WO2016140278A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
WO2016140278A1
WO2016140278A1 PCT/JP2016/056469 JP2016056469W WO2016140278A1 WO 2016140278 A1 WO2016140278 A1 WO 2016140278A1 JP 2016056469 W JP2016056469 W JP 2016056469W WO 2016140278 A1 WO2016140278 A1 WO 2016140278A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
formula
crystal display
Prior art date
Application number
PCT/JP2016/056469
Other languages
English (en)
French (fr)
Inventor
保坂 和義
徳俊 三木
大村 浩之
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680025600.0A priority Critical patent/CN107533258B/zh
Priority to JP2017503695A priority patent/JP6418317B2/ja
Priority to KR1020177027746A priority patent/KR102546376B1/ko
Publication of WO2016140278A1 publication Critical patent/WO2016140278A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1025Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes

Definitions

  • the present invention relates to a transmission / scattering type liquid crystal display element that is in a transparent state when no voltage is applied and is in a scattering state when a voltage is applied.
  • a TN mode As a liquid crystal display element using a liquid crystal material, a TN mode has been put into practical use. In this mode, light is switched by utilizing the optical rotation characteristics of the liquid crystal, and it is necessary to use a polarizing plate when used as a liquid crystal display element. However, the use efficiency of light becomes low by using a polarizing plate.
  • a liquid crystal display element having a high light utilization efficiency without using a polarizing plate there is a liquid crystal display element that switches between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state.
  • a liquid crystal using a dispersion type liquid crystal (also referred to as PDLC) or a polymer network type liquid crystal (also referred to as PNLC) is known.
  • a liquid crystal composition containing a polymerizable compound that is polymerized by ultraviolet rays is disposed between a pair of substrates provided with electrodes, and the liquid crystal composition is cured by irradiation with ultraviolet rays, whereby a liquid crystal layer That is, a cured product composite (for example, a polymer network) of a liquid crystal and a polymerizable compound is formed.
  • This liquid crystal display element controls the transmission state and the scattering state of the liquid crystal by applying a voltage.
  • liquid crystal display elements using PDLC and PNLC are in a cloudy (scattering) state because the liquid crystal molecules are in a random direction when no voltage is applied, and the liquid crystal is aligned in the direction of the electric field and transmits light when voltage is applied.
  • the liquid crystal display element also referred to as a normal type element
  • the liquid crystal display element is in a transmissive state.
  • liquid crystal display element using PDLC also referred to as a reverse type element
  • PDLC also referred to as a reverse type element
  • the polymerizable compound in the liquid crystal composition in the reverse type element has a role of forming a polymer network to obtain desired optical characteristics and a role of a curing agent for improving the adhesion between the liquid crystal layer and the liquid crystal alignment film.
  • a polymer network In order to increase the adhesion with the liquid crystal alignment film, it is necessary to make the polymer network denser.
  • the polymer network is made dense, the vertical alignment property of the liquid crystal is inhibited, and the optical characteristics of the reverse type element, that is, There is a problem that the transparency when no voltage is applied and the scattering characteristics when a voltage is applied are deteriorated. Therefore, the liquid crystal composition used for the reverse type element needs to have a high vertical alignment property of the liquid crystal when the liquid crystal layer is formed.
  • the liquid crystal alignment film used for the reverse type element is a highly hydrophobic film for aligning the liquid crystal vertically, the adhesion between the liquid crystal layer and the liquid crystal alignment film is lowered. Therefore, a large amount of a polymerizable compound that functions as a curing agent must be introduced into the liquid crystal composition used for the reverse type device. However, when a large amount of the polymerizable compound is introduced, the vertical alignment property of the liquid crystal is hindered, and there is a problem that the transparency when no voltage is applied and the scattering characteristics when a voltage is applied are greatly deteriorated.
  • the device when a reverse type device is used by being attached to a window glass of an automobile or a building, the device may be used for a long time in a high temperature and high humidity environment or an environment exposed to light irradiation. Therefore, even in a harsh environment, it is necessary that the vertical alignment property of the liquid crystal does not deteriorate and the adhesion between the liquid crystal layer and the liquid crystal alignment film is high.
  • the present invention has high liquid crystal vertical alignment, good optical properties, that is, good transparency when no voltage is applied and good scattering properties when no voltage is applied, and adhesion between the liquid crystal layer and the liquid crystal alignment film. Furthermore, an object of the present invention is to provide a liquid crystal display element that can maintain these characteristics even in an environment exposed to high temperature and high humidity or light irradiation for a long time.
  • a liquid crystal composition including a liquid crystal and a polymerizable compound disposed between a pair of substrates provided with electrodes has a liquid crystal layer cured by irradiating ultraviolet rays, and at least one of the substrates vertically aligns the liquid crystal
  • a liquid crystal display device comprising a liquid crystal alignment film as described above, wherein the liquid crystal alignment film is obtained from a liquid crystal alignment treatment agent containing the following components.
  • T 1 represents at least one selected from the group consisting of an alkylene group having 1 to 20 carbon atoms and an organic group having 6 to 24 carbon atoms having a benzene ring or a cyclohexane ring, and the alkylene group having 1 to 20 carbon atoms
  • Any —CH 2 — represents —O—, —CO—, —COO—, —OCO—, —CONH—, —NHCO—, —NH—, —CON (CH 3 ) —, —S— or — T 2 may be replaced by SO 2 —
  • T 2 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CH 2 O—, —OCH 2 —, —CONH—, —NHCO— , -CON (CH 3) -,
  • T A represents a hydrogen atom or a benzene ring.
  • T B represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • T C represents an alkyl having 1 to 18 carbon atoms. And at least one selected from the group consisting of a group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.)
  • S 1 represents at least one structure selected from the group consisting of the structures of the following formulas [1-a] to [1-l].
  • S 2 represents a single bond or an alkylene group having 1 to 24 carbon atoms.
  • —CH 2 — in the alkylene group is —O—, —CO—, —COO—, —OCO—, —CONH—, —NHCO—, —NH—, —CON (CH 3 ) —, — S 3 may be replaced by S— or —SO 2 —, and S 3 has at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a carbon number of 17 to 17 having a steroid skeleton.
  • an arbitrary hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, C1-C3 fluorine-containing alkoxyl group or fluorine Good .
  • S 4 be substituted with atoms is a single bond, -O -, - OCH 2 - , - CH 2 O -, - COO- and at least one bond group selected from the group consisting of -OCO-
  • S 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group
  • S 6 represents an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, and a fluorine-containing alkoxyl having 1 to 18 carbon atoms. From the base That indicates at least one selected from the group.)
  • S A represents a hydrogen atom or a benzene ring.
  • S B represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • S C represents an alkyl having 1 to 18 carbon atoms.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO—, and —OCO— represent at least one linking group selected from the group consisting of Y 2 is a single bond or — (CH 2 ) b — (b is 1 Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—,
  • Y 4 represents at least one selected from the group consisting of OCO—, wherein Y 4 has at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a carbon number of 17 to 17 having a steroid skeleton.
  • 51 represents a divalent organic group, and an arbitrary hydrogen atom on the cyclic group has 1 carbon atom.
  • Y 6 represents 1 carbon atom.
  • At least one selected from the group of (Y 7 is a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—.
  • at least one linking group selected from the group consisting of Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms.
  • S 1 in formula [1-2] is at least one structure selected from the group consisting of formula [1-a] to formula [1-d] and formula [1-f] Liquid crystal display element. 4).
  • the above (1) to (B), wherein the polymer of the component (B) is at least one selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose and polysiloxane. 4.
  • the polymer of the component is a polyimide precursor obtained by reacting a diamine component containing a diamine compound having the structure of the above formula [2-1] or formula [2-2] with a tetracarboxylic acid component, or 5.
  • M1 represents an integer of 1 to 4.
  • W 1 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 )
  • An organic group having 6 to 24 carbon atoms having at least one cyclic group selected from the group consisting of: an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms; Or a fluorine-containing alkyl group having 1 to 3 carbon atoms or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, W 3 may be a single bond, —O—, —NH—, —N ( CH 3) -, - CH 2 O -, - CONH -, - NHC -, - CON (CH 3) -, - N (CH 3) CO -, - COO- and .W 4 the following formula exhibits at least one selected from the group consisting of -OCO- [3-a] ⁇ formula This represents at least one structure selected from the group consisting of the structure [3-g].) (W A represents a hydrogen atom or a benzene ring
  • W B represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • W C represents an alkyl having 1 to 18 carbon atoms. And at least one selected from the group consisting of a group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • tetracarboxylic acid component contains a tetracarboxylic dianhydride represented by the following formula [4].
  • Z represents at least one structure selected from the group consisting of the structures of the following formulas [4a] to [4k].
  • Z 1 to Z 4 each independently represents at least one selected from the group consisting of a hydrogen atom, a methyl group, a chlorine atom and a benzene ring.
  • Z 5 and Z 6 each independently represent a hydrogen atom or methyl Group.
  • the polymer of the component (B) is a polysiloxane obtained by polycondensation of an alkoxysilane of the following formula [A1], or an alkoxysilane of the formula [A1] and an alkoxy of the following formula [A2] or formula [A3] 5.
  • a 1 represents the structure of the above formula [2-1] or [2-2].
  • a 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a 3 represents an alkyl having 1 to 5 carbon atoms.
  • M represents an integer of 1 or 2.
  • n represents an integer of 0 to 2.
  • B 1 represents an organic group having 2 to 12 carbon atoms having at least one selected from the group consisting of vinyl group, epoxy group, amino group, mercapto group, isocyanate group, methacryl group, acrylic group, ureido group and cinnamoyl group.
  • B 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • B 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2.
  • P represents an integer of 0 to 3, where m + n + p is 4.
  • D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • D 2 represents an alkyl group having 1 to 5 carbon atoms.
  • N represents an integer of 0 to 3.
  • liquid crystal alignment treatment agent contains at least one generator selected from the group consisting of a photo radical generator, a photo acid generator and a photo base generator.
  • the liquid crystal aligning agent has at least one substituent selected from the group consisting of an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and an alkoxyalkyl group having 1 to 3 carbon atoms.
  • the liquid crystal display device according to any one of the above 1 to 11, comprising a compound.
  • the liquid crystal aligning agent is 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone and the following: 13.
  • liquid crystal alignment treatment agent according to any one of 1 to 13 above, wherein the liquid crystal aligning agent contains at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and ⁇ -butyrolactone.
  • the liquid crystal display element as described. 15. 141.
  • the substrate of the liquid crystal display element is a glass substrate or a plastic substrate.
  • the present invention good optical properties, that is, transparency when no voltage is applied and scattering property when voltage is applied, and the adhesion between the liquid crystal layer and the liquid crystal alignment film is high. It is possible to provide a reverse element capable of maintaining these characteristics even in an environment exposed to high temperature and high humidity or light irradiation for a long time.
  • the mechanism by which the liquid crystal display device having the above-described excellent characteristics is obtained by the present invention is not necessarily clear, but is estimated as follows.
  • the liquid crystal alignment film in the device of the present invention is obtained from a liquid crystal alignment treatment agent containing the compound of the formula [1-1] (also referred to as the specific compound (1-1)).
  • T 3 in the formula [1-1] is a site that undergoes a polymerization reaction with ultraviolet rays. Therefore, the polymerizable compound in the liquid crystal composition reacts with the specific compound (1) by irradiation with ultraviolet rays when producing a liquid crystal display element, and the adhesion between the liquid crystal layer and the liquid crystal alignment film can be enhanced.
  • the isocyanate group of the specific compound (1-1) reacts thermally with polar groups such as amino groups and hydroxyl groups.
  • the isocyanate group reacts with the polar group of the polymer (B) component polymer (also referred to as a specific polymer) in the liquid crystal aligning agent by heating during the production of the liquid crystal alignment film.
  • the specific polymer and the liquid crystal layer is formed via the specific compound (1-1), and adhesion between the liquid crystal layer and the liquid crystal alignment film is further improved.
  • S 1 of the compound of the formula [1-2] (also referred to as the specific compound (1-2)) is a part having a polar group, and the structure of S 3 to S 6 aligns the liquid crystal vertically. It shows a rigid structure with high effect. Therefore, when the liquid crystal alignment film is formed, it is considered that the specific compound (1-2) has the S 1 polar group, so that the S 3 to S 6 sites are efficiently transferred to the liquid crystal alignment film interface. Thereby, it is considered that the vertical alignment property of the liquid crystal is further enhanced together with the rigid structure contained in the polymer.
  • the liquid crystal alignment film in the present invention includes a liquid crystal alignment containing a polymer (also referred to as a specific polymer) having the structure of the formula [2-1] or the formula [2-2] (also referred to as a specific side chain structure). Obtained from the treating agent.
  • a polymer also referred to as a specific polymer
  • the formula [2-1] indicates a rigid structure
  • a liquid crystal display element that exhibits high and stable vertical alignment of liquid crystals can be obtained. Therefore, in particular, when the formula [2-1] is used, a reverse element that exhibits good optical characteristics can be obtained.
  • the liquid crystal display element of the present invention is a liquid crystal display element that exhibits good optical characteristics, has high adhesion between the liquid crystal layer and the liquid crystal alignment film, and can maintain these characteristics for a long time.
  • T 1 is from the viewpoint of the adhesion between the liquid crystal layer and the liquid crystal alignment film.
  • An alkylene group having 1 to 12 carbon atoms is preferred.
  • An organic group having 6 to 18 carbon atoms having a benzene ring or a cyclohexane ring is also preferable.
  • T 2 is preferably a single bond, —O—, —CH 2 O—, —OCH 2 —, —CONH—, —NHCO—, —COO— or —OCO—.
  • T 3 represents the formula [1-a], the formula [1-b], the formula [1-c], the formula [1-d], or the formula [1] from the viewpoint of adhesion between the liquid crystal layer and the liquid crystal alignment film. -F] is preferred. More preferable is the formula [1-a], the formula [1-b], the formula [1-d], or the formula [1-f].
  • Preferred combinations of T 1 to T 3 in the formula [1] are shown in Tables 1 and 2 below.
  • (1-1a) to (1-8a), (1-10a), (1-15a) to (1-17a), (1-22a) or (1-23a) are preferable. More preferable are (1-1a) to (1-4a) from the above point.
  • Specific examples of the specific compound (1-1) include the compounds of the formulas [1a-1] to [1a-6] described above.
  • Ta to Tf are as defined above.
  • Ta and Tb are preferably integers of 1 to 10, respectively. More preferable is an integer of 1 to 8.
  • Tc to Tf are each preferably an integer of 1 to 8. More preferable is an integer of 1 to 6.
  • a compound of the formula [1a-1], formula [1a-2], formula [1a-5] or formula [1a-6] is preferable.
  • the amount of the specific compound (1-1) used in the liquid crystal aligning agent is preferably 0.1 to 80 parts by mass with respect to 100 parts by mass of the specific polymer from the viewpoint of the optical characteristics of the liquid crystal display element. More preferred is 0.1 to 60 parts by mass, and particularly preferred is 1 to 50 parts by mass. Moreover, these specific compounds can also be used 1 type or in mixture of 2 or more types according to each characteristic.
  • S 1 represents the formula [1-a] to the formula [1-d], the formula [1-f], the formula [1-h] to the formula [1-1] from the viewpoint of the optical characteristics in the liquid crystal display element.
  • S 1 represents the formula [1-a] to the formula [1-d], the formula [1-f], the formula [1-h] to the formula [1-1] from the viewpoint of the optical characteristics in the liquid crystal display element.
  • More preferred are structures of the formula [1-a], the formula [1-b], the formula [1-d], the formula [1-f] or the formula [1-h] to the formula [1-j].
  • Particularly preferred is the formula [1-a], the formula [1-b], the formula [1-d], the formula [1-h] or the formula [1-i].
  • S 2 is preferably a single bond or an alkylene group having 1 to 18 carbon atoms. Among these, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
  • S 3 is preferably a benzene ring, a cyclohexane ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton from the viewpoint of the optical characteristics of the liquid crystal display element.
  • S 4 is preferably a single bond, —O—, —COO— or —OCO— from the viewpoint of ease of synthesis. More preferred is a single bond, —COO— or —OCO—.
  • S 5 is preferably a benzene ring or a cyclohexane ring from the viewpoint of the optical characteristics of the liquid crystal display element.
  • S 6 is preferably an alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms from the viewpoint of the optical characteristics of the liquid crystal display element. More preferred is an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms.
  • sA is preferably an integer of 0 to 2 from the viewpoint of availability of raw materials and ease of synthesis. An integer of 1 or 2 is more preferable.
  • More specific specific compound (1-2) preferably includes compounds of the following formulas [1a-1] to [1a-24].
  • s 1 represents an integer of 1 to 12, respectively.
  • an integer of 1 to 8 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element.
  • Each of s 2 represents an integer of 0 to 4.
  • the integer of 1 or 2 is preferable from the point of the optical characteristic of a liquid crystal display element.
  • S a represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— or —OCO—. Show. Of these, —O— or —COO— is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • S b represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • each s 3 represents an integer of 1 to 12.
  • an integer of 1 to 8 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element.
  • Each S c represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Of these, —COO— or —OCO— is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • S d represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— or —OCO—. Show. Of these, —O— or —COO— is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • Se represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • each s 4 represents an integer of 0 to 4. Especially, the integer of 1 or 2 is preferable from the point of the optical characteristic of a liquid crystal display element.
  • S f represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • each s 5 represents an integer of 1 to 12.
  • an integer of 1 to 8 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element.
  • Each s 6 represents an integer of 0 to 4.
  • the integer of 1 or 2 is preferable from the point of the optical characteristic of a liquid crystal display element.
  • S g represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • S h are each a single bond, - (CH 2) c - (c is an integer of 1 ⁇ 15), - O - , - CH 2 O -, - shows a COO- or -OCO- .
  • —COO— or —OCO— is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • S i represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • s 7 represents an integer of 1 to 12, respectively.
  • an integer of 1 to 8 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element.
  • S j represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—, respectively.
  • —COO— or —OCO— is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • S k represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferred is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.
  • the use ratio of the specific compound (1-2) in the liquid crystal aligning agent is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the specific polymer from the viewpoint of the optical characteristics of the liquid crystal display element. More preferred is 0.5 to 20 parts by mass, and particularly preferred is 1 to 10 parts by mass. Moreover, these specific compounds can be used 1 type or in mixture of 2 or more types according to each characteristic.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n are as defined above. Among these, the following are preferred.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or — from the viewpoint of availability of raw materials and ease of synthesis. COO- is preferred.
  • Y 2 is preferably a single bond or — (CH 2 ) b — (b is an integer of 1 to 10).
  • Y 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
  • Y 5 is preferably a benzene ring or a cyclohexane ring.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine containing group having 1 to 10 carbon atoms.
  • Alkoxyl groups are preferred. More preferred is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an alkoxyl group having 1 to 9 carbon atoms.
  • n is preferably from 0 to 3, more preferably from 0 to 2, from the viewpoint of availability of raw materials and ease of synthesis.
  • Y 1 to Y 6 and n are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27) (2-1) to (2- 629) and the same combination.
  • Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
  • the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton.
  • An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
  • (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315), A combination of (2-364) to (2-387), (2-436) to (2-483) or (2-603) to (2-615) is preferable.
  • Particularly preferred are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
  • Y 7 and Y 8 are as defined above. Among these, the following are preferable.
  • Y 7 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or —COO—. More preferably, they are a single bond, —O—, —CONH— or —COO—.
  • Y 8 is preferably an alkyl group having 8 to 18 carbon atoms.
  • the specific side chain structure in the invention it is particularly preferable to use the formula [2-1] from the viewpoint that a high and stable vertical alignment of the liquid crystal can be obtained.
  • the specific polymer having a specific side chain structure is at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose and polysiloxane. Is preferred. More preferred are polyimide precursors, polyimides or polysiloxanes. When a polyimide precursor or polyimide (also collectively referred to as a polyimide polymer) is used as the specific polymer, they are preferably a polyimide precursor or polyimide obtained by reacting a diamine component and a tetracarboxylic acid component. .
  • the polyimide precursor has a structure of the following formula [A].
  • R 1 represents a tetravalent organic group.
  • R 2 represents a divalent organic group.
  • a 1 and A 2 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a 3 And A 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, and n represents a positive integer.
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, tetracarboxylic acid dihalide compound,
  • a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound may be mentioned.
  • the polyimide polymer can be obtained relatively easily by using a tetracarboxylic dianhydride of the following formula [B] and a diamine compound of the following formula [C] as raw materials.
  • a polyamic acid having a repeating unit of or a polyimide obtained by imidizing the polyamic acid is preferable.
  • R 1 and R 2 have the same meaning as defined in formula [A].
  • R 1 and R 2 have the same meaning as defined in formula [A].
  • the polymer of the formula [D] obtained above by an ordinary synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 in the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .
  • a diamine compound having a specific side chain structure is preferably used as a part of the raw material.
  • the diamine compound of the formula [2a] also referred to as the specific diamine compound (1).
  • Y represents the formula [2-1] or the formula [2-2].
  • the details and preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2-1] are as in the formula [2-1], and the formula [2
  • the details and preferred combinations of Y 7 and Y 8 in -2] are as shown in the formula [2-2].
  • m represents an integer of 1 to 4. Among these, an integer of 1 is preferable.
  • Specific examples of the specific diamine compound having the specific side chain structure represented by the formula [2-1] include those represented by the formula [2] described on pages 15 to 19 of International Publication WO2013 / 125595 (published 2013.8.29). -1] to [2-6], and [2-9] to [2-36] diamine compounds.
  • R 2 in the formulas [2-1] to [2-3] and R 4 in the formulas [2-4] to [2-6] are carbon atoms.
  • a 4 in the formula [2-13] represents a linear or branched alkyl group having 3 to 18 carbon atoms.
  • R 3 in the formulas [2-4] to [2-6] represents at least one selected from the group consisting of —O—, —CH 2 O—, —COO—, and —OCO—. .
  • diamine compounds are those represented by the formula [2-1] to the formula [2-6], the formula [2-9] to the formula [2-13] or the formula [2 ⁇ 2] described in International Publication WO2013 / 125595. 22] to diamine compounds of the formula [2-31]. More preferred are diamine compounds represented by the following formulas [2a-32] to [2a-41] from the viewpoint of the optical characteristics of the liquid crystal display element.
  • R 1 and R 2 each represents an alkyl group having 3 to 12 carbon atoms.
  • R 3 and R 4 each represent an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • Most preferred is a diamine compound represented by the formula [2a-35] to formula [2a-37], formula [2a-40] or formula [2a-41] from the viewpoint of the optical characteristics of the liquid crystal display element. .
  • the specific diamine compound (1) having the specific side chain structure of the formula [2-2] is specifically described on pages 23 to 24 of International Publication No. WO2015 / 012368 (published 2015.1.29). Examples thereof include diamine compounds of the formulas [2a-37] to [2a-46].
  • the specific diamine compound (1) is used in an amount of 10 to 10% of the total diamine component from the viewpoint of the vertical alignment of the liquid crystal when the liquid crystal alignment film is formed and the adhesion between the liquid crystal layer and the liquid crystal alignment film in the liquid crystal display element. 80 mol% is preferable, and 20 to 70 mol% is more preferable.
  • the specific diamine compound (1) can be used 1 type or in mixture of 2 or more types according to each characteristic.
  • the diamine compound of the formula [3a] (also referred to as the specific diamine compound (2)) is preferably used as the second diamine compound.
  • W 1 , W 2 , W 3 and W 4 are as defined above, and among them, the following are preferable.
  • W 1 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) —, or —COO— from the viewpoint of availability of raw materials and ease of synthesis. More preferred is —O—, —CH 2 O— or —COO—.
  • W 2 is preferably a single bond, an alkylene group having 1 to 18 carbon atoms, or an organic group having 6 to 12 carbon atoms having a benzene ring or a cyclohexane ring. More preferable is an alkylene group having 2 to 10 carbon atoms from the viewpoint of the optical characteristics of the liquid crystal display element.
  • W 3 is preferably a single bond, —O—, —CH 2 O—, —CO— or —OCO— from the viewpoint of availability of raw materials and ease of synthesis.
  • W 4 preferably has the structure of the formula [3-a], the formula [3-b], the formula [3-c] or the formula [3-e] from the viewpoint of the optical characteristics of the liquid crystal display element.
  • m represents an integer of 1 to 4. Among these, an integer of 1 is preferable.
  • Specific examples of the specific diamine compound (2) include diamine compounds represented by the following formulas [3a-1] to [3a-27], which are preferably used.
  • d1 represents an integer of 2 to 10.
  • the use ratio of the specific diamine compound (2) is preferably 10 to 70 mol%, more preferably 20 to 60 mol%, based on the entire diamine component, from the viewpoint of adhesion between the liquid crystal layer and the liquid crystal alignment film in the liquid crystal display device. .
  • the specific diamine compound (2) can be used alone or in combination of two or more according to the respective characteristics.
  • a diamine component for producing a polyimide polymer a diamine compound other than the specific diamine compound (1) and the specific diamine compound (2) (also referred to as other diamine compound) is used as long as the effects of the present invention are not impaired. You can also.
  • Other diamine compounds, and diamine compounds of the formulas [DA1] to [DA14] described on pages 30 to 32 of the same publication may be mentioned.
  • other diamine compounds may be used alone or in combination of two or more depending on the characteristics.
  • tetracarboxylic acid component for producing the polyimide-based polymer examples include tetracarboxylic dianhydride of the above formula [4] and tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester which are tetracarboxylic acid derivatives thereof.
  • tetracarboxylic acid dialkyl ester dihalide all are collectively referred to as a specific tetracarboxylic acid component is preferable.
  • Z is as defined above.
  • the formula [4a] and the formula A structure of [4c], formula [4d], formula [4e], formula [4f], formula [4g] or formula [4k] is preferable. More preferable is the formula [4a], the formula [4e], the formula [4f], the formula [4g], or the formula [4k] from the viewpoint of the optical characteristics of the liquid crystal display element.
  • the use ratio of the specific tetracarboxylic acid component is preferably 1 mol% or more with respect to the total tetracarboxylic acid component. More preferably, it is 5 mol% or more, and still more preferably 10 mol% or more. Among these, 10 to 90 mol% is particularly preferable from the viewpoint of the optical characteristics of the liquid crystal display element.
  • the usage-amount shall be 20 mol% or more of the whole tetracarboxylic acid component.
  • a desired effect can be obtained. More preferably, it is 30 mol% or more.
  • all of the tetracarboxylic acid component may be a tetracarboxylic acid component of the formula [4e], the formula [4f], the formula [4g], or the formula [4k].
  • tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used for the polyimide polymer.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acids, tetracarboxylic dianhydrides, dicarboxylic acid dihalides, dicarboxylic acid dialkyl esters, and dialkyl ester dihalides.
  • Specific examples include other tetracarboxylic acid components described on pages 34 to 35 of International Publication No. WO2015 / 012368 (published 2015.1.29). Moreover, the specific tetracarboxylic acid component and other tetracarboxylic acid components can be used alone or in combination of two or more according to the respective characteristics.
  • the method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specific examples include the methods described on pages 35 to 36 of International Publication No. WO2015 / 012368 (published 2015.1.29).
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component.
  • a solvent if the produced
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolide Non etc. are mentioned.
  • the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or a solvent of the above formulas [D1] to [D3] can be used. These may be used alone or in combination.
  • a solvent that does not dissolve the polyimide precursor may be used by mixing with the above-mentioned solvent as long as the generated polyimide precursor does not precipitate.
  • moisture content in an organic solvent inhibits a polymerization reaction and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
  • Polyimide is a polyimide obtained by ring closure of a polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group does not necessarily need to be 100%, and is arbitrary depending on the application and purpose Can be prepared. Among these, 30 to 80% is preferable from the viewpoint of solubility of the polyimide polymer in a solvent. More preferred is 40 to 70%.
  • the molecular weight of the polyimide polymer is 5,000 in terms of Mw (weight average molecular weight) measured by the GPC method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties. It is preferably ⁇ 1,000,000, more preferably 10,000 to 150,000.
  • polysiloxane polymer When polysiloxane is used for the specific polymer, the polysiloxane obtained by polycondensation of the alkoxysilane of the formula [A1], or the alkoxysilane of the formula [A1], and the formula [A2] or the formula [A3 The polysiloxane obtained by polycondensation with an alkoxysilane is generally preferred (the above polysiloxanes are collectively referred to as a polysiloxane polymer).
  • a 1 represents the structure of the formula [2-1] or the formula [2-2].
  • the details and preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in formula [2-1] are as described above, and Y 7 in formula [2-2] And the details and preferred combinations of Y 8 are as described above.
  • the specific side chain structure of the formula [2-1] is preferable from the viewpoint of the vertical alignment property of the liquid crystal when the liquid crystal alignment film is formed and the optical characteristics of the liquid crystal display element.
  • a 2 , A 3 , m, n, and p are as defined above. Among these, the following are preferable.
  • a 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a 3 is preferably an alkyl group having 1 to 3 carbon atoms from the viewpoint of polycondensation reactivity.
  • m is preferably an integer of 1 from the viewpoint of synthesis.
  • n represents an integer of 0 to 2.
  • p is preferably an integer of 1 to 3, more preferably an integer of 2 or 3.
  • m + n + p is an integer of 4.
  • the alkoxysilane having a specific side chain structure of the formula [2-1] is specifically represented by the formula [2a-1 described on pages 17 to 21 of International Publication No. 2015/008846 (published 2015.1.22). ]
  • the formula [2a-9] to the formula [2a-21], the formula [2a-25] to the formula [2a-28] or the formula [2a -32] is preferred.
  • the alkoxysilane of the formula [A1] can be used by mixing two or more kinds according to each characteristic.
  • B 1 , B 2 , B 3 , m, n, and p are as defined above. Among these, the following are preferable.
  • B 1 is preferably an organic group having a vinyl group, an epoxy group, an amino group, a methacryl group, an acrylic group, or a ureido group in view of availability. More preferred is an organic group having a methacryl group, an acryl group or a ureido group.
  • B 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • B 3 is preferably an alkyl group having 1 to 3 carbon atoms from the viewpoint of polycondensation reactivity.
  • n is preferably an integer of 1 from the viewpoint of synthesis.
  • n represents an integer of 0 to 2.
  • p is preferably an integer of 1 to 3, and more preferably an integer of 2 or 3, from the viewpoint of polycondensation reactivity.
  • m + n + p is 4.
  • alkoxysilane of the formula [A2] include alkoxysilanes of the formula [2b] described on pages 22 to 23 of International Publication No. 2015/008846 (published 2015.1.22). Of these, 3- (triethoxysilyl) propyl methacrylate, 3- (trimethoxysilyl) propyl acrylate, 3- (trimethoxysilyl) propyl methacrylate, 3-glycidyloxy are preferred in terms of adhesion between the liquid crystal layer and the liquid crystal alignment film.
  • Propyl (dimethoxy) methylsilane, 3-glycidyloxypropyl (diethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane or 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferred.
  • the alkoxysilane of the formula [A2] can be used alone or in combination of two or more according to each property.
  • Alkoxylanes of the formula [A3] are as defined above, and among them, the following are preferable.
  • D 1 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • D 2 is preferably an alkyl group having 1 to 3 carbon atoms from the viewpoint of polycondensation reactivity.
  • n represents an integer of 0 to 3.
  • Specific examples of the alkoxysilane of the formula [A3] include the alkoxysilane of the formula [2c] described on page 24 of International Publication No. 2015/008846 (published 2015.1.22).
  • examples of the alkoxysilane in which n is 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • the alkoxysilane of the formula [A3] includes these alkoxysilanes. It is preferable to use it.
  • the alkoxysilane of a formula [A3] can be used 1 type or in mixture of 2 or more types according to each characteristic.
  • the polysiloxane polymer is a polysiloxane obtained by polycondensation of the alkoxysilane of the formula [A1], or the alkoxysilane of the formula [A1], and the alkoxysilane of the formula [A2] or the formula [A3] Is a polysiloxane obtained by polycondensation. That is, the polysiloxane polymer is a polysiloxane obtained by polycondensation of only the alkoxysilane of the formula [A1], and a polysiloxane obtained by polycondensation of two types of alkoxysilanes of the formulas [A1] and [A2].
  • Polysiloxane obtained by polycondensation of siloxane two types of alkoxysilanes of formula [A1] and formula [A3], and three types of alkoxysilanes of formula [A1], formula [A2] and formula [A3] Any one of polysiloxanes obtained by condensation.
  • polysiloxanes obtained by polycondensation of a plurality of types of alkoxysilanes are preferred in terms of polycondensation reactivity and solubility of polysiloxane polymers in a solvent. That is, polysiloxane obtained by polycondensation of two types of alkoxysilanes of the formulas [A1] and [A2], and polypolyester obtained by polycondensation of two types of alkoxysilanes of the formulas [A1] and [A3]. It is preferable to use any one of siloxane and polysiloxane obtained by polycondensation of three types of alkoxysilanes of the formulas [A1], [A2] and [A3].
  • the use of the alkoxysilane of the formula [A1] is preferably 1 to 40 mol%, preferably 1 to 30 mol% in all alkoxysilanes. More preferred.
  • the use of the alkoxysilane of the formula [A2] is preferably 1 to 70 mol%, more preferably 1 to 60 mol% in all alkoxysilanes.
  • the use of the alkoxysilane of the formula [A3] is preferably 1 to 99 mol%, more preferably 1 to 80 mol% in all alkoxysilanes.
  • the method for polycondensing the polysiloxane polymer is not particularly limited. Specific examples include the methods described on pages 26 to 29 of International Publication No. 2015/008846 (published 2015.1.22).
  • the polysiloxane polymer solution obtained by the above method may be used as a specific polymer as it is, or the polysiloxane polymer solution obtained by the above method may be used as necessary.
  • the polymer may be concentrated, diluted by adding a solvent, or substituted with another solvent to be used as a specific polymer.
  • the solvent used for dilution also referred to as an additive solvent
  • the additive solvent is not particularly limited as long as the polysiloxane polymer is uniformly dissolved, and one or more kinds can be arbitrarily selected and used.
  • Such an additive solvent examples include, in addition to the solvent used in the polycondensation reaction, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and ester solvents such as methyl acetate, ethyl acetate, and ethyl lactate. .
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • ester solvents such as methyl acetate, ethyl acetate, and ethyl lactate.
  • the polysiloxane polymer and other polymers are used as the specific polymer, the polysiloxane polymer is subjected to a polycondensation reaction before mixing the other polymer with the polysiloxane polymer.
  • the generated alcohol is preferably distilled off at normal pressure or reduced pressure.
  • a liquid crystal aligning agent is a solution for forming a liquid crystal aligning film, and is a solution containing a specific compound, a specific polymer having a specific side chain structure, and a solvent.
  • the content of the specific compound (1-1) in the liquid crystal aligning agent is preferably 0.1 to 80 parts by mass with respect to 100 parts by mass of the specific polymer. Among these, 0.1 to 60 parts by mass is preferable from the viewpoint of adhesion between the liquid crystal layer and the liquid crystal alignment film. Most preferred is 1 to 50 parts by weight.
  • a specific compound can be used 1 type or in mixture of 2 or more types.
  • the content of the specific compound (1-2) in the liquid crystal aligning agent is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the specific polymer from the viewpoint of the optical characteristics of the liquid crystal display element. More preferred is 0.5 to 20 parts by mass, and particularly preferred is 1 to 10 parts by mass.
  • the specific compounds (1-1) and (1-2) may be added directly to the solution of the specific polymer. However, the specific compounds (1-1) and (1-2) should be added after making a solution with a concentration of 0.1 to 10% by mass with an appropriate solvent. Is preferred.
  • the solvent in this case is not particularly limited as long as it is a solvent that dissolves the above-mentioned specific polymer. wear.
  • the specific compound and the specific polymer are mixed because the reaction between the isocyanate group in the specific compound and the polar group in the specific polymer is promoted and the adhesion between the liquid crystal layer and the liquid crystal alignment film can be improved. Then, the reaction is preferably carried out with stirring.
  • the temperature at that time is preferably 0 to 100 ° C., more preferably 10 to 60 ° C.
  • the time is preferably 1 to 24 hours.
  • the specific polymer is preferably at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose and polysiloxane. More preferred are polyimide precursors, polyimides or polysiloxanes, and most preferred are polyimide precursors or polyimides. Moreover, 2 or more types can be used for a specific polymer.
  • the polymer component in the liquid crystal aligning agent may all be a specific polymer, or other polymers may be mixed.
  • the content of the other polymer is preferably 0.5 to 15 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the specific polymer.
  • Examples of other polymers include the above-mentioned polymers having no specific side chain structure.
  • Content of the solvent in a liquid-crystal aligning agent can be suitably selected from the point of obtaining the coating method of a liquid-crystal aligning agent, and the target film thickness.
  • the content of the solvent is preferably 50 to 99.9% by mass, more preferably 60 to 99% by mass, and more preferably 65 to 99% in the liquid crystal aligning agent. Mass% is particularly preferred.
  • the solvent used for the liquid crystal aligning agent is not particularly limited as long as it is a solvent that dissolves the specific polymer.
  • the specific polymer is a polyimide precursor, polyimide, polyamide or polyester, or when the solubility of acrylic polymer, methacrylic polymer, novolak resin, polyhydroxystyrene, cellulose or polysiloxane is low, it will be published internationally. It is preferable to use the solvent A described on page 58 of the publication 2014/171493 (published 2014.10.23).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferably used. These may be used alone or in combination.
  • the specific polymer is an acrylic polymer, methacrylic polymer, novolak resin, polyhydroxystyrene, cellulose, or polysiloxane
  • the specific polymer is a polyimide precursor, polyimide, polyamide, or polyester.
  • the solvent B described in pages 58 to 60 of International Publication No. 2014/171493 (published 2014.10.23) can be used.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone of the solvent A is used in combination for the purpose of improving the coating property of the liquid crystal aligning agent. It is preferable. More preferably, ⁇ -butyrolactone is used in combination. Since these solvents B can improve the coating properties and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used for the specific polymer
  • the solvent A is preferably used in combination.
  • the solvent B is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 99% by mass is preferable. More preferred is 20 to 95% by mass.
  • At least one generator also referred to as a specific generator selected from the group consisting of a photo radical generator, a photo acid generator and a photo base generator into the liquid crystal alignment treatment agent.
  • a specific generator include specific generators described on pages 54 to 56 of International Publication No. 2014/171493 (published 2014.10.23).
  • a photo radical generator is preferably used from the viewpoint of adhesion between the liquid crystal layer and the liquid crystal alignment film.
  • the liquid crystal aligning agent compounds of the following formulas [7a-1] to [7a-5] (also referred to as adhesive compounds) can be used for the purpose of enhancing the adhesion between the liquid crystal layer and the liquid crystal alignment film.
  • N2 represents an integer of 1 to 10.
  • m2 represents an integer of 1 to 10.
  • the adhesive compound compounds described on pages 61 to 63 of International Publication No. 2014/171493 (published 2014.10.23) can also be used.
  • the content of the adhesive compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, it is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • 1 type or 2 types or more can be mixed and used for an adhesive compound according to each characteristic.
  • the liquid crystal aligning agent includes compounds having at least one group selected from the group consisting of an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group (generic name). And also referred to as a specific crosslinkable compound). It is necessary to have two or more of these groups in the compound.
  • Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group include compounds described on pages 63 to 64 of International Publication No. 2014/171493 (published 2014.10.23).
  • crosslinkable compound having an oxetane group examples include compounds of the formulas [4a] to [4k] described on pages 58 to 59 of International Publication No. WO2011 / 132751 (2011.10.27 publication). It is done.
  • Specific examples of the crosslinkable compound having a cyclocarbonate group include the formulas [5-1] to [5-42] published on pages 76 to 82 of International Publication No. WO2012 / 014898 (2012.2.2 publication). ] Of the compound.
  • crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamines described on pages 65 to 66 of International Publication No. 2014/171493 (published 2014.10.23). Derivatives and compounds of the formulas [6-1] to [6-48] listed on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the content of the specific crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 50 parts by weight, and most preferably 1 to 30 parts by weight, based on 100 parts by weight of all polymer components.
  • the liquid crystal alignment treatment agent is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27) in order to promote charge transfer in the liquid crystal alignment film and promote charge release of the device. Nitrogen-containing heterocyclic amine compounds of the formulas [M1] to [M156] can also be added.
  • a compound that improves the uniformity of the thickness of the liquid crystal alignment film and the surface smoothness when the liquid crystal alignment treatment agent is applied can be used as the liquid crystal alignment treatment agent.
  • a compound that improves the adhesion between the liquid crystal alignment film and the substrate can be used.
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples include surfactants described on page 67 of International Publication No. 2014/171493 (published 2014.10.23).
  • the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. is there.
  • the compound for improving the adhesion between the liquid crystal alignment film and the substrate include compounds described on pages 67 to 69 of International Publication No. 2014/171493 (published 2014.10.23).
  • the use ratio is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • a dielectric or conductive material may be added to the liquid crystal alignment treatment agent for the purpose of changing electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
  • the liquid crystal composition contains a polymerizable compound that is polymerized by liquid crystal and ultraviolet rays, and this polymerizable compound plays a role of forming a polymer network (curable resin).
  • the liquid crystal layer is a cured product composite of liquid crystal and a polymerizable compound, and the cured product composite here is, for example, a liquid crystal in a polymer network formed of a polymerizable compound as described above. It means a state that exists.
  • the liquid crystal nematic liquid crystal, smectic liquid crystal, or cholesteric liquid crystal can be used. Among these, those having negative dielectric anisotropy are preferable.
  • liquid crystals can be mixed and used according to the respective physical property values of the phase transition temperature, dielectric anisotropy and refractive index anisotropy.
  • liquid crystal display element As an active element such as a TFT, it is required that the liquid crystal has a high electric resistance and a high voltage holding ratio (VHR). For this reason, it is preferable to use a fluorine-based or chlorine-based liquid crystal that has high electrical resistance and does not lower VHR by active energy rays such as ultraviolet rays.
  • a dichroic dye can be dissolved in the liquid crystal composition to form a guest-host type element. In this case, an element is obtained that is transparent when no voltage is applied and absorbs (scatters) when a voltage is applied.
  • the direction of the liquid crystal director (orientation direction) changes by 90 degrees depending on the presence or absence of voltage application.
  • this liquid crystal display element can obtain a higher contrast than the conventional guest-host type element that switches between random alignment and vertical alignment by utilizing the difference in light absorption characteristics of the dichroic dye.
  • a guest-host type element in which a dichroic dye is dissolved is colored when the liquid crystal is aligned in the horizontal direction, and is opaque only in the scattering state. Therefore, as the voltage is applied, it is possible to obtain an element that switches from colorless and transparent when no voltage is applied to a colored opaque and colored transparent state.
  • Any polymerizable compound may be used as long as it can form a cured product (for example, a polymer network) of the liquid crystal composition by a polymerization reaction with ultraviolet rays.
  • a monomer of a polymerizable compound may be introduced into the liquid crystal composition, or a polymer obtained by polymerizing this monomer in advance may be introduced into the liquid crystal composition.
  • a polymer it is necessary to have a site that undergoes a polymerization reaction with ultraviolet rays.
  • a monomer is introduced into the liquid crystal composition, and ultraviolet rays during the production of the liquid crystal display element are reduced.
  • a method of forming a cured product by performing a polymerization reaction by irradiation is preferable.
  • the polymerizable compound may be any compound as long as it dissolves in the liquid crystal. However, when the polymerizable compound is dissolved in the liquid crystal, it is necessary that a temperature at which a part or the whole of the liquid crystal composition exhibits a liquid crystal phase exists. Even when a part of the liquid crystal composition exhibits a liquid crystal phase, it is sufficient that the liquid crystal display element is confirmed with the naked eye and almost uniform transparency and scattering characteristics are obtained throughout the element.
  • the polymerizable compound may be any compound that undergoes a polymerization reaction due to ultraviolet rays. At that time, the polymerization may proceed in any reaction form to form a cured product of the liquid crystal composition.
  • reaction formats include radical polymerization, cationic polymerization, anionic polymerization, or polyaddition reaction.
  • radical polymerization is preferable as the reaction mode of the polymerizable compound.
  • the polymerizable compound it is preferable to use a radical type polymerizable compound (monomer) and an oligomer thereof. Further, as described above, a polymer obtained by polymerizing these monomers can also be used.
  • radical type polymerizable compound may be used alone or in combination of two or more depending on each characteristic.
  • a radical initiator also referred to as a polymerization initiator
  • a radical initiator that generates radicals by ultraviolet rays is used in the liquid crystal composition for the purpose of promoting radical polymerization of the polymerizable compound. It is preferable to introduce.
  • Specific examples include radical initiators described on pages 13 to 14 of International Publication No. 2014/171493 (published 2014.10.23).
  • a radical initiator can also be used 1 type or in mixture of 2 or more types according to each characteristic.
  • an ionic polymerizable compound can also be used. Specifically, it is a compound having at least one cross-linking group selected from the group consisting of a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. Specifically, melamine derivatives and benzoguanamine derivatives described in International Publication No. 2014/171493 (published 2014.10.23), pp.
  • the liquid crystal composition of the present invention preferably contains the compound of formula [1-2] described above.
  • S 1 , S 2 , S 3 , S 4 , S 5 , S 6 and sA are as defined above. Among them, the following are preferable.
  • S 1 is preferably formulas [1-a] to [1-f] and formulas [1-h] to [1-j] from the viewpoint of the optical characteristics of the liquid crystal display element. More preferable is the formula [1-a], the formula [1-b], the formula [1-d], the formula [1-i], or the formula [1-j].
  • S 2 is preferably a single bond or an alkylene group having 1 to 18 carbon atoms. Among these, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
  • the optional —CH 2 — in the alkylene group is —O—, —CO—, —COO—, —OCO—, —CONH—, —NHCO—, —NH—, —CON (CH 3 ) —, —S. -Or -SO 2- may be substituted.
  • S 3 is preferably a benzene ring, a cyclohexane ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton from the viewpoint of the optical characteristics of the liquid crystal display element.
  • S 4 is preferably a single bond, —O—, —COO— or —OCO— from the viewpoint of ease of synthesis. More preferred is a single bond, —COO— or —OCO—.
  • S 5 is preferably a benzene ring or a cyclohexane ring from the viewpoint of the optical characteristics of the liquid crystal display element.
  • S 6 is preferably an alkyl group, an alkoxyl group or an alkenyl group having 1 to 18 carbon atoms from the viewpoint of the optical characteristics of the liquid crystal display element. More preferably, it is an alkyl group, alkoxyl group or alkenyl group having 1 to 12 carbon atoms.
  • sA is preferably an integer of 0 to 2, more preferably 1 or 2, from the viewpoint of availability of raw materials and ease of synthesis.
  • the compound of the formula [1-2] added to the liquid crystal composition of the present invention (hereinafter also referred to as a liquid crystal additive compound), including the preferred compounds thereof, the formula [1-2] It is the same as the compound of]. That is, the compounds of the above formulas [1a-1] to [1a-24] can be mentioned.
  • the amount of the liquid crystal additive compound used in the liquid crystal composition is preferably 0.1 to 30 parts by mass, more preferably 0, based on 100 parts by mass of the liquid crystal composition excluding the liquid crystal additive compound from the viewpoint of the optical characteristics of the device. 0.5 to 30 parts by mass, particularly preferably 1 to 20 parts by mass. Two or more liquid crystal additive compounds can be mixed and used.
  • the substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate, a polycarbonate substrate, a PET (polyethylene terephthalate) substrate, or a film thereof. Can be used.
  • a plastic substrate or a film is preferable.
  • a substrate on which a metal such as a silicon wafer or aluminum or a dielectric multilayer film is formed can be used as long as the substrate is only on one side.
  • liquid crystal alignment film that aligns liquid crystal molecules vertically.
  • This liquid crystal alignment film can be obtained by applying a liquid crystal alignment treatment agent on a substrate and baking it, followed by alignment treatment by rubbing treatment or light irradiation.
  • the liquid crystal alignment film in the present invention can be used as a liquid crystal alignment film without these alignment treatments.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially includes screen printing, offset printing, flexographic printing, ink jet method, dipping method, roll coater method, slit coater method, spinner method, spray method, etc. Depending on the kind of the substrate and the film thickness of the target liquid crystal alignment film, it can be appropriately selected.
  • the liquid crystal alignment treatment agent After the liquid crystal alignment treatment agent is applied on the substrate, it is heated by a heating means such as a hot plate, a heat circulation oven, an IR (infrared) oven, etc., depending on the type of the substrate and the solvent used for the liquid crystal alignment treatment agent.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 300 ° C., preferably 30 to 250 ° C.
  • the treatment is preferably performed at a temperature of 30 to 150 ° C.
  • the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the element may be lowered. Therefore, it is preferably 5 to 500 nm, more preferably 10 to 300 nm. Particularly preferred is 10 to 250 nm.
  • a spacer for controlling an electrode gap (also referred to as a gap) of the liquid crystal display element can be introduced. Examples of the method for injecting the liquid crystal composition include the following methods.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to four pieces of one side of the substrate except for a part, and then the surface of the liquid crystal alignment film is An empty cell is produced by bonding the other substrate to the inside.
  • a method of obtaining a liquid crystal composition injection cell by injecting the liquid crystal composition under reduced pressure from a place where the sealant is not applied can be mentioned.
  • a plastic substrate or a film is used as a substrate, a pair of substrates having a liquid crystal alignment film is prepared, and a liquid crystal composition is formed on one substrate by an ODF (One Drop Filling) method or an inkjet method.
  • ODF One Drop Filling
  • the gap of the liquid crystal display element can be controlled by a spacer or the like.
  • the method include a method of introducing a spacer having a desired size into the liquid crystal composition and a method using a substrate having a column spacer of a desired size.
  • the gap can be controlled without introducing a spacer.
  • the size of the gap is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m. If the gap is too small, the contrast of the liquid crystal display element decreases, and if it is too large, the driving voltage increases.
  • the liquid crystal display element cures the liquid crystal composition by irradiation with ultraviolet rays to form a liquid crystal layer of a cured product composite of liquid crystal and a polymerizable compound.
  • the liquid crystal composition is cured by irradiating the liquid crystal composition injection cell with ultraviolet rays.
  • the light source of the ultraviolet irradiation device include a metal halide lamp and a high-pressure mercury lamp.
  • the wavelength of the ultraviolet light is preferably 250 to 400 nm, more preferably 310 to 370 nm.
  • Heat treatment may be performed after irradiation with ultraviolet rays, and the temperature at that time is preferably 40 to 120 ° C., more preferably 40 to 80 ° C.
  • A1 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
  • A2 1,3-diamino-4- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene
  • A3 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • A4 Formula [A4 A5: 1,3-diamino-4-octadecyloxybenzene
  • D1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • D2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • PGME propylene glycol monomethyl ether
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100 (X is the accumulated proton peak value derived from NH group of amic acid, y is the accumulated peak value of reference proton, ⁇ is the reference proton for one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) The number ratio.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 48%, Mn was 16,500, and Mw was 44,200.
  • liquid crystal display elements were produced. Specifically, these liquid crystal aligning agents were pressure filtered through a membrane filter having a pore diameter of 1 ⁇ m, and washed with pure water and IPA (isopropyl alcohol) 100 ⁇ 100 mm glass substrate with ITO electrode (length: 100 mm, width : 100 mm, thickness: 0.7 mm) is spin-coated on the ITO surface, and heat-treated on a hot plate at 100 ° C. for 5 minutes and in a heat-circulating clean oven at 210 ° C. for 30 minutes.
  • IPA isopropyl alcohol
  • the liquid crystal display element before this treatment was cut at a wavelength of 350 nm or less using a metal halide lamp with an illuminance of 20 mW and irradiated with ultraviolet rays for an irradiation time of 90 seconds.
  • the temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was controlled at 25 ° C. Thereby, a liquid crystal display element (reverse type element) was obtained.
  • the liquid crystal orientation was evaluated using this liquid crystal display element.
  • the liquid crystal orientation was observed with a polarizing microscope (Nikon Corporation, ECLIPSE E600WPOL) to confirm whether or not the liquid crystal was vertically aligned. As a result, the liquid crystal was vertically aligned in any of the liquid crystal display elements of Examples and Comparative Examples.
  • Liquid crystal display elements were produced using the liquid crystal alignment treatment agents obtained in Examples 5 to 9, 11 to 15, and Comparative Example 3. Specifically, a liquid crystal alignment treatment agent was pressure-filtered with a membrane filter having a pore diameter of 1 ⁇ m, and washed with pure water, and a 150 ⁇ 150 mm ITO (polyethylene terephthalate) substrate with an ITO electrode (length: 150 mm, width: 150 mm, The coating is applied on the ITO surface with a thickness of 0.2 mm) with a bar coater, and is heated on a hot plate at 100 ° C. for 5 minutes and in a heat-circulating clean oven at 120 ° C.
  • a liquid crystal alignment treatment agent was pressure-filtered with a membrane filter having a pore diameter of 1 ⁇ m, and washed with pure water, and a 150 ⁇ 150 mm ITO (polyethylene terephthalate) substrate with an ITO electrode (length: 150 mm, width: 150 mm, The coating is applied on the ITO surface with
  • An ITO substrate with a liquid crystal alignment film having a thickness of 100 nm was obtained.
  • Two ITO substrates with the obtained liquid crystal alignment film were prepared, and a 6 ⁇ m spacer was applied to the liquid crystal alignment film surface of one of the substrates.
  • the liquid crystal composition is dropped by the ODF method on the liquid crystal alignment film surface coated with the spacer of the substrate, and then bonded so that the liquid crystal alignment film interface of the other substrate faces, and the liquid crystal display before processing An element was obtained.
  • a liquid crystal display element (reverse type element) was obtained as the liquid crystal display element before this treatment by the same method as the above-mentioned “Preparation of liquid crystal display element and evaluation of liquid crystal alignment (glass substrate)”.
  • liquid crystal alignment was evaluated in the same manner as in “Preparation of liquid crystal display element and evaluation of liquid crystal alignment (glass substrate)”. As a result, the liquid crystal was vertically aligned in any of the liquid crystal display elements of Examples and Comparative Examples.
  • permeability after storing the liquid crystal display element produced by the said method for 12 hours in the 60 degreeC and 70% humidity constant temperature and humidity chamber was also evaluated. Specifically, the lower the rate of decrease in transmittance after storage in a constant temperature and humidity chamber with respect to the transmittance (initial value) immediately after the production of the liquid crystal display element, the better the evaluation. Further, the transmittance of the liquid crystal display element produced by the above method after being irradiated with 2 J / cm 2 of ultraviolet rays in terms of 365 nm using a desktop UV curing device (HCT3B28HEX-1) (manufactured by Senlite) is also evaluated. went. Specifically, the lower the transmittance decrease rate after ultraviolet irradiation with respect to the transmittance (initial value) immediately after manufacturing the liquid crystal display element, the better the evaluation.
  • Example 1 to 8, and 10 in addition to the above standard test, as an emphasis test, the transmittance was evaluated after being stored in a constant temperature and humidity chamber at a temperature of 60 ° C. and a humidity of 70% for 24 hours. It was.
  • the evaluation method has the same conditions as described above.
  • Tables 48 to 50 show transmittance (%) values immediately after the production of the liquid crystal display element (initial stage), after storage in a constant temperature and humidity chamber (constant temperature and humidity), and after ultraviolet irradiation (ultraviolet light). Evaluation of the scattering characteristic at the time of voltage application was performed by applying 30V by alternating current drive to a liquid crystal display element (glass substrate), and visually observing the orientation state of a liquid crystal. Specifically, the liquid crystal display element that was clouded, that is, the one that obtained the scattering characteristics was considered excellent in this evaluation (good display in the table).
  • the alignment state of the liquid crystal after the liquid crystal display element produced by the above method was stored for 12 hours in a constant temperature and humidity chamber having a temperature of 60 ° C. and a humidity of 70% was also confirmed.
  • the liquid crystal display element that was clouded that is, the one that obtained the scattering characteristics was considered excellent in this evaluation (good display in the table).
  • the liquid crystal display element produced by the above method was irradiated with 2 J / cm 2 of ultraviolet light at 365 nm conversion using a desktop UV curing device (HCT3B28HEX-1) (manufactured by Senlite). Confirmation was also performed.
  • the liquid crystal display element that was clouded that is, the one that obtained the scattering characteristics was considered excellent in this evaluation (good display in the table).
  • Tables 48 to 50 show the results of scattering characteristics immediately after the production of the liquid crystal display element (initial stage), after storage in a constant temperature and humidity chamber (constant temperature and humidity), and after ultraviolet irradiation (ultraviolet light).
  • Tables 51 to 53 show the adhesion results (adhesiveness) between the liquid crystal layer and the liquid crystal alignment film after storage in a constant temperature and humidity chamber (constant temperature and humidity) and after irradiation with ultraviolet rays (ultraviolet rays).
  • Example 1 NMP (14.6 g) and Z2 (0.163 g) were added to the polyamic acid solution (1) (6.50 g) obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 24 hours. Then, BCS (19.5g) was added and it stirred at 25 degreeC for 2 hours, and obtained the liquid-crystal aligning agent (1).
  • NEP (21.6 g) is added to the polyimide powder (2) (1.50 g) obtained in Synthesis Example 2, and the mixture is stirred at 60 ° C. for 24 hours, and then Z1 (0.300 g) is added thereto at 24 ° C. for 24 hours. Stir for hours. Thereafter, PB (14.4 g) was added and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (2).
  • Example 3 NMP (14.6 g) and Z2 (0.163 g) were added to the polyamic acid solution (3) (6.50 g) obtained in Synthesis Example 3, and the mixture was stirred at 25 ° C. for 24 hours. Then, BCS (19.5g) was added and it stirred at 25 degreeC for 2 hours, and obtained the liquid-crystal aligning agent (3).
  • NEP (21.6 g) was added to the polyimide powder (4) obtained in Synthesis Example 4 (1.50 g), and the mixture was stirred at 60 ° C. for 24 hours. Then, Z1 (0.300 g) was added, and 24 ° C. at 25 ° C. Stir for hours. Thereafter, PB (14.4 g) was added and stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (4).
  • Example 5 ⁇ -BL (6.06 g), PGME (30.6 g) and Z2 (0.188 g) were added to the polyamic acid solution (5) (5.00 g) obtained in Synthesis Example 5, and the mixture was added at 25 ° C. for 24 hours.
  • the liquid crystal aligning agent (5) was obtained by stirring.
  • Example 8 ⁇ -BL (6.06 g), PGME (30.6 g) and Z2 (0.188 g) were added to the polyamic acid solution (5) (5.00 g) obtained in Synthesis Example 5, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, N1 (0.063g), M1 (0.063g), and K1 (0.088g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (6).
  • Example 9 ⁇ -BL (8.08 g), PGME (28.6 g) and Z1 (0.125 g) were added to the polyamic acid solution (6) (5.00 g) obtained in Synthesis Example 6, and the mixture was added at 40 ° C. for 12 hours. Stir. Then, N1 (0.038g) and K1 (0.125g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (7).
  • ⁇ -BL (8.41 g) and PGME (33.6 g) were added to the polyimide powder (9) (1.30 g) obtained in Synthesis Example 9, and the mixture was stirred at 60 ° C. for 24 hours. 260 g) was added and stirred at 40 ° C. for 12 hours. Then, N1 (0.065g) and K1 (0.039g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (10).
  • Example 13 ⁇ -BL (6.31 g) and PGME (35.7 g) were added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and the mixture was stirred at 60 ° C. for 24 hours. 455 g) was added and stirred at 25 ° C. for 24 hours. Then, N1 (0.065g) and K1 (0.130g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (11).
  • Example 14 ⁇ -BL (6.06 g), PGME (30.6 g), and Z2 (0.125 g) were added to the polyamic acid solution (11) (5.00 g) obtained in Synthesis Example 11, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, N1 (0.063g) and K1 (0.088g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (12).
  • Example 15 ⁇ -BL (4.04 g), PGME (32.6 g) and Z2 (0.063 g) were added to the polyamic acid solution (12) (5.00 g) obtained in Synthesis Example 12, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, N1 (0.063g) and K1 (0.088g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (13).
  • Example 6 is a liquid crystal display element using a liquid crystal aligning agent (5) and a liquid crystal composition (2)
  • Example 7 is a liquid crystal aligning agent (5) and a liquid crystal composition (3).
  • * 1 A very small amount of bubbles was observed in the device.
  • * 2 A small amount of bubbles was observed in the element (more than * 1).
  • * 3 Many bubbles were observed in the element (more than * 2).
  • the example was a device having better transparency when no voltage was applied, particularly after storage in a constant temperature and humidity chamber and after ultraviolet irradiation, as compared with the comparative example. Furthermore, an element having high adhesion between the liquid crystal layer and the liquid crystal alignment film was obtained. Further, even when a plastic substrate was used as the element substrate, these characteristics were good. Specifically, the element of the example containing the specific compound in the liquid crystal alignment treatment agent has a higher transparency than that of the comparative example not containing the compound, particularly under high temperature and high humidity or after irradiation with ultraviolet rays. It became. More specifically, in the comparison under the same conditions, the comparison between Example 1 and Comparative Example 1, the comparison between Example 2 and Comparative Example 2, and the comparison between Example 5 and Comparative Example 3 are shown.
  • Example B series The meanings of the abbreviations used below are as follows. In addition, the rough outline used by Example A series is the same, respectively.
  • E2 Octadecyltriethoxysilane
  • E3 3-methacryloxypropyltrimethoxysilane
  • E4 3-ureidopropyltriethoxysilane
  • E5 tetraethoxysilane
  • ECS Ethylene glycol monoethyl ether
  • EC Diethylene glycol monoethyl ether
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 48%, Mn was 16,500, and Mw was 44,200.
  • ⁇ Synthesis Example 15> Prepare a solution of alkoxysilane monomer by mixing EC (29.2 g), E1 (4.10 g) and E5 (38.8 g) in a 200 ml four-necked reaction flask equipped with a thermometer and reflux tube. did. To this solution, a solution prepared by mixing EC (14.6 g), water (10.8 g) and oxalic acid (0.50 g) as a catalyst in advance at 25 ° C. was added dropwise over 30 minutes. The mixture was further stirred at 25 ° C. for 30 minutes.
  • Tables 57 to 59 show the adhesion results (adhesiveness) between the liquid crystal layer and the liquid crystal alignment film after storage in a constant temperature and humidity chamber (constant temperature and humidity) and after irradiation with ultraviolet rays (ultraviolet rays).
  • Example 1 T3 (0.069 g), NMP (12.4 g) and BCS (16.5 g) were added to the polyamic acid solution (1) (5.50 g) obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 4 hours. Thus, a liquid crystal aligning agent (1) was obtained.
  • NEP (16.8 g) and PB (16.8 g) were added to the polyimide powder (2) (1.40 g) obtained in Synthesis Example 2, and the mixture was stirred at 60 ° C. for 24 hours. Then, T3 (0.070g) was added and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (2).
  • Example 3 T3 (0.069 g), NMP (12.4 g) and BCS (16.5 g) were added to the polyamic acid solution (3) (5.50 g) obtained in Synthesis Example 3, and the mixture was stirred at 25 ° C. for 4 hours. Thus, a liquid crystal aligning agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (3) and the liquid crystal composition (1), a liquid crystal display element was produced and evaluated.
  • NEP (16.8 g) and PB (16.8 g) were added to the polyimide powder (4) (1.40 g) obtained in Synthesis Example 4, and the mixture was stirred at 60 ° C. for 24 hours. Then, T3 (0.070g) was added and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (4).
  • Example 5 T3 (0.030 g), ⁇ -BL (4.85 g) and PGME (24.5 g) were added to the polyamic acid solution (5) (4.00 g) obtained in Synthesis Example 5, and the mixture was added at 25 ° C. for 4 hours.
  • the liquid crystal aligning agent (5) was obtained by stirring.
  • Example 8 To the polyamic acid solution (5) (4.00 g) obtained in Synthesis Example 5, T3 (0.030 g), N1 (0.050 g), M1 (0.050 g), K1 (0.070 g), ⁇ - BL (4.85 g) and PGME (24.5 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (6).
  • Example 12 ⁇ -BL (6.47 g) and PGME (25.9 g) were added to the polyimide powder (9) (1.00 g) obtained in Synthesis Example 9, and the mixture was stirred at 60 ° C. for 24 hours. Then, T2 (0.050g), N1 (0.050g), and K1 (0.030g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (10).
  • Example 13 ⁇ -BL (6.47 g) and PGME (25.9 g) were added to the polyimide powder (10) (1.00 g) obtained in Synthesis Example 10, and the mixture was stirred at 60 ° C. for 24 hours. Then, T3 (0.030g), N1 (0.050g), and K1 (0.100g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (11).
  • Example 15 To the polyamic acid solution (12) (4.00 g) obtained in Synthesis Example 12, T2 (0.070 g), N1 (0.050 g), K1 (0.070 g), ⁇ -BL (3.23 g) and PGME (26.1 g) was added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (13).
  • Example 19 To the polysiloxane solution (3) (8.50 g) obtained in Synthesis Example 15, T1 (0.071 g), N1 (0.051 g), M1 (0.204 g), PB (9.89 g), PGME ( 9.89 g) and EC (5.71 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (16).
  • NEP (16.8 g) and PB (16.8 g) are added to the polyimide powder (2) (1.40 g) obtained in Synthesis Example 2, and the mixture is stirred at 60 ° C. for 24 hours to obtain a liquid crystal alignment treatment agent ( 19) was obtained.
  • Example 6 is a liquid crystal display element using a liquid crystal aligning agent (5) and a liquid crystal composition (2)
  • Example 7 is a liquid crystal aligning agent (5) and a liquid crystal composition (3)
  • Example 17 is a liquid crystal display element using the liquid crystal aligning agent (14) and the liquid crystal composition (3).
  • * 1 A very small amount of bubbles was observed in the device.
  • * 2 A small amount of bubbles was observed in the element (more than * 1).
  • * 3 Many bubbles were observed in the element (more than * 2).
  • the example was an element having better optical characteristics, that is, transparency in the initial stage, after storage in a constant temperature and humidity chamber, and after irradiation with ultraviolet light when no voltage was applied. Furthermore, the device has high adhesion between the liquid crystal layer and the liquid crystal alignment film. In particular, even when a plastic substrate was used as the element substrate, these characteristics were good. Specifically, the device of the example containing the specific compound in the liquid crystal aligning agent has higher transparency when no voltage is applied immediately after the device is produced, compared to the comparative example not containing the compound. The results showed high transparency even under high temperature and high humidity or after irradiation with ultraviolet rays. More specifically, in the comparison under the same conditions, the comparison between Example 1 and Comparative Example 1, the comparison between Example 2 and Comparative Example 2, the comparison between Example 5 and Comparative Example 3, and the Example 16 And comparison between Comparative Example 4 and Example 18 and Comparative Example 5.
  • Example C series The meanings of the abbreviations used below are the same as the meanings of the abbreviations defined in Example A series and Example B series.
  • ⁇ Synthesis Example 1> D2 (6.89 g, 27.5 mmol), A1 (8.49 g, 22.3 mmol) and C2 (2.26 g, 14.9 mmol) were mixed in NMP (38.9 g) and reacted at 50 ° C. for 5 hours. after, D1 (1.80 g, 9.18 mmol) and NMP of (19.5 g) was added, reacted for 6 hours at 40 ° C., to obtain a C R 25% polyamic acid solution (1).
  • the number average molecular weight (also referred to as Mn) of this polyamic acid was 21,300, and the weight average molecular weight (also referred to as Mw) was 67,700.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 48%, Mn was 16,500, and Mw was 44,200.
  • Tables 70 to 72 show the adhesion results (adhesiveness) between the liquid crystal layer and the liquid crystal alignment film after storage in a constant temperature and humidity chamber (constant temperature and humidity) and after irradiation with ultraviolet rays (ultraviolet rays).
  • Example 1 NMP (14.6 g) and Z2 (0.163 g) were added to the polyamic acid solution (1) (6.50 g) obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 24 hours. Then, T3 (0.082g) and BCS (19.5g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (1).
  • NEP (21.6 g) is added to the polyimide powder (2) (1.50 g) obtained in Synthesis Example 2, and the mixture is stirred at 60 ° C. for 24 hours, and then Z1 (0.300 g) is added thereto at 24 ° C. for 24 hours. Stir for hours. Then, T3 (0.075g) and PB (14.4g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (2).
  • NMP (14.6 g) and Z2 (0.163 g) were added to the polyamic acid solution (3) (6.50 g) obtained in Synthesis Example 3, and the mixture was stirred at 25 ° C. for 24 hours. Then, T3 (0.082g) and BCS (19.5g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (3).
  • NEP (21.6 g) was added to the polyimide powder (4) obtained in Synthesis Example 4 (1.50 g), and the mixture was stirred at 60 ° C. for 24 hours. Then, Z1 (0.300 g) was added, and 24 ° C. at 25 ° C. Stir for hours. Then, T3 (0.075g) and PB (14.4g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (4).
  • Example 5 ⁇ -BL (6.06 g), PGME (30.6 g) and Z2 (0.188 g) were added to the polyamic acid solution (5) (5.00 g) obtained in Synthesis Example 5, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, T3 (0.038g) was added and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (5).
  • Example 8 ⁇ -BL (6.06 g), PGME (30.6 g) and Z2 (0.188 g) were added to the polyamic acid solution (5) (5.00 g) obtained in Synthesis Example 5, and the mixture was added at 25 ° C. for 24 hours. Stir. Thereafter, T3 (0.038 g), N1 (0.063 g), M1 (0.063 g) and K1 (0.088 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (6). .
  • Example 9 ⁇ -BL (8.08 g), PGME (28.6 g) and Z1 (0.125 g) were added to the polyamic acid solution (6) (5.00 g) obtained in Synthesis Example 6, and the mixture was added at 40 ° C. for 12 hours. Stir. Then, T1 (0.088g), N1 (0.038g), and K1 (0.125g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (7).
  • Example 10 NMP (14.6 g) and Z2 (0.163 g) were added to the polyamic acid solution (7) (6.50 g) obtained in Synthesis Example 7, and the mixture was stirred at 25 ° C. for 24 hours. Then, T3 (0.082g) and BCS (19.5g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (8).
  • Example 11 To the polyamic acid solution (8) (5.00 g) obtained in Synthesis Example 8, ⁇ -BL (4.04 g), PB (4.04 g), PGME (28.6 g) and Z2 (0.375 g) were added. In addition, the mixture was stirred at 25 ° C. for 24 hours. Then, T3 (0.013g), N1 (0.088g), and K1 (0.063g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (9).
  • ⁇ -BL (8.41 g) and PGME (33.6 g) were added to the polyimide powder (9) (1.30 g) obtained in Synthesis Example 9, and the mixture was stirred at 60 ° C. for 24 hours. 260 g) was added and stirred at 40 ° C. for 12 hours. Then, T2 (0.065g), N1 (0.065g) and K1 (0.039g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (10).
  • Example 13 ⁇ -BL (6.31 g) and PGME (35.7 g) were added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and the mixture was stirred at 60 ° C. for 24 hours. 455 g) was added and stirred at 25 ° C. for 24 hours. Then, T3 (0.039g), N1 (0.065g), and K1 (0.130g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (11).
  • Example 14 ⁇ -BL (6.06 g), PGME (30.6 g), and Z2 (0.125 g) were added to the polyamic acid solution (11) (5.00 g) obtained in Synthesis Example 11, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, T3 (0.038g), N1 (0.063g), and K1 (0.088g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (12).
  • Example 15 ⁇ -BL (4.04 g), PGME (32.6 g) and Z2 (0.063 g) were added to the polyamic acid solution (12) (5.00 g) obtained in Synthesis Example 12, and the mixture was added at 25 ° C. for 24 hours. Stir. Then, T2 (0.088g), N1 (0.063g) and K1 (0.088g) were added, and it stirred at 25 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (13).
  • NEP (21.6 g) is added to the polyimide powder (2) (1.50 g) obtained in Synthesis Example 2, and the mixture is stirred at 60 ° C. for 24 hours, and then Z1 (0.300 g) is added thereto at 24 ° C. for 24 hours. Stir for hours. Then, PB (14.4g) was added and it stirred at 25 degreeC for 2 hours, and obtained the liquid-crystal aligning agent (18).
  • the liquid crystal aligning agent (21) was obtained by stirring.
  • the liquid crystal aligning agent (22) was obtained by stirring.
  • Example 6 is a liquid crystal display element using a liquid crystal aligning agent (5) and a liquid crystal composition (2)
  • Example 7 is a liquid crystal aligning agent (5) and a liquid crystal composition (3).
  • * 1 A very small amount of bubbles was observed in the device.
  • * 2 A small amount of bubbles was observed in the element (more than * 1).
  • * 3 Many bubbles were observed in the element (more than * 2).
  • the example was a liquid crystal display element having better optical properties than the comparative example, that is, transparency when no voltage was applied, particularly after storage in a high-temperature and high-humidity tank and after ultraviolet irradiation. Furthermore, the device has high adhesion between the liquid crystal layer and the liquid crystal alignment film. Further, even when a plastic substrate was used as the element substrate, these characteristics were good. Specifically, the example element containing the specific compound (1) and the specific compound (2) in the liquid crystal alignment treatment agent does not contain it, or in comparison with the comparative example containing either one, the temperature is particularly high. As a result, the transparency after exposure to moisture or ultraviolet rays increased, and the adhesion between the liquid crystal layer and the liquid crystal alignment film also increased. More specifically, it is a comparison between Example 1 and Comparative Examples 1 to 3 under the same conditions, a comparison between Example 2 and Comparative Examples 4 to 6, and a comparison between Example 5 and Comparative Examples 7 to 9. .
  • the liquid crystal display element when the formula [3-1] is used, the liquid crystal display element is more transparent when no voltage is applied than when the formula [3-2] is used.
  • the results show that the transparency when no voltage is applied becomes higher even after being stored in a constant temperature and humidity chamber for a long time in the emphasis test.
  • the results showed that these adhesion properties were higher. Specifically, it is a comparison between Example 1 and Example 10 under the same conditions in the standard test and the enhancement test.
  • the liquid crystal display element becomes more transparent when no voltage is applied, and after being stored in a constant temperature and humidity chamber for a long period of time in an emphasis test. As a result, the transparency when no voltage was applied was higher. The effect was greater as the amount of the specific liquid crystal additive compound introduced was larger. Specifically, it is a comparison between Example 5 and 6 or 7 under the same conditions in the standard test and the enhancement test. Furthermore, when the specific generator, the adhesive compound and the specific crosslinkable compound were introduced into the liquid crystal alignment treatment agent, the adhesion between the liquid crystal layer and the liquid crystal alignment film in the liquid crystal display element was further improved. . Specifically, it is a comparison between Examples 7 and 8 under the same conditions in the enhancement test.
  • the liquid crystal display element of the present invention can be suitably used for a liquid crystal display for display purposes, a dimming window for controlling transmission and blocking of light, an optical shutter element, and the like.
  • the liquid crystal display element of the present invention is a liquid crystal display element used in transportation equipment and transportation machines such as automobiles, railways, and aircrafts, specifically, light used for light control windows and room mirrors that control transmission and blocking of light. It can be suitably used for a shutter element or the like.
  • this element is used as a reverse-type element, transparency when no voltage is applied and scattering characteristics when voltage is applied are good. The efficiency of taking light in time is high, and the effect of preventing glare from outside light is also high. Therefore, the safety when driving a vehicle and the comfort during riding can be further improved.
  • the reliability of an element becomes high compared with the past.
  • this element can be used for a light guide plate of a display device such as an LCD or an OLED or a back plate of a transparent display using these displays.
  • a display device such as an LCD or an OLED
  • a back plate of a transparent display using these displays.
  • the back plate of a transparent display for example, when the screen is displayed on the transparent display by combining the transparent display and the present element, to prevent light from entering from the back by the present element.
  • Can be used for This element is in a scattering state in which a voltage is applied when screen display is performed on a transparent display, and the screen display can be sharpened. After the screen display is completed, the device is in a transparent state in which no voltage is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 液晶の垂直配向性が高く、光学特性性が良好であり、かつ液晶層と液晶配向膜との密着性が高く、更に長時間、高温高湿や光照射の環境でも特性を維持できる液晶表示素子を提供する 電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有し、かつ基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を備える液晶表示素子であって、前記液晶配向膜が、下記の(A)成分及び(B)成分を含有する液晶配向処理剤から得られる。 (A)成分:式[1-1]の化合物及び式[1-2]の化合物からなる群から選ばれる少なくとも1種の化合物。 (B)成分:式[2-1]及び式[2-2]からなる群から選ばれる少なくとも1つの構造を有する重合体。

Description

液晶表示素子
 本発明は、電圧無印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶表示素子に関する。
 液晶材料を用いた液晶表示素子としては、TNモードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うものであり、液晶表示素子として用いる際には、偏光板を用いる必要がある。しかしながら、偏光板を用いることで光の利用効率が低くなる。
 偏光板を用いずに光の利用効率の高い液晶表示素子として、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶表示素子があり、一般的には、高分子分散型液晶(PDLCともいう)や高分子ネットワーク型液晶(PNLCともいう)を用いたものが知られている。
 これらを用いた液晶表示素子では、電極を備えた一対の基板の間に、紫外線により重合する重合性化合物を含む液晶組成物を配置し、紫外線の照射により液晶組成物の硬化を行い、液晶層、即ち、液晶と重合性化合物の硬化物複合体(例えばポリマーネットワーク)を形成される。この液晶表示素子は、電圧の印加により、液晶の透過状態と散乱状態とを制御する。
 従来のPDLCやPNLCを用いた液晶表示素子は、電圧無印加時に液晶分子がランダムな方向を向いているため、白濁(散乱)状態となり、電圧印加時には液晶が電界方向に配列し、光を透過して透過状態となる液晶表示素子(ノーマル型素子ともいう)である。しかし、ノーマル型素子においては、透過状態を得るために常時電圧を印加しておく必要があるため、透明状態で使用される場合が多い用途、例えば窓ガラスなどで使用する場合には、消費電力が大きくなってしまう。
 一方、電圧無印加時に透過状態となり、電圧印加時には散乱状態になるPDLCを用いた液晶表示素子(リバース型素子ともいう)が報告されている(特許文献1、2参照)。
日本特許2885116号公報 日本特許4132424号公報
 リバース型素子における液晶組成物中の重合性化合物は、ポリマーネットワークを形成させ、所望とする光学特性を得る役割と、液晶層と液晶配向膜との密着性を高める硬化剤としての役割がある。液晶配向膜との密着性を高めるためには、よりポリマーネットワークを密にする必要があるが、ポリマーネットワークを密にすると、液晶の垂直配向性を阻害し、リバース型素子の光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性を悪化させてしまう問題がある。そのため、リバース型素子に用いる液晶組成物は、液晶層を形成時における液晶の垂直配向性が、高くなるものが必要となる。
 更に、リバース型素子に用いる液晶配向膜は、液晶を垂直に配向させるために疎水性が高い膜であることから、液晶層と液晶配向膜との密着性が低くなる。そのため、リバース型素子に用いる液晶組成物には、硬化剤の役割がある重合性化合物を多く導入しなければならない。しかし、重合性化合物を多く導入すると、液晶の垂直配向性が阻害され、電圧無印加時の透明性と電圧印加時の散乱特性が大きく低下する問題がある。
 更に、リバース型素子を自動車や建築建物の窓ガラスに貼って使用する場合、素子は、長時間、高温高湿の環境下や光の照射に曝された環境下で使用される場合がある。そのため、過酷な環境においても、液晶の垂直配向性が低下せず、かつ、液晶層と液晶配向膜との密着性が高いことが必要となる。
 本発明は、液晶の垂直配向性が高く、良好な光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、かつ、液晶層と液晶配向膜との密着性が高く、更には、長時間、高温高湿や光の照射に曝された環境下においても、これらの特性を維持できる液晶表示素子を提供することを目的とする。
 本発明者は、上記の目的を達成するために鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。
 1.電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有し、かつ基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を備える液晶表示素子であって、前記液晶配向膜が、下記の成分を含有する液晶配向処理剤から得られることを特徴とする液晶表示素子。
(A)成分:下記式[1-1]の化合物及び下記式[1-2]の化合物からなる群から選ばれる少なくとも1種の化合物。
(B)成分:下記式[2-1]及び式[2-2]からなる群から選ばれる少なくとも1つの構造を有する重合体。
Figure JPOXMLDOC01-appb-C000018
(Tは炭素数1~20のアルキレン基、及びベンゼン環若しくはシクロヘキサン環を有する炭素数6~24の有機基からなる群から選ばれる少なくとも1種を示し、前記炭素数1~20のアルキレン基の任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-CON(CH)-、-S-又は-SO-で置き換えられても良い。Tは単結合、-O-、-NH-、-N(CH)-、-CHO-、-OCH-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Tは下記式[1-a]~式[1-g]の構造からなる群から選ばれる少なくとも1種を示す。)
Figure JPOXMLDOC01-appb-C000019
(Tは水素原子又はベンゼン環を示す。Tはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Tは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
Figure JPOXMLDOC01-appb-C000020
(Sは下記式[1-a]~式[1-l]の構造からなる群から選ばれる少なくとも1種の構造を示す。Sは単結合又は炭素数1~24のアルキレン基を示し、前記アルキレン基の任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-CON(CH)-、-S-又は-SO-で置き換えられても良い。Sはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Sは単結合、-O-、-OCH-、-CHO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Sはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。sAは0~4の整数を示す。Sは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
Figure JPOXMLDOC01-appb-C000021
(Sは水素原子又はベンゼン環を示す。Sはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Sは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。S~Sはそれぞれ、炭素数1~5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000022
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Yは単結合又は-(CH-(bは1~15の整数である)を示す。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0~4の整数を示す。Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
Figure JPOXMLDOC01-appb-C000023
(Yは単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Yは炭素数8~22のアルキル基又は炭素数6~18のフッ素含有アルキル基を示す。)
 2.前記(A)成分の[1-1]の化合物 が、下記式[1a-1]~式[1a-6]の化合物からなる群から選ばれる少なくとも1種である請求項1に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000024
(Ta及びTbはそれぞれ、1~12の整数を示す。Tc~Tfはそれぞれ、1~10の整数を示す。)
 3.式[1-2]中のSが、式[1-a]~式[1-d]及び式[1-f]からなる群から選ばれる少なくとも1種の構造である上記1に記載の液晶表示素子。
 4.式[1-2]中のSが、式[1-h]~式[1-l]の構造からなる群から選ばれる少なくとも1種の構造である上記1に記載の液晶表示素子。
 5.(B)成分の重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つである上記1~3のいずれか一項に記載の液晶表示素子。
 6.(B)成分の重合体が、前記式[2-1]又は式[2-2]の構造を有するジアミン化合物を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである上記1~4のいずれか1項に記載の液晶表示素子。
 7.前記ジアミン成分が、下記式[2a]で示されるジアミンを含む上記6に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000025
(Yは前記式[2-1]又は式[2-2]を示す。n1は1~4の整数を示す。)
 8.前記ジアミン成分が、下記式[3a]で示されるジアミンを含む上記6又は7に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000026
(Wは下記式[3]の構造を示す。m1は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000027
(Wは単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Wは単結合、炭素数1~18のアルキレン基、又はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を有する炭素数6~24の有機基を示し、これら環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基で置換されていても良い。Wは単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Wは下記式[3-a]~式[3-g]の構造からなる群から選ばれる少なくとも1種の構造を示す。)
Figure JPOXMLDOC01-appb-C000028
(Wは水素原子又はベンゼン環を示す。Wはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Wは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
 9.前記テトラカルボン酸成分が、下記式[4]のテトラカルボン酸二無水物を含む上記6~8のいずれか一項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000029
(Zは下記式[4a]~式[4k]の構造からなる群から選ばれる少なくとも1種の構造を示す。)
Figure JPOXMLDOC01-appb-C000030
(Z~Zはそれぞれ独立して、水素原子、メチル基、塩素原子及びベンゼン環からなる群から選ばれる少なくとも1種を示す。Z及びZはそれぞれ独立して、水素原子又はメチル基を示す。)
 10.(B)成分の重合体が、下記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと下記式[A2]若しくは式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンを含む上記1~4のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000031
(Aは前記式[2-1]又は式[2-2]の構造を示す。Aは水素原子又は炭素数1~5のアルキル基を示す。Aは炭素数1~5のアルキル基を示す。mは1又は2の整数を示す。nは0~2の整数を示す。pは0~3の整数を示す。ただし、m+n+pは4である。)
Figure JPOXMLDOC01-appb-C000032
(Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基からなる群から選ばれる少なくとも1種を有する炭素数2~12の有機基を示す。Bは水素原子又は炭素数1~5のアルキル基を示す。Bは炭素数1~5のアルキル基を示す。mは1又は2の整数を示す。nは0~2の整数を示す。pは0~3の整数を示す。ただし、m+n+pは4である。)
Figure JPOXMLDOC01-appb-C000033
(Dは水素原子又は炭素数1~5のアルキル基を示す。Dは炭素数1~5のアルキル基を示す。nは0~3の整数を示す。)
 11.前記液晶配向処理剤が、光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1種の発生剤を含有する請求項1~10のいずれか一項に記載の液晶表示素子。
 12.前記液晶配向処理剤が、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基及び炭素数1~3のアルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する化合物を含有する上記1~11のいずれか一項に記載の液晶表示素子。
 13.前記液晶配向処理剤が、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン及び下記式[D1]~式[D3]の溶媒からなる群から選ばれる少なくとも1種の溶媒を含有する上記1~12のいずれか一項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000034
(D、D及びDはそれぞれ、炭素数1~4のアルキル基を示す。)
 14.前記液晶配向処理剤が、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種の溶媒を含有する上記1~13のいずれか一項に記載の液晶表示素子。
 15.前記液晶組成物が、上記1に記載の式[1-1]の化合物又は式[1-2]の化合物を含有する上記1~140のいずれか1項に記載の液晶表示素子。
 16.前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である上記1~15のいずれか一項に記載の液晶表示素子。
 本発明によれば、良好な光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、かつ、液晶層と液晶配向膜との密着性が高く、更には、長時間、高温高湿や光の照射に曝された環境下においても、これらの特性を維持できるリバース型素子を提供できる。本発明により何故に上記の優れた特性を有する液晶表示素子が得られるメカニズムは、必ずしも明らかではないが、ほぼ次のように推定される。
 本発明の素子における液晶配向膜は、前記式[1-1]の化合物(特定化合物(1-1)ともいう)を含有する液晶配向処理剤から得られる。式[1-1]のTは、紫外線により重合反応する部位である。そのため、液晶表示素子を作製する際の紫外線の照射により、液晶組成物中の重合性化合物と、特定化合物(1)とが反応し、液晶層と液晶配向膜との密着性を高めることができる。また、特定化合物(1-1)の有するイソシアネート基は、アミノ基や水酸基などの極性基と熱反応する。そのため、液晶配向膜の作製時の加熱により、液晶配向処理剤中の(B)成分の重合体(特定重合体ともいう)の有する極性基と、このイソシアネート基とが反応する。これにより、特定化合物(1-1)を介して、特定重合体と液晶層との結合が形成され、より液晶層と液晶配向膜との密着性が高められると考えられる。
 また、式[1-2]の化合物(特定化合物(1-2)ともいう)の有するSは、極性基を有する部位であり、S~Sの構造は、液晶を垂直に配向させる効果が高い剛直な構造を示す。そのため、液晶配向膜にした際には、特定化合物(1-2)がSの極性基を有することで、S~Sの部位が効率的に液晶配向膜界面に移行すると考えられる。それにより、重合体に含まれる剛直構造とともに、より液晶の垂直配向性が高められると考えられる。
 また、本発明における液晶配向膜は、前記式[2-1]又は式[2-2]の構造(特定側鎖構造ともいう)を有する重合体(特定重合体ともいう)を含有する液晶配向処理剤から得られる。特に、式[2-1]は剛直な構造を示すことから、この構造を用いた場合は、高くて安定な液晶の垂直配向性を示す液晶表示素子を得ることができる。そのため、特に、式[2-1]を用いた場合は、良好な光学特性を発現するリバース型素子が得られる。
 かくして、本発明の液晶表示素子は、良好な光学特性を発現し、液晶層と液晶配向膜との密着性が高く、更にこれら特性を長時間維持できる液晶表示素子となる。
<特定化合物(1-1)>
 前記式[1-1]で示される化合物である。式[1-1]中、T、T、T及びTは、上記に定義した通りであるが、中でも、Tは、液晶層と液晶配向膜との密着性の点から、炭素数1~12のアルキレン基が好ましい。また、ベンゼン環又はシクロヘキサン環を有する炭素数6~18の有機基も好ましい。
 Tは、単結合、-O-、-CHO-、-OCH-、-CONH-、-NHCO-、-COO-又は-OCO-が好ましい。
 Tは、液晶層と液晶配向膜との密着性の点から、前記式[1-a]、式[1-b]、式[1-c]、式[1-d]又は式[1-f]が好ましい。より好ましいのは、式[1-a]、式[1-b]、式[1-d]又は式[1-f]である。
 式[1]における好ましいT~Tの組み合わせは下記表1、表2に示される。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 中でも、(1-1a)~(1-8a)、(1-10a)、(1-15a)~(1-17a)、(1-22a)又は(1-23a)が好ましい。より好ましいのは、上述した点から、(1-1a)~(1-4a)である。
 より具体的な特定化合物(1-1)としては、前記した式[1a-1]~式[1a-6]の化合物が挙げられる。
 式[1a-1]~式[1a-6]中、Ta~Tfは、上記に定義したとおりであるが、中でも、Ta及びTbはそれぞれ、1~10の整数が好ましい。より好ましいのは、1~8の整数である。Tc~Tfはそれぞれ、1~8の整数が好ましい。より好ましいのは、1~6の整数である。
 本発明における特定化合物(1-1)としては、式[1a-1]、式[1a-2]、式[1a-5]又は式[1a-6]の化合物が好ましい。
 液晶配向処理剤における特定化合物(1-1)の使用量は、液晶表示素子の光学特性の点から、特定重合体100質量部に対して、0.1~80質量部が好ましい。より好ましいのは、0.1~60質量部であり、特に好ましいのは、1~50質量部である。また、これら特定化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<特定化合物(1-2)>
 前記式[1-2]で表される化合物である。式[1-2]中、S、S、S、S、S、S及びsAは、上記に定義した通りである。中でも、Sは、液晶表示素子における光学特性の点から、式[1-a]~式[1-d]、式[1-f]又は式[1-h]~式[1-l]が好ましい。より好ましいのは、式[1-a]、式[1-b]、式[1-d]、式[1-f]又は式[1-h]~式[1-j]の構造である。特に好ましいのは、式[1-a]、式[1-b]、式[1-d]、式[1-h]又は式[1-i]である。
 Sは、単結合又は炭素数1~18のアルキレン基が好ましい。中でも、単結合又は炭素数1~12のアルキレン基が好ましい。Sは、液晶表示素子の光学特性の点から、ベンゼン環又はシクロヘキサン環、又はステロイド骨格を有する炭素数17~51の2価の有機基が好ましい。Sは、合成の容易さの点から、単結合、-O-、-COO-又は-OCO-が好ましい。より好ましいのは、単結合、-COO-又は-OCO-である。Sは、液晶表示素子の光学特性の点から、ベンゼン環又はシクロヘキサン環が好ましい。Sは、液晶表示素子の光学特性の点から、炭素数1~18のアルキル基、炭素数1~18のアルコキシル基又は炭素数2~18のアルケニル基が好ましい。より好ましいのは、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基又は炭素数2~12のアルケニル基である。sAは、原料の入手性や合成の容易さの点から、0~2の整数が好ましい。より好ましいのは、1又は2の整数である。
 式[1-2]における好ましいS~S及びsAの組み合わせは、下記の表3~表43に示される。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
 より具体的な特定化合物(1-2)としては、好ましくは下記式[1a-1]~式[1a-24]の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000078
 上記式中、sはそれぞれ、1~12の整数を示す。中でも、液晶表示素子の光学特性の点から、1~8の整数が好ましい。sはそれぞれ、0~4の整数を示す。中でも、液晶表示素子の光学特性の点から、1又は2の整数が好ましい。Sは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-又は-OCO-を示す。中でも、原料の入手性や合成の容易さの点から、-O-又は-COO-が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
Figure JPOXMLDOC01-appb-C000079
 上記式中、sはそれぞれ、1~12の整数を示す。中でも、液晶表示素子の光学特性の点から、1~8の整数が好ましい。Sはそれぞれ、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。中でも、原料の入手性や合成の容易さの点から、-COO-又は-OCO-が好ましい。Sは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-又は-OCO-を示す。中でも、原料の入手性や合成の容易さの点から、-O-又は-COO-が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 上記式中、sはそれぞれ、0~4の整数を示す。中でも、液晶表示素子の光学特性の点から、1又は2の整数が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 上記式中、sはそれぞれ、1~12の整数を示す。中でも、液晶表示素子の光学特性の点から、1~8の整数が好ましい。sはそれぞれ、0~4の整数を示す。中でも、液晶表示素子の光学特性の点から、1又は2の整数が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
Figure JPOXMLDOC01-appb-C000084
 上記式中、Sはそれぞれ、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。中でも、原料の入手性や合成の容易さの点から、-COO-又は-OCO-が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
Figure JPOXMLDOC01-appb-C000085
 上記式中、sはそれぞれ、1~12の整数を示す。中でも、液晶表示素子の光学特性の点から、1~8の整数が好ましい。
 Sはそれぞれ、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。中でも、原料の入手性や合成の容易さの点から、-COO-又は-OCO-が好ましい。
 Sはそれぞれ、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。中でも、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基が好ましい。より好ましいのは、炭素数1~8のアルキル基又は炭素数1~8のアルコキシル基である。
 液晶配向処理剤における特定化合物(1-2)の使用割合は、液晶表示素子の光学特性の点から、特定重合体100質量部に対して、0.1~30質量部が好ましい。より好ましいのは、0.5~20質量部であり、特に好ましいのは、1~10質量部である。また、これら特定化合物は、各特性に応じて、1種又は2種以上を混合して使用できる。
<特定側鎖構造>
 特定側鎖構造は、前記式[2-1]及び式[2-2]からなる群から選ばれる。
 式[2-1]中、Y、Y、Y、Y、Y、Y及びnは、上記に定義した通りであるが、中でも、それぞれ、下記のものが好ましい。
 Yは、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。Yは、単結合又は-(CH-(bは1~10の整数である)が好ましい。
 Yは、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又は-COO-である。Yは、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。Yは、ベンゼン環又はシクロへキサン環が好ましい。
 Yは、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましいのは、炭素数1~12のアルキル基、炭素数2~18のアルケニル基又は炭素数1~12のアルコキシル基である。特に好ましいのは、炭素数1~9のアルキル基、炭素数2~12のアルケニル基又は炭素数1~9のアルコキシル基である。nは、原料の入手性や合成の容易さの点から、0~3が好ましく、0~2がより好ましい。
 Y~Y及びnの好ましい組み合わせは、国際公開公報WO2011/132751(2011.10.27公開)の13~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。また、国際公開公報の各表に掲載される(2-605)~(2-629)では、本発明におけるステロイド骨格を有する炭素数17~51の有機基が、ステロイド骨格を有する炭素数12~25の有機基と示されているが、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。
 中でも、(2-25)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-268)~(2-315)、(2-364)~(2-387)、(2-436)~(2-483)又は(2-603)~(2-615)の組み合わせが好ましい。特に好ましいのは、(2-49)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-603)~(2-606)、(2-607)~(2-609)、(2-611)、(2-612)又は(2-624)の組み合わせである。
 前記式[2-2]における、Y及びYは、上記に定義した通りであるが、中でも、それぞれ、下記のものが好ましい。
 Yは、単結合、-O-、-CHO-、-CONH-、-CON(CH)-又は-COO-が好ましい。より好ましくは、単結合、-O-、-CONH-又は-COO-である。Yは、炭素数8~18のアルキル基が好ましい。
 本発明における特定側鎖構造は、高くて安定な液晶の垂直配向性を得ることができる点から、特に、式[2-1]を用いることが好ましい。
<特定重合体>
 特定側鎖構造を有する特定重合体としては、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つの重合体が好ましい。より好ましいのは、ポリイミド前駆体、ポリイミド又はポリシロキサンである。
 特定重合体として、ポリイミド前駆体又はポリイミド(総称してポリイミド系重合体ともいう。)を用いる場合、それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はポリイミドが好ましい。
 ポリイミド前駆体とは、下記式[A]の構造を有する。
Figure JPOXMLDOC01-appb-C000086
(Rは4価の有機基を示す。Rは2価の有機基を示す。A及びAはそれぞれ独立して、水素原子又は炭素数1~8のアルキル基を示す。A及びAはそれぞれ独立して、水素原子、炭素数1~5のアルキル基又はアセチル基を示す。nは正の整数を示す。)
 ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 ポリイミド系重合体は、下記式[B]のテトラカルボン酸二無水物と下記式[C]のジアミン化合物とを原料とすることで、比較的簡便に得られるという理由から、下記式[D]の繰り返し単位を有する成るポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000087
(R及びRは、式[A]で定義したものと同意義である。)
Figure JPOXMLDOC01-appb-C000088
(R及びRは、式[A]で定義したものと同意義である。)
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]中のA及びAの炭素数1~8のアルキル基、及び式[A]中のA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。
 特定側鎖構造をポリイミド系重合体に導入する方法としては、特定側鎖構を有するジアミン化合物を原料の一部に用いることが好ましい。特に前記式[2a]のジアミン化合物(特定ジアミン化合物(1)ともいう)を用いることが好ましい。
 前記式[2a]中、Yは前記式[2-1]又は式[2-2]を示す。また、式[2-1]におけるY、Y、Y、Y、Y、Y及びnの詳細及び好ましい組み合わせは、前記式[2-1]の通りであり、式[2-2]におけるY及びYの詳細及び好ましい組み合わせは、前記式[2-2]の通りである。
 mは、1~4の整数を示す。中でも、1の整数が好ましい。
 式[2-1]の特定側鎖構造を有する特定ジアミン化合物として、具体的には、国際公開公報WO2013/125595(2013.8.29公開)の15頁~19頁に記載される式[2-1]~式[2-6]、式[2-9]~式[2-36]のジアミン化合物が挙げられる。なお、国際公開公報WO2013/125595の記載において、式[2-1]~式[2-3]中のR及び式[2-4]~式[2-6]中のRは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。また、式[2-13]中のAは、炭素数3~18の直鎖状又は分岐状アルキル基を示す。加えて、式[2-4]~式[2-6]中のRは、-O-、-CHO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。
 なかでも、好ましいジアミン化合物は、国際公開公報WO2013/125595に記載される式[2-1]~式[2-6]、式[2-9]~式[2-13]又は式[2-22]~式[2-31]のジアミン化合物である。
 より好ましくは、液晶表示素子の光学特性の点から、下記の式[2a-32]~式[2a-41]で示されるジアミン化合物である。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
(R及びRはそれぞれ、炭素数3~12のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
(R及びRはそれぞれ、炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、トランス異性体である。)
 最も好ましいのは、液晶表示素子の光学特性の点から、前記式[2a-35]~式[2a-37]、式[2a-40]又は式[2a-41]で示されるジアミン化合物である。
 前記式[2-2]の特定側鎖構造を有する特定ジアミン化合物(1)として、具体的には、国際公開公報WO2015/012368(2015.1.29公開)の23~24頁に記載される式[2a-37]~式[2a-46]のジアミン化合物が挙げられる。
 特定ジアミン化合物(1)の使用割合は、液晶配向膜にした際の液晶の垂直配向性、及び液晶表示素子における液晶層と液晶配向膜との密着性の点から、ジアミン成分全体に対し10~80モル%が好ましく、20~70モル%がより好ましい。また、特定ジアミン化合物(1)は、各特性に応じて、1種又は2種以上を混合して使用できる。
 ポリイミド系重合体を作製するためのジアミン成分には、前記式[3a]のジアミン化合物(特定ジアミン化合物(2)ともいう)を第2のジアミン化合物として用いることが好ましい。
 前記式[3a]中、W、W、W及びWは、上記に定義した通りであるが、中でも、それぞれ、下記のものが好ましい。
 Wは、原料の入手性や合成の容易さの点から、単結合、-O-、-CHO-、-CONH-、-CON(CH)-又は-COO-が好ましい。より好ましいのは、-O-、-CHO-又は-COO-である。Wは、単結合、炭素数1~18のアルキレン基、又はベンゼン環若しくはシクロヘキサン環を有する炭素数6~12の有機基が好ましい。より好ましいのは、液晶表示素子の光学特性の点から、炭素数2~10のアルキレン基である。
 Wは、原料の入手性や合成の容易さの点から、単結合、-O-、-CHO-、-CO-又は-OCO-が好ましい。Wは、液晶表示素子の光学特性の点から、前記式[3-a]、式[3-b]、式[3-c]又は式[3-e]の構造が好ましい。mは、1~4の整数を示す。中でも、1の整数が好ましい。
 特定ジアミン化合物(2)として具体的には、下記式[3a-1]~式[3a-27]のジアミン化合物が挙げられ、これらを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
(式[3a-1]~式[3a-27]中、d1は、2~10の整数を示す。)
 特定ジアミン化合物(2)の使用割合は、液晶表示素子における液晶層と液晶配向膜との密着性の点から、ジアミン成分全体に対し10~70モル%が好ましく、20~60モル%がより好ましい。また、特定ジアミン化合物(2)は、各特性に応じて、1種又は2種以上を混合して使用できる。
 ポリイミド系重合体を製造するためジアミン成分としては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物(1)及び特定ジアミン化合物(2)以外のジアミン化合物(その他ジアミン化合物ともいう。)を用いることもできる。
 具体的には、国際公開公報WO2015/012368(2015.1.29公開)の25~26頁に記載される式[2b]の第2のジアミン化合物、同公報の27~30頁に記載されるその他のジアミン化合物、及び同公報の30~32頁に記載される式[DA1]~式[DA14]のジアミン化合物が挙げられる。また、その他ジアミン化合物は、各特性に応じて、1種又は2種以上を混合して使用できる。
 ポリイミド系重合体を製造するためのテトラカルボン酸成分としては、前記式[4]のテトラカルボン酸二無水物やそのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライド(全てを総称して特定テトラカルボン酸成分ともいう)が好ましい。
 前記式[4]中、Zは、上記に定義した通りであるが、中でも、合成の容易さやポリイミド系重合体を製造する際の重合反応性のし易さから、前記式[4a]、式[4c]、式[4d]、式[4e]、式[4f]、式[4g]又は式[4k]の構造が好ましい。より好ましいのは、液晶表示素子の光学特性の点から、式[4a]、式[4e]、式[4f]、式[4g]又は式[4k]である。
 特定テトラカルボン酸成分の使用割合は、全テトラカルボン酸成分に対して1モル%以上が好ましい。より好ましいのは、5モル%以上であり、更に好ましいのは、10モル%以上である。中でも、液晶表示素子の光学特性の点から、10~90モル%が特に好ましい。
 また、前記式[4e]、式[4f]、式[4g]又は式[4k]の特定テトラカルボン酸成分を用いる場合、その使用量を、テトラカルボン酸成分全体の20モル%以上とすることで、所望の効果が得られる。より好ましいのは、30モル%以上である。更に、テトラカルボン酸成分の全てが、式[4e]、式[4f]、式[4g]又は式[4k]のテトラカルボン酸成分であってもよい。
 ポリイミド系重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を使用できる。その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸、テトラカルボン酸二無水物、ジカルボン酸ジハライド、ジカルボン酸ジアルキルエステル又はジアルキルエステルジハライドが挙げられる。
 具体的には、国際公開公報WO2015/012368(2015.1.29公開)の34~35頁に記載されるその他のテトラカルボン酸成分が挙げられる。また、特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、各特性に応じて、1種又は2種以上を混合して使用できる。
 ポリイミド系重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。具体的には、国際公開公報WO2015/012368(2015.1.29公開)の35~36頁に記載される方法が挙げられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む溶媒中で行う。溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。
 具体的には、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンなどが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は前記式[D1]~式[D3]の溶媒を使用できる。また、これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記の溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ポリイミドはポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調製することができる。中でも、ポリイミド系重合体の溶媒への溶解性の点から、30~80%が好ましい。より好ましいのは、40~70%である。
 ポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC法で測定したMw(重量平均分子量)で5,000~1,000,000とするのが好ましく、より好ましくは10,000~150,000である。
<ポリシロキサン系重合体>
 特定重合体にポリシロキサンを用いる場合、前記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと、前記式[A2]若しくは前記式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサン(以上のポリシロキサンを総称してポリシロキサン系重合体ともいう)が好ましい。
 式[A1]のアルコキシラン:
 前記式[A1]中、Aは、前記式[2-1]又は式[2-2]の構造を示す。また、式[2-1]におけるY、Y、Y、Y、Y、Y及びnの詳細及び好ましい組み合わせは、前記の通りであり、式[2-2]におけるY及びYの詳細及び好ましい組み合わせは、前記の通りである。
 本発明においては、液晶配向膜にした際の液晶の垂直配向性及び液晶表示素子における光学特性の点から、式[2-1]の特定側鎖構造が好ましい。
 前記式[A1]中、A、A、m、n及びpは、上記に定義した通りであるが、中でも、それぞれ、以下のものが好ましい。Aは、水素原子又は炭素数1~3のアルキル基が好ましい。Aは、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。mは、合成の点からは、1の整数が好ましい。nは、0~2の整数を示す。pは、重縮合の反応性の点から、1~3の整数が好ましく、より好ましいのは、2又は3の整数である。m+n+pは、4の整数である。
 式[2-1]の特定側鎖構造を有するアルコキシシランとして、具体的には、国際公開公報2015/008846(2015.1.22公開)の17~21頁に記載される式[2a-1]~式[2a-32]のアルコキシシランが挙げられる。中でも、高くて安定な液晶の垂直配向性を得ることができる点から、式[2a-9]~式[2a-21]、式[2a-25]~式[2a-28]又は式[2a-32]のアルコキシシランが好ましい。式[A1]のアルコキシシランは、各特性に応じて、2種以上を混合して使用できる。
 式[A2]のアルコキシラン:
 前記式[A2]中、B、B、B、m、n及びpは、上記に定義した通りであるが、中でも、それぞれ、以下のものが好ましい。
 Bは、入手の容易さから、ビニル基、エポキシ基、アミノ基、メタクリル基、アクリル基又はウレイド基を有する有機基が好ましい。より好ましいのは、メタクリル基、アクリル基又はウレイド基を有する有機基である。Bは、水素原子又は炭素数1~3のアルキル基が好ましい。Bは、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。mは、合成の点からは、1の整数が好ましい。nは、0~2の整数を示す。pは、重縮合の反応性の点から、1~3の整数が好ましく、2又は3の整数がより好ましい。m+n+pは、4である。
 式[A2]のアルコキシシランとして、具体的には、国際公開公報2015/008846(2015.1.22公開)の22~23頁に記載される式[2b]のアルコキシシランが挙げられる。
 中でも、液晶層と液晶配向膜との密着性の点から、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルアクリレート、3-(トリメトキシシリル)プロピルメタクリレート、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピル(ジエトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン又は2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。
 式[A2]のアルコキシシランは、各特性に応じて、1種又は2種以上を混合して使用できる。
 式[A3]のアルコキシラン:
 前記式[A3]中、D、D及びnは、上記に定義した通りであるが、中でも、それぞれ、以下のものが好ましい。Dは、水素原子又は炭素数1~3のアルキル基が好ましい。Dは重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。nは、0~3の整数を示す。
 式[A3]のアルコキシシランとして、具体的には、国際公開公報2015/008846(2015.1.22公開)の24頁に記載される式[2c]のアルコキシシランが挙げられる。
 式[A3]中、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが挙げられ、式[A3]のアルコキシシランとしては、これらのアルコキシシランを用いることが好ましい。また、式[A3]のアルコキシシランは、各特性に応じて、1種又は2種以上を混合して使用できる。
 ポリシロキサン系重合体は、前記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は該式[A1]のアルコキシシランと、前記式[A2]若しくは式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンである。即ち、ポリシロキサン系重合体は、式[A1]のアルコキシシランのみを重縮合させて得られるポリシロキサン、式[A1]と式[A2]の2種のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]の2種のアルコキシシランを重縮合させて得られるポリシロキサン、並びに式[A1]、式[A2]及び式[A3]の3種のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種である。
 中でも、重縮合の反応性やポリシロキサン系重合体の溶媒への溶解性の点から、複数種のアルコキシシランを重縮合させて得られるポリシロキサンが好ましい。即ち、式[A1]と式[A2]の2種のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]の2種のアルコキシシランを重縮合させて得られるポリシロキサン、並びに式[A1]、式[A2]及び式[A3]の3種のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種を用いることが好ましい。
 ポリシロキサン系重合体を作製する際に複数種のアルコキシランを用いる場合、式[A1]のアルコキシシランの使用は、全てのアルコキシシラン中、1~40モル%が好ましく、1~30モル%がより好ましい。また、式[A2]のアルコキシシランの使用は、全てのアルコキシシラン中、1~70モル%が好ましく、1~60モル%がより好ましい。更に、式[A3]のアルコキシシランの使用は全てのアルコキシシラン中、1~99モル%が好ましく、1~80モル%がより好ましい。
 ポリシロキサン系重合体を重縮合する方法は特に限定されない。具体的には、国際公開公報2015/008846(2015.1.22公開)の26~29頁に記載の方法が挙げられる。
 本発明においては、前記の方法で得られたポリシロキサン系重合体の溶液をそのまま特定重合体として用いても良いし、必要に応じて上記の方法で得られたポリシロキサン系重合体の溶液を濃縮したり、溶媒を加えて希釈したり、他の溶媒に置換して、特定重合体として用いても良い。
 希釈する際に用いる溶媒(添加溶媒ともいう。)は、重縮合反応に用いる溶媒やその他の溶媒であってもよい。この添加溶媒は、ポリシロキサン系重合体が均一に溶解している限りにおいては特に限定されず、1種又は2種以上を任意に選択して使用できる。このような添加溶媒としては、前記重縮合反応に用いる溶媒に加え、例えば、アセトン、メチルエチルケトン又はメチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル又は乳酸エチルなどのエステル系溶媒などが挙げられる。更に、特定重合体にポリシロキサン系重合体とそれ以外の重合体を用いる場合、ポリシロキサン系重合体にそれ以外の重合体を混合する前に、ポリシロキサン系重合体の重縮合反応の際に発生するアルコールを常圧又は減圧で留去しておくことが好ましい。
<液晶配向処理剤>
 液晶配向処理剤は、液晶配向膜を形成するための溶液であり、特定化合物、特定側鎖構造を有する特定重合体及び溶媒を含有する溶液である。
 液晶配向処理剤における特定化合物(1-1)の含有量は、特定重合体100質量部に対して、0.1~80質量部が好ましい。中でも、液晶層と液晶配向膜との密着性の点から、0.1~60質量部が好ましい。最も好ましいのは、1~50質量部である。また、特定化合物は、1種又は2種以上を混合して使用できる。
 液晶配向処理剤における特定化合物(1-2)の含有量は、液晶表示素子の光学特性の点から、特定重合体100質量部に対して、0.1~30質量部が好ましい。より好ましいのは、0.5~20質量部であり、特に好ましいのは、1~10質量部である。
 特定化合物(1-1)及び(1-2)は、特定重合体の溶液に直接添加してもかまわないが、適当な溶媒で濃度0.1~10質量%の溶液にしてから添加することが好ましい。この場合の溶媒としては、上述した特定重合体を溶解させる溶媒であれば特に限定されない。きる。また、特定化合物中のイソシアネート基と特定重合体中の極性基との反応を促進させ、液晶層と液晶配向膜との密着性を高めることができる点から、特定化合物と特定重合体とを混合した後に、攪拌して反応させることが好ましい。その際の温度は、0~100℃が好ましく、より好ましいのは、10~60℃である。また、時間は、1~24時間が好ましい。
 特定重合体としては、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1種の重合体が好ましい。より好ましいのは、ポリイミド前駆体、ポリイミド又はポリシロキサンであり、最も好ましいのは、ポリイミド前駆体又はポリイミドである。また、特定重合体は、2種以上を用いることができる。
 液晶配向処理剤における重合体成分は、全てが特定重合体であっても良く、それ以外の重合体が混合されていても良い。それ以外の重合体の含有量は、特定重合体100質量部に対して、0.5~15質量部が好ましく、1~10質量部がより好ましい。それ以外の重合体としては、特定側鎖構造を持たない前記の重合体が挙げられる。
 液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという点から適宜選択できる。中でも、塗布により均一な液晶配向膜を形成することから、溶媒の含有量は、液晶配向処理剤中、50~99.9質量%が好ましく、60~99質量%がより好ましいく、65~99質量%が特に好ましい。
 液晶配向処理剤に用いる溶媒は、特定重合体を溶解させる溶媒であれば特に限定されない。中でも、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルの場合、あるいは、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンの溶媒への溶解性が低い場合は、国際公開公報2014/171493(2014.10.23公開)の58頁に記載される溶媒A類を用いることが好ましい。中でも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンを用いることが好ましい。また、これらは単独でも、混合して使用してもよい。
 特定重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンである場合、更には、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルであり、これら特定重合体の溶媒への溶解性が高い場合は、国際公開公報2014/171493(2014.10.23公開)の58~60頁に記載される溶媒B類を使用できる。中でも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン又は前記式[D1]~式[D3]の溶媒を用いることが好ましい。
 また、これら溶媒B類を用いる際、液晶配向処理剤の塗布性を改善する目的に、前記溶媒A類のN-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンを併用することが好ましい。より好ましいのは、γ-ブチロラクトンを併用することである。
 これら溶媒B類は、液晶配向処理剤を塗布する際の液晶配向膜の塗膜性や表面平滑性を高めることができるため、特定重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と併用して用いることが好ましい。、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1~99質量%が好ましい。中でも、10~99質量%が好ましい。より好ましいのは、20~95質量%である。
 液晶配向処理剤には、光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1種の発生剤(特定発生剤ともいう)を導入することが好ましい。特定発生剤として、具体的には、国際公開公報2014/171493(2014.10.23公開)の54~56頁に記載される特定発生剤が挙げられる。中でも、特定発生剤には、液晶層と液晶配向膜との密着性の点から、光ラジカル発生剤を用いることが好ましい。
 液晶配向処理剤には、液晶層と液晶配向膜との密着性を高める目的で、下記式[7a-1]~式[7a-5]の化合物(密着性化合物ともいう)を使用できる。
Figure JPOXMLDOC01-appb-C000101
(n2は1~10の整数を示す。m2は1~10の整数を示す。)
 更に、密着性化合物として、国際公開公報2014/171493(2014.10.23公開)の61~63頁に記載される化合物を用いることもできる。
 液晶配向処理剤における密着性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。架橋反応が進行し目的の効果を発現させるためには、全ての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。また、密着性化合物は、各特性に応じ、1種又は2種以上を混合して使用できる。
 液晶配向処理剤には、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基を有する化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の基を有する化合物(総称して特定架橋性化合物ともいう)を含有することが好ましい。これらの基は、化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物として、具体的には、国際公開公報2014/171493(2014.10.23公開)の63頁~64頁に記載される化合物が挙げられる。
 オキセタン基を有する架橋性化合物として、具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58~59頁に掲載される式[4a]~式[4k]の化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物として、具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76~82頁に掲載される式[5-1]~式[5-42]の化合物が挙げられる。
 ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基を有する架橋性化合物として、具体的には、国際公開公報2014/171493(2014.10.23公開)の65~66頁に記載されるメラミン誘導体又はベンゾグアナミン誘導体、及び国際公開公報WO2011/132751(2011.10.27公開)の62~66頁に掲載される、式[6-1]~式[6-48]の化合物が挙げられる。
 液晶配向処理剤における特定架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~100質量部が好ましい。架橋反応が進行し目的の効果を発現させるためには、全ての重合体成分100質量部に対して0.1~50質量部がより好ましく、特に、1~30質量部が最も好ましい。
 液晶配向処理剤には、液晶配向膜中の電荷移動を促進し、素子の電荷抜けを促進させるため、国際公開公報WO2011/132751(2011.10.27公開)の69~73頁に掲載される、式[M1]~式[M156]の窒素含有複素環アミン化合物を添加することもできる。
 液晶配向処理剤には、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を使用できる。更に、液晶配向膜と基板との密着性を向上させる化合物などを使用できる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。具体的には、国際公開公報2014/171493(2014.10.23公開)の67頁に記載される界面活性剤が挙げられる。また、その使用割合は、液晶配向処理剤に含有される全ての重合体成分100質量部に対して、0.01~2質量部が好ましく、より好ましいのは、0.01~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物として、具体的には、国際公開公報2014/171493(2014.10.23公開)の67~69頁に記載される化合物が挙げられる。また、その使用割合は、液晶配向処理剤に含有される全ての重合体成分100質量部に対して、0.1~30質量部が好ましく、より好ましいのは、1~20質量部である。
 液晶配向処理剤には、上記以外の化合物の他に、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で誘電体や導電物質を添加してもよい。
<液晶組成物>
 液晶組成物は、液晶と紫外線により重合する重合性化合物を含有し、この重合性化合物が、ポリマーネットワーク(硬化性樹脂)を形成する役割を担う。また、前記の液晶層は、液晶と重合性化合物の硬化物複合体であり、ここでの硬化物複合体とは、上述した通り、例えば、重合性化合物により形成されたポリマーネットワーク中に液晶が存在しているような状態を意味する。
 液晶には、ネマチック液晶、スメクチック液晶又はコレステリック液晶を使用できる。中でも、負の誘電異方性を有するものが好ましい。また、低電圧駆動及び散乱特性の点からは、誘電率の異方性が大きく、屈折率の異方性が大きいものが好ましい。また、前記の相転移温度、誘電率異方性及び屈折率異方性の各物性値に応じて、2種類以上の液晶を混合して使用できる。
 液晶表示素子をTFTなどの能動素子として駆動させるためには、液晶の電気抵抗が高くて電圧保持率(VHR)が高いことが求められる。そのため、液晶には、電気抵抗が高くて紫外線などの活性エネルギー線によりVHRが低下しないフッ素系や塩素系の液晶を用いることが好ましい。
 更に、液晶表示素子には、液晶組成物中に二色性染料を溶解させてゲストホスト型の素子とすることもできる。この場合には、電圧無印加時は透明で、電圧印加時に吸収(散乱)となる素子が得られる。また、この液晶表示素子では、液晶のダイレクターの方向(配向の方向)は、電圧印加の有無により90度変化する。そのため、この液晶表示素子は、二色性染料の吸光特性の違いを利用することで、ランダム配向と垂直配向でスイッチングを行う従来のゲストホスト型の素子に比べて、高いコントラストが得られる。また、二色性染料を溶解させたゲストホスト型の素子では、液晶が水平方向に配向した場合に有色になり、散乱状態においてのみ不透明となる。そのため、電圧を印加するにつれ、電圧無印加時の無色透明から有色不透明、有色透明の状態に切り替わる素子を得ることもできる。
 重合性化合物としては、紫外線により重合反応して液晶組成物の硬化物(例えばポリマーネットワーク)を形成することができるものであれば良い。重合性化合物のモノマーを液晶組成物中に導入しても良く、或いは、あらかじめこのモノマーを重合反応させたポリマーを液晶組成物中に導入しても良い。ただし、ポリマーとした場合でも、紫外線により重合反応する部位を有する必要がある。より好ましくは、液晶組成物の取り扱い、即ち、液晶組成物の高粘度化の抑制や液晶への溶解性の点から、液晶組成物中にモノマーを導入して、液晶表示素子作製時の紫外線の照射により、重合反応をさせて硬化物を形成する方法が好ましい。
 重合性化合物は、液晶に溶解すれば、どのような化合物であってもよい。ただし、重合性化合物を液晶に溶解した際に、液晶組成物の一部又は全体が液晶相を示す温度が存在することが必要となる。液晶組成物の一部が液晶相を示す場合であっても、液晶表示素子を肉眼で確認して、素子内全体が、ほぼ一様な透明性と散乱特性が得られていれば良い。
 重合性化合物は、紫外線により重合反応が起こる化合物であれば良く、その際、どのような反応形式で重合が進み、液晶組成物の硬化物を形成させても良い。具体的な反応形式としては、ラジカル重合、カチオン重合、アニオン重合又は重付加反応が挙げられる。中でも、重合性化合物の反応形式は、ラジカル重合が好ましい。重合性化合物としては、ラジカル型の重合性化合物(モノマー)及びそのオリゴマーを用いることが好ましい。また、前記の通り、これらのモノマーを重合反応させたポリマーを用いることもできる。
 具体的には、国際公開公報2015/012368(2015.1.29公開)の58~60頁に記載される単官能の重合性化合物、二官能の重合性化合物及び多官能の重合性化合物が挙げられる。また、ラジカル型の重合性化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 更に、液晶組成物の硬化物の形成を促進させるため、液晶組成物中には重合性化合物のラジカル重合を促進させる目的で、紫外線によりラジカルを発生するラジカル開始剤(重合開始剤ともいう)を導入することが好ましい。具体的には、国際公開公報2014/171493(2014.10.23公開)の13~14頁に記載されるラジカル開始剤が挙げられる。また、ラジカル開始剤は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 重合性化合物としては、イオン型の重合性化合物を用いることもできる。具体的には、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の架橋形成基を有する化合物である。
 具体的には、国際公開公報2014/171493(2014.10.23公開)の14~15頁に記載されるメラミン誘導体やベンゾグアナミン誘導体、1,3,5-トリス(メトキシメトキシ)ベンゼン、1,2,4-トリス(イソプロポキシメトキシ)ベンゼン、1,4-ビス(sec-ブトキシメトキシ)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール、及び国際公開公報2014/171493(2014.10.23公開)の15~16頁に記載されるエポキシやイソシアネート基を含む化合物が挙げられる。
 イオン型の重合性化合物を用いた場合、その重合反応を促進させることを目的に、下記の紫外線により酸又は塩基を発生するイオン開始剤を導入することもできる。具体的には、国際公開公報2014/171493(2014.10.23公開)の16~17頁に記載されるイオン開始剤が挙げられる。
 本発明の液晶組成物には、前記した式[1-2]の化合物を含有することが好ましい。式[1-2]中、S、S、S、S、S、S及びsAは、上記に定義した通りであるが、中でも、それぞれ、下記のものが好ましい。Sは、液晶表示素子の光学特性の点から、前記式[1-a]~式[1-f]、及び式[1-h]~式[1-j]が好ましい。より好ましいのは、式[1-a]、式[1-b]、式[1-d]、式[1-i]又は式[1-j]である。Sは、単結合又は炭素数1~18のアルキレン基が好ましい。中でも、単結合又は炭素数1~12のアルキレン基が好ましい。前記アルキレン基の任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-CON(CH)-、-S-又は-SO-で置き換えられても良い。
 Sは、液晶表示素子の光学特性の点から、ベンゼン環又はシクロヘキサン環、又はステロイド骨格を有する炭素数17~51の2価の有機基が好ましい。Sは、合成の容易さの点から、単結合、-O-、-COO-又は-OCO-が好ましい。より好ましいのは、単結合、-COO-又は-OCO-である。Sは、液晶表示素子の光学特性の点から、ベンゼン環又はシクロヘキサン環が好ましい。Sは、液晶表示素子の光学特性の点から、炭素数1~18を有する、アルキル基、アルコキシル基又はアルケニル基が好ましい。より好ましくは、炭素数1~12を有する、アルキル基、アルコキシル基又はアルケニル基である。sAは、原料の入手性や合成の容易さの点から、好ましくは0~2、より好ましくは1又は2の整数である。
 本発明の液晶組成物に添加される式[1-2]の化合物(以下、液晶添加化合物ともいう)としては、その好ましいものも含めて上記した液晶配向処理剤に含有せしめる式[1-2]の化合物と同じである。即ち、上記の式[1a-1]~式[1a-24]の化合物が挙げられる。
 液晶組成物における液晶添加化合物の使用量は、素子の光学特性の点から、液晶添加化合物を除く液晶組成物100質量部に対して、0.1~30質量部が好ましく、より好ましくは、0.5~30質量部であり、特に好ましくは、1~20質量部である。液晶添加化合物は、2種以上を混合して使用できる。
<液晶配向膜及び液晶表示素子の作製方法>
 液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板などのプラスチック基板、更にはそれらのフィルムを使用できる。液晶表示素子をリバース型素子として、調光窓などに用いる場合には、プラスチック基板やフィルムが好ましい。また、プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極、IZO(Indium Zinc Oxide)電極、IGZO(Indium Gallium Zinc Oxide)電極、有機導電膜などが形成された基板を用いることが好ましい。また、反射型のリバース型素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用できる。
 液晶表示素子は、基板の少なくとも一方が、液晶分子を垂直に配向させるような液晶配向膜を有する。この液晶配向膜は、液晶配向処理剤を基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして得ることができる。ただし、本発明における液晶配向膜の場合は、これら配向処理無しでも液晶配向膜として使用できる。
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、基板の種類や目的とする液晶配向膜の膜厚に応じて、適宜選択することができる。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、基板の種類や液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。特に、基板にプラスチック基板を用いる場合には、30~150℃の温度で処理することが好ましい。
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力で不利となり、薄すぎると素子の信頼性が低下する場合があるので、好ましくは5~500nm、より好ましくは10~300nm、特に好ましくは10~250nmである。
 液晶表示素子に用いる液晶組成物は、そのなかに、液晶表示素子の電極間隙(ギャップともいう)を制御するためのスペーサーを導入することもできる。
 液晶組成物の注入方法は、例えば、次の方法が挙げられる。即ち、基板にガラス基板を用いる場合、液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、液晶配向膜の面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から、液晶組成物を減圧注入して、液晶組成物注入セルを得る方法が挙げられる。更に、基板にプラスチック基板やフィルムを用いる場合には、液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶組成物を滴下し、その後、もう片側の基板を貼り合わせて、液晶組成物注入セルを得る方法が挙げられる。本発明では、液晶層と液晶配向膜との密着性が高いため、基板の4片にシール剤を塗布しなくても良い。
 液晶表示素子のギャップは、スペーサーなどで制御できる。その方法は、液晶組成物中に所望の大きさのスペーサーを導入する方法や、所望の大きさのカラムスペーサーを有する基板を用いる方法などが挙げられる。また、基板にプラスチックやフィルム基板を用いて、基板の貼り合わせをラミネートで行う場合は、スペーサーを導入せずにギャップを制御できる。
 ギャップの大きさは、1~100μmが好ましく、2~50μmがより好ましく、5~20μmが特に好ましい。ギャップが小さすぎると、液晶表示素子のコントラストが低下し、大きすぎると駆動電圧が高くなる。
 液晶表示素子は、紫外線の照射により、液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体の液晶層を形成させる。液晶組成物の硬化は、液晶組成物注入セルに紫外線を照射して行う。紫外線照射装置の光源は、例えば、メタルハライドランプ又は高圧水銀ランプが挙げられる。また、紫外線の波長は、250~400nmが好ましく、310~370nmが好ましい。紫外線を照射した後に加熱処理しても良く、その際の温度は好ましくは40~120℃、より好ましくは40~80℃である。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらの実施例に限定して解釈されるものではない。
<実施例Aシリーズ>
 以下で使用する化合物等の略号の意味は次のとおりである。
<液晶組成物>
Figure JPOXMLDOC01-appb-C000102
(液晶)L1:MLC-6608(メルク社製)
(重合性化合物)
Figure JPOXMLDOC01-appb-C000103
(光開始剤)
Figure JPOXMLDOC01-appb-C000104
 A1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 A2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
 A3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 A4:下記式[A4]のジアミン化合物
 A5:1,3-ジアミノ-4-オクタデシルオキシベンゼン
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
 C1:m-フェニレンジアミン
 C2:3,5-ジアミノ安息香酸
 D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000107
<特定化合物>
Figure JPOXMLDOC01-appb-C000108
<特定発生剤>
Figure JPOXMLDOC01-appb-C000109
<密着性化合物>
Figure JPOXMLDOC01-appb-C000110
<架橋性化合物>
Figure JPOXMLDOC01-appb-C000111
<溶媒>
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
 PGME:プロピレングリコールモノメチルエーテル
「ポリイミド系重合体の分子量測定」
 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
「ポリイミド系重合体のイミド化率の測定」
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
(xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
<合成例1>
 D2(6.89g,27.5mmol)、A1(8.49g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.9g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.5g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%(以下、C25%という)のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量(Mn)は21,300、重量平均分子量(Mw)は67,700であった。
<合成例2>
 合成例1で得られたポリアミド酸溶液(1)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.40g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は55%であり、Mnは19,000、Mwは50,200であった。
<合成例3>
 D2(6.12g,24.5mmol)、A1(7.55g,19.8mmol)、B1(2.62g,9.91mmol)及びC2(0.50g,3.29mmol)をNMP(36.8g)中で混合し、50℃で5時間反応させた後、D1(1.60g,8.16mmol)とNMP(18.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(3)を得た。このポリアミド酸のMnは20,200、Mwは63,500であった。
<合成例4>
 合成例3で得られたポリアミド酸溶液(3)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.51g)及びピリジン(2.42g)を加え、50℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は54%であり、Mnは17,500、Mwは48,800であった。
<合成例5>
 D2(0.80g,3.20mmol)、A2(2.55g,6.46mmol)及びB1(2.56g,9.69mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(2.50g,12.7mmol)とPGME(8.40g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは17,100、Mwは40,800であった。
<合成例6>
 D1(3.30g,16.8mmol)、A2(3.36g,8.52mmol)、B1(1.80g,6.81mmol)及びC1(0.18g,1.66mmol)をPGME(26.0g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液(6)を得た。このポリアミド酸のMnは15,900、Mwは39,200であった。
<合成例7>
 D2(6.89g,27.5mmol)、A5(8.40g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.7g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは20,500、Mwは65,300であった。
<合成例8>
 D3(3.50g,15.6mmol)、A2(2.50g,6.34mmol)及びB1(2.51g,9.50mmol)をPGME(25.5g)中で混合し、50℃で15時間反応させ、C25%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは14,800、Mwは37,900であった。
<合成例9>
 D3(3.50g,15.6mmol)、A4(1.56g,3.17mmol)、B1(2.51g,9.50mmol)及びC2(0.48g,3.15mmol)をNEP(24.1g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は48%であり、Mnは16,500、Mwは44,200であった。
<合成例10>
 D4(3.37g,11.2mmol)、A3(2.46g,5.69mmol)、B1(1.50g,5.68mmol)及びC2(0.43g,2.83mmol)をNMP(16.6g)中で混合し、50℃で5時間反応させた後、D1(0.55g,2.80mmol)とNMP(8.31g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は57%であり、Mnは17,300、Mwは45,800であった。
<合成例11>
 D5(1.30g,6.13mmol)、A2(3.67g,9.30mmol)及びB1(1.64g,6.21mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(1.80g,9.18mmol)とPGME(8.42g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(11)を得た。このポリアミド酸のMnは15,500、Mwは35,100であった。
<合成例12>
 D5(1.70g,8.01mmol)、A4(1.60g,3.25mmol)及びB1(3.43g,13.0mmol)をPGME(16.6g)中で混合し、50℃で12時間反応させた後、D1(1.57g,8.01mmol)とPGME(8.30g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(12)を得た。このポリアミド酸のMnは13,800、Mwは32,500であった。
 各合成例で得られたポリイミド系重合体を表44に示す。
Figure JPOXMLDOC01-appb-T000112
*1はポリアミド酸を表す。
「液晶組成物の作製」
(液晶組成物(1)の作製)
 L1(2.40g)、R1(1.20g)、R2(1.20g)及びP1(0.012g)を混合し、液晶組成物(1)を得た。
(液晶組成物(2)の作製)
 L1(2.40g)、R1(1.20g)、R2(1.20g)、P1(0.012g)及びS1(0.024g)を混合し、液晶組成物(2)を得た。
(液晶組成物(3)の作製)
 L1(2.40g)、R1(1.20g)、R2(1.20g)、P1(0.012g)及びS1(0.12g)を混合し、液晶組成物(3)を得た。
(液晶組成物(4)の作製)
 L1(2.40g)、R1(1.20g)、R2(1.20g)、P1(0.012g)及びS2(0.048g)を混合し、液晶組成物(4)を得た。
「液晶配向処理剤の製造」
 後記する実施例1~15及び比較例1~3では、液晶配向処理剤の製造例を記載した。これらの液晶配向処理剤は、液晶表示素子の作製及びその評価のためにも使用した。なお、表45~表47には、これら実施例及び比較例で得られた液晶配向処理剤を示す。
「液晶表示素子の作製及び液晶配向性の評価(ガラス基板)」
 実施例1~4、10、比較例1、2で得られた液晶配向処理剤を用いて、液晶表示素子の作製を行った。具体的には、これら液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)のITO面上にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて210℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、6μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した液晶配向膜面に、ODF法にて前記の液晶組成物を滴下し、次いで、他方の基板の液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
 この処理前の液晶表示素子に、照度20mWのメタルハライドランプを用いて、350nm以下の波長をカットし、照射時間90秒で紫外線照射を行った。液晶セルに紫外線を照射している際の照射装置内の温度は25℃に制御した。これにより、液晶表示素子(リバース型素子)を得た。
 この液晶表示素子を用いて、液晶配向性の評価を行った。液晶配向性は、本素子を偏光顕微鏡(ニコン社製、ECLIPSE E600WPOL)で観察し、液晶が垂直に配向しているかどうかを確認した。結果、実施例及び比較例のいずれの液晶表示素子とも、液晶は垂直配向していた。
「液晶表示素子の作製及び液晶配向性の評価(プラスチック基板)」
 実施例5~9、11~15及び比較例3で得られた液晶配向処理剤を用いて、液晶表示素子を作製した。具体的には、液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水で洗浄した150×150mmのITO電極付きPET(ポリエチレンテレフタレート)基板(縦:150mm、横:150mm、厚さ:0.2mm)のITO面上にバーコーターにて塗布をし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて120℃で2分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、6μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した液晶配向膜面に、ODF法にて液晶組成物を滴下し、次いで、他方の基板の液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
 この処理前の液晶表示素子に、前記の「液晶表示素子の作製及び液晶配向性の評価(ガラス基板)」と同様の手法で、液晶表示素子(リバース型素子)を得た。
 この液晶表示素子を用いて、前記の「液晶表示素子の作製及び液晶配向性の評価(ガラス基板)」と同様の手法で、液晶配向性の評価を行った。結果、実施例及び比較例のいずれの液晶表示素子とも、液晶は垂直配向していた。
「光学特性(透明性と散乱特性)の評価」
 前記手法で得られた液晶表示素子(ガラス基板・プラスチック基板)を用いて、光学特性(透明性と散乱特性)の評価を行った。
 電圧無印加時の透明性の評価は、電圧無印加状態での液晶表示素子の透過率を測定することで行った。具体的には、測定装置にUV-3600(島津製作所社製)、温度25度、スキャン波長を300~800nmの条件で透過率を測定した。液晶表示素子(ガラス基板)の場合は、リファレンスに上記ITO電極付きガラス基板を用い、液晶表示素子(プラスチック基板)の場合は、ITO電極付きPET基板を用いて行いた。評価は、450nmの波長の透過率を基準として透過率が高いものほど透明性に優れるとした。
 また、上記手法で作製した液晶表示素子を、温度60℃、湿度70%の恒温恒湿槽内に12時間保管した後の透過率の評価も行った。具体的には、上記の液晶表示素子作製直後の透過率(初期値)に対して、恒温恒湿槽に保管後の透過率の低下割合が低いものほど、本評価に優れるとした。
 更に、上記手法で作製した液晶表示素子に、卓上型UV硬化装置(HCT3B28HEX-1)(センライト社製)を用いて、365nm換算で2J/cmの紫外線を照射した後の透過率の評価も行った。具体的には、上記の液晶表示素子作製直後の透過率(初期値)に対して、紫外線照射後の透過率の低下割合が低いものほど、本評価に優れるとした。
 更に、実施例1~8、10においては、上記の標準試験に加えて、強調試験として、温度60℃、湿度70%の恒温恒湿槽内に24時間保管した後の透過率の評価も行った。なお、評価方法は、上記と同様の条件である。
 液晶表示素子作製直後(初期)、恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の透過率(%)の値を、表48~表50に示す。
 電圧印加時の散乱特性の評価は、液晶表示素子(ガラス基板)に、交流駆動で30Vを印加し、液晶の配向状態を目視観察することで行った。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。
 また、上記手法で作製した液晶表示素子を、温度60℃、湿度70%の恒温恒湿槽内に12時間保管した後の液晶の配向状態の確認も行った。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。
 更に、上記手法で作製した液晶表示素子に、卓上型UV硬化装置(HCT3B28HEX-1)(センライト社製)を用いて、365nm換算で2J/cmの紫外線を照射した後の液晶の配向状態の確認も行った。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。
 液晶表示素子作製直後(初期)、恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の散乱特性の結果を、表48~表50に示す。
「液晶層と液晶配向膜との密着性の評価」
 前記手法で得られた液晶表示素子(ガラス基板・プラスチック基板)を用いて、液晶層と液晶配向膜との密着性の評価を行った。
 液晶表示素子を、温度60℃、湿度70%の恒温恒湿槽内に30時間保管し、液晶表示素子内の気泡の有無及び素子の剥離を確認した。具体的には、素子内に気泡が見られずに素子の剥離(液晶層と液晶配向膜とが剥がれている状態)が起こっていないものを本評価に優れるとした(表中の良好表示)。
 また、液晶表示素子に、卓上型UV硬化装置(HCT3B28HEX-1)(センライト社製)を用いて、365nm換算で5J/cmの紫外線を照射した後の液晶表示素子内の気泡の有無及び素子の剥離も確認した。具体的には、上記と同様に、素子内に気泡が見られずに素子の剥離が起こっていないものを、本評価に優れるとした(表中の良好表示)。
 更に、実施例1~4、7、8、10では、上記の標準試験に加えて、強調試験として、温度60℃、湿度70%の恒温恒湿槽内に72時間保管した後の密着性の評価も行った。なお、評価方法は、上記と同様の条件である。
 恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の液晶層と液晶配向膜との密着性の結果(密着性)を表51~表53に示す。
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)にNMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、BCS(19.5g)を加え、25℃で2時間攪拌して液晶配向処理剤(1)を得た。
<実施例2>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、NEP(21.6g)を加え、60℃で24時間攪拌した後、Z1(0.300g)を加えて25℃で24時間攪拌した。その後、PB(14.4g)を加え、25℃で2時間攪拌して、液晶配向処理剤(2)を得た。
<実施例3>
 合成例3で得られたポリアミド酸溶液(3)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、BCS(19.5g)を加え、25℃で2時間攪拌して、液晶配向処理剤(3)を得た。
<実施例4>
 合成例4で得られたポリイミド粉末(4)(1.50g)に、NEP(21.6g)を加え、60℃で24時間攪拌した後、Z1(0.300g)を加えて25℃で24時間攪拌した。その後、PB(14.4g)を加え、25℃で2時間攪拌して、液晶配向処理剤(4)を得た。
<実施例5>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.188g)を加え、25℃で24時間攪拌して、液晶配向処理剤(5)を得た。
<実施例8>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.188g)を加え、25℃で24時間攪拌した。その後、N1(0.063g)、M1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(6)を得た。
<実施例9>
 合成例6で得られたポリアミド酸溶液(6)(5.00g)に、γ-BL(8.08g)、PGME(28.6g)及びZ1(0.125g)を加え、40℃で12時間攪拌した。その後、N1(0.038g)及びK1(0.125g)を加え、25℃で4時間攪拌し、液晶配向処理剤(7)を得た。
<実施例10>
 合成例7で得られたポリアミド酸溶液(7)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、BCS(19.5g)を加え、25℃で2時間攪拌し液晶配向処理剤(8)を得た。
<実施例11>
 合成例8で得られたポリアミド酸溶液(8)(5.00g)に、γ-BL(4.04g)、PB(4.04g)、PGME(28.6g)及びZ2(0.375g)を加え、25℃で24時間攪拌した。その後、N1(0.088g)及びK1(0.063g)を加え、25℃で4時間攪拌し、液晶配向処理剤(9)を得た。
<実施例12>
 合成例9で得られたポリイミド粉末(9)(1.30g)に、γ-BL(8.41g)及びPGME(33.6g)を加え、60℃で24時間攪拌した後、Z1(0.260g)を加えて40℃で12時間攪拌した。その後、N1(0.065g)及びK1(0.039g)を加え、25℃で4時間攪拌し、液晶配向処理剤(10)を得た。
<実施例13>
 合成例10で得られたポリイミド粉末(10)(1.30g)に、γ-BL(6.31g)及びPGME(35.7g)を加え、60℃で24時間攪拌した後、Z2(0.455g)を加えて25℃で24時間攪拌した。その後、N1(0.065g)及びK1(0.130g)を加え、25℃で4時間攪拌し、液晶配向処理剤(11)を得た。
<実施例14>
 合成例11で得られたポリアミド酸溶液(11)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.125g)を加え、25℃で24時間攪拌した。その後、N1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(12)を得た。
<実施例15>
 合成例12で得られたポリアミド酸溶液(12)(5.00g)に、γ-BL(4.04g)、PGME(32.6g)及びZ2(0.063g)を加え、25℃で24時間攪拌した。その後、N1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(13)を得た。
<比較例1>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)に、NMP(14.6g)及びBCS(19.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(14)を得た。
<比較例2>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、NEP(21.6g)及びPB(14.4g)を加え、60℃にて24時間攪拌して、液晶配向処理剤(15)を得た。
<比較例3>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)及びPGME(30.6g)を加え、25℃で4時間攪拌して、液晶配向処理剤(16)を得た。
 上記の実施例1~15及び比較例1~3で得られた液晶配向処理剤は、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 これらの液晶配向処理剤(1)~(16)及び前記した液晶組成物(1)~(4)を、表48~表51に示される組み合わせで使用し、前記の手順にしたがって液晶表示素子の作製及び評価を行った。それらの結果を表48~表51に示す。なお、実施例6は、液晶配向処理剤(5)と液晶組成物(2)を用いた液晶表示素子であり、また、実施例7は、液晶配向処理剤(5)と液晶組成物(3)を用いた液晶表示素子である。
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
*1~*5は、いずれも、全重合体100質量部に対する含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
*1:素子内の数箇所に、液晶配向性の乱れが見られた。
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
*1:素子内に極少量の気泡が見られた。*2:素子内に少量の気泡が見られた(*1よりも多い)。*3:素子内に多くの気泡が見られた(*2よりも多い)。
 上記からわかるように、実施例は、比較例に比べて、特に恒温恒湿槽保管後、及び紫外線照射後における電圧無印加時の透明性が良好な素子となった。更に、液晶層と液晶配向膜の密着性も高い素子となった。また、素子の基板にプラスチック基板を用いてもこれら特性が良好であった。
 具体的には、液晶配向処理剤中に特定化合物を含む実施例の素子は、それを含まない比較例に比べて、特に、高温高湿下や紫外線を照射した後での透明性が高い結果となった。より具体的には、同一の条件での比較において、実施例1と比較例1との比較、実施例2と比較例2との比較、及び実施例5と比較例3との比較である。
 特定側鎖構造の中で、式[2-1]を用いた場合は、式[2-2]を用いた場合に比べて、素子の電圧無印加時の透明性が高くなり、更には、強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。また、液晶層と液晶配向膜との密着性の評価において、式[2-1]の特定側鎖構造を用いた場合は、強調試験で行った長時間、恒温恒湿槽に保管した後で、密着性がより高い結果となった。具体的には、標準試験及び強調試験における同一条件での実施例1と10との比較である。
 また、液晶組成物中に特定化合物を導入した場合は、素子の電圧無印加時の透明性が高くなり、更には、強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。特定化合物の導入量が多い方が、その効果が大きくなった。具体的には、標準試験及び強調試験における同一条件での実施例5と6又は7との比較である。
 更に、液晶配向処理剤中に、特定発生剤、密着性化合物及び特定架橋性化合物を導入した場合は、素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件での実施例7と8との比較である。
 更に、特定重合体にポリイミド系重合体を用いた場合において、ジアミン成分に特定ジアミン化合物(2)を用いた場合、素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件における、実施例1と3との比較、及び実施例2と4との比較である。
<実施例Bシリーズ>
 以下使用する略号の意味は以下のとおりである。なお、実施例Aシリーズで使用した略合はそれぞれ同じである。
<モノマー>
 E2:オクタデシルトリエトキシシラン、
 E3:3-メタクリロキシプロピルトリメトキシシラン、
 E4:3-ウレイドプロピルトリエトキシシラン、E5:テトラエトキシシラン
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
<溶媒>
 ECS:エチレングリコールモノエチルエーテル
 EC:ジエチレングリコールモノエチルエーテル
「ポリイミド系重合体の合成」
<合成例1>
 D2(6.89g,27.5mmol)、A1(8.49g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.9g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.5g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(1)を得た。このポリアミド酸のMnは21,300、Mwは67,700であった。
<合成例2>
 合成例1で得られたポリアミド酸溶液(1)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.40g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は55%であり、Mnは19,000、Mwは50,200であった。
<合成例3>
 D2(6.12g,24.5mmol)、A1(7.55g,19.8mmol)、B1(2.62g,9.91mmol)及びC2(0.50g,3.29mmol)をNMP(36.8g)中で混合し、50℃で5時間反応させた後、D1(1.60g,8.16mmol)とNMP(18.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(3)を得た。このポリアミド酸のMnは20,200、Mwは63,500であった。
<合成例4>
 合成例3で得られたポリアミド酸溶液(3)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.51g)及びピリジン(2.42g)を加え、50℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は54%であり、Mnは17,500、Mwは48,800であった。
<合成例5>
 D2(0.80g,3.20mmol)、A2(2.55g,6.46mmol)及びB1(2.56g,9.69mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(2.50g,12.7mmol)とPGME(8.40g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは17,100、Mwは40,800であった。
<合成例6>
 D1(3.30g,16.8mmol)、A2(3.36g,8.52mmol)、B1(1.80g,6.81mmol)及びC1(0.18g,1.66mmol)をPGME(26.0g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液(6)を得た。このポリアミド酸のMnは15,900、Mwは39,200であった。
<合成例7>
 D2(6.89g,27.5mmol)、A5(8.40g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.7g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは20,500、Mwは65,300であった。
<合成例8>
 D3(3.50g,15.6mmol)、A2(2.50g,6.34mmol)及びB1(2.51g,9.50mmol)をPGME(25.5g)中で混合し、50℃で15時間反応させ、C25%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは14,800、Mwは37,900であった。
<合成例9>
 D3(3.50g,15.6mmol)、A4(1.56g,3.17mmol)、B1(2.51g,9.50mmol)及びC2(0.48g,3.15mmol)をNEP(24.1g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は48%であり、Mnは16,500、Mwは44,200であった。
<合成例10>
 D4(3.37g,11.2mmol)、A3(2.46g,5.69mmol)、B1(1.50g,5.68mmol)及びC2(0.43g,2.83mmol)をNMP(16.6g)中で混合し、50℃で5時間反応させた後、D1(0.55g,2.80mmol)とNMP(8.31g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は57%であり、Mnは17,300、Mwは45,800であった。
<合成例11>
 D5(1.30g,6.13mmol)、A2(3.67g,9.30mmol)及びB1(1.64g,6.21mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(1.80g,9.18mmol)とPGME(8.42g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(11)を得た。このポリアミド酸のMnは15,500、Mwは35,100であった。
<合成例12>
 D5(1.70g,8.01mmol)、A4(1.60g,3.25mmol)及びB1(3.43g,13.0mmol)をPGME(16.6g)中で混合し、50℃で12時間反応させた後、D1(1.57g,8.01mmol)とPGME(8.30g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(12)を得た。このポリアミド酸のMnは13,800、Mwは32,500であった。
 各合成例で得られたポリイミド系重合体を表42に示す。
Figure JPOXMLDOC01-appb-T000124
*1はポリアミド酸を表す。
<合成例13>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、E1(4.10g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調整した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、及び触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたE4の含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(1)を得た。
<合成例14>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、EC(25.4g)、E1(8.20g)、E3(19.9g)及びE5(20.0g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめEC(12.7g)、水(10.8g)、及び触媒として蓚酸(1.10g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたE4の含有量92質量%のメタノール溶液(1.20g)とEC(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(2)を得た。
<合成例15>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、EC(29.2g)、E1(4.10g)及びE5(38.8g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめEC(14.6g)、水(10.8g)、及び触媒として蓚酸(0.50g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたE4の含有量92質量%のメタノール溶液(1.20g)とEC(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(3)を得た。
<合成例16>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、E2(4.07g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調整した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、及び触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたE4の含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(4)を得た。
 各合成例で得られたポリシロキサン系重合体を表43に示す。
Figure JPOXMLDOC01-appb-T000125
「液晶組成物の作製」
 上記Aシリーズの実施例と同様にして、液晶組成物(1)~(4)を作製した。
「液晶配向処理剤の製造」
 後記する実施例1~20及び比較例1~5では、液晶配向処理剤の製造例を記載した。これらの液晶配向処理剤は、液晶表示素子の作製及びその評価のためにも使用した。表54~表56にはこれらの実施例及び比較例で得られた液晶配向処理剤を示す。
「液晶表示素子の作製及び液晶配向性の評価(ガラス基板)」
 実施例1~4、10、16、17、20、比較例1、2、4で得られた液晶配向処理剤を用いて、上記したAシリーズの実施例と同様の手順にしたがって液晶表示素子の作製を行った。なお、これらの実施例及び比較例のいずれの液晶表示素子とも液晶は垂直配向していた。
「液晶表示素子の作製及び液晶配向性の評価(プラスチック基板)」
 実施例5~9、11~15、18、19、比較例3、5で得られた液晶配向処理剤を用いて、上記したAシリーズの実施例と同様の手順にしたがって液晶表示素子の作製を行った。
「光学特性(透明性と散乱特性)の評価」
 得られた液晶表示素子(ガラス基板・プラスチック基板)について、光学特性(透明性と散乱特性)の評価を行った。
 更に、実施例1~8、10、16、17、20においては、上記の標準試験に加えて、強調試験として、温度60℃、湿度70%の恒温恒湿槽内に24時間保管した後の透過率の評価も行った。なお、評価方法は、Aシリーズの実施例と同様の条件である。
 液晶表示素子及び作製直後(初期)、恒温恒湿槽保管後(恒温恒湿)、及び紫外線照射後(紫外線)の透過率(%)の値を、表57~表59に示す。
「液晶層と液晶配向膜との密着性の評価」
 得られた液晶表示素子(ガラス基板・プラスチック基板)について、液晶層と液晶配向膜との密着性の評価を行った。
 更に、実施例1~4、7、8、10、16、20では、上記の標準試験に加えて、強調試験として、温度60℃、湿度70%の恒温恒湿槽内に72時間保管した後の密着性の評価も行った。なお、評価方法はAシリーズの実施例と同様の条件である。恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の液晶層と液晶配向膜との密着性の結果(密着性)を、表57~表59に示す。
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(5.50g)に、T3(0.069g)、NMP(12.4g)及びBCS(16.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(1)を得た。
<実施例2>
 合成例2で得られたポリイミド粉末(2)(1.40g)に、NEP(16.8g)及びPB(16.8g)を加え、60℃にて24時間攪拌した。その後、T3(0.070g)を加え、25℃で4時間攪拌して液晶配向処理剤(2)を得た。
<実施例3>
 合成例3で得られたポリアミド酸溶液(3)(5.50g)に、T3(0.069g)、NMP(12.4g)及びBCS(16.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。得られた液晶配向処理剤(3)と液晶組成物(1)を用いて、液晶表示素子の作製及び評価を行った。
<実施例4>
 合成例4で得られたポリイミド粉末(4)(1.40g)に、NEP(16.8g)及びPB(16.8g)を加え、60℃にて24時間攪拌した。その後、T3(0.070g)を加え、25℃で4時間攪拌して、液晶配向処理剤(4)を得た。
<実施例5>
 合成例5で得られたポリアミド酸溶液(5)(4.00g)に、T3(0.030g)、γ-BL(4.85g)及びPGME(24.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(5)を得た。
<実施例8>
 合成例5で得られたポリアミド酸溶液(5)(4.00g)に、T3(0.030g)、N1(0.050g)、M1(0.050g)、K1(0.070g)、γ-BL(4.85g)及びPGME(24.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(6)を得た。
<実施例9>
 合成例6で得られたポリアミド酸溶液(6)(4.00g)に、T1(0.070g)、N1(0.030g)、K1(0.100g)、γ-BL(6.47g)及びPGME(22.9g)を加え、25℃で4時間攪拌して、液晶配向処理剤(7)を得た。
<実施例10>
 合成例7で得られたポリアミド酸溶液(7)(4.00g)に、T3(0.050g)、NMP(9.00g)及びBCS(12.0g)を加え、25℃で4時間攪拌して、液晶配向処理剤(8)を得た。
<実施例11>
 合成例8で得られたポリアミド酸溶液(8)(4.00g)に、T3(0.010g)、N1(0.070g)、K1(0.050g)、γ-BL(6.47g)、PB(1.62g)及びPGME(21.3g)を加え、25℃で4時間攪拌して、液晶配向処理剤(9)を得た。
<実施例12>
 合成例9で得られたポリイミド粉末(9)(1.00g)に、γ-BL(6.47g)及びPGME(25.9g)を加え、60℃にて24時間攪拌した。その後、T2(0.050g)、N1(0.050g)及びK1(0.030g)を加え、25℃で4時間攪拌して、液晶配向処理剤(10)を得た。
<実施例13>
 合成例10で得られたポリイミド粉末(10)(1.00g)に、γ-BL(6.47g)及びPGME(25.9g)を加え、60℃にて24時間攪拌した。その後、T3(0.030g)、N1(0.050g)及びK1(0.100g)を加え、25℃で4時間攪拌して、液晶配向処理剤(11)を得た。
<実施例14>
 合成例11で得られたポリアミド酸溶液(11)(4.00g)に、T3(0.030g)、N1(0.050g)、K1(0.070g)、γ-BL(4.85g)及びPGME(24.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(12)を得た。
<実施例15>
 合成例12で得られたポリアミド酸溶液(12)(4.00g)に、T2(0.070g)、N1(0.050g)、K1(0.070g)、γ-BL(3.23g)及びPGME(26.1g)を加え、25℃で4時間攪拌して、液晶配向処理剤(13)を得た。
<実施例16>
 合成例13で得られたポリシロキサン溶液(1)(11.0g)に、T3(0.066g)、BCS(9.50g)、PB(3.17g)及びECS(9.33g)を加え、25℃で4時間攪拌して、液晶配向処理剤(14)を得た。
<実施例18>
 合成例14で得られたポリシロキサン溶液(2)(8.50g)に、T2(0.071g)、PB(9.89g)、PGME(9.89g)及びEC(5.71g)を加え、25℃で4時間攪拌して、液晶配向処理剤(15)を得た。
<実施例19>
 合成例15で得られたポリシロキサン溶液(3)(8.50g)に、T1(0.071g)、N1(0.051g)、M1(0.204g)、PB(9.89g)、PGME(9.89g)及びEC(5.71g)を加え、25℃で4時間攪拌して、液晶配向処理剤(16)を得た。
<実施例20>
 合成例16で得られたポリシロキサン溶液(4)(11.0g)に、T3(0.066g)、BCS(9.50g)、PB(3.17g)及びECS(9.33g)を加え、25℃で4時間攪拌して、液晶配向処理剤(17)を得た。
<比較例1>
 合成例1で得られたポリアミド酸溶液(1)(5.50g)に、NMP(12.4g)及びBCS(16.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(18)を得た。
<比較例2>
 合成例2で得られたポリイミド粉末(2)(1.40g)に、NEP(16.8g)及びPB(16.8g)を加え、60℃にて24時間攪拌して、液晶配向処理剤(19)を得た。
<比較例3>
 合成例5で得られたポリアミド酸溶液(5)(4.00g)に、γ-BL(4.85g)及びPGME(24.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(20)を得た。
<比較例4>
 合成例13で得られたポリシロキサン溶液(1)(11.0g)に、BCS(9.50g)、PB(3.17g)及びECS(9.33g)を加え、25℃で4時間攪拌して、液晶配向処理剤(21)を得た。
<比較例5>
 合成例14で得られたポリシロキサン溶液(2)(8.50g)に、PB(9.89g)、PGME(9.89g)及びEC(5.71g)を加え、25℃で4時間攪拌して、液晶配向処理剤(22)を得た。
 実施例1~20及び比較例1~5で得られた液晶配向処理剤は、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 これらの液晶配向処理剤(1)~(20)及び前記した液晶組成物(1)~(4)を、表47~表52に示される組み合わせで使用し、前記の手順にしたがって液晶表示素子の作製及び評価を行った。それらの結果を表47~表52に示す。
 なお、実施例6は、液晶配向処理剤(5)と液晶組成物(2)を用いた液晶表示素子であり、実施例7は、液晶配向処理剤(5)と液晶組成物(3)を用いた液晶表示素子であり、実施例17は、液晶配向処理剤(14)と液晶組成物(3)を用いた液晶表示素子である。
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
*1~*5は、いずれも、全重合体100質量部に対する含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
*1:素子内の数箇所に、液晶配向性の乱れが見られた。
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
*1:素子内に極少量の気泡が見られた。*2:素子内に少量の気泡が見られた(*1よりも多い)。*3:素子内に多くの気泡が見られた(*2よりも多い)。
 実施例は比較例に比べて、良好な光学特性、即ち、初期、恒温恒湿槽保管後、及び紫外線照射後における電圧無印加時の透明性が良好な素子となった。更には、液晶層と液晶配向膜の密着性も高い素子となった。特に、素子の基板に、プラスチック基板を用いても、これら特性が良好であった。
 具体的には、液晶配向処理剤中に特定化合物を含む実施例の素子は、それを含まない比較例に比べて、特に、素子作製直後における電圧無印加時の透明性が高くなり、更には、高温高湿下や紫外線を照射した後でも、透明性が高い結果となった。より具体的には、同一の条件での比較において、実施例1と比較例1との比較、実施例2と比較例2との比較、実施例5と比較例3との比較、実施例16と比較例4との比較、及び実施例18と比較例5との比較である。
 特定側鎖構造のなかで、式[2-1]を用いた場合は、式[2-2]を用いた場合に比べて、素子の電圧無印加時の透明性が高くなり、更には、強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。更に、液晶層と液晶配向膜との密着性の評価において、式[2-1]を用いた場合は、強調試験で行った長時間、恒温恒湿槽に保管した後においても、密着性がより高い結果となった。具体的には、標準試験及び強調試験における同一条件での比較において、実施例1と10との比較、実施例16と20との比較である。
 また、液晶組成物中に、特定化合物を導入した場合は、素子の電圧無印加時の透明性が高くなり、更には、強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。特定化合物の導入量が多い方が、その効果が大きくなった。具体的には、標準試験及び強調試験における同一条件での比較において、実施例5と、6又は7との比較、及び実施例16と17との比較である。
 更に、液晶配向処理剤中に、特定発生剤、密着性化合物及び特定架橋性化合物を導入した場合は、素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件での比較において、実施例7と8との比較である。
 更に、特定重合体にポリイミド系重合体を用いた場合において、ジアミン成分に特定第2のジアミン化合物を用いた場合、素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件での比較において、実施例1と3との比較、実施例2と4との比較である。
<実施例Cシリーズ>
 以下で使用する略号の意味は、上記実施例Aシリーズ及び実施例Bシリーズで定義された略号の意味と同じである。
<合成例1>
 D2(6.89g,27.5mmol)、A1(8.49g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.9g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.5g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量(Mnともいう)は21,300、重量平均分子量(Mwともいう)は67,700であった。
<合成例2>
 合成例1で得られたポリアミド酸溶液(1)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.40g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は55%であり、Mnは19,000、Mwは50,200であった。
<合成例3>
 D2(6.12g,24.5mmol)、A1(7.55g,19.8mmol)、B1(2.62g,9.91mmol)及びC2(0.50g,3.29mmol)をNMP(36.8g)中で混合し、50℃で5時間反応させた後、D1(1.60g,8.16mmol)とNMP(18.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(3)を得た。このポリアミド酸のMnは20,200、Mwは63,500であった。
<合成例4>
 合成例3で得られたポリアミド酸溶液(3)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.51g)及びピリジン(2.42g)を加え、50℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は54%であり、Mnは17,500、Mwは48,800であった。
<合成例5>
 D2(0.80g,3.20mmol)、A2(2.55g,6.46mmol)及びB1(2.56g,9.69mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(2.50g,12.7mmol)とPGME(8.40g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは17,100、Mwは40,800であった。
<合成例6>
 D1(3.30g,16.8mmol)、A2(3.36g,8.52mmol)、B1(1.80g,6.81mmol)及びC1(0.18g,1.66mmol)をPGME(26.0g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液(6)を得た。このポリアミド酸のMnは15,900、Mwは39,200であった。
<合成例7>
 D2(6.89g,27.5mmol)、A5(8.40g,22.3mmol)及びC2(2.26g,14.9mmol)をNMP(38.7g)中で混合し、50℃で5時間反応させた後、D1(1.80g,9.18mmol)とNMP(19.4g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは20,500、Mwは65,300であった。
<合成例8>
 D3(3.50g,15.6mmol)、A2(2.50g,6.34mmol)及びB1(2.51g,9.50mmol)をPGME(25.5g)中で混合し、50℃で15時間反応させ、C25%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは14,800、Mwは37,900であった。
<合成例9>
 D3(3.50g,15.6mmol)、A4(1.56g,3.17mmol)、B1(2.51g,9.50mmol)及びC2(0.48g,3.15mmol)をNEP(24.1g)中で混合し、50℃で12時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は48%であり、Mnは16,500、Mwは44,200であった。
<合成例10>
 D4(3.37g,11.2mmol)、A3(2.46g,5.69mmol)、B1(1.50g,5.68mmol)及びC2(0.43g,2.83mmol)をNMP(16.6g)中で混合し、50℃で5時間反応させた後、D1(0.55g,2.80mmol)とNMP(8.31g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(2.38g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は57%であり、Mnは17,300、Mwは45,800であった。
<合成例11>
 D5(1.30g,6.13mmol)、A2(3.67g,9.30mmol)及びB1(1.64g,6.21mmol)をPGME(16.8g)中で混合し、50℃で12時間反応させた後、D1(1.80g,9.18mmol)とPGME(8.42g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(11)を得た。このポリアミド酸のMnは15,500、Mwは35,100であった。
<合成例12>
 D5(1.70g,8.01mmol)、A4(1.60g,3.25mmol)及びB1(3.43g,13.0mmol)をPGME(16.6g)中で混合し、50℃で12時間反応させた後、D1(1.57g,8.01mmol)とPGME(8.30g)を加え、40℃で6時間反応させ、C25%のポリアミド酸溶液(12)を得た。このポリアミド酸のMnは13,800、Mwは32,500であった。
 各合成例で得られたポリイミド系重合体を表63に示す。
Figure JPOXMLDOC01-appb-T000135
*1はポリアミド酸を表す。
「液晶組成物の作製」
 上記Aシリーズの実施例と同様にして、液晶組成物(1)~(4)を作製した。
「液晶配向処理剤の製造」
 後記する実施例1~15及び比較例1~9では、液晶配向処理剤の製造例を記載した。これらの液晶配向処理剤は、液晶表示素子の作製及びその評価のためにも使用した。表64~表66には、これらの実施例及び比較例で得られた液晶配向処理剤を示す。
「液晶表示素子の作製及び液晶配向性の評価(ガラス基板)」
 実施例1~4、10及び比較例1~6で得られた液晶配向処理剤を用いて、上記したAシリーズの実施例と同様の手順にしたがって液晶表示素子の作製を行った。なお、これらの実施例及び比較例のいずれの液晶表示素子とも液晶は垂直配向していた。
「液晶表示素子の作製及び液晶配向性の評価(プラスチック基板)」
 実施例5~9、11~15及び比較例6~9で得られた液晶配向処理剤を用いて、上記したAシリーズの実施例と同様の手順にしたがって液晶表示素子の作製を行った。
「光学特性(透明性と散乱特性)の評価」
 得られた液晶表示素子(ガラス基板・プラスチック基板)を用いて、光学特性(透明性と散乱特性)の評価を行った。
 更に、実施例1~実施例8及び実施例10においては、上記の標準試験に加えて、強調試験として、温度80℃、湿度90%の恒温恒湿槽内に24時間保管した後の透過率の評価も行った。評価方法はAシリーズの実施例と同様の条件である。
 液晶表示素子作製直後(初期)、恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の透過率(%)を表67~表69に示す。
「液晶層と液晶配向膜との密着性の評価」
 得られた液晶表示素子(ガラス基板・プラスチック基板)を用いて、液晶層と液晶配向膜との密着性の評価を行った。
 更に、実施例1~4、7、8及び10においては、上記の標準試験に加えて、強調試験として、温度80℃、湿度90%の恒温恒湿槽内に60時間保管した後の密着性の評価も行った。評価方法はAシリーズの実施例と同様の条件である。
 恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の液晶層と液晶配向膜との密着性の結果(密着性)を表70~表72に示す。
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、T3(0.082g)及びBCS(19.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(1)を得た。
<実施例2>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、NEP(21.6g)を加え、60℃で24時間攪拌した後、Z1(0.300g)を加えて25℃で24時間攪拌した。その後、T3(0.075g)及びPB(14.4g)を加え、25℃で4時間攪拌して、液晶配向処理剤(2)を得た。
<実施例3>
 合成例3で得られたポリアミド酸溶液(3)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、T3(0.082g)及びBCS(19.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(3)を得た。
<実施例4>
 合成例4で得られたポリイミド粉末(4)(1.50g)に、NEP(21.6g)を加え、60℃で24時間攪拌した後、Z1(0.300g)を加えて25℃で24時間攪拌した。その後、T3(0.075g)及びPB(14.4g)を加え、25℃で4時間攪拌して、液晶配向処理剤(4)を得た。
<実施例5>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.188g)を加え、25℃で24時間攪拌した。その後、T3(0.038g)を加え、25℃で4時間攪拌して、液晶配向処理剤(5)を得た。
<実施例8>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.188g)を加え、25℃で24時間攪拌した。その後、T3(0.038g)、N1(0.063g)、M1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(6)を得た。
<実施例9>
 合成例6で得られたポリアミド酸溶液(6)(5.00g)に、γ-BL(8.08g)、PGME(28.6g)及びZ1(0.125g)を加え、40℃で12時間攪拌した。その後、T1(0.088g)、N1(0.038g)及びK1(0.125g)を加え、25℃で4時間攪拌し、液晶配向処理剤(7)を得た。
<実施例10>
 合成例7で得られたポリアミド酸溶液(7)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、T3(0.082g)及びBCS(19.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(8)を得た。
<実施例11>
 合成例8で得られたポリアミド酸溶液(8)(5.00g)に、γ-BL(4.04g)、PB(4.04g)、PGME(28.6g)及びZ2(0.375g)を加え、25℃で24時間攪拌した。その後、T3(0.013g)、N1(0.088g)及びK1(0.063g)を加え、25℃で4時間攪拌し、液晶配向処理剤(9)を得た。
<実施例12>
 合成例9で得られたポリイミド粉末(9)(1.30g)に、γ-BL(8.41g)及びPGME(33.6g)を加え、60℃で24時間攪拌した後、Z1(0.260g)を加えて40℃で12時間攪拌した。その後、T2(0.065g)、N1(0.065g)及びK1(0.039g)を加え、25℃で4時間攪拌し、液晶配向処理剤(10)を得た。
<実施例13>
 合成例10で得られたポリイミド粉末(10)(1.30g)に、γ-BL(6.31g)及びPGME(35.7g)を加え、60℃で24時間攪拌した後、Z2(0.455g)を加えて25℃で24時間攪拌した。その後、T3(0.039g)、N1(0.065g)及びK1(0.130g)を加え、25℃で4時間攪拌し、液晶配向処理剤(11)を得た。
<実施例14>
 合成例11で得られたポリアミド酸溶液(11)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.125g)を加え、25℃で24時間攪拌した。その後、T3(0.038g)、N1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(12)を得た。
<実施例15>
 合成例12で得られたポリアミド酸溶液(12)(5.00g)に、γ-BL(4.04g)、PGME(32.6g)及びZ2(0.063g)を加え、25℃で24時間攪拌した。その後、T2(0.088g)、N1(0.063g)及びK1(0.088g)を加え、25℃で4時間攪拌し、液晶配向処理剤(13)を得た。
<比較例1>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)に、NMP(14.6g)及びBCS(19.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(14)を得た。
<比較例2>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)に、NMP(14.6g)及びZ2(0.163g)を加え、25℃で24時間攪拌した。その後、BCS(19.5g)を加え、25℃で2時間攪拌して、液晶配向処理剤(15)を得た。
<比較例3>
 合成例1で得られたポリアミド酸溶液(1)(6.50g)に、T3(0.082g)、NMP(14.6g)及びBCS(19.5g)を加え、25℃で8時間攪拌して、液晶配向処理剤(16)を得た。
<比較例4>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、NEP(21.6g)及びPB(14.4g)を加え、60℃にて24時間攪拌して、液晶配向処理剤(17)を得た。
<比較例5>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、NEP(21.6g)を加え、60℃で24時間攪拌した後、Z1(0.300g)を加えて25℃で24時間攪拌した。その後、PB(14.4g)を加え、25℃で2時間攪拌して、液晶配向処理剤(18)を得た。
<比較例6>
 合成例2で得られたポリイミド粉末(2)(1.50g)に、T3(0.075g)、NEP(21.6g)及びPB(14.4g)を加え、60℃にて24時間攪拌して、液晶配向処理剤(19)を得た。
<比較例7>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)及びPGME(30.6g)を加え、25℃で4時間攪拌して、液晶配向処理剤(20)を得た。
<比較例8>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、γ-BL(6.06g)、PGME(30.6g)及びZ2(0.188g)を加え、25℃で24時間攪拌して、液晶配向処理剤(21)を得た。
<比較例9>
 合成例5で得られたポリアミド酸溶液(5)(5.00g)に、T3(0.038g)、γ-BL(6.06g)及びPGME(30.6g)を加え、25℃で8時間攪拌して、液晶配向処理剤(22)を得た。
 実施例1~15及び比較例1~9で得られた液晶配向処理剤は、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 これらの液晶配向処理剤(1)~(22)及び前記した液晶組成物(1)~(4)を、表67~表72に示される組み合わせで使用し、前記の手順にしたがって液晶表示素子の作製及び評価を行った。なお、実施例6は、液晶配向処理剤(5)と液晶組成物(2)を用いた液晶表示素子であり、また、実施例7は、液晶配向処理剤(5)と液晶組成物(3)を用いた液晶表示素子である。
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
*1~*5は、いずれも、全重合体100質量部に対する含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
*1:素子内の数箇所に、液晶配向性の乱れが見られた。
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
*1:素子内に極少量の気泡が見られた。*2:素子内に少量の気泡が見られた(*1よりも多い)。*3:素子内に多くの気泡が見られた(*2よりも多い)。
 実施例は、比較例に比べて、良好な光学特性、即ち、特に、高温高湿槽保管後、及び紫外線照射後における電圧無印加時の透明性が良好な液晶表示素子となった。更には、液晶層と液晶配向膜の密着性も高い素子となった。また、素子の基板にプラスチック基板を用いてもこれら特性が良好であった。
 具体的には、液晶配向処理剤中に特定化合物(1)及び特定化合物(2)を含む実施例素子は、それを含まない、或いはいずれか一方を含む比較例に比べて、特に、高温高湿下や紫外線を照射した後での透明性が高くなり、液晶層と液晶配向膜との密着性も高くなる結果となった。より具体的には、同一の条件における実施例1と比較例1~3との比較、実施例2と比較例4~6との比較及び実施例5と比較例7~9との比較である。
 特定側鎖構造のなかで、式[3-1]を用いた場合は、式[3-2]を用いた場合に比べて、液晶表示素子の電圧無印加時の透明性が高くなり、更には、強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。加えて、液晶層と液晶配向膜との密着性の評価において、式[3-1]の特定側鎖構造を用いた場合は、強調試験で行った長時間、恒温恒湿槽に保管した後においても、これらの密着性がより高い結果となった。具体的には、標準試験及び強調試験における同一条件における実施例1と実施例10との比較である。
 また、液晶組成物中に、特定液晶添加化合物を導入した場合は、液晶表示素子の電圧無印加時の透明性が高くなり、更に強調試験で行った長時間、恒温恒湿槽に保管した後においても、電圧無印加時の透明性が、より高くなる結果となった。特定液晶添加化合物の導入量が多い方が、その効果が大きくなった。具体的には、標準試験及び強調試験における同一条件での実施例5と、6又は7との比較である。更に、液晶配向処理剤中に、特定発生剤、密着性化合物及び特定架橋性化合物を導入した場合は、液晶表示素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件での実施例7と8との比較である。
 更に、特定重合体にポリイミド系重合体を用いた場合において、ジアミン成分に特定ジアミン化合物(2)を用いた場合、素子における液晶層と液晶配向膜との密着性が、より改善する結果となった。具体的には、強調試験における同一条件での実施例1と3との比較、及び実施例2と4との比較である。
 本発明の液晶表示素子は、表示を目的とする液晶ディスプレイや、光の透過と遮断を制御する調光窓や光シャッター素子などに好適に使用できる。
 また、本発明の液晶表示素子は、自動車、鉄道、航空機などの輸送機器や輸送機械に用いる液晶表示素子、具体的には、光の透過と遮断を制御する調光窓やルームミラーに用いる光シャッター素子などに好適に使用できる。特に、本素子をリバース型素子として使用した場合は、電圧無印加時の透明性と電圧印加時の散乱特性が良好なことから、乗物のガラス窓に使用した場合は、従来に比べて、夜間時の光の取り入れ効率が高く、更に外光からの眩しさを防ぐ効果も高い。そのため、乗物を運転する際の安全性や乗車時の快適性をより改善できる。また、本素子をフィルムで作製し、それを乗物のガラス窓に貼って使用する場合、従来に比べて素子の信頼性が高くなる。
 更に、本素子は、LCDやOLEDなどのディスプレイ装置の導光板やこれらディスプレイを用いた透明ディスプレイの裏板にも使用できる。具体的には、透明ディスプレイの裏板に用いる場合、例えば、透明ディスプレイと本素子とを合わせて透明ディスプレイ上で画面表示を行う場合に、その背面からの光の入り込みを本素子により抑制するために使用できる。本素子は、透明ディスプレイ上で画面表示を行う際に電圧印加された散乱状態となり、画面表示を鮮明でき、画面表示が終わった後には、電圧が無印加の透明状態となる。
 なお、2015年3月2日に出願された日本特許出願2015-040263号、2015-040264号及び日本特許出願2015-040265号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (16)

  1.  電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有し、かつ基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を備える液晶表示素子であって、前記液晶配向膜が、下記の成分を含有する液晶配向処理剤から得られることを特徴とする液晶表示素子。
    (A)成分:下記式[1-1]の化合物及び下記式[1-2]の化合物からなる群から選ばれる少なくとも1種の化合物。
    (B)成分:下記式[2-1]及び式[2-2]からなる群から選ばれる少なくとも1つの構造を有する重合体。
    Figure JPOXMLDOC01-appb-C000001
    (Tは炭素数1~20のアルキレン基、又はベンゼン環又はシクロヘキサン環を有する炭素数6~24の有機基からなる群から選ばれる少なくとも1種を示し、前記炭素数1~20のアルキレン基の任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-CON(CH)-、-S-又は-SO-で置き換えられても良い。Tは単結合、-O-、-NH-、-N(CH)-、-CHO-、-OCH-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Tは下記式[1-a]~式[1-g]からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (Tは水素原子又はベンゼン環を示す。Tはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Tは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (Sは下記式[1-a]~式[1-l]の構造からなる群から選ばれる少なくとも1種の構造を示す。Sは単結合又は炭素数1~24のアルキレン基を示し、前記アルキレン基の任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-CON(CH)-、-S-又は-SO-で置き換えられても良い。Sはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Sは単結合、-O-、-OCH-、-CHO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Sはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。sAは0~4の整数を示す。Sは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (Sは水素原子又はベンゼン環を示す。Sはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Sは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。S~Sはそれぞれ、炭素数1~5のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Yは単結合又は-(CH-(bは1~15の整数である)を示す。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0~4の整数を示す。Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (Yは単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Yは炭素数8~22のアルキル基又は炭素数6~18のフッ素含有アルキル基を示す。)
  2.  (A)成分の[1-1]の化合物が、下記式[1a-1]~式[1a-6]の化合物からなる群から選ばれる少なくとも1種である請求項1に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000007
    (Ta及びTbはそれぞれ、1~12の整数を示す。Tc~Tfはそれぞれ、1~10の整数を示す。)
  3.  (A)成分の式[1-2]中のSが、式[1-a]~式[1-d]及び式[1-f]からなる群から選ばれる少なくとも1種の構造である請求項1に記載の液晶表示素子。
  4.  (A)成分の式[1-2]中のSが、式[1-h]~式[1-l]からなる群から選ばれる少なくとも1種の構造である請求項1に記載の液晶表示素子。
  5.  (B)成分の重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つである請求項1~4のいずれか1項に記載の液晶表示素子。
  6.  (B)成分の重合体が、式[2-1]又は式[2-2]の構造を有するジアミン化合物を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである請求項1~5のいずれか1項に記載の液晶表示素子。
  7.  前記ジアミン化合物が、下記式[2a]で示される請求項6に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000008
    (Yは前記式[2-1]又は式[2-2]を示す。n1は1~4の整数を示す。)
  8.  前記ジアミン成分が、下記式[3a]のジアミン化合物を含む請求項6又は7に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000009
    (Wは下記式[3]の構造を示す。m1は1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000010
    (Wは単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。Wは単結合、炭素数1~18のアルキレン基、又はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を有する炭素数6~24の有機基を示し、これら環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基で置換されていても良い。Wは単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。Wは下記式[3-a]~式[3-g]からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000011
    (Wは水素原子又はベンゼン環を示す。Wはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Wは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基及び炭素数1~18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
  9.  前記テトラカルボン酸成分が、下記式[4]のテトラカルボン酸二無水物を含む請求項6~8のいずれか一項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000012
    (Zは下記式[4a]~式[4k]の構造からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000013
    (Z~Zはそれぞれ独立して、水素原子、メチル基、塩素原子及びベンゼン環からなる群から選ばれる少なくとも1種を示す。Z及びZはそれぞれ独立して、水素原子又はメチル基を示す。)
  10.  (B)成分の重合体が、下記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと、下記式[A2]若しくは式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンを含む請求項1~4のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000014
    (Aは前記式[2-1]又は式[2-2]の構造を示す。Aは水素原子又は炭素数1~5のアルキル基を示す。Aは炭素数1~5のアルキル基を示す。mは1又は2の整数を示す。nは0~2の整数を示す。pは0~3の整数を示す。ただし、m+n+pは4である。)
    Figure JPOXMLDOC01-appb-C000015
    (Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基からなる群から選ばれる少なくとも1種を有する炭素数2~12の有機基を示す。Bは水素原子又は炭素数1~5のアルキル基を示す。Bは炭素数1~5のアルキル基を示す。mは1又は2の整数を示す。nは0~2の整数を示す。pは0~3の整数を示す。ただし、m+n+pは4である。)
    Figure JPOXMLDOC01-appb-C000016
    (Dは水素原子又は炭素数1~5のアルキル基を示す。Dは炭素数1~5のアルキル基を示す。nは0~3の整数を示す。)
  11.  前記液晶配向処理剤が、光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1種の発生剤を含有する請求項1~10のいずれか一項に記載の液晶表示素子。
  12.  前記液晶配向処理剤が、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基及び炭素数1~3のアルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する化合物を含有する請求項1~11のいずれか一項に記載の液晶表示素子。
  13.  前記液晶配向処理剤が、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン及び下記式[D1]~式[D3]の溶媒からなる群から選ばれる少なくとも1種の溶媒を含有する請求項1~12のいずれか一項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000017
    (D、D及びDはそれぞれ、炭素数1~4のアルキル基を示す。)
  14.  前記液晶配向処理剤が、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種の溶媒を含有する請求項1~13のいずれか一項に記載の液晶表示素子。
  15.  前記液晶組成物が、前記式[1-1]の化合物又は式[1-2]の化合物を含有する請求項1~14のいずれか一項に記載の液晶表示素子。
  16.  前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である請求項1~15のいずれか一項に記載の液晶表示素子。
PCT/JP2016/056469 2015-03-02 2016-03-02 液晶表示素子 WO2016140278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680025600.0A CN107533258B (zh) 2015-03-02 2016-03-02 液晶表示元件
JP2017503695A JP6418317B2 (ja) 2015-03-02 2016-03-02 液晶表示素子
KR1020177027746A KR102546376B1 (ko) 2015-03-02 2016-03-02 액정 표시 소자

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015040265 2015-03-02
JP2015040263 2015-03-02
JP2015-040263 2015-03-02
JP2015-040264 2015-03-02
JP2015-040265 2015-03-02
JP2015040264 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140278A1 true WO2016140278A1 (ja) 2016-09-09

Family

ID=56848280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056469 WO2016140278A1 (ja) 2015-03-02 2016-03-02 液晶表示素子

Country Status (5)

Country Link
JP (1) JP6418317B2 (ja)
KR (1) KR102546376B1 (ja)
CN (1) CN107533258B (ja)
TW (1) TWI609052B (ja)
WO (1) WO2016140278A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146216A1 (ja) * 2016-02-26 2017-08-31 日産化学工業株式会社 液晶表示素子
WO2017146217A1 (ja) * 2016-02-26 2017-08-31 日産化学工業株式会社 液晶表示素子
WO2018159637A1 (ja) * 2017-02-28 2018-09-07 日産化学株式会社 化合物、液晶組成物及び液晶表示素子
WO2019022202A1 (ja) * 2017-07-27 2019-01-31 日産化学株式会社 樹脂組成物、樹脂膜及び液晶表示素子
WO2021065933A1 (ja) * 2019-10-02 2021-04-08 日産化学株式会社 液晶調光素子
JP7415338B2 (ja) 2019-06-07 2024-01-17 大日本印刷株式会社 光学フィルム、表示パネル及び画像表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039166B2 (ja) * 2016-09-30 2022-03-22 東京応化工業株式会社 樹脂組成物、硬化物の製造方法、及び硬化物
WO2018181400A1 (ja) * 2017-03-31 2018-10-04 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、電子機器
JP7226429B2 (ja) * 2018-03-20 2023-02-21 日産化学株式会社 液晶表示素子
CN112882258A (zh) * 2021-02-23 2021-06-01 浙江精一新材料科技有限公司 一种调光膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058374A (ja) * 2006-08-29 2008-03-13 Dainippon Ink & Chem Inc 液晶素子
WO2014171493A1 (ja) * 2013-04-16 2014-10-23 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885116B2 (ja) 1994-07-05 1999-04-19 日本電気株式会社 液晶光学素子およびその製造方法
JP4132424B2 (ja) 1999-06-22 2008-08-13 旭硝子株式会社 液晶光学素子の製造方法
WO2011132752A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2012008464A1 (ja) * 2010-07-13 2012-01-19 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2012053525A1 (ja) * 2010-10-19 2012-04-26 日産化学工業株式会社 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
KR101883521B1 (ko) * 2011-05-27 2018-07-30 닛산 가가쿠 고교 가부시키 가이샤 규소계 액정 배향제, 액정 배향막 및 액정 표시 소자
KR101998907B1 (ko) * 2011-12-28 2019-07-10 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 액정 표시 소자 및 디아민 화합물
WO2014157235A1 (ja) * 2013-03-26 2014-10-02 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058374A (ja) * 2006-08-29 2008-03-13 Dainippon Ink & Chem Inc 液晶素子
WO2014171493A1 (ja) * 2013-04-16 2014-10-23 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017146217A1 (ja) * 2016-02-26 2018-10-11 日産化学株式会社 液晶表示素子
WO2017146217A1 (ja) * 2016-02-26 2017-08-31 日産化学工業株式会社 液晶表示素子
WO2017146216A1 (ja) * 2016-02-26 2017-08-31 日産化学工業株式会社 液晶表示素子
JPWO2017146216A1 (ja) * 2016-02-26 2018-09-13 日産化学株式会社 液晶表示素子
JPWO2018159637A1 (ja) * 2017-02-28 2019-12-26 日産化学株式会社 化合物、液晶組成物及び液晶表示素子
JP7096533B2 (ja) 2017-02-28 2022-07-06 日産化学株式会社 化合物、液晶組成物及び液晶表示素子
KR20190125360A (ko) * 2017-02-28 2019-11-06 닛산 가가쿠 가부시키가이샤 화합물, 액정 조성물 및 액정 표시 소자
CN110546176A (zh) * 2017-02-28 2019-12-06 日产化学株式会社 化合物、液晶组合物及液晶表示元件
WO2018159637A1 (ja) * 2017-02-28 2018-09-07 日産化学株式会社 化合物、液晶組成物及び液晶表示素子
KR102596591B1 (ko) * 2017-02-28 2023-10-31 닛산 가가쿠 가부시키가이샤 화합물, 액정 조성물 및 액정 표시 소자
CN110546176B (zh) * 2017-02-28 2022-03-18 日产化学株式会社 化合物、液晶组合物及液晶表示元件
JPWO2019022202A1 (ja) * 2017-07-27 2020-05-28 日産化学株式会社 樹脂組成物、樹脂膜及び液晶表示素子
WO2019022202A1 (ja) * 2017-07-27 2019-01-31 日産化学株式会社 樹脂組成物、樹脂膜及び液晶表示素子
CN110945416A (zh) * 2017-07-27 2020-03-31 日产化学株式会社 树脂组合物、树脂膜及液晶表示元件
JP7415338B2 (ja) 2019-06-07 2024-01-17 大日本印刷株式会社 光学フィルム、表示パネル及び画像表示装置
WO2021065933A1 (ja) * 2019-10-02 2021-04-08 日産化学株式会社 液晶調光素子
CN114503023A (zh) * 2019-10-02 2022-05-13 日产化学株式会社 液晶调光元件
EP4043948A4 (en) * 2019-10-02 2023-11-01 Nissan Chemical Corporation LIQUID CRYSTAL LIGHT CONTROL ELEMENT
US11966120B2 (en) 2019-10-02 2024-04-23 Nissan Chemical Corporation Liquid crystal light control element

Also Published As

Publication number Publication date
KR20170125075A (ko) 2017-11-13
CN107533258A (zh) 2018-01-02
CN107533258B (zh) 2020-11-06
TW201704341A (zh) 2017-02-01
KR102546376B1 (ko) 2023-06-21
JP6418317B2 (ja) 2018-11-07
TWI609052B (zh) 2017-12-21
JPWO2016140278A1 (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6418317B2 (ja) 液晶表示素子
KR102596591B1 (ko) 화합물, 액정 조성물 및 액정 표시 소자
WO2020184420A1 (ja) 樹脂組成物、樹脂膜及び液晶表示素子
JP6409149B2 (ja) 液晶表示素子
JP6686889B2 (ja) 液晶表示素子
CN110945416B (zh) 树脂组合物、树脂膜及液晶表示元件
JP6406472B2 (ja) 液晶表示素子
JPWO2020175561A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP7226429B2 (ja) 液晶表示素子
WO2020184424A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027746

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16758971

Country of ref document: EP

Kind code of ref document: A1