JP7053680B2 - 高選択性及び高強度のための高度に強化されたイオノマー膜 - Google Patents

高選択性及び高強度のための高度に強化されたイオノマー膜 Download PDF

Info

Publication number
JP7053680B2
JP7053680B2 JP2019569462A JP2019569462A JP7053680B2 JP 7053680 B2 JP7053680 B2 JP 7053680B2 JP 2019569462 A JP2019569462 A JP 2019569462A JP 2019569462 A JP2019569462 A JP 2019569462A JP 7053680 B2 JP7053680 B2 JP 7053680B2
Authority
JP
Japan
Prior art keywords
composite
microporous polymer
ion exchange
polyelectrolyte membrane
membrane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019569462A
Other languages
English (en)
Other versions
JP2020524367A (ja
Inventor
健之 鈴木
アガーポフ アレクサンダー
エドマンドソン マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of JP2020524367A publication Critical patent/JP2020524367A/ja
Priority to JP2022059707A priority Critical patent/JP7566813B2/ja
Application granted granted Critical
Publication of JP7053680B2 publication Critical patent/JP7053680B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

関連出願
本出願は、2017年6月15日に出願された、高選択性及び高強度のための高度に強化されたイオノマー膜という発明の名称のPCT特許出願番号第PCT/US2017/037595号の優先権を主張し、その開示の全体を本明細書に取り込む。
発明の分野
本開示は、高分子電解質膜に関し、特に、微孔性ポリマー構造の体積パーセントが高く、水素輸送と比較してプロトン輸送に対する驚くほど高い選択性を有する複合膜に関する。
発明の背景
高分子電解質膜(PEM)は、燃料電池、電解槽、フロー電池、加湿器などの多くの用途における重要な構成要素である。これらのうち、高分子電解質膜燃料電池(PEMFC)が特に興味深い。PEMFCにおいて、PEMは膜電極接合体(MEA)の一部である。MEAは、電気化学反応が発生して電力を生成する燃料電池の中心的な構成要素である。典型的なMEAは、PEM、2つの触媒層(PEMの両側に取り付けられたアノード及びカソード)、及び2つのガス拡散層(触媒層の2つの外側表面に取り付けられたGDL)を含む。PEMは2つの反応ガスストリームを分離する。MEAのアノード側において、燃料、例えば水素ガスが酸化されて、電子とプロトンとに分離する。セルは、電子が外部回路を通過し、一方、プロトンがPEMを通して移動するように設計されている。カソード側において、電子及びプロトンが酸化剤(すなわち、酸素又は空気)と反応して水及び熱を生成する。このようにして、電気化学ポテンシャルは維持され、有用な仕事を行うために燃料電池から電流を引き出すことができる。
燃料電池用途のためのPEMに望まれる幾つかの重要な特性がある。上記のように、PEMFC中のPEMの主な機能は、反応ガスを分離したまま、最小限の抵抗でプロトンを輸送することである。したがって、コンダクタンス及びパーミアンスはPEMの重要な特性である。本明細書において、コンダクタンスは、MEAのアノード側からカソード側へのプロトンの輸送を指す。コンダクタンスは、燃料電池の性能及び電力密度に影響を及ぼす。同様に、パーミアンスは、MEAのアノード側からカソード側への水素の輸送を指す。パーミアンスは燃料電池の燃料効率に影響を及ぼす。これらの2つの特性の比(すなわち、プロトンコンダクタンスを水素パーミアンスで除算したもの)は、選択性と呼ばれる。PEMのもう1つの重要な特性は強度であり、これは、用途におけるPEMの有用寿命に影響を及ぼす。PEMのコストも特に自動車市場で重要な考慮事項であり、PEMFC技術の主要な経済的要因である。
高選択性(高コンダクタンス及び/又は低パーミアンスによる)、高耐久性及び低コストはすべて、PEMにおいて望ましい品質である。しかしながら、実際のエンジニアリングの問題として、これらの特性の最適化でしばしば競合が発生し、トレードオフを受け入れる必要がある。膜厚の減少によりコンダクタンスを増加させることにより、選択性の改善を試みることができる。イオノマーは高価であり、使用量も少ないため、PEMを薄くするとコストも下がる。しかしながら、膜を薄くすると、水素パーミエーションは増加し、プロトンコンダクタンスの増加による選択性の向上を損ない、結果として、薄い膜は厚い膜よりも選択性が同等以下になる。さらに、より薄い膜はより弱く、攻撃的な自動車条件に十分な機械的耐久性を欠くことが多い。膜の物理的厚さを減らすと、他の燃料電池部品からの損傷又は穿刺の影響を受けやすくなり、電池の寿命が短くなる。選択性を改善するための別の方法は、PEMの酸濃度を上げるによる。典型的に、酸濃度を上げると、厚さを減らす必要なく、水素パーミエーションに有意な悪影響を与えることなく、プロトン伝導性を高めることで選択性が向上する。しかしながら、全体としての酸含有量が増加すると、過度の水和により、過酷な自動車条件でのPEM耐久性が低下する。PEMの全体としての酸含有量が増加すると、低当量のイオノマーが典型的にはるかに高価になるため、そのコストも増加する。これらの例に示すように、特に選択性、耐久性及びコストを最適化するときに、これらのPEM設計のトレードオフを管理することは困難である。
Baharらの米国特許第5,599,614号明細書は、ベース材料及びイオン交換材料を含む一体型複合膜を記載している。ベース材料は、1ミル未満(例えば、0.8ミル)の厚さと、フィブリルによって相互接続されたノードを特徴とする微細構造又はノードが存在しないフィブリルを特徴とする微細構造によって規定される微孔性膜である。イオン交換樹脂は、膜が本質的に空気不透過性であるように膜を実質的に含浸する。得られる複合膜は、微孔性膜によって強化された強度を特徴とし、含浸層の厚さの減少を可能にし、それによりプロトン伝導に対する抵抗を低下させる。したがって、これらの薄い一体型複合膜は、高い強度を維持しながら、より低い抵抗を提供することができる。
Hobsonらの米国特許第6,613,203号明細書は、イオン交換材料を含浸させた延伸ポリテトラフルオロエチレン(ePTFE)膜を含む複合膜を記載している。ePTFEは、フィブリルによって相互接続された非常に細長いノードの形態学的構造を有する。この複合膜は、複合膜の硬度と耐久性の増加を示し、複合膜の厚さの低減及び燃料電池のプロトン伝導性の改善を可能にした。
プロトンコンダクタンスの増加により燃料電池の性能を改善するために、より高い酸含有量を有するイオン交換樹脂を製造する努力がなされてきた。Wuらの米国特許第8,071,702号明細書は、プロトン伝導性の増加に有益である、低い水和(すなわち、水分吸収)を有する低当量(高酸含有量)イオノマーが生成できることを実証している。
しかしながら、上述の技術には依然として欠点がある。特に、Baharら及びHobsonらの教示は、燃料電池がプロトンコンダクタンスの増加から利益を得ることができるように、複合膜をより薄くすることを指示している。しかしながら、Baharら及びHobsonらは、どのように複合膜の選択性を改善又は一定に保つかについて教示していない。より薄い膜の水素パーミアンスの増加による選択性の低下の問題は、それらの発明では取り扱われていない。また、低当量イオノマーのコストが高くなるという問題も取り扱われなかった。複合PEM設計に対するこのアプローチは、選択性、耐久性及びコストの合理的なトレードオフをもたらし、約20年間自動車PEMFC市場を支配してきた。しかしながら、最近、既存の複合PEMの選択性が比較的低いため、さらなる改善が制限され始めている。したがって、高い選択性と高い耐久性及び低コストを組み合わせた薄い複合膜が必要とされている。
発明の概要
本発明の発明者は、上述の問題を解決するために努力してきた。結果として、酸含有量を高く維持し、それにより所望のプロトンコンダクタンスを維持しながら、パーミアンスを低下させるためのバリアとして作用する複合PEMの結晶化度の増加のために、選択性が改善されることを発見した。さらに、本開示に従って開発された複合膜は、有利なことに、(i)PEMの総体積に対して微孔性ポリマー構造の体積が増加し、したがって耐久性が改善され、そして(ii)イオノマー含有量が低いため、材料コストが低くなる。
本発明の1つの態様によれば、(1)複合膜の総体積に基づいて13体積%~65体積%の量で存在する微孔性ポリマー構造、及び、(2)該微孔性ポリマー構造内に少なくとも部分的に埋め込まれ、該微孔性ポリマー構造を閉塞させるイオン交換材料を含む複合膜であって、前記イオン交換材料は460cc/モル当量以下の等価体積を有する複合膜が提供される。複合膜は1.2meq/cc~3.5meq/ccの酸含有量を有する。複合膜の厚さは17ミクロン未満である。複合膜は0.05MPa/mVを超える選択性を有することができる。幾つかの実施形態において、複合膜は、0.35MPa/mVより大きい選択性を有することができる。幾つかの実施形態において、複合膜は、0.50MPa/mVより大きい選択性を有することができる。他の実施形態において、複合膜は、0.80MPa/mVより大きい選択性を有することができる。複合膜は、微孔性ポリマー構造の1つ以上の外側表面に取り付けられた少なくとも1つの支持層を含むことができる。
幾つかの実施形態において、イオン交換材料は、微孔性ポリマー構造内に完全に埋め込まれることができる。イオン交換材料は、イオン交換材料の混合物の形態で複数のイオン交換材料を含むことができる。イオン交換材料の混合物は、460cc/モル当量以下の等価体積を有する。他の実施形態において、イオン交換材料は、複数の層のイオン交換材料を含むことができる。イオン交換材料の層は、同じイオン交換材料から形成されうる。あるいは、イオン交換材料の層は、異なるイオン交換材料から形成されてもよい。イオン交換材料のすべての層の平均等価体積は460cc/モル当量以下である。イオン交換材料の層のうちの少なくとも1つは、イオン交換材料の混合物を含む。イオン交換材料はイオノマーを含むことができる。少なくとも1つのイオノマーは、プロトン伝導性ポリマーを含むことができる。プロトン伝導性ポリマーはペルフルオロスルホン酸を含むことができる。1つの実施形態において、少なくとも1つのイオノマーは、相対湿度0%で1.96g/cc以上の密度を有することができる。別の実施形態において、少なくとも1つのイオノマーは、相対湿度0%で1.8g/cc以上の密度を有することができる。さらに別の実施形態において、少なくとも1つのイオノマーは、相対湿度0%で1.0g/cc以上の密度を有することができる。
幾つかの実施形態において、微孔性ポリマー構造は、第一の表面及び第二の表面を有する。イオン交換材料は、第一の表面上、第二の表面上、又は第一の表面と第二の表面の両方の上に層を形成することができる。様々な実施形態によれば、イオン交換材料は、第一の表面、第二の表面又はその両方に最も近い微孔性ポリマー構造の非閉塞部分を残して、微孔性ポリマー構造内に部分的に埋め込まれることができる。非閉塞部分は、いかなるイオン交換材料を含まなくてもよい。非閉塞部分は、微孔性ポリマー構造の内側表面に対するイオン交換材料のコーティングを含むことができる。
様々な実施形態によれば、微孔性ポリマー構造は、少なくとも2つの微孔性ポリマー層を含む。微孔性ポリマー層は同じであっても、又は、微孔性ポリマー層は異なっていてもよい。少なくとも2つの微孔性ポリマー層は直接接触していることができる。幾つかの実施形態において、微孔性ポリマー層の少なくとも2つは直接接触していなくてよい。
幾つかの実施形態において、微孔性ポリマー構造はフッ素化ポリマーを含むことができる。幾つかの実施形態において、微孔性ポリマー構造は、過フッ素化多孔質ポリマー材料を含む。フッ素化多孔質ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、延伸ポリテトラフルオロエチレン(ePTFE)、ポリフッ化ビニリデン(PVDF)、延伸ポリフッ化ビニリデン(ePVDF)、延伸ポリ(エチレン-コ-テトラフルオロエチレン)(eEPTFE)又はそれらの混合物を挙げることができる。他の実施形態において、他の実施形態において、微孔性ポリマー構造は炭化水素ポリマーを含むことができる。炭化水素材料は、ポリエチレン、ポリプロピレン、ポリカーボネート又はポリスチレンを含むことができる。
上記複合膜を備えた膜電極接合体、燃料電池及びレドックスフロー電池も本発明に含まれる。
本発明によれば、微孔性ポリマー構造の体積は、複合膜の総体積に対して増加されている。これにより、複合膜の耐久性が向上する。さらに、イオン交換材料はその低当量を維持し、これは、微孔性ポリマー構造の体積の増加によって引き起こされるイオノマーの希釈を補償する。したがって、複合膜の全体の酸含有量及び全体の厚さは実質的に同じままである。複合膜の酸含有量及び全体の厚さを保存しながら、微孔性ポリマー構造の体積を増加させることにより、本開示の実施形態は、超薄型プロファイル、及び、向上した耐久性及びパーミアンス特性を維持しながら、現在の(又は改善された)レベルのコンダクタンスを維持することができる。
驚くべきことに、複合膜の総酸濃度も高レベルに維持されるならば、微孔性ポリマー構造の体積パーセントを最大化することにより、複合膜の選択性を改善できることが判った。
本発明の他の態様及び変形は、次の議論で明らかになるであろう。
図面の簡単な説明
本開示は、以下の非限定的な図を考慮してよりよく理解されるであろう。
図1A~1Dは本発明の幾つかの態様による複合膜の断面側面図を示す。
図2A~2Cは本発明の幾つかの態様による複合膜の断面側面図を示す。
図2D~2Fは本発明の幾つかの態様による複合膜の断面側面図を示す。
図3A~3Bは本発明の幾つかの態様による複合膜の特定の特性を示すグラフを示す。
図4A~4Cは本発明の幾つかの態様による、例示的な複合膜を構築する方法の例示的な流れ図を示す。
図5Aは本発明の幾つかの態様による複合膜を含むMEAの図を示す。
図5Bは本発明の幾つかの態様による複合膜を含む燃料電池の図を示す。
図6は本発明の幾つかの態様による一連の実施例における様々な試験手順で使用される微孔性ポリマー構造の特性を示す表を示す。
発明の詳細な説明
複合膜の厚さを閾値よりも低く(例えば、17ミクロン未満)維持しながら、複合膜の総酸濃度を高レベルに維持するならば、微孔性ポリマー構造の体積パーセントを最大化することにより、複合膜の選択性は驚くほど改善できることが発見された。
この改善は、幾つかの理由で驚くべきものである。第一に、微孔性ポリマー構造はプロトン及び水素の両方の輸送に対する非常に効果的なバリアであり、したがってそれらの比率に影響を与えないため、微孔性ポリマー構造の理想的な含浸は選択性にほとんど影響を与えないと予想された。第二に、微孔性ポリマー構造の体積パーセントを増加させると、完全な閉塞を達成することがより難しくなる。残留多孔性は、水素パーミアンスを高め、したがって選択性を低下させる漏れ経路を提供すると予想される。最後に、複合PEMで高い酸濃度を維持するために必要な低当量のイオノマーを吸収するのが難しいために、完全な閉塞の欠如と結果として生じる低い選択性も予想される。吸収におけるこの困難は、より低い当量のイオノマーの溶液に固有のより強い高分子電解質効果の直接的な結果であり、微孔性ポリマー構造の小さな孔への吸収を妨げる粘度の増加をもたらす。
それにもかかわらず、今回、高体積パーセントの微孔性ポリマー構造を有するPEMを製造することにより、選択性を改善できることが示された。特許請求の範囲を制限することなく、微孔性ポリマー構造がガスパーミアンスに対するバリアとして作用し、複合PEM内の微孔性ポリマー構造の体積分率が増加するため、選択性は向上し、一方、酸含有量が高いままで複合膜全体の厚さを増加させずに望ましいプロトンコンダクタンスを維持する。
高い酸含有量を有する複合膜を開発するための以前の努力は、複合膜の補強材体積分率の減少をもたらした。これは、見返りに、より多くの高価なイオノマーが使用されるために、生産コストの増加につながった。その結果、そのような燃料電池の故障を防ぐために、より厚い膜が必要とされた。本発明の発明者は、複合膜の厚さをしきい値未満(例えば、17ミクロン未満)に保ちながら、高酸含有量(例えば、1.2meq/cc~3.5meq/ccの酸含有量)の複合膜を開発することができた。これは、複合膜の酸含有量及び全体の厚さを維持しながら、複合膜内の微孔性ポリマー構造の体積を増加させることで達成された。驚くべきことに、本発明の発明者は、酸含有量を維持しながら、より大きな体積分率の微孔性ポリマー構造を組み込むと、選択性の改善につながることを発見した。というのは、複合PEMの結晶化度は増加し、それがパーミアンスを低減するためのバリアとして作用し、一方、酸含有量が高く維持され、それにより、所望のプロトンコンダクタンスが維持されるからである。
さらに、本開示によって開発された複合膜は、有利なことに、以下のことを有する。(i)PEMの総体積に対して微孔性ポリマー構造の体積が増加し、したがって耐久性が改善される。(ii)イオノマー含有量が低いため、材料コストが低くなる。種々の実施形態によれば、より高い酸濃度を有するイオノマーを使用する場合に、同等のプロトンコンダクタンスを有するが、より低いパーミアンスを有する複合膜は、微孔性ポリマー構造の体積の増加によって達成されうる。すなわち、本開示の複合膜に使用されるイオノマーの酸濃度及び微孔性ポリマー構造の体積パーセントは、本開示の複合膜と実質的に同じ厚さを有する従来の複合膜に使用されるイオノマーの酸濃度及び微孔性ポリマー構造の体積パーセントよりも高い。幾つかの実施形態において、これにより、PEMの総体積に対する微孔性ポリマー構造の体積が増加したときに選択性が増加した複合膜が得られる。
これは、新世代の複合膜、すなわち、非常に高度に強化された、高い選択性をもたらす薄い膜の根本的に異なる設計戦略を目指している。したがって、本開示の態様は、所定のしきい値を超えて複合膜の厚さを増加させることなく、驚くほどかつ予想外にPEM選択性を維持又は増加させながら、PEMの総体積に対して微孔性ポリマー構造の体積を増加させることに関する。
1つの実施形態において、本開示は、複合膜の総体積の13体積%~65体積%を占める微孔性ポリマー構造と、該微孔性ポリマー構造内に少なくとも部分的に埋め込まれたイオン交換材料(例えば、イオノマー)とを含む複合膜に関する。複合膜の酸含有量は1.2meq/cc~3.5meq/ccであり、一方、複合膜の厚さは17ミクロン未満に維持される。複合膜の選択性は、プロトンコンダクタンス及び水素パーミアンスに基づいて、場合により、0.05MPa/mVを超える。有利には、2つの区別される材料(すなわち、微孔性ポリマー構造及びイオン交換材料)を利用することにより、微孔性ポリマー構造の体積を複合膜の総体積に対して増加させることができ、耐久性を向上させることになる。さらに、イオン交換材料はその低当量を維持することができ、これにより、微孔性ポリマー構造の体積の増加によって引き起こされるイオノマーの希釈が補償され、それにより複合膜の酸含有量及び全体の厚さが保存される。複合膜の酸含有量及び全体の厚さを保ちながら微孔性ポリマー構造の体積を増加させることにより、本開示の実施形態は、超薄型プロファイル、改善された耐久性及びパーミアンス特性を維持しながら本(又は改善された)レベルのコンダクタンスを維持することができる。
実施形態は、異なる密度の微孔性ポリマー構造及びイオノマーを含む複合膜の間の意味のある比較の方法を提供するために、質量ベースの値の代わりに体積ベースの値を使用して記載した。体積ベースの正規化は、燃料電池で使用されるPEMのプロトン伝導などの輸送現象の記述に適していると科学文献で指摘されている(例えば、Kim、YS; Pivovar, B.S. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 123-148)。より具体的には、高分子電解質間の比較を行うために重量ベースの測定を使用できるが、プロトン伝導性と相関させるときに有意な制限がある。これらの制限は、部分的に、異なるポリマーの密度が有意に異なる可能性があること、及び、質量ベースの測定ではなく体積ベースの測定により適切に表される長さスケールで伝導が発生するために起こる。
本開示で使用される様々な定義を以下に提供する。
本明細書で使用されるときに、「選択性」という用語は、複合膜のプロトンコンダクタンスをその複合膜の水素パーミアンスで割った比を指す。燃料電池の用途では、高い選択性(高いコンダクタンス及び/又は低いパーミアンスによる)を備えた複合膜が好ましい。複合膜のプロトンコンダクタンスは、単位厚さあたりのイオン伝導度として測定される。複合膜のパーミアンスは、単位厚さあたりの透過性(例えば、水素パーミアンス)として測定できる。
本明細書で使用されるときに、「パーミアンス」という用語は、水素ガスを輸送する複合膜の能力を指し、一般に、より低いパーミアンス値は所望の燃料効率のために好ましい。「コンダクタンス」という用語は、プロトンを輸送する複合膜の能力を指し、一般に、より高いコンダクタンス値が所望の出力密度のために好ましい。
本明細書で使用されるときに、「イオノマー」及び「イオン交換材料」という用語は、カチオン交換材料、アニオン交換材料、又は、カチオン及びアニオン交換能力の両方を含むイオン交換材料を指す。イオン交換材料の混合物も使用することができる。イオン交換材料は、過フッ素化系又は炭化水素系であることができる。適切なイオン交換材料としては、例えば、ペルフルオロスルホン酸ポリマー、ペルフルオロカルボン酸ポリマー、ペルフルオロホスホン酸ポリマー、スチレン系イオン交換ポリマー、フルオロスチレンイオン交換ポリマー、ポリアリールエーテルケトンイオン交換ポリマー、ポリスルホンイオン交換ポリマー、ビス(フルオロアルキルスルホニル)イミド、(フルオロアルキルスルホニル)(フルオロスルホニル)イミド、ポリビニルアルコール、ポリエチレンオキシド、ジビニルベンゼン、ポリマーを含む又は含まない金属塩及びそれらの混合物が挙げられる。例示的な実施形態において、イオン交換材料は、プロトン形態へ転化を伴うテトラフルオロエチレン及びペルフルオロスルホニルビニルエステルの共重合によって作られたペルフルオロスルホン酸(PFSA)ポリマーを含む。
本明細書で使用されるときに、イオノマー又はイオン交換材料の「当量」とは、スルホン酸基あたりのイオノマー中のポリマーの重量(分子量)を指す。したがって、当量が低いほど、酸の含有量が高いことを示す。イオノマーの当量(EW)は、イオノマーが0%RHでプロトン型であり、不純物が無視できる場合のEWを指す。「イオン交換容量」という用語は、当量の逆数(1/EW)を指す。
本明細書で使用されるときに、イオノマー又はイオン交換材料の「等価体積」は、スルホン酸基あたりのイオノマーの体積を指す。イオノマーの等価体積(EV)は、そのイオノマーが純粋で、0%RHでプロトン型で、不純物が無視できる場合のEVを指す。
本明細書で使用されるときに、複合膜の「酸含有量」又は「酸濃度」という用語は、複合膜中のスルホン酸基含有量を指し、本明細書中で特に明記しない限り、体積基準で決定される。
本明細書で使用されるときに、「破裂強度」という用語は、PEMなどの複合膜のフィルム又はシートが破裂する圧力を指す。PEMの破裂強度は、PEMを構成する材料の引張強度及び伸長性に大きく依存する。
本明細書で使用されるときに、「微孔性ポリマー構造」という用語は、イオン交換材料を支持し、得られる複合膜に構造的一体性及び耐久性を追加するポリマーマトリックスを指す。幾つかの例示的な実施形態において、微孔性ポリマー構造は、ノード及びフィブリル構造を有する延伸ポリテトラフルオロエチレン(ePTFE)を含む。他の例示的な実施形態において、微孔性ポリマー構造は、滑らかな平面、高い見掛け密度及び明確に規定された孔サイズを有するトラックエッチングされたポリカーボネート膜を含む。
本明細書で使用されるときに、微孔性ポリマー構造の内部体積は、その内部体積が10体積%未満の低体積ボイド及び高いガス不透過性、10000秒より大きいガーリー数を特徴とする構造を有するときに、「実質的に閉塞されている」と言う。逆に、微孔性ポリマー構造の内部体積は、前記内部体積が10%を超える、より大きなボイド体積及びガス透過性、10000秒未満のガーリー数を特徴とする構造を有するときに、「閉塞されていない」と言う。
I.複合膜
図1A~1Dに示すように、微孔性ポリマー構造105と、該微孔性ポリマー構造105中に含浸されたイオン交換材料(例えば、イオノマー)110とを含む複合膜100は提供される。すなわち、微孔性ポリマー構造105にはイオン交換材料が吸収されている。イオン交換材料110は、内部体積を実質的に閉塞するように微孔性ポリマー構造105を実質的に含浸することができる(すなわち、内部体積は、低いボイド体積及び高いガス不透過性を特徴とする構造を有する)。例えば、微孔性ポリマー構造105の内部体積の90%を超えてイオン交換材料110で充填することにより、実質的な閉塞が起こり、膜は10000秒より大きいガーリー数を特徴とするであろう。図1A~1Dに示されるように、イオン交換材料110は、微孔性ポリマー構造105の内側表面及び外側表面にしっかりと付着され、例えば、吸収層104を形成する微孔性ポリマー構造のフィブリル及び/又はノードにしっかりと付着される。
幾つかの実施形態において、イオン交換材料110は、吸収層104の微孔性ポリマー構造105に含浸されることに加えて、吸収層104の1つ以上の外側表面上の1つ以上の追加層115(例えば、「バターコート(BC)とも呼ばれる)として提供される(図1A~1C)。他の実施形態において、イオン交換材料110は、吸収層104内の微孔性ポリマー構造105中に含浸されるのみで、すなわち追加層なしで提供される(図1D)。それにもかかわらず、複合膜100は、複合膜100の総体積の13%より多くの体積を占める微孔性ポリマー構造105を特徴とし、その総体積は、存在する場合に、追加層115の体積を含む。
追加の実施形態において、微孔性ポリマー構造105の一部(例えば、上部表面領域又は下部表面領域)は、非閉塞性(すなわち、高いボイド体積及び高いガス透過性を特徴とする内部体積)層112を含むことができ、該層はイオン交換材料110を含まないか、又は実質的に含まない(図1E~1F)。非閉塞層112の位置は、微孔性ポリマー構造105の上部表面領域に限定されない。上記のように、非閉塞層112は微孔性ポリマー構造105の下部表面領域上に提供されうる。
さらに他の実施形態において、非閉塞層112は、薄いノード及びフィブリルコーティングとして、微孔性ポリマー構造105の内側表面に存在する少量のイオン交換材料110を含むことができる。しかしながら、イオン交換材料110の量は、微孔性ポリマー構造105を閉塞性にし、それにより非閉塞性層112を形成するほど十分に大きくなくてもよい。
幾つかの実施形態において、複合膜100は、支持層114上に提供されうる(図1G)。支持層114は、バッカー、例えばシクロオレフィンコポリマー(COC)層などの剥離フィルムを含むことができる。幾つかの実施形態において、複合膜100は、膜電極接合体(MEA)に組み込まれる前に、支持層114から解放(又はそうでなければ分離)されうる。
図1A~図1Gは、単一タイプのイオン交換材料110を含む例示的な複合膜100を示す。しかしながら、用途は、単一タイプのイオン交換材料110又は単一の吸収層104を有する複合膜100に限定されない。
図2A~2Cに示されるように、複合膜200はまた、複数の、例えば2つ以上の吸収層104a及び104bを含むことができる。図2Aの実施形態において、第一の吸収層104aは、イオン交換材料110が微孔性ポリマー構造105に吸収されることにより形成されることができ、そして第二の吸収層104bは、同じイオン交換材料110が微孔性ポリマー構造105に吸収されることにより形成されることができる。例えば、イオン交換材料を微孔性ポリマー構造の第一の面に吸収して第一の吸収層104aを形成し、同じイオン交換材料を微孔性ポリマー構造の、第一の面の反対側の第二の面に吸収して第二の吸収層104bを形成することができる。図2Bの実施形態において、第一の吸収層104aは、第一のイオン交換材料110aが微孔性ポリマー構造105に吸収されることにより形成されることができ、第二の吸収層104bは、第一のイオン交換材料110aとは異なる第二のイオン交換材料110bが微孔性ポリマー構造105に吸収されることにより形成されることができる。この態様において、第一のイオン交換材料を微孔性ポリマー構造の第一の面に吸収させて第一の吸収層104aを形成し、第二のイオン交換材料を、第一の面の反対側の、微孔性ポリマー構造の第二の面に吸収して第二の吸収層104bを形成することができる。
幾つかの実施形態において、1つ以上のイオン交換材料110である、第一のイオン交換材料110a及び/又は第二のイオン交換材料110bは、1つ以上の追加層115として吸収層104a及び/又は104bの1つ以上の外側表面上に提供されることができ(図2A~2C)、図2Cに示すように、場合により、吸収層104aと104bの間に含まれる。
図2D~2Fに示されるように、複合膜300はまた、2つ(又はそれ以上)の異なる微孔性ポリマー構造105a及び105bによって形成された複数、例えば2つ以上の吸収層104c及び104dを含むことができる。幾つかの実施形態において、第一の吸収層104cは、第一の微孔性ポリマー構造105aにイオン交換材料110を吸収することにより形成されることができ、第二の吸収層104bは、第二の微孔性ポリマー構造105bに同じイオン交換材料110を吸収させることにより形成されることができる(図2D)。他の実施形態において、第一の吸収層104cは、第一のイオン交換材料110aを第一の微孔性ポリマー構造105aに吸収させることにより形成されることができ、第二の吸収層104bは、第二のイオン交換材料110bを第二の微孔性ポリマー構造105bに吸収させることにより形成されることができる。図2D~2Fに示されるように、第一の微孔性ポリマー構造105aは第二の微孔性ポリマー構造105bと異なっていることができる。第一のイオン交換材料110aは第二のイオン交換材料110bと同じであっても又は異なっていてもよい。
幾つかの実施形態において、イオン交換材料110である、第一のイオン交換材料110a及び第二のイオン交換材料110bは、第一の微孔性ポリマー構造105aが第二の微孔性ポリマー構造105bと直接接触しているように吸収層104c及び104dの1つ以上の外側表面上に1つ以上の追加層115として提供されることができる(図2D~2E)。幾つかの実施形態において、イオン交換材料110である第一のイオン交換材料110a及び第二のイオン交換材料110bは、第一の微孔性ポリマー構造105aが第二の微孔性ポリマー構造105bと直接接触していないように吸収層104cと104dの間に1つ以上の追加層115として提供されることができる(図2F)。
微孔性ポリマー構造
適切な微孔性ポリマー構造は、複合膜が使用される用途に大きく依存する。微孔性ポリマー構造は、好ましくは良好な機械的特性を有し、複合膜が使用される環境で化学的及び熱的に安定であり、含浸用のイオン交換材料とともに使用される添加剤に耐性がある。
本明細書で使用されるときに、「微孔性」という用語は、肉眼では見えない細孔を有する構造を指す。様々な任意の実施形態によれば、細孔は、0.01~100ミクロン、例えば0.05~20ミクロン又は0.1~1ミクロンの平均細孔サイズを有することができる。
本明細書で使用されるときに、「微孔性層」という用語は、少なくとも0.1ミクロン、場合により、0.5~100又は1~50ミクロンの厚さを有し、0.05~20ミクロン、例えば、0.1~1ミクロンの平均微細孔サイズを有する層を指すことが意図される。
燃料電池用途に適した微孔性ポリマー構造105は多孔性ポリマー材料を含むことができる。多孔性ポリマー材料としては、フルオロポリマー、塩素化ポリマー、炭化水素、ポリアミド、ポリカーボネート、ポリアクリレート、ポリスルホン、コポリエーテルエステル、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリアリールエーテルケトン、ポリベンズイミダゾール、ポリ(エチレン-コ-テトラフルオロエチレン)、ポリ(テトラフルオロエチレン-コ-ヘキサフルオロプロピレン)を挙げることができる。幾つかの実施形態において、微孔性ポリマー構造105は、過フッ素化多孔性ポリマー材料を含む。過フッ素化多孔性ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、延伸ポリテトラフルオロエチレン(ePTFE)、ポリフッ化ビニリデン(PVDF)、延伸ポリフッ化ビニリデン(ePVDF)、延伸ポリ(エチレン-コ-テトラフルオロエチレン)(eEPTFE)又はそれらの混合物を挙げることができる。
幾つかの実施形態において、微孔性ポリマー構造105は炭化水素材料を含む。炭化水素材料としては、ポリエチレン、発泡ポリエチレン、ポリプロピレン、発泡ポリプロピレン、ポリスチレン、ポリカーボネート、トラックエッチングされたポリカーボネート又はそれらの混合物を挙げることができる。燃料電池用途に使用するのに適した過フッ素化多孔性ポリマー材料の例としては、米国特許第8,757,395号明細書(参照によりその全体を本明細書に取り込む)の教示に従って作製されたePTFEが挙げられ、Elkton, MdのW.L.Gore & Associates, Inc.から様々な形態で市販されている。
イオン交換材料
適切なイオン交換材料は、複合膜が使用される用途に依存しうる。イオン交換材料は、好ましくは低い当量(例えば、460cc/eq以下)を有し、複合膜が使用される環境で化学的及び熱的に安定している。燃料電池用途に適したイオノマーとしては、カチオン交換材料、アニオン交換材料、又は、カチオンとアニオンの両方の交換能力を含むイオン交換材料などのイオン交換材料を挙げることができる。幾つかの実施形態において、イオン交換材料は、プロトン伝導性ポリマー又はカチオン交換材料を含む。イオン交換材料は、ペルフルオロカルボン酸ポリマー、ペルフルオロホスホン酸ポリマー、スチレンイオン交換ポリマー、フルオロスチレンイオン交換ポリマー、ポリアリールエーテルケトンイオン交換ポリマー、ポリスルホンイオン交換ポリマー、ビス(フルオロアルキルスルホニル)イミド、(フルオロアルキルスルホニル)(フルオロスルホニル)イミド、ポリビニルアルコール、ポリエチレンオキシド、ジビニルベンゼン、ポリマーを含む又は含まない金属塩及びそれらの混合物を含む。燃料電池用途での使用に適したペルフルオロスルホン酸ポリマーの例としては、Nafion(登録商標)(EI DuPont de Nemours, Inc., Wilmington, DE, US)、Flemion(登録商標)(Asahi Glass Co. Ltd., Tokyo, JP)、Aciplex(登録商標)(Asahi Chemical Co. Ltd., Tokyo, JP)、Aquivion(登録商標)(SolvaySolexis S.P.A., Italy)及び3M(商標)(3M Innovative Properties Company, USA)が挙げられ、それらは市販のペルフルオロスルホン酸コポリマーである。燃料電池用途に使用するのに適したペルフルオロスルホン酸ポリマーの他の例としては、米国特許第5,463,005号明細書に記載されているような過フッ素化パーフルオロ化スルホニル(コ)ポリマーが挙げられる。
複合膜の特性
後述するように、複合膜100,200,300は、微孔性ポリマー構造105と、該微孔性ポリマー構造中に吸収されたイオン交換材料110とを含み、それにより、複合膜100,200,300の改善された耐久性及び選択性を達成する2つの区別される材料を形成する。耐久性は、複合膜100,200,300の総体積と比較した微孔性ポリマー構造105の体積により影響を受ける。複合膜の耐久性は、0.2 Nを超えることができる破裂強度として測定可能であり、例えば、0.5Nより大きく、又は1Nより大きく、例えば、0.2N~10N、1~10Nである。
高い選択性を達成するために、コンダクタンスは高くてよく、パーミアンスは低くてよい。幾つかの例示的な態様において、複合膜のコンダクタンスは、単位厚さ当たりのイオン伝導度(例えば、プロトンコンダクタンス)として測定可能である。コンダクタンスは、場合により、50%相対湿度での本明細書に記載のプロトンコンダクタンス試験により決定して、1シーメンス/cm2より大きく、例えば10シーメンス/cm2より大きい又は14シーメンス/cm2より大きい。複合膜のパーミアンスは、単位厚さ当たりの透過性(例えば、水素パーミアンス)として測定可能であることができる。パーミアンスは、場合により、相対湿度50%での本明細書に記載の水素パーミアンス試験により決定して、400mA/(Mpa*cm2)未満であり、例えば、300mA/(Mpa*cm2)未満又は190mA/(Mpa*cm2)未満である。幾つかの実施形態において、複合膜の選択性は、相対湿度50%での複合膜のコンダクタンス及びパーミアンスに基づいて、0.05MPa/mVを超え、例えば、0.2MPa/mVを超え、又は0.35MPa/mVを超え、又は0.5MPa/mVを超える。範囲に関して、選択性は、場合により、0.05~5MPa/mV、例えば0.2~5MPa/mV又は0.4~5MPa/mV又は1~5MPa/mVである。
複合膜100,200,300の耐久性及び選択性は、顧客が慣れている現在のレベルのコンダクタンス及び極薄プロファイルを維持しながら本開示の様々な態様によって達成可能である。特に、所望の耐久性を達成するために微孔性ポリマー構造105の相対体積を増加させると、(i)複合膜100,200,300の厚さを増加させることがあり、極薄プロファイルから逸脱し、及び/又は、(ii)複合膜100,200,300の酸含有量に悪影響を及ぼすことがあり、コンダクタンスを損なう。2つの区別される材料(すなわち、微孔性ポリマー構造及びイオノマー)を利用することが、所望の当量特性を有するイオノマーと組み合わせることで、微孔性ポリマー構造の体積を複合材の総体積に対して増加させることができ、したがって、耐久性を向上させることができる。さらに、イオノマーは複合膜の低当量を維持し、これにより、微孔性ポリマー構造の体積の増加によって引き起こされるイオノマーの希釈を補償し、それによって全体の膜酸含有量及び全体の複合膜厚さを維持することができる。
幾つかの実施形態において、微孔性ポリマー構造105は、0%の相対湿度で複合膜の総体積の13%より多く、例えば、18%より多く又は30%より多くを占める。他の実施形態において、微孔性ポリマー構造105は、0%の相対湿度で複合膜の総体積の13%~65%、13%~45%、例えば18~36%又は18~28%を占める。幾つかの実施形態において、イオン交換材料110の等価体積は460cc/当量以下、例えば、255cc/モル当量~460cc/モル当量である。様々な実施形態において、複合膜100,200,300の酸含有量は、0%の相対湿度で1.2meq/ccよりも大きく、例えば、1.2meq/cc~3.5meq/ccである。様々な実施形態において、複合膜100,200,300の厚さは0%の相対湿度で17ミクロン未満であり、例えば、1ミクロン~17ミクロンである。具体的には、実施形態によれば、複合膜100,200,300の厚さは17ミクロンのしきい値厚さ未満であり、一方、複合膜100,200,300の酸含有量は1.2meq/cc~3.5meq/ccに維持される。
複合材料中の微孔性ポリマー構造の体積%は、イオノマーを含まない、微孔性ポリマー構造のノード及びフィブリルが占める空間を指す。したがって、複合材料中の微孔性ポリマー構造の体積%は、イオノマーを含む吸収層とは異なる。複合材料の微孔性ポリマー構造の体積%は湿度の影響を受ける。したがって、以下で議論する実験は、乾燥状態(例えば、50%相対湿度(RH))で行われる。
イオン交換材料の当量は湿度によっても影響を受ける。したがって、以下に議論する実験は理想的な状態にて乾燥状態で行われ、水の存在で行われ、等価体積の値に影響を与えず、異なるイオノマー間の意味のある比較を行うことができる。
複合膜の総酸濃度は、質量ではなく体積に基づいて計算され、イオノマー及び異なる密度の微孔性ポリマー構造を含む複合膜の間の意味のある比較の方法を提供する。上記のように、質量ベースの測定はプロトン伝導率と相関がある場合に重要な制限がある。というのは、部分的に、異なるポリマーは有意に異なる密度を有するからである。さらに、伝導は長さスケールで発生するため、質量ベースの測定ではなく、体積ベースの測定により適切に表される。総酸濃度は複合膜全体で平均化される。総酸濃度も湿度の影響を受けるため、以下で議論する実験は、理想的な状態(例えば、クリーンな状態)の乾燥状態(例えば、50%相対湿度(RH))で行われる。
複合膜の選択性は、全体の酸含有量を増加させることにより増加しうることが理解される。しかしながら、全体的な酸含有量を増やすと、複合膜の機械的耐久性が低下する。したがって、酸含有量を増やすことは、選択性を高めるための好ましい方法ではない。
上記のように、見かけの当量を一定に保ちながら微孔性ポリマー構造の含有量を増加させることにより、複合膜の選択性が劇的に改善されることは驚くべきことであり、予想外である。選択性の改善は、複合材料の厚さ及び酸含有量を所定の範囲又は所定の範囲内に維持しながら、複合膜中の微孔性構造含有量を増加させることにより達成される。すなわち、実施形態は、所定の厚さ(すなわち、厚さ17ミクロン未満)を有し、一方で、1.2meq/cc~3.5meq/ccの酸含有量を有する、13体積%~65体積%の微孔性構造からなる複合膜を提供する。
選択性の改善は図3A~3Bに示されており、比較可能な複合膜の選択性を本発明の複合膜の選択性と比較するグラフ300及び350を提供する。図3Aを参照すると、各線302~328は、以下でより詳細に議論する各シリーズの例の選択性データに関連している。具体的には、各線302~328は、比較可能な例の選択性データポイントを、対応する本発明の例の選択性データポイントと関連付ける。したがって、目をガイドするために線自体を提供し、データ自体を表すものではない。13番目のシリーズの例のデータは本発明の例を有せず、そのため、比較例の選択性は、線ではなく単一の選択性データポイントで表される。グラフ300に示すように、各発明例における複合膜の選択性は、対応する比較例の複合膜の選択性と比較して劇的に改善されている。
図3Bは、比較例に対して正規化された選択性データを示している。したがって、図3Bに示すグラフ350において、各例示的なシリーズに対する比較例の選択性はゼロに正規化されている。各シリーズの本発明の実施例の選択性はデータポイントで示され、対応する比較例の選択性に関連している。グラフ350に示すように、各発明例における複合膜の選択性は、対応する比較例の複合膜の選択性と比較して劇的に改善されている。
II.複合膜の調製方法
図4A~4Cは、例示的な複合膜(例えば、図1A~1Gに関して議論した複合膜100、図2A~2Cに関して議論した複合膜200又は図2D~2Fに関して議論した複合膜300)を製造するための方法410,420及び430の例示的な流れ図を示し、本開示の様々な態様による。流れ図は本開示の様々な実施形態によるシステム及び方法の可能な実装のアーキテクチャ、機能及び動作を示している。論理的に意味のある幾つかの代替実施において、各ブロックに記載されている機能は、図に記載されている順序とは異なる順序で行うことがある。例えば、連続して示される2つのブロックは、実際には、関係する機能、方法又は最終製品に応じて、実質的に同時に実行し、又は、ブロックは時に逆の順序で実行することがある。
図4Aを参照すると、方法410の例示的な流れ図は、完全に吸収された微孔性ポリマー構造及びイオン交換材料の2つの追加の層を有する複合材料を形成する方法を示す。方法410は、バッカーなどの支持構造を提供することを含む。適切な支持構造は織物材料を含むことができ、該織物材料は、例えば、延伸多孔質ポリテトラフルオロエチレンの織物繊維から作られたスクリム、Minneapolis, MinnのConwed,Inc.から市販されている、押出又は配向ポリプロピレン又はポリプロピレンネットから作られたウェブ、Briarcliff Manor, N.Y.のTetko Inc.からのポリプロピレン及びポリエステルの織物材料を含むことができる。適切な不織布材料としては、例えば、Old Hickory, TennのReemay Inc.からのスパンボンドポリプロピレンを挙げることができる。他の態様において、支持構造には、ポリエチレン(「PE」)、ポリスチレン(「PS」)、環状オレフィンコポリマー(「COC」)、環状オレフィンポリマー(「COP」)、フッ素化エチレンプロピレン(「FEP」)、ペルフルオロアルコキシアルカン(「PFA」)、エチレンテトラフルオロエチレン(「ETFE」)、ポリフッ化ビニリデン(「PVDF」)、ポリエーテルイミド(「PEI」)、ポリスルホン(「PSU」)、ポリエーテルスルホン(「PES」)、ポリフェニレンオキシド(「PPO」)、ポリフェニルエーテル(「PPE」)、ポリメチルペンテン(「PMP」)、ポリエチレンテレフタレート(「PET」)又はポリカーボネート(「PC」)のウェブを含むことができる。幾つかの態様において、支持構造は、ポリエチレン(PE)、ポリスチレン(「PS」)、環状オレフィンコポリマー(「COC」)、環状オレフィンポリマー(「COP」)、フッ素化エチレンプロピレン(「FEP」)、ペルフルオロアルコキシアルカン(「PFA」)、エチレンテトラフルオロエチレン(「ETFE」)、ポリフッ化ビニリデン(「PVDF」)、ポリエーテルイミド(「PEI」)、ポリスルホン(「PSU」)、ポリエーテルスルホン(「PES」)、ポリフェニレンオキシド(「PPO」)、ポリフェニルエーテル(「PPE」)、ポリメチルペンテン(「PMP」)、ポリエチレンテレフタレート(「PET」)又はポリカーボネート(「PC」)を含むことができる保護層も含む。さらに他の態様において、支持構造は、金属基材(例えば、アルミニウム基材)を含む反射層を場合により含むことができる支持構造を含むことができる。選択される特定の金属は、反射性である限り多種多様であることができる。例示的な金属の非限定的なリストとしては、アルミニウム、ベリリウム、セリウム、クロム、銅、ゲルマニウム、金、ハフニウム、マンガン、モリブデン、ニッケル、白金、ロジウム、銀、タンタル、チタン、タングステン、亜鉛又は、インコネル又はブロンズなどの合金が挙げられる。反射層は、場合により、2つ以上の金属の混合物又は合金を含み、場合により、上記の金属の2つ以上を含む。反射層は、3M社から入手可能なVikuiti(商標) Enhanced Specular Reflectorなどの高反射率ポリマー多層フィルムを場合により含むことができる。さらに別の例において、反射層は、例えばフッ化マグネシウム、フッ化カルシウム、二酸化チタン、二酸化ケイ素などの材料を含む高反射率の非金属無機誘電体多層フィルムを場合により含むことができる。
工程440において、第一のイオノマー溶液は、フォワードロールコーティング、リバースロールコーティング、グラビアコーティング、ドクターコーティング、キスコーティング、スロットダイコーティング、スライドダイコーティング、ならびに、浸漬、ブラッシング、ペインティング及びスプレイを含むシングルパス又はマルチパスイオノマーコーティング技術において、制御された厚さの層として支持構造に塗布される。第一のイオノマー溶液はイオン交換材料を溶媒に溶解することにより調製されうる。第一のイオノマー溶液は、イオン交換材料及び溶媒を含み、場合により界面活性剤などの追加の成分を含むことができる。幾つかの実施形態において、イオン交換材料は、カチオン交換材料、アニオン交換材料又はカチオン交換能力とアニオン交換能力の両方を含むイオン交換材料である。溶媒の選択は、部分的には、イオノマーの組成及び多孔質基材の組成の両方に依存しうる。
工程442において、未処理の微孔性ポリマー構造は、技術が未処理の微孔性ポリマー構造の完全性を損なわない限り、例えば、ホットロールラミネーション、超音波ラミネーション、接着剤ラミネーション、接触ラミネーション又は強制熱風ラミネーションなどの任意の従来技術により、第一のイオノマー溶液の少なくとも一部の上にラミネート化される。幾つかの実施形態において、未処理の微孔性ポリマー構造は微孔性ポリマー構造を有するePTFEを含む。微孔性ポリマー構造は、厚さ全体にわたって均一な構造及び組成を特徴とすることができる。他の態様において、微孔性ポリマー構造の構造及び組成は、その厚さ全体にわたって変化しうる。調製され又は得られた微孔性ポリマー構造は、0%の相対湿度で200ミクロン未満、例えば1ミクロン~50ミクロンの厚さを有しうる。未処理の微孔性ポリマー構造の単位面積あたりの質量は、0%相対湿度で0.05g/m2より大きく、例えば0.3g/m2~20g/m2であることができる。
例えば、バッカーのようなキャリア支持体は、位置合わせ及び張力ローラーを介してローラー巻き出しステーションからコーティングステーションに連続的に供給することができる。イオノマー溶液は、例えば、ドクターブレードなどの適切なコーティング手段により、キャリア支持体(バッカー)の表面上に制御された厚さの層として塗布することができる。未処理の微孔性ポリマー構造は、ローラー巻き出しステーションから位置合わせローラーに連続的に供給され、コーティングされたキャリア支持体に接触し、イオノマー溶液により含浸される。あるいは、キャリア支持体を無くし、イオノマー溶液の層を未処理の微孔性ポリマー構造に直接塗布することができる。
工程444において、処理された微孔性ポリマー構造をオーブンに入れて、乾燥しそして複合膜の構築を仕上げる。オーブンの温度は、60℃より高く、例えば60℃~200℃又は120℃~180℃にすることができる。オーブンで処理された微孔性ポリマー構造を乾燥させると、イオン交換材料が、微孔性ポリマー構造のフィブリル及び/又はノードなどの内部膜表面に、そして場合により外部膜表面にしっかりと付着する。得られた乾燥複合膜は、0%の相対湿度で17ミクロン未満、例えば0.1ミクロン~17ミクロンの厚さを有することができる。複合膜の質量は、0%の相対湿度で0.2g/m2より大きく、例えば、0.2g/m2~40g/m2であることができる。
工程446において、乾燥した複合材料の上に第二のイオノマー溶液をコーティングすることができる。工程440と同様に、フォワードロールコーティング、リバースロールコーティング、グラビアコーティング、ドクターコーティング、キスコーティング、スロットダイコーティング、スライドダイコーティング、ならびに、浸漬、ブラッシング、ペインティング及びスプレイを含むシングルパス又はマルチパスイオノマーコーティング技術で、複合材料に制御された厚さの層として第二のイオノマー溶液を塗布することができる。第二のイオノマー溶液は、イオン交換材料を溶媒に溶解することにより調製されうる。第二のイオノマー溶液は、イオン交換材料及び溶媒を含むことができ、場合により、界面活性剤などの追加の成分を含みうる。幾つかの実施形態において、イオン交換材料は、カチオン交換材料、アニオン交換材料、又は、カチオン交換能力とアニオン交換能力の両方を含むイオン交換材料である。幾つかの実施形態において、第二のイオノマー溶液は、第一のイオノマー溶液と同じであることができる。あるいは、第二のイオノマー溶液は、第一のイオノマー溶液と異なっていてもよい。
工程448において、工程444と同様に、構造をオーブンに入れて、乾燥しそして複合膜100の構築を仕上げる。
ここで図4Bを参照すると、方法420の例示的な流れ図は、互いに接触する2つの完全に吸収された微孔性ポリマー構造及びイオン交換材料の2つの追加層を有する複合材料を形成する方法を示す。方法420は、方法410と同様に、織物材料などの支持構造(例えば、バッカー)を提供することを含む。
工程450において、方法410の工程440と同様に、支持構造(バッカー)に第一のイオノマー溶液を制御された厚さの層として塗布される。工程450の記載は上記の方法410の工程440と同一であるため、ここでは省略する。
工程452において、微孔性ポリマー構造の完全性を損傷しない限り、ホットロールラミネーション、超音波ラミネーション、接着ラミネーション、接触ラミネーション又は強制熱風ラミネーションなどの任意の従来技術により、第一の未処理微孔性ポリマー構造(層1)は第一のイオノマー溶液の第一の部分の上にラミネート化され、第二の未処理微孔性ポリマー構造(層2)は層1の上の第一のイオノマー溶液の同じ部分の上にラミネート化される。幾つかの実施形態において、第一及び第二の未処理の微孔性ポリマー構造は、微孔性ポリマー構造を有するePTFEを含む。幾つかの実施形態において、第二の未処理の微孔性ポリマー構造は、第一の未処理の微孔性ポリマー構造と同じであることができる。あるいは、第二の未処理の微孔性ポリマー構造は、第一の未処理の微孔性ポリマー構造と異なっていてもよい。第一及び第二の微孔性ポリマー構造は、その厚さ全体にわたって均一な構造及び組成を特徴とすることができる。他の態様において、第一及び第二の微孔性ポリマー構造の構造及び組成は、その厚さ全体にわたって変化しうる。
工程454~458は、方法410の工程444~448と同様である。したがって、工程454~458の記載はここでは省略される。乾燥した調製された又は得られた微孔性ポリマー構造は、0%の相対湿度で200ミクロン未満、例えば1ミクロン~50ミクロンの厚さを有することができる。未処理の微孔性ポリマー構造の単位面積あたりの質量は、0%相対湿度で0.05g/m2より大きく、例えば0.3g/m2~20g/m2であることができる。
ここで図4Cを参照すると、方法430の例示的な流れ図は、2つの完全に吸収された微孔性ポリマー構造層及びイオン交換材料の2つの追加層を有し、イオン交換材料の別の層によって互いに分離される複合材料を形成する方法を示す。方法430は、方法410及び420と同様に、織物材料などの支持構造(例えば、バッカー)を提供することを含む。
方法430の工程460~466は、それぞれ方法410の工程440~446と同一である。したがって、工程460~466の記載はここでは省略される。
工程468において、技術が未処理の多孔性基材の完全性を損なわない限り、例えば、ホットロールラミネーション、超音波ラミネーション、接着剤ラミネーション、接触ラミネーション又は強制熱風ラミネーションなどの従来の任意の技術によって第二のイオノマー溶液の少なくとも一部の上に第二の未処理の微孔性ポリマー構造をラミネート化する。幾つかの実施形態において、第二の未処理の微孔性ポリマー構造は、微孔性ポリマー構造を有するePTFEを含む。幾つかの実施形態において、第二の未処理の微孔性ポリマー構造は、第一の未処理の微孔性ポリマー構造と同じであることができる。あるいは、第二の未処理の微孔性ポリマー構造は、第一の未処理の微孔性ポリマー構造と異なっていてもよい。第一及び第二の微孔性ポリマー構造は、その厚さ全体にわたって均一な構造及び組成を特徴とすることができる。他の態様において、第一及び第二の微孔性ポリマー構造の構造及び組成は、その厚さ全体にわたって変化しうる。
工程470において、方法410の工程444と同様に、処理された微孔性ポリマー構造体をオーブンに入れて乾燥させる。調製された又は得られた微孔性ポリマー構造は、0%相対湿度で200ミクロン未満、例えば1~50ミクロンの厚さを有することができる。未処理の微孔性ポリマー構造の単位面積あたりの質量は、0%相対湿度で0.05g/m2より大きく、例えば0.3g/m2~20g/m2であることができる。
工程474において、工程460と同様に、乾燥した複合材料上に第三のイオノマー溶液をコーティングすることができる。幾つかの実施形態において、第三のイオノマー溶液は第一及び/又は第二のイオノマー溶液と同じであることができる。あるいは、第三のイオノマー溶液は、第一及び第二のイオノマー溶液と異なっていてもよい。
工程474において、工程448と同様に、処理された微孔性ポリマー構造をオーブンに入れて、乾燥しそして複合膜300の構築を仕上げる。
方法410,420及び430を所望のとおりに繰り返し、多層複合膜を形成することができる。
III. MEA及び燃料電池
図5A及び図5Bに示されるように、図1A~2Fに関して議論し、そして図4A~4Cに記載されるとおりに構築された複合膜は、MEA500及び燃料電池580に組み込まれることができる。幾つかの実施形態において、図1A~2Fに関して議論し、図4A~4Cに記載されるとおりに構築された複合膜はレドックスフロー電池に組み込まれることができる。
図5Aに示されるように、幾つかの実施形態において、MEA500は、触媒を吸収した2つの電極510,515の間に挟まれた複合膜505(例えば、複合膜100,200,300)を含む。電極510,515は、複合膜505によって互いに電気的に絶縁され、MEA500のアノード510及びカソード515を構成する。場合により、MEA500は、カーボンペーパー又はカーボンクロスなどのガス拡散層520,525をさらに含むことができる。
図5Bに示すように、幾つかの実施形態において、燃料電池580は、触媒を吸収したアノード510とカソード515との間に挟まれた複合膜505(例えば、複合膜100,200,300)を含むMEA500を含む。場合により、MEA500は、カーボンペーパー又はカーボンクロスなどのガス拡散層520,525をさらに含むことができる。アノード510は、燃料535(例えば、水素燃料)を酸化するように構成され、イオン540及び電子545になる。イオン540は、複合膜505を通ってカソード515に拡散することができる。イオン540がカソード515に到達すると、イオン540は酸化剤550(例えば、酸素)と反応して水を生成する。電子545は、回路555を通過して電気を生成することができる。したがって、電気は負荷560で形成され、水が副産物として得られる。
IV.例
A.実施例で使用される試験手順及び測定プロトコル
バブルポイント
バブルポイントは、ASTM F316-86の手順に従って測定された。イソプロピルアルコールを湿潤性流体として使用して、試験片の細孔を満たした。バブルポイントは、微孔性ポリマーマトリックスを覆うイソプロピルアルコールの層を介して上昇することで検出可能な最初の連続した気泡の流れを作り出すのに必要な空気の圧力である。この測定により、最大孔サイズの推定値が提供される。
ガーリー数
ガス流バリア特性は、ASTM D-726-58に従ってガーリー密度計を使用して測定された。この手順は、ガーリー密度計の通気性プレート間にサンプルをクランプすることを含む。次に、自由にスライドできる既知の重量の内側シリンダーを解放する。ガーリー数は、解放された内部シリンダーが密度計内の特定体積の空気をサンプル材料を通して移動させるのにかかる秒単位での時間として定義される。
ガス透過性(ATEQ)
ATEQ Corp. Premier D Compact Flow Testerを使用して、1.2kPa(12mbar)の差圧でチャレンジしたときの各微孔性ポリマー構造を通る空気の流速(リットル/時間)を測定した。サンプルは、フローパスの断面積が2.9cm2になるように2つのプレートの間にクランプされた。
非接触厚さ
微孔性ポリマー構造のサンプルを平らで滑らかな金属アンビルの上に置き、しわを取り除くために張力をかけた。アンビル上の微孔性ポリマー構造の高さは、非接触型キーエンスLS-7010Mデジタルマイクロメーターを使用して測定及び記録した。次に、微孔性ポリマーマトリックスのないアンビルの高さを記録した。微孔性ポリマー構造の厚さは、微孔性構造がアンビル上に存在する場合とそうでない場合のマイクロメーターの読み取り値の差として採用した。
面積あたりの質量
各微孔性ポリマー構造は、しわを除去するのに十分に歪ませ、次いでダイを使用して10cm2片が切り出された。10cm2片を、従来の実験室スケールで重量計量した。面積あたりの質量(M/A)は、次いで、測定質量/既知の面積の比として計算した。この手順を2回繰り返し、M/Aの平均値を計算した。
微孔性層の見かけ密度
微孔性ポリマー構造の見かけ密度は、以下の式を使用して非接触厚さ及び面積当たりの質量のデータを使用して計算した。
Figure 0007053680000001
イオン交換材料(IEM)の溶液の固体濃度
本明細書において、「溶液」及び「分散液」という用語は、IEMを指す場合に互換的に使用される。この試験手順は、IEMがプロトン型であり、他の固体が無視できる量である溶液に適する。体積2立方センチメートルのIEM溶液をシリンジに引き込み、溶液を含むシリンジの質量を固体分析器(米国CEM Corporationから入手)の天秤を介して測定した。2枚のガラス繊維紙(米国CEM Corporationから入手)の質量も測定し記録した。次に、IEM溶液をシリンジからガラス繊維紙の2つの層に堆積させた。イオノマー溶液を含むガラス繊維紙を固体分析器に入れ、溶媒液体を除去するために160℃まで加熱した。ガラス繊維紙及び残留固形物の質量が温度及び時間の増加に対して変化しなくなったら、それを記録した。残留IEMには水が含まれていない(すなわち、0%RHに対応するイオノマー質量)と想定される。その後、空のシリンジの質量を測定し、上記と同じ天秤を使用して記録した。溶液中のイオノマー固形分は以下の式に従って計算した。
Figure 0007053680000002
IEMの当量(EW)
以下の試験手順は、プロトン形態(すなわち、無視できる量の他のカチオンを含む)であり、無視できるプロトン酸及び解離塩を含む他のイオン種を含む溶液である単一のイオノマー樹脂又はイオノマー樹脂の混合物を含むIEMに適している。これらの条件が満たされない場合には、試験前に、当業者に知られている適切な手順に従って溶液をイオン性不純物から精製しなければならず、又は、不純物は特性化され、EW試験の結果に対するその影響を補正しなければならない。
本明細書で使用されるときに、IEMのEWは、IEMが0%RHでそのプロトン形態であり、不純物が無視できる場合を指す。IEMは、単一のイオノマー又はイオノマーの混合物をプロトンの形態で含むことができる。0.2グラムの固形分を含む、上記のように決定された固形分濃度を有するIEM溶液の量をプラスチックカップに注いた。イオノマー溶液の質量は、従来の実験室規模(Mettler Toledo, LLC, USAから入手)を介して測定された。次に、5mlの脱イオン水及び5 mlの200プルーフ変性エタノール(SDA 3C, Sigma Aldrich, USA)をカップ内のイオノマー溶液に加える。次に、水中の2N塩化ナトリウム溶液55mlをIEM溶液に加えた。次に、サンプルを絶えず攪拌しながら15分間平衡化させた。平衡化工程の後に、サンプルを1N水酸化ナトリウム溶液で滴定した。サンプル溶液をpH値7に中和するのに必要な1N水酸化ナトリウム溶液の体積を記録した。IEM(EWIEM)のEWは次のように計算された。
Figure 0007053680000003
複数のIEMが組み合わされて複合膜を製造するときに、複合膜中のIEMの平均EWは、以下の式を使用して計算された:
Figure 0007053680000004
上式中、各IEMの質量分率は、すべてのIEMの合計量に対するものである。この式は、イオノマーブレンドを含む複合膜及びイオノマー層を含む複合膜の両方に使用された。
イオン交換材料の等価体積(EV)
本明細書で使用されるときに、IEMの等価体積は、IEMが純粋であり、0%RHでそのプロトン形態であり、無視可能な不純物を含む場合のEVを指す。EVは次の式に従って計算された。
Figure 0007053680000005
各IEMの当量は、上記の手順に従って決定された。これらの用途で使用されるIEMはペルフルオロスルホン酸イオノマー樹脂であり、ペルフルオロスルホン酸イオノマー樹脂の体積密度は0%RHで1.96g/ccとされた。
複合膜の厚さ
複合膜は、測定の少なくとも1時間前に厚さが測定される部屋で平衡化された。複合膜は、複合膜がコーティングされた基材に付着したままにした。各サンプルについて、コーティング基材上の複合膜を滑らかで平らなで水平な大理石のスラブ上に置いた。厚さゲージ(Heidenhain Corporation, USAから入手)を複合膜と接触させ、膜のグリッドパターンに配置された6つの異なるスポットでゲージの高さ読み取り値を記録した。次に、サンプルを基材から除去し、ゲージを基材と接触させ、同じ6つのスポットで高さの読み取り値を再度記録した。室内の所与の相対湿度(RH)での複合膜の厚さは、複合膜が存在する場合と存在しない場合のゲージの高さの読み取り値の差として計算した。RHプローブ(Fluke Corporationから入手)を使用して、局所RHを測定した。0%RHでの厚さは、次の一般式を使用して計算した。
Figure 0007053680000006
上式中、パラメータλは、特定のRHでの酸基1モルあたりの水のモル数で表したイオン交換材料の吸水量に対応する。PFSAイオノマーの場合に、気相中の0~100%の範囲のRHでのλの値は次の式に従って計算した。
Figure 0007053680000007
複合膜の微孔性ポリマーマトリックス(MPM)体積含有量
各複合膜中の微孔性ポリマーマトリックスの体積%は次の式に従って計算した。
Figure 0007053680000008
これらの例で使用した微孔性ポリマーマトリックスは、ePTFE及びトラックエッチングされた多孔性ポリカーボネートであった。ePTFEのマトリックス骨格密度は2.25g/ccであり、トラックエッチングされた多孔性ポリカーボネートのマトリックス骨格密度は1.20g/ccであるとされた。
複合膜の酸含有量
複合膜の酸含有量は次の式に従って計算した。
Figure 0007053680000009
複合膜のボール破裂試験
本発明により調製された複合膜の機械的強度はサンプルに負荷圧力をかけることにより測定された。
直径45mmの開口部を有するフレームにサンプルをピンと張って固定した。フレーム内のサンプルを、環境制御されたチャンバー内の温度及び相対湿度がそれぞれ23℃及び80%である日本の島津製作所の汎用試験機AG-Iに入れた。支柱に支えられた直径1mmの鋼球を、100mm/minの一定速度で、吊り下げられた膜に押し込んだ。サンプルの破断時にシステムによって生成された最大負荷を記録した。その値はボール破裂強度と呼ばれる。
複合膜の膜電極接合体(MEA)
本発明の複合膜サンプルを通るプロトン及び水素の輸送抵抗を測定するために、1.27cm2の活性面積Aを有するMEAを調製した。各MEAについて、複合膜の面積はシーリング表面を提供するためにオーバーサイズであった。さらに、アノード及びカソードは同一であり、PRIMEA(登録商標)MEMBRANE ELECTRODE ASSEMBLY Series 5580(W.L. Gore&Associates、Inc.)の製造で使用されているとおりの権利付きのインクベースのプロセスによって剥離層上に調製された。Pt/C触媒を含む各電極を剥離層上にコーティングしそして乾燥し、白金面積負荷が0.4mg/cm2であった。電極を、熱及び圧力(160℃及び100psiで3分間)を使用して複合膜の各面にドライラミネート化し、剥離層を除去した。
複合膜のH+抵抗及びH2抵抗
本明細書で使用されるときに、「プロトン抵抗」(又はH+抵抗)という用語は、プロトンコンダクタンスの逆数を指し、「水素抵抗」(又はH2抵抗)という用語は、水素パーミアンスの逆数を指す。これらの特性は、一連の電気化学的測定を含む単一の組み合わせ試験プロトコルで測定した。これらの測定値は当業者によく知られているが、組み合わされたプロトコルの実際の詳細はしばしば実験室毎に異なるため、これらの実際の詳細についてここに記載する。上記のようにMEAを調製し、次いで、アノード側とカソード側の両方に権利付きのカーボンベースの疎水性ガス拡散層(GDL)とともに、権利付きの設計の燃料電池試験装置に取り付けそしてシーリングした。サンプル及びGDLを、184 psiの機械的圧力で金メッキされたフローフィールド間で圧縮した。器具を80℃に温め、アノード側をH2で、カソード側を空気でパージし、次いで、米国特許出願US 11043917号明細書の教示に従って条件調整した。条件調整後に、カソード側をN2でパージし、水素抵抗及びプロトン抵抗を次の相対湿度(RH):10%、20%、40%、50%、60%及び80%で測定した。各RHで、測定を行う前にサンプルを25分間平衡化した。水素抵抗は、0.3V~0.6Vで50mV毎に1分間定電位保持を適用し、保持の最後の10秒間の電流値を平均することで測定した。アノード掃引及びカソード掃引の間の水素クロスオーバーXOavgから生成された電流の平均値を使用した。水素クロスオーバーXOavgから生成される電流を活性面積及び水素分圧pH2に正規化して、水素抵抗を計算する。
Figure 0007053680000010
水素パーミアンスは次のように計算できる。
Figure 0007053680000011
電気化学インピーダンススペクトルは、20kHz~1Hzの周波数ωで測定された。 高周波プロトン抵抗RH+は、電極イオン抵抗REIR、非理想パラメータφを含む非理想的な二重層静電容量QDLで表される定相要素、システムによって寄与される電気インピーダンスZSYSTEM及びガス拡散媒体によって寄与される電気インピーダンスZGDMを考慮した多孔質電極等価回路モデルに当てはめた測定総インピーダンスZTOTALを活性領域に正規化することにより計算した。
Figure 0007053680000012
次に、プロトンコンダクタンスは次のように計算できる。
Figure 0007053680000013
複合膜の選択性
多層複合膜の選択性を以下の式に従って計算した。
Figure 0007053680000014
選択性パラメータは、燃料電池で発生する水素ガス及びプロトンの2つの輸送プロセスに対してどれだけのバリア膜が存在するかを表す。燃料電池が高効率で水素ガスを利用するためには、膜が水素ガス輸送に対して可能な限り高い耐性を示すことが望ましい。同時に、燃料電池が高出力を実現できるようにするためには、燃料電池の膜ができるだけ低いプロトン抵抗を有することが望まれる。結果として、より高い電力出力を提供しながら水素燃料をよりよく利用するので、選択性の値が高い燃料電池膜は望ましい。
空隙率測定
本開示によって調製された複合膜中の空隙率は、ガス比重瓶及び実験室質量スケールの組み合わせを使用して測定することができる。ガス比重瓶はヘリウム又は窒素などのより大きな分子を含む他のガスを使用することができる。正確な結果を得るために、テスト対象の材料に吸収されるガスの使用を避けることができる。複合膜のサンプルは、既知の体積のチャンバーに入れることができる。内部にサンプルを含むチャンバーは大気ガス及びサンプル内に存在しうる水などの可能な揮発性成分から排気されうる。サンプル及びチャンバーにガス又はその他の揮発性成分がないことを確認するには、0.001atm未満の圧力で20分間サンプルを平衡化しうる。次に、既知の体積の不活性ガスを、サンプルを含むチャンバーに入れる。次いで、サンプルチャンバー内で発生した圧力を記録することができる。次に、サンプルチャンバーからのガスを既知の体積の空のチャンバーに放出させることができ、そして圧力を記録する。2つの圧力読み値及び既知のチャンバー体積の値を使用して、ガス分子が到達できないサンプルの体積を計算することができる。
b.例
本開示の製造の装置及び方法は、以下の非限定的な例を参照することにより、よりよく理解されうる。
複合膜の酸含有量、体積、選択性及び強度などの特性、ならびに試験手順及び測定プロトコルの特性の決定を、上記のように実施した。図6に示す表は、本発明の幾つかの態様による12の一連の実施例における様々な試験手順で使用される微孔性ポリマー構造の特性を示す。以下でより詳細に議論するように、各シリーズには、1つ以上の比較例及び/又は本発明例が含まれている。複合膜の特性を示す個々の表は、各シリーズに関連して提供されている。
すべての例について本開示の態様によって製造されたイオン交換材料
以下の実施例で使用されるすべてのイオン交換材料は、図6の特定の等価体積(EV)を有するペルフルオロスルホン酸(PFSA)ベースのイオノマーである。複合膜の製造前のすべてのイオノマーは、溶媒としての水とエタノールの混合物をベースとした溶液の形態であり、溶媒相の中の水分含有量は50%未満であった。
一般に知られているイオン交換材料を使用して本開示の複合膜を製造した。好ましい例は、下記一般式(a:b=1:1~9:1であり、n=0、1又は2である)で表される固体PFSAイオノマーを溶媒に分散又は溶解することで得られた溶液である。
Figure 0007053680000015
幾つかの態様において、溶媒は、水、メタノール、エタノール、プロパノール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール及びtert-ブチルアルコールなどのアルコール、n-ヘキサンなどの炭化水素溶媒、テトラヒドロフラン及びジオキサンなどのエーテル系溶媒、ジメチルスルホキシド及びジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド及びN,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド及びN,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン及びN-ビニル-2-ピロリドンなどのピロリドン系溶媒、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン、1,1,1-トリクロロエタン、1,2-ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン及びクロロホルムからなる群より選ばれる。本開示において、溶媒は、場合により、水、メタノール、エタノール、プロパノールからなる群より選ばれる。水及び上記溶媒は、単独で又は2種以上を組み合わせて使用することができる。
シリーズ1
比較例1.1
比較例1.1は以下の手順に従って行った。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を手で引っ張ってしわをなくし、この状態で金属フレームで拘束した。次に、EV=347cc/モル当量のPSFA溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水39.6%、エタノール41.3%、固形分19.1%の溶液組成物の第一のレイダウンをポリマーシート基材の上面上にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD., Japanから入手)はPET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるような向きであった。IEM(PFSA溶液)コーティングは、2.6ミルの公称ウェットコーティング厚のマイヤーバーを使用して得た。コーティングがまだ湿っている間に、金属フレームに以前に拘束されたePTFE膜1をコーティングにラミネート化し、そのとき、IEM溶液は細孔に吸収された。続いて、この複合材料を対流式オーブンで空気中にて165℃の温度で乾燥した。乾燥すると、微孔性ポリマー構造(ePTFE膜)はIEMが完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、IEMの同じ溶液を、3ミルの公称ウェットコーティング厚でドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。次いで、複合材料を165℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示した。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで9.9ミクロンの厚さ、2.7体積%の微孔性ポリマー構造によって占められた体積割合及び2.8meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表1に示す。
本発明例1.2
本発明の例1.2は、異なる材料が使用されたことを除いて、上記手順及び比較例1.1に使用された手順と同じ手順に従って調製した。面積あたりの質量が3.1g/m2、厚さが9.4μm、見かけ密度が0.33g/cc、バブルポイントが56.8 psiであるePTFE膜2を微孔性ポリマー構造として使用した。EV=311cc/モル当量のIEMとしてのPSFA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水21.2%、エタノール62.4%、固形分16.4%の溶液組成物を、4ミルの公称ウェットコーティング厚のドローダウンバーを使用して、第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。複合膜は完全に閉塞性であり、微孔性ポリマー基材の両側にIEMの層を有した。得られた複合膜は、0%RHで9.8ミクロンの厚さ、14.0体積%の微孔性ポリマー構造により占められた体積割合及び2.8meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表1に示す。
表1は、比較例1.1及び本発明の例1.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000016
表1に示すように、例1.1及び例1.2の複合膜は、同様の厚さ(すなわち、それぞれ9.9及び9.8ミクロン)及び同じ総酸含有量(すなわち、2.8meq/cc)を有する。したがって、例1.1及び例1.2の複合膜は抵抗率測定により実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、複合膜に非常に異なるパーミアンス特性を生成したことは驚くべきことに、また、予期せずに発見された。例えば、例1.2の複合膜は、例1.1の複合膜の選択性と比較して改善又は増加した選択性を示した(すなわち、50%RHでの例1.1の1.0MPA/mVと比較して例1.2の1.2MPA/mV)。驚くべきことに、比較例1.1と本発明の例1.2の選択性に関する組み合わせデータは、膜の総酸含有量を一定に保ちながら、微孔性ポリマー構造が占める体積%が増加すると選択性が増加することを実証している。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線302で示される。
さらに、例1.1と比較して、例1.2の微孔性ポリマー構造(例えば、ePTFE)の最終質量を増加させることにより、例1.1と比較して例1.2にてイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を低下させることができた。これにより、微孔性ポリマー構造の総体積が例1.1の2.7%から例1.2の14.0%に増加し、結果として複合膜の強化が改善され、複合膜の製造コストが削減された(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量を低下させた)。
シリーズ2
比較例2.1
比較例2.1は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積当たりの質量が1.2g/m2、厚さが5.4μm、見かけ密度が0.23g/cc、バブルポイントが38.0 psiであるePTFE膜3を、微孔性ポリマーマトリックスとして使用した。EV=347cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水39.6%、エタノール41.3%、固形分19.1%の溶液組成物を、2ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、1.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで7.8ミクロンの厚さ、6.9体積%の微孔性ポリマー構造により占められた体積割合及び2.7meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表2に示す。
本発明例2.2
本発明の例2.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が2.8g/m2、厚さが9.6μm、見かけ密度が0.29g/cc、バブルポイントが34.4psiであるePTFE膜4を微孔性ポリマーマトリックスとして使用した。EV=311cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水21.2%、エタノール62.4%、固体16.4%の溶液組成物を、3ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで8.0ミクロンの厚さ、15.5体積%の微孔性ポリマー構造により占められた体積割合及び2.7meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表2に示した。驚くべきことに、比較例1.1、2.1及び本発明の例1.2、2.2の選択性に関する組み合わせデータは、使用される微孔性ポリマー構造に関係なく、膜の総酸含有量を一定に保ちながら、微孔性ポリマー構造が占める体積%が増加するにつれて、選択性が増加することを実証した。
表2は、比較例2.1及び本発明の例2.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000017
表2に示すように、例2.1及び例2.2の複合膜は、同様の厚さ(すなわち、それぞれ7.8及び8ミクロン)及び同じ総酸含有量(すなわち、2.7meq/cc)を有する。したがって、例2.1及び例2.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、複合膜に非常に異なるパーミアンス特性を生成することは驚くべきことに、また、予期せずに発見された。例えば、例2.2の複合膜は、例2.1の複合膜の選択性と比較して選択性の改善又は増加を示した(すなわち、50%RHで例2.1の0.8MPA/mVと比較して例2.2の1.9MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線304で示される。
さらに、例2.1と比較して、例2.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例2.1と比較して、例2.2の複合膜(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例2.1の6.9%から例2.2の15.5%まで微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量を低減した)。
シリーズ3
比較例3.1
比較例3.1は、異なる材料が使用されたことを除き、比較例1.1に使用された手順と同じ手順によって調製された。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水15.3%、エタノール61.7%、固形分23%の溶液組成物を、3ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、4ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、RH0%で14.4ミクロンの厚さ、1.8体積%の微孔性ポリマー構造により占められた体積割合及び2.1meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表3に示す。
本発明例3.2
本発明の例3.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が8.9g/m2、厚さが25.1μm、見かけ密度が0.36g/cc、バブルポイントが42.7psiであるePTFE膜4を微孔性ポリマーマトリックスとして使用した。EV=329cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水22.0%、エタノール63.8%、固形分14.2%の溶液組成物を、5.8ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで14.5ミクロンの厚さ、27.3体積%の微孔性ポリマー構造により占められた体積割合及び2.2meq/ccの酸含有量を有した。
表3は、比較例3.1及び本発明の例3.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000018
表3に示すように、例3.1及び例3.2の複合膜は、同様の厚さ(すなわち、それぞれ14.4及び14.5ミクロン)及び同様の総酸含有量(すなわち、それぞれ2.1及び2.2meq/cc)を有する。したがって、例3.1及び例3.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、複合膜に非常に異なるパーミアンス特性が生成されることが驚くべきことに、また、予期せずに発見された。例えば、例3.2の複合膜は例3.1の複合膜の選択性と比較して改善又は増加した選択性を示した(すなわち、50%RHでの例3.1の0.6MPA/mVと比較した例3.2の0.9MPA/mV)。プロトン/水素ガス輸送選択性測定の結果を表3に示す。驚くべきことに、比較例3.1及び本発明の例3.2の選択性の組み合わせデータは、膜が厚く、微孔性ポリマー構造の体積分率が30%近くの高レベルに達したときにも、微孔性ポリマー構造が占める体積%が増加するにつれて、選択性が増加することを示す。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線306で示される。
さらに、例3.1と比較して、例3.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例3.1と比較して例3.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、微孔性ポリマー構造の総体積が例3.1の1.8%から例3.2の27.3%に増加し、結果として複合膜の強化が改善され(すなわち、ボール破裂強度は例3.1の1.8Nと比較して例3.2の3.2N)、複合膜の製造コストを下げた(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減された)。
シリーズ4
比較例4.1
比較例4.1は、異なる材料が使用されたことを除き、比較例1.1に使用された手順と同じ手順によって調製した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を微孔性ポリマー構造として使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水30.0%、エタノール60.8%、固形分9.2%の溶液組成物を、4ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水13%、エタノール74.7%、固形分12.3%の溶液組成物を、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで5.5ミクロンの厚さ、4.9体積%の微孔性ポリマー構造により占められた体積割合及び2.1meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表4に示す。
本発明例4.2
本発明の例4.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が1.9g/m2、厚さが7.2μm、見かけ密度が0.27g/cc、バブルポイントが137.6psiであるePTFE膜6を微孔性ポリマー構造として使用した。EV=413cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水17.3%、エタノール71.5%、固形分11.2%の溶液組成物を、4ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで6.4ミクロンの厚さ、13.2体積%の微孔性ポリマー構造により占められた体積割合及び2.1meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表4に示す。
本発明例4.3
本発明の例4.3は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が4.8g/m2、厚さが14.8μm、見かけ密度が0.33g/cc、バブルポイントが68.4psiであるePTFE膜7を微孔性ポリマー構造として使用した。EV=311cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水21.2%、エタノール62.9%、固形分16.4%の溶液組成物を、3ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=311cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水5.1%、エタノール94.4%、固形分0.5%の溶液組成物を、0.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで6.4ミクロンの厚さ、33.3体積%の微孔性ポリマー構造により占有された体積割合及び2.1meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表4に示す。比較例4.1及び本発明の例4.2及び4.3の選択性のデータは、膜が厚く、微孔性ポリマー構造の体積分率が30%を超えていても、微孔性ポリマー構造が占める体積%が増加するにつれて選択性が増加することを示す。
表4は、比較例4.1ならびに本発明の例4.2及び4.3の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000019
表4に示すように、例4.1、例4.2及び4.3の複合膜は、同等の厚さ(すなわち、それぞれ5.5、6.4及び6.4ミクロン)及び同じ総酸含有量(すなわち、2.1meq/cc)を有する。したがって、例4.1、例4.2及び4.3の複合膜は、抵抗率測定によって実証されるとおり、同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、複合膜に非常に異なるパーミアンス特性を生成することが驚くべきことに、予期せずに発見された。例えば、例4.2及び4.3の複合膜は、例4.1の複合膜の選択性と比較して改善又は増加した選択性を示した(すなわち、50%相対湿度で例4.1の0.5MPA/mVと比較して例4.2の0.6MPA/mV及び例4.3の0.9MPA/mV)。シリーズ1~4のデータを組み合わせると、不活性な微孔性ポリマー構造(この場合はePTFE)を添加すると、使用する多層複合膜の厚さ、又は、使用する微孔性ポリマー構造のタイプ、又は、使用されるIEMが何であるかに関係なく、膜の総酸含有量を一定に保ちながら、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することを示した。これは驚くべき、予期せぬ発見である。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線308で示される。
さらに、例4.1と比較して、例4.2及び4.3の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例4.1と比較した例4.2及び4.3のイオン交換材料(例えばペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、微孔性ポリマー構造の総体積が例4.1の4.9%から例4.2の13.2%及び例4.3の33.3%に増加し、その結果、複合膜の強化が改善しそして複合膜の製造コストを削減した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量を低減させた)。
シリーズ5
比較例5.1
比較例5.1は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を微孔性ポリマーマトリックスとして使用した。EV=509cc/モル当量のIEMの溶液(D2020(Ion Power Inc.,USAから入手)、水22.1%、エタノール62.9%、固形分15.0%の溶液組成物を、2.6ミルの公称ウェットコーティング厚のマイヤーバーを使用して第一のレイダウンでコーティングした。第二のレイダウンで、3ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合膜の上面(基材の反対側の表面)にコーティングした。得られた多層複合膜は0%RHで7.9ミクロンの厚さ、3.4体積%の多孔質ポリマー構造で占められた体積割合及び1.9meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表5に示す。
本発明例5.2
本発明の例5.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が2.2g/m2のePTFE膜8を微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水20.2%、エタノール60.0%、固形分19.8%の溶液組成物を、2ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンの同じIEM溶液を、1.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合膜の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで7.8ミクロンの厚さ、12.5体積%の微孔性ポリマー構造により占められた体積割合及び1.9meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表5に示す。
表5は、比較例5.1及び本発明の例5.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000020
表5に示すように、例5.1及び例5.2の複合膜は、同様の厚さ(すなわち、それぞれ7.9及び7.8ミクロン)及び同じ総酸含有量(すなわち、1.9meq/cc)を有する。したがって、例5.1及び例5.2の複合膜は、抵抗率測定により実証されるように、同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性を生成することが驚くべきことに、予期せずに発見された。例えば、例5.2の複合膜は、例5.1の複合膜と比較して選択性の改善又は増加を示した(すなわち、50%RHでの例5.1の0.4MPA/ mVと比較した例5.2の0.5MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線310で示される。
さらに、例5.1と比較して例5.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例5.1と比較して例5.2のイオン交換材料(例えばペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例5.1の3.4%から例5.2の12.5%まで微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ6
比較例6.1
比較例6.1は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が1.9g/m2、厚さが7.2μm、見かけ密度が0.27g/cc、バブルポイントが137.6psiであるePTFE膜6を、微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水30.0%、エタノール60.8%、固形分9.2%の溶液組成物を、5ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、2ミル公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで6.4ミクロンの厚さ、13.1体積%の微孔性ポリマー構造により占められた体積割合及び1.9meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表6に示す。
本発明例6.2
本発明の例6.2は、異なる材料が使用されたことを除き、比較例1.1に使用された手順と同じ手順によって調製された。面積あたりの質量が5.8g/m2、厚さが12.5μm、見かけ密度が0.46g/cc、バブルポイントが32.2psiであるePTFE膜9を微孔性ポリマーマトリックスとして使用しました。EV=311cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水21.2%、エタノール62.4%、固形分16.4%の溶液組成物を、2ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=311cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水5.1%、エタノール94.4%、固形分0.5%の溶液組成物を1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで6.2ミクロンの厚さ、41.8体積%の微孔性ポリマー構造により占められ体積割合及び1.9meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表6に示す。
表6は、本発明の例6.1及び6.2の複合材料の様々な試験手順の結果を示している。
Figure 0007053680000021
表6に示すように、例6.1及び例6.2の複合膜は、同様の厚さ(すなわち、それぞれ6.4及び6.2ミクロン)及び同じ総酸含有量(すなわち、1.9meq/cc)を有する。したがって、例6.1及び例6.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性であることが驚くべきことに、予期せずに発見された。例えば、例6.2の複合膜は、例6.1の複合膜と比較して選択性の改善又は増加を示した(すなわち、50%RHでの例6.1の0.5MPA/mVと比較して例6.2の0.7MPA/mV)。比較例6.1、比較例5.1、ならびに発明例6.2及び発明例5.2の選択性に関するデータは、膜を薄くし、微孔性ポリマー構造体積分率が40%を超えても、微孔性ポリマー構造が占める体積%が増加すると選択性が増加することを示している。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線312で示される。
さらに、実施例6.1と比較して、実施例6.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例6.1と比較した例6.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例6.1の13.1%から例6.2の41.8%に微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ7
比較例7.1
比較例7.1は、異なる材料が使用されたことを除き、比較例1.1に使用された手順と同じ手順によって調製した。面積あたりの質量が3.0g/m2、厚さが15.2μm、見かけ密度が0.20g/cc、バブルポイントが36.6psiであるePTFE膜10を微孔性ポリマーマトリックスとして使用した。EV=560cc/モル当量のIEMの溶液(Ion Power Inc.,USAから入手したD2021)、26.2%水、エタノール57.3%、固形分16.5%の溶液組成物を、3ミルの公称ウェットコーティング厚のドローダウンバーを使用して第一のレイダウンでコーティングした。第二のレイダウンでは、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで7.1ミクロンの厚さ、18.8体積%の微孔性ポリマー構造で占められた体積割合及び1.4meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表7に示す。
本発明例7.2
本発明の例7.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が5.8g/m2、厚さが12.5μm、見かけ密度が0.46g/cc、バブルポイントが32.2psiであるePTFE膜9を微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水13%、エタノール74.7%、固形分12.3%の溶液組成物を、5ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=458cc/モル当量のIEM溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水5.5%、エタノール94.0%、固形分0.5%の溶液組成物を、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで7.1ミクロンの厚さ、36.3体積%の微孔性ポリマー構造により占有される体積割合及び1.4meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表7に示す。
本発明例7.3
本発明の例7.3は、以下の手順に従って調製した。最初に、面積当たり質量が3.1g/m2、厚さが9.4μm、見かけ密度が0.33g/cc、バブルポイントが56.8psiであるePTFE膜2と、面積あたりの質量が3.0g/m2、厚さが15.2、見掛け密度が0.20g/cc、バブルポイントが36.6psiであるePTFE膜10の2つの微孔性ポリマー構造を、引っ張ってしわをなくし、金属フレームで互いに接触させて拘束した。次に、EV=413cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水17.3%、エタノール71.5%、固形分11.2%の溶液組成物の第一のレイダウンをポリマーシート基材の上面上にコーティングした。基材(DAICEL VALUE COATING LTD., Japanから入手)はPET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるような向きであった。コーティングは、5ミルの公称ウェットコーティング厚のマイヤーバーを使用して得た。コーティングがまだ湿っている間に、金属フレームに以前に拘束されたePTFE膜2及び10をコーティングにラミネート化し、そのとき、IEM溶液は細孔に吸収された。続いて、この多層複合材料を対流式オーブンで内部の空気にて165℃の温度で乾燥した。乾燥すると、微孔性ポリマーマトリックスはIEMが完全に吸収された。IEMはまた、微孔性ポリマーマトリックスの底面と基材との間に層を形成した。第二のレイダウンでは、EV=413cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水4%、エタノール95.0%、固形分1%の溶液組成物を、0.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。次いで、複合材料を165℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマーマトリックスの完全な含浸を示した。多層複合材料は基材に結合した多層複合膜を含んだ。多層複合膜は完全に閉塞性であり、接触している微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで6.9ミクロンの厚さ、39.4体積%の微孔性ポリマー構造によって占められた体積割合及び1.5meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表7に示す。表7は、比較例7.1ならびに本発明の例7.2及び7.3の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000022
表7に示すように、例7.1ならびに例7.2及び7.3の複合膜は、同等の厚さ(すなわち、それぞれ7.1、7.1及び6.9ミクロン)及び同様の総酸含有量(すなわち、それぞれ、1.4、1.4及び1.5meq/cc)を有した。したがって、例7.1ならびに例7.2及び7.3の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性を生成することが驚くべきことに、予期せずに発見された。例えば、例7.2及び7.3の複合膜は、例7.1の複合膜の選択性と比較して改善又は増加した選択性を示した(すなわち、50%RHで、例7.1では0.3MPA/mVであるのと比較して、例7.2では0.4MPA/mV及び例7.3では0.5MPA/mV)。比較例7.1及び本発明の例7.2及び7.3の選択性に関するデータは、複合膜に複数の微孔性ポリマーマトリックスが存在する場合でも、微孔性ポリマー構造が占める体積%が増加すると選択性が増加することを示している。これは驚くべき予期せぬ発見である。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線314で示される。
さらに、例7.1と比較して、例7.2及び7.3の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例7.1と比較して例7.2及び7.3のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例7.1の18.8%から例7.2の36.30%及び例7.3の39.40%に微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ8
比較例8.1
比較例8.1は、異なる材料が使用されたことを除き、比較例1.1に使用された手順と同じ手順によって調製した。面積あたりの質量が3.0g/m2、厚さが15.2μm、見かけ密度が0.20g/cc、バブルポイントが36.6psiであるePTFE膜10を微孔性ポリマーマトリックスとして使用した。EV=560cc/モル当量のIEMの溶液(Ion Power Inc.,USAから入手したD2021)、水25.0%、エタノール62.5%、固形分12.5%の溶液組成物を、2ミルの公称ウェットコーティング厚のマイヤーバーを使用して第一のレイダウンでコーティングした。第二のレイダウンでは、0.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMの同じ溶液を複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで4.9ミクロンの厚さ、27.1体積%の微孔性ポリマー構造により占められた体積割合及び1.3meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表8に示す。
本発明例8.2
本発明の例8.2は、異なる材料を使用したことを除き、比較例1.1に使用した手順と同じ手順によって調製した。面積あたりの質量が4.7g/m2、厚さが14.0μm、見かけ密度が0.34g/cc、バブルポイントが47.1psiであるePTFE膜7を微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水13%、エタノール74.7%、固形分12.3%の溶液組成物を、3ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=458cc/モル当量のIEM溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水5.5%、エタノール94.0%、固形分0.5%の溶液組成物を、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで4.9ミクロンの厚さ、42.6体積%の微孔性ポリマー構造により占有された体積割合及び1.2meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表8に示す。
表8は、比較例8.1及び本発明の例8.2の複合材料に関する様々な試験手順の結果を示す。
Figure 0007053680000023
表8に示すように、例8.1及び例8.2の複合膜は、同じ厚さ(すなわち、4.9ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.3及び1.2meq/cc)を有する。したがって、例8.1及び例8.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性を生成することが驚くべきことに、予期せずに発見された。例えば、例8.2の複合膜は、例8.1の複合膜と比較して選択性の改善又は増加を示した(すなわち、50%RHでの例8.1の0.3MPA/mVと比較した例8.2の0.4MPA/mV)。例のシリーズ1~8のデータを組み合わせることで、不活性な微孔性ポリマー構造(この場合はePTFE)を添加し、膜の総酸含有量を一定に保つと、4.9~14.5ミクロンの範囲の厚さの多層複合膜又は使用される微孔性ポリマーのタイプに関係なく、又は、1つ以上の微孔性ポリマーが存在するか又はいかなるIEMが使用されるかに関係なく、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することが示された。これは驚くべき予期せぬ発見である。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線316で示される。
さらに、例8.1と比較して例8.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例8.1と比較した例8.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例8.1の27.1%から例8.2の42.6%まで微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ9
比較例9.1
比較例9.1は、以下の手順によって作成した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を手で引っ張ってしわをなくし、この状態で金属フレームで拘束した。次に、EV=509cc/モル当量(Ion Power Inc.,USAから入手したD2020)を有するPSFA溶液、水23.5%、エタノール60.5%、固形分16%の溶液組成物の第一のレイダウンをポリマーシート基材の上面上にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD.,Japanから入手)は、PET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるような向きであった。IEM(PFSA溶液)コーティングは、2.2ミルの公称ウェットコーティング厚のマイヤーバーを使用して得られた。コーティングがまだ湿っている間に、金属フレームに以前に拘束されたePTFE膜1をコーティングにラミネートし、その際に、IEM溶液が細孔に吸収された。続いて、この複合材料を対流式オーブンで、165℃の温度で内部空気で乾燥した。乾燥すると、微孔性ポリマー構造(ePTFE膜)がIEMに完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、IEMブレンドの溶液を、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。IEMブレンドの溶液は、2つのイオノマー、D2020及びD2021(Ion Power Inc.,USAから入手)を攪拌棒を使用してプラスチックボトル内で混合することによって生成された。まず、EV=509cc/モル当量を有する21.06質量%のイオノマーを含む9.98gのD2020溶液をボトルに注いだ。次に、EV=560cc/モル当量を有する21.15質量%のイオノマーの10.96gのD2021溶液を同じボトルに注いだ。最後に、914gの200プルーフエタノールを加えて、ブレンド中の固形分及び溶媒の濃度を調整した。磁気攪拌棒を内部に配置し、ボトルを磁気攪拌プレート上に24時間放置した。得られたイオン交換材料ブレンドの溶液は、イオノマー固形分14.7質量%、水21.6質量%及びエチルアルコール63.7質量%を有した。得られたイオン交換材料ブレンドは、EV=535cc/モル当量を有した。次いで、複合材料を165℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示した。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有し、IEMの層は等しくない等価体積を有し、最上層はイオノマーのブレンドから作られていた。得られた多層複合膜は、0%RHで7.3ミクロンの厚さ、3.6質量%の微孔性ポリマー構造により占有される体積割合及び1.8meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表9に示した。
本発明例9.2
本発明の例9.2は、上記と同じ手順及び比較例9.1に使用した手順によって調製したが、面積あたりの質量が3.0g/m2、厚さが15.2μm、見かけ密度が0.20g/cc及びバブルポイントが36.6psiである異なる材料を微孔性ポリマーマトリックスとして使用した。EV=413cc/モル当量のIEMとしてのPSFA溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)、水17.3%、エタノール71.5%、固形分11.2%の溶液組成物を使用して、4ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、3ミルの公称ウェットコーティング厚のドローダウンバーを使用して、IEMブレンドの溶液を複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。IEMブレンドの溶液は、2つのイオノマー、EV=413及びEV=458cc/モル当量を含むPSFA IEM溶液(Shanghai Gore 3F Fluoromaterials Co., LTD., Chinaから入手)を、攪拌棒を使用してプラスチックボトルで混合することによって生成した。まず、21.06質量%のイオノマーを含む10.0gのEV=413cc/モル当量のIEM溶液をボトルに注いだ。次に、21.15質量%のイオノマーを含む5.2gのEV=458cc/モル当量のIEM溶液を同じボトルに注いだ。最後に、30.5 gの200プルーフエタノール及び2.0 gのDI水を加えて、ブレンド中の固形分及び溶媒の濃度を調整した。磁気攪拌棒を内部に配置し、ボトルを磁気攪拌プレート上に24時間放置した。得られたイオン交換材料ブレンドの溶液は、イオノマー固形分4.5質量%、水10.0質量%及びエチルアルコール85.5質量%を含んでいた。得られたイオン交換材料ブレンドは、EV=434cc/モル当量を有した。複合膜は完全に閉塞性であり、微孔性ポリマー基材の両側にIEMの層を有し、IEMの層は等しくない等価体積を有し、最上層はイオノマーのブレンドから作られた。得られた複合膜は、0%RHで7.6ミクロンの厚さ、17.6体積%の微孔性ポリマー構造により占められた体積割合及び2.0meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表9に示す。
表9は、比較例9.1及び本発明の例9.2の複合材料の様々な試験手順の結果を示している。
Figure 0007053680000024
表9に示すように、例9.1及び例9.2の複合膜は、同様の厚さ(すなわち、それぞれ7.3及び7.6ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.8及び2meq/cc)を有する。したがって、例9.1及び例9.2の複合膜は、抵抗率測定によって実証されるように、同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性が生成されることが驚くべきことに、予期せずに発見された。例えば、例9.2の複合膜は、例9.1の複合膜の選択性と比較して、選択性が改善又は向上していることを示す(50%RHでの例9.1の0.4MPA/mVと比較して、例9.2の0.6MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線318で示される。
さらに、例9.1と比較して例9.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例9.1と比較して例9.2のイオン交換材料(例えばペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、例9.1の3.6%から例9.2の17.6%まで微孔性ポリマー構造の総体積が増加し、結果として複合膜の強化が改善され(そして複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した))。
シリーズ10
比較例10.1
比較例10.1は以下の手順によって作成した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を手で引っ張ってしわをなくし、この状態で金属フレームで拘束した。次に、EV=560cc/モル当量のIEMとしてのPFSA溶液(Don Power Inc.,USAから入手したD2021)、水26.2%、エタノール57.3%、固形分16.5%の溶液組成物の第一のレイダウンをポリマーシート基材の上面にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD.,Japanから入手)はPET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるように向いていた。IEM(PFSA溶液)コーティングは、3.0ミルの公称ウェットコーティング厚のマイヤーバーを使用して得た。コーティングがまだ湿っている間に、金属フレームに以前に拘束されたePTFE膜1をコーティングにラミネートし、その際に、IEM溶液は細孔に吸収された。続いて、この複合材料を対流式オーブンで165℃の温度で内部の空気により乾燥した。乾燥すると、微孔性ポリマー構造(ePTFE膜)はIEMに完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、EV=509cc/モル当量のIEMとしてのPFSA溶液(Ion Power Inc.,USAから入手したD2020)、水23.5%、エタノール60.5%、固形分16.0%の溶液組成物を3ミル公称ウェットコーティング厚のドローダウンバーを使用して複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。次いで、複合材料を165℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示した。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有し、これらのIEMの層は等しくない等価体積を有した。得られた多層複合膜は、0%RHで8.8ミクロンの厚さ、3.0体積%の微孔性ポリマー構造により占められた体積割合及び1.8meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表10に示す。
本発明例10.2
本発明の実施例10.2は、異なる材料が使用されたことを除いて、上記及び比較例10.1に使用されたものと同じ手順によって調製した。面積あたりの質量が4.8g/m2、厚さが14.8μm、見かけ密度が0.33g/cc、バブルポイントが68.4psiであるePTFE膜11を微孔性ポリマー構造として使用した。EV=458cc/モル当量のIEMとしてのPSFA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水20.2%、エタノール60.0%、固形分19.8%の溶液組成物を使用して、4ミルの公称ウェットコーティング厚4のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=347cc/モル当量のIEMとしてのPFSA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、39.6%水、エタノール41.3%、固形分19.1%の溶液組成物で1ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。複合膜は完全に閉塞性であり、微孔性ポリマー基材の両側にIEMの層を有し、これらのIEMの層は等しくない同等の体積を有した。得られた複合膜は、0%RHで10.3ミクロンの厚さ、20.8体積%の微孔性ポリマー構造により占められた体積割合及び1.9meq/ccの酸含有量を有した。
表10は、比較例10.1及び本発明の例10.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000025
表10に示すように、例10.1及び例10.2の複合膜は、同様の厚さ(すなわち、それぞれ8.8及び10.3ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.8及び1.9meq/cc)を有する。したがって、例10.1及び例10.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性を生成したことが驚くべきことに、予期せずに発見された。例えば、例10.2の複合膜は、例10.1の複合膜と比較して選択性の改善又は増加を示した(すなわち、50%RHでの例10.1の0.4MPA/mVと比較して例10.2の0.6MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線320で示される。
例シリーズ1~10のデータを組み合わせると、より多くの不活性な微孔性ポリマー構造(この場合はePTFE)を添加し、膜の総酸含有量を一定に保つと、4.9~14.5ミクロンの範囲の厚さの多層複合膜又は使用される微孔性ポリマーのタイプ、1つ以上の微孔性ポリマーが存在するか、どのIEMが使用されるか、IEMがブレンドから作成されるか、複合膜の閉塞された微孔性ポリマー構造の両側に同じIEMを複合膜が有するかに関係なく、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することを示した。これは驚くべき予期せぬ発見である。
さらに、例10.1と比較して例10.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例10.1と比較して例10.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を低下させることができ、これにより、微孔性ポリマー構造の総体積が例10.1の3%から例10.2の20.8%に増加し、結果として複合膜の強化が改善され、複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ11
比較例11.1
比較例11.1は以下の手順によって作成した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1の2枚のシートを手で引っ張ってしわをなくし、この状態で金属フレームに拘束した。次に、EV=509cc/モル当量のIEMとしてのPSFA溶液(Ion Power Inc.,USAから入手したD2020)、水22.1%、エタノール62.9%、固形分15%の溶液組成物の第一のレイダウンをポリマーシート基材の上面にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD.,Japanから入手)はPET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるように向けられた。 IEM(PFSA溶液)コーティングは、2.2ミルの公称ウェットコーティング厚のマイヤーバーを使用して得た。コーティングがまだ濡れている間に、以前に金属フレームに拘束されていた第一のePTFE膜1をコーティングにラミネート化し、その際に、IEM溶液が細孔に吸収された。続いて、この複合材料を対流式オーブンで165℃の温度で内部空気で乾燥した。乾燥すると、微孔性ポリマー構造(ePTFE膜)がIEMに完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、IEMの同じ溶液を、3ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。コーティングがまだ湿っている間に、金属フレーム上に予め拘束された第二のePTFE膜1をコーティングにラミネート化し、その際に、IEM溶液は細孔に吸収された。次に、複合材料を165℃で再び乾燥させた。乾燥すると、第二の微孔性ポリマー構造(ePTFE膜)がIEMの第二のレイダウンで完全に吸収された。IEMの第二のレイダウンではまた、微孔性ポリマー基材の2つの層の間に層を形成した。第三のレイダウンでは、IEMの同じ溶液を、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。次いで、複合材料を165℃で再び乾燥させ、その時点でそれはほぼ透明であり、その時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示した。多層複合膜は完全に閉塞性であり、両側に、2つの完全に閉塞された微孔性ポリマー層の間にIEMの層を有した。得られた多層複合膜は、0%RHで11.4ミクロンの厚さ、4.7体積%の微孔性ポリマー構造が占める体積割合及び1.9meq/ccの酸含有量を有した。プロトン/水素ガス輸送選択性測定の結果を表11に示す。
本発明例11.2
本発明の例11.2は、異なる材料を使用したことを除いて、上記と同じ手順及び比較例11.1に使用した手順によって調製した。面積あたりの質量が2.8g/m2、厚さが9.6μm、見かけ密度が0.29g/cc、バブルポイントが34.4psiである第一のePTFE膜4を微孔性ポリマー構造として使用した。EV=413cc/モル当量のIEMとしてのPSFA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水17.3%、エタノール71.5%、固形分11.2%の溶液組成物を使用して、3ミルの公称ウェットコーティング厚のドローダウンバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、4ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。コーティングがまだ湿っている間に、金属フレーム上に予め拘束された第二のePTFE膜4をコーティングにラミネート化し、その際に、IEM溶液が細孔に吸収された。第三のレイダウンでは、EV=413cc/モル当量のIEMとしてのPSFA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水6.2%、エタノール89.8%、固形分4.0%の溶液組成物を3ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、両側に完全に閉塞された2つの微孔性ポリマー層の間にIEMの層を有した。得られた複合膜は、0%RHで9.4ミクロンの厚さ、26.4体積%の微孔性ポリマー構造により占められた体積割合及び1.8meq/ccの酸含有量を有した。プロトン/水素ガス輸送選択性測定の結果を表11に示す。
表11は、比較例11.1及び本発明の例11.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000026
表11に示すように、例11.1及び例11.2の複合膜は、同様の厚さ(すなわち、それぞれ11.4及び9.4ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.9及び1.8meq/cc)を有する。したがって、例11.1及び例11.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性が生成されることが驚くべきことに、予期せずに発見された。例えば、例11.2の複合膜は、例11.1の複合膜と比較して選択性の改善又は増加を示した(すなわち、50%RHでの例11.1の0.4MPA/mVと比較した例11.2の0.5MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線322で示される。
例シリーズ1~11のデータを組み合わせると、より多くの不活性な微孔性ポリマー構造(この場合はePTFE)を添加し、膜の総酸含有量を一定に保つと、4.9~14.5ミクロンの範囲の厚さの多層複合膜又は使用される微孔性ポリマーのタイプ、又は、1つ以上の微孔性ポリマーが存在するか、又は、複数の閉塞された微孔性ポリマー層が接触しているか又はIEMの層によって分離されているか、又は、どのIEMが使用されるか、又は、IEMがブレンドから作成されるか、又は、複合膜が閉塞された微孔性ポリマー構造の両側に同じIEMを有しているかどうかに関係なく、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することを示す。これは、驚くべき予期せぬ発見である。
さらに、例11.1と比較して、例11.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増加させることにより、例11.1と比較して、例11.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、微孔性ポリマー構造の総体積が例11.1の4.7%から例11.2の26.4%に増加し、結果として複合膜の強化が改善され(そして複合膜の製造コストが低下した(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した))。
シリーズ12
比較例12.1
比較例12.1は、異なる材料を使用したことを除き、比較例1.1で使用した手順と同じ手順によって調製した。面積あたりの質量が0.6g/m2、厚さが3.6μm、見かけ密度が0.17g/cc、バブルポイントが75.0psiであるePTFE膜1を微孔性ポリマーマトリックスとして使用した。EV=509cc/モル当量のIEMの溶液(Ion Power Inc.,USAから入手したD2020)、水22.1%、エタノール62.9%、固形分15%の溶液組成物を、0.6ミルの公称ウェットコーティング厚さのマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、IEMの同じ溶液を、0.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、0%RHで2.2ミクロンの厚さ、11.9体積%の微孔性ポリマー構造により占められた体積割合及び1.7meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表12に示す。
本発明例12.2
本発明の例12.2は、異なる材料を使用したことを除き、比較例10.1に使用した手順と同じ手順によって調製した。面積あたりの質量が1.2g/m2、厚さが5.4μm、見かけ密度が0.23g/cc、バブルポイントが38.0psiであるePTFE膜3を微孔性ポリマーマトリックスとして使用した。EV=458cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水13.0%、エタノール74.7%、固形分12.3%の溶液組成物を、0.9ミルの公称ウェットコーティング厚のマイヤーバーを用いて第一のレイダウンでコーティングした。第二のレイダウンでは、EV=413cc/モル当量のIEMの溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水5.5%、エタノール94.0%、固形分0.5%の溶液組成物を、5ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(基材と反対側の表面)にコーティングした。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有した。得られた多層複合膜は、RH 0%で2.5ミクロンの厚さ、21.2体積%の微孔性ポリマー構造により占められた体積割合及び1.8meq/ccの酸含有量を有した。
表12は、比較例12.1及び本発明の例12.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000027
表12に示すように、例12.1及び例12.2の複合膜は、同様の厚さ(すなわち、それぞれ2.2及び2.5ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.7及び1.8meq/cc)を有する。したがって、例12.1及び例12.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、延伸多孔性ポリテトラフルオロエチレン)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、非常に異なる複合膜のパーミアンス特性が生成することが驚くべきことに、予期せずに発見された。例えば、例12.2の複合膜は、例12.1の複合膜と比較して、選択性の改善又は増加を示した(すなわち、50%RHでの例12.1の0.3MPA/mVと比較して、例12.2の0.4MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線324で示される。
例シリーズ1~11のデータを組み合わせると、より多くの不活性な微孔性ポリマー構造(この場合はePTFE)を添加し、膜の総酸含有量を一定に保つと、2.5~14.5ミクロンの範囲の厚さの多層複合膜又は使用される微孔性ポリマーのタイプ、又は、1つ以上の微孔性ポリマーが存在するか、又は、複数の閉塞された微孔性ポリマー層が接触しているか又はIEMの層によって分離されているか、又は、どのIEMが使用されるか、又は、IEMがブレンドから作成されるか、又は、複合膜が閉塞された微孔性ポリマー構造の両側に同じIEMを有しているかどうかに関係なく、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することを示す。これは、驚くべき予期せぬ発見である。
さらに、例12.1と比較して、例12.2の微孔性ポリマー構造(例えばePTFE)の最終質量を増やすことにより、例12.1と比較して例12.2のイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量を下げることができた。これにより、微孔性ポリマー構造の総体積が例12.1の11.9%から例12.2の21.20%に増加し、結果として複合膜の強化が改善され、複合膜の製造コストが削減され(すなわち、複合膜の製造に使用される高価なイオン交換材料の最終質量が低減した)。
シリーズ13
シリーズ13は、2つの比較例のみを含み、強化がされていない。したがって、比較例13.1及び13.2の複合膜は微孔性ポリマー構造を含まない。例13.1で使用した複合膜はIon Power Inc.,USAから入手した非強化膜であるNafion(登録商標)膜211である。例13.2で使用した複合膜はIon Power Inc.,USAから入手した非強化膜であるNafion(登録商標)膜212である。
表13は、比較例13.1及び13.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000028
表13に示すように、例13.1及び例13.2の複合膜は、厚さが異なっていても(すなわち、それぞれ23.9及び47.7ミクロン)、同じ総酸含有量(すなわち、1.8meq/cc)及び同じ選択性(すなわち、0.5MPA/mV)を示す。表13はさらに、Nafion複合膜のプロトンコンダクタンス抵抗)及び水素パーミアンス(すなわち、H2抵抗)を示す。これらの膜は市販されており、参照材料として使用できる。比較例13.1及び13.2の選択性は、図3Aのグラフ300及び図3Bのグラフ350のデータポイント326を使用して示されている。
シリーズ14
比較例14.1
比較例14.1は、以下の手順によって作成した。面積あたり質量が7.9g/m2、厚さが9.3μm、見かけ密度が85g/cc、バブルポイントが0.9psiであるトラックエッチングされたポリカーボネート多孔質膜12を、Structure Probe,Inc.,USAからパート番号E14047-MBで入手した。この多孔質膜は十分な剛性を示し、金属フレーム上に多孔質膜を拘束する必要がなかった。次に、EV=413cc/モル当量のIEMとしてのPFSA溶液(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)、水17.3%、エタノール71.5%、固形分11.2%の溶液組成物の第一のレイダウンをポリマーシート基材の上面にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD.,Japanから入手)は、PET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるように向けられていた。IEM(PFSA溶液)コーティングは、1.5ミルの公称ウェットコーティング厚のドローダウンバーを使用して得た。コーティングがまだ湿っている間に、トラックエッチングされたポリカーボネート多孔質膜12をコーティングにラミネート化し、その際に、IEM溶液は細孔に吸収された。続いて、この複合材料を対流式オーブンで95℃の温度で内部空気で乾燥した。乾燥すると、微孔性ポリマー構造(トラックエッチングされたポリカーボネート多孔性膜)はIEMで完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、IEMの同じ溶液を、4ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。次いで、複合材料を95℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示していた。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有し、これらのIEMの層は等しくない等価体積を有していた。得られた多層複合膜は、RH 0%で12.3ミクロンの厚さ、53.4体積%の微孔性ポリマー構造で占められ体積割合及び1.1meq/ccの酸含有量を有した。
プロトン/水素ガス輸送選択性測定の結果を表14に示す。
本発明例14.2
本発明の例14.2は、異なる材料を使用したことを除き、比較例14.1に関連して上述したのと同じ手順によって調製した。面積あたりの質量が10.37g/m2、厚さが12.3μm、見かけ密度が0.85g/cc、バブルポイントが1.1psiであるトラックエッチングされたポリカーボネート多孔質膜13を、Structure Probe,Inc.,USAから番号E20047-MBで入手した。この多孔質膜は十分な剛性を示し、金属フレーム上に多孔質膜を拘束する必要がなかった。次に、EV=311cc/モル当量(Shanghai Gore 3F Fluoromaterials Co.,LTD.,Chinaから入手)を含むIEMとしてのPFSA溶液、水21.5%、エタノール65.5%、固形分13.0%の溶液組成物の第一のレイダウンをポリマーシート基材の上面にコーティングした。ポリマーシート基材(DAICEL VALUE COATING LTD.,Japanから入手)は、PET及び環状オレフィンコポリマー(COC)の保護層を含み、COC側が上になるように向けられていた。IEM(PFSA溶液)コーティングは、1ミルの公称ウェットコーティング厚のドローダウンバーを使用して得た。コーティングがまだ濡れている間に、トラックエッチングされたポリカーボネート多孔質膜13をコーティングにラミネート化し、その結果、IEM溶液が細孔に吸収された。続いて、この複合材料を対流式オーブンで95℃の温度で内部空気で乾燥させた。乾燥すると、微孔性ポリマー構造(トラックエッチングされたポリカーボネート多孔質膜)はIEMに完全に吸収された。IEMはまた、微孔性ポリマー基材の底面とポリマーシート基材との間に層を形成した。第二のレイダウンでは、IEMの同じ溶液を、2ミルの公称ウェットコーティング厚のドローダウンバーを使用して、複合材料の上面(ポリマーシート基材の反対側の表面)にコーティングした。次いで、複合材料を95℃で再び乾燥させ、この時点でそれはほぼ透明であり、微孔性ポリマー構造の完全な含浸を示していた。多層複合膜は完全に閉塞性であり、微孔性ポリマーマトリックスの両側にIEMの層を有し、これらのIEMの層は等しくない等価体積を有した。得られた多層複合膜は、0%RHで13.5ミクロンの厚さ、64.0体積%の微孔性ポリマー構造により占められた体積割合及び1.2meq/ccの酸含有量を有した。
表14は、比較例14.1及び本発明の例14.2の複合材料の様々な試験手順の結果を示す。
Figure 0007053680000029
表14に示すように、例14.1及び例14.2の複合膜は、同様の厚さ(すなわち、それぞれ12.3及び13.5ミクロン)及び同様の総酸含有量(すなわち、それぞれ1.1及び1.2meq/cc)を有する。したがって、例14.1及び例14.2の複合膜は、抵抗率測定によって実証されるように同様のコンダクタンス特性を有する。しかしながら、微孔性ポリマー構造(例えば、トラックエッチングされた多孔質ポリカーボネート)及びイオン交換材料(例えば、ペルフルオロスルホン酸樹脂)の最終質量の変動により、複合膜の非常に異なるパーミアンス特性を生成することが驚くべきことに、予期せずに発見された。例えば、例14.2の複合膜は、例14.1の複合膜の選択性と比較して、選択性の改善又は増加を示した(すなわち、50%RHで、例14.1の0.081MPA/mVと比較して、例14.2の0.094MPA/mV)。選択性の増加又は改善は、図3Aのグラフ300及び図3Bのグラフ350に示される線328で示される。
例シリーズ1~14のデータを組み合わせることで、膜の総酸含有量を一定に保ちながら、(a)2.5~14.5ミクロンの範囲の厚さの多層複合膜、又は(b)使用される微孔性ポリマーのタイプ、又は(c)1つ以上の微孔性ポリマーが存在するか、又は(d)どのIEMが使用されるか、又は(e)IEMがブレンドから作成されるか、又は(f)複合膜が閉塞された微孔性ポリマー構造の両側に同じIEMを有するかに関係なく、ペルフルオロ化ePTFE又は炭化水素トラックエッチング多孔質ポリカーボネートなどの、より多くの不活性な微孔性ポリマー構造を添加すると、燃料電池用途で使用される多層複合膜の燃料電池性能が向上することが示される。これは驚くべき予期せぬ発見である。
本発明を詳細に説明したが、本発明の主旨及び範囲内の変更は、当業者に容易に明らかであろう。本発明の態様、ならびに上記及び/又は添付の特許請求の範囲に列挙される様々な実施形態及び様々な特徴の部分は、全体又は一部のいずれかで結合又は交換されうることが理解されうる。様々な実施形態の上述の記載において、別の実施形態を参照するこれらの実施形態は、当業者によって理解されるように、他の実施形態と適切に組み合わせることができる。さらに、当業者は、上述の記載が単なる例であり、本発明を限定することを意図していないことを理解するであろう。

Claims (53)

  1. a)複合高分子電解質膜の総体積に基づいて13体積%~65体積%の量で存在する微孔性ポリマー構造、及び、
    b)前記微孔性ポリマー構造内に少なくとも部分的に埋め込まれ、該微孔性ポリマー構造を閉塞させる過フッ素化系イオン交換材料であって、460cc/モル当量以下の等価体積を有する過フッ素化系イオン交換材料、
    を含む複合高分子電解質膜であって、
    前記複合高分子電解質膜の厚さは17ミクロン未満であり、前記複合高分子電解質膜の酸含有量は1.2meq/cc~3.5meq/ccである、複合高分子電解質膜。
  2. 前記過フッ素化系イオン交換材料は1層より多くの過フッ素化系イオン交換材料の層を含み、
    前記過フッ素化系イオン交換材料の層は同じ過フッ素化系イオン交換材料から形成され、
    前記過フッ素化系イオン交換材料のすべての層の平均等価体積は460cc/モル当量以下である、請求項1記載の複合高分子電解質膜。
  3. 前記過フッ素化系イオン交換材料は1層より多くの過フッ素化系イオン交換材料の層を含み、
    過フッ素化系イオン交換材料の第一の層は過フッ素化系イオン交換材料の第二の層の過フッ素化系イオン交換材料とは異なる過フッ素化系イオン交換材料から形成され、
    前記過フッ素化系イオン交換材料のすべての層の平均等価体積は460cc/モル当量以下である、請求項1記載の複合高分子電解質膜。
  4. 前記過フッ素化系イオン交換材料は、前記微孔性ポリマー構造内に完全に埋め込まれている、請求項1~3のいずれか1項記載の複合高分子電解質膜。
  5. 前記微孔性ポリマー構造は第一の表面及び第二の表面を有し、そして
    前記過フッ素化系イオン交換材料は前記第一の表面又は前記第二の表面の上に層を形成している、
    請求項1~4のいずれか1項記載の複合高分子電解質膜。
  6. 前記微孔性ポリマー構造は第一の表面及び第二の表面を有し、そして
    前記過フッ素化系イオン交換材料は前記第一の表面及び前記第二の表面の両方の上に層を形成している、
    請求項1~4のいずれか1項記載の複合高分子電解質膜。
  7. 前記微孔性ポリマー構造は第一の表面及び第二の表面を有し、そして
    前記過フッ素化系イオン交換材料は前記微孔性ポリマー構造内に部分的に埋め込まれ、前記第一の表面、前記第二の表面又はその両方に最も近い微孔性ポリマー構造の非閉塞部分を残す、
    請求項1~3のいずれか1項記載の複合高分子電解質膜。
  8. 前記非閉塞部分はいずれの過フッ素化系イオン交換材料も含まない、請求項7記載の複合高分子電解質膜。
  9. 前記非閉塞部分は前記微孔性ポリマー構造の内側表面への過フッ素化系イオン交換材料のコーティングを含む、請求項7記載の複合高分子電解質膜。
  10. 前記微孔性ポリマー構造は少なくとも2つの微孔性ポリマー層を含み、前記微孔性ポリマー層は同じである、請求項1~9のいずれか1項記載の複合高分子電解質膜。
  11. 前記微孔性ポリマー構造は少なくとも2つの微孔性ポリマー層を含み、そして第一の微孔性のポリマー層の組成は第二の微孔性ポリマー層の組成と異なる、請求項1~9のいずれか1項記載の複合高分子電解質膜。
  12. 前記微孔性ポリマー層の少なくとも2つは直接接触している、請求項10又は11記載の複合高分子電解質膜。
  13. 前記微孔性ポリマー層の少なくとも2つは直接接触していない、請求項10又は11記載の複合高分子電解質膜。
  14. 前記微孔性ポリマー構造はフッ素化ポリマーを含む、請求項1~13のいずれか1項記載の複合高分子電解質膜。
  15. 前記フッ素化ポリマーはポリテトラフルオロエチレン(PTFE)、ポリ(エチレン-コ-テトラフルオロエチレン)(EPTFE)、延伸ポリテトラフルオロエチレン(ePTFE)、ポリフッ化ビニリデン(PVDF)、延伸ポリフッ化ビニリデン(ePVDF)、延伸ポリ(エチレン-コ-テトラフルオロエチレン)(eEPTFE)又はそれらの混合物である、請求項14記載の複合高分子電解質膜。
  16. 前記フッ素化ポリマーは過フッ素化延伸ポリテトラフルオロエチレンである、請求項14記載の複合高分子電解質膜。
  17. 前記微孔性ポリマー構造は炭化水素ポリマーを含む、請求項1~14のいずれか1項記載の複合高分子電解質膜。
  18. 前記炭化水素材料はポリエチレン、ポリプロピレン、ポリカーボネート又はポリスチレンを含む、請求項17記載の複合高分子電解質膜。
  19. 前記微孔性ポリマー構造は複合高分子電解質膜の総体積に基づいて13体積%~45体積%の量で存在する、請求項1~18のいずれか1項記載の複合高分子電解質膜。
  20. 前記微孔性ポリマー構造は複合高分子電解質膜の総体積に基づいて16体積%~43体積%の量で存在する、請求項1~18のいずれか1項記載の複合高分子電解質膜。
  21. 前記微孔性ポリマー構造は複合高分子電解質膜の総体積に基づいて18体積%~36体積%の量で存在する、請求項1~18のいずれか1項記載の複合高分子電解質膜。
  22. 前記微孔性ポリマー構造は複合高分子電解質膜の総体積に基づいて18体積%~28体積%の量で存在する、請求項1~18のいずれか1項記載の複合高分子電解質膜。
  23. 前記過フッ素化系イオン交換材料は255cc/モル当量~460cc/モル当量の等価体積を有する、請求項1~22のいずれか1項記載の複合高分子電解質膜。
  24. 前記過フッ素化系イオン交換材料は255cc/モル当量~415cc/モル当量の量の等価体積を有する、請求項1~22のいずれか1項記載の複合高分子電解質膜。
  25. 前記過フッ素化系イオン交換材料は310cc/モル当量~460cc/モル当量の等価体積を有する、請求項1~22のいずれか1項記載の複合高分子電解質膜。
  26. 前記過フッ素化系イオン交換材料は310cc/モル当量~415cc/モル当量の等価体積を有する、請求項1~22のいずれか1項記載の複合高分子電解質膜。
  27. 前記酸含有量は1.2meq/cm3~3.4meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  28. 前記酸含有量は1.2meq/cm3~3.3meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  29. 前記酸含有量は1.2meq/cm3~2.8meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  30. 前記酸含有量は1.2meq/cm3~2.7meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  31. 前記酸含有量は1.4meq/cm3~3.5meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  32. 前記酸含有量は1.5meq/cm3~3.5meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  33. 前記酸含有量は1.4meq/cm3~3.4meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  34. 前記酸含有量は1.5meq/cm3~3.3meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  35. 前記酸含有量は1.5meq/cm3~2.8meq/cm3である、請求項1~26のいずれか1項記載の複合高分子電解質膜。
  36. 前記複合高分子電解質膜は0.05MPa/mVより大きい選択性を有する、請求項1~35のいずれか1項記載の複合高分子電解質膜。
  37. 前記複合高分子電解質膜は0.35MPa/mVより大きい選択性を有する、請求項1~35のいずれか1項記載の複合高分子電解質膜。
  38. 前記複合高分子電解質膜は0.50MPa/mVより大きい選択性を有する、請求項1~35のいずれか1項記載の複合高分子電解質膜。
  39. 前記複合高分子電解質膜は0.80MPa/mVより大きい選択性を有する、請求項1~35のいずれか1項記載の複合高分子電解質膜。
  40. 前記過フッ素化系イオン交換材料は少なくとも1つのイオノマーを含む、請求項1~39のいずれか1項記載の複合高分子電解質膜。
  41. 前記少なくとも1つのアイオノマーはプロトン伝導性ポリマーを含む、請求項40記載の複合高分子電解質膜。
  42. 前記プロトン伝導性ポリマーはペルフルオロスルホン酸を含む、請求項41記載の複合高分子電解質膜。
  43. 前記少なくとも1つのイオノマーは相対湿度0%で1.96g/cc以上の密度を有する、請求項40~42のいずれか1項記載の複合高分子電解質膜。
  44. 前記複合高分子電解質膜は14ミクロン未満の厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  45. 前記複合高分子電解質膜は13ミクロン未満の厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  46. 前記複合高分子電解質膜は12ミクロン未満の厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  47. 前記複合高分子電解質膜は10ミクロン未満の厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  48. 前記複合高分子電解質膜は8ミクロン未満の厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  49. 前記複合高分子電解質膜は1ミクロン~12ミクロンの厚さを有する、請求項1~43のいずれか1項記載の複合高分子電解質膜。
  50. 前記微孔性ポリマー構造の1つ以上の外側表面に取り付けられた少なくとも1つの支持層をさらに含む、請求項1~49のいずれか1項記載の複合高分子電解質膜。
  51. 少なくとも1つの電極、及び、
    前記少なくとも1つの電極に取り付けられた、請求項1~50のいずれか1項記載の複合高分子電解質膜、
    を含む、膜電極接合体。
  52. 請求項51記載の膜電極接合体を含む燃料電池。
  53. 請求項1~52のいずれか1項記載の複合高分子電解質膜を含むレドックスフロー電池。
JP2019569462A 2017-06-15 2018-06-15 高選択性及び高強度のための高度に強化されたイオノマー膜 Active JP7053680B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022059707A JP7566813B2 (ja) 2017-06-15 2022-03-31 高選択性及び高強度のための高度に強化されたイオノマー膜

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2017/037595 WO2018231232A1 (en) 2017-06-15 2017-06-15 Highly reinforced ionomer membranes for high selectivity and high strength
USPCT/US2017/037595 2017-06-15
PCT/US2018/037777 WO2018232254A1 (en) 2017-06-15 2018-06-15 Highly reinforced ionomer membranes for high selectivity and high strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022059707A Division JP7566813B2 (ja) 2017-06-15 2022-03-31 高選択性及び高強度のための高度に強化されたイオノマー膜

Publications (2)

Publication Number Publication Date
JP2020524367A JP2020524367A (ja) 2020-08-13
JP7053680B2 true JP7053680B2 (ja) 2022-04-12

Family

ID=59216060

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019569462A Active JP7053680B2 (ja) 2017-06-15 2018-06-15 高選択性及び高強度のための高度に強化されたイオノマー膜
JP2022059707A Active JP7566813B2 (ja) 2017-06-15 2022-03-31 高選択性及び高強度のための高度に強化されたイオノマー膜

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022059707A Active JP7566813B2 (ja) 2017-06-15 2022-03-31 高選択性及び高強度のための高度に強化されたイオノマー膜

Country Status (7)

Country Link
US (1) US11380927B2 (ja)
EP (3) EP3910712B1 (ja)
JP (2) JP7053680B2 (ja)
KR (2) KR102424015B1 (ja)
CN (2) CN110741498B (ja)
CA (2) CA3064784C (ja)
WO (2) WO2018231232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079662A (ja) * 2017-06-15 2022-05-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 高選択性及び高強度のための高度に強化されたイオノマー膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210120199A (ko) * 2020-03-26 2021-10-07 현대자동차주식회사 연료전지용 고분자 전해질막 제조방법 및 이에 따라 제조된 연료전지용 고분자 전해질막
US20230369621A1 (en) 2020-08-19 2023-11-16 W. L. Gore & Associates, Inc. Improved electrochemical membrane
GB202015440D0 (en) * 2020-09-30 2020-11-11 Fujifilm Mfg Europe Bv Compounds, compositions and polymer films
WO2022145735A1 (ko) * 2020-12-30 2022-07-07 코오롱인더스트리 주식회사 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리
CN112940325B (zh) * 2021-02-24 2022-07-12 辽宁万鑫富利新材料有限公司 一种可降解塑料复合薄膜及其制备工艺
JP2024524897A (ja) 2021-06-14 2024-07-09 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド ポリマー電解質膜、膜電極接合体及びレドックスフロー電池
US20230399758A1 (en) * 2022-05-25 2023-12-14 Advent Technologies Holdings, Inc. Hydrogen-evolving electrodes, membrane electrode assemblies and electrolyzers based thereon and methods of fabrication thereof
WO2024086293A1 (en) * 2022-10-19 2024-04-25 W. L. Gore & Associates, Inc. Articles having microporous substrates with conformal coating, and methods for making and using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109614A (ja) 2005-10-17 2007-04-26 Kaneka Corp 電解質膜およびその製造方法
JP2007257884A (ja) 2006-03-20 2007-10-04 Japan Gore Tex Inc 電解質膜及び固体高分子形燃料電池
WO2014034415A1 (ja) 2012-08-31 2014-03-06 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
WO2016148017A1 (ja) 2015-03-13 2016-09-22 東レ株式会社 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391705A (en) 1981-05-29 1983-07-05 Envirotech Corporation Ballasting digestor covers
US5463005A (en) 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
US5599614A (en) 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US6130175A (en) * 1997-04-29 2000-10-10 Gore Enterprise Holdings, Inc. Integral multi-layered ion-exchange composite membranes
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
US7094851B2 (en) 2001-12-06 2006-08-22 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US20070087245A1 (en) 2005-10-14 2007-04-19 Fuller Timothy J Multilayer polyelectrolyte membranes for fuel cells
JP5189300B2 (ja) 2007-03-02 2013-04-24 本田技研工業株式会社 複合多孔質膜及びその製造方法
CN100513460C (zh) * 2007-04-27 2009-07-15 新源动力股份有限公司 一种新型复合质子交换膜成型工艺
JP2009016074A (ja) 2007-07-02 2009-01-22 Toyota Motor Corp 電解質膜およびそれを用いた燃料電池
US8557473B2 (en) * 2007-12-11 2013-10-15 Bose Corporation Fuel cell polymer electrolyte membrane
CN101807678B (zh) * 2009-02-18 2013-11-13 大连融科储能技术发展有限公司 电解质隔膜及其复合膜在酸性电解液液流储能电池中应用
WO2010101195A1 (ja) * 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
JP2011071068A (ja) 2009-09-28 2011-04-07 Panasonic Corp 直接酸化型燃料電池
US20110111321A1 (en) * 2009-11-10 2011-05-12 Daimler Ag Composite proton conducting membrane with low degradation and membrane electrode assembly for fuel cells
CN101745321B (zh) * 2009-12-10 2011-06-08 山东东岳神舟新材料有限公司 一种微孔膜增强全氟交联离子交换膜及其制备方法
CA2802973C (en) 2010-06-18 2017-09-12 Shandong Huaxia Shenzhou New Material Co., Ltd Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
KR101797274B1 (ko) * 2011-12-28 2017-11-13 아사히 가세이 가부시키가이샤 레독스 플로우 이차 전지 및 레독스 플로우 이차 전지용 전해질막
US20140080031A1 (en) * 2012-09-14 2014-03-20 GM Global Technology Operations LLC Dual Layered ePTFE Polyelectrolyte Membranes
JP2014110232A (ja) 2012-12-04 2014-06-12 Asahi Kasei E-Materials Corp フッ素系高分子電解質膜
JP6468475B2 (ja) 2013-10-15 2019-02-13 Agc株式会社 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池
KR102431141B1 (ko) 2014-10-20 2022-08-11 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 양성자 교환막을 위한 액체 조성물
JP2016207514A (ja) 2015-04-24 2016-12-08 パナソニックIpマネジメント株式会社 燃料電池用電解質膜とそれを用いた燃料電池
WO2018231232A1 (en) 2017-06-15 2018-12-20 W. L. Gore & Associates, Inc. Highly reinforced ionomer membranes for high selectivity and high strength
CN110137782B (zh) 2019-05-14 2020-09-15 中国科学院半导体研究所 光电振荡器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109614A (ja) 2005-10-17 2007-04-26 Kaneka Corp 電解質膜およびその製造方法
JP2007257884A (ja) 2006-03-20 2007-10-04 Japan Gore Tex Inc 電解質膜及び固体高分子形燃料電池
WO2014034415A1 (ja) 2012-08-31 2014-03-06 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
WO2016148017A1 (ja) 2015-03-13 2016-09-22 東レ株式会社 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079662A (ja) * 2017-06-15 2022-05-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 高選択性及び高強度のための高度に強化されたイオノマー膜
JP7566813B2 (ja) 2017-06-15 2024-10-15 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 高選択性及び高強度のための高度に強化されたイオノマー膜

Also Published As

Publication number Publication date
WO2018231232A1 (en) 2018-12-20
EP4125145A1 (en) 2023-02-01
EP3639315A1 (en) 2020-04-22
CA3064784C (en) 2022-12-06
KR20220106857A (ko) 2022-07-29
JP2022079662A (ja) 2022-05-26
JP7566813B2 (ja) 2024-10-15
EP3639315B1 (en) 2021-08-11
US20200243887A1 (en) 2020-07-30
JP2020524367A (ja) 2020-08-13
CN110741498B (zh) 2022-12-13
WO2018232254A1 (en) 2018-12-20
CN110741498A (zh) 2020-01-31
EP3910712B1 (en) 2022-11-16
US11380927B2 (en) 2022-07-05
CA3172974A1 (en) 2018-12-20
CA3064784A1 (en) 2018-12-20
KR102466595B1 (ko) 2022-11-11
CN115763919A (zh) 2023-03-07
KR102424015B1 (ko) 2022-07-25
EP3910712A1 (en) 2021-11-17
KR20200019700A (ko) 2020-02-24

Similar Documents

Publication Publication Date Title
JP7053680B2 (ja) 高選択性及び高強度のための高度に強化されたイオノマー膜
US6689501B2 (en) Composite ion exchange membrane for use in a fuel cell
Gloukhovski et al. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide
CN112514150B (zh) 具有连续离聚物相的整体复合膜
JP2024109573A (ja) 改善された電気化学膜
JP2024525341A (ja) 改良された電気化学膜
JP2024524897A (ja) ポリマー電解質膜、膜電極接合体及びレドックスフロー電池
US20220293989A1 (en) Highly reinforced ionomer membranes for high selectivity and high strength
WO2024126749A1 (en) Improved multi-layered proton exchange membrane for water electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150