WO2016148017A1 - 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 - Google Patents

複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 Download PDF

Info

Publication number
WO2016148017A1
WO2016148017A1 PCT/JP2016/057590 JP2016057590W WO2016148017A1 WO 2016148017 A1 WO2016148017 A1 WO 2016148017A1 JP 2016057590 W JP2016057590 W JP 2016057590W WO 2016148017 A1 WO2016148017 A1 WO 2016148017A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte membrane
composite
membrane
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2016/057590
Other languages
English (en)
French (fr)
Inventor
山口純平
出原大輔
梅田浩明
岡本由明子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP16764847.6A priority Critical patent/EP3270449B1/en
Priority to CN201680015350.2A priority patent/CN107408716B/zh
Priority to CA2976892A priority patent/CA2976892A1/en
Priority to US15/557,217 priority patent/US10483577B2/en
Priority to JP2016518213A priority patent/JP6819287B2/ja
Priority to KR1020177023801A priority patent/KR102440712B1/ko
Publication of WO2016148017A1 publication Critical patent/WO2016148017A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08J5/2281Heterogeneous membranes fluorine containing heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3444Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite polymer electrolyte membrane having a composite layer in which a polymer electrolyte and a polymer porous membrane are combined, and an electrolyte membrane with a catalyst layer, a membrane electrode assembly, and a solid polymer fuel cell using the same. is there.
  • a fuel cell is a kind of power generation device that extracts electrical energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has recently attracted attention as a clean energy supply source.
  • the polymer electrolyte fuel cell has a standard operating temperature as low as around 100 ° C. and a high energy density, so that it is a relatively small-scale distributed power generation facility, a mobile power generator such as an automobile or a ship.
  • a mobile power generator such as an automobile or a ship.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
  • an anode electrode and a cathode electrode in which a reaction responsible for power generation occurs, and a polymer electrolyte membrane serving as a proton conductor between the anode and the cathode are sometimes referred to as a membrane electrode assembly (hereinafter, abbreviated as MEA).
  • MEA membrane electrode assembly
  • a cell in which this MEA is sandwiched between separators is configured as a unit.
  • the polymer electrolyte membrane is mainly composed of a polymer electrolyte material. As a required characteristic of the polymer electrolyte membrane, low humidified proton conductivity can be mentioned.
  • the temperature can exceed 80 ° C. It can be operated under low humidification conditions with a relative humidity of 60% or less, and the water management system can be simplified.
  • Nafion registered trademark
  • DuPont which is a perfluorosulfonic acid polymer
  • Nafion registered trademark
  • Nafion registered trademark
  • fuel crossover was large due to the cluster structure. Further, under the fuel cell operating conditions, the drying / wetting cycle is repeated, and the polymer electrolyte membrane repeatedly swells and contracts.
  • Patent Document 1 proposes a crystalline polyetherketone (PEK) polymer electrolyte membrane having a phase separation structure. Also, an attempt has been made to focus on the composite of the reinforcing material and the electrolyte membrane for the purpose of suppressing the dimensional change accompanying the dry / wet cycle of the electrolyte membrane.
  • Patent Documents 2 and 3 propose composite polymer electrolyte membranes in which the electrolyte membrane is reinforced with a porous material made of polytetrafluoroethylene or a fiber nonwoven fabric.
  • the electrolyte membrane described in Patent Document 1 achieves high mechanical strength by a pseudo-crosslinking effect due to strong crystallinity while maintaining high low humidification proton conductivity due to the phase separation structure. Further, the effect of reducing the dimensional change in the wet and dry cycle is not sufficient, and further improvement in physical durability is demanded.
  • Patent Documents 2 and 3 are obtained by reinforcing a hydrocarbon electrolyte with a fluorine-containing porous membrane for the same purpose, but the hydrophilization treatment for the fluorine-containing porous membrane is insufficient. Since the affinity between the hydrocarbon-based electrolyte and the fluorine-containing porous material is poor, and there are many voids in the obtained composite electrolyte membrane, there are problems in fuel permeation and mechanical strength.
  • the present invention has excellent proton conductivity even under low humidification conditions and low temperature conditions, and is excellent in mechanical strength and physical durability. It is an object of the present invention to provide a polymer electrolyte membrane that can achieve high output, high energy density, and long-term durability, and a membrane electrode assembly and a polymer electrolyte fuel cell using the polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention is a composite polymer electrolyte membrane having a composite layer in which an aromatic hydrocarbon polymer electrolyte and a fluorine-containing polymer porous membrane are combined, and the X-ray photoelectron spectroscopy method is used.
  • the ratio of the atomic composition percentage O (at%) of oxygen to the atomic composition percentage F (at%) of fluorine at the outermost surface of the fluoropolymer porous membrane measured by (XPS) (O / F ratio) Is a composite polymer electrolyte membrane in which the aromatic hydrocarbon polymer electrolyte in the composite layer forms a phase separation structure.
  • the present invention has excellent proton conductivity even under low humidification conditions, and is excellent in mechanical strength and physical durability, and also has high output and long-term durability when used as a polymer electrolyte fuel cell. It is possible to provide a polymer electrolyte membrane that can achieve the above, an electrolyte membrane with a catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell using the same.
  • an aromatic hydrocarbon-based polymer electrolyte (hereinafter sometimes simply referred to as “polymer electrolyte”) is characterized by forming a phase separation structure in a composite layer described later.
  • the phase separation structure is a polymer in which two or more types of incompatible segments are bonded, for example, a block copolymer or a graft copolymer, or a polymer in which two or more types of incompatible polymers are mixed. It can be expressed in a blend.
  • the block copolymer or graft copolymer that can be used as the aromatic hydrocarbon polymer electrolyte of the present invention is constituted by bonding a segment containing an ionic group and a segment not containing an ionic group.
  • the segment refers to a partial structure in a copolymer polymer chain composed of repeating units exhibiting specific properties and having a molecular weight of 2000 or more.
  • the polymer blend that can be used as the aromatic hydrocarbon polymer electrolyte in the present invention is constituted by mixing a polymer containing an ionic group and a polymer not containing an ionic group.
  • the polymer represents the entire polymer chain having a molecular weight of 10,000 or more.
  • a block copolymer or a graft copolymer is preferable from the viewpoint of both power generation performance and physical durability.
  • a block copolymer or graft copolymer it is possible to form a phase-separated structure with fine domains (similar segments or lumps formed by agglomeration of polymers) compared to polymer blends, which is superior. Power generation performance and physical durability can be achieved.
  • the aromatic hydrocarbon polymer electrolyte has a block copolymer.
  • a segment or polymer containing an ionic group is referred to as (A1)
  • a segment or polymer not containing an ionic group is referred to as (A2).
  • the description of “does not contain an ionic group” in the present invention does not exclude an embodiment in which the segment or polymer contains a small amount of ionic groups within a range that does not inhibit the formation of a co-continuous phase separation structure.
  • a favorable proton conduction channel is formed in a domain containing (A1) (hereinafter referred to as “ionic domain”).
  • ionic domain a domain containing (A1)
  • nonionic domain a domain including (A2)
  • phase separation structure of aromatic hydrocarbon polymer electrolytes is roughly classified into four types: co-continuous (M1), lamella (M2), cylinder (M3), and sea island (M4) (FIG. 1). Such a phase separation structure is disclosed in, for example, Annual Review of Physical Chemistry (Physical Chemistry), 41, 1990, p. 525 etc.
  • the phase separation structure of the aromatic hydrocarbon polymer electrolyte of the present invention is preferably co-continuous or lamella-like from the balance of proton conductivity and mechanical strength, and is co-continuous from the viewpoint of constructing a proton conduction path. Most preferably it is.
  • the phase separation structure When the phase separation structure is cylinder-like or sea-island-like, the proton conductivity decreases due to the small amount of ionic groups responsible for proton conduction, or conversely the mechanical strength decreases due to an increase in the amount of ionic groups There is.
  • the fact that the aromatic hydrocarbon polymer electrolyte forms a phase separation structure is confirmed by observation of the phase separation structure when the transmission electron microscope (TEM) observation is performed at 50,000 times. can do.
  • the average inter-domain distance of the phase separation structure is 2 nm or more, it can be regarded as having a phase separation structure.
  • the average interdomain distance is defined as a value obtained from an average value of interdomain distances measured from a TEM image subjected to image processing.
  • the average interdomain distance is preferably in the range of 2 nm or more and 5000 nm or less, and more preferably 5 nm or more and 2000 nm or less from the viewpoint of proton conductivity, mechanical strength, and physical durability.
  • the average interdomain distance is smaller than 2 nm, the phase separation structure becomes unclear and a good proton conduction channel may not be formed.
  • the average inter-domain distance is larger than 5000 nm, although a proton conduction channel is formed, the mechanical strength and physical durability may be inferior due to swelling.
  • the average interdomain distance is measured by the method described in Example (5).
  • the phase separation structure state is determined by comparing the patterns shown in the three-dimensional views of the digital slice cut out from the three directions of the vertical, horizontal, and height with the three-dimensional view obtained by TEM tomography observation. Do.
  • a polymer electrolyte membrane made of an aromatic hydrocarbon polymer electrolyte containing the above (A1) and (A2) when the phase separation structure is co-continuous or lamellar, (A1) in all three views
  • the ionic domain containing and the nonionic domain containing (A2) together form a continuous phase.
  • any of the domains does not form a continuous phase on at least one surface.
  • the continuous phase means a phase in which individual domains are connected without being isolated from each other macroscopically, but there may be a part that is not partially connected.
  • the ionic group is immersed in a 2 wt% lead acetate aqueous solution for 2 days. It is preferable to use a sample obtained by ion exchange of lead.
  • the volume ratio of the ionic domain to the nonionic domain in the aromatic hydrocarbon polymer electrolyte of the present invention is preferably 80/20 to 20/80, and more preferably 60/40 to 40/60. .
  • the molar composition ratio (A1 / A2) of (A1) to (A2) is preferably 0.20 or more, more preferably 0.33 or more.
  • 0.50 or more is more preferable.
  • A1 / A2 is preferably 5.00 or less, more preferably 3.00 or less, and even more preferably 2.50 or less.
  • the molar composition ratio A1 / A2 represents the ratio of the number of moles of the repeating unit present in (A1) to the number of moles of the repeating unit present in (A2).
  • the “number of moles of repeating unit” is a value obtained by dividing the number average molecular weight of (A1) and (A2) by the molecular weight of the corresponding structural unit.
  • the aromatic hydrocarbon polymer electrolyte has crystallinity.
  • “having crystallinity” means that the polymer electrolyte has a crystallizable property that can be crystallized when the temperature is raised, or has already been crystallized.
  • Crystallinity is confirmed by differential scanning calorimetry (DSC) or wide angle X-ray diffraction.
  • the polymer electrolyte membrane of the present invention has a crystallization calorie measured by differential scanning calorimetry of 0.1 J / g or more or a crystallinity measured by wide-angle X-ray diffraction of 0.5% or more. Is preferred. That is, when no crystallization peak is observed in the differential scanning calorimetry, it may be considered that the crystal has already been crystallized or the polymer electrolyte is amorphous. The crystallinity becomes 0.5% or more by diffraction.
  • the aromatic hydrocarbon polymer electrolyte having crystallinity as described above may have poor processability of the polymer electrolyte membrane.
  • a protective group may be introduced into the aromatic hydrocarbon polymer electrolyte to temporarily suppress crystallinity. Specifically, it is combined with a fluoropolymer porous membrane described later in a state in which a protective group is introduced, and then deprotected, so that the aromatic hydrocarbon polymer electrolyte having crystallinity and the fluoropolymer porous A composite layer formed by combining the material film can be formed.
  • the ionic group possessed by the aromatic hydrocarbon polymer electrolyte used in the present invention is not limited as long as it has proton exchange ability, but sulfonic acid group, sulfonimide group, sulfuric acid group, phosphonic acid group, phosphoric acid group, carboxylic acid group, Acid groups are preferably used. Two or more kinds of these ionic groups can be contained in the aromatic hydrocarbon polymer electrolyte, and the combination is appropriately determined depending on the structure of the polymer.
  • the aromatic hydrocarbon polymer preferably has at least a sulfonic acid group, a sulfonimide group, and a sulfuric acid group, and most preferably has at least a sulfonic acid group from the viewpoint of raw material cost.
  • the ion exchange capacity (IEC) of the aromatic hydrocarbon polymer electrolyte as a whole is preferably 0.1 meq / g or more and 5.0 meq / g or less from the balance of proton conductivity and water resistance. IEC is more preferably 1.4 meq / g or more, and further preferably 2.0 meq / g or more.
  • 3.5 meq / g or less is more preferable, and 3.0 meq / g or less is further more preferable.
  • IEC is less than 0.1 meq / g, proton conductivity may be insufficient, and when it is greater than 5.0 meq / g, water resistance may be insufficient.
  • the IEC of (A1) is preferably high from the viewpoint of proton conductivity under low humidification conditions, specifically, preferably 2.5 meq / g or more, more preferably 3.0 meq / g or more. More preferably, it is 5 meq / g or more. Moreover, as an upper limit, 6.5 meq / g or less is preferable, 5.0 meq / g or less is more preferable, 4.5 meq / g or less is further more preferable.
  • the IEC of (A1) is less than 2.5 meq / g, proton conductivity under low humidification conditions may be insufficient, and when it exceeds 6.5 meq / g, it is resistant to hot water and physical durability. Sexuality may be insufficient.
  • the IEC of (A2) is preferably low in terms of hot water resistance, mechanical strength, dimensional stability, and physical durability, specifically 1.0 meq / g or less, more preferably 0.5 meq / g or less. Preferably, 0.1 meq / g or less is more preferable. When the IEC of (A2) exceeds 1.0 meq / g, the hot water resistance, mechanical strength, dimensional stability, and physical durability may be insufficient.
  • IEC is the molar amount of the ionic group introduced per unit dry weight of the aromatic hydrocarbon polymer electrolyte and the polymer electrolyte membrane. The larger the value, the more the ionic group introduction amount. Indicates many.
  • IEC is defined as a value obtained by a neutralization titration method. The calculation of IEC by neutralization titration is performed by the method described in Example (3).
  • the aromatic hydrocarbon polymer used for the polymer electrolyte membrane of the present invention will be described with reference to preferred specific examples.
  • polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer examples thereof include polyarylene ketone, polyether ketone, polyarylene phosphine oxide, polyether phosphine oxide, polybenzoxazole, polybenzthiazole, polybenzimidazole, polyamide, polyimide, polyetherimide, and polyimidesulfone.
  • Polysulfone, polyethersulfone, polyetherketone, and the like referred to here are generic names for polymers having a sulfone bond, an ether bond, and a ketone bond in the molecular chain thereof.
  • the main chain skeleton of the aromatic hydrocarbon polymer electrolyte may be a polymer structure including a plurality of the above polymer structures.
  • a polyetherketone polymer is particularly preferable, and a polymer containing a segment containing a structural unit (S1) containing an ionic group as described below and a segment containing a structural unit (S2) not containing an ionic group. More preferred is an ether ketone block copolymer.
  • Ar 1 to Ar 4 represent any divalent arylene group, Ar 1 and / or Ar 2 contain an ionic group, and Ar 3 and Ar 4 contain an ionic group Ar 1 to Ar 4 may be optionally substituted, and two or more types of arylene groups may be used independently of each other, and * represents the general formula (S1) or It represents the binding site with other structural units.
  • Ar 5 to Ar 8 represent any divalent arylene group, which may be optionally substituted, but does not contain an ionic group. Ar 5 to Ar 8 are independent of each other. Two or more types of arylene groups may be used, and * represents a bonding site with the general formula (S2) or other structural unit.
  • preferable divalent arylene groups as Ar 1 to Ar 8 are hydrocarbon arylene groups such as phenylene group, naphthylene group, biphenylene group, and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl, and thiophenediyl. Examples include, but are not limited to, groups.
  • a group other than an ionic group may be substituted with a group other than an ionic group, but unsubstituted one is more preferable in terms of proton conductivity, chemical stability, and physical durability.
  • a phenylene group containing a phenylene group and an ionic group is preferred, and a p-phenylene group containing a p-phenylene group and an ionic group is most preferred.
  • the composite polymer electrolyte membrane of the present invention includes an aromatic hydrocarbon polymer electrolyte and a fluorine-containing polymer porous membrane (hereinafter sometimes simply referred to as “porous membrane”).
  • porous membrane By having a composite layer formed by combining with each other, the excellent mechanical strength and physical durability provided by the domain containing (A2) described above are further improved.
  • the fluorine-containing polymer porous membrane is a fluorine-containing polymer in which at least a part of hydrogen atoms (H) in the chemical structure of the aliphatic hydrocarbon polymer or aromatic hydrocarbon polymer is substituted with fluorine atoms (F). It is the film-like member which consists of.
  • the fluorine-containing polymer a polymer in which 50% or more of H in the chemical structure of the polymer is replaced with F is preferable.
  • Fluoropolymers include polytetrafluoroethylene (PTFE), polytetrafluoroethylene-hexafluoropropylene (FEP), polytetrafluoroethylene-perfluoropropyl vinyl ether (PFA), polychlorotrifluoroethylene, polytetrafluoroethylene- Perfluoro-2,2-dimethyl-1,3-dioxole, polyperfluorobutenyl vinyl ether and the like are preferably used, and polytetrafluoroethylene is most preferably used from the viewpoint of the balance between mechanical strength and porosity.
  • PTFE polytetrafluoroethylene
  • FEP polytetrafluoroethylene-hexafluoropropylene
  • PFA polytetrafluoroethylene-perfluoropropyl vinyl ether
  • polychlorotrifluoroethylene polytetrafluoroethylene- Perfluoro-2,2-dimethyl-1,3-dioxole
  • the porous structure of the fluoropolymer porous membrane in the present invention is not particularly limited as long as it can be combined with the aromatic hydrocarbon polymer electrolyte, but the mechanical strength and physical durability of the composite polymer electrolyte membrane are not limited. From the viewpoint of improving the properties, preferred examples include a continuous porous structure (sponge structure), a woven fabric structure or a nonwoven fabric structure in which the skeleton and voids of the porous structure form a continuous structure.
  • the thickness of the porous membrane is not particularly limited and should be determined according to the use of the composite polymer electrolyte membrane, but a thickness of 5 to 50 ⁇ m is practically used.
  • the porosity of the porous membrane before compounding with the aromatic hydrocarbon-based polymer electrolyte is not particularly limited, but it is 50 to 95 in terms of both the proton conductivity and the mechanical strength of the obtained composite polymer electrolyte membrane. % Is preferable, and 80 to 95% is more preferable.
  • the porosity Y1 (volume%) of the porous film is defined as a value obtained by the following mathematical formula.
  • Y1 (1 ⁇ Db / Da) ⁇ 100 (Where Da is the specific gravity of the material constituting the porous membrane (for example, in the case of a polytetrafluoroethylene porous membrane, the specific gravity of polytetrafluoroethylene itself), and Db is the specific gravity of the entire porous membrane including voids. .)
  • the ratio (O / F ratio) of the atomic composition percentage O (at%) of oxygen to the atomic composition percentage F (at%) of fluorine on the outermost surface is 0.20 or more and 2.0. The following are used.
  • the O / F ratio in the outermost surface portion is larger than 2.0, a uniform phase separation structure may not be observed in a composite electrolytic membrane using the O / F ratio.
  • the inventors have significantly increased the affinity between the hydrophilic component (A1) in the polymer and the fluoropolymer porous membrane, and as a result, (A1) is a fluoropolymer porous. It is presumed that a uniform phase separation structure is not formed due to uneven distribution near the membrane.
  • the O / F ratio on the resurface of the fluorine-containing polymer porous membrane is more preferably in the range of 0.30 to 1.5, and further preferably in the range of 0.40 to 1.0.
  • the “outermost surface” of the porous film includes not only the surface layer when the porous film is viewed macroscopically (hereinafter simply referred to as “surface layer”) but also the surface of the skeleton in the co-continuous structure portion.
  • surface layer when the surface layer of the porous film is measured by X-ray photoelectron spectroscopy (XPS) is measured at the outermost surface of the porous film.
  • XPS X-ray photoelectron spectroscopy
  • the outermost surface of the porous film has the above O / F ratio. It is preferable that the O / F ratio inside the skeleton is smaller than the O / F ratio of the surface layer.
  • the O / F ratio when the surface layer of the porous membrane is measured by XPS is 0.20 or more, and the porous membrane is made into a powder by freeze pulverization, and O when the powder is measured by XPS.
  • the / F ratio is preferably less than 2/3 of the value of the O / F ratio when the surface layer is measured by XPS.
  • the XPS measurement value of the freeze-ground powder is a value reflecting both the O / F ratio of the outermost surface of the porous membrane and the O / F ratio inside the skeleton of the porous structure.
  • the O / F ratio of the powder is more preferably 1/3 or more and less than 2/3 of the O / F ratio of the surface layer.
  • the calculation of the surface layer of the porous membrane and the O / F ratio of the powder is specifically performed by the method described in Example (2).
  • the porous film having an O / F ratio as described above can be produced by a hydrophilic treatment in which a hydrophilic group containing an oxygen atom such as a hydroxy group or a sulfonic acid group is introduced into the surface of the porous structure.
  • a larger O / F ratio means a higher degree of hydrophilicity.
  • the hydrophilic treatment will be described later.
  • the composite polymer electrolyte membrane of the present invention has a composite layer formed by combining the above-mentioned aromatic hydrocarbon polymer electrolyte with the above-mentioned fluoropolymer porous membrane.
  • Composite means that the polymer electrolyte and the porous membrane are integrated by filling the voids of the porous membrane with the polymer electrolyte and solidifying.
  • the filling rate of the polymer electrolyte in the composite layer is preferably 50% or more, and more preferably 60% or more. When the filling rate of the composite layer is lowered, there is a problem that power generation performance is lowered due to loss of the proton conduction path.
  • the fluorine-containing polymer porous membrane may be a laminate of two or more types having different filling rates.
  • the filling rate of the polymer electrolyte in the composite layer is a value calculated from IEC, and specifically, the method described in Example (4) is used.
  • the composite polymer electrolyte membrane of the present invention can reduce the dimensional change rate in the in-plane direction by having a composite layer.
  • the dimensional change rate is an index representing the change in the size of the composite polymer electrolyte membrane in the dry state and the size of the composite electrolyte membrane in the wet state, and the specific measurement is the method described in Example (6). To do. Since the dimensional change in the in-plane direction is small, for example, when used in a fuel cell, stress due to swelling and shrinkage generated at the edge portion of the electrolyte membrane during a dry and wet cycle can be reduced, and durability can be improved.
  • the dimensional change rate ⁇ xy in the in-plane direction of the composite polymer electrolyte membrane is preferably 10% or less, more preferably 8% or less, and most preferably 5% or less.
  • the composite polymer electrolyte membrane of this invention can make the anisotropy of the dimensional change rate of an in-plane direction small by having a composite layer.
  • the anisotropy of the dimensional change rate is large, the cell design of the fuel cell is constrained, and stress due to swelling and shrinkage concentrates on the edge of the electrolyte membrane in the direction orthogonal to the direction in which the dimensional change is large. Breaking may be easier to start.
  • the ratio lambda MD / lambda TD dimension change rate lambda MD in the MD direction to the TD direction of the dimensional change rate lambda TD is, 0.5 ⁇ MD / ⁇ TD ⁇ 2.0 It is preferable to satisfy.
  • the composite polymer electrolyte membrane of the present invention can also reduce the anisotropy in the MD / TD direction of the elastic modulus and yield stress.
  • the thickness of the composite layer in the composite electrolyte membrane of the present invention is not particularly limited, but is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 2 ⁇ m or more and 40 ⁇ m or less.
  • the composite layer is thick, the physical durability of the electrolyte membrane is improved, while the membrane resistance tends to increase.
  • the composite layer is thin, while the power generation performance is improved, there is a problem in physical durability, which tends to cause problems such as electrical short circuit and fuel permeation.
  • the film thickness of the entire composite polymer electrolyte membrane including the composite layer is not particularly limited, but usually 3 ⁇ m or more and 200 ⁇ m or less is preferably used. A film having a thickness of 3 ⁇ m or more is preferable for obtaining a membrane strength that can withstand practical use.
  • the film thickness of the entire composite polymer electrolyte membrane is more preferably 5 ⁇ m to 150 ⁇ m, further preferably 10 ⁇ m to 100 ⁇ m, and most preferably 10 ⁇ m to 50 ⁇ m.
  • the composite polymer electrolyte membrane of the present invention may be an electrolyte membrane consisting only of a composite layer, but may have a layer consisting only of a polymer electrolyte in contact with both sides or one side of the composite layer.
  • a layer composed only of a polymer electrolyte is formed on both sides or one side of the composite layer, the polymer electrolyte of the layer may be the same as or different from the polymer electrolyte used in the composite layer, but the same polymer electrolyte should be used. Is preferred.
  • the composite polymer electrolyte membrane of the present invention is improved in mechanical strength and thermal stability of ionic groups, improved in water resistance, improved in solvent resistance, improved in radical resistance, improved in coating properties of coating liquid,
  • ionic groups improved in water resistance, improved in solvent resistance, improved in radical resistance, improved in coating properties of coating liquid
  • crystallization nucleating agents, plasticizers, stabilizers, mold release agents, antioxidants, radical scavengers, inorganic fine particles, etc. used in crosslinking agents and ordinary polymer compounds You may contain an additive in the range which is not contrary to the objective of this invention.
  • the composite polymer electrolyte membrane of the present invention comprises a fluoropolymer porous material having an O / F ratio of 0.20 or more and 2.0 or less on the outermost surface, measured by XPS, and an aromatic hydrocarbon polymer electrolyte.
  • a metal sodium-naphthalene complex solution as the etching solution.
  • the temperature of the metal sodium-naphthalene complex solution in order to control the O / F ratio on the outermost surface of the porous structure to 0.20 or more and 2.0 or less, it is preferable to set the temperature of the metal sodium-naphthalene complex solution to 10 ° C. or less.
  • concentration of the metal sodium-naphthalene complex solution in order to control the O / F ratio on the outermost surface of the porous structure to 0.20 or more and 2.0 or less, it is preferable to set the temperature of the metal sodium-naphthalene complex solution to 10 ° C. or less.
  • the concentration of the metal sodium-naphthalene complex solution to 1% by mass or less and the contact time between the metal sodium-naphthalene complex solution and the porous membrane before hydrophilization to about 10 seconds, Hydrophilization inside the skeleton can be prevented, and the O / F ratio inside the skeleton can be maintained below 0.20.
  • the mechanical strength may be significantly reduced. Therefore, it is preferable to set the RF output voltage to 10 W or less.
  • the oxygen concentration exceeds 5% at the low RF output voltage as described above, the plasma becomes extremely unstable, and the degree of hydrophilicity tends not to be controlled with good reproducibility.
  • the plasma tends to be stabilized by controlling the mixed gas introduction pressure to about 10 Pa.
  • the degree of hydrophilization can also be controlled by controlling the treatment time to be as short as 3 minutes or less.
  • the oxygen partial pressure in the mixed gas varies, the processing intensity varies. Therefore, in order to control the degree of hydrophilicity with good reproducibility, the mixed gas is introduced after the chamber is kept at a vacuum of 1 Pa or less. It is preferable.
  • the hydrophilic polymer is processed into a composite polymer electrolyte membrane and used as an electrolyte membrane of a fuel cell. May flow out and cracks may occur at the interface between the porous structure and the polymer electrolyte. The occurrence of cracks can be predicted by measuring the weight of the hot water eluate when the composite electrolyte membrane is immersed in hot water at 80 ° C. for 1 week.
  • the weight of the hot water eluate can be 1% or less with respect to the weight of the composite polymer electrolyte membrane before hot water immersion, Cracks are less likely to occur.
  • a porous polymer membrane is impregnated with a polymer electrolyte solution, and the solvent is dried to produce a composite polymer electrolyte membrane.
  • a method is mentioned.
  • (1) a method of controlling the film thickness by removing the excess polymer electrolyte solution while pulling up the porous membrane immersed in the polymer electrolyte solution, or (2) the polymer electrolyte on the porous membrane
  • examples thereof include a method in which a solution is cast-applied, and (3) a method in which a porous membrane is bonded onto a support substrate on which a polymer electrolyte solution is cast-applied and the polymer electrolyte solution is impregnated.
  • a method of attaching a fluorine-containing porous material to a separately prepared support substrate and drying the solvent in the aromatic hydrocarbon polymer electrolyte is a composite polymer electrolyte membrane. This is preferable from the viewpoint of reducing film wrinkles and thickness unevenness and improving film quality.
  • the solvent used in the aromatic hydrocarbon polymer electrolyte solution can be appropriately selected depending on the polymer type.
  • aprotic such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, etc.
  • Polar solvents such as ⁇ -butyrolactone, ethyl acetate and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether
  • An alkylene glycol monoalkyl ether such as, for example, is preferably used, and may be used alone or in combination of two or more.
  • alcohol solvents such as methanol, ethanol, 1-propanol and isopropyl alcohol
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • ester solvents such as ethyl acetate, butyl acetate and ethyl lactate Solvents
  • hydrocarbon solvents such as hexane, cyclohexane
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, perchloroethylene, chlorobenzene, dichlorobenzene, hexafluoroisopropyl alcohol, etc.
  • Halogenated hydrocarbon solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, nitrile solvents such as acetonitrile, nitromethane, nitroethane, etc.
  • Nitrated hydrocarbon solvents a mixture of various low-boiling solvents such as water can be used.
  • the polymer concentration in the polymer electrolyte solution used is preferably 5 to 40% by weight, more preferably 10 to 25% by weight.
  • the polymer concentration is within this range, a polymer can be sufficiently filled in the voids of the fluorine-containing polymer porous membrane, and a proton conducting membrane excellent in surface smoothness can be obtained. If the polymer concentration is too low, the filling efficiency of the polymer with respect to the voids of the fluorine-containing polymer porous substrate is lowered, and a plurality of immersion treatments may be required.
  • the viscosity of the solution is too high to fill the voids in the fluoropolymer porous membrane sufficiently with the polymer, and the filling rate in the composite layer may decrease, or the composite electrolyte membrane The surface smoothness may be reduced.
  • the solution viscosity of the polymer solution is usually 100 to 50,000 mPa ⁇ s, preferably 500 to 10,000 mPa ⁇ s.
  • the solution viscosity is too low, when the fluorine-containing polymer porous membrane is immersed in the polymer solution, the retention of the solution may be poor and the solution may flow from the porous membrane.
  • the solution viscosity is too high, the polymer solution does not penetrate into the fluoropolymer porous membrane. It may not be sufficiently impregnated.
  • the support substrate used for forming the composite polymer electrolyte membrane known materials can be used without any particular limitation.
  • endless belts and drums made of metal such as stainless steel, polyethylene terephthalate, polyimide, polyphenylene sulfide, polysulfone.
  • films made of polymers such as glass, glass, and release paper. It is preferable to use a metal with a mirror-finished surface, and a polymer film with a coated surface subjected to a corona treatment or an easy peeling treatment.
  • the thickness is not particularly limited, but 50 ⁇ m to 600 ⁇ m is preferable from the viewpoint of handling.
  • Cast coating methods include knife coating, direct roll coating, Meyer bar coating, gravure coating, reverse coating, air knife coating, spray coating, brush coating, dip coating, die coating, vacuum die coating, curtain coating, flow coating, and spin coating. Further, techniques such as screen printing and inkjet coating can be applied. Improving impregnation performance by reducing pressure and pressure during impregnation, heating the polymer electrolyte solution, heating the substrate and the impregnation atmosphere, etc. is also suitable for improving proton conductivity and productivity Used.
  • the film thickness can be controlled by the coating method.
  • coating method For example, when coating with a comma coater or direct coater, it can be controlled by the solution concentration or the coating thickness on the substrate, and by slit die coating, it is controlled by the discharge pressure, the clearance of the die, the gap between the die and the base material, etc. be able to.
  • the aromatic hydrocarbon electrolyte polymer is preferably combined with the porous membrane in a state where the ionic group forms a salt with an alkali metal or alkaline earth metal cation.
  • a composite polymer electrolyte membrane exhibiting proton conductivity can be obtained by exchanging the cation with proton after complexing.
  • a production method having a step of exchanging a metal or alkaline earth metal cation with a proton in this order is a preferred method for producing the composite polymer electrolyte membrane of the present invention.
  • the aromatic hydrocarbon polymer electrolyte in which the ionic group forms a salt with an alkali metal or alkaline earth metal cation, and the hydrophilicity in the present invention was strictly controlled.
  • the step of exchanging cations with protons is preferably performed by a step of bringing the combined membrane into contact with an acidic aqueous solution, and as such a step, the step of immersing the membrane in an acidic aqueous solution is most preferable.
  • the acidic aqueous solution sulfuric acid, hydrochloric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, citric acid and the like can be used without particular limitation, but an aqueous sulfuric acid solution may be used from the viewpoint of productivity. preferable.
  • the concentration of the acidic aqueous solution is preferably 3% by weight or more and 30% by weight or less, and the temperature is preferably adjusted to 0 ° C. or more and 80 ° C. or less.
  • the composite polymer electrolyte membrane of the present invention can be applied to various uses.
  • medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural materials applications, electrochemical applications, humidification films, antifogging films, antistatic films, deoxygenation films, solar It can be applied to battery membranes and gas barrier membranes.
  • electrochemical applications include fuel cells, redox flow batteries, water electrolysis devices, chloroalkali electrolysis devices, hydrogen compression devices, and the like.
  • the solid polymer fuel cell has a structure in which a hydrogen ion conductive polymer electrolyte membrane is used as an electrolyte membrane, and a catalyst layer, an electrode base material, and a separator are sequentially laminated on both sides.
  • the catalyst layer laminated on both sides of the electrolyte membrane (that is, the catalyst layer / electrolyte membrane / catalyst layer configuration) is called an electrolyte membrane with a catalyst layer (CCM), and further on both sides of the electrolyte membrane.
  • a catalyst layer and a gas diffusion base material laminated in sequence are formed with a membrane electrode assembly (MEA) and It is called.
  • MEA membrane electrode assembly
  • the composite polymer electrolyte membrane obtained by the present invention can be used particularly suitably as an electrolyte membrane with a catalyst layer, regardless of the application method or the transfer method, due to the high mechanical strength of the composite layer.
  • MEA When producing MEA, there is no particular limitation, and a known method (for example, chemical plating method described in Electrochemistry, 1985, 53, p.269, edited by Electrochemical Society (J. Electrochem. Soc.), Electrochemical Science, etc. And technology (Electrochemical Science and Technology), 1988, 135, 9, p.2209, etc. can be applied.
  • a known method for example, chemical plating method described in Electrochemistry, 1985, 53, p.269, edited by Electrochemical Society (J. Electrochem. Soc.), Electrochemical Science, etc. And technology (Electrochemical Science and Technology), 1988, 135, 9, p.2209, etc. can be applied.
  • the temperature and pressure may be appropriately selected depending on the thickness of the electrolyte membrane, the moisture content, the catalyst layer, and the electrode substrate. Further, in the present invention, integration by pressing is possible even in a state where the electrolyte membrane is dried or absorbed.
  • Specific press methods include a roll press that regulates pressure and clearance, a flat plate press that regulates pressure, and a double belt press that presses with opposing endless belts that have elasticity attached to multiple rollers. Can be mentioned. From the viewpoint of industrial productivity and suppression of thermal decomposition of a polymer material having an ionic group, these pressing steps are preferably performed in the range of 0 ° C to 250 ° C.
  • the pressure is preferably as weak as possible from the viewpoint of electrolyte membrane and electrode protection. In the case of a flat plate press, a pressure of 10 MPa or less is preferable.
  • the MEA produced in this way can be suitably used for other electrochemical applications such as a water electrolysis apparatus and a hydrogen compression apparatus.
  • Molecular weight of polymer electrolyte solution The number average molecular weight and weight average molecular weight of the polymer solution were measured by GPC. Tosoh's HLC-8022GPC is used as an integrated UV detector and differential refractometer, and two Tosoh TSK gel Super HM-Hs (inner diameter 6.0 mm, length 15 cm) are used as GPC columns. Measurement was performed with a pyrrolidone solvent (N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide) at a flow rate of 0.2 mL / min, and the number average molecular weight and the weight average molecular weight were determined in terms of standard polystyrene.
  • pyrrolidone solvent N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide
  • Ion exchange capacity (IEC) According to the following procedure, it measured by the neutralization titration method. The measurement was carried out three times, and the average value was taken as the ion exchange capacity. 1. After wiping off the moisture on the membrane surface of the composite polymer electrolyte membrane that had been proton-substituted and thoroughly washed with pure water, it was vacuum dried at 100 ° C. for 12 hours or more, and the dry weight was determined. 2.
  • IEC (meq / g) [concentration of sodium hydroxide aqueous solution (mmol / ml) ⁇ drop amount (ml)] / dry weight of sample (g) (4) Filling rate of aromatic hydrocarbon polymer electrolyte in composite layer
  • Cross section of composite polymer electrolyte membrane is observed with optical microscope or scanning electron microscope (SEM), and aromatic hydrocarbon polymer electrolyte and fluoropolymer porous
  • the thickness of the composite layer made of the membrane was T1, and when there were other layers outside the composite layer, the thicknesses were T2 and T3.
  • the specific gravity of the electrolyte polymer forming the composite layer was D1
  • the specific gravity of the electrolyte polymer forming another layer on both sides of the composite layer was D2, D3, and the specific gravity of the composite polymer electrolyte membrane was D.
  • the IEC of the polymer forming each layer is I1, I2, I3, and the IEC of the composite polymer electrolyte membrane is I
  • the content Y2 (volume%) of the aromatic hydrocarbon polymer electrolyte in the composite layer is: Obtained by the following formula.
  • Y2 [(T1 + T2 + T3) ⁇ D ⁇ I ⁇ (T2 ⁇ D2 ⁇ I2 + T3 ⁇ D3 ⁇ I3)] / (T1 ⁇ D1 ⁇ I1) ⁇ 100 (5) Observation of Phase Separation Structure by Transmission Electron Microscope (TEM) Tomography A sample piece was immersed in a 2 wt% lead acetate aqueous solution as a staining agent and allowed to stand at 25 ° C. for 48 hours for staining. A dyed sample was taken out, embedded in an epoxy resin, and fixed by irradiation with visible light for 30 seconds. Using an ultramicrotome, a 100 nm flake was cut at room temperature and observed according to the following conditions.
  • Apparatus Field emission electron microscope (HRTEM) JEMOL JEM2100F Image acquisition: Digital Micrograph System: Marker method acceleration voltage: 200 kV Magnification: 30,000 times Tilt angle: + 61 ° to -62 ° Reconstruction resolution: 0.71 nm / pixel
  • the marker method was applied to the three-dimensional reconstruction process.
  • Au colloidal particles provided on the collodion film were used as alignment markers when performing three-dimensional reconstruction.
  • CT reconstruction is performed based on a total of 124 TEM images acquired from a series of continuous tilted images in which the sample is tilted every 1 ° and the TEM images are taken in the range of + 61 ° to -62 ° with reference to the marker. Then, a three-dimensional phase separation structure was observed.
  • Luzex registered trademark
  • AP manufactured by Nireco
  • the processed image is expressed in 256 gradations from black to white in the auto mode of the apparatus, and 0 to 128 is defined as black and 129 to 256 is defined as white.
  • the domains including (A2) were color-coded and the distances between the domains were measured, and the average value was defined as the average interdomain distance.
  • MEA membrane electrode assembly
  • Hydrogen permeation was measured by supplying hydrogen as a fuel gas to one electrode and nitrogen to the other electrode, and testing was performed under humidification conditions: hydrogen gas 90% RH, nitrogen gas: 90% RH.
  • the circuit was held until the open circuit voltage became 0.2 V or less, the voltage was swept from 0.2 to 0.7 V at 1 mV / sec, and the current value at 0.7 V was defined as the hydrogen permeation current.
  • Synthesis example 1 Synthesis of 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane (K-DHBP) represented by the following formula (G1)
  • K-DHBP 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane
  • Synthesis example 2 (Synthesis of disodium-3,3′-disulfonate-4,4′-difluorobenzophenone represented by the following formula (G2)) 109.1 g (Aldrich reagent) of 4,4′-difluorobenzophenone was reacted at 100 ° C. for 10 hours in 150 mL of fuming sulfuric acid (50% SO 3 ) (Wako Pure Chemicals reagent). Thereafter, the mixture was poured little by little into a large amount of water, neutralized with NaOH, and 200 g of sodium chloride was added to precipitate the composite.
  • G2 Synthesis of disodium-3,3′-disulfonate-4,4′-difluorobenzophenone represented by the following formula (G2)
  • Synthesis example 3 (Synthesis of an oligomer containing no ionic group represented by the following formula (G3))
  • G3 Synthesis of an oligomer containing no ionic group represented by the following formula (G3)
  • 25.8 g (100 mmol) of K-DHBP obtained in Synthesis Example 1 and 4,4 20.3 g of '-difluorobenzophenone (Aldrich reagent, 93 mmol) was added, purged with nitrogen, dehydrated at 160 ° C in 300 mL of N-methylpyrrolidone (NMP) and 100 mL of toluene, heated to remove toluene, and 1 at 180 ° C. Time polymerization was performed.
  • Reprecipitation purification was performed in a large amount of methanol to obtain an oligomer a1 (terminal: hydroxyl group) containing
  • Synthesis example 4 (Synthesis of an oligomer containing an ionic group represented by the following formula (G4))
  • a 1000 mL three-necked flask equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap 27.6 g of potassium carbonate (Aldrich reagent, 200 mmol), 12.9 g (50 mmol) of K-DHBP obtained in Synthesis Example 1 and 4,4 9.3 g of '-biphenol (Aldrich reagent, 50 mmol), 39.3 g (93 mmol) of disodium 3,3′-disulfonate-4,4′-difluorobenzophenone obtained in Synthesis Example 2, and 18-crown-6, 17.9 g (82 mmol of Wako Pure Chemical Industries, Ltd.) was added, purged with nitrogen, dehydrated at 170 ° C in 300 mL of N-methylpyrrolidone (NMP) and 100 mL of
  • reaction solution was slowly poured into 1000 g of crushed ice and extracted with ethyl acetate, and the organic layer was washed with brine and dried over magnesium sulfate, and then ethyl acetate was distilled off to obtain pale yellow crude crystals 3- ( 2,5-Dichlorobenzoyl) benzenesulfonic acid chloride was obtained, and the crude crystals were used without purification in the next step.
  • the resulting reaction solution was allowed to cool and then diluted by adding 100 ml of toluene.
  • the precipitate of the inorganic compound produced as a by-product was removed by filtration, and the filtrate was put into 2 l of methanol.
  • the precipitated product was separated by filtration, collected, dried, and dissolved in 250 ml of tetrahydrofuran. This was reprecipitated in 2 l of methanol to obtain 107 g of the objective compound represented by the following formula (G6).
  • the number average molecular weight was 11,000.
  • Synthesis example 7 Synthesis of tetrasodium 3,5,3 ′, 5′-tetrasulfonate-4,4′-difluorobenzophenone represented by the following formula (G7)
  • a 1000 mL three-necked flask equipped with a stirrer and a concentrating tube 109.1 g of 4,4′-difluorobenzophenone (Aldrich reagent) and 210 mL of fuming sulfuric acid (60% SO 3) (Aldrich reagent) were added, and nitrogen was connected to the top of the concentrating tube.
  • the reaction was carried out at 180 ° C. for 24 hours while vigorously flowing nitrogen toward the introduction tube and the bubbler directed toward the outside of the system.
  • Synthesis Example 8 (Synthesis of an oligomer containing a sulfonic acid group represented by the following formula (G8)) In a 1000 mL three-necked flask equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark trap, 41.5 g of potassium carbonate (Aldrich reagent, 300 mmol), 12.9 g (50 mmol) of K-DHBP obtained in Synthesis Example 1 and 4,4 '-Biphenol 9.3 g (Aldrich reagent, 50 mmol), sulfonic acid group-containing aromatic compound obtained in Example 7 58.3 g (93 mmol), and 18-crown-6, 49.1 g (Wako Pure Chemical Industries, 186 mmol) The mixture was purged with nitrogen, dehydrated at 170 ° C.
  • NMP N-methylpyrrolidone
  • TMP N-methylpyrrolidone
  • toluene 150 mL
  • Purification was performed by reprecipitation with a large amount of isopropyl alcohol to obtain an oligomer (terminal hydroxyl group) containing a sulfonic acid group represented by the following formula (G8).
  • the number average molecular weight was 16000.
  • the reaction mixture was added to 60 mL of methanol, and then 60 mL of 6 mol / L hydrochloric acid was added and stirred for 1 hour.
  • the precipitated solid was separated by filtration and dried to obtain 1.62 g of polyarylene containing a gray-white segment represented by the following formula (G10) and a segment represented by the following formula (G11).
  • the weight average molecular weight was 200,000.
  • Synthesis Example 10 Synthesis of polysulfone (PSU) represented by the following formula (G12)
  • PSU polysulfone represented by the following formula (G12)
  • a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introducing tube, a thermometer, and a condenser with a receiver at the tip
  • 61.4 g (214 mmol) of 4,4′-dichlorodiphenylsulfone and 47.8 g (210 mmol) of bisphenol A were added.
  • diphenylsulfone as a polymerization solvent
  • the temperature was raised to 180 ° C. while flowing nitrogen gas through the system
  • 30.1 g of anhydrous potassium carbonate was added, and the temperature was gradually raised to 290 ° C.
  • the reaction was carried out at 2 ° C. for 2 hours.
  • Example 1 (Block copolymer b1 containing the oligomer represented by (G4) as segment (A1) containing an ionic group and the oligomer represented by (G3) as segment (A2) containing no ionic group)
  • Example of production of polymer electrolyte solution A comprising In a 500 mL three-necked flask equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap, 0.56 g of potassium carbonate (Aldrich reagent, 4 mmol) and 16 g (1 mmol) of an oligomer a2 containing ionic groups (terminal: hydroxyl group) After substitution with nitrogen, dehydration was performed at 100 ° C.
  • oligomer a1 (terminal: fluoro group) containing no ionic groups ) And reacted at 105 ° C. for 24 hours.
  • NMP N-methylpyrrolidone
  • a block copolymer b1 was obtained by reprecipitation purification into a large amount of isopropyl alcohol. The weight average molecular weight was 340,000.
  • NMP N-methylpyrrolidone
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 730 ml of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • the filtrate was concentrated with an evaporator, 43.8 g (0.505 mol) of lithium bromide was added to the filtrate, and the mixture was reacted at an internal temperature of 110 ° C. for 7 hours in a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4 l of acetone and solidified. The coagulum was collected by filtration, air-dried, pulverized with a mixer, and washed with 1500 ml of 1N hydrochloric acid while stirring. After filtration, the product was washed with ion-exchanged water until the pH of the washing solution reached 5 or higher and then dried at 80 ° C. overnight to obtain 23.0 g of the desired polyarylene block copolymer.
  • the weight average molecular weight of the polyarylene block copolymer after this deprotection was 190,000.
  • the viscosity of the polymer electrolyte solution B was 1200 mPa ⁇ s.
  • NMP is added and diluted so that the viscosity of the polymerization stock solution becomes 500 mPa ⁇ s
  • an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 is set with an angle rotor RA-800, 25 ° C., 30 minutes, The polymerization stock solution was directly centrifuged at a centrifugal force of 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered.
  • distillation was performed under reduced pressure at 80 ° C.
  • the viscosity of the polymer electrolyte solution C was 1000 mPa ⁇ s.
  • NMP N-methylpyrrolidone
  • NMP is added and diluted so that the viscosity of the polymerization stock solution becomes 500 mPa ⁇ s
  • an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 is set with an angle rotor RA-800, 25 ° C., 30 minutes,
  • the polymerization stock solution was directly centrifuged at a centrifugal force of 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered.
  • it distilled under reduced pressure at 80 degreeC, stirring, and also pressure-filtered with a 1 micrometer polyethylene filter, and obtained the polymer electrolyte solution D.
  • the viscosity of the polymer electrolyte solution D was 1000 mPa ⁇ s.
  • the separated solid was dried to obtain a block copolymer b4 composed of a gray-white segment represented by the formula (G11) and a segment represented by the following formula (G14).
  • the resulting polyarylene had a weight average molecular weight of 180,000.
  • NMP is added and diluted so that the viscosity of the polymerization stock solution becomes 500 mPa ⁇ s
  • an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 is set with an angle rotor RA-800, 25 ° C., 30 minutes, The polymerization stock solution was directly centrifuged at a centrifugal force of 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered.
  • it distilled under reduced pressure at 80 degreeC, stirring, and also pressure-filtered with a 5 micrometers polyethylene filter, and obtained the polymer electrolyte solution E.
  • the viscosity of the polymer electrolyte solution E was 1000 mPa ⁇ s.
  • Production Example 6 (Block copolymer b1 containing the oligomer represented by (G4) as segment (A1) containing an ionic group and the oligomer represented by (G3) as segment (A2) containing no ionic group)
  • a block copolymer b1 ′ was produced in the same manner as described above.
  • the weight average molecular weight of the block copolymer b1 ′ was 290,000.
  • a polymer electrolyte solution F was obtained in the same manner as in Production Example 1.
  • the viscosity of the polymer electrolyte solution F was 950 mPa ⁇ s.
  • Production Example 7 (The side chain represented by the following formula (G15) as the segment (A1) containing the ionic group, and the graft copolymer containing the polymer represented by the formula (G12) as the segment (A2) not containing the ionic group)
  • PSU powder obtained in Synthesis Example 10 was put in a glass separable container with a cock and deaerated, the inside of the glass container was replaced with argon gas. In this state, PSU powder was irradiated with 100 kGy of ⁇ rays from a 60 Co ray source at room temperature.
  • polymer electrolyte precursor solution G 2 g of the obtained graft polymer was dissolved in 30 g of N-methylpyrrolidone (NMP) to obtain a polymer electrolyte precursor solution G.
  • NMP N-methylpyrrolidone
  • the viscosity of the polymer electrolyte solution G was 1300 mPa ⁇ s.
  • Production Example 8 (Production example of fluoropolymer porous membrane A) Porflon HP-045-30 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) was stretched 2.5 times in the vertical and horizontal directions to produce a polytetrafluoroethylene porous film having a thickness of 10 ⁇ m and a porosity of 80%. In a glove box with a dew point of ⁇ 80 ° C., the polytetrafluoroethylene porous film was immersed in a solution consisting of 10 g of a 1% metal sodium-naphthalene complex / tetrahydrofuran (THF) solution and 90 g of THF. Wash thoroughly with THF. The O / F ratio of the outermost surface showing the degree of hydrophilicity of the obtained fluoropolymer porous membrane A was 0.62. The O / F ratio of the powder was 0.28, and it was a tough film.
  • THF metal sodium-naphthalene complex /
  • Production Example 10 Plasma was applied to a polytetrafluoroethylene porous film having a film thickness of 10 ⁇ m and a porosity of 80% obtained by stretching Poreflon HP-045-30 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) 2.5 times in the vertical and horizontal directions. Treated. SAMCO RIE N100 was used for the treatment, and a mixed gas of 3% oxygen / 97% argon was adjusted to a pressure of 9.5 Pa, and the treatment was performed for 2 minutes at an RF output of 10 W. In the obtained fluoropolymer porous membrane C, the O / F ratio on the outermost surface showing the degree of hydrophilicity was 0.32. The O / F ratio of the powder was 0.19, and it was a tough film.
  • Production Example 11 Plasma was applied to a polytetrafluoroethylene porous film having a film thickness of 10 ⁇ m and a porosity of 80% obtained by stretching Poreflon HP-045-30 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) 2.5 times in the vertical and horizontal directions. Treated. SAMCO RIE N100 was used for the treatment, and a mixed gas of 1% oxygen / 99% argon was adjusted to a pressure of 9.5 Pa, and the treatment was performed at an RF output of 10 W for 1 minute. In the obtained fluoropolymer porous membrane D, the O / F ratio on the outermost surface showing the degree of hydrophilicity was 0.13. The O / F ratio of the powder was 0.05, and it was a tough film.
  • Production Example 12 (Production example of fluoropolymer porous membrane E) A polytetrafluoroethylene porous film having a film thickness of 10 ⁇ m and a porosity of 80% obtained by stretching POREFLON HP-045-30 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) 2.5 times in the vertical and horizontal directions is made into polyethylene glycol. It was immersed in a 4000 (Wako Pure Chemical Reagent) 20% / acetone 80% solution for 1 hour, pulled up, and sufficiently dried at room temperature. The O / F ratio of the outermost surface showing the degree of hydrophilicity of the obtained fluoropolymer porous membrane E was 1.53. The O / F ratio of the powder was 0.45, and it was a tough film.
  • POREFLON HP-045-30 manufactured by Sumitomo Electric Fine Polymer Co., Ltd.
  • Example 1 Using a knife coater, the polymer electrolyte solution A produced in Production Example 1 was cast applied onto a glass substrate, and the fluorine-containing polymer porous membrane A produced in Production Example 8 was bonded thereto. After maintaining at room temperature for 1 h and sufficiently impregnating the polymer electrolyte solution A, it was dried at 100 ° C. for 4 h. The polymer electrolyte solution A was cast again on the top surface of the dried film, held at room temperature for 1 h, and then dried at 100 ° C. for 4 h to obtain a film-like polymer. After immersing in a 10% by weight sulfuric acid solution at 80 ° C. for 24 hours to carry out proton substitution and deprotection reactions, immersing in a large excess amount of pure water for 24 hours and washing thoroughly, a composite polymer electrolyte membrane (film thickness 11 ⁇ m) is obtained. Obtained.
  • Example 2 A composite polymer electrolyte membrane (film thickness: 12 ⁇ m) was obtained in the same manner as in Example 1 except that the fluorinated polymer porous membrane C produced in Production Example 10 was used instead of the fluorinated polymer porous membrane A. It was.
  • the obtained composite polymer electrolyte membrane was evaluated for IEC, filling rate in the composite layer, ⁇ xy, presence / absence of phase separation structure, its form and average interdomain distance, low humidification power generation performance, and dry / wet cycle durability.
  • the evaluation results are shown in Table 1 below.
  • the wet and dry cycle durability the hydrogen permeation current did not exceed 10 times the initial current even when the cycle exceeded 20000 cycles, so the evaluation was terminated at 20000 cycles.
  • Example 3 A composite polymer electrolyte membrane (film thickness: 14 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution B produced in Production Example 2 was used instead of the polymer electrolyte solution A.
  • Example 4 A composite polymer electrolyte membrane (thickness: 11 ⁇ m) was obtained in the same manner as in Example 1 except that the fluorinated polymer porous membrane E produced in Production Example 12 was used instead of the fluorinated polymer porous membrane A. It was.
  • Example 5 A composite polymer electrolyte membrane (film thickness: 11 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution D produced in Production Example 4 was used instead of the polymer electrolyte solution A.
  • Example 6 A composite polymer electrolyte membrane (film thickness: 12 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution E produced in Production Example 5 was used instead of the polymer electrolyte solution A.
  • Example 7 A composite polymer electrolyte membrane (film thickness 11 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution F produced in Production Example 6 was used instead of the polymer electrolyte solution A.
  • Example 8 A composite polymer electrolyte membrane (film thickness: 13 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution G produced in Production Example 7 was used instead of the polymer electrolyte solution A.
  • Example 1 A composite polymer electrolyte membrane (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the fluorine-containing polymer porous membrane B produced in Production Example 9 was used instead of the fluorine-containing polymer porous membrane A. It was.
  • Example 3 A composite polymer electrolyte membrane (film thickness: 11 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution C produced in Production Example 3 was used instead of the polymer electrolyte solution A.
  • Example 7 The composite was made in the same manner as in Example 1 except that Porelon WP-045-40 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd .; porosity 75%, thickness 40 ⁇ m) was used instead of the fluoropolymer porous membrane A. A polymer electrolyte membrane (film thickness 41 ⁇ m) was obtained.
  • Example 8 The composite was made in the same manner as in Example 3 except that Poreflon WP-045-40 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd .; porosity 75%, thickness 40 ⁇ m) was used instead of the fluoropolymer porous membrane A. A polymer electrolyte membrane (film thickness 42 ⁇ m) was obtained.
  • the evaluation results are shown in Table 1 below.
  • Table 1 an example where the phase separation structure is “ ⁇ ” means that a clear phase separation structure is not shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyethers (AREA)

Abstract

本発明は、低加湿条件下および低温条件下においても優れたプロトン伝導性を有し、なおかつ機械強度および物理的耐久性に優れる上に、固体高分子形燃料電池としたときに高出力、高エネルギー密度、長期耐久性を達成することができる高分子電解質膜、ならびにそれを用いた膜電極複合体および固体高分子形燃料電池を提供することを課題とする。 本発明は、芳香族炭化水素系ポリマー電解質と、含フッ素高分子多孔質膜とが複合化してなる複合層を有する複合高分子電解質膜であって、X線光電子分光法(XPS)によって測定される、含フッ素高分子多孔質膜の最表面における、フッ素の原子組成百分率F(at%)に対する酸素の原子組成百分率O(at%)の比(O/F比)が0.2以上2.0以下であるとともに、複合層中の芳香族炭化水素系ポリマー電解質が相分離構造を形成している複合高分子電解質膜である。

Description

複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
 本発明は、ポリマー電解質と高分子多孔質膜を複合化した複合層を有する複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池に関するものである。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子形燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。 燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜は高分子電解質材料を主として構成される。

 高分子電解質膜の要求特性として、低加湿プロトン伝導性を挙げることができる。自動車用燃料電池や家庭用燃料電池などは実用化に向けての低コスト化が検討されており、充分な低加湿プロトン伝導性を有する高分子電解質膜を使用することで80℃を越える高温で相対湿度60%以下の低加湿条件下で作動させることができ水管理システムの簡素化が可能となる。
 従来、高分子電解質膜としてパーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(デュポン社製)が広く用いられてきた。ナフィオン(登録商標)はクラスター構造に起因するプロトン伝導チャネルを通じて、低加湿で高いプロトン伝導性を示すが、その一方で、多段階合成を経て製造されるため非常に高価であり、加えて、前述のクラスター構造により燃料クロスオーバーが大きいという課題があった。また、燃料電池作動条件では、乾湿サイクルが繰り返され、高分子電解質膜は膨潤収縮を繰り返す。その際、電解質膜はセパレータ等で拘束されているため、局所的な応力集中により、膜が破断し、膜の機械強度や物理的耐久性が失われるという問題があった。さらに軟化点が低く高温で使用できないという問題、使用後の廃棄処理の問題や材料のリサイクルが困難といった課題が指摘されてきた。
 このような課題を克服するために、ナフィオン(登録商標)に替わり得る、安価で膜特性に優れた炭化水素系高分子電解質膜の開発が近年活発化している。
 なかでも特に、電解質膜の低加湿プロトン伝導性と機械的耐久性を両立すべく、相分離構造に着目した試みがなされている。例えば、特許文献1には、相分離構造を有する結晶性ポリエーテルケトン(PEK)系高分子電解質膜が提案されている。 また、電解質膜の乾湿サイクルに伴う寸法変化抑制を目的に、補強材と電解質膜の複合化に着目した試みがなされている。例えば、特許文献2、3には、電解質膜をポリテトラフルオロエチレンからなる多孔質材料や繊維不織布で補強した複合高分子電解質膜が提案されている。

国際公開第2013/031675号 特開2013-62240号公報 特開2010-232158号公報
 しかしながら本発明者らは、従来技術に以下の課題があることを見いだした。特許文献1記載の電解質膜は、相分離構造により、高い低加湿プロトン伝導度を維持しつつ、強固な結晶性による擬似架橋効果によって、高機械強度を達成したものであるが、当該技術によっても、乾湿サイクルにおける寸法変化低減効果が十分でなく、更なる物理的耐久性向上が求められている。
 これに対し、特許文献2、特許文献3は、同様の目的で、炭化水素系電解質を含フッ素多孔質膜で補強したものであるが、含フッ素多孔質膜に対する親水化処理が不十分のため、炭化水素系電解質と含フッ素多孔体の親和性が悪く、得られた複合電解質膜に空隙が多く存在するため、燃料透過や機械強度に課題があった。

 本発明は、かかる従来技術の背景に鑑み、低加湿条件下および低温条件下においても優れたプロトン伝導性を有し、なおかつ機械強度および物理的耐久性に優れる上に、固体高分子形燃料電池としたときに高出力、高エネルギー密度、長期耐久性を達成することができる高分子電解質膜、ならびにそれを用いた膜電極複合体および固体高分子形燃料電池を提供せんとするものである。
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち本発明の高分子電解質膜は、芳香族炭化水素系ポリマー電解質と、含フッ素高分子多孔質膜とが複合化してなる複合層を有する複合高分子電解質膜であって、X線光電子分光法(XPS)によって測定される、前記含フッ素高分子多孔質膜の最表面における、フッ素の原子組成百分率F(at%)に対する酸素の原子組成百分率O(at%)の比(O/F比)が0.2以上2.0以下であるとともに、複合層中の芳香族炭化水素系ポリマー電解質が相分離構造を形成している複合高分子電解質膜である。
 本発明によれば、低加湿条件下においても優れたプロトン伝導性を有し、なおかつ機械強度および物理的耐久性に優れる上に、固体高分子形燃料電池としたときに高出力、長期耐久性を達成することができる高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池を提供することができる。
芳香族炭化水素系ポリマー電解質の相分離構造の各態様を示す模式図
 以下本明細書において「~」は、その両端の数値を含む範囲を表すものとする。

 <芳香族炭化水素系ポリマー電解質>
 本発明において、芳香族炭化水素系ポリマー電解質(以下、単に「ポリマー電解質」という場合がある。)は、後述する複合層中で相分離構造を形成することを特徴とする。相分離構造は、非相溶なセグメント2種類以上が結合してなる高分子、例えばブロック共重合体またはグラフト共重合体か、もしくは非相溶な2種類以上の高分子が混合されてなるポリマーブレンドにおいて発現しうる。
 本発明の芳香族炭化水素系ポリマー電解質として使用し得るブロック共重合体またはグラフト共重合体は、イオン性基を含有するセグメントと、イオン性基を含有しないセグメントが結合することで構成される。ここで、セグメントとは、特定の性質を示す繰り返し単位からなる共重合体ポリマー鎖中の部分構造であって、分子量が2000以上のものを表すものとする。また、本発明中の芳香族炭化水素系ポリマー電解質として使用し得るポリマーブレンドは、イオン性基を含有するポリマーとイオン性基を含有しないポリマーとを混合することで構成される。ここで、ポリマーとは、分子量10000以上のポリマー鎖全体を表す。
 芳香族炭化水素系ポリマー電解質としては、発電性能と物理的耐久性両立の点から、ブロック共重合体またはグラフト共重合体が好ましい。ブロック共重合体またはグラフト共重合体を用いることで、ポリマーブレンドと比較して微細なドメイン(類似するセグメントもしくはポリマーが凝集してできた塊)を有する相分離構造の形成が可能となり、より優れた発電性能、物理的耐久性が達成できる。さらに、より均一な相分離構造を形成できることから、芳香族炭化水素系ポリマー電解質はブロック共重合体があることが最も好ましい。
 以下、イオン性基を含有するセグメントもしくはポリマーを(A1)、イオン性基を含有しないセグメントもしくはポリマーを(A2)と表記する。もっとも、本発明における「イオン性基を含有しない」という記載は、当該セグメントもしくはポリマーが共連続相分離構造の形成を阻害しない範囲でイオン性基を少量含んでいる態様を排除するものではない。
 本発明においては、芳香族炭化水素系ポリマー電解質が相分離構造を形成していることで、(A1)を含むドメイン(以下、「イオン性ドメイン」という。)において良好なプロトン伝導チャネルが形成されると同時に(A2)を含むドメイン(以下、「非イオン性ドメイン」という。)における良好な機械強度、燃料遮断性の発現が可能となる。
 芳香族炭化水素系ポリマー電解質の相分離構造様態は大きく共連続(M1)、ラメラ(M2)、シリンダー(M3)、海島(M4)の4つに分類される(図1)。かかる相分離構造は、例えばアニュアル レビュー オブ フィジカル ケミストリ-(Annual Review O/F比 Physical Chemistry), 41, 1990, p.525等に記載がある。本発明の芳香族炭化水素系ポリマー電解質の相分離構造としては、プロトン伝導性と機械強度のバランスから、共連続様またはラメラ様であることが好ましく、プロトン伝導パス構築の観点から共連続様であることが最も好ましい。相分離構造様態がシリンダー様や海島様の場合、プロトン伝導を担うイオン性基量が少ないことにより、プロトン伝導性が低下したり、逆にイオン性基量増加により機械強度が低下したりする場合がある。
 本発明において、芳香族炭化水素系ポリマー電解質が相分離構造を形成していることは、透過型電子顕微鏡(TEM)観察を5万倍で行った場合に相分離構造が観察されることにより確認することができる。具体的には、相分離構造の平均ドメイン間距離が2nm以上あれば、相分離構造を有しているものとみなすことができる。なお、平均ドメイン間距離は、画像処理を施したTEM像より計測した各ドメイン間距離の平均値から求められる値と定義する。平均ドメイン間距離は、2nm以上、5000nm以下の範囲にあることが好ましく、プロトン伝導性、機械強度、物理的耐久性の観点で、5nm以上、2000nm以下がより好ましい。平均ドメイン間距離が2nmより小さい場合、相分離構造が不明瞭となり、良好なプロトン伝導チャネルが形成されない可能性がある。一方で平均ドメイン間距離が5000nmより大きい場合、プロトン伝導チャネルは形成されるものの、膨潤により機械強度、物理的耐久性に劣る可能性がある。なお、平均ドメイン間距離の測定は、実施例第(5)項に記載の方法で行うものとする。
 また、相分離構造様態の判別は、TEMトモグラフィー観察により得られた3次元図に対して、縦、横、高さの3方向から切り出したデジタルスライス3面図各々が示す模様を比較することで行う。例えば、前記(A1)と(A2)を含む芳香族炭化水素系ポリマー電解質からなる高分子電解質膜において、その相分離構造が、共連続様またはラメラ様の場合、3面図すべてにおいて(A1)を含むイオン性ドメインと(A2)を含む非イオン性ドメインがともに連続相を形成する。共連続様の場合は連続相のそれぞれが入り組んだ模様を示し、ラメラ様の場合は、連続層が層状に連なった模様を示す。シリンダー構造や海島構造の場合、少なくとも1面で前記ドメインのいずれかが連続相を形成しない。ここで連続相とは、巨視的に見て、個々のドメインが孤立せずに繋がっている相のことを意味するが、一部繋がっていない部分があってもかまわない。
 なお、TEM観察やTEMトモグラフィーにおいては、イオン性ドメインと非イオン性ドメインの凝集状態やコントラストを明確にするために、2wt%酢酸鉛水溶液中に電解質膜を2日間浸漬することにより、イオン性基を鉛でイオン交換したサンプルを用いることが好ましい。
 本発明の芳香族炭化水素系ポリマー電解質におけるイオン性ドメインと非イオン性ドメインの体積比は、80/20~20/80であることが好ましく、60/40~40/60であることがより好ましい。上記範囲外の場合、プロトン伝導性が不足したり、寸法安定性や機械特性が不足したりする場合がある。 本発明の芳香族炭化水素系ポリマー電解質としては、(A2)に対する(A1)のモル組成比(A1/A2)が、0.20以上であることが好ましく、0.33以上であることがより好ましく、0.50以上がさらに好ましい。また、A1/A2は5.00以下であることが好ましく、3.00以下であることがより好ましく2.50以下であることがさらに好ましい。A1/A2が、0.20未満あるいは5.00を越える場合には、本発明の効果が不十分となる場合があり、低加湿条件下でのプロトン伝導性が不足したり、耐熱水性や物理的耐久性が不足したりする場合があるので好ましくない。ここで、モル組成比A1/A2とは、(A2)中に存在する繰り返し単位のモル数に対する(A1)中に存在する繰り返し単位のモル数の比を表す。「繰り返し単位のモル数」とは、(A1)、(A2)の数平均分子量をそれぞれ対応する構成単位の分子量で除した値であるとする。

 また、十分な寸法安定性、機械強度、物理的耐久性、燃料遮断性、耐溶剤性を得るためには、芳香族炭化水素系ポリマー電解質は結晶性を有することがより好ましい。ここで、「結晶性を有する」とはポリマー電解質が昇温すると結晶化されうる結晶化可能な性質を有しているか、あるいは既に結晶化していることを意味する。
 結晶性の確認は、示差走査熱量分析法(DSC)あるいは広角X線回折によって実施される。本発明の高分子電解質膜は、示差走査熱量分析法によって測定される結晶化熱量が0.1J/g以上もしくは、広角X線回折によって測定される結晶化度が0.5%以上であることが好ましい。すなわち、示差走査熱量分析法において結晶化ピークが認められない場合は、既に結晶化している場合と、ポリマー電解質が非晶性である場合が考えられるが、既に結晶化している場合は広角X線回折によって結晶化度が0.5%以上となる。
 上記の如き結晶性を有する芳香族炭化水素系ポリマー電解質は、高分子電解質膜の加工性が不良である場合がある。その場合、芳香族炭化水素系ポリマー電解質に保護基を導入し、一時的に結晶性を抑制してもよい。具体的には、保護基を導入した状態で後述する含フッ素高分子多孔質膜と複合化し、その後に脱保護することで、結晶性を有する芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜とが複合化してなる複合層を形成することができる。 本発明に用いる芳香族炭化水素系ポリマー電解質が有するイオン性基は、プロトン交換能を有するものであればよいが、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。

 これらのイオン性基は芳香族炭化水素系ポリマー電解質中に2種類以上含むことができ、組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から、芳香族炭化水素系ポリマーは少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、原料コストの点から少なくともスルホン酸基を有することが最も好ましい。 芳香族炭化水素系ポリマー電解質全体としてのイオン交換容量(IEC)は、プロトン伝導性と耐水性のバランスから、0.1meq/g以上、5.0meq/g以下が好ましい。IECは、1.4meq/g以上がより好ましく、2.0meq/g以上がさらに好ましい。また、3.5meq/g以下がより好ましく、3.0meq/g以下がさらに好ましい。IECが0.1meq/gより小さい場合には、プロトン伝導性が不足する場合があり、5.0meq/gより大きい場合には、耐水性が不足する場合がある。
 また、(A1)のIECは、低加湿条件下でのプロトン伝導性の点から高いことが好ましく、具体的には2.5meq/g以上が好ましく、3.0meq/g以上がより好ましく、3.5meq/g以上がさらに好ましい。また、上限としては6.5meq/g以下が好ましく、5.0meq/g以下がより好ましく、4.5meq/g以下がさらに好ましい。(A1)のIECが2.5meq/g未満の場合には、低加湿条件下でのプロトン伝導性が不足する場合があり、6.5meq/gを越える場合には、耐熱水性や物理的耐久性が不足する場合がある。
 (A2)のIECは、耐熱水性、機械強度、寸法安定性、物理的耐久性の点から低いことが好ましく、具体的には1.0meq/g以下が好ましく、0.5meq/g以下がより好ましく、0.1meq/g以下がさらに好ましい。(A2)のIECが1.0meq/gを越える場合には、耐熱水性、機械強度、寸法安定性、物理的耐久性が不足する場合がある。
 ここで、IECとは、芳香族炭化水素系ポリマー電解質、および高分子電解質膜の単位乾燥重量当たりに導入されたイオン性基のモル量であり、この値が大きいほどイオン性基の導入量が多いことを示す。本発明においては、IECは、中和滴定法により求めた値と定義する。中和滴定によるIECの算出は、実施例第(3)項に記載の方法で行う。

 以下、本発明の高分子電解質膜に用いる芳香族炭化水素系ポリマーについて、好ましい具体例を挙げて説明する。
 本発明に用いられる芳香族炭化水素系ポリマー電解質の主鎖骨格としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンが挙げられる。なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含む。また、芳香族炭化水素系ポリマー電解質の主鎖骨格は、上記のポリマー構造を複数含むポリマー構造であってもよい。
 なかでも特にポリエーテルケトン系ポリマーが好ましく、下記のようなイオン性基を含有する構成単位(S1)を含むセグメントと、イオン性基を含有しない構成単位(S2)を含むセグメントとを含有するポリエーテルケトン系ブロック共重合体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000001
(一般式(S1)中、Ar~Arは任意の2価のアリーレン基を表し、Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。Ar~Arは任意に置換されていても良く、互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S1)または他の構成単位との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000002
(一般式(S2)中、Ar~Arは任意の2価のアリーレン基を表し、任意に置換されていても良いが、イオン性基を含有しない。Ar~Arは互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S2)または他の構成単位との結合部位を表す。)
 ここで、Ar~Arとして好ましい2価のアリーレン基は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。また、イオン性基以外の基で置換されていてもよいが、無置換である方がプロトン伝導性、化学的安定性、物理的耐久性の点でより好ましい。さらに、好ましくはフェニレン基とイオン性基を含有するフェニレン基、最も好ましくはp-フェニレン基とイオン性基を含有するp-フェニレン基である。
 <含フッ素高分子多孔質膜> 本発明の複合高分子電化質膜は、芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜(以下、単に「多孔質膜」という場合がある。)とが複合化してなる複合層を有することにより、上述の(A2)を含むドメインによってもたらされる優れた機械強度及び物理的耐久性がさらに向上している。
 含フッ素高分子多孔質膜とは、脂肪族炭化水素系ポリマーまたは芳香族炭化水素系ポリマーの化学構造中の少なくとも一部の水素原子(H)がフッ素原子(F)に置換された含フッ素ポリマーからなる膜状部材である。含フッ素ポリマーとしては、当該ポリマーの化学構造中のHの50%以上がFに置き換わったポリマーが好ましい。含フッ素ポリマーとしては、ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン-ヘキサフルオロプロピレン(FEP)、ポリテトラフルオロエチレン-パーフルオロプロピルビニルエーテル(PFA)、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン-パーフルオロ-2,2-ジメチル-1,3-ジオキソール、ポリパーフルオロブテニルビニルエーテルなどが好ましく用いられ、機械的強度と空隙率のバランスの観点から、ポリテトラフルオロエチレンが最も好ましく用いられる。
 本発明中の含フッ素高分子多孔質膜における多孔質構造は、上記芳香族炭化水素系ポリマー電解質と複合化できるものであれば特に限定されないが、複合高分子電解質膜の機械強度及び物理的耐久性を向上させる観点からは、多孔質構造の骨格と空隙がそれぞれ連続構造をなしている連続多孔構造(スポンジ構造)、織布構造または不織布構造が好ましい例として挙げられる。
 多孔質膜の厚みには特に制限はなく、複合高分子電解質膜の用途によって決めるべきものであるが、5~50μmが実用的に用いられる膜厚である。
 芳香族炭化水素系ポリマー電解質と複合化する前の多孔質膜の空隙率は、特に限定されないが、得られた複合高分子電解質膜のプロトン伝導性と機械強度の両立の点で、50~95%が好ましく、80~95%がより好ましい。なお、多孔質膜の空隙率Y1(体積%)は下記の数式によって求めた値と定義する。
 Y1=(1-Db/Da)×100
(ここで、Daは多孔質膜を構成する材料の比重(例えば、ポリテトラフルオロエチレン製多孔質膜の場合、ポリテトラフルオロエチレン自体の比重)、Dbは空隙部分を含む多孔質膜全体の比重である。)
 本発明においては、多孔質膜として、最表面におけるフッ素の原子組成百分率F(at%)に対する酸素の原子組成百分率O(at%)の比(O/F比)が0.20以上2.0以下のものを用いる。本発明者らの検討の結果、この範囲のO/F比を有する含フッ素高分子多孔質膜を用いて複合層を形成すると、均一な相分離構造を維持しつつ、芳香族炭化水素系ポリマー電解質を含フッ素高分子多孔質膜の空隙中に高充填率で複合化できることが明らかとなった。最表面におけるO/F比が0.20未満の場合、芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜の表面エネルギーの差が大きく、複合層の充填率が低くなる傾向がある。また、最表面部におけるO/F比が2.0より大きい場合、それを用いた複合化電解膜において、均一な相分離構造が観察されない場合がある。詳細は不明だが、発明者らは、ポリマー中の親水性成分である(A1)と含フッ素高分子多孔質膜間の親和性が著しく高くなった結果、(A1)が含フッ素高分子多孔質膜近傍に偏在し、均一な相分離構造が形成されないと推定している。含フッ素高分子多孔質膜再表面のO/F比は0.30以上1.5以下の範囲がより好ましく、0.40以上1.0以下の範囲がさらに好ましい。
 ここで、多孔質膜の「最表面」とは、多孔質膜を巨視的に見たときの表層(以下、単に「表層」という。)のみではなく、共連続構造部分における骨格の表面も含めた多孔質膜のあらゆる外部との接触面を指すが、本発明においては多孔質膜の表層をX線光電子分光法(XPS)で測定した際のO/F比を多孔質膜の最表面におけるO/F比とみなす。
 一方、多孔質構造の骨格の内部のO/F比が高くなると、多孔質膜の強度が低下する傾向があるため、多孔質体としては、多孔質膜の最表面が上記のO/F比を有するとともに、骨格内部のO/F比が表層のO/F比よりも小さいことが好ましい。具体的には、多孔質膜の表層をXPSで測定した際のO/F比が0.20以上であり、かつ凍結粉砕により多孔質膜を粉末とし、当該粉末をXPSで測定した際のO/F比が、表層をXPSで測定した際のO/F比の値の2/3未満であることが好ましい。凍結粉砕した粉末のXPS測定値は、多孔質膜の最表面のO/F比と多孔質構造の骨格内部のO/F比の両者を反映した値となる。粉末のO/F比は、表層のO/F比の1/3以上2/3未満であることがより好ましい。
 多孔質膜の表層および粉末のO/F比の算出は、具体的には実施例第(2)項に記載の方法で行う。なお、ポリマー電解質と複合化した後の複合高分子電解質膜の状態からも、ポリマー電解質を溶媒で抽出することで多孔質膜のみを取り出し、同様の方法で、O/F比を測定することができる。
 上記のようなO/F比を有する多孔質膜は、多孔質構造の骨格表面にヒドロキシ基やスルホン酸基等の酸素原子を含む親水性基を導入する親水化処理により作製することができ、O/F比が大きいほど親水化度が高いことを意味する。なお、親水化処理については後述する。
 <複合高分子電解質膜>
 本発明の複合高分子電解質膜は、前述の芳香族炭化水素系ポリマー電解質を、前述の含フッ素高分子多孔質膜と複合化してなる複合層を有するものである。複合化とは、多孔質膜の空隙にポリマー電解質が充填されて固まることで、ポリマー電解質と多孔質膜とが一体化することを意味する。
 複合層におけるポリマー電解質の充填率は50%以上であることが好ましく、60%以上であることがより好ましい。複合層の充填率が低下すると、プロトンの伝導パスが失われることにより、発電性能が低下する問題がある。また、含フッ素高分子多孔質膜は、充填率の異なるものを2種以上積層したものであってもよい。なお、複合層におけるポリマー電解質の充填率はIECより計算した値であり、具体的には実施例第(4)項に記載の方法で行うものとする。
 本発明の複合高分子電解質膜は、複合層を有することで、面内方向の寸法変化率を低減することができる。寸法変化率とは、乾燥状態における複合高分子電解質膜の寸法と湿潤状態における複合化電解質膜の寸法の変化を表す指標であり、具体的な測定は実施例第(6)項に記載の方法で行う。面内方向の寸法変化が少ないことにより、例えば燃料電池に用いた際に、乾湿サイクル時に電解質膜のエッジ部分等に発生する膨潤収縮によるストレスが低減され、耐久性を向上させることができる。複合高分子電解質膜の面内方向の寸法変化率λxyは10%以下であることが好ましく、8%以下であることがより好ましく、5%以下であることが最も好ましい。
 また、本発明の複合高分子電解質膜は、複合層を有することで、面内方向の寸法変化率の異方性を小さくすることができる。寸法変化率の異方性が大きい場合、燃料電池のセルデザインを制約したり、寸法変化の大きい方向と直交する方向の電解質膜のエッジに膨潤収縮によるストレスが集中し、その部分から電解質膜の破断が始まりやすくなったりすることがある。複合高分子電解質膜の面内方向における、TD方向の寸法変化率λTDに対するMD方向の寸法変化率λMDの比λMD/λTDは、0.5<λMD/λTD<2.0を満たすことが好ましい。
 また、同様の理由により、本発明の複合高分子電解質膜は、弾性率および降伏応力のMD/TD方向の異方性も小さくすることができる。
 本発明の複合化電解質膜における複合層の厚みは、とくに制限されるものでないが、0.5μm以上50μm以下が好ましく、2μm以上40μm以下がさらに好ましい。複合層が厚い場合、電解質膜の物理的耐久性が向上する一方で、膜抵抗が増大する傾向がある。複合層が薄い場合、発電性能が向上する一方で、物理的耐久性に課題が生じ、電気短絡や燃料透過などの問題が生じる傾向がある。
 複合層を含む複合高分子電解質膜全体の膜厚としては、特に限定されないが、通常3μm以上200μm以下のものが好適に使用される。実用に耐える膜の強度を得るには3μm以上のものが好ましく、膜抵抗低減、発電性能向上のためには200μm以下のものが好ましい。複合高分子電解質膜全体の膜厚は、5μm以上150μm以下がより好ましく、10μm以上100μm以下がさらに好ましく、10μm以上50μm以下が最も好ましい。
 なお、本発明の複合高分子電解質膜は、複合層のみからなる電解質膜であってもよいが、複合層の両側または片側に接して、ポリマー電解質のみからなる層を有していてもよい。このような層を有するにより、複合高分子電解質膜と電極の接着性を向上させ、界面剥離を抑制することができる。ポリマー電解質からのみなる層を複合層の両側または片側に接して形成する場合、当該層のポリマー電解質は、複合層に用いたポリマー電解質と同じでも異なっていてもよいが、同じポリマー電解質を用いることが好ましい。
 また、本発明の複合高分子電解質膜は、機械的強度の向上およびイオン性基の熱安定性向上、耐水性向上、耐溶剤性向上、耐ラジカル性向上、塗液の塗工性の向上、保存安定性向上などの目的のために、架橋剤や通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、離型剤、酸化防止剤、ラジカル補足剤、無機微粒子などの添加剤を、本発明の目的に反しない範囲で含有するものであってもよい。
 <複合高分子電解質膜の製造方法>

 本発明の複合高分子電解質膜は、XPSによって測定される、最表面におけるO/F比が0.20以上2.0以下である含フッ素高分子多孔質体と、芳香族炭化水素系ポリマー電解質とを複合化することを特徴とする複合高分子電解質膜の製造方法により製造することができる。 多孔質体の最表面のO/F比の調整は、親水化処理により行われる。好ましい親水化処理としては、化学エッチングおよびプラズマ処理を挙げることができる。
 化学エッチングの場合、エッチング液としては金属ナトリウム-ナフタレン錯体溶液を用いることが好ましい。この場合、多孔質構造の最表面におけるO/F比を0.20以上2.0以下に制御するためには、金属ナトリウム-ナフタレン錯体溶液の温度を10℃以下に設定することが好ましい。また、金属ナトリウム-ナフタレン錯体の溶液を1質量%以下の濃度とし、かつ金属ナトリウム-ナフタレン錯体溶液と親水化前の多孔質膜との接触時間を10秒程度とすることで、多孔質構造の骨格内部の親水化を防止し、骨格内部のO/F比を0.20未満に維持することができる。さらに、金属ナトリウム-ナフタレン錯体は大気中の水分や酸素により劣化するため、雰囲気中の水分量や酸素濃度を低減したグローブボックス内で処理を行うことが好ましい。
 プラズマ処理の場合、一般的な大気圧プラズマや酸素混合ガスでのプラズマを用いると、機械的強度が著しく低減する場合がある。そのため、RF出力電圧を10W以下に設定することが好ましい。上記のような低いRF出力電圧において、酸素濃度が5%を超えると、プラズマが著しく不安定になり、親水化度を再現性よく制御できない傾向があるため、酸素分圧が5%以下の混合ガスを使用することが好ましい。また、混合ガス導入圧力を10Pa程度に制御することで、プラズマが安定する傾向がある。さらに、処理時間を3分以下のごく短時間に制御することによっても、親水化度を制御できる。さらに、混合ガス中の酸素分圧が変動すると、処理強度が変動するため、親水化度を再現性よく制御するためには、チャンバー内を1Pa以下の真空に保持した後に、混合ガスを導入することが好ましい。
 なお、多孔質体に親水性樹脂を含む希薄溶液を導入し、乾燥や焼結を行う親水化処理の場合、複合高分子電解質膜に加工し、燃料電池の電解質膜として用いた際に当該親水性樹脂が流出し、多孔質体構造とポリマー電解質との界面にクラックが発生することがある。クラックの発生は、複合化電解質膜を80℃の熱水に1週間浸漬した際の熱水溶出物重量を測定することで予測することがでる。本発明の複合高分子電解質膜は、上記のような親水化処理を行った場合、熱水溶出物重量を熱水浸漬前の複合高分子電解質膜重量に対し1%以下とすることができ、クラックが発生することが少なくなる。
 次に、上記のように作製した多孔質膜と、芳香族炭化水素系ポリマー電解質とを複合化する。
 芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜を複合化する方法としては、多孔質膜の空隙にポリマー電解質の溶液を含浸し、溶媒を乾燥して複合高分子電解質膜を製造する方法が挙げられる。具体的には、(1)ポリマー電解質の溶液に浸漬した多孔質膜を引き上げながら余剰のポリマー電解質の溶液を除去して膜厚を制御する方法や、(2)多孔質膜上にポリマー電解質の溶液を流延塗布する方法、(3)ポリマー電解質の溶液を流延塗布した支持基材上に多孔質膜を貼り合わせポリマー電解質の溶液を含浸させる方法などが挙げられる。尚、(1)および(2)の方法においても、別途用意した支持基材に含フッ素多孔体を貼り付けて芳香族炭化水素系ポリマー電解質中の溶媒を乾燥する方法が、複合高分子電解質膜の皺や厚みムラなどが低減でき、膜品位を向上させる点からは好ましい。
 芳香族炭化水素系ポリマー電解質の溶液に使用する溶媒は、ポリマー種によって適宜選択できる。例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸エチル、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられ、単独でも二種以上の混合物でもよい。
 また、ポリマー電解質の粘度調整に、メタノール、エタノール、1‐プロパノール、イソプロピルアルコールなどのアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル系溶媒、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、パークロロエチレン、クロロベンゼン、ジクロロベンゼン、ヘキサフルオロイソプロピルアルコールなどのハロゲン化炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ化炭化水素系溶媒、水などの各種低沸点溶剤を混合して使用することもできる。
 使用するポリマー電解質溶液中のポリマー濃度は、5~40重量%が好ましく、10~25重量%がより好ましい。この範囲のポリマー濃度であれば、含フッ素高分子多孔質膜の空隙にポリマーを充分に充填でき、かつ表面平滑性に優れたプロトン伝導膜を得ることができる。ポリマー濃度が低すぎると、含フッ素高分子多孔質基材の空隙に対するにポリマーの充填効率が低下し、複数回の浸漬処理が必要となる場合がある。一方、ポリマー濃度が高すぎると、溶液粘度が高すぎて、含フッ素高分子多孔質膜の空隙に対し、ポリマーを充分に充填できず、複合層中の充填率が下がったり、複合化電解質膜の表面平滑性が低下したりする場合がある。
 なお、ポリマー溶液の溶液粘度は、通常100~50,000mPa・s、好ましくは500~10,000mPa・sである。溶液粘度が低すぎると、含フッ素高分子多孔質膜をポリマー溶液に浸漬した際に、溶液の滞留性が悪く、多孔質膜から流れてしまうことがある。一方、溶液粘度が高すぎる場合、含フッ素高分子多孔質膜にポリマー溶液が浸透せず。充分に含浸できない場合がある。
 複合高分子電解質膜の製膜に使用する支持基材としては、特に制限なく公知のものが使用できるが、例えば、ステンレスなどの金属からなるエンドレスベルトやドラム、ポリエチレンテレフタレート、ポリイミド、ポリフェニレンスルフィド、ポリスルホンなどのポリマーからなるフィルム、硝子、剥離紙などが挙げられる。金属は表面に鏡面処理を施したり、ポリマーフィルムは塗工面にコロナ処理を施したり易剥離処理を施したりして使用することが好ましい。さらに、ロール状に連続塗工する場合は、塗工面の裏に易剥離処理を施し、巻き取った後に電解質膜と塗工基材の裏側が接着するのを防止することもできる。フィルムの場合、厚みは特に限定されるものでないが、50μm~600μmがハンドリングの観点から好ましい。
 流延塗工方法としては、ナイフコート、ダイレクトロールコート、マイヤーバーコート、グラビアコート、リバースコート、エアナイフコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、スクリーン印刷、インクジェットコートなどの手法が適用できる。含浸時に減圧や加圧、高分子電解質溶液の加温、基材や含浸雰囲気の加温などを実施し、含浸性の向上を図ることも、プロトン伝導性の向上や生産性の向上に好適に用いられる。
 膜厚は、塗工方法により制御できる。例えば、コンマコーターやダイレクトコーターで塗工する場合は、溶液濃度あるいは基板上への塗布厚により制御することができ、スリットダイコートでは吐出圧や口金のクリアランス、口金と基材のギャップなどで制御することができる。
 芳香族炭化水素系電解質ポリマーは、イオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態で多孔質膜と複合化することが好ましい。この場合、複合化後に当該陽イオンをプロトンと交換することで、プロトン伝導性を発現する複合高分子電解質膜を得ることができる。すなわち、芳香族炭化水素系ポリマー電解質のイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態で前記含フッ素高分子多孔質膜と複合化する工程と、前記アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程とをこの順に有する製造方法は、本発明の複合高分子電解質膜の好適な製造方法である。機構の詳細は不明だが、前記イオン性基がアルカリ金属またはアルカリ土類金属のカチオンと塩を形成している状態の芳香族炭化水素系ポリマー電解質と、本発明における親水性が厳密に制御された含フッ素高分子多孔質膜とを複合化した際に、両者の界面エネルギーのバランスがとれ、複合層の充填率が高くなったり、複合相中における均一な相分離構造が発現したりする。
 陽イオンをプロトンと交換する工程は、複合化後の膜を酸性水溶液と接触させる工程により行うことが好ましく、このような工程としては膜を酸性水溶液に浸漬させる工程が最も好ましい。酸性水溶液としては、硫酸、塩酸、硝酸、酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、クエン酸など特に限定なく使用することができるが、生産性の観点から硫酸水溶液を使用することが好ましい。また、酸性水溶液の濃度は3重量%以上、30重量%以下であることが好ましく、温度は0℃以上80℃以下に調整することが好ましい。
 厚み30μm以下の複合高分子電解質膜を製造する場合は、酸性溶水液との接触・膨潤時の機械強度が低下し、膜破断が発生しやすくなるため、支持基材から膜状物を剥離することなく酸性溶水液との接触を行なうことが好ましい。
 本発明の複合高分子電解質膜は、種々の用途に適用可能である。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置、水素圧縮装置等が挙げられる。
 固体高分子形燃料電池は、電解質膜として水素イオン伝導性高分子電解質膜を用い、その両面に触媒層、電極基材及びセパレータが順次積層された構造となっている。このうち、電解質膜の両面に触媒層を積層させたもの(即ち触媒層/電解質膜/触媒層の層構成のもの)は触媒層付電解質膜(CCM)と称され、さらに電解質膜の両面に触媒層及びガス拡散基材を順次積層させたもの(即ち、ガス拡散基材/触媒層/電解質膜/触媒層/ガス拡散基材の層構成のもの)は、膜電極複合体(MEA)と称されている。
 触媒層付電解質膜の製造方法としては、電解質膜表面に、触媒層を形成するための触媒層ペースト組成物を塗布及び乾燥させるという塗布方式が一般的に行われている。しかし、この塗布方式であると、電解膜が触媒層ペースト組成物に含まれる溶剤により膨潤変形してしまい、電解質膜表面に所望の触媒層が形成しにくい問題が生じている。この問題を克服するために、予め触媒層のみを基材上に作製し、この触媒層を転写することにより、触媒層を電解質膜上に積層させる方法(転写法)が提案されている(例えば、日本国特開2009-9910号公報)。
 本発明によって得られる複合高分子電解質膜は、複合層の高い機械強度により、前記塗布方式、転写法のいずれの場合であっても、触媒層付電解質膜としても特に好適に使用できる。
 MEAを作製する場合は、特に制限はなく公知の方法(例えば、電気化学,1985, 53, p.269.記載の化学メッキ法、電気化学協会編(J. Electrochem. Soc.)、エレクトロケミカル サイエンス アンド テクノロジー (Electrochemical Science and Technology),1988, 135, 9, p.2209. 記載のガス拡散電極の熱プレス接合法など)を適用することが可能である。
 プレスにより電解質膜と電極基材とを一体化する場合は、その温度や圧力は、電解質膜の厚さ、水分率、触媒層や電極基材により適宜選択すればよい。また、本発明では電解質膜が乾燥した状態または吸水した状態でもプレスによる一体化が可能である。具体的なプレス方法としては、圧力やクリアランスを規定したロールプレスや、圧力を規定した平板プレス、複数個のローラーに組付けられた弾性を有した対向するエンドレスベルトにより圧着するダブルベルトプレスなどが挙げられる。工業的生産性やイオン性基を有する高分子材料の熱分解抑制などの観点から、これらのプレス工程は0℃~250℃の範囲で行うことが好ましい。加圧は電解質膜や電極保護の観点からできる限り弱い方が好ましく、平板プレスの場合、10MPa以下の圧力が好ましい。
 また、プレス工程による一体化を実施せずに、電極と電解質膜を重ね合わせ燃料電池セル化することも、アノード、カソード電極の短絡防止の観点から好ましい選択肢の一つである。この方法の場合、燃料電池として発電を繰り返した場合、短絡箇所が原因と推測される電解質膜の劣化が抑制される傾向があり、燃料電池として耐久性が良好となる。
 なお、このように作製したMEAは、水電解装置や水素圧縮装置等の他の電気化学用途にも好適に用いることができる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各種測定条件は次の通りである。
 (1)ポリマー電解質溶液の分子量
 ポリマー溶液の数平均分子量及び重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC-8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により数平均分子量及び重量平均分子量を求めた。
 (2)XPSによる含フッ素高分子多孔質膜の親水化度合いの測定
 最表面組成測定サンプルは、検体となる含フッ素高分子多孔質膜を超純水でリンスした後、室温、67Paにて10時間乾燥させることにより、準備した。粉末組成測定サンプルは、予め5mm角の大きさに切断した含フッ素高分子多孔質膜を超純水でリンスし、室温、67Paにて10時間乾燥させた後、液体窒素で30分冷却し、凍結粉砕機にて5分間の処理を2回実施することにより、準備した。準備したそれぞれのサンプルの組成を測定し、O/F比を算出した。測定装置、条件としては、以下の通りである。
測定装置: Quantera SXM
励起X線: monochromatic Al Kα1,2 線(1486.6eV)
X線径: 200μm   
光電子脱出角度: 45 °
イオンエッチング 
 (3)イオン交換容量(IEC)
 下記の手順に従い、中和滴定法により測定した。測定は3回実施し、その平均値をイオン交換容量とした。
1.プロトン置換し、純水で十分に洗浄した複合高分子電解質膜の膜表面の水分を拭き取った後、100℃にて12h以上真空乾燥し、乾燥重量を求めた。
2.電解質に5wt%硫酸ナトリウム水溶液を50mL加え、12h静置してイオン交換した。
3.0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v% を加え、薄い赤紫色になった点を終点とした。
4.IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
 (4)複合層における芳香族炭化水素系ポリマー電解質の充填率
 光学顕微鏡または走査形電子顕微鏡(SEM)で複合高分子電解質膜の断面を観察し芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜からなる複合層の厚みをT1、複合層の外側に別の層がある場合はそれらの厚みをT2、T3とした。複合化層を形成する電解質ポリマーの比重をD1、複合層の両側の別の層を形成する電解質ポリマーの比重をそれぞれのD2、D3、複合高分子電解質膜の比重をDとした。それぞれの層を形成するポリマーのIECをI1、I2、I3、複合高分子電解質膜のIECをIとすると、複合化層中の芳香族炭化水素系ポリマー電解質の含有率Y2(体積%)、は下式で求めた。
Y2=[(T1+T2+T3)×D×I-(T2×D2×I2+T3×D3×I3)]/(T1×D1×I1)×100
 (5)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
 染色剤として2wt%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で48時間静置して染色処理を行った。染色処理された試料を取りだし、エポキシ樹脂で包埋し、可視光を30秒照射し固定した。ウルトラミクロトームを用いて室温下で薄片100nmを切削し、以下の条件に従って観察を実施した。
装 置:電界放出型電子顕微鏡 (HRTEM) JEOL 製 JEM2100F
画像取得:Digital Micrograph
システム:マーカー法
加速電圧 :200 kV
撮影倍率 :30,000 倍
傾斜角度 :+61°~-62°
再構成解像度:0.71 nm/pixel
 3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から-62°の範囲で、試料を1°毎に傾斜しTEM 像を撮影する連続傾斜像シリーズより取得した計124 枚のTEM像を基にCT再構成処理を実施し、3次元相分離構造を観察した。
 また、画像処理は、ルーゼックス(登録商標)AP(ニレコ社製)を使用して、TEM原画像に対し、オートモードで、濃度ムラ補正、濃度変換、空間フィルターの処理を実行した。さらに、処理された画像に対し、該装置のオートモードで、黒色から白色まで256階調で表現させ、0~128を黒色、129~256を白色と定義することにより(A1)を含むドメインと(A2)を含むドメインを色分けし、各ドメイン間距離を計測した上で、その平均値を平均ドメイン間距離とした。
 (6)熱水試験による寸法変化率測定
 複合高分子電解質膜を約5cm×約5cmの正方形に切り取り、温度23℃±5℃、湿度50%±5%の調温調湿雰囲気下に24時間静置後、ノギスでMD方向の長さとTD方向の長さ(MD1とTD1)を測定した。当該電解質膜を80℃の熱水中に8時間浸漬後、再度ノギスでMD方向の長さとTD方向の長さ(MD2とTD2)を測定し、面内方向におけるMD方向とTD方向の寸法変化率(λMDとλTD)および面内方向の寸法変化率(λxy)(%)を下式より算出した。
λMD=(MD2-MD1)/MD1×100
λTD=(TD2-TD1)/TD1×100
λxy=(λMD+λTD)/2
 (7)複合高分子電解質膜を使用した膜電極複合体(MEA)の作製
 市販の電極、BASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”5g/mPtを5cm角にカットしたものを1対準備し、燃料極、酸化極として複合高分子電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用MEAを得た。
 (8)低加湿発電性能
 上記(7)で作製したMEAを英和(株)製JARI標準セル“Ex-1”(電極面積25cm2)にセットし、セル温度90℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件;アノード側30%RH/カソード30%RH、背圧0.1MPa(両極)において電流-電圧(I-V)測定した。1A/cm時の電圧を読み取り評価した。
 (9)乾湿サイクル耐久性
 上記(7)で作製したMEAを英和(株)製JARI標準セル“Ex-1”(電極面積25cm2)にセットし、セル温度80℃の状態で、両極に160%RHの窒素を2分間供給し、その後両電極に0%RHの窒素(露点-20℃以下)を2分間供給するサイクルを繰り返した。1000サイクルごとに水素透過量の測定を実施し、水素透過電流が初期電流の10倍を越えた時点を乾湿サイクル耐久性とした。
 水素透過量の測定は、一方の電極に燃料ガスとして水素、もう一方の電極に窒素を供給し、加湿条件:水素ガス90%RH、窒素ガス:90%RHで試験を行った。開回路電圧が0.2V以下になるまで保持し、0.2~0.7Vまで1mV/secで電圧を掃引し0.7Vにおける電流値を水素透過電流とした。
 合成例1
(下記式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
 攪拌器、温度計及び留出管を備えた 500mlフラスコに、4,4′-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mlで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mlを加え結晶を析出させ、濾過し、乾燥して2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。この結晶をGC分析したところ99.9%の2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソランと0.1%の4,4′-ジヒドロキシベンゾフェノンであった。
Figure JPOXMLDOC01-appb-C000003
 合成例2
(下記式(G2)で表されるジソジウムー3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、下記一般式(G2)で示されるジソジウム3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000004
 合成例3
(下記式(G3)で表されるイオン性基を含有しないオリゴマーの合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、前記合成例1で得たK-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中で160℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のメタノールに再沈殿精製を行い、イオン性基を含有しないオリゴマーa1(末端:ヒドロキシル基)を得た。数平均分子量は10000であった。
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、イオン性基を含有しない前記オリゴマーa1(末端:ヒドロキシル基)を20.0g(2mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、トルエン30mL中で100℃で脱水後、昇温してトルエンを除去し、デカフルオロビフェニル4.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G3)で示されるイオン性基を含有しないオリゴマー(末端:フルオロ基)を得た。数平均分子量は11000であった。
Figure JPOXMLDOC01-appb-C000005
 合成例4
(下記式(G4)で表されるイオン性基を含有するオリゴマーの合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、前記合成例2で得たジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン39.3g(93mmol)、および18-クラウン-6 、17.9g(和光純薬82mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中で170℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示されるイオン性基を含有するオリゴマー(末端:ヒドロキシル基)を得た。数平均分子量は16000であった。
Figure JPOXMLDOC01-appb-C000006
(式(G4)において、Mは、NaまたはKを表す。)
 合成例5
(下記式(G5)で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの合成)
 攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸245g(2.1mol)を加え、続いて2,5-ジクロロベンゾフェノン105g(420mmolを加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)41.1g(462mmol)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、下記式G5で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
Figure JPOXMLDOC01-appb-C000007
 合成例6
(下記式(G6)で表されるイオン性基を含有しないオリゴマーの合成)
 撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1lの三つ口のフラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26mol)、炭酸カリウム47.3g(0.34mol)をはかりとった。窒素置換後、スルホラン346ml、トルエン173mlを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6-ジクロロベンゾニトリル12.3g(0.072mol)を加え、さらに5時間反応した。
 得られた反応液を放冷後、トルエン100mlを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン250mlに溶解した。これをメタノール2lに再沈殿し、下記式(G6)で表される目的の化合物107gを得た。数平均分子量は11000であった。
Figure JPOXMLDOC01-appb-C000008
 合成例7
 (下記式(G7)で表されるテトラソジウム 3,5,3’,5’-テトラスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
 かき混ぜ機、濃縮管を備えた1000mL三口フラスコに、4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)、発煙硫酸(60%SO3)210mL(アルドリッチ試薬)を加え、濃縮管上部に接続した窒素導入管、および、系外に向けたバブラーに向けて、激しく窒素を流しながら、180℃で24h反応させた。この際、窒素を激しく流すことにより、三酸化硫黄の蒸発は抑制されていた。多量の水中に少しずつ投入し、NaOHで中和した後、エタノールで硫酸ナトリウムを3回析出させて除去し、下記式(G7)で示されるスルホン酸基含有芳香族化合物を得た。構造は1H-NMRで確認した。原料、ジスルホン化物、トリスルホン化物は全く認められず、高純度のテトラスルホン化物を得ることができた。
Figure JPOXMLDOC01-appb-C000009
 合成例8
 (下記式(G8)で表されるスルホン酸基を含有するオリゴマーの合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム41.5g(アルドリッチ試薬、300mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、前記実施例7で得たスルホン酸基含有芳香族化合物58.3g(93mmol)、および18-クラウン-6 、49.1g(和光純薬186mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)400mL、トルエン150mL中で170℃で脱水後、昇温してトルエン除去、220℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G8)で示されるスルホン酸基を含有するオリゴマー(末端ヒドロキシル基)を得た。数平均分子量は16000であった。
Figure JPOXMLDOC01-appb-C000010
(式(G8)において、Mは、NaまたはKを表す。)
 合成例9
(下記式(G10)で表されるセグメントと下記式(G11)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマー前駆体の合成)
 無水塩化ニッケル1.62gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’-ビピリジル2.15gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
 ここに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.49gと下記式(G9)で示される、スミカエクセルPES5200P(住友化学社製、Mn=40,000、Mw=94,000)0.50gとを、ジメチルスルホキシド5mLに溶解させて得られた溶液に、亜鉛粉末1.23gを加え、70℃に調整した。これに前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、6mol/L塩酸60mLを加え1時間攪拌した。析出した固体を濾過により分離し、乾燥し、灰白色の下記式(G10)で表されるセグメントと下記式(G11)で表されるセグメントとを含むポリアリーレン1.62gを得た。重量平均分子量は20万であった。
Figure JPOXMLDOC01-appb-C000011
 合成例10
(下記式(G12)で表されるポリスルホン(PSU)の合成)
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’-ジクロロジフェニルスルホン61.4g(214mmol)、ビスフェノールA47.8g(210mmol)、及び重合溶媒としてジフェニルスルホン78.4gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム30.1gを加え、290℃まで徐々に昇温し、290℃で2時間反応させた。
 次いで、ジフェニルスルホン78.4gを加えて180℃まで降温させ、微粉状の無水炭酸カリウム198mgを添加し、5分間撹拌して分散させた後、水酸化アルミニウム(住友化学(株)製「CW-375HT」)500mgを添加し、15分間攪拌した。
 攪拌終了後、塩化メチルガスを30分吹き込み、直ちに反応液を150℃で熱時濾過して、水酸化アルミニウム残渣及び炭酸カリウム残渣を濾別し、その濾液を冷却固化させた後、粉砕し、中心粒径400μmの粉体を得た。この粉体を、アセトンとメタノールとの混合溶媒1000mlで2回の抽出洗浄を行い、さらに水1000mlを用いて2回洗浄した後、150℃で乾燥させて、白色粉末状のポリスルホンを得た。
Figure JPOXMLDOC01-appb-C000012
 製造例1
(イオン性基を含有するセグメント(A1)として前記(G4)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b1からなるポリマー電解質溶液Aの製造例)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)、イオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を16g(1mmol)入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、シクロヘキサン30mL中で100℃で脱水後、昇温してシクロヘキサン除去し、イオン性基を含有しないオリゴマーa1(末端:フルオロ基)11g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールへの再沈殿精製により、ブロック共重合体b1を得た。重量平均分子量は34万であった。
 得られたブロック共重合体b1を溶解させた5重量%N-メチルピロリドン(NMP)溶液を、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA-800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、1μmのポリプロピレン製フィルターを用いて加圧ろ過し、ポリマー電解質溶液Aを得た。ポリマー電解質溶液Aの粘度は1300mPa・sであった。
 製造例2
(下記一般式(G13)で表されるポリアリーレン系ブロック共重合体b2からなるポリマー電解質溶液Bの製造例)
 乾燥したN,N-ジメチルアセトアミド(DMAc)540mlを、3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル135.0g(0.336mol)と、合成例6で合成した式(G6)で表されるイオン性基を含有しないオリゴマーを40.7g(5.6mmol)、2,5-ジクロロ-4’-(1-イミダゾリル)ベンゾフェノン6.71g(16.8mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド6.71g(10.3mmol)、トリフェニルホスフィン35.9g(0.137mol)、ヨウ化ナトリウム1.54g(10.3mmol)、亜鉛53.7g(0.821mol)の混合物中に窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc730mlで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 前記濾液をエバポレーターで濃縮し、濾液に臭化リチウム43.8g(0.505mol)を加え、内温110℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N塩酸1500mlで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的のポリアリーレン系ブロック共重合体23.0gを得た。この脱保護後のポリアリーレン系ブロック共重合体の重量平均分子量は、19万であった。得られたポリアリーレン系ブロック共重合体を、0.1g/gとなるように、N-メチルー2-ピロリドン/メタノール=30/70(質量%)有機溶媒に溶解してポリマー電解質溶液Bを得た。ポリマー電解質溶液Bの粘度は1200mPa・sであった。
Figure JPOXMLDOC01-appb-C000013
 製造例3
(ランダム共重合体b3からなるポリマー電解質溶液Cの製造例)
 撹拌機、窒素導入管、Dean-Starkトラップを備えた5Lの反応容器に、合成例1で合成した2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン129g、4,4’-ビフェノール93g(アルドリッチ試薬)、および合成例2で合成したジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン422g(1.0mol)を入れ、窒素置換後、N-メチル-2-ピロリドン(NMP)3000g、トルエン450g、18-クラウン-6 232g(和光純薬試薬)を加え、モノマーが全て溶解したことを確認後、炭酸カリウム304g(アルドリッチ試薬)を加え、環流しながら160℃で脱水後、昇温してトルエン除去し、200℃で1時間脱塩重縮合を行った。重量平均分子量は32万であった。
 次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA-800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、ポリマー濃度が20重量%になるまでNMPを除去し、さらに5μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Cを得た。ポリマー電解質溶液Cの粘度は1000mPa・sであった。
 製造例4
(イオン性基を含有するセグメント(A1)として前記(G7)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b4からなるポリマー電解質溶液Dの製造例)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム5.5g、前記合成例1で得た2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキサン混合物5.2g、4,4’-ジフルオロベンゾフェノン2.2g、および前記実施例8で得た、上記式(G7)で示されるスルホン酸基含有芳香族化合物6.3g、18-クラウン-6-エーテル2.6gを用いて、N-メチルピロリドン(NMP)50mL/トルエン40mL中、180℃で脱水後、昇温してトルエン除去、240℃で3時間重合を行った。多量の水で再沈することで精製を行い、ケタール基を有する前駆体ポリマーを得た。重量平均分子量は22万であった。
 次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA-800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、さらに1μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Dを得た。ポリマー電解質溶液Dの粘度は1000mPa・sであった。
 製造例5
(式(G11)で表されるセグメントと下記式(G14)で表されるセグメントからなるPES系ブロックコポリマーb5からなるポリマー電解質溶液Eの合成)
 合成例9で得られたブロックコポリマー前駆体0.23gを、臭化リチウム1水和物0.16gとN-メチル-2-ピロリドン8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の式(G11)で示されるセグメントと下記式(G14)で表されるセグメントからなるブロックコポリマーb4を得た。得られたポリアリーレンの重量平均分子量は18万であった。
 次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA-800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、さらに5μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Eを得た。ポリマー電解質溶液Eの粘度は1000mPa・sであった。
Figure JPOXMLDOC01-appb-C000014
 製造例6
(イオン性基を含有するセグメント(A1)として前記(G4)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b1’からなるポリマー電解質溶液Fの製造例)
 イオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を14g(0.9mmol)、イオン性基を含有しないオリゴマーa1(末端:フルオロ基)12g(1.1mmol)とした以外は、製造例1と同様にブロック共重合体b1’を製造した。ブロック共重合体b1’の重量平均分子量は29万であった。次に、製造例1と同様にポリマー電解質溶液Fを得た。ポリマー電解質溶液Fの粘度は950mPa・sであった。
 製造例7
(イオン性基を含有するセグメント(A1)として下記式(G15)で表される側鎖、イオン性基を含有しないセグメント(A2)として前記式(G12)で表されるポリマーを含有するグラフト共重合体b6からなるポリマー電解質前駆体溶液Gの製造例)
 合成例10で得られたPSU粉末3.0gをコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PSU粉末に60Co線源からのγ線を室温で100kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気したp-スチレンスルホン酸ナトリウム300g、イソプロピルアルコール300gからなる溶液を、照射されたPSU粉末が浸漬するよう添加し、アルゴンガスで置換した後、ガラス容器を密閉し、80℃で12時間放置した。得られたグラフトポリマーをイソプロピルアルコールで洗浄し乾燥した。
 得られたグラフトポリマー2gを、N-メチルピロリドン(NMP)30gに溶解させ、ポリマー電解質前駆体溶液Gを得た。ポリマー電解質溶液Gの粘度は1300mPa・sであった。
Figure JPOXMLDOC01-appb-C000015
 製造例8
(含フッ素高分子多孔質膜Aの製造例)
 ポアフロンHP-045-30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより、膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを作製した。露点-80℃のグローブボックス内において、金属ナトリウム-ナフタレン錯体/テトラヒドロフラン(THF)1%溶液10g、THF90gからなる溶液に前記ポリテトラフルオロエチレン多孔質フィルムを浸漬し、3秒経過後に引き上げ、すぐにTHFで十分洗浄した。得られた含フッ素高分子多孔質膜Aの、親水化度合いを示す最表面のO/F比は0.62であった。粉末のO/F比は0.28であり、強靭なフィルムであった。
 製造例9
(含フッ素高分子多孔質膜Bの製造例)
 ポアフロンHP-045-30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを、露点-80℃のグローブボックス内において、金属ナトリウム-ナフタレン錯体/THF1%溶液30g、THF70gからなる溶液に浸漬し、3秒経過後に引き上げ、すぐにTHFで十分洗浄した。得られた含フッ素高分子多孔質膜Bの、親水化度合いを示す最表面のO/F比は2.33であった。粉末のO/F比は1.88であり、十分強靭なフィルムであった。
 製造例10
(含フッ素高分子多孔質膜Cの製造例)
 ポアフロンHP-045-30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムに対し、プラズマ処理を施した。処理にはSAMCO RIE N100を用い、酸素3%/アルゴン97%混合ガスを9.5Paの圧力に調整し、10WのRF出力で2分間処理を行った。得られた含フッ素高分子多孔質膜Cの、親水化度合いを示す最表面のO/F比は0.32であった。粉末のO/F比は0.19であり、強靭なフィルムであった。
 製造例11
(含フッ素高分子多孔質膜Dの製造例)
 ポアフロンHP-045-30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムに対し、プラズマ処理を施した。処理にはSAMCO RIE N100を用い、酸素1%/アルゴン99%混合ガスを9.5Paの圧力に調整し、10WのRF出力で1分間処理を行った。得られた含フッ素高分子多孔質膜Dの、親水化度合いを示す最表面のO/F比は0.13であった。粉末のO/F比は0.05であり、強靭なフィルムであった。
 製造例12
(含フッ素高分子多孔質膜Eの製造例)
 ポアフロンHP-045-30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを、ポリエチレングリコール4000(和光純薬試薬)20%/アセトン80%溶液に1時間浸漬し、引き上げた後に室温で十分乾燥させた。得られた含フッ素高分子多孔質膜Eの、親水化度合いを示す最表面のO/F比は1.53であった。粉末のO/F比は0.45であり、強靭なフィルムであった。
 [実施例1]
 ナイフコーターを用い、製造例1で製造したポリマー電解質溶液Aをガラス基板上に流延塗布し、製造例8で製造した含フッ素高分子多孔質膜Aを貼り合わせた。室温にて1h保持し、ポリマー電解質溶液Aを十分含浸させた後、100℃にて4h乾燥した。乾燥後の膜の上面に、再度ポリマー電解質溶液Aを流延塗布し、室温にて1h保持した後、100℃にて4h乾燥し、フィルム状の重合体を得た。10重量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、複合高分子電解質膜(膜厚11μm)を得た。
 得られた複合高分子電解質膜について、IEC、複合化層中の充填率、面内方向と膜厚方向の寸法変化率の比λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかったため、20000サイクルで評価を打ち切った。
 [実施例2]
 含フッ素高分子多孔質膜Aの代わりに製造例10で製造した含フッ素高分子多孔質膜Cを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚12μm)を得た。
 得られた複合高分子電解質膜は、IEC、複合化層中の充填率、λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかったため、20000サイクルで評価を打ち切った。
 [実施例3]
 ポリマー電解質溶液Aの代わりに製造例2で製造したポリマー電解質溶液Bを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚14μm)を得た。
 [実施例4]
 含フッ素高分子多孔質膜Aの代わりに製造例12で製造した含フッ素高分子多孔質膜Eを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
 [実施例5]
 ポリマー電解質溶液Aの代わりに製造例4で製造したポリマー電解質溶液Dを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
 [実施例6]
 ポリマー電解質溶液Aの代わりに製造例5で製造したポリマー電解質溶液Eを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚12μm)を得た。
 [実施例7]
 ポリマー電解質溶液Aの代わりに製造例6で製造したポリマー電解質溶液Fを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
 [実施例8]
 ポリマー電解質溶液Aの代わりに製造例7で製造したポリマー電解質溶液Gを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚13μm)を得た。
 [比較例1]
 含フッ素高分子多孔質膜Aの代わりに製造例9で製造した含フッ素高分子多孔質膜Bを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚10μm)を得た。
 [比較例2]
 含フッ素高分子多孔質膜Aの代わりに製造例11で製造した含フッ素高分子多孔質膜Dを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚14μm)を得た。
 [比較例3]
 ポリマー電解質溶液Aの代わりに製造例3で製造したポリマー電解質溶液Cを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
 [比較例4]
 ナイフコーターを用い、製造例1で製造したポリマー電解質溶液Aをガラス基板上に流延塗布し、含フッ素高分子多孔質膜を貼り合わることなく、100℃にて4h乾燥し、フィルム状の重合体を得た。80℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、複合高分子電解質膜(膜厚10μm)を得た。
 [比較例5]
 含フッ素高分子多孔質膜Aの代わりに製造例9で製造した含フッ素高分子多孔質膜Bを使用した以外は、実施例3と同様にして複合高分子電解質膜(膜厚12μm)を得た。
 [比較例6]
 ポリマー電解質溶液Aの代わりに製造例2で製造したポリマー電解質溶液Bを使用した以外は、比較例4と同様にして複合高分子電解質膜(膜厚12μm)を得た。
 [比較例7]
 含フッ素高分子多孔質膜Aの代わりにポアフロンWP-045-40(住友電工ファインポリマー株式会社製;空孔率75%、厚さ40μm)を使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚41μm)を得た。
 [比較例8]
 含フッ素高分子多孔質膜Aの代わりにポアフロンWP-045-40(住友電工ファインポリマー株式会社製;空孔率75%、厚さ40μm)を使用した以外は、実施例3と同様にして複合高分子電解質膜(膜厚42μm)を得た。
 各実施例、比較例で作製した複合高分子電解質膜の構成、およびIEC、複合層中のポリマー電解質の充填率、λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかった場合は、20000サイクルで評価を打ち切った。
(表1において、相分離構造が「-」となっている例は、明確な相分離構造を示していないことを意味する。)
Figure JPOXMLDOC01-appb-T000016
 

Claims (15)

  1. 芳香族炭化水素系ポリマー電解質と、含フッ素高分子多孔質膜とが複合化してなる複合層を有する複合高分子電解質膜であって、X線光電子分光法(XPS)によって測定される、前記含フッ素高分子多孔質膜の最表面における、フッ素の原子組成百分率F(at%)に対する酸素の原子組成百分率O(at%)の比(O/F比)が0.20以上2.0以下であるとともに、前記複合層中の前記芳香族炭化水素系ポリマー電解質が相分離構造を形成している複合高分子電解質膜。
  2. XPSによって測定される、前記含フッ素高分子多孔質膜を凍結粉砕した粉末のO/F比が、前記含フッ素高分子多孔質膜の最表面におけるO/F比の2/3以下である、請求項1に記載の複合高分子電解質膜。
  3. 80℃の熱水に1週間浸漬した際の熱水溶出物重量が、熱水浸漬前の複合化電解質膜重量に対し1%以下である、請求項1または2に記載の複合高分子電解質膜。
  4. 前記含フッ素高分子多孔質膜がポリテトラフルオロエチレンから構成されるものである、請求項1~3のいずれかに記載の複合高分子電解質膜。
  5. 前記芳香族炭化水素系ポリマー電解質が、イオン性基を含有するセグメントとイオン性基を含有しないセグメントが結合したブロック共重合体またはグラフト共重合体である、請求項1~4のいずれかに記載の複合高分子電解質膜。
  6. 前記芳香族炭化水素系ポリマー電解質の相分離構造が共連続様である、請求項1~5のいずれかに記載の複合高分子電解質膜。
  7. 前記芳香族炭化水素系ポリマー電解質がスルホン酸基を有する芳香族ポリエーテルケトン系ポリマーである、請求項1~6のいずれかに記載の複合高分子電解質膜。
  8. 前記複合層の芳香族炭化水素系ポリマー電解質の含有率が50%以上である、請求項1~7のいずれかに記載の複合高分子電解質膜。
  9. 面内方向の寸法変化率が、10%以下である、請求項1~8のいずれかに記載の複合高分子電解質膜。
  10. 請求項1~9のいずれかに記載の複合高分子電解質膜に触媒層を付してなる触媒層付電解質膜。
  11. 請求項1~9のいずれかに記載の複合高分子電解質膜を用いて構成される膜電極複合体。
  12. 請求項1~9のいずれかに記載の複合高分子電解質膜を用いて構成される固体高分子形燃料電池。
  13. 請求項1~9のいずれかに記載の複合高分子電解質膜を用いて構成される水素圧縮装置。
  14. イオン性基を有する芳香族炭化水素系ポリマー電解質と、含フッ素高分子多孔質膜とが複合化してなる複合層を有する複合高分子電解質膜の製造方法であって、
    X線光電子分光法(XPS)によって測定される、最表面におけるフッ素の元素組成F(at%)に対する酸素の元素組成O(at%)の比(O/F比)が0.20以上2.0以下である含フッ素高分子多孔質体と、芳香族炭化水素系ポリマー電解質とを複合化することを特徴とする複合高分子電解質膜の製造方法。
  15. 前記芳香族炭化水素系ポリマー電解質のイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態で前記含フッ素高分子多孔質膜と複合化する工程と、前記アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程とをこの順に有する、請求項14に記載の複合高分子電解質膜の製造方法。
     
PCT/JP2016/057590 2015-03-13 2016-03-10 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 WO2016148017A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16764847.6A EP3270449B1 (en) 2015-03-13 2016-03-10 Composite polymer electrolyte membrane, as well as electrolyte membrane having catalyst layer, membrane electrode assembly, and solid polymer fuel cell in which said composite polymer electrolyte membrane is used
CN201680015350.2A CN107408716B (zh) 2015-03-13 2016-03-10 复合高分子电解质膜
CA2976892A CA2976892A1 (en) 2015-03-13 2016-03-10 Composite polymer electrolyte membrane, and catalyst-coated membrane, membrane electrode assembly, and polymer electrolyte fuel cell using the composite polymer electrolyte membrane
US15/557,217 US10483577B2 (en) 2015-03-13 2016-03-10 Composite polymer electrolyte membrane, and catalyst-coated membrane, membrane electrode assembly, and polymer electrolyte fuel cell using the composite polymer electrolyte membrane
JP2016518213A JP6819287B2 (ja) 2015-03-13 2016-03-10 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
KR1020177023801A KR102440712B1 (ko) 2015-03-13 2016-03-10 복합 고분자 전해질막, 그리고 그것을 사용한 촉매층 부착 전해질막, 막 전극 복합체 및 고체 고분자형 연료 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050409 2015-03-13
JP2015050409 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016148017A1 true WO2016148017A1 (ja) 2016-09-22

Family

ID=56919251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057590 WO2016148017A1 (ja) 2015-03-13 2016-03-10 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池

Country Status (8)

Country Link
US (1) US10483577B2 (ja)
EP (1) EP3270449B1 (ja)
JP (1) JP6819287B2 (ja)
KR (1) KR102440712B1 (ja)
CN (1) CN107408716B (ja)
CA (1) CA2976892A1 (ja)
TW (1) TWI671942B (ja)
WO (1) WO2016148017A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186201A (ja) * 2018-03-30 2019-10-24 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
JP2020524367A (ja) * 2017-06-15 2020-08-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 高選択性及び高強度のための高度に強化されたイオノマー膜
WO2021020289A1 (ja) * 2019-07-30 2021-02-04 東レ株式会社 ポリアリーレンスルフィド系樹脂フィルム、金属積層体、ポリアリーレンスルフィド系樹脂フィルムの製造方法、および金属積層体の製造方法
WO2021054253A1 (ja) 2019-09-20 2021-03-25 東レ株式会社 複合電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池および複合電解質膜の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188572A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 電解質膜
KR20220066047A (ko) * 2019-09-20 2022-05-23 도레이 카부시키가이샤 복합 고분자 전해질막, 촉매층을 갖는 전해질막, 막전극 복합체 및 고체 고분자형 연료 전지
KR20210073078A (ko) * 2019-12-10 2021-06-18 한국과학기술원 플렉서블 리튬 이차 전지용 복합 강화 폴리머 전해질 및 이의 제조 방법
CN111499860A (zh) * 2020-05-09 2020-08-07 电子科技大学 一种高效回收n-甲基吡咯烷酮溶剂的聚芳醚腈生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031232A (ja) * 2001-05-08 2003-01-31 Ube Ind Ltd 固体高分子型燃料電池用高分子電解質及び燃料電池
JP2005216525A (ja) * 2004-01-27 2005-08-11 Jsr Corp 直接メタノール型燃料電池用プロトン伝導膜およびその製造方法
JP2008007759A (ja) * 2006-05-31 2008-01-17 Sumitomo Chemical Co Ltd ブロック共重合体及びその用途
WO2008018487A1 (fr) * 2006-08-11 2008-02-14 Toray Industries, Inc. Matériau électrolyte polymère, produit moulé d'électrolyte polymère utilisant le matériau électrolyte polymère et procédé de fabrication du produit moulé d'électrolyte polymère, composite membrane électrode et pile à combustible à polymères solides
JP2008311226A (ja) * 2007-05-17 2008-12-25 Canon Inc 複合高分子電解質膜、膜−電極接合体および燃料電池
JP2011054352A (ja) * 2009-08-31 2011-03-17 Toyobo Co Ltd 高分子電解質膜積層体
WO2013031675A1 (ja) * 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
WO2013140865A1 (ja) * 2012-03-21 2013-09-26 株式会社 日立製作所 燃料電池用固体高分子電解質

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2539255C (en) * 2004-03-12 2012-07-10 Nagaoka University Of Technology Membrane electrode assembly with electrode catalyst present on ion-conductive domains
JP5066865B2 (ja) * 2006-08-09 2012-11-07 トヨタ自動車株式会社 燃料電池用補強型電解質膜、その製造方法、燃料電池用膜−電極接合体、及びそれを備えた固体高分子型燃料電池
JP5439710B2 (ja) 2007-06-29 2014-03-12 大日本印刷株式会社 触媒層付電解質膜及びその製造方法
CN102105506A (zh) * 2008-05-21 2011-06-22 住友化学株式会社 聚合物、聚亚芳基类嵌段共聚物、高分子电解质、高分子电解质膜及燃料电池
JP5458765B2 (ja) 2008-10-28 2014-04-02 Jsr株式会社 プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5994476B2 (ja) 2011-08-22 2016-09-21 東レ株式会社 複合化高分子電解質膜の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031232A (ja) * 2001-05-08 2003-01-31 Ube Ind Ltd 固体高分子型燃料電池用高分子電解質及び燃料電池
JP2005216525A (ja) * 2004-01-27 2005-08-11 Jsr Corp 直接メタノール型燃料電池用プロトン伝導膜およびその製造方法
JP2008007759A (ja) * 2006-05-31 2008-01-17 Sumitomo Chemical Co Ltd ブロック共重合体及びその用途
WO2008018487A1 (fr) * 2006-08-11 2008-02-14 Toray Industries, Inc. Matériau électrolyte polymère, produit moulé d'électrolyte polymère utilisant le matériau électrolyte polymère et procédé de fabrication du produit moulé d'électrolyte polymère, composite membrane électrode et pile à combustible à polymères solides
JP2008311226A (ja) * 2007-05-17 2008-12-25 Canon Inc 複合高分子電解質膜、膜−電極接合体および燃料電池
JP2011054352A (ja) * 2009-08-31 2011-03-17 Toyobo Co Ltd 高分子電解質膜積層体
WO2013031675A1 (ja) * 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
WO2013140865A1 (ja) * 2012-03-21 2013-09-26 株式会社 日立製作所 燃料電池用固体高分子電解質

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524367A (ja) * 2017-06-15 2020-08-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 高選択性及び高強度のための高度に強化されたイオノマー膜
JP7053680B2 (ja) 2017-06-15 2022-04-12 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 高選択性及び高強度のための高度に強化されたイオノマー膜
JP2019186201A (ja) * 2018-03-30 2019-10-24 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
JP7188204B2 (ja) 2018-03-30 2022-12-13 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
WO2021020289A1 (ja) * 2019-07-30 2021-02-04 東レ株式会社 ポリアリーレンスルフィド系樹脂フィルム、金属積層体、ポリアリーレンスルフィド系樹脂フィルムの製造方法、および金属積層体の製造方法
WO2021054253A1 (ja) 2019-09-20 2021-03-25 東レ株式会社 複合電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池および複合電解質膜の製造方法

Also Published As

Publication number Publication date
TW201703329A (zh) 2017-01-16
KR20170128252A (ko) 2017-11-22
US20180053956A1 (en) 2018-02-22
KR102440712B1 (ko) 2022-09-07
CN107408716B (zh) 2020-06-26
CA2976892A1 (en) 2016-09-22
EP3270449A1 (en) 2018-01-17
JPWO2016148017A1 (ja) 2017-12-28
EP3270449B1 (en) 2021-02-17
EP3270449A4 (en) 2018-11-07
JP6819287B2 (ja) 2021-01-27
CN107408716A (zh) 2017-11-28
TWI671942B (zh) 2019-09-11
US10483577B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6819287B2 (ja) 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
EP3419093B1 (en) Composite polymer electrolytic membrane, and membrane electrode composite and solid polymer fuel cell using same
US11545689B2 (en) Electrolyte membrane
JP6826305B2 (ja) 高分子電解質膜の製造方法
TW202104670A (zh) 積層電解質膜、膜電極複合體及水電解式氫產生裝置、以及積層電解質膜的製造方法
JP7188204B2 (ja) 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
JP2021051995A (ja) 複合高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP2021052001A (ja) 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
US20220336836A1 (en) Composite electrolyte membrane, electrolyte membrane having catalyst layer attached thereto, membrane-electrode composite, solid polymer-type fuel cell, and method for producing composite electrolyte membrane
WO2024004856A1 (ja) 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
JP2022094934A (ja) 電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
US20220407101A1 (en) Composite polymer electrolyte membrane, electrolyte membrane with catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP2021051994A (ja) 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
JP2021051996A (ja) 積層高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518213

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2976892

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177023801

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE