる。
 ここで、「有機酸」とは、酸性を示す有機化合物をいい、「有機化合物」とは、少なくとも1個の炭素原子を有する化合物をいう。
 [A2]粒子が、[m]金属原子と、[a]有機酸又は[a]有機酸に由来するイオン等の配位子とを含む金属酸化物を含有することで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。これは、例えば[a]有機酸が[m]金属原子との相互作用によって[A2]粒子の表面付近に存在することで、[A2]粒子の溶媒に対する溶解性又は分散性が向上するためと考えられる。
 [a]有機酸のpKaの下限としては0が好ましく、1がより好ましく、1.5がさらに好ましく、3が特に好ましい。一方、上記pKaの上限としては、7が好ましく、6がより好ましく、5.5がさらに好ましく、5が特に好ましい。[a]有機酸のpKaを上記範囲とすることで、[m]金属原子との相互作用を適度に弱いものに調整することができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。ここで、[a]有機酸が多価の酸である場合、[a]有機酸のpKaとは、第1酸解離定数、すなわち、1つめのプロトンの解離に対する解離定数の逆数の常用対数値をいう。
 [a]有機酸は、低分子化合物でもよく、高分子化合物でもよいが、[m]金属原子との相互作用をより適度に弱いものに調整する観点から、低分子化合物が好ましい。ここで、低分子化合物とは、分子量が1,500以下の化合物をいい、高分子化合物とは、分子量が1,500超の化合物をいう。[a]有機酸の分子量の下限としては、50が好ましく、80がより好ましい。一方、上記分子量の上限としては、1,000が好ましく、500がより好ましく、400がさらに好ましく、300が特に好ましい。[a]有機酸の分子量を上記範囲とすることで、[A2]粒子の溶解性又は分散性をより適度なものに調整することができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
 [a]有機酸としては、例えばカルボン酸、スルホン酸、スルフィン酸、有機ホスフィン酸、有機ホスホン酸、フェノール類、エノール、チオール、酸イミド、オキシム、スルホンアミド等が挙げられる。
 上記カルボン酸としては、例えば
 ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2-エチルヘキサン酸、オレイン酸、アクリル酸、メタクリル酸、trans-2,3-ジメチルアクリル酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、サリチル酸、安息香酸、p-アミノ安息香酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、没食子酸、シキミ酸等のモノカルボン酸;
 シュウ酸、マロン酸、マレイン酸、メチルマロン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、酒石酸等のジカルボン酸;
 クエン酸等の3以上のカルボキシ基を有するカルボン酸などが挙げられる。
 上記スルホン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 上記スルフィン酸としては、例えばベンゼンスルフィン酸、p-トルエンスルフィン酸等が挙げられる。
 上記有機ホスフィン酸としては、例えばジエチルホスフィン酸、メチルフェニルホスフィン酸、ジフェニルホスフィン酸等が挙げられる。
 上記有機ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、t-ブチルホスホン酸、シクロヘキシルホスホン酸、フェニルホスホン酸等が挙げられる。
 上記フェノール類としては、例えばフェノール、クレゾール、2,6-キシレノール、ナフトール等の1価のフェノール類;
 カテコール、レゾルシノール、ハイドロキノン、1,2-ナフタレンジオール等の2価のフェノール類;
 ピロガロール、2,3,6-ナフタレントリオール等の3価以上のフェノール類などが挙げられる。
 上記エノールとしては、例えば2-ヒドロキシ-3-メチル-2-ブテン、3-ヒドロキシ-4-メチル-3-ヘキセン等が挙げられる。
 上記チオールとしては、例えばメルカプトエタノール、メルカプトプロパノール等が挙げられる。
 上記酸イミドとしては、例えば
 マレイミド、コハク酸イミド等のカルボン酸イミド;
 ジ(トリフルオロメタンスルホン酸)イミド、ジ(ペンタフルオロエタンスルホン酸)イミド等のスルホン酸イミドなどが挙げられる。
 上記オキシムとしては、例えば
 ベンズアルドキシム、サリチルアルドキシム等のアルドキシム;
 ジエチルケトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等のケトキシムなどが挙げられる。
 上記スルホンアミドとしては、例えばメチルスルホンアミド、エチルスルホンアミド、ベンゼンスルホンアミド、トルエンスルホンアミド等が挙げられる。
 [a]有機酸としては、感放射線性組成物(X)の感度及びスカム抑制性をより向上させる観点から、カルボン酸が好ましく、モノカルボン酸がより好ましく、メタクリル酸がさらに好ましい。[A2]粒子は、[p]配位子を1種又は2種以上含有していてもよい。
 [A2]粒子における[m]金属原子の含有率の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。上記含有量の上限としては、99質量%が好ましく、95質量%がより好ましく、90質量%がさらに好ましい。[A2]粒子における[m]金属原子の含有率を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
 [A2]粒子における[p]配位子の含有率の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。一方、上記含有率の上限としては、90質量%が好ましく、70質量%がより好ましく、50質量%がさらに好ましい。[p]配位子の含有率を上記範囲とすることで、[A2]粒子の溶解性又は分散性をさらに適度なものに調整することができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。[A2]粒子は、[p]配位子を1種又は2種以上含有していてもよい。
 [A2]粒子は、塩基(以下、「[b]塩基」ともいう)に由来する配位子(以下、「[q]配位子」ともいう)をさらに含むことが好ましい。[q]配位子としては、例えば[b]塩基、[b]塩基に由来するイオン等が挙げられる。[q]配位子は、[A2]粒子中で、上記[m]金属原子に配位結合等しているものと考えられる。
 ここで、「塩基」とは、塩基性を示す物質をいい、アレニウス塩基、ブレンステッド塩基及びルイス塩基が含まれる。
 [b]塩基としては、例えば有機化合物として、非共有電子対を有する窒素原子を含む窒素含有化合物、非共有電子対を有するリン原子を含むリン含有化合物等が、無機化合物として、金属水酸化物塩、金属炭酸塩等が挙げられる。これらの中で、有機化合物が好ましく、窒素含有化合物がより好ましい。
 窒素含有化合物としては、例えば下記式(1)で表されるアミン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、R、R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はこれらの基の2つ以上が互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造を表す。
 R、R又はRで表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 上記炭化水素基の置換基としては、例えばヒドロキシ基、ハロゲン原子、ニトロ基、シアノ基、アミノ基等が挙げられる。
 R、R及びRのうちの2つ以上が互いに合わせられ構成される環員数3~20の環構造としては、例えば
 アザシクロプロパン構造、アザシクロブタン構造、アザシクロペンタン構造、アザシクロヘキサン構造等のアザシクロアルカン構造;
 アザビシクロ[2.2.2]オクタン構造、アザビシクロ[2.2.1]へプタン構造等のアザビシクロアルカン構造;
 アザオキサシクロヘキサン構造等のアザオキサシクロアルカン構造などの窒素原子含有脂肪族複素環構造、
 ピロール構造、イミダゾール構造、ピラゾール構造、ピリジン構造、ピラジン構造、ピリミジン構造、ピリダジン構造、キノリン構造、イソキノリン構造、アクリジン構造、フェナントロリン構造等の窒素原子含有芳香族複素環構造などが挙げられる。
 アミン化合物としては、例えば
 トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-ブチルアミン、トリ-n-オクチルアミン、N-メチルピロリジン、N-エチルピペリジン等の3級アミン;
 ピロリジン、ピペリジン、ジ-n-ブチルアミン、ジ-n-オクチルアミン、モルホリン等の2級アミン;
 n-ブチルアミン、n-オクチルアミン、アニリン、トルイジン等の1級アミンなどのモノアミン化合物、
 ヘキサメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、1,4-ジアザビシクロ[2.2.2]オクタン等のジアミン化合物;
 ピリジン、ピロール、イミダゾール、ピラジン、トリアジン等の芳香族複素環式アミン化合物などが挙げられる。
 [b]塩基のpKbの下限としては、2が好ましく、2.5がより好ましく、3がさらに好ましい。上記pKbの上限としては、12が好ましく、9がより好ましく、6がさらに好ましい。ここで、「pKb」とは、塩基の25℃における塩基解離定数(Kb)の逆数の常用対数値をいう。
 [b]塩基の沸点の下限としては、70℃が好ましく、80℃がより好ましく、90℃がさらに好ましく、100℃が特に好ましい。上記沸点の上限としては、400℃が好ましく、200℃がより好ましく、150℃がさらに好ましく、130℃が特に好ましい。
 [b]塩基の分子量の下限としては、70が好ましく、80がより好ましく、90がさらに好ましく、100が特に好ましい。上記分子量の上限としては、500が好ましく、400がより好ましく、300がさらに好ましく、200が特に好ましい。
 [b]塩基のpKb、沸点及び分子量のうちの少なくともいずれかが上記範囲を示すことで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
 [A2]粒子が[q]配位子を含む場合、[A2]粒子における[q]配位子の含有率の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。一方、上記含有率の上限としては、90質量%が好ましく、70質量%がより好ましく、50質量%がさらに好ましい。[q]配位子の含有率を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。[A2]粒子は、[q]配位子を1種又は2種以上含有していてもよい。
 [A2]粒子における他の構成部分としては、例えば[p]配位子及び[q]配位子以外の他の配位子、ホウ素、ケイ素等の半金属原子などが挙げられる。上記他の配位子としては、例えば上記式(A)のLの単座配位子及び多座配位子として例示した配位子等が挙げられる。
 [A2]粒子における他の配位子及び半金属原子の含有量の上限としては、20質量%が好ましく、5質量%がより好ましい。上記含有量の下限としては、例えば0.1質量%である。
 [A2]粒子としては、[m]金属原子及び[p]配位子を含む粒子が好ましく、[m]金属原子、[p]配位子及び[q]配位子を含む粒子がより好ましく、第4族、第5族、第9族、第10族、第12族及び第14族の金属原子、カルボン酸に由来する配位子及びアミン化合物に由来する配位子を含む粒子がより好ましく、ジルコニウム、ハフニウム、亜鉛、スズ、ニッケル及びコバルトの少なくともいずれかの原子、メタクリル酸に由来する配位子並びにトリエチルアミンに由来する配位子を含む粒子がさらに好ましい。
[[A]粒子の合成方法]
 [A]粒子は、例えば以下に示す[z]金属含有化合物を用いて加水分解縮合反応を行う方法、[z]金属含有化合物を用いて配位子交換反応を行う方法等により合成することができる。ここで「加水分解縮合反応」とは、[z]金属含有化合物が有する加水分解性基が加水分解して-OHに変換され、得られた2個の-OHが脱水縮合して-O-が形成される反応をいう。
 [A]粒子の合成に[a]有機酸を用いる場合、上記[a]有機酸の使用量の下限としては、[z]金属含有化合物100質量部に対し、10質量部が好ましく、100質量部がより好ましい。一方、上記[a]有機酸の使用量の上限としては、[z]金属含有化合物100質量部に対し、1,000質量部が好ましく、700質量部がより好ましく、500質量部がさらに好ましく、400質量部が特に好ましい。上記[a]有機酸の使用量を上記範囲とすることで、得られる[A]粒子における[a]有機酸の含有率を適度なものに調整することができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上することができる。
 [A]粒子の合成反応の際、金属化合物(I)及び[a]有機酸に加えて、上記式(A)の化合物におけるLで表される多座配位子になり得る化合物や架橋配位子になり得る化合物等を添加してもよい。上記架橋配位子になり得る化合物としては、例えば複数個のヒドロキシ基、イソシアネート基、アミノ基、エステル基及びアミド基を有する化合物等が挙げられる。
 [z]金属含有化合物を用いて加水分解縮合反応を行う方法としては、例えば[z]金属含有化合物を、水を含む溶媒中で加水分解縮合反応させる方法等が挙げられる。この場合、必要に応じて加水分解性基を有する他の化合物を添加してもよい。この加水分解縮合反応に用いる水の量の下限としては、[z]金属含有化合物等が有する加水分解性基に対し、0.2倍モルが好ましく、1倍モルがより好ましく、3倍モルがさらに好ましい。上記水の量の上限としては、20倍モルが好ましく、15倍モルがより好ましく、10倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、得られる[A]粒子における金属酸化物の含有率を高めることができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上できる。
 [z]金属含有化合物を用いて配位子交換反応を行う方法としては、例えば[z]金属含有化合物及び[a]有機酸を混合する方法等が挙げられる。この場合、溶媒中で混合してもよく、溶媒を用いずに混合してもよい。また、上記混合では、必要に応じてトリエチルアミン等の塩基を添加してもよい。上記塩基の添加量としては、[z]金属含有化合物及び[a]有機酸の合計使用量100質量部に対し、例えば1質量部以上200質量部以下である。
 [z]金属含有化合物及び[a]有機酸を混合して配位子交換反応を行う場合、上記有機酸の使用量の下限としては、[z]金属含有化合物100質量部に対し、10質量部が好ましく、30質量部がより好ましい。一方、上記有機酸の使用量の上限としては、[z]金属含有化合物100質量部に対し、1,000質量部が好ましく、700質量部がより好ましく、500質量部がさらに好ましく、400質量部が特に好ましい。上記有機酸の使用量を上記範囲とすることで、得られる[A]粒子における[a]有機酸の含有率を適度なものに調整することができ、その結果、感放射線性組成物(X)の感度及びスカム抑制性をより向上することができる。
 [A]粒子の合成反応に用いる溶媒としては、特に限定されず、例えば後述する[C]有機溶媒として例示するものと同様の溶媒を用いることができる。これらの中で、アルコール系溶媒、エーテル系溶媒、エステル系溶媒又は炭化水素系溶媒が好ましく、アルコール系溶媒、エーテル系溶媒又はエステル系溶媒がより好ましく、多価アルコール部分エーテル系溶媒、モノカルボン酸エステル系溶媒又は環状エーテル系溶媒がさらに好ましく、プロピレングリコールモノエチルエーテル、酢酸エチル又はテトラヒドロフランが特に好ましい。
 [A]粒子の合成反応に有機溶媒を用いる場合、使用した有機溶媒を反応後に除去してもよいが、反応後に除去することなく、そのまま感放射線性組成物(X)の[C]有機溶媒とすることもできる。
 [A]粒子の合成反応の温度の下限としては、0℃が好ましく、10℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましい。
 [A]粒子の合成反応の時間の下限としては、1分が好ましく、10分がより好ましく、1時間がさらに好ましい。上記時間の上限としては、100時間が好ましく、50時間がより好ましく、10時間がさらに好ましい。
 上記[z]金属含有化合物、[a]有機酸等を用いた合成反応で得られた反応溶液を、例えばヘキサン等の溶媒を用いて複数回洗浄することなどにより、[A]粒子を得ることができる。
 [A]粒子の平均粒子径の上限としては、20nmが好ましく、15nmがより好ましく、10nmがさらに好ましく、8nmが特に好ましく、5nmがさらに特に好ましく、3nmが最も好ましい。上記平均粒子径の下限としては、0.5nmが好ましく、1nmがより好ましい。[A]粒子の平均粒子径を上記範囲とすることで、[A]粒子による二次電子の発生をより効果的に促進でき、感放射線性組成物(X)の感度がより向上し、その結果、感度及びスカム抑制性をより向上させることができる。ここで、「平均粒子径」とは、DLS法で測定される散乱光強度基準の調和平均粒子径をいう。
 [A]粒子の含有量の下限としては、感放射線性組成物(X)中の[C]有機溶媒以外の全成分に対して、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、85質量%が特に好ましい。上記含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。[A]粒子の含有量を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。感放射線性組成物(X)は、[A]粒子を1種又は2種以上含有していてもよい。
<[B]ラジカル捕捉剤>
 [B]ラジカル捕捉剤は、生成したラジカルを捕捉して、ラジカル連鎖反応を抑制することができる化合物である。
 [B]ラジカル捕捉剤としては、例えば安定ニトロキシルラジカル化合物、スルフィド化合物、キノン化合物、フェノール化合物、アミン化合物、ホスファイト化合物等が挙げられる。
 安定ニトロキシルラジカル化合物としては、例えばピペリジン1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-マレイミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ホスホノキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、3-カルボキシ-2,2,5,5-テトラメチルピロリジン1-オキシルフリーラジカル等が挙げられる。
 スルフィド化合物としては、例えばフェノチアジン、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ジドデシルサルファイド、ジオクタデシルサルファイド、ジドデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ドデシルオクタデシルチオジプロピオネート、2-メルカプトベンゾイミダゾール等が挙げられる。
 キノン化合物としては、例えばベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、p-トルキノン、p-キシロキノン、2-ヒドロキシ-1,4-ナフトキノン等が挙げられる。
 フェノール化合物としては、例えばヒドロキノン、4-メトキシフェノール、4-tert-ブトキシフェノール、カテコール、4-tert-ブチルカテコール、2,5-ジ-tert-ブチルヒドロキノン、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-m-クレゾール、ピロガロール、2-ナフトール等が挙げられる。
 アミン化合物としては、例えばN-(2,2,6,6-テトラメチル-4-ピペリジル)ドデシルコハク酸イミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブタンテトラカルボキシレート、テトラ(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタンテトラカルボキシレート、N,N’-ジ-sec-ブチル-1,4-フェニレンジアミン等が挙げられる。
 ホスファイト化合物としては、例えばトリイソデシルホスファイト、ジフェニルイソデシルホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト等が挙げられる。
 [B]ラジカル捕捉剤としては、上記化合物以外にも、例えばBASF社の「キマソーブ2020」、ADEKA社の「アデカスタブLA-68」等の高分子量ラジカル捕捉剤等を用いることもできる。
 [B]ラジカル捕捉剤としては、これらの中で、安定ニトロキシルラジカル化合物、スルフィド化合物、キノン化合物、フェノール化合物、アミン化合物又はこれらの組み合わせが好ましい。
 [B]ラジカル捕捉剤の含有量の下限としては、[A]粒子100質量部に対して、0.01質量部が好ましく、0.1質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましく、4質量部がさらに特に好ましく、5質量部が最も好ましい。上記含有量の上限としては、50質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましく、9質量部がさらに特に好ましく、8質量部が最も好ましい。[B]ラジカル捕捉剤の含有量を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
<[C]有機溶媒>
 [C]有機溶媒としては、少なくとも[A]粒子及び[B]ラジカル捕捉剤並びに必要に応じて含有される[D]酸発生剤等のその他の成分などを溶解又は分散可能な有機溶媒であれば特に限定されない。[C]有機溶媒は1種又は2種以上を用いることができる。
 [C]有機溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 イソプロピルアルコール、4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート(PGMEA)等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 これらの中で、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒がより好ましく、PGMEAがさらに好ましい。
<[D]酸発生剤>
 [D]酸発生剤は、放射線の照射により酸を発生する成分である。[D]酸発生剤から発生する酸の作用により、感放射線性組成物(X)における[A]粒子の現像液への溶解性等の変化をより促進することができ、その結果、感度及びスカム抑制性をより向上させることができる。
 [D]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウム1,1,2,2-テトラフルオロ-6-(1-アダマンタンカルボニロキシ)-ヘキサン-1-スルホネート、トリフェニルスルホニウム2-(1-アダマンチル)-1,1-ジフルオロエタンスルホネート、トリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロ-n-オクチルスルホニルオキシ)-1,8-ナフタルイミド、N-(パーフルオロ-n-オクチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(3-テトラシクロ[4.4.0.12,5.17,10]ドデカニル)-1,1-ジフルオロエチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 [D]酸発生剤としては、これらの中で、オニウム塩化合物又はN-スルホニルオキシイミド化合物が好ましく、スルホニウム塩又はN-スルホニルオキシイミド化合物がより好ましく、トリフェニルスルホニウム塩又はN-スルホニルオキシイミド化合物がさらに好ましく、トリフェニルスルホニウムノナフルオロ-n-ブタン-1-スルホネート又はN-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミドが特に好ましい。
 感放射線性組成物(X)が[D]酸発生剤を含有する場合、[D]酸発生剤の含有量の下限としては、感放射線性組成物(X)の[C]有機溶媒以外の全成分に対して、1質量%が好ましく、4質量%がより好ましく、8質量%がさらに好ましい。上記含有量の上限としては、40質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましい。
 感放射線性組成物(X)が[D]酸発生剤を含有する場合、[D]酸発生剤の含有量の下限としては、[A]粒子100質量部に対して、1質量部が好ましく、4質量部がより好ましく、8質量部がさらに好ましい。上記含有量の上限としては、40質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましい。
 [D]酸発生剤の含有量を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。[D]酸発生剤は、1種又は2種以上を用いることができる。
<その他の成分>
 その他の成分としては、例えば感放射線性ラジカル発生剤、酸拡散制御剤、界面活性剤等が挙げられる。感放射線性組成物(X)は、その他の成分を1種又は2種以上用いてもよい。
[感放射線性ラジカル発生剤]
 感放射線性ラジカル発生剤は、放射線の照射によりラジカルを発生する成分である。感放射線性ラジカル発生剤としては、公知の化合物を用いることができる。
 感放射線性組成物(X)が感放射線性ラジカル発生剤を含有する場合、感放射線性ラジカル発生剤の含有量は、本発明の効果を損なわない範囲において種々設定することができる。
[酸拡散制御剤]
 酸拡散制御剤は、露光により[D]酸発生剤等から生じる酸の膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、感放射線性組成物(X)の保存安定性がより向上すると共に、解像性がより向上する。さらに、露光から現像処理までの引き置き時間の変動によるパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性組成物が得られる。
 酸拡散制御剤としては、窒素原子含有化合物、放射線の照射により弱酸を発生する光崩壊性塩基等が挙げられる。
 窒素原子含有化合物としては、例えば
 n-ヘキシルアミン等のモノアルキルアミン;ジ-n-ブチルアミン等のジアルキルアミン;トリエチルアミン等のトリアルキルアミン;アニリン等の芳香族アミンなどのモノアミン、
 エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等のジアミン、
 ポリエチレンイミン、ポリアリルアミン等のポリアミン、
 ジメチルアミノエチルアクリルアミド等の重合体などのアミン化合物、
 ホルムアミド、N-メチルホルムアミド等のアミド基含有化合物、
 尿素、メチルウレア等のウレア化合物、
 ピリジン、2-メチルピリジン等のピリジン化合物;N-プロピルモルホリン、N-(ウンデシルカルボニルオキシエチル)モルホリン等のモルホリン化合物;ピラジン、ピラゾール等の含窒素複素環化合物、
 N-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール等の酸解離性基を有する含窒素複素環化合物などが挙げられる。
 光崩壊性塩基としては、露光により分解して酸拡散制御性を失うオニウム塩化合物等が挙げられる。このようなオニウム塩化合物としては、例えばトリフェニルスルホニウム塩、ジフェニルヨードニウム塩等が挙げられる。
 光崩壊性塩基としては、例えばトリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネート等が挙げられる。
 感放射線性組成物(X)が酸拡散制御剤を含有する場合、酸拡散制御剤の含有量の下限としては、感放射線性組成物(X)の[C]有機溶媒以外の全成分に対して、0.1質量%が好ましく、0.3質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 感放射線性組成物(X)が酸拡散制御剤を含有する場合、酸拡散制御剤の含有量の下限としては、[A]粒子100質量部に対して、0.1質量部が好ましく、0.3質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。
 酸拡散制御剤の含有量を上記範囲とすることで、感放射線性組成物(X)の感度及びスカム抑制性をより向上させることができる。
[界面活性剤]
 界面活性剤は、塗布性、ストリエーション等を改良する作用を示す成分である。上記界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤などが挙げられる。また、上記界面活性剤の市販品としては、例えばKP341(信越化学工業(株))、ポリフローNo.75、同No.95(以上、共栄社化学(株))、エフトップEF301、同EF303、同EF352(以上、(株)トーケムプロダクツ)、メガファックF171、同F173(以上、DIC(株))、フロラードFC430、同FC431(以上、住友スリーエム(株))、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子(株))などが挙げられる。
[感放射線性組成物の調製方法]
 感放射線性組成物(X)は、例えば[A]粒子、[B]ラジカル捕捉剤及び[C]有機溶媒並びに必要に応じて[D]酸発生剤、その他の成分等を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のフィルターで濾過することにより調製することができる。感放射線性組成物(X)の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、3質量%が特に好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましく、7質量%が特に好ましい。「固形分濃度」とは、感放射線性組成物(X)の[C]有機溶媒以外の全成分の濃度(質量%)をいう。
 次に、塗工工程について説明する。具体的には、得られる膜が所望の厚さとなるように感放射線性組成物(X)を塗工して塗工膜を形成した後、必要に応じてプレベーク(PB)によって、塗工膜中の有機溶媒等を揮発させることで膜を形成する。感放射線性組成物(X)を基板に塗工する方法としては、特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用できる。上記基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。なお、感放射線性組成物の潜在能力を最大限に引き出すため、有機系又は無機系の反射防止膜を基板上に形成してもよい。
 本工程で形成する膜の平均厚さの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。一方、上記平均厚さの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。
 PB温度の下限としては、通常30℃であり、35℃が好ましく、40℃がより好ましい。PB温度の上限としては、通常140℃であり、100℃が好ましい。PB時間の下限としては、通常5秒であり、10秒が好ましい。PB時間の上限としては、通常24時間であり、1時間が好ましく、600秒がより好ましく、300秒がさらに好ましい。
 本工程では、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば形成した膜上に保護膜を設けることもできる。また、後述するように露光工程で液浸露光を行う場合は、液浸媒体と膜との直接的な接触を避けるため、形成した膜上に液浸用保護膜を設けてもよい。
<露光工程>
 本工程では、塗工工程により得られた膜をEUV又はEBで露光する。具体的には、例えば所定のパターンを有するマスクを介して上記膜に放射線を照射する。本工程では、必要に応じ、水等の液浸媒体を介した放射線の照射、つまり液浸露光を採用してもよい。
<現像工程>
 本工程では、現像液を用い、露光工程後の膜を現像する。これにより、所定パターンが形成される。現像液としては例えばアルカリ水溶液、有機溶媒含有液等が挙げられる。すなわち、現像方法としては、アルカリ現像でも有機溶媒現像でもよい。
 上記アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ水溶液などが挙げられる。
 上記アルカリ水溶液におけるアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 上記アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 上記有機溶媒含有液中の有機溶媒としては、例えば感放射線性組成物(X)の[C]有機溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、アルコール系溶媒、炭化水素系溶媒及びエステル系溶媒からなる群から選ばれる溶媒が好ましく、イソプロピルアルコール、4-メチル-2-ペンタノール、トルエン及び酢酸ブチルからなる群から選ばれる溶媒がより好ましい。
 上記有機溶媒含有液における有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有量を上記範囲とすることで、露光部及び非露光部での現像液に対する溶解速度のコントラストをより向上することができる。なお、上記有機溶媒含有液の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 上記現像液には、必要に応じて界面活性剤を適当量添加してもよい。上記界面活性剤としては例えばイオン性又は非イオン性のフッ素系界面活性剤、シリコーン系の界面活性剤等を用いることができる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
 上記現像後の基板は、水、アルコール等のリンス液を用いてリンスした後、乾燥させることが好ましい。上記リンスの方法としては、例えば一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<[A]粒子の合成>
[合成例1]
 ジルコニウム(IV)テトライソプロポキシド2.7gをメタクリル酸9gに溶解させ、この溶液を65℃で2時間加熱した。反応溶液を複数回ヘキサンで洗浄した後、乾燥させることで、金属原子と有機酸に由来する配位子とを主に含む粒子(A-1)を得た。
[合成例2]
 ジルコニウム(IV)テトライソプロポキシド2.5g及びメタクリル酸1.4gを酢酸エチル40.0gに溶解させた。この溶液にトリエチルアミン2.2gを滴下して65℃で10時間加熱した。減圧濃縮により酢酸エチルを留去させることで、金属原子と有機酸に由来する配位子と塩基に由来する配位子を含む粒子(A-2)を得た。
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[B]ラジカル捕捉剤、[C]有機溶媒及び[D]酸発生剤を以下に示す。
[[B]ラジカル捕捉剤]
 B-1:ヒドロキノン(下記式(B-1)で表される化合物)
 B-2:4-メトキシフェノール(下記式(B-2)で表される化合物)
 B-3:2,6-ジ-tert-ブチル-4-メチルフェノール(下記式(B-3)で表される化合物)
 B-4:2-ヒドロキシ-1,4-ナフトキノン(下記式(B-4)で表される化合物)
 B-5:4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル(下記式(B-5)で表される化合物)
 B-6:フェノチアジン(下記式(B-6)で表される化合物)
 B-7:N,N’-ジ-sec-ブチル-1,4-フェニレンジアミン(下記式(B-7)で表される化合物)
Figure JPOXMLDOC01-appb-C000005
[[C]有機溶媒]
 C-1:プロピレングリコールモノメチルエーテルアセテート(下記式(C-1)で表される化合物)
[[D]酸発生剤]
 D-1:N-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミド(下記式(D-1)で表される化合物)
Figure JPOXMLDOC01-appb-C000006
[比較例1]
 [A]粒子としての(A-1)100質量部、[C]有機溶媒としての(C-1)及び[D]酸発生剤としての(D-1)10質量部を混合し、固形分濃度5質量%の混合液とした。得られた混合液を孔径0.20μmのメンブランフィルターでろ過することで感放射線性組成物(R-1)を調製した。なお、下記表1における「-」は、「[B]ラジカル捕捉剤」を添加していないことを示す。
[実施例1]
 [A]粒子としての(A-1)100質量部、[B]ラジカル捕捉剤としての(B-1)20質量部、[C]有機溶媒としての(C-1)及び[D]酸発生剤としての(D-1)10質量部を混合し、固形分濃度5質量%の混合液とした。得られた混合液を孔径0.20μmのメンブランフィルターでろ過することで感放射線性組成物(R-2)を調製した。
[実施例2~9]
 下記表1に示す種類及び含有量の各成分を用いた以外は、実施例1と同様に操作して感放射線性組成物(R-3)~(R-10)を調製した。
Figure JPOXMLDOC01-appb-T000007
<パターンの形成>
[比較例1及び実施例1~9]
 簡易スピンコーターで、シリコンウエハ上に下記表2に示す感放射線性組成物をスピンコートした後、40℃、60秒間の条件でPBし、平均厚さ50nmの膜を形成した。次に、この膜に、真空紫外光露光装置(NA:0.3、ダイポール照明、30nmSpace60nmPitchのパターンのマスクを介して露光した。)を用いて露光し、パターニングを行った。EUV光照射は、線幅50nmのライン部と、隣り合うライン部の間に形成される間隔50nmのスペース部とが1:1となるライン・アンド・スペースパターン(1L1S)形成用のマスクパターンを用いて行った。トルエンにより現像した後、乾燥させることでネガ型パターンを形成した。
<評価>
 上記調製した感放射線性組成物について、感度及びスカム抑制性を、以下の方法に従い評価した。評価結果を下記表2に合わせて示す。
[感度]
 上記パターンの形成において、ライン・アンド・スペースパターン(1L1S)が露光量30mJ/cm以下でパターンを形成できた場合は「A」(非常に良好)と、露光量30mJ/cm以下ではパターンを形成できないが露光量30mJ/cm超40mJ/cm以下でパターンを形成できた場合は「B」(良好)と、露光量40mJ/cm以下でパターンを形成できなかった場合は「C」(良好でない)と評価した。
[スカム抑制性]
 走査型電子顕微鏡を用いて、形成されたパターン間を観察し、現像液で剥離されずスペース部に残存している膜の有無を確認した。スカム抑制性は、膜の残存が認められない場合は「A」(良好)と、膜の残存が認められる場合は「B」(不良)と評価した。
Figure JPOXMLDOC01-appb-T000008
 上記表2の結果から分かるように、実施例のパターン形成方法及び感放射線性組成物によれば、高い感度で、スカム抑制性に優れるパターンを形成することができる。
 本発明の感放射線性組成物及びパターン形成方法によれば、高い感度で、スカムが抑制されたパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイス、液晶デバイス等の各種電子デバイスのリソグラフィー工程における微細なレジストパターン形成に好適に用いることができる。

 

Claims (24)

  1.  基板に直接又は間接に、金属酸化物を主成分とする粒子、ラジカル捕捉剤及び有機溶媒を含有する感放射線性組成物を塗工する工程と、
     上記塗工工程により形成された膜を極端紫外線又は電子線で露光する工程と、
     上記露光工程後の膜を現像する工程と
     を備えるパターン形成方法。
  2.  上記ラジカル捕捉剤が、安定ニトロキシルラジカル化合物、スルフィド化合物、キノン化合物、フェノール化合物、アミン化合物又はこれらの組み合わせである請求項1に記載のパターン形成方法。
  3.  上記粒子の含有量が、上記感放射線性組成物中の上記有機溶媒以外の全成分に対して50質量%以上である請求項1又は請求項2に記載のパターン形成方法。
  4.  上記粒子の含有量が、上記感放射線性組成物中の上記有機溶媒以外の全成分に対して85質量%以上である請求項3に記載のパターン形成方法。
  5.  上記粒子100質量部に対する上記ラジカル捕捉剤の含有量が0.01質量部以上20質量部以下である請求項1から請求項4のいずれか1項に記載のパターン形成方法。
  6.  上記金属酸化物を構成する金属原子が、ジルコニウム、ハフニウム、亜鉛、スズ、ニッケル及びコバルトの少なくともいずれかの原子である請求項1から請求項5のいずれか1項に記載のパターン形成方法。
  7.  上記粒子が、下記式(A)で表される化合物、その加水分解物若しくは加水分解縮合物又はこれらの組み合わせに由来する請求項1から請求項6のいずれか1項に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、Mは、上記金属酸化物を構成する金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは互いに同一又は異なる。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは互いに同一又は異なる。なお、LはYに該当しない配位子である。)
  8.  上記粒子が、上記金属酸化物を構成する金属原子及び有機酸に由来する配位子を含む請求項1から請求項7のいずれか1項に記載のパターン形成方法。
  9.  上記粒子が、塩基に由来する配位子をさらに含む請求項8に記載のパターン形成方法。
  10.  上記有機酸がメタクリル酸である請求項8又は請求項9に記載のパターン形成方法。
  11.  上記粒子の平均粒子径が20nm以下である請求項1から請求項10のいずれか1項に記載のパターン形成方法。
  12.  上記感放射線性組成物が感放射線性酸発生剤をさらに含有する請求項1から請求項11のいずれか1項に記載のパターン形成方法。
  13.  金属酸化物を主成分とする粒子と、
     ラジカル捕捉剤と、
     有機溶媒と
     を含有する感放射線性組成物。
  14.  上記ラジカル捕捉剤が、安定ニトロキシルラジカル化合物、スルフィド化合物、キノン化合物、フェノール化合物、アミン化合物又はこれらの組み合わせである請求項13に記載の感放射線性組成物。
  15.  上記粒子の含有量が、上記有機溶媒以外の全成分に対して50質量%以上である請求項13又は請求項14に記載の感放射線性組成物。
  16.  上記粒子の含有量が、上記有機溶媒以外の全成分に対して85質量%以上である請求項15に記載の感放射線性組成物。
  17.  上記粒子100質量部に対する上記ラジカル捕捉剤の含有量が0.01質量部以上20質量部以下である請求項13から請求項16のいずれか1項に記載の感放射線性組成物。
  18.  上記金属酸化物を構成する金属原子が、ジルコニウム、ハフニウム、亜鉛、スズ、ニッケル及びコバルトの少なくともいずれかの原子である請求項13から請求項17のいずれか1項に記載の感放射線性組成物。
  19.  上記粒子が、下記式(A)で表される化合物、その加水分解物若しくは加水分解縮合物又はこれらの組み合わせに由来する請求項13から請求項18のいずれか1項に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(A)中、Mは、上記金属酸化物を構成する金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは互いに同一又は異なる。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは互いに同一又は異なる。なお、LはYに該当しない配位子である。)
  20.  上記粒子が、上記金属酸化物を構成する金属原子及び有機酸に由来する配位子を含む請求項13から請求項19のいずれか1項に記載の感放射線性組成物。
  21.  上記粒子が、塩基に由来する配位子をさらに含む請求項20に記載の感放射線性組成物。
  22.  上記有機酸がメタクリル酸である請求項20又は請求項21に記載の感放射線性組成物。
  23.  上記粒子の平均粒子径が20nm以下である請求項13から請求項22のいずれか1項に記載の感放射線性組成物。
  24.  感放射線性酸発生剤をさらに含有する請求項13から請求項23のいずれか1項に記載の感放射線性組成物。

     
PCT/JP2019/016189 2018-05-14 2019-04-15 パターン形成方法及び感放射線性組成物 WO2019220835A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020519522A JP7327392B2 (ja) 2018-05-14 2019-04-15 パターン形成方法及び感放射線性組成物
US17/095,796 US20210063872A1 (en) 2018-05-14 2020-11-12 Pattern-forming method and radiation-sensitive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862671029P 2018-05-14 2018-05-14
US62/671,029 2018-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,796 Continuation US20210063872A1 (en) 2018-05-14 2020-11-12 Pattern-forming method and radiation-sensitive composition

Publications (1)

Publication Number Publication Date
WO2019220835A1 true WO2019220835A1 (ja) 2019-11-21

Family

ID=68541144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016189 WO2019220835A1 (ja) 2018-05-14 2019-04-15 パターン形成方法及び感放射線性組成物

Country Status (3)

Country Link
US (1) US20210063872A1 (ja)
JP (1) JP7327392B2 (ja)
WO (1) WO2019220835A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948904A (zh) * 2020-08-13 2020-11-17 清华大学 光刻胶组合物、用它形成光刻图案的方法及其用途
CN111965947A (zh) * 2020-08-13 2020-11-20 清华大学 光刻胶、光刻胶的图案化方法及集成电路板的刻蚀方法
WO2022121888A1 (zh) * 2020-12-09 2022-06-16 清华大学 钛锆氧化物纳米粒子、光刻胶、光刻胶的图案化方法及生成印刷电路板的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068850A (zh) * 2021-10-31 2023-05-05 华为技术有限公司 化合物、图案化材料、半导体器件、终端和图案化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046261A1 (ja) * 2013-09-27 2015-04-02 Jsr株式会社 タッチパネル、感放射線性樹脂組成物および硬化膜
JP2015075500A (ja) * 2013-10-04 2015-04-20 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
WO2016148176A1 (ja) * 2015-03-19 2016-09-22 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法
WO2018061891A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 分散液、組成物、膜、膜の製造方法および分散剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238573A (ja) * 2002-02-18 2003-08-27 Toray Ind Inc 有機金属化合物を含む組成物ならびにディスプレイ部材およびディスプレイ
WO2013085062A1 (ja) * 2011-12-09 2013-06-13 株式会社日本触媒 化合物、金属酸化物粒子及びそれらの製造方法と用途
JP2017073512A (ja) * 2015-10-09 2017-04-13 旭化成株式会社 レジスト組成物
JP2017129663A (ja) * 2016-01-19 2017-07-27 富士フイルム株式会社 アレイ基板の製造方法、液晶表示装置の製造方法、及び、アレイ基板における共通電極−画素電極間絶縁膜用感光性組成物
US10120277B2 (en) * 2016-02-19 2018-11-06 Jsr Corporation Radiation-sensitive composition and pattern-forming method
WO2019220878A1 (ja) * 2018-05-14 2019-11-21 Jsr株式会社 感放射線性組成物及びパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046261A1 (ja) * 2013-09-27 2015-04-02 Jsr株式会社 タッチパネル、感放射線性樹脂組成物および硬化膜
JP2015075500A (ja) * 2013-10-04 2015-04-20 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
WO2016148176A1 (ja) * 2015-03-19 2016-09-22 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、tft基板、層間絶縁膜、表示装置、およびその製造方法
WO2018061891A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 分散液、組成物、膜、膜の製造方法および分散剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948904A (zh) * 2020-08-13 2020-11-17 清华大学 光刻胶组合物、用它形成光刻图案的方法及其用途
CN111965947A (zh) * 2020-08-13 2020-11-20 清华大学 光刻胶、光刻胶的图案化方法及集成电路板的刻蚀方法
WO2022033366A1 (zh) * 2020-08-13 2022-02-17 无锡华睿芯材科技有限公司 光刻胶组合物、用它形成光刻图案的方法及其用途
WO2022033367A1 (zh) * 2020-08-13 2022-02-17 无锡华睿芯材科技有限公司 光刻胶、光刻胶的图案化方法及集成电路板的刻蚀方法
CN111948904B (zh) * 2020-08-13 2022-04-01 常州华睿芯材科技有限公司 光刻胶组合物、用它形成光刻图案的方法及其用途
WO2022121888A1 (zh) * 2020-12-09 2022-06-16 清华大学 钛锆氧化物纳米粒子、光刻胶、光刻胶的图案化方法及生成印刷电路板的方法

Also Published As

Publication number Publication date
JPWO2019220835A1 (ja) 2021-05-27
JP7327392B2 (ja) 2023-08-16
US20210063872A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP7327392B2 (ja) パターン形成方法及び感放射線性組成物
JP6666564B2 (ja) 感放射線性組成物及びパターン形成方法
WO2018168221A1 (ja) 感放射線性組成物及びパターン形成方法
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
JP6871520B2 (ja) 感放射線性組成物及びパターン形成方法
JP6572898B2 (ja) パターン形成方法
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
US20190033713A1 (en) Radiation-sensitive composition and pattern-forming method
JP2018017780A (ja) 感放射線性組成物及びパターン形成方法
WO2018043506A1 (ja) 感放射線性組成物及びパターン形成方法
US20190258161A1 (en) Radiation-sensitive composition and pattern-forming method
JP2018116160A (ja) 感放射線性組成物及びパターン形成方法
US20190094691A1 (en) Radiation-sensitive composition and pattern-forming method
WO2019220878A1 (ja) 感放射線性組成物及びパターン形成方法
JP2019144553A (ja) 感放射線性組成物及びパターン形成方法
US20180356725A1 (en) Radiation-sensitive composition and pattern-forming method
WO2020040092A1 (ja) パターン形成方法及び感放射線性組成物
TW202113473A (zh) 圖案形成方法及感放射線性組成物
WO2018190088A1 (ja) 感放射線性組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802490

Country of ref document: EP

Kind code of ref document: A1