WO2014034415A1 - バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池 - Google Patents

バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池 Download PDF

Info

Publication number
WO2014034415A1
WO2014034415A1 PCT/JP2013/071642 JP2013071642W WO2014034415A1 WO 2014034415 A1 WO2014034415 A1 WO 2014034415A1 JP 2013071642 W JP2013071642 W JP 2013071642W WO 2014034415 A1 WO2014034415 A1 WO 2014034415A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange membrane
composite
exchange resin
vanadium
Prior art date
Application number
PCT/JP2013/071642
Other languages
English (en)
French (fr)
Inventor
良平 岩原
衣里 肥後
小林 真申
西本 晃
真佐子 吉岡
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014532912A priority Critical patent/JPWO2014034415A1/ja
Publication of WO2014034415A1 publication Critical patent/WO2014034415A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33365Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing cyano group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an ion exchange membrane comprising an ion exchange resin and a porous substrate, and is particularly useful for a vanadium redox battery.
  • the redox flow battery is excellent in charge / discharge cycle resistance and safety, and is optimal for a large-sized secondary battery.
  • a redox flow battery is generally a battery that obtains energy by causing a redox reaction of vanadium in a vanadium sulfate solution by circulation of a pump.
  • a cation exchange membrane or an anion exchange membrane is used in order to maintain the ion balance between both electrodes.
  • anion exchange membrane Selemion APS manufactured by Asahi Glass Co., Ltd. is used.
  • an anion exchange membrane needs to pass ions having a large ion radius such as sulfate anion, there is a problem that resistance is high.
  • the ion exchange membrane In addition to ion conductivity, the ion exchange membrane must have properties such as prevention of permeation of the electrolyte and mechanical strength.
  • examples of such an ion exchange membrane include a membrane containing a perfluorocarbon sulfonic acid polymer introduced with a sulfonic acid group represented by Nafion (registered trademark) manufactured by DuPont of the United States, and a neoceptor manufactured by Tokuyama.
  • Nafion registered trademark
  • a membrane containing a crosslinked polystyrene sulfonate is used.
  • a membrane containing a perfluorocarbon sulfonic acid polymer such as Nafion has advantages of excellent chemical durability, high proton conductivity, and low cell resistance.
  • Nafion also has a problem of poor ion permeation selectivity.
  • vanadium ions are also allowed to pass during charging / discharging, so that the amount of active material in the electrolytic solution is reduced and the charging / discharging cycle is significantly deteriorated.
  • a membrane containing a polystyrene sulfonate cross-linked product such as neoceptor
  • advantages such as low cost, low vanadium ion permeability, and excellent ion permeation selectivity.
  • chemical durability and heat resistance such as sulfonic acid groups being eliminated during hydrolysis and heat generation.
  • Patent Document 1 a sulfonic acid group is introduced into an aromatic polymer to improve mechanical strength and heat resistance.
  • most of these techniques are optimized for fuel cell applications, and few techniques optimized for redox flow battery applications have been developed.
  • Patent Document 3 a method of reinforcing an ion exchange membrane with a synthetic resin fabric is proposed, but there is no track record of using it for a vanadium redox battery, and the thickness of the composite membrane exceeds 100 ⁇ m. It is expected to be difficult to achieve both efficiency and high durability.
  • Non-Patent Document 1 sulfonated polyether ether ketone is used for redox flow battery applications, and charge / discharge characteristics superior to Nafion are reported. However, even with these methods, energy efficiency and voltage efficiency are insufficient.
  • an object of the present invention is to provide an ion exchange membrane for a vanadium redox battery having low resistance and excellent durability in long-term charge / discharge cycles.
  • the inventors of the present invention have intensively studied to achieve the above object, and as a result, are a composite ion exchange membrane comprising an ion exchange resin layer comprising a hydrophilic segment and a hydrophobic segment and a porous material layer, wherein the hydrophilic segment and It has been found that the above object is achieved by a specific composite membrane in which an ion exchange resin layer comprising a hydrophobic segment is disposed on one or both sides of a composite ion exchange membrane and the thickness thereof is 5 to 50 ⁇ m.
  • the present invention has the following configuration.
  • a composite ion exchange membrane comprising an ion exchange resin layer containing a hydrophilic component and a hydrophobic component and a porous material layer, wherein the ion exchange resin layer is disposed as an outermost layer on one or both sides of the composite ion exchange membrane
  • a composite ion exchange membrane for vanadium-based redox batteries wherein the outermost layer thickness of at least one surface of the ion exchange resin layer is 5 to 50 ⁇ m.
  • 2. The composite ion exchange membrane for vanadium redox battery according to 1, wherein the composite ion exchange membrane contains at least two ion exchange resin layers having different ion exchange capacities.
  • X is a monovalent or divalent group, any of a nitrile group, an amide group, an ester group or a carboxyl group, Z is an O atom or S atom, and Ar ′ is a divalent aromatic group. Indicates.
  • the ion exchange resin layer and the ion exchange resin in the porous material are both represented by the following general formula (2) as a hydrophilic constituent and by the following general formula (3) as a hydrophobic constituent. 5.
  • Y represents a sulfone group or a carbonyl group, X represents H or a monovalent cation species, Z represents an O atom, an S atom, or a direct bond, and W represents a divalent aromatic group.
  • X represents H or a monovalent cationic species.
  • the porous substrate is selected from the group consisting of synthetic fiber fabric, chemical fiber fabric, natural fiber fabric, synthetic fiber nonwoven fabric, chemical fiber nonwoven fabric, paper, porous film, porous metal plate, and porous ceramic plate.
  • a vanadium redox battery composite comprising the ion exchange membrane according to claim 1 and an electrode.
  • a vanadium-based redox battery comprising the composite according to 9.8.
  • a composite ion exchange membrane comprising an ion exchange resin layer containing a hydrophilic component and a hydrophobic component of the present invention and a layer in which a porous material is filled with an ion exchange resin, the hydrophilic segment and the hydrophobic segment Vanadium-based redox battery, which is excellent in high energy efficiency and long-term charge / discharge cycle durability, with a specific composition in which the ion exchange resin layer is made of one or both surfaces of a composite ion exchange membrane and has a thickness of 5 to 50 ⁇ m It is possible to provide a material that exhibits outstanding performance as an ion exchange membrane.
  • FIG. 1 shows a schematic diagram of a vanadium redox flow battery.
  • FIG. 2 is a diagram illustrating the first embodiment.
  • FIG. 3 is a diagram showing a second embodiment.
  • FIG. 4 is a diagram showing a third embodiment.
  • FIG. 5 shows the fourth embodiment.
  • FIG. 6 shows the fifth embodiment.
  • the present invention provides an ion exchange membrane for a vanadium-based redox battery that has high energy efficiency and excellent durability in a long-term charge / discharge cycle. That is, an ion exchange resin containing a hydrophilic component and a hydrophobic component is combined with a porous material, and a layer made of only the ion exchange resin is arranged on one or both sides of the composite ion exchange membrane, and its thickness is 5 By setting the thickness to ⁇ 50 ⁇ m, it is possible to achieve both the reinforcement effect by the porous material and the resistance reduction effect by the ion exchange resin layer.
  • the polymer or the composition constituting the composite ion exchange membrane for vanadium redox battery of the present invention is not limited in the polymer structure as long as it has two or more polymer compositions having different sulfonic acid group contents.
  • the hydrophilic component is a polymer structure containing an ionic group such as a sulfonic acid group, a phosphonic acid group, or a carboxylic acid group. Examples of these polymers include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • Polyesters such as nylon 6, nylon 6,6, nylon 6,10 and nylon 12, acrylate resins such as polymethyl methacrylate, polymethacrylates, polymethyl acrylate and polyacrylates, polyacryl Acid resins, polymethacrylic acid resins, polyethylene, polypropylene, various polyolefins including polystyrene and diene polymers, polyurethane resins, cellulose resins such as cellulose acetate and ethyl cellulose, polyrelays , Aromatic hydrocarbons such as aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, polybenzthiazole There is no particular limitation as long as it is a polymer in which an ionic group as described above is introduced into a polymer, a fluororesin such as polytetrafluoro
  • sulfonic acid groups having the highest degree of acid dissociation are preferred.
  • antioxidants heat stabilizers, lubricants, tackifiers, plasticizers, crosslinking agents, viscosity modifiers, antistatic agents, antibacterial agents, antifoaming agents.
  • various additives such as a dispersant and a polymerization inhibitor may be included.
  • aromatic hydrocarbon polymer exhibiting high current efficiency, low resistance, heat resistance and high mechanical strength.
  • polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, and polybenzthiazole Preferably exemplified. A polymer or composition obtained by sulfonating these polymers is more preferable.
  • sulfonated polymers or compositions such as polyarylate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, and polyimide.
  • polyarylate polyphenylene sulfide
  • polyphenylene oxide polyphenylene oxide
  • polysulfone polyethersulfone
  • polyetheretherketone polyetherimide
  • polyimide polyetherimide
  • polyimide polyimide
  • the hydrocarbon polymer preferably has a hydrophobic component represented by the following general formula (1).
  • X is a monovalent or divalent group, any of a nitrile group, an amide group, an ester group or a carboxyl group, Z is an O atom or S atom, and Ar ′ is a divalent aromatic group. Indicates.
  • the hydrocarbon-based polymer includes the following general formula (2) as a hydrophilic constituent and a constituent represented by the general formula (3) as a hydrophobic constituent.
  • the dimensional stability in the electrolytic solution is excellent, and the toughness of the film is also high, so that both high current efficiency and low resistance can be achieved.
  • Y represents a sulfone group or a carbonyl group, X represents H or a monovalent cation species, Z represents an O atom, an S atom, or a direct bond, and W represents a divalent aromatic group.
  • the most preferable hydrocarbon-based polymer includes the following general formula (4) as a hydrophilic constituent and a constituent represented by the general formula (5) as a hydrophobic constituent.
  • X represents H or a monovalent cation species.
  • the polymer or composition constituting the composite ion exchange membrane for a vanadium redox battery of the present invention may be a block polymer comprising the components of the above general formula (2) and general formula (3). It is preferable to use a block polymer because it has excellent dimensional stability in the electrolytic solution and improves the vanadium ion permeation suppression effect due to the microphase separation structure of the hydrophilic segment and the hydrophobic segment.
  • the composite ion exchange membrane for vanadium redox batteries of the present invention may contain structural units other than the above general formulas (2) and (3) and the sulfonic acid group-containing component. At this time, it is preferable that structural units other than those represented by the general formula (2) and the general formula (3) are 50% by mass or less of the sulfonic acid group-containing component. By setting it to 50% by mass or less, the characteristics of the ion exchange membrane for vanadium redox battery of the present invention can be utilized.
  • ion exchange containing a hydrophilic component and a hydrophobic component ion exchange containing a hydrophilic component and a hydrophobic component
  • the resin layer is preferably disposed on the outermost layer on one or both sides of the porous material, and more preferably disposed on the outermost layer on both surfaces.
  • the thickness of each layer is preferably 5 to 50 ⁇ m, and more preferably 10 to 30 ⁇ m.
  • the thickness of the ion exchange resin layer is 50 ⁇ m or more, vanadium ion permeation suppression and long-term charge / discharge cycle durability are improved, but the membrane resistance of the composite ion exchange membrane is remarkably increased.
  • the thickness is preferably 5 ⁇ m or more because of easy thickness control.
  • the filling rate of the ion exchange resin in the porous material is preferably 10 to 100%, more preferably 50 to 100%.
  • the membrane resistance of the composite ion exchange membrane can be lowered by lowering the interface resistance between the porous material and the electrolytic solution.
  • the filling rate of the ion exchange resin in the porous material is less than 100%, the surface of the porous material needs to be subjected to a hydrophilic treatment.
  • the thickness of the porous material layer filled with the ion exchange resin is preferably 5 to 100 ⁇ m, more preferably 7 to 70 ⁇ m, and further preferably 10 to 50 ⁇ m.
  • ion exchange resins having different sulfonic acid group contents are layered, and the number thereof is preferably 2 or more and 5 or less, more preferably 2 or more and 3 layers. It has the following structure.
  • the ion exchange resin layer that is the outermost layer on one side is the A layer and the ion exchange resin layer filled with the porous material is the B layer, for example, as a hydrophobic component
  • the composition in which the sulfonic acid group content is A layer ⁇ B layer Things are preferred.
  • the resistance of the B layer increases because the porous material is insulative, but this increase can be offset by increasing the sulfonic acid group content. In that case, vanadium permeation
  • the polymer structure to be used is not limited, but it is preferable to use a polymer having the structure of the general formula (2) as the hydrophilic constituent and the polymer having the general formula (3) as the hydrophobic constituent.
  • a composition in which the A layer is in the range of 20 ⁇ m ⁇ 33 and the B layer is in the range of 30 ⁇ m ⁇ 65 is preferable.
  • m of the A layer within the above range, permeation of vanadium ions can be suppressed.
  • m of the A layer is larger than 33, the swellability with respect to the electrolytic solution and the vanadium ion permeability are too large, and the current efficiency tends to be lowered.
  • m of the B layer within the above range, a sufficiently low resistance can be exhibited when used as an ion exchange membrane for a vanadium redox battery.
  • m is less than 30, the resistance tends to be high when used as an ion exchange membrane for a vanadium redox battery.
  • sulfonic acid group content can be calculated
  • the composite ion exchange membrane having a three-layer structure preferably has a structure in which an ion exchange resin layer filled with a porous material is sandwiched between ion exchange resin layers containing a hydrophilic component and a hydrophobic component.
  • the ion exchange resin layer arranged as the outermost layer on both sides is the A layer and the ion exchange resin layer filled with the porous material is the B layer, in the general formula (1), the sulfonic acid group content is the A layer. ⁇ B layer is preferred.
  • the polymer structure used and the range of m are the same as in the case of the two-layer structure.
  • the IEC (ion exchange capacity) of the sulfonic acid group of each layer is preferably 0.5 meq / g or more and 2.0 or less for the A layer, and 2.0 or more and 3.0 meq / g or less for the B layer. Furthermore, the IEC of the A layer is 1.0 meq / g or more and 2.0 or less, and the IEC of the B layer is more preferably 1.8 or more and 2.5 meq / g or less. When the IEC of the A layer is 0.5 meq / g or less, the membrane resistance of the composite ion exchange membrane tends to increase.
  • the difference in ion exchange capacity between layers having different ion exchange capacities is preferably 0.5 meq / g or more and 1.5 meq / g or less, more preferably 0.8 meq / g or more and 1.3 meq / g or less.
  • the hydrocarbon-based ion exchange membrane having a structure of two or more layers preferably has a logarithmic polymer viscosity of each layer measured by a method described later of 0.5 dl / g or more.
  • the logarithmic viscosity is more preferably 0.8 dl / g or more.
  • problems in processability such as difficulty in dissolving the polymer occur, which is not preferable.
  • polar organic solvents such as N-methylpyrrolidone and N, N-dimethylacetamide can be generally used. If the solubility is low, concentrated sulfuric acid is used. It can also be measured.
  • the method for producing the composite ion exchange membrane for vanadium redox battery of the present invention can be carried out by any known method.
  • the method of impregnating the polymer in the porous material is not particularly limited, but any polymer solution or its melt is cast after placing or pressing the porous material after casting, and then casting again on the porous material.
  • a method of casting a polymer solution or a melt thereof, a method of impregnation by passing a porous material in an arbitrary polymer solution or the melt thereof, and the like are preferable.
  • the viscosity of the polymer solution or the melt thereof needs to be 2.0 to 200000 mPa ⁇ s, preferably 5.0 to 150,000 mPa ⁇ s, more preferably 10 to 100000 mPa ⁇ s. If it is less than 2.0 mPa ⁇ s, the impregnated solution flows down from the porous material, so that the polymer filling rate in the porous material decreases. When it exceeds 200,000 mPa ⁇ s, the solution is not impregnated in the porous material, and the remaining air adversely affects the characteristics of the composite membrane.
  • a method for laminating ion exchange resins having different amounts of sulfonic acid groups is not particularly limited, but it is preferable to perform lamination by adhesion or superposition.
  • Overlaying refers to laminating a plurality of ion exchange membranes without using an adhesive or the like.
  • Adhesion refers to bonding a plurality of ion exchange membranes with an adhesive ion exchange resin or the like, or solution casting in multiple layers.
  • a plurality of ion exchange membranes may be superposed in a state where water or an organic solvent is included on the surface. In the case of bonding, it can be carried out by any known method such as overcoating by solution casting, solution casting in multiple layers, and heating press.
  • the most preferable method for forming the composite ion exchange membrane for vanadium redox batteries of the present invention is casting from a solution, and the solvent is removed from the cast solution to obtain an ion exchange membrane for vanadium redox batteries. it can. After impregnating a porous material with an ion exchange resin as described above, an ion exchange resin layer composed of a hydrophilic segment and a hydrophobic segment is formed by superposition or adhesion, and a composite ion exchange composed of two or more layers is formed. A membrane can be obtained.
  • Aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, hexamethylphosphonamide, etc.
  • an appropriate alcohol can be selected from alcohols such as methanol and ethanol, but is not limited thereto. A plurality of these solvents may be used as a mixture within a possible range.
  • the concentration of the compound in the solution is preferably in the range of 0.1 to 50% by mass. If the compound concentration in the solution is less than 0.1% by mass, it tends to be difficult to obtain a good molded product, and if it exceeds 50% by mass, the workability tends to deteriorate.
  • a method of obtaining a molded body from a solution can be performed using a conventionally known method.
  • the solvent is an organic solvent
  • the solvent is preferably distilled off by heating or drying under reduced pressure. At this time, it can be formed into various shapes such as a fiber shape, a film shape, a pellet shape, a plate shape, a rod shape, a pipe shape, a ball shape, and a block shape in a composite form with other compounds as necessary. .
  • the sulfonic acid group in the molded article thus obtained may contain a salt form with a cationic species, but it can be converted to a free sulfonic acid group by acid treatment as necessary. You can also.
  • the removal of the solvent is preferably by drying in view of the uniformity of the ion exchange membrane for vanadium redox batteries. Moreover, in order to avoid decomposition
  • the thickness of the solution at the time of casting is not particularly limited, but is preferably 10 to 1000 ⁇ m. More preferably, it is 50 to 500 ⁇ m.
  • the thickness of the solution is less than 10 ⁇ m, the form as an ion exchange membrane for a vanadium redox battery tends to be not maintained, and if it is thicker than 1000 ⁇ m, a non-uniform ion exchange membrane tends to be easily formed.
  • a method for controlling the cast thickness of the solution a known method can be used.
  • the thickness can be controlled by using a coating means such as an applicator or a doctor blade, or by adjusting the amount and concentration of the solution with a cast area constant using a glass petri dish or the like.
  • the cast solution can obtain a more uniform film by adjusting the solvent removal rate.
  • the evaporation rate can be lowered by lowering the temperature in the first stage.
  • the solidification rate of the compound can be adjusted by leaving the cast solution in the air or in an inert gas for an appropriate period of time. it can.
  • the porosity of the porous material used for the composite ion exchange membrane for vanadium redox batteries of the present invention is preferably 20 to 90%, more preferably 40 to 90%.
  • a porous material having a porosity in the above range the polymer can be filled efficiently and the membrane resistance can be lowered sufficiently.
  • strength of a porous material it is required that it is 1.00 MPa or more, and it is more preferable that it is 2.00 MPa or more. Thereby, sufficient strength can be obtained when the porous material is filled with the polymer.
  • the thickness is preferably 5 to 150 ⁇ m, more preferably 10 to 80 ⁇ m, and still more preferably 20 to 60 ⁇ m. By setting the thickness within the above range, the membrane resistance of the layer in which the porous material is filled with the polymer can be lowered, and the handleability at the time of production is improved.
  • the pore size of the porous material used for the composite ion exchange membrane for vanadium redox battery of the present invention is preferably 0.05 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 7 ⁇ m or less.
  • the form of the porous material used in the composite ion exchange membrane for vanadium redox battery of the present invention is as follows: synthetic fiber fabric, chemical fiber fabric, natural fiber fabric, synthetic fiber nonwoven fabric, chemical fiber nonwoven fabric, paper, porous film, porous metal plate A porous ceramic plate is preferable, and a synthetic fiber fabric, a synthetic fiber nonwoven fabric, a chemical fiber nonwoven fabric, or a porous film is more preferable.
  • the constituent components of the porous material used for the composite ion exchange membrane for vanadium redox batteries of the present invention are not particularly limited as long as they can withstand the usage environment of the vanadium redox batteries. Specifically, it is preferably a component having acid resistance and oxidation resistance. More preferably, a fluororesin such as polyolefin, polytetrafluoroethylene or polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, It is a porous material made of polybenzoxazole, polybenzthiazole or the like.
  • a fluororesin such as polyolefin, polytetrafluoroethylene or polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone,
  • a vanadium redox battery is a battery that is charged and discharged by an oxidation-reduction reaction of vanadium having different valences.
  • the ion exchange membrane is used as a diaphragm for adjusting the ion balance in the positive electrode and the negative electrode and preventing mixing of vanadium having different valences.
  • the hydrocarbon ion exchange membrane for a vanadium redox battery having a structure of two or more layers according to the present invention may be used for a redox flow battery in which an aqueous electrolyte is charged and discharged by circulating a pump, or an aqueous electrolyte.
  • a redox battery in which a carbon electrode is impregnated with vanadium hydrate may be used.
  • a redox flow battery that charges and discharges aqueous electrolyte solution by circulating a pump has a diaphragm disposed between a pair of current collector plates facing each other with a gap interposed therebetween, for example.
  • An electrode material is sandwiched between at least one of the diaphragms, and the electrode material includes an electrolytic cell having a structure including an electrolytic solution made of an aqueous solution containing an active material.
  • the battery composite refers to an ion exchange membrane and an electrode material (3 and 5 in FIG. 1).
  • the aqueous electrolyte examples include iron-chromium, titanium-manganese-chromium, chromium-chromium, iron-titanium, etc., in addition to the vanadium electrolyte as described above, but the vanadium electrolyte is preferable.
  • the carbon electrode material assembly of the present invention uses a vanadium-based electrolyte having a viscosity of 0.005 Pa ⁇ s or more at 25 ° C. or a vanadium-based electrolyte containing 1.5 mol / l or more of vanadium ions. Useful for redox flow batteries.
  • Solution viscosity The polymer powder was dissolved in N-methylpyrrolidone at a concentration of 0.5 g / dl, and the viscosity was measured using a Ubbelohde viscometer in a constant temperature bath at 30 ° C., and the logarithmic viscosity ln [ta / tb] / Evaluation was made in c) (ta is the number of seconds that the sample solution was dropped, tb was the number of seconds that the solvent was dropped, and c was the polymer concentration).
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flow direction) and 1 cm in the width direction is formed, and charging and discharging are repeated at a constant current density, current efficiency, cell resistance, energy efficiency, voltage efficiency was calculated as follows.
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium oxysulfate was used for the positive electrode electrolyte
  • a 2.5 mol / l sulfuric acid aqueous solution of 1.5 mol / l vanadium sulfate was used for the negative electrode electrolyte. It was.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • the charging voltage V C50 and the discharging voltage V D50 corresponding to the amount of electricity when the charging rate is 50% are obtained from the amount of electricity-voltage curve, and the cell resistance R ( ⁇ ⁇ cm 2 ) with respect to the electrode geometric area is obtained from Equation 3. .
  • E is a cell open circuit voltage of 1.432 V (measured value) when the charging rate is 50%
  • I is a current value of 0.4 A in constant current charge / discharge.
  • Equation 5 Energy efficiency: ⁇ E Using the current efficiency ⁇ I and the voltage efficiency ⁇ V described above, the energy efficiency ⁇ E is obtained by Equation 5.
  • NMR measurement A polymer (sulfonic acid group is Na or K salt) was dissolved in a solvent, and 1 H-NMR was measured at room temperature using a UNITY-500 manufactured by VARIAN. Heavy dimethyl sulfoxide was used as the solvent. From the peak area value derived from the structural formula (4) and the peak area value derived from the structural formula (5), the molar ratio of the constituent components was calculated, and the values of m and n were calculated.
  • cross-sectional observation of composite ion exchange membrane After embedding a composite ion-exchange membrane piece with a resin, a cross-sectional sample was prepared using a microtome. The prepared cross-sectional sample was observed and photographed with a differential interference microscope (OPTIPHOT manufactured by Nikon Corporation, objective lens 40 times) (FIGS. 2 and 3). The composite ion-exchange membrane piece was cut and subjected to Pt sputtering was observed with a scanning electron microscope S-4500 manufactured by Hitachi at an acceleration voltage of 5 kV (FIG. 4).
  • OPTIPHOT manufactured by Nikon Corporation, objective lens 40 times
  • Example 1 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 5.000 g (0.01012 mole), 2,6-dichlorobenzonitrile (abbreviation: DCBN) 2.2215 g ( 0.01288 mole), 4,4'-biphenol 4.2846 g (0.02299 mole), potassium carbonate 3.4957 g (0.02529 mole) and 2.61 g of molecular sieves were weighed into a 100 ml four-necked flask and flushed with nitrogen. . After adding 30 ml of NMP and stirring at 150 ° C.
  • the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 5 hours). After standing to cool, the precipitated molecular sieve was removed and the mixture was precipitated in water as a strand. The obtained polymer was washed in boiling water for 1 hour and then dried.
  • the polymer structural formula is shown below (hereinafter the structure is referred to as polymer 1).
  • the IEC determined by titration after treating polymer 1 with 2M-sulfuric acid was 2.03 meq / g.
  • the resulting film was treated with boiling water for 1 hour in dilute sulfuric acid (6 ml of concentrated sulfuric acid, 300 ml of water) to remove the salt and convert it to acid, and then boiled with pure water for 1 hour to remove the free acid component. And then dried.
  • dilute sulfuric acid (6 ml of concentrated sulfuric acid, 300 ml of water)
  • pure water for 1 hour to remove the free acid component.
  • the thickness of the outermost ion exchange resin layer was 20 ⁇ m, and the thickness of the porous material layer was 45 ⁇ m.
  • the produced composite ion exchange membrane was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.), and a cell as shown in FIG. 1 was assembled.
  • a small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid passing direction) and 1 cm in the width direction was prepared, and charge / discharge was repeated at a constant current density to evaluate the ion exchange membrane performance.
  • a 3 mol / l sulfuric acid aqueous solution of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte
  • a 3 mol / l sulfuric acid aqueous solution of 2 mol / l vanadium sulfate was used for the negative electrode electrolyte.
  • the amount of the electrolytic solution was excessively large with respect to the cell and the piping.
  • the liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.
  • Example 2 A composite ion exchange membrane was prepared and battery performance was evaluated in the same manner as in Example 1 except that the porous material used was changed to Lydall's Solopor3P07A (thickness 20 ⁇ m, porosity 83%, strength 12 MPa). By observing the cross section, it was confirmed that the ion exchange resin layers were disposed on both sides of the porous material layer, and the composite ion exchange membrane was filled with the ion exchange resin in the porous material layer (FIG. 3). The thicknesses of the outermost ion exchange resin layers were 30 ⁇ m and 7 ⁇ m, respectively, and the thickness of the porous material layer was 13 ⁇ m.
  • Example 3 A composite ion exchange membrane was prepared in the same manner as in Example 1 except that the porous material used was changed to Sumitomo Electric's Poeflon HPW-045-30 (thickness 30 ⁇ m, porosity 60%). evaluated. By observing the cross section, it was confirmed that the ion exchange resin layer was a composite ion exchange membrane in which the ion exchange resin layer was disposed on both sides of the porous material layer and the ion exchange resin was filled in the porous material layer (FIG. 4). The thickness of the exchange resin layer was 20 ⁇ m, and the thickness of the porous material layer was 25 ⁇ m.
  • Example 4 5.000 g (0.01012 mole) of S-DCDPS, 1.4367 g (0.00833 mole) of DCBN, 3.6501 g (0.01959 mole) of 4,4′-biphenol, and 2.9800 g (0.02155 mole) of potassium carbonate. ), 2.61 g of the molecular sieve was weighed into a 100 ml four-necked flask and flushed with nitrogen. After adding 30 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 5 hours).
  • polymer 3 The polymer structural formula is shown below (hereinafter the structure is referred to as polymer 3). After the polymer 3 was treated with 2M-sulfuric acid, the IEC determined by titration was 2.33 meq / g.
  • a composite ion exchange membrane was prepared in the same manner as in Example 3 except that the polymer filled in the porous substrate was polymer 3, the cast thickness of polymer 3 was 200 ⁇ m, and the cast thickness of polymer 1 was 200 ⁇ m. Evaluated. By observing the cross section, it was confirmed that the ion exchange resin layer was disposed on both sides of the porous material layer, and the composite ion exchange membrane was filled with the ion exchange resin in the porous material layer (FIG. 5). The thickness of the outermost ion exchange resin layer was 14 ⁇ m on one side, 8 ⁇ m on the other side, and the thickness of the porous material layer was 20 ⁇ m.
  • Example 5 (Example 5) Implementation was performed except that the porous material used was Lydoll Solupor 5P09B (thickness 38 ⁇ m, porosity 83%, strength 8 MPa), and the polymer filled in the porous substrate and the polymer arranged in the outermost layer were both polymer 1.
  • a composite ion exchange membrane was prepared in the same manner as in Example 2, and the battery performance was evaluated. By observing the cross section, it was confirmed that the ion exchange resin layer was disposed on both surfaces of the porous material layer, and the composite ion exchange membrane was filled with the ion exchange resin in the porous material layer (FIG. 6).
  • the thickness of the outermost ion exchange resin layer was 18 ⁇ m on one side, 7 ⁇ m on the other side, and the thickness of the porous material layer was 13 ⁇ m.
  • Example 2 The ion exchange membrane performance was evaluated in the same manner as in Example 1 except that a single layer ion exchange membrane (30 ⁇ m) made of polymer 3 was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.).
  • Comparative Example 2 Ion exchange membrane performance was evaluated in the same manner as in Example 1 except that a single-layer ion exchange membrane (30 ⁇ m) made of polymer 1 was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.).
  • Example 3 Ion exchange membrane performance was evaluated in the same manner as in Example 1 except that a single-layer ion exchange membrane (30 ⁇ m) made of polymer 2 was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.).
  • Comparative Example 4 Ion exchange membrane performance was evaluated in the same manner as in Example 1 except that Nafion 115CS manufactured by DuPont USA was sandwiched between carbon electrode materials (XF30A manufactured by Toyobo Co., Ltd.).
  • Example 1 when the ion exchange resin layer and the packing layer on the porous substrate have different amounts of sulfonic acid groups (Examples 1 to 4), It has been shown that it exhibits very high current efficiency, low resistance, and excellent energy efficiency.
  • Example 5 even when the ion exchange resin layer and the filling layer to the porous substrate are made of the same sulfonic acid group, the long-term charge / discharge is significantly longer than that of the uncomposite membrane (Comparative Examples 1 to 3). Improved cycle durability. Further, the same applies to Examples 1 to 3. These composite membranes showed higher energy efficiency than the perfluorosulfonic acid membrane (Comparative Example 4).
  • the outermost ion exchange resin layer and the porous substrate filling layer are made of polymers with different sulfonic acid group contents, which not only provides durability, but also reduces the resistance of the composite ion exchange membrane and ion permeation.
  • the selectivity was compatible.
  • a composite ion exchange membrane comprising an ion exchange resin layer containing a hydrophilic component and a hydrophobic component and a porous material layer, wherein the ion exchange resin layer is disposed as an outermost layer on one or both sides of the composite ion exchange membrane
  • the vanadium redox battery composite ion exchange membrane is characterized in that the outermost layer thickness of at least one surface of the ion exchange resin layer is 5 to 50 ⁇ m, and has high energy efficiency and excellent durability for long-term charge / discharge cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】高エネルギー効率及び長期充放電サイクル耐久性に優れた、バナジウム系レドックス電池用イオン交換膜として際立った性能を示す材料を提供することにある。 【解決手段】親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層及び多孔質材料層からなる複合イオン交換膜であって、前記イオン交換樹脂層が複合イオン交換膜の片面もしくは両面の最外層として配置され、該イオン交換樹脂層において、少なくとも片面の最外層の厚みが5~50μmであることを特徴とするバナジウム系レドックス電池用複合イオン交換膜。

Description

バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
 本発明は、イオン交換樹脂と多孔質基材から成るイオン交換膜に関するものであり、特に、バナジウム系レドックス電池に有用である。
近年、エネルギー効率や環境性に優れた新しい二次電池が注目を集めている。特に、太陽光や風力などの自然エネルギーを貯蔵するため、大型の二次電池が強く求められている。中でも、レドックスフロー電池は充放電サイクル耐性や安全性に優れるため、大型の二次電池に最適である。
 レドックスフロー電池は一般的に、ポンプの循環によって、硫酸バナジウム溶液中のバナジウムの酸化還元反応を起こし、エネルギーを得る電池である。このレドックスフロー電池は、両極間のイオンバランスを保つためにカチオン交換膜またはアニオン交換膜が用いられている。
アニオン交換膜には旭ガラス社製のセレミオンAPSが用いられている。しかしながら、アニオン交換膜は硫酸アニオンなどイオン半径の大きいイオンを通す必要があるため、抵抗が高いなどの問題点がある。
 イオン交換膜には、イオン伝導性以外にも、電解液の透過防止や機械的強度などの特性が必要である。このようなイオン交換膜としては、例えば米国デュポン社製ナフィオン(登録商標)に代表されるようなスルホン酸基を導入したパーフルオロカーボンスルホン酸ポリマーを含む膜や、トクヤマ社製ネオセプタに代表されるようなポリスチレンスルホン酸架橋体を含む膜が用いられている。
ナフィオンなどのパーフルオロカーボンスルホン酸ポリマーを含む膜は化学耐久性に優れ、プロトン伝導性が高く、セル抵抗を低くできる長所を有している。しかしながら、ナフィオンはイオン透過選択性に乏しいという問題点もある。具体的には、充放電中にバナジウムイオンも通してしまうため、電解液中の活物質量が減少し、充放電サイクルが著しく悪化してしまう。また、高コスト、廃棄時の環境負荷が大きいという問題点もある。
 一方、ネオセプタなどのポリスチレンスルホン酸架橋体を含む膜は低コストで、バナジウムイオンを通しにくく、イオン透過選択性に優れるなどの長所を有している。しかしながら、加水分解や発熱時にスルホン酸基が脱離してしまうなど、化学耐久性や耐熱性にも課題を抱えている。
 そこで、バナジウム系レドックス電池用イオン交換膜において、高エネルギー効率と高耐久性を両立させるための手法がいくつか提案されている。例えば、特許文献1及び特許文献2では芳香族ポリマーにスルホン酸基を導入し、機械強度と耐熱性を向上している。しかしながら、これらの手法のほとんどは燃料電池用途に最適化されたものであり、レドックスフロー電池用途に最適化された手法はほとんど開発されていない。
特許文献3では、合成樹脂製ファブリックでイオン交換膜を補強する方法が提案されているが、バナジウム系レドックス電池に使用した実績はなく、複合膜の厚みは100μmを超えるものであるので、高エネルギー効率と高耐久性を両立するには困難であると予想される。
また、非特許文献1ではスルホン化したポリエーテルエーテルケトンをレドックスフロー電池用途に用い、ナフィオンよりも優れた充放電特性を報告している。しかしながら、これらの手法でもエネルギー効率や電圧効率が不十分である。
特表平11-502245号 特開2004-10631号公報 特開平8-12775号公報
ジャーナル・オブ・パワーソースズ(Journal of Power Sources)、(中国)2011年、195巻、P.4380-4383
 そこで、本発明の目的は、かかる事情に鑑み、低抵抗かつ長期充放電サイクルに耐久性に優れたバナジウム系レドックス電池用イオン交換膜を提供することにある。
 本発明者らは、上記目的を達成すべく鋭意研究したところ、親水性セグメントと疎水性セグメントからなるイオン交換樹脂層及び多孔質材料層からなる複合イオン交換膜であって、前記親水性セグメントと疎水性セグメントからなるイオン交換樹脂層が複合イオン交換膜の片面もしくは両面に配置され、その厚みが5~50μmである特定の複合膜により、上記目的が達成されることを見いだすに至った。
本発明は、以下の構成からなる。
1.親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層及び多孔質材料層からなる複合イオン交換膜であって、前記イオン交換樹脂層が複合イオン交換膜の片面もしくは両面の最外層として配置され、該イオン交換樹脂層において、少なくとも片面の最外層厚みが5~50μmであることを特徴とするバナジウム系レドックス電池用複合イオン交換膜。
2.前記複合イオン交換膜が、少なくともイオン交換容量の異なる2層以上のイオン交換樹脂層を含有することを特徴とする、1に記載のバナジウム系レドックス電池用複合イオン交換膜。
3.前記多孔質材料の強度が1.00MPa以上であることを特徴とする、1~2に記載のバナジウム系レドックス電池用複合イオン交換膜。
4.前記複合イオン交換膜において、前記多孔質材料中にイオン交換樹脂を充填すると共にイオン交換樹脂層及び多孔質材料中のイオン交換樹脂がいずれも、前記疎水性構成成分として下記一般式(1)及び前記親水性構成成分として酸性イオン性基を含むことを特徴とする1~3に記載のバナジウム系レドックス電池用複合イオン交換膜。
Figure JPOXMLDOC01-appb-C000006
                              (1)  
ただし、Xは1価又は2価の基で、ニトリル基、アミド基、エステル基、カルボキシル基のいずれかを、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
5.前記複合イオン交換膜において、前記イオン交換樹脂層及び多孔質材料中のイオン交換樹脂がいずれも、親水性構成成分として下記一般式(2)を、疎水性構成成分として下記一般式(3)で表される構成成分を含有することを特徴とする4に記載のバナジウム系レドックス電池用複合イオン交換膜。
Figure JPOXMLDOC01-appb-C000007
                            (2)
Figure JPOXMLDOC01-appb-C000008
                            (3)
m、nは一般式(2)と一般式(3)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある。Yはスルホン基またはカルボニル基を、XはHまたは1価のカチオン種を、ZはO原子、S原子、直接結合のいずれかを、Wは2価の芳香族基を示す。
6.前記複合イオン交換膜において、親水性構成成分として下記一般式(4)を、疎水性構成成分として下記一般式(5)で表される構成成分を有することを特徴とする5に記載のバナジウム系レドックス電池用イオン交換膜。
Figure JPOXMLDOC01-appb-C000009
                            (4)
Figure JPOXMLDOC01-appb-C000010
                            (5)
m、nは一般式(4)と一般式(5)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある。XはHまたは1価のカチオン種を示す。
7.前記多孔質材料が、多孔質基材が合成繊維布帛、化学繊維布帛、天然繊維布帛、合成繊維不織布、化学繊維不織布、紙、多孔フィルム、多孔金属板、多孔セラミック板からなる群より選択されるいずれかであることを特徴とする、1に記載のバナジウム系レドックス電池用複合イオン交換膜。
8.請求項1~7のいずれかに記載のイオン交換膜と電極とを含有することを特徴とするバナジウム系レドックス電池用複合体。
9.8に記載の複合体を含有することを特徴とするバナジウム系レドックス電池。
 本発明の親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層及び多孔質材料にイオン交換樹脂が充填された層からなる複合イオン交換膜であって、前記親水性セグメントと疎水性セグメントからなるイオン交換樹脂層が複合イオン交換膜の片面もしくは両面に配置され、その厚みが5~50μmである特定組成物により、高エネルギー効率及び長期充放電サイクル耐久性に優れた、バナジウム系レドックス電池用イオン交換膜として際立った性能を示す材料を提供することができる。
図1はバナジウム系レドックスフロー電池の概略図を示す。 図2は実施例1を示す図である。 図3は実施例2を示す図である。 図4は実施例3を示す図である。 図5は実施例4を示す図である。 図6は実施例5を示す図である。
以下、本発明を詳細に説明する。本発明は、高エネルギー効率かつ長期充放電サイクルに耐久性に優れた、バナジウム系レドックス電池用イオン交換膜を提供するものである。すなわち、親水性構成成分と疎水性構成成分を含有するイオン交換樹脂を多孔質材料と複合化させ、イオン交換樹脂のみから成る層を複合イオン交換膜の片面もしくは両面に配置し、その厚みを5~50μmにすることによって、多孔質材料による補強効果とイオン交換樹脂層による抵抗低減効果を両立させることができる。
 本発明のバナジウム系レドックス電池用複合イオン交換膜を構成するポリマー又は組成物としては、スルホン酸基含有量が異なるポリマー組成を2層以上有していればポリマー構造に制限はない。親水性構成成分とは、スルホン酸基、ホスホン酸基、カルボン酸基などのイオン性基を含有するポリマー構造であり、これらのポリマーとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン12などのポリアミド類、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系炭化水素系ポリマー、ポリテトラフルオロエチレン、ポリビニリデンフルオリドなどのフッ素系樹脂、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、ベンゾオキサジン樹脂などに前記のようなイオン性基を導入したポリマーであれば、特に制限はない。イオン性基の中でも、酸解離度の最も高いスルホン酸基が好ましい。また、これらの組成物中には、必要に応じて、例えば酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤などの各種添加剤を含んでいても良い。
より好ましくは、高電流効率、低抵抗、耐熱性、高機械強度を示す芳香族系炭化水素系ポリマーである。具体的には、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールが好ましく例示される。これらのポリマーをスルホン化したポリマー又は組成物であることがより好ましい。
さらに好ましくは、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミドなどのスルホン化したポリマー又は組成物である。これらのポリマー又は組成物である場合、ポリマー構造がより剛直であるため、より優れた耐熱性や機械強度を示す。
低抵抗かつバナジウムイオン透過を抑制するには、ポリマー構造間の微小な空隙をできるだけ小さくすることが好ましい。そのため、ポリマー構造間に立体障害を引き起こしてしまう嵩高い構造、例えば、t-ブチル基などの長鎖脂肪族基やフルオレニル基などを導入することは好ましくなく、ポリマー構造間に物理相互作用をもたらすような官能基を導入することが好ましい。物理相互作用をもたらす官能基としては、イオン性基以外の極性官能基が好ましく、中でもニトリル基、アミド基、エステル基、カルボキシル基であることが好ましい。さらに、耐加水分解性や物理相互作用の強さから、ニトリル基であることが最も好ましい。従って、炭化水素系ポリマーにおいて好ましいのは、下記一般式(1)で表される疎水性構成成分を有するものである。
Figure JPOXMLDOC01-appb-C000011
                           (1)  
ただし、Xは1価又は2価の基で、ニトリル基、アミド基、エステル基、カルボキシル基のいずれかを、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
炭化水素系ポリマーにおいてさらに好ましいのは、親水性構成成分として下記一般式(2)を、とともに疎水性構成成として一般式(3)で示される構成成分を含むものである。ポリマー構造中にベンゾニトリル構造を有していることにより電解液中での寸法安定性に優れるとともに、フィルムの強靱性も高いものとなり、高電流効率と低抵抗を両立できる。
Figure JPOXMLDOC01-appb-C000012
                            (2)
Figure JPOXMLDOC01-appb-C000013
                           (3)
m、nは一般式(2)と一般式(3)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある。Yはスルホン基またはカルボニル基を、XはHまたは1価のカチオン種を、ZはO原子、S原子、直接結合のいずれかを、Wは2価の芳香族基を示す。
炭化水素系ポリマーにおいて最も好ましいのは、親水性構成成分として下記一般式(4)を、とともに疎水性構成成として一般式(5)で示される構成成分を含むものである。ビフェニル構造及びベンゾニトリル構造を有していることにより電解液中での寸法安定性に優れるとともに、フィルムの強靱性も高いものとなり、高電流効率と低抵抗を両立できる。
Figure JPOXMLDOC01-appb-C000014
                            (4)
Figure JPOXMLDOC01-appb-C000015
                            (5)
上記一般式(4)および一般式(5)において、m、nは一般式(4)と一般式(5)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある組成物が好ましい。
ただし、XはHまたは1価のカチオン種を示す。
本発明のバナジウム系レドックス電池用複合イオン交換膜を構成するポリマー又は組成物は上記一般式(2)および一般式(3)の構成成分からなるブロックポリマーであっても良い。ブロックポリマーにすることで、電解液中での寸法安定性に優れると共に、親水性セグメントと疎水性セグメントのミクロ相分離構造により、バナジウムイオン透過抑制効果が向上するため好ましい。
また、本発明のバナジウム系レドックス電池用複合イオン交換膜においては上記一般式(2)および一般式(3)とスルホン酸基含有成分以外の構造単位が含まれていてもかまわない。このとき、上記一般式(2)および一般式(3)で示される以外の構造単位はスルホン酸基含有成分の50質量%以下であることが好ましい。50質量%以下とすることにより、本発明のバナジウム系レドックス電池用イオン交換膜の特性を活かすことができる。
本発明のバナジウム系レドックス電池用複合イオン交換膜において、多孔質材料による補強効果とイオン交換樹脂層による抵抗低減効果を発現させるためには、親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層が多孔質材料の片面または両面の最外層に配置されていることが好ましく、両面の最外層に配置されていることがより好ましい。イオン交換樹脂層を多孔質材料の片面または両面の最外層に配置させることにより、電解液とイオン交換膜との界面抵抗を十分に下げることができる。
親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層において、各層の厚みについては、5~50μmであることが好ましく、10~30μmであることがより好ましい。イオン交換樹脂層の厚みを上記範囲内にすることで、複合イオン交換膜の低抵抗化、バナジウムイオンの透過抑制、長期充放電サイクルに対する耐久性をすべて満たすことができる。イオン交換樹脂層の厚みが50μm以上の場合、バナジウムイオンの透過抑制と長期充放電サイクル耐久性は向上するが、複合イオン交換膜の膜抵抗が著しく上昇してしまう。5μm以下でも上記の性能をすべて満たすこともできるが、厚み制御の容易さから、5μm以上であると好ましい。
多孔質材料中のイオン交換樹脂の充填率については、10~100%であることが好ましく、より好ましくは50~100%である。多孔質材料中に上記範囲内のイオン交換樹脂を充填することにより、多孔質材料と電解液との界面抵抗を下げることで、複合イオン交換膜の膜抵抗を下げることができる。多孔質材料中のイオン交換樹脂の充填率が100%未満の場合、多孔質材料の表面に親水化処理を施す必要がある。
イオン交換樹脂が充填された多孔質材料層の厚みとしては、5~100μmであることが好ましく、より好ましくは7~70μmであり、さらに好ましくは10~50μmである。イオン交換樹脂が充填された多孔質材料層の厚みを上記範囲内とすることで、複合イオン交換膜の低抵抗化、バナジウムイオンの透過抑制、長期充放電サイクルに対する耐久性をすべて満たすことができる。上記の範囲外にした場合、一方の特性は良くなるが、他方の特性を著しく低下させることになる。
本発明の複合イオン交換膜においては、スルホン酸基含有量の異なるイオン交換樹脂を層状化し、その数は2層以上5層以下の構造であることが好ましく、より好ましくは、2層以上3層以下の構造である。
2層構造からなる複合イオン交換膜においては、片面の最外層となるイオン交換樹脂層をA層、多孔質材料に充填されたイオン交換樹脂層をB層とした場合、例えば疎水性構成成分として上記一般式(1)を、親水性構成成分としてスルホン酸基を、上記A層及びB層を構成するイオン交換樹脂に含有する場合において、スルホン酸基含有量がA層<B層となる組成物が好ましい。B層は多孔質材料が絶縁性のため抵抗が増加するが、この増加分についてはスルホン酸基含有量を上げることで相殺させることができる。その際、A層にスルホン酸基含有量の少ないイオン交換樹脂を用いることで、バナジウム透過抑制も両立させることができる。
前述の通り、用いるポリマー構造に制限はないが、上記親水性構成成分として一般式(2)、疎水性構成成分として一般式(3)の構造を有するポリマーを用いることが好ましい。その際、一般式(2)、一般式(3)において、A層は20≦m≦33、B層は30≦m≦65の範囲にある組成物が好ましい。A層のmを上記範囲内に設定することで、バナジウムイオンの透過を抑制することができる。A層のmが33よりも大きい場合には電解液に対する膨潤性及びバナジウムイオン透過性が大きくなりすぎて電流効率が低下する傾向にある。一方、B層のmを上記範囲内に設定することで、バナジウム系レドックス電池用イオン交換膜として使用したときに十分な低抵抗を示すことができる。mが30よりも少ない場合には、バナジウム系レドックス電池用イオン交換膜として使用したときに高抵抗な傾向がある。なお、スルホン酸基含有量は後述する滴定により求めることができる。より好ましくは、A層は26≦m≦33、B層は35≦m≦55である。
3層構造からなる複合イオン交換膜においては、親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層で多孔質材料に充填されたイオン交換樹脂層を挟み込んだ構造が好ましい。両面の最外層として配置されたイオン交換樹脂層をA層、多孔質材料に充填されたイオン交換樹脂層をB層とした場合、上記一般式(1)において、スルホン酸基含有量がA層<B層であることが好ましい。用いるポリマー構造やmの範囲については、2層構造の場合と同様である。
 各層のスルホン酸基のIEC(イオン交換容量)は、A層は0.5meq/g以上2.0以下であり、B層は2.0以上、3.0meq/g以下であることが好ましい。さらに、A層のIECは1.0meq/g以上、2.0以下であり、B層のIECは1.8以上、2.5meq/g以下であることがより好ましい。A層のIECが0.5meq/g以下である場合は、複合イオン交換膜の膜抵抗が高くなる傾向がある。B層のIECが3.0meq/g以上である場合は、電解液に対する膨潤性及びバナジウムイオン透過性が大きくなりすぎて使用に適さなくなる傾向がある。イオン交換容量が異なる層におけるイオン交換容量の差は0.5meq/g以上1.5meq/g以下であることが好ましく、より好ましくは0.8meq/g以上1.3meq/g以下である。
また、2層以上の構造からなる炭化水素系イオン交換膜は、後で述べる方法により測定した各層のポリマー対数粘度が0.5dl/g以上であることが好ましい。対数粘度が0.5dl/gよりも小さいと、イオン交換膜として成形したときに、膜が脆くなりやすくなる。対数粘度は、0.8dl/g以上であることがさらに好ましい。一方、対数粘度が5を超えると、ポリマーの溶解が困難になるなど、加工性での問題が出てくるので好ましくない。なお、対数粘度を測定する溶媒としては、一般にN-メチルピロリドン、N,N-ジメチルアセトアミドなどの極性有機溶媒を使用することができるが、これらに溶解性が低い場合には濃硫酸を用いて測定することもできる。
本発明のバナジウム系レドックス電池用複合イオン交換膜を製造する方法としては、公知の任意の方法で行うことができる。まず、多孔質材料中にポリマーを含浸させる方法として特に限定されないが、任意のポリマー溶液またはその溶融物をキャスト後に多孔質材料を置くまたは押し当てた後に再度重ねてキャストする方法、多孔質材料上にポリマー溶液またはその溶融物をキャストする方法、任意のポリマー溶液中またはその溶融物中に多孔質材料を通すことにより含浸する方法などが好ましい。
多孔質材料中にポリマーを含浸させる際、ポリマー溶液またはその溶融物の粘度は2.0~200000mPa・sであることが必要であり、5.0~150000mPa・sが好ましく、さらに好ましくは10~100000mPa・sである。2.0mPa・s未満であると、含浸した溶液が多孔質材料から流れ落ちてしまうため多孔質材料中へのポリマー充填率が低下してしまう。200000mPa・sを超えると溶液が多孔質材料中に含浸されなくなり、残った空気が複合膜の特性に悪影響を及ぼす。
スルホン酸基量が異なるイオン交換樹脂を積層する方法は特に限定されないが、接着または重ね合わせによる積層を行うことが好ましい。重ね合わせとは、接着剤などを用いずに複数のイオン交換膜を積層することを言う。接着とは、複数のイオン交換膜を接着性イオン交換樹脂等で貼り合わせることや、多層で溶液キャストすることを言う。重ね合わせる場合は、複数のイオン交換膜を、表面に水や有機溶媒を含ませた状態で重ねてもよい。接着させる場合は、溶液キャストの重ね塗りや多層での溶液キャスト、加熱プレスなどの公知の任意の方法で行うことができる。
 本発明のバナジウム系レドックス電池用複合イオン交換膜を成形する手法として最も好ましいのは、溶液からのキャストであり、キャストした溶液から溶媒を除去してバナジウム系レドックス電池用イオン交換膜を得ることができる。前述のように多孔質材料にイオン交換樹脂を含浸させた後、親水性セグメントと疎水性セグメントからなるイオン交換樹脂層を重ね合わせまたは接着などで形成させ、2層以上の構造からなる複合イオン交換膜を得ることができる。溶液キャストの重ね塗りや多層での溶液キャストにおける溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒や、メタノール、エタノール等のアルコール類から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。溶液中の化合物濃度は0.1~50質量%の範囲であることが好ましい。溶液中の化合物濃度が0.1質量%未満であると良好な成形物を得るのが困難となる傾向にあり、50質量%を超えると加工性が悪化する傾向にある。溶液から成形体を得る方法は従来から公知の方法を用いて行うことができる。溶媒が、有機溶媒の場合には、加熱又は減圧乾燥によって溶媒を留去させることが好ましい。この際、必要に応じて他の化合物と複合された形で繊維状、フィルム状、ペレット状、プレート状、ロッド状、パイプ状、ボール状、ブロック状などの様々な形状に成形することもできる。溶解挙動が類似する化合物と組み合わせた場合には、良好な成形ができる点で好ましい。このようにして得られた成形体中のスルホン酸基はカチオン種との塩の形のものを含んでいても良いが、必要に応じて酸処理することによりフリーのスルホン酸基に変換することもできる。
溶媒の除去は、乾燥によることがバナジウム系レドックス電池用イオン交換膜の均一性からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下でできるだけ低い温度で乾燥することもできる。また、溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液の厚みは特に制限されないが、10~1000μmであることが好ましい。より好ましくは50~500μmである。溶液の厚みが10μmよりも薄いとバナジウム系レドックス電池用イオン交換膜としての形態を保てなくなる傾向にあり、1000μmよりも厚いと不均一なイオン交換膜ができやすくなる傾向にある。溶液のキャスト厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどの塗布手段を用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度を調整して厚みを制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱して溶媒を除去する場合には最初の段階では低温にして蒸発速度を下げることができる。また、水などの非溶媒に浸漬して溶媒を除去する場合には、キャストした溶液を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を調整することができる。
本発明のバナジウム系レドックス電池用複合イオン交換膜に用いる多孔質材料の空孔率は20~90%であることが好ましく、より好ましくは40~90%である。空孔率が上記範囲内にある多孔質材料を用いることで、ポリマーの充填を効率良く行うことができると共に、膜抵抗を十分に下げることができる。また、多孔質材料の強度については、1.00MPa以上であることが必要であり、2.00MPa以上であることがより好ましい。これにより、多孔質材料にポリマーを充填した際に十分な強度を得ることができる。厚みについては、5~150μmであることが好ましく、10~80μmであることがより好ましく、20~60μmであることがさらに好ましい。厚みを上記範囲内に設定することで、多孔質材料にポリマーを充填した層の膜抵抗を下げることができると共に、製造時の取り扱い性も良好となる。
本発明のバナジウム系レドックス電池用複合イオン交換膜に用いる多孔質材料の空孔サイズは、0.05μm以上10μm以下であることが好ましく、0.1μm以上7μm以下であることがより好ましい。空孔サイズを上記範囲内に設定することで、多孔質材料へのポリマー充填が容易になると共に、多孔質材料の補強効果が十分発揮できる。
本発明のバナジウム系レドックス電池用複合イオン交換膜に用いる多孔質材料の形態としては、合成繊維布帛、化学繊維布帛、天然繊維布帛、合成繊維不織布、化学繊維不織布、紙、多孔フィルム、多孔金属板、多孔セラミック板であることが好ましく、合成繊維布帛、合成繊維不織布、化学繊維不織布、多孔フィルムであることがより好ましい。これらの形態の多孔質材料を用いることで、ポリマーの含浸を効率よく行えると共に、製造時の取り扱い性が良好となる。
本発明のバナジウム系レドックス電池用複合イオン交換膜に用いる多孔質材料の構成成分としては、バナジウム系レドックス電池の使用環境に耐えうるものであれば特に制限はない。具体的には、耐酸性及び耐酸化性を有する構成成分であることが好ましい。より好ましくは、ポリオレフィン、ポリテトラフルオロエチレンやポリビニリデンフルオリドなどのフッ素樹脂、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどからなる多孔質材料である。
 バナジウム系レドックス電池とは、価数の異なるバナジウムの酸化還元反応によって充放電を行う電池である。イオン交換膜は正極・負極内のイオンバランスを調製すると共に、価数の異なるバナジウムの混合を防ぐための隔膜として用いる。本発明の2層以上の構造からなるバナジウム系レドックス電池用炭化水素系イオン交換膜は、水溶液系電解液をポンプの循環によって充放電を行うレドックスフロー電池に用いてもよく、または水溶液系電解液の代わりにバナジウム水和物を炭素電極に含浸したレドックス電池として用いても良い。水溶液系電解液をポンプの循環によって充放電を行うレドックスフロー電池は、例えば間隙を介した状態で対向して配設された一対の集電板間に隔膜が配設され、該集電板と隔膜との間に少なくとも一方に電極材が圧接挟持され、電極材は活物質を含んだ水溶液からなる電解液を含んだ構造を有する電解槽を備える。電池複合体とは、イオン交換膜と電極材からなることを指す(図1の3及び5)。
 水溶液系電解液としては、前述の如きバナジウム系電解液の他、鉄-クロム系、チタン-マンガン-クロム系、クロム-クロム系、鉄-チタン系などが挙げられるが、バナジウム系電解液が好ましい。本発明の炭素電極材集合体は、特に、粘度が25℃にて0.005Pa・s以上であるバナジウム系電解液、あるいは1.5mol/l以上のバナジウムイオンを含むバナジウム系電解液を使用するレドックスフロー電池に用いるのが有用である。
以下本発明を、実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。
溶液粘度:ポリマー粉末を0.5g/dlの濃度でN-メチルピロリドンに溶解し、30℃の恒温槽中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度ln[ta/tb]/c)で評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。
電池特性:上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm を有する小型のセルを作り、定電流密度で充放電を繰り返し、電流効率、セル抵抗、エネルギー効率、電圧効率を下記の通りに算出した。また、正極電解液には1.5mol/lのオキシ硫酸バナジウムの2.5mol/l硫酸水溶液を用い、負極電解液には1.5mol/lの硫酸バナジウムの2.5mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。
 (a)電流効率:η 
 充電に始まり、放電で終わる1サイクルのテストにおいて、電流密度を電極幾何面積当たり100mA/cm2(1600mA)として、1.7Vまでの充電に要した電気量をQクーロン、1.0Vまでの定電流放電、およびこれに続く1.2Vでの定電圧放電で取りだした電気量をそれぞれQ、Qクーロンとし、数式1で電流効率ηI を求める。
Figure JPOXMLDOC01-appb-M000016
 (b)セル抵抗:R
 負極液中のV3+をV2+に完全に還元するのに必要な理論電気量Qthに対して、放電により取りだした電気量の比を充電率とし、数式2で充電率を求める。
Figure JPOXMLDOC01-appb-M000017
 充電率が50%のときの電気量に対応する充電電圧VC50、放電電圧VD50を電気量-電圧曲線からそれぞれ求め、数式3より電極幾何面積に対するセル抵抗R(Ω・cm )を求める。
Figure JPOXMLDOC01-appb-M000018
 (c)電圧効率:η
 上記の方法で求めたセル抵抗Rを用いて数式74の簡便法により電圧効率ηを求める。
Figure JPOXMLDOC01-appb-M000019
 ここで、Eは充電率50%のときのセル開回路電圧1.432V(実測値)、Iは定電流充放電における電流値0.4Aである。
 (d)エネルギー効率:η
 前述の電流効率ηと電圧効率ηを用いて、数式5によりエネルギー効率ηを求める。
Figure JPOXMLDOC01-appb-M000020
長期充放電サイクル耐久性:1.0Vのセルに対し電流密度を電極幾何面積当たり100mA/cm2(全体で1600mA)として1.6Vまでの定電流充電を行い、次に1.6Vから電流密度を電極幾何面積当たり100mA/cm2(全体で1600mA)とした定電流放電を行って1.
0Vに到達した時点を1サイクルとする。このサイクルを充放電が不可能になるまで繰り返し、その際のサイクル数をレドックスフロー電池耐久性とする。
NMR測定:ポリマー(スルホン酸基はNaもしくはK塩)を溶媒に溶解し、VARIAN社製UNITY-500を用いてH-NMRは室温で測定を行った。溶媒には重ジメチルスルホキシドを用いた。構造式(4)に由来するピーク面積値と構造式(5)に由来するピーク面積値から、構成成分のmol比を算出し、m及びnの値を算出した。
IEC:乾燥したイオン交換膜100mgを、0.01NのNaOH水溶液50mlに浸漬し、25℃で一晩攪拌した。その後、0.05NのHCl水溶液で中和滴定した。中和滴定には、平沼産業(株)製、電位差滴定装置COMTITE-980を用いた。イオン交換容量は下記式で計算して求めた。
イオン交換容量[meq/g]=(10-滴定量[ml])/2
複合イオン交換膜の断面観察:複合イオン交換膜小片を樹脂包埋した後、ミクロトームを用いて断面試料作製を行った。作製した断面試料は、微分干渉顕微鏡(ニコン社製OPTIPHOT、対物レンズ40倍)で観察、写真撮影した(図2及び図3)。
複合イオン交換膜小片を割断し、Ptスパッタを施したものを、日立製走査型電子顕微鏡S-4500で、加速電圧5kVで観察した(図4)。
(実施例1)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)5.000g(0.01012mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)2.2215g(0.01288mole)、4,4’-ビフェノール4.2846g(0.02299mole)、炭酸カリウム3.4957g(0.02529mole)、モレキュラーシーブ2.61gを100ml四つ口フラスコに計り取り、窒素を流した。30mlのNMPを入れて、150℃で一時間撹拌した後、反応温度を195-200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約5時間)。放冷の後、沈降しているモレキュラーシーブを除いて水中にストランド状に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、乾燥した。ポリマーの対数粘度は1.24dl/gを示し、上記構造式において、m=44、n=56であった。ポリマー構造式を下記に示す(以下構造をポリマー1と称する)。ポリマー1を2M-硫酸で処理後、滴定で求めたIECは2.03meq/gを示した。
Figure JPOXMLDOC01-appb-C000021
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を4.3220g(0.00875mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を4.1847g(0.02426mole)、4,4’-ビフェノール6.1494g(0.03300mole)、炭酸カリウム5.0171g(0.03630mole)とする以外は、実施例1と同様にして重合を行い、上記構造式において、m=26.5、n=73.5のポリマーを得た。ポリマーの対数粘度は、1.58dl/gを示した。ポリマー構造式を下記に示す(以下構造をポリマー2と称する)。ポリマー2を2M-硫酸で処理後、滴定で求めたIECは1.33meq/gを示した。
Figure JPOXMLDOC01-appb-C000022
得られたポリマー1およびポリマー2について、それぞれ10gをNMP67mlに溶解した。調製したポリマー1の溶液をホットプレート上ガラス板に約330μm厚にキャストした。次に、三井化学社製シンテックスナノ6(厚み110μm、空孔率90%、強度1.14MPa)をキャストした溶液上に置き、80℃で1時間加熱乾燥した。乾燥後、調製したポリマー2の溶液を約330μm厚に重ね塗りし、同様に加熱乾燥後、水中に一晩以上浸漬した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間沸騰水処理して塩をはずし酸に変換した後、純水でさらに1時間煮沸することで遊離した酸成分を除去した後に乾燥した。断面観察により、イオン交換樹脂層が多孔質材料層の片面に配置され、多孔質材料層内にイオン交換樹脂が充填された複合イオン交換膜であることを確認した(図2)。最外層のイオン交換樹脂層の厚みは20μm、多孔質材料層の厚みは45μmであった。
 作製した複合イオン交換膜を炭素電極材料(東洋紡社製XF30A)で挟み込み、図1で示したようなセルを組み立てた。上下方向(通液方向)に10cm、幅方向に1cmの電極面積10cm を有する小型のセルを作り、定電流密度で充放電を繰り返し、イオン交換膜性能の評価を行った。正極電解液には2mol/lのオキシ硫酸バナジウムの3mol/l硫酸水溶液を用い、負極電解液には2mol/lの硫酸バナジウムの3mol/l硫酸水溶液を用いた。電解液量はセル、配管に対して大過剰とした。液流量は毎分6.2mlとし、30℃で測定を行った。
(実施例2)
使用した多孔質材料をLydall社製Solupor3P07A(厚み20μm、空孔率83%、強度12MPa)に変更した以外は、実施例1と同様にして複合イオン交換膜を調製し、電池性能を評価した。断面観察により、イオン交換樹脂層が多孔質材料層の両面に配置され、多孔質材料層内にイオン交換樹脂が充填された複合イオン交換膜であることを確認した(図3)。最外層のイオン交換樹脂層のそれぞれの厚みは30μm、7μmであり、多孔質材料層の厚みは13μmであった。
(実施例3)
使用した多孔質材料を住友電工社製ポアフロンHPW-045-30(厚み30μm、空孔率60%)に変更した以外は、実施例1と同様にして複合イオン交換膜を調製し、電池性能を評価した。断面観察により、イオン交換樹脂層が多孔質材料層の両面に配置され、多孔質材料層内にイオン交換樹脂が充填された複合イオン交換膜であることを確認した(図4)最外層のイオン交換樹脂層の厚みは共に20μmであり、多孔質材料層の厚みは25μmであった。
(実施例4)
S-DCDPSを5.000g(0.01012mole)、DCBNを1.4367g(0.00833mole)、4,4’-ビフェノールを3.6501g(0.01959mole)、炭酸カリウムを2.9800g(0.02155mole)、モレキュラーシーブ2.61gを100ml四つ口フラスコに計り取り、窒素を流した。30mlのNMPを入れて、150℃で一時間撹拌した後、反応温度を195-200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約5時間)。放冷の後、沈降しているモレキュラーシーブを除いて水中にストランド状に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、乾燥した。ポリマーの対数粘度は1.33dl/gを示し、上記構造式において、m=55、n=45であった。ポリマー構造式を下記に示す(以下構造をポリマー3と称する)。ポリマー3を2M-硫酸で処理後、滴定で求めたIECは2.33meq/gを示した。
Figure JPOXMLDOC01-appb-C000023
多孔質基材に充填するポリマーをポリマー3とし、ポリマー3のキャスト厚を200μm、ポリマー1のキャスト厚を200μmとした以外は、実施例3と同様にして複合イオン交換膜を調製し、電池性能を評価した。断面観察により、イオン交換樹脂層が多孔質材料層の両面に配置され、多孔質材料層内にイオン交換樹脂が充填された複合イオン交換膜であることを確認した(図5)。最外層のイオン交換樹脂層の厚みは、一方の片面は14μm、もう一方の片面は8μmであり、多孔質材料層の厚みは20μmであった。
(実施例5)
使用した多孔質材料をLydall社製Solupor5P09B(厚み38μm、空孔率83%、強度8MPa)とし、多孔質基材に充填するポリマー及び最外層に配置したポリマーを共にポリマー1とした以外は、実施例2と同様にして複合イオン交換膜を調製し、電池性能を評価した。断面観察により、イオン交換樹脂層が多孔質材料層の両面に配置され、多孔質材料層内にイオン交換樹脂が充填された複合イオン交換膜であることを確認した(図6)。最外層のイオン交換樹脂層の厚みは、一方の片面は18μm、もう一方の片面は7μmであり、多孔質材料層の厚みは13μmであった。
(比較例1)
3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(略号:S-DCDPS)を4.4560g(0.00902mole)、2,6-ジクロロベンゾニトリル(略号:DCBN)を3.1583g(0.01831mole)、4,4’-ビフェノール5.0912g(0.02732mole)、炭酸カリウム4.1538g(0.03005mole)とする以外は、実施例1と同様にして重合を行い、上記構造式において、m=33、n=67のポリマーを得た。ポリマーの対数粘度は、1.58dl/gを示した。ポリマー構造式を下記に示す(以下構造をポリマー4と称する)。ポリマー4を2M-硫酸で処理後、滴定で求めたIECは1.71meq/gを示した。
Figure JPOXMLDOC01-appb-C000024
ポリマー3からなる単層イオン交換膜(30μm)を炭素電極材料(東洋紡社製XF30A)で挟み込んだ以外は、実施例1と同様にしてイオン交換膜性能を評価した。
(比較例2)
ポリマー1からなる単層イオン交換膜(30μm)を炭素電極材料(東洋紡社製XF30A)で挟み込んだ以外は、実施例1と同様にしてイオン交換膜性能を評価した。
(比較例3)
ポリマー2からなる単層イオン交換膜(30μm)を炭素電極材料(東洋紡社製XF30A)で挟み込んだ以外は、実施例1と同様にしてイオン交換膜性能を評価した。
(比較例4)
米国デュポン社製Nafion115CSを炭素電極材料(東洋紡社製XF30A)で挟み込んだ以外は、実施例1と同様にしてイオン交換膜性能を評価した。
 実施例1~3及び比較例1~4で作製したイオン交換膜を用いて、100mA/cm2で充放電を繰り返し実施し、その初期性能と充放電サイクル耐久性の測定を行った。その結果、表1のようになった。
Figure JPOXMLDOC01-appb-T000025
 表1の結果から明らかなように、イオン交換樹脂層及び多孔質基材への充填層を、異なるスルホン酸基量を有するものとした場合(実施例1~4)の複合イオン交換膜は、非常に高い電流効率を示すと共に、抵抗も低く、優れたエネルギー効率を示すことがわかった。また、実施例5のように、イオン交換樹脂層及び多孔質基材への充填層を同一のスルホン酸基とした場合でも、未複合膜(比較例1~3)よりも大幅な長期充放電サイクル耐久性も向上した。さらに、実施例1~3においても、同様であった。また、これらの複合膜はパーフルオロスルホン酸膜(比較例4)よりも高いエネルギー効率を示した。このように、多孔質材料と複合化及び最外層を設けることにより、大幅な耐久性向上を確認できた。さらに、最外層のイオン交換樹脂層と多孔質基材への充填層を、スルホン酸基含有量の異なるポリマーとすることにより、耐久性だけでなく、複合イオン交換膜の低抵抗化とイオン透過選択性をも両立できた。
親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層及び多孔質材料層からなる複合イオン交換膜であって、前記イオン交換樹脂層が複合イオン交換膜の片面もしくは両面の最外層として配置され、該イオン交換樹脂層において、少なくとも片面の最外層厚みが5~50μmであることを特徴とするバナジウム系レドックス電池用複合イオン交換膜により、高エネルギー効率かつ長期充放電サイクルに耐久性に優れたバナジウム系レドックス電池用イオン交換膜を提供することができると共に、バナジウム系レドックス電池の性能向上に寄与することができる。
 1…集電板、2…スペーサ、3…イオン交換膜、4a,b…通液路、5…電極材、
6…正極液タンク、7…負極液タンク、8,9…ポンプ

Claims (9)

  1. 親水性構成成分と疎水性構成成分を含有するイオン交換樹脂層及び多孔質材料層からなる複合イオン交換膜であって、前記イオン交換樹脂層が複合イオン交換膜の片面もしくは両面の最外層として配置され、該イオン交換樹脂層において、少なくとも片面の最外層厚みが5~50μmであることを特徴とするバナジウム系レドックス電池用複合イオン交換膜。
  2. 前記複合イオン交換膜が、少なくともイオン交換容量の異なる2層以上のイオン交換樹脂層を含有することを特徴とする、請求項1に記載のバナジウム系レドックス電池用複合イオン交換膜。
  3.  前記多孔質材料の強度が1.00MPa以上であることを特徴とする、請求項1~2に記載のバナジウム系レドックス電池用複合イオン交換膜。
  4. 前記複合イオン交換膜において、前記多孔質材料中にイオン交換樹脂を充填すると共にイオン交換樹脂層及び多孔質材料中のイオン交換樹脂がいずれも、前記疎水性構成成分として下記一般式(1)及び前記親水性構成成分として酸性イオン性基を含むことを特徴とする請求項1~3に記載のバナジウム系レドックス電池用複合イオン交換膜。
    Figure JPOXMLDOC01-appb-C000001
                                       (1)  
    ただし、Xは1価又は2価の基で、ニトリル基、アミド基、エステル基、カルボキシル基のいずれかを、ZはO原子、S原子のいずれかを、Ar’は2価の芳香族基を示す。
  5. 前記複合イオン交換膜において、前記イオン交換樹脂層及び多孔質材料中のイオン交換樹脂がいずれも、親水性構成成分として下記一般式(2)を、疎水性構成成分として下記一般式(3)で表される構成成分を含有することを特徴とする請求項4に記載のバナジウム系レドックス電池用複合イオン交換膜。
    Figure JPOXMLDOC01-appb-C000002
                                    (2)
    Figure JPOXMLDOC01-appb-C000003
                                     (3)
    m、nは一般式(2)と一般式(3)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある。Yはスルホン基またはカルボニル基を、XはHまたは1価のカチオン種を、ZはO原子、S原子、直接結合のいずれかを、Wは2価の芳香族基を示す。
  6. 前記複合イオン交換膜において、親水性構成成分として下記一般式(4)を、疎水性構成成分として下記一般式(5)で表される構成成分を有することを特徴とする請求項5に記載のバナジウム系レドックス電池用イオン交換膜。
    Figure JPOXMLDOC01-appb-C000004
                                              (4)
    Figure JPOXMLDOC01-appb-C000005
    (5)
    m、nは一般式(4)と一般式(5)の共重合比を示し、m+n=100であり、20≦m≦70、30≦n≦80の範囲にある。XはHまたは1価のカチオン種を示す。
  7. 前記多孔質材料が、多孔質基材が合成繊維布帛、化学繊維布帛、天然繊維布帛、合成繊維不織布、化学繊維不織布、紙、多孔フィルム、多孔金属板、多孔セラミック板からなる群より選択されるいずれかであることを特徴とする、請求項1に記載のバナジウム系レドックス電池用複合イオン交換膜。
  8. 請求項1~7のいずれかに記載のイオン交換膜と電極とを含有することを特徴とするバナジウム系レドックス電池用複合体。
  9. 請求項8に記載の複合体を含有することを特徴とするバナジウム系レドックス電池。
PCT/JP2013/071642 2012-08-31 2013-08-09 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池 WO2014034415A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532912A JPWO2014034415A1 (ja) 2012-08-31 2013-08-09 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-191490 2012-08-31
JP2012191490 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034415A1 true WO2014034415A1 (ja) 2014-03-06

Family

ID=50183231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071642 WO2014034415A1 (ja) 2012-08-31 2013-08-09 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池

Country Status (2)

Country Link
JP (1) JPWO2014034415A1 (ja)
WO (1) WO2014034415A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001257A (zh) * 2015-01-30 2017-08-01 株式会社Lg化学 包含芳环的化合物和使用该化合物的聚合物电解质膜
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery
JP2018502821A (ja) * 2014-12-19 2018-02-01 エルジー・ケム・リミテッド 新たな化合物およびこれを用いた高分子電解質膜
JP2019516809A (ja) * 2016-03-29 2019-06-20 エルジー・ケム・リミテッド ブロック重合体およびこれを含む高分子電解質膜
US10396385B2 (en) 2017-03-31 2019-08-27 Kolon Industries, Inc. Ion exchanging membrane, method for manufacturing the same, and energy storage device comprising the same
US10559840B2 (en) 2017-04-27 2020-02-11 Kolon Industries, Inc. Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same
JP2020524367A (ja) * 2017-06-15 2020-08-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 高選択性及び高強度のための高度に強化されたイオノマー膜
JP2020194779A (ja) * 2016-03-31 2020-12-03 コーロン インダストリーズ インク イオン交換膜、この製造方法、及びこれを含むエネルギー貯蔵装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223513A (ja) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
JP2005246800A (ja) * 2004-03-04 2005-09-15 Jsr Corp プロトン伝導性複合膜およびその製造方法
JP2011181423A (ja) * 2010-03-03 2011-09-15 Toray Ind Inc 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
WO2013027758A1 (ja) * 2011-08-22 2013-02-28 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223513A (ja) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
JP2005246800A (ja) * 2004-03-04 2005-09-15 Jsr Corp プロトン伝導性複合膜およびその製造方法
JP2011181423A (ja) * 2010-03-03 2011-09-15 Toray Ind Inc 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
WO2013027758A1 (ja) * 2011-08-22 2013-02-28 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502821A (ja) * 2014-12-19 2018-02-01 エルジー・ケム・リミテッド 新たな化合物およびこれを用いた高分子電解質膜
US10727516B2 (en) 2014-12-19 2020-07-28 Lg Chem, Ltd. Compound and polymer electrolyte membrane using same
JP2018502053A (ja) * 2015-01-30 2018-01-25 エルジー・ケム・リミテッド 芳香族環を含む化合物およびこれを用いた高分子電解質膜
CN107001257A (zh) * 2015-01-30 2017-08-01 株式会社Lg化学 包含芳环的化合物和使用该化合物的聚合物电解质膜
JP2019516809A (ja) * 2016-03-29 2019-06-20 エルジー・ケム・リミテッド ブロック重合体およびこれを含む高分子電解質膜
JP2020194779A (ja) * 2016-03-31 2020-12-03 コーロン インダストリーズ インク イオン交換膜、この製造方法、及びこれを含むエネルギー貯蔵装置
JP7022178B2 (ja) 2016-03-31 2022-02-17 コーロン インダストリーズ インク イオン交換膜、この製造方法、及びこれを含むエネルギー貯蔵装置
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery
CN109314263A (zh) * 2016-06-17 2019-02-05 3M创新有限公司 离子交换膜以及生产离子交换膜的方法、膜电极组件和氧化还原液流电池组
US10396385B2 (en) 2017-03-31 2019-08-27 Kolon Industries, Inc. Ion exchanging membrane, method for manufacturing the same, and energy storage device comprising the same
US10559840B2 (en) 2017-04-27 2020-02-11 Kolon Industries, Inc. Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same
JP2020524367A (ja) * 2017-06-15 2020-08-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 高選択性及び高強度のための高度に強化されたイオノマー膜
JP7053680B2 (ja) 2017-06-15 2022-04-12 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 高選択性及び高強度のための高度に強化されたイオノマー膜

Also Published As

Publication number Publication date
JPWO2014034415A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
Luo et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery
WO2014034415A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
Shi et al. Polymer electrolyte membranes for vanadium redox flow batteries: fundamentals and applications
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
JP6447520B2 (ja) レドックス電池用イオン交換膜、複合体、及びレドックス電池
Teng et al. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application
WO2017141878A1 (ja) 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池
JP7359139B2 (ja) 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
KR20130060358A (ko) 불소계 고분자 전해질 막
WO2013027758A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
US11545689B2 (en) Electrolyte membrane
WO2014087957A1 (ja) 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置
JP2017033895A (ja) レドックス電池用隔膜
JP6646759B2 (ja) イオン交換膜、この製造方法、及びこれを含むエネルギー貯蔵装置
JP2016192294A (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
JP2016207608A (ja) ポリベンズイミダゾール系レドックス電池用イオン交換膜及びその製造方法、複合体、及びレドックス電池
JP6338896B2 (ja) 樹脂付電極層、樹脂付電極複合体及びレドックスフロー二次電池
JP2018503219A (ja) レドックスフロー電池のためのポリマー電解質膜
JP2021153048A (ja) レドックスフロー電池用電解質膜およびレドックスフロー電池
CN110383553B (zh) 增强隔膜的制造方法、使用该制造方法制造的增强隔膜和氧化还原液流电池
JP5458765B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5407429B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
KR20240064714A (ko) 전기화학 반응을 위한 양성자 교환 막
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832254

Country of ref document: EP

Kind code of ref document: A1