WO2012165354A1 - ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2012165354A1
WO2012165354A1 PCT/JP2012/063550 JP2012063550W WO2012165354A1 WO 2012165354 A1 WO2012165354 A1 WO 2012165354A1 JP 2012063550 W JP2012063550 W JP 2012063550W WO 2012165354 A1 WO2012165354 A1 WO 2012165354A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
polysiloxane
alkyl group
Prior art date
Application number
PCT/JP2012/063550
Other languages
English (en)
French (fr)
Inventor
謙治 坂本
里枝 軍司
橋本 淳
祐樹 高山
大輔 佐久間
章吾 檜森
浩二 平賀
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201280036983.3A priority Critical patent/CN103718091B/zh
Priority to KR1020137034392A priority patent/KR101883521B1/ko
Priority to JP2013518063A priority patent/JP6079626B2/ja
Publication of WO2012165354A1 publication Critical patent/WO2012165354A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a liquid crystal alignment agent containing polysiloxane obtained by polycondensation of alkoxysilane, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display device having the liquid crystal alignment film.
  • the VA method includes an MVA method (Multi Vertical Alignment) in which protrusions for controlling the direction in which the liquid crystal is tilted are formed on the TFT substrate or the color filter substrate, and a direction in which the liquid crystal is tilted by an electric field by forming a slit in the ITO electrode of the substrate.
  • MVA method Multi Vertical Alignment
  • a PVA (Patterned Vertical Alignment) method to be controlled is known.
  • PSA Polymer Sustained Alignment
  • VA systems the PSA system is a technology that has attracted attention in recent years.
  • a photopolymerizable compound is added to the liquid crystal, and after manufacturing the liquid crystal panel, an electric field is applied to irradiate the liquid crystal panel with ultraviolet rays (UV) while the liquid crystal is tilted.
  • UV ultraviolet rays
  • the polymerizable compound is photopolymerized to fix the alignment direction of the liquid crystal, causing a pretilt and improving the response speed. It is possible to operate with a structure in which a slit is made in one electrode constituting the liquid crystal panel, and the electrode pattern on the opposite side is not provided with a protrusion such as MVA or a slit such as PVA, and the manufacturing is simplified and excellent.
  • the panel transmittance is obtained.
  • an inorganic liquid crystal alignment film material is also known together with an organic liquid crystal alignment film material such as polyimide which has been conventionally used.
  • an alignment agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed. It has been reported that a liquid crystal alignment film excellent in vertical alignment, heat resistance and uniformity is formed.
  • JP 2004-302061 A JP 2011-95967 A JP 09-281502 A JP 2005-250244 A
  • the response after UV irradiation is improved when the vertical alignment force is improved.
  • the speed decreases, and the vertical alignment force decreases when the response speed after UV irradiation is improved.
  • the vertical alignment force decreases when the response speed after UV irradiation is improved.
  • the object of the present invention is to use a liquid crystal to which no polymerizable compound is added, and also in a liquid crystal display element of a method that improves the response speed after UV irradiation by treating in the same manner as the PSA method, without reducing the vertical alignment force,
  • a liquid crystal alignment agent capable of forming a liquid crystal alignment film capable of improving the response speed after UV irradiation, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film. is there.
  • R 1 Si (OR 2 ) 3 (1) R 1 represents the structure of the following formula (2), and R 2 represents an alkyl group having 1 to 5 carbon atoms.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a single bond.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), — O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring, or a carbon number having a steroid skeleton 12 to 25 divalent organic groups, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon Alkoxyl group prime 1-3, a fluorine-containing alkyl group having
  • Y 6 is hydrogen An atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • R 3 Si (OR 4 ) 3 (3) R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.
  • At least one of polysiloxane (A) and polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (4): [1] The liquid crystal aligning agent according to any one of [5].
  • (R 13 ) n Si (OR 14 ) 4-n (4) In the formula (4), R 13 is a hydrogen atom or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group, which has 1 to 10 carbon atoms.
  • a hydrocarbon group, R 14 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3.
  • the alkoxysilane represented by the formula (1) is contained in 2 to 20 mol% in the total alkoxysilane used in the polysiloxane (A), and the alkoxysilane represented by the formula (3)
  • the liquid crystal aligning agent according to any one of the above [1] to [7] is applied, and UV is irradiated in a state where a voltage is applied to a liquid crystal cell in which the liquid crystal is sandwiched between two baked substrates.
  • Liquid crystal display element [11] A liquid crystal display element in which the liquid crystal aligning agent according to any one of [1] to [7] is applied, the liquid crystal is sandwiched between two baked substrates, and UV is irradiated in a state where a voltage is applied. Production method.
  • a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film can be provided.
  • the polysiloxane (A) contained in the liquid crystal aligning agent of the present invention is obtained by polycondensation of an alkoxysilane represented by the formula (1) and an alkoxysilane containing the alkoxysilane represented by the formula (3).
  • Polysiloxane The production of siloxane from silane is specifically expressed as hydrolysis / polycondensation, but is simply described as polycondensation in this specification.
  • R 1 Si (OR 2 ) 3 (1)
  • R 1 (hereinafter also referred to as a specific organic group) of the alkoxysilane represented by the formula (1) represents the structure of the following formula (2), and R 2 has 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • R 2 has 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • R 3 is an alkyl group having 1 to 30 carbon atoms, preferably 3 to 10 carbon atoms, substituted with an acrylic group, acryloxy group, methacryl group, methacryloxy group or styryl group
  • R 4 is an alkyl group having 1 to 5 carbon atoms. Represents a group.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— It is preferable from the viewpoint of facilitating the synthesis of the chain structure. It is more preferable to select any one of a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is 1 to And each of R 17 and R 18 independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • — (CH 2 ) b — (b is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display element.
  • Y 3 is a single bond, — (CH 2 ) c — (where c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is selected. This is preferable from the viewpoint of facilitating the synthesis of the side chain structure. And selecting one of a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. Is more preferable.
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
  • the group may be substituted with any one of a group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 12 to 25 carbon atoms having any one of a benzene ring, a cyclohexane ring, and a steroid skeleton is preferable.
  • Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
  • the group may be substituted with any one of a group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • n is an integer of 0-4.
  • it is an integer of 0-2.
  • Y 6 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or fluorine having 1 to 18 carbon atoms. Any of the containing alkoxyl groups. Among them, it is any one of an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. Is preferred.
  • the liquid crystal aligning agent using polysiloxanes with such side chains and photoreactive groups can achieve both response speed characteristics and good vertical alignment, but it has a structure similar to the liquid crystal skeleton. It is presumed that the use of a side chain having a balance between response speed and vertical alignment, which are usually in a trade-off relationship.
  • R 2 of the alkoxysilane represented by the formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
  • Such an alkoxysilane represented by the formula (1) can be synthesized by a known synthesis method (for example, Japanese Patent Application Laid-Open No. Sho 61-286393). Although the specific example is given to the following, it is not limited to this.
  • R 5 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 6 represents An alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 7 represents a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— ( n represents an integer of 1 to 5), represents —OCH 2 — or CH 2 —
  • R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 9 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or O— represents R 10 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 12 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • B 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to B 3 ), and B 1 is an oxygen atom or —COO— * (where “*” ”Is a bond with (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • the alkoxysilane represented by the above formula (1) is a property such as solubility in a solvent when used as a siloxane polymer, orientation of liquid crystal when used as a liquid crystal alignment film, pretilt angle characteristics, voltage holding ratio, accumulated charge, and the like. Depending on the situation, one kind or a mixture of two or more kinds may be used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
  • the alkoxysilane represented by the formula (1) described above can be produced by a known method.
  • the alkoxysilane represented by the above formula (1) is preferably 1 mol% or more in order to obtain good liquid crystal alignment in all alkoxysilanes used for obtaining polysiloxane. More preferably, it is 1.5 mol% or more. More preferably, it is 2 mol% or more. Further, in order to obtain sufficient curing characteristics of the liquid crystal alignment film to be formed, 30 mol% or less is preferable. More preferably, it is 25 mol% or less.
  • R 3 (hereinafter also referred to as a second specific organic group) of the alkoxysilane represented by the formula (3) is an alkyl group substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group.
  • the number of hydrogen atoms to be substituted is one or more, preferably one.
  • the alkyl group has 1 to 30 carbon atoms, more preferably 3 to 10 carbon atoms, and even more preferably 5 to 10 carbon atoms.
  • R 4 of the alkoxysilane represented by the formula (3) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
  • alkoxysilane represented by Formula (3) is not limited to these.
  • the alkoxysilane represented by the formula (3) is preferably 5 mol% or more in order to obtain a good liquid crystal response speed in all alkoxysilanes used for obtaining the polysiloxane. More preferably, it is 10 mol% or more. More preferably, it is 20 mol% or more. Further, in order to increase the vertical alignment, 70% by weight or less is preferable. More preferably, it is 60 mol% or less.
  • the effects of the present invention are intended for the purpose of improving the adhesion with the substrate and the affinity with the liquid crystal molecules.
  • one or more alkoxysilanes represented by the following formula (4) may be used. Since the alkoxysilane represented by the formula (4) can impart various properties to the polysiloxane, one or more types can be selected and used according to the required properties.
  • R 13 is a hydrogen atom, or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group, which has 1 to 10 carbon atoms.
  • R 14 represents an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms, and n represents an integer of 0 to 3, preferably 0 to 2.
  • R 13 of the alkoxysilane represented by the formula (4) is a hydrogen atom or an organic group having 1 to 10 carbon atoms (hereinafter also referred to as a third organic group).
  • the third organic group include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings and heterocycles; unsaturated bonds; and heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms.
  • the organic group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group.
  • alkoxysilane represented by the formula (4) are given below, but are not limited thereto.
  • 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethy
  • the alkoxysilane in which n is 0 is tetraalkoxysilane.
  • Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily undergoes polycondensation with the alkoxysilane represented by the formulas (1) and (3).
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the alkoxysilane represented by the formula (1) is preferably contained in 2 to 20 mol%, particularly preferably 3 to 15 mol% in the total alkoxysilane used in the production of the polysiloxane (A).
  • the alkoxysilane represented by the formula (3) is preferably contained in an amount of 5 to 80 mol%, particularly preferably 10 to 70 mol% in the total alkoxysilane used for the production of the polysiloxane (A).
  • the polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane containing 50 mol% to 100 mol% of the alkoxysilane represented by the formula (5).
  • Si (OR 15 ) 4 (5) R 15 of the alkoxysilane represented by the formula (5) represents an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms.
  • the alkoxysilane represented by the formula (5) tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the polysiloxane (B) is an alkoxysilane represented by the formula (3) described in the production of the polysiloxane (A) described above, R 3 Si Polysiloxane obtained by polycondensation of alkoxysilane containing (OR 4 ) 3 may be used.
  • the description for the polysiloxane (A) described above is applied to the description of the alkoxysilane represented by the formula (3).
  • the polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane containing the alkoxysilane represented by the formula (6) in addition to the alkoxysilane represented by the formula (5). Also good.
  • R 16 of the alkoxysilane represented by the formula (6) is an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms.
  • R 17 of the alkoxysilane represented by the formula (6) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
  • alkoxysilane represented by Formula (6) is not limited to these.
  • methyltriethoxysilane, methyltrimethoxysilane, dimethyltrimethoxysilane, dimethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltriethoxysilane in addition to the alkoxysilane represented by the formula (5), a liquid crystal aligning agent containing a polysiloxane (B) obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the formula (6) Is desirable because of its high vertical alignment force.
  • the alkoxysilane to be used is preferably 10 mol% or more in all alkoxysilanes used for obtaining the polysiloxane. More preferably, it is 20 mol% or more. More preferably, it is 30 mol% or more. Moreover, in order to fully harden the liquid crystal aligning film formed, 75 mol% or less is preferable.
  • polysiloxane (B) for the production of polysiloxane (B), in addition to the alkoxysilanes represented by formula (3), formula (5), and formula (6), for the purpose of improving adhesion with the substrate and affinity with liquid crystal molecules, etc.
  • the alkoxysilane represented by the formula (4) and (R 13 ) n Si (OR 14 ) 4-n described in the production of the polysiloxane (A) described above are used as a kind.
  • a plurality of types can be used.
  • the description for the polysiloxane (A) described above is applied to the description of the alkoxysilane represented by the formula (4).
  • the alkoxysilane represented by the formula (4) can impart various properties to the polysiloxane, one or more types can be selected and used according to the required properties.
  • the weight ratio of (A) and (B) is The ratio is preferably 10:90 to 50:50, and particularly preferably 20:80 to 40:60.
  • the method for obtaining the polysiloxane used in the present invention is not particularly limited.
  • the polysiloxane (A) an alkoxysilane having the above-described formulas (1) and (3) as essential components
  • the above formula (5) is an essential component
  • polysiloxane is obtained as a solution obtained by polycondensation of such alkoxysilanes and uniformly dissolved in an organic solvent.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
  • the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 times mol of all alkoxy groups in alkoxysilane.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine
  • a metal salt such as hydrochloric acid, sulfuric acid or nitric acid
  • a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated. In that case, the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C.
  • it is a method of heating for several tens of minutes to several tens of hours under reflux so that evaporation or volatilization of the liquid does not occur.
  • you may mix as a mixture which mixed alkoxysilane beforehand, and may mix multiple types of alkoxysilane sequentially.
  • the solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt
  • Such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 , 5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol, and other glycols: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monobutyl
  • the polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less, more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
  • the polymerization solution obtained by the above method may be used as a polysiloxane solution as it is, or if necessary, the solution obtained by the above method may be concentrated or diluted by adding a solvent. Or may be substituted with another solvent to form a polysiloxane solution.
  • the solvent to be used hereinafter also referred to as additive solvent
  • the additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
  • Such an additive solvent include, in addition to the solvents mentioned as examples of the polymerization solvent described above, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, and ethyl lactate. Can be mentioned. These solvents can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, ink jetting or the like.
  • other components other than polysiloxane such as inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and surfactants are included as long as the effects of the present invention are not impaired. May be.
  • the inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution.
  • the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
  • the dispersion medium of the inorganic fine particles examples include water or an organic solvent.
  • the colloidal solution it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating solution for forming a film. More preferably, it is 2-7.
  • organic solvent used for the dispersion medium of the colloidal solution examples include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion
  • metalloxane oligomer and metalloxane polymer single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
  • the metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, nitrate, hydrochloride, or carboxylate by a conventional method such as hydrolysis.
  • metalloxane oligomers and metalloxane polymers include siloxane oligomers or siloxanes such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat.
  • examples thereof include titanoxane oligomers such as polymers and titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. You may use these individually or in mixture of 2 or more types.
  • a leveling agent, surfactant, etc. can use a well-known thing, and since a commercial item is easy to acquire especially, it is preferable.
  • the method of mixing the above-mentioned other components with polysiloxane may be simultaneous with or after polysiloxane, and is not particularly limited.
  • the liquid crystal aligning agent of the present invention is a solution containing the above-described polysiloxane and, if necessary, other components.
  • the solvent a solvent selected from the group consisting of the above-mentioned polysiloxane polymerization solvent and additive solvent is used.
  • the content of polysiloxane in the liquid crystal aligning agent is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass in terms of SiO 2 equivalent concentration. Be in the range of such terms of SiO 2 concentration, easy to obtain a desired film thickness by a single coating, easy pot life sufficient solution is obtained.
  • the method for preparing the liquid crystal aligning agent of the present invention is not particularly limited.
  • the polysiloxane used in the present invention may be in a state where other components added as necessary are uniformly mixed. Since polysiloxane is usually polycondensed in a solvent, it is convenient to use the polysiloxane solution as it is or to add other components to the polysiloxane solution as necessary. Furthermore, the most convenient method is to use the polysiloxane polymerization solution as it is. Moreover, when adjusting content of polysiloxane in a liquid crystal aligning agent, the solvent chosen from the group which consists of the polymerization solvent and addition solvent of the polysiloxane mentioned above can be used.
  • the liquid crystal aligning film of this invention is obtained using the liquid crystal aligning agent of this invention.
  • the cured film obtained by drying and baking can also be used as a liquid crystal aligning film as it is.
  • the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, processed with an ion beam, etc., or irradiated with UV in a state where a voltage is applied to the liquid crystal display element after filling the liquid crystal. It is also possible.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate is preferable.
  • Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, tri
  • a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
  • Examples of the method for applying the liquid crystal aligning agent include spin coating, printing, ink jet, spraying, roll coating, and the like.In terms of productivity, the transfer printing method is widely used industrially.
  • the present invention is also preferably used.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred.
  • the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film.
  • the firing temperature can be any temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., and further preferably 160 ° C. to 220 ° C. It is. Firing can be performed at an arbitrary time of 5 minutes to 240 minutes. The time is preferably 10 to 90 minutes, more preferably 20 to 80 minutes.
  • a generally known method such as a hot plate, a hot air circulation oven, an IR oven, a belt furnace, or the like can be used.
  • the polysiloxane in the liquid crystal alignment film undergoes polycondensation in the firing step.
  • firing is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as sealing agent curing.
  • the thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, since the reliability of the liquid crystal display element can be easily obtained.
  • the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is suitable.
  • the liquid crystal display element of the present invention can be obtained by forming a liquid crystal alignment film on a substrate by the above method and then preparing a liquid crystal cell by a known method.
  • a method is generally employed in which a pair of substrates on which a liquid crystal alignment film is formed are fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed.
  • the size of the spacer used is 1 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
  • the method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after the inside of the manufactured liquid crystal cell is decompressed, and a dropping method for sealing after dropping the liquid crystal.
  • the crosslinkable groups such as acryl and methacryl groups in the liquid crystal alignment film are polymerized and cross-linked in situ.
  • the applied voltage is 5 to 50 Vp-p, preferably 5 to 30 Vp-p.
  • the UV irradiation amount to be irradiated is 1 to 60 J, but is preferably 40 J or less. The smaller the UV irradiation amount, the lowering of reliability due to the destruction of the members constituting the liquid crystal display can be suppressed, and the UV irradiation time It is preferable because the manufacturing tact can be increased by reducing.
  • the substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a specific example is the same as the substrate described in [Liquid crystal alignment film].
  • Standard electrode patterns such as PVA and MVA and protrusion patterns can also be used. Similar to the PSA type liquid crystal display, it can be operated even in a structure in which a line / slit electrode pattern of 1 to 10 ⁇ m is formed on one side substrate and no slit pattern or protrusion pattern is formed on the opposite substrate.
  • the liquid crystal display can simplify the manufacturing process and provide high transmittance.
  • a high-performance element such as a TFT element
  • an element in which a transistor element is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal element it is common to use a substrate as described above.
  • a reflective liquid crystal display element a material such as aluminum that reflects light only on one substrate may be used. It is possible to use an opaque substrate such as a silicon wafer.
  • TEOS tetraethoxysilane
  • C18 octadecyltriethoxysilane
  • ACPS 3-acryloxypropyltrimethoxysilane
  • MPMS 3-methacryloxypropyltrimethoxysilane
  • M8MS 3-methacryloxyoctyltrimethoxysilane
  • MTES methyltriethoxysilane
  • HG 2 -Methyl-2,4-pentanediol (also known as hexylene glycol)
  • BCS 2-butoxyethanol
  • UPS 3-ureidopropyltriethoxysilane
  • Example 1 In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 21.5 g of HG, 7.2 g of BCS, 32.9 g of TEOS, 4.1 g of compound 8 obtained in Synthesis Example 1, and 5. 5 of MPMS A solution of alkoxysilane monomer was prepared by mixing 0 g. A solution prepared by previously mixing 10.7 g of HG, 3.6 g of BCS, 10.8 g of water and 0.4 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature. Stir for minutes.
  • the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass, 0.3 g of HG, and 0.1 g of BCS was added in advance.
  • the mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
  • the resulting polysiloxane solution 10.0 g, were mixed BCS20.0g, SiO 2 conversion concentration was obtained 4% by weight of the liquid crystal aligning agent [K1].
  • Example 2 > 20.8 g HG, 6.9 g BCS, 22.5 g TEOS, 3.5 g of compound 11 obtained in Synthesis Example 3 in a 200 mL four-necked reaction flask equipped with a thermometer, reflux tube, and A solution of alkoxysilane monomer was prepared by mixing 19.9 g of MPMS. A solution prepared by previously mixing 10.4 g of HG, 3.5 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature. Stir for minutes.
  • the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass, 0.3 g of HG and 0.1 g of BCS was added in advance.
  • the mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
  • the resulting polysiloxane solution 10.0 g were mixed BCS20.0G, give in terms of SiO 2 concentration of 4 wt% liquid crystal aligning agent intermediates of (S2).
  • a solution of alkoxysilane monomer was prepared by mixing 23.8 g of HG, 7.9 g of BCS, 37.1 g of TEOS, and 3.6 g of MTES in a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube.
  • a solution prepared by previously mixing 1.9 g of HG, 4.0 g of BCS, 10.8 g of water, and 0.4 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass, 0.3 g of HG and 0.1 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
  • the resulting polysiloxane solution 10.0 g were mixed BCS20.0G, give in terms of SiO 2 concentration of 4 wt% liquid crystal aligning agent intermediates of (U1).
  • the obtained liquid crystal aligning agent intermediate (S2) and liquid crystal aligning agent intermediate (U1) were mixed at a ratio of 2: 8 to obtain a liquid crystal aligning agent [K2] having a SiO 2 equivalent concentration of 4% by weight.
  • Example 3 In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 20.5 g of HG, 6.9 g of BCS, 22.5 g of TEOS, 4.1 g of Compound 11 obtained in Synthesis Example 3, and 19.9 g of MPMS were mixed. Thus, a solution of the alkoxysilane monomer was prepared. To this solution, a solution prepared by previously mixing 10.3 g of HG, 3.4 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes.
  • Example 4 In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, HG 19.1 g, BCS 6.3 g, TEOS 16.3 g, 8.2 g of compound 11 obtained in Synthesis Example 3, and 24.8 g of MPMS were mixed. Thus, a solution of the alkoxysilane monomer was prepared. A solution prepared by mixing 9.5 g of HG, 3.2 g of BCS, 10.8 g of water and 1.3 g of oxalic acid as a catalyst in advance over 30 minutes was added dropwise to this solution over 30 minutes, and further stirred at room temperature for 30 minutes.
  • Example 5 In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 17.9 g of HG, 6.0 g of BCS, 25.0 g of TEOS, 8.2 g of compound 11 obtained in Synthesis Example 3, and 19.8 M8MS. 1 g was mixed to prepare an alkoxysilane monomer solution. A solution prepared by mixing 9.0 g of HG, 3.0 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst in advance over 30 minutes was added dropwise to this solution over 30 minutes, and further stirred at room temperature for 30 minutes.
  • a solution of alkoxysilane monomer was prepared by mixing 23.8 g of HG, 7.9 g of BCS, 37.1 g of TEOS, and 3.6 g of MTES in a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube.
  • a solution prepared by previously mixing 1.9 g of HG, 4.0 g of BCS, 10.8 g of water, and 0.4 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass, 0.3 g of HG and 0.1 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
  • the resulting polysiloxane solution 10.0 g were mixed BCS20.0G, give in terms of SiO 2 concentration of 4 wt% liquid crystal aligning agent intermediates of (U2).
  • the obtained liquid crystal aligning agent intermediate (S5) and liquid crystal aligning agent intermediate (U2) were mixed at a ratio of 2: 8 to obtain a liquid crystal aligning agent [K5] having a SiO 2 equivalent concentration of 4% by weight.
  • Example 6 In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 19.4 g of HG, 6.5 g of BCS, 22.5 g of TEOS, 8.2 g of compound 11 obtained in Synthesis Example 3, and 14.9 g of MPMS , And 3.2 g of M8MS were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution in which 9.7 g of HG, 3.2 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst were mixed dropwise at room temperature over 30 minutes, and further stirred at room temperature for 30 minutes.
  • the mixture was heated using an oil bath and refluxed for 30 minutes, and a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass, 0.3 g of HG and 0.1 g of BCS was added in advance.
  • the mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
  • HG 22.6 g, BCS 7.5 g, TEOS 39.2 g, and 4.2 g of C18 were mixed to prepare a solution of an alkoxysilane monomer.
  • a solution prepared by previously mixing 11.3 g of HG, 3.7 g of BCS, 10.8 g of water and 0.2 g of oxalic acid as a catalyst was added dropwise at room temperature over 30 minutes, and further stirred at room temperature for 30 minutes.
  • Example 1 The liquid crystal aligning agent [K1] obtained in Example 1 was spin-coated on the ITO surface of the ITO electrode substrate on which the solid ITO electrode was formed. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 200 ° C. or 220 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. Two substrates were prepared, and 4 ⁇ m or 6 ⁇ m bead spacers were sprayed on the liquid crystal alignment film surface of one of the substrates, and a sealant was printed thereon. The other substrate was bonded with the liquid crystal alignment film surface inside, and then the sealing agent was cured to produce an empty cell.
  • a liquid crystal cell was prepared by injecting the liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection. Thereafter, the obtained liquid crystal cell was annealed in a circulation oven at 100 ° C. for 30 minutes. The extracted cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain, which was an alignment disorder of the liquid crystal, was observed. The results are shown in Table 1.
  • Example 2 The liquid crystal aligning agent [K2] obtained in Example 2 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ 300 microns and a line / space of 5 microns was formed. . After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 200 ° C. or 220 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. The liquid crystal aligning agent [K2] obtained in Synthesis Example 2 is spin-coated on the ITO surface on which no electrode pattern is formed, dried on an 80 ° C. hot plate for 2 minutes, and then 200 ° C.
  • a liquid crystal cell was prepared by injecting the liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection.
  • the response speed characteristics of these liquid crystal cells were captured with an oscilloscope using the oscilloscope for the change in luminance of the liquid crystal panel when an AC voltage of ⁇ 5 V and a rectangular wave with a frequency of 1 kHz were applied to the liquid crystal cell.
  • the luminance was 0%
  • a voltage of ⁇ 5 V was applied
  • the saturated luminance value was 100%
  • the time for the luminance to change from 10% to 90% was defined as the response speed of the rise. It measured by the method mentioned later.
  • 20 J of UV was irradiated from the outside of the liquid crystal cell in a state where a DC voltage of 20 V was applied to the liquid crystal cell.
  • Example 3 A liquid crystal cell was prepared in the same manner as in Cell Example 2, except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K3] obtained in Example 3, and the response speed was measured. A domain that is turbulent was observed. The results are shown in Table 2.
  • Example 4 A liquid crystal cell was prepared in the same manner as in Cell Example 2, except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K4] obtained in Example 4, and the response speed was measured. A domain that is turbulent was observed. The results are shown in Table 2.
  • Example 5 A liquid crystal cell was prepared in the same manner as in Cell Example 2, except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K5] obtained in Example 5, and the response speed was measured. A domain that is turbulent was observed. The results are shown in Table 2.
  • Example 6 A liquid crystal cell was prepared in the same manner as in Cell Example 2, except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K6] obtained in Example 6, the response speed was measured, and the alignment after annealing A domain that is turbulent was observed. The results are shown in Table 2.
  • the response speed after UV irradiation was high, and the domain observation result after annealing was also good.
  • the domain observation result after annealing was very good, but the response speed was slow.
  • the response speed was fast, but many domains were observed after annealing.
  • the response speed after UV irradiation was fast, and the domain observation result after annealing showed very good results.
  • the response speed after UV irradiation was fast, and the results of domain observation after annealing showed very good results.
  • the liquid crystal display element produced using the liquid crystal aligning agent of the present invention is a liquid crystal display element of a system that improves the response speed after UV irradiation by using a liquid crystal to which a polymerizable compound is not added and treating in the same manner as the PSA system.
  • a liquid crystal alignment agent capable of forming a liquid crystal alignment film capable of improving the response speed after UV irradiation without reducing the vertical alignment force, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and the liquid crystal alignment film The liquid crystal display element which has can be provided. Therefore, it is useful for a TFT liquid crystal display device, a TN liquid crystal display device, a VA liquid crystal display device and the like manufactured by the above method.

Abstract

 重合性化合物を添加しない液晶を用いて、PSA方式と同様に処理しUV照射後の応答速度を向上させる方式の液晶表示素子においても、垂直配向力を低下させずにUV照射後の応答速度を向上させ得る液晶配向膜を形成可能な液晶配向剤を提供する。 下記の式(1)で表されるアルコキシシラン及び下記の式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサン(A)を含有することを特徴とする液晶配向剤。 RSi(OR (1) (Rは下記式(2)の構造を表し、Rは炭素原子数1~5のアルキル基を表す。)(Yは単結合など、Yは単結合など、Yは単結合など、Yはベンゼン環、シクロへキシル環、または複素環から選ばれる2価の環状基など、Yはベンゼン環、シクロへキシル環および複素環よりなる群から選ばれる2価の環状基など、nは0~4の整数、Yは水素原子などを表す。) RSi(OR (3) (Rは、アクリル基などで置換された炭素数1~30のアルキル基、Rは炭素数1~5のアルキル基を表す。)

Description

ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、アルコキシシランを重縮合して得られるポリシロキサンを含有する液晶配向剤、及び前記液晶配向剤から得られる液晶配向膜、並びにその液晶配向膜を有する液晶表示素子に関する。
 近年、液晶表示素子の表示方式の中でも、垂直(VA)方式の液晶表示素子は、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部)など、広く利用されている。VA方式には、液晶の倒れる方向を制御するための突起をTFT基板やカラーフィルタ基板に形成するMVA方式(Multi Vertical Alignment)や、基板のITO電極にスリットを形成し電界によって液晶の倒れる方向を制御するPVA(Patterned Vertical Alignment)方式が知られている。別の配向方式として、PSA(Polymer sustained Alignment)方式がある。VA方式の中でも、PSA方式は近年注目されている技術である。
 この方式は、液晶中に光重合性化合物を添加し、液晶パネル作製後に、電界を印加し液晶が倒れた状態で紫外線(UV)を液晶パネルに照射する。その結果、重合性化合物が光重合することで液晶の配向方向が固定化され、プレチルトが生じ、応答速度が向上する。液晶パネルを構成する片側の電極にスリットを作製し、対向側の電極パターンにはMVAのような突起やPVAのようなスリットを設けていない構造でも動作可能であり、製造の簡略化や優れたパネル透過率が得られることを特徴としている。(特許文献1参照。)
 しかし、この方式の液晶表示素子においては、液晶に添加する重合性化合物の溶解性が低く、その添加量を増やすと低温時に析出するという問題がある。その一方で、重合性化合物の添加量を減らすと良好な配向状態、応答速度が得られなくなる。また、液晶中に残留する未反応の重合性化合物は液晶中の不純物となり、液晶表示素子の信頼性を低下させるという問題もある。
 そこで、ポリマー分子中に光反応性の側鎖を導入したポリマーを用いた液晶配向剤を基板に塗布し、焼成して得られた液晶配向膜に接触させた液晶層を設け、この液晶層に電圧を印加しながらUVを照射して液晶表示素子を作製することにより、液晶中に重合性化合物を添加せずとも、応答速度の速い液晶表示素子を得ることが出来る技術が提案されている(特許文献2参照)。
 一方、従来から用いられているポリイミド等の有機系の液晶配向膜材料と共に、無機系の液晶配向膜材料も知られている。例えば、塗布型の無機系配向膜の材料として、テトラアルコキシシランと、トリアルコキシシランと、アルコール及び蓚酸との反応生成物を含有する配向剤組成物が提案され、液晶表示素子の電極基板上で垂直配向性、耐熱性及び均一性に優れる液晶配向膜を形成することが報告されている。(特許文献3参照。)また、テトラアルコキシシラン、特定のトリアルコキシシラン及び水との反応生成物と特定のグリコールエーテル系溶媒を含有する液晶配向剤組成物が提案され、表示不良を防止し、長時間駆動後も残像特性の良好な、液晶を配向させる能力を低下させることなく、且つ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成することが報告されている(特許文献4参照。)。
特開2004-302061号公報 特開2011-95967号公報 特開平09-281502号公報 特開2005-250244号公報
 垂直配向をするVA方式(モード)においては、垂直配向をさせるための強い垂直配向力が必要であるが、重合性化合物を用いないこの方式では、垂直配向力を向上させるとUV照射後の応答速度は遅くなり、UV照射後の応答速度を向上させると、垂直配向力が低下する。垂直配向力とUV照射後の応答速度向上はトレードオフの関係にある。
 本発明の課題は、重合性化合物を添加しない液晶を用いて、PSA方式と同様に処理しUV照射後の応答速度を向上させる方式の液晶表示素子においても、垂直配向力を低下させることなく、UV照射後の応答速度を向上させることが可能な液晶配向膜を形成可能な液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することである。
 本発明は、以下を要旨とすることを特徴とする。
〔1〕下記の式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを含有するアルコキシシランとを重縮合して得られるポリシロキサン(A)を含有する液晶配向剤。
     RSi(OR     (1)
(Rは、下記式(2)の構造を表し、Rは炭素原子数1~5のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000002
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。Yは単結合、二重結合を含有する炭素数3~8の直鎖状又は分岐状の炭化水素基、または-(CR17R18-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。Yはベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基、または、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、及びフッ素原子から選ばれる基で置換されていてもよい。Yはベンゼン環、シクロへキシル環および複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。nは0~4の整数である。Yは、水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基である。)
     RSi(OR     (3)
(Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基であり、Rは炭素数1~5のアルキル基である。)
〔2〕前記式(3)において、Rが、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基若しくはスチリル基で置換された炭素数3~10のアルキル基である上記〔1〕に記載の液晶配向剤。
〔3〕さらに、式(5)で表されるアルコキシシランを50%~100%含有するアルコキシシランを重縮合して得られるポリシロキサン(B)を含有する上記〔1〕又は〔2〕に記載の液晶配向剤。
     Si(OR15     (5)
(R15は炭素数1~5のアルキル基を表す。)
〔4〕ポリシロキサン(B)が、さらに、式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである上記〔3〕に記載の液晶配向剤。
〔5〕ポリシロキサン(B)が、さらに、式(6)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである上記〔3〕又は〔4〕に記載の液晶配向剤。
     R16Si(OR17     (6)
(R16は、炭素数1~5のアルキル基、R17は炭素数1~5のアルキル基を表す。)
〔6〕ポリシロキサン(A)及びポリシロキサン(B)の少なくとも一つが、さらに、下記式(4)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである上記〔1〕~〔5〕のいずれかに記載の液晶配向剤。
     (R13Si(OR144-n     (4)
(式(4)中、R13は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基であり、R14は炭素原子数1~5のアルキル基であり、nは0~3の整数を表す。)
〔7〕前記式(1)で表されるアルコキシシランが、ポリシロキサン(A)に用いられる全アルコキシシラン中、2~20モル%含まれ、かつ前記式(3)で表されるアルコキシシランが、ポリシロキサン(A)に用いられる全アルコキシシラン中、5~80モル%含まれる上記〔1〕~〔6〕のいずれかに記載の液晶配向剤。
〔8〕上記〔1〕~〔7〕のいずれかに記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。
〔9〕上記〔8〕に記載の液晶配向膜を有する液晶表示素子。
〔10〕上記〔1〕~〔7〕のいずれかに記載の液晶配向剤を塗布し、焼成された2枚の基板で液晶が挟持された液晶セルに、電圧を印加した状態でUVを照射した液晶表示素子。
〔11〕上記〔1〕~〔7〕のいずれかに記載の液晶配向剤を塗布し、焼成した2枚の基板で液晶を挟持し、電圧を印加した状態でUVを照射する液晶表示素子の製造方法。
 本発明によれば、重合性化合物を添加しない液晶を用いてPSA方式と同様にUVを照射することで、垂直配向力を低下させることなく、UV照射後の応答速度を向上することが可能な液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することができる。
<ポリシロキサン(A)>
 本発明の液晶配向剤に含有されるポリシロキサン(A)は、式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを含有するアルコキシシランとを重縮合して得られるポリシロキサンである。なお、シランからのシロキサンの製造は、詳しくは、加水分解・重縮合と表現されるが、本明細書では、単に重縮合と記載する。
     RSi(OR     (1)
 式(1)で表されるアルコキシシランのR(以下、特定有機基ともいう)は、下記式(2)の構造を表し、Rは炭素原子数1~5、好ましくは1~3のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000003
     RSi(OR     (3)
 Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基若しくはスチリル基で置換された、炭素数1~30、好ましくは3~10のアルキル基であり、Rは炭素数1~5  のアルキル基を表す。
 式(2)中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-のうちのいずれかである。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-のうちのいずれかを選択することは、側鎖構造の合成を容易にする観点から好ましい。そして、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-のうちのいずれかを選択することがより好ましい。
 式(2)中、Yは単結合、二重結合を含有する炭素数3~8の直鎖状又は分岐状の炭化水素基、または-(CR17R18-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。なかでも、液晶表示素子の応答速度をより顕著に改善させる観点からは、-(CH-(bは1~10の整数である)が好ましい。
 式(2)中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-のうちのいずれかである。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-のうちのいずれかを選択することは、側鎖構造の合成を容易にする観点から好ましい。そして、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-または-OCO-のうちのいずれかを選択することがより好ましい。
 式(2)中、Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子のうちのいずれかにより置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基としてもよい。なかでも、ベンゼン環、シクロへキサン環またはステロイド骨格のうちのいずれかを有する炭素数12~25の有機基が好ましい。
 式(2)中、Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子のうちのいずれかで置換されていてもよい。
 式(2)中、nは0~4の整数である。好ましくは、0~2の整数である。
 式(2)中、Yは、水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基のうちのいずれかである。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基のうちのいずれかであることが好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基のうちのいずれかである。さらに好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基のうちのいずれかである。
 このような側鎖と光反応性基を導入したポリシロキサンを用いた液晶配向剤が、なぜ応答速度特性と良好な垂直配向性を両立出来るのかについては定かではないが、液晶骨格と類似した構造を有する側鎖を用いることで、通常はトレードオフの関係にある応答速度と垂直配向性を両立しているものと推察される。
 式(2)におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせは、以下の表1~表42において、(2-1)~(2-629)として示すとおりである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 式(1)で表されるアルコキシシランのRは、炭素原子数1~5、好ましくは1~3のアルキル基である。より好ましくは、Rがメチル基又はエチル基である。
 このような式(1)で表されるアルコキシシランは、公知の合成方法(例えば、特開昭61-286393号公報)によって合成することが出来る。以下にその具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
(式[1-19]~式[1-21]中、Rは-O-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000052
(式[1-22]~式[1-24]中、Rは単結合、-COO-、-OCO-、-COOCH-、-CHOCO-、-(CHO-(nは1~5の整数)、-OCH-またはCH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000053
(式[1-25]および式[1-26]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-またはO-を示し、R10はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である。)
Figure JPOXMLDOC01-appb-C000054
(式[1-27]および式[1-28]中、R11は炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000055
(式[1-29]および式[1-30]中、R12は、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000056
(式[1-31]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Bは1,4-シクロへキシレン基または1,4-フェニレン基であり、Bは酸素原子または-COO-*(但し、「*」を付した結合手がBと結合する。)であり、Bは酸素原子または-COO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。また、aは0または1の整数であり、aは2~10の整数であり、aは0または1の整数である。)
 上述した式(1)で表わされるアルコキシシランは、シロキサンポリマーとした際の溶媒への溶解性、液晶配向膜とした場合における液晶の配向性、プレチルト角特性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。また、炭素数10~18の長鎖アルキル基を含有するアルコキシシランとの併用も可能である。
 上述した式(1)で表されるアルコキシシランは、公知の方法で製造することが可能である。
 上述した式(1)で表されるアルコキシシランは、ポリシロキサンを得るために用いる全アルコキシシラン中において、良好な液晶配向性を得るため、1モル%以上が好ましい。より好ましくは1.5モル%以上である。更に好ましくは2モル%以上である。また、形成される液晶配向膜の充分な硬化特性を得るためには、30モル%以下が好ましい。より好ましくは25モル%以下である。
 式(3)で表されるアルコキシシランのR(以下、第二の特定有機基ともいう)は、アクリル基、アクリロキシ基、メタクリル基若しくはメタクリロキシ基又はスチリル基で置換されたアルキル基である。置換される水素原子は1つ以上であり、好ましくは1つである。該アルキル基の炭素数は1~30であり、より好ましくは3~10であり、よりより好ましくは5~10である。
 式(3)で表されるアルコキシシランのRは、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1又は2である
 式(3)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、3-メタクリロキシへキシルトリメトキシシラン、3-メタクリロキシへキシルトリエトキシシラン、3-アクリロキシへキシルトリメトキシシラン、3-アクリロキシへキシルトリエトキシシラン、3-メタクリロキシオクチルトリメトキシシラン、3-メタクリロキシオクチルトリエトキシシラン、3-アクリロキシオクチルトリメトキシシラン、3-アクリロキシオクチルトリエトキシシラン、である。
 式(3)で表されるアルコキシシランは、ポリシロキサンを得るために用いる全アルコキシシラン中において、良好な液晶応答速度を得るため、5モル%以上が好ましい。より好ましくは10モル%以上である。更に好ましくは20モル%以上である。また、垂直配向性を高くするために、70ル%以下が好ましい。より好ましくは60モル%以下である。
 ポリシロキサン(A)の製造には、式(1)及び式(3)で表されるアルコキシシラン以外に、基板との密着性、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、下記式(4)で表されるアルコキシシランを一種又は複数種使用することもできる。式(4)で表されるアルコキシシランは、ポリシロキサンに種々の特性を付与させることが可能であるため、必要特性に応じて一種又は複数種を選択して用いることができる。
     (R13Si(OR144-n     (4)
(式(4)中、R13は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基である。R14は炭素原子数1~5、好ましくは1~3のアルキル基であり、nは0~3、好ましくは0~2の整数を表す。)
 式(4)で表されるアルコキシシランのR13は水素原子又は炭素原子数が1~10の有機基(以下、第三の有機基ともいう)である。第三の有機基の例としては、脂肪族炭化水素;脂肪族環、芳香族環及びヘテロ環のような環構造;不飽和結合;及び酸素原子、窒素原子、硫黄原子等のヘテロ原子等を含んでいてもよく、分岐構造を有していてもよい、炭素原子数が1~6の有機基である。加えて、この有機基はハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、又はウレイド基などで置換されていてもよい。
 このような式(4)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。例えば、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシラン等が挙げられる。
 式(4)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(1)及び(3)で表されるアルコキシシランと重縮合し易いので、本発明のポリシロキサンを得るために好ましい。
 このような式(4)においてnが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。
 本発明では、式(1)で表されるアルコキシシランが、ポリシロキサン(A)の製造に使用される全アルコキシシラン中、好ましくは2~20モル%、特に好ましくは3~15モル%含まれ、かつ式(3)で表されるアルコキシシランが、ポリシロキサン(A)の製造に使用される全アルコキシシラン中、5~80モル%、特に好ましくは10~70モル%含まれるのが好ましい。
<ポリシロキサン(B)>
 ポリシロキサン(B)は、式(5)で表されるアルコキシシランを50モル%~100モル%含有するアルコキシシランを重縮合して得られるポリシロキサンである。
     Si(OR15     (5)
 式(5)で表されるアルコキシシランのR15は、炭素数1~5、好ましくは1~3のアルキル基を表す。
 このような式(5)で表されるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。
 ポリシロキサン(B)は、式(5)で表されるアルコキシシランの他に、さらに、上述したポリシロキサン(A)の製造において記載した、式(3)で表されるアルコキシシラン、 RSi(ORを含有するアルコキシシランを重縮合して得られるポリシロキサンであっても良い。式(3)で表されるアルコキシシランについての説明は、上述したポリシロキサン(A)における説明が適用される。
 ポリシロキサン(B)は、式(5)で表されるアルコキシシランの他に、さらに、式(6)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンであっても良い。
     R16Si(OR17     (6)
 式(6)で表されるアルコキシシランのR16は、炭素数1~5のアルキル基である。アルキル基の炭素原子数は1~4が好ましく、より好ましくは1~3である。
 式(6)で表されるアルコキシシランのR17は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1又は2である。
 式(6)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、メチルトリエトキシシラン、メチルトリメトキシシラン、ジメチルトリメトキシシラン、ジメチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシランである。
 特に、式(5)で表されるアルコキシシランの他に、さらに式(6)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサン(B)を含有する液晶配向剤は、垂直配向力が高く、望ましい。
 重合性化合物を添加していない液晶を用いて、電圧を印加しながらUV照射することにより液晶表示素子の応答速度を向上するためには、第二の特定有機基を有する式(3)で表されるアルコキシシランは、ポリシロキサンを得るために用いる全アルコキシシラン中において、10モル%以上が好ましい。より好ましくは20モル%以上である。更に好ましくは30モル%以上である。また、形成される液晶配向膜を充分に硬化させるためには、75モル%以下が好ましい。
 ポリシロキサン(B)の製造には、式(3)、式(5)、式(6)で表されるアルコキシシラン以外に、基板との密着性、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、上述したポリシロキサン(A)の製造において記載した、式(4)で表されるアルコキシシラン、(R13Si(OR144-nを一種又は複数種使用することも出来る。式(4)で表されるアルコキシシランについての説明は、上述したポリシロキサン(A)における説明が適用される。
 式(4)で表されるアルコキシシランは、ポリシロキサンに種々の特性を付与させることが可能であるため、必要特性に応じて一種又は複数種を選択して用いることができる。
 ポリシロキサン(A)及びポリシロキサン(B)を混合した液晶配向剤を製造する場合、ポリシロキサン(A)とポリシロキサン(B)の混合割合については、(A)と(B)の重量比が好ましくは10:90~50: 50であり、特に、20:80~40:60であることが好ましい。
<ポリシロキサンの製造方法>
 本発明に用いるポリシロキサンを得る方法は特に限定されない。ポリシロキサン(A)においては、上記した式(1)及び式(3)を必須成分とするアルコキシシランを、また、ポリシロキサン(B)においては、上記した式(5)を必須成分とし、好ましくは式(3)及び式(6)を任意成分とするアルコキシシランを、有機溶媒中で縮合させて得られる。通常、ポリシロキサンは、このようなアルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。
 ポリシロキサンを重縮合する方法として、例えば、アルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
 本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5~2.5倍モルであるのが好ましい。
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌したり、還流下で1時間加熱・撹拌するなどの方法が挙げられる。
 また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分から十数時間加熱する方法である。
 ポリシロキサンを得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。
 アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。
 このような重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオール、1,6-ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m-クレゾール等が挙げられる。
 本発明においては、上記の重合溶媒を複数種混合して用いてもよい。
 上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度と称す。)を好ましくは20質量%以下、さらには5~15質量%とすることがより好ましい。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。
<ポリシロキサンの溶液>
 本発明においては、上記の方法で得られた重合溶液をそのままポリシロキサンの溶液としてもよいし、必要に応じて、上記の方法で得られた溶液を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換して、ポリシロキサンの溶液としてもよい。
 その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサンが均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。
 このような添加溶媒の具体例としては、上記した重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸メチル、酢酸エチル、乳酸エチル等のエステル類が挙げられる。
 これらの溶媒は、液晶配向剤の粘度の調整、又はスピンコート、フレキソ印刷、インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できる。
<その他の成分>
 本発明においては、本発明の効果を損なわない限りにおいて、ポリシロキサン以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、更に界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、又はフッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態であるものが好ましい。このコロイド溶液は、無機微粒子を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状及びその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。
 無機微粒子の分散媒としては、水若しくは有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましい。より好ましくは2~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類又はケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。
 メタロキサンオリゴマー、メタロキサンポリマーとしては、ケイ素、チタン、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、メタロキサンポリマーとしては、市販品であっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水分解等の常法により得られたものであってもよい。
 市販品のメタロキサンオリゴマー、メタロキサンポリマーの具体例としては、コルコート社製の、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48、EMS-485、SS-101等のシロキサンオリゴマー又はシロキサンポリマー、関東化学社製のチタニウム-n-ブトキシドテトラマー等のチタノキサンオリゴマーが挙げられる。これらは単独又は2種以上混合して使用してもよい。
 また、レベリング剤及び界面活性剤等は、公知のものを用いることができ、特に市販品は入手が容易なので好ましい。
 また、ポリシロキサンに、上記したその他の成分を混合する方法は、ポリシロキサンと同時でも、後であってもよく、特に限定されない。
<液晶配向剤>
 本発明の液晶配向剤は上述したポリシロキサン、必要に応じてその他の成分を含有する溶液である。その際、溶媒としては、上述したポリシロキサンの重合溶媒および添加溶媒からなる群から選ばれる溶媒が用いられる。液晶配向剤におけるポリシロキサンの含有量は、SiO換算濃度が好ましくは0.5~15質量%、より好ましくは1~6質量%である。このようなSiO換算濃度の範囲であれば、一回の塗布で所望の膜厚を得やすく、充分な溶液のポットライフが得られ易い。
 本発明の液晶配向剤を調製する方法は特に限定されない。本発明に用いるポリシロキサン、必要に応じて加えられるその他の成分が均一に混合した状態であればよい。通常、ポリシロキサンは、溶媒中で重縮合されるので、ポリシロキサンの溶液をそのまま用いるか、ポリシロキサンの溶液に必要に応じてその他の成分を添加することが簡便である。更に、ポリシロキサンの重合溶液をそのまま用いる方法が最も簡便である。
 また、液晶配向剤中におけるポリシロキサンの含有量を調整する際には、上述したポリシロキサンの重合溶媒及び添加溶媒からなる群から選ばれる溶媒を用いることができる。
<液晶配向膜>
 本発明の液晶配向膜は、本発明の液晶配向剤を用いて得られる。例えば、本発明の液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。
 液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
 液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、100℃~350℃の任意の温度で行うことができるが、好ましくは140℃~300℃であり、より好ましくは150℃~230℃、更に好ましくは160℃~220℃である。焼成時間は5分~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~80分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IRオーブン、ベルト炉などを用いることができる。
 液晶配向膜中のポリシロキサンは、焼成工程において、重縮合が進行する。しかし、本発明においては、本発明の効果を損なわない限り、完全に重縮合させる必要はない。但し、液晶セルの製造行程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 この硬化膜の厚みは、必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
<液晶表示素子>
 本発明の液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製して得ることができる。液晶セル作製の一例を挙げると、液晶配向膜が形成された1対の基板を、スペーサーを挟んで、シール剤で固定し、液晶を注入して封止する方法が一般的である。その際、用いるスペーサーの大きさは1~30μmであるが、好ましくは2~10μmである。
 液晶を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法などを挙げることができる。
 液晶が導入された液晶セルの、両側基板の電極間に電圧を印加した状態でUV照射することにより、液晶配向膜中のアクリル基やメタクリル基などの架橋性基がその場で重合し架橋されることで、液晶ディスプレイの応答速度が速くなる。ここで、印加する電圧は5~50Vp-pであるが、好ましくは、5~30Vp-pである。照射するUV照射量は、1~60Jであるが、好ましくは、40J以下であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが上がるので好適である。
 液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例は[液晶配向膜]で記載した基板と同様である。標準的なPVAやMVAといった電極パターンや突起パターンでも使用できる。PSA方式の液晶ディスプレイと同様に、片側基板に1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶ディスプレイによって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタ素子が形成されたものが用いられる。
 透過型の液晶素子の場合は、上記のような基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみに光を反射するアルミニウムのような材料を用いることも可能であり、シリコンウエハー等の不透明な基板も用いることが可能である。
 以下本発明の実施例によりさらに具体的に説明するが、本発明は、これらに限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000057
<化合物8の合成例1>
 マグネチックスターラーを備えた500ml四口フラスコに、金属マグネシウムを1.71g仕込み、容器内を窒素置換し密閉した。THF(脱水)2mlを加えた後、強攪拌させた状態で、20.68gの化合物7をTHF(脱水)155mlに溶かした溶液を1時間かけて滴下した。その後、55℃に昇温し、2時間攪拌させ、金属マグネシウムが消失していることを確認した。次に、氷冷下(内温4℃)、テトラメトキシシランを30.53g一括で加えた後、加熱還流し、3時間攪拌した。反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液を210ml加え、生成した不溶物を減圧濾過にて除去した。さらに、260mlのn-ヘキサンで濾物を洗浄した。ろ液の水相部分を除去し、有機相を純水 200mlで洗浄した。有機相を濃縮乾燥し、粗物 21.65gを得た。これを減圧蒸留し、外温220~230℃/圧力0.8torrの条件で留出させ、化合物8を5.74g得た(収率25%)。
1H-NMR(400MHz) in CDCl3:0.90ppm(t, J = 7.2 Hz, 3H), 1.00-1.09ppm(m, 2H), 1.20-1.34ppm(m, 9H), 1.40-1.52ppm(m, 2H), 1.83-1.91ppm(m, 4H), 2.41-2.51ppm(m, 1H), 3.62ppm(s, 9H), 7.23ppm(d, J = 8.2 Hz, 2H), 7.56ppm(d, J = 8.2 Hz, 2H)
Figure JPOXMLDOC01-appb-C000058
<化合物10の合成例2>
 マグネチックスターラーを備えた500ml四口フラスコに、化合物9を30.00g、炭酸カリウムを25.24g、DMFを120gを仕込み、室温下、臭化アリルを22.10g滴下した。その後、50℃にて11時間攪拌した。反応液を500gの酢酸エチルで希釈し、有機相を200gの純水で3回洗浄した。有機相を硫酸ナトリウムで乾燥させ、これを濾過した後、濾液を濃縮乾燥し、化合物10を34.80g得た(収率100%)。
1H-NMR(400MHz) in CDCl3: 0.90ppm(t, J = 7.2 Hz, 3H), 0.99-1.09ppm(m, 2H), 1.18-1.46ppm(m, 11H), 1.84-1.89ppm(m, 4H), 2.37-2.44ppm(m, 1H), 4.51ppm(dt, J = 5.4 Hz, 1.6 Hz, 2H), 5.26ppm(dq, J = 10.6 Hz, 1.6 Hz, 1H), 5.40ppm(dq, J = 17.2 Hz, 1.6 Hz, 1H), 6.07ppm(ddd, J = 17.2 Hz, 10.6 Hz, 5.4 Hz, 1H), 6.83ppm(dd, J = 8.8 Hz, 2.9 Hz, 2H), 7.10ppm(dd, J = 8.8 Hz, 2.9 Hz, 2H)
<化合物11の合成例3>
 マグネチックスターラーを備えた300ml四口フラスコに、化合物10を20.00g、トルエンを120g仕込み、室温にて攪拌した。次に、karstedt触媒(白金(0)-1,1,3,3-テトラメチルジシロキサン錯体 0.1mol/L キシレン溶液)700μlを添加した後、トリメトキシシランを12.4ml滴下した。室温にて29時間攪拌後、反応液を濃縮乾燥し、粗物を得た。これを減圧蒸留し、外温245℃/圧力0.8torrの条件で留出させ、化合物11を12.15g得た(収率43%)。
1H-NMR(400MHz) in CDCl3: 0.76-0.82ppm(m, 2H), 0.89ppm(t, J = 7.2 Hz, 3H), 0.98-1.08ppm(m, 2H), 1.18-1.45ppm(m, 11H), 1.84-1.93ppm(m, 6H), 2.36-2.43ppm(m, 1H), 3.58ppm(s, 9H), 3.91ppm(t, J = 6.8 Hz, 2H), 6.81ppm(d, J = 8.8 Hz, 2H), 7.08ppm(d, J = 8.8 Hz, 2H)
 本実施例で用いた化合物における略語は以下のとおりである。
TEOS:テトラエトキシシラン
C18:オクタデシルトリエトキシシラン
ACPS:3-アクリロキシプロピルトリメトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
M8MS:3-メタクリロキシオクチルトリメトキシシラン
MTES:メチルトリエトキシシラン
HG:2-メチル-2,4-ペンタンジオール(別名:ヘキシレングリコール)
BCS:2-ブトキシエタノール
UPS:3-ウレイドプロピルトリエトキシシラン
<実施例1>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHGを21.5g、BCS7.2g、TEOS32.9g、合成例1で得られた化合物8を4.1g、及びMPMSを5.0g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予め10.7gのHG、3.6gのBCS、10.8gの水及び触媒として0.4gの蓚酸を混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、0.3gのHG及び0.1gのBCSの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤[K1]を得た。
<実施例2>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中で20.8gのHG、6.9gのBCS、22.5gのTEOS、合成例3で得られた化合物11を3.5g、及びMPMSを19.9g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予め10.4gのHG、3.5gのBCS、10.8gの水及び触媒として1.1gの蓚酸を混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(S2)を得た。
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG23.8g、BCS7.9g、TEOS37.1g、及びMTES3.6g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.9g、BCS4.0g、水10.8g及び触媒として蓚酸0.4gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(U1)を得た。
 得られた液晶配向剤中間体(S2)と液晶配向剤中間体(U1)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[K2]を得た。
<実施例3>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG20.5g、BCS6.9g、TEOS22.5g、合成例3で得られた化合物11を4.1g、及びMPMSを19.9g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG10.3g、BCS3.4g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(S3)を得た。
 得られた液晶配向剤中間体(S3)と実施例2で得られた液晶配向剤中間体(U1)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[K3]を得た。
<実施例4>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG19.1g、BCS6.3g、TEOS16.3g、合成例3で得られた化合物11を8.2g、及びMPMSを24.8g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG9.5g、BCS3.2g、水10.8g及び触媒として蓚酸1.3gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(S4)を得た。
 得られた液晶配向剤中間体(S4)と実施例2で得られた液晶配向剤中間体(U1)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[K4]を得た。
<実施例5>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHGを17.9g、BCS6.0g、TEOS25.0g、合成例3で得られた化合物11を8.2g、及びM8MSを19.1g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG9.0g、BCS3.0g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して60分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤[S5]を得た。
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHGを23.8g、BCS7.9g、TEOS37.1g、及びMTES3.6g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.9g、BCS4.0g、水10.8g及び触媒として蓚酸0.4gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(U2)を得た。
 得られた液晶配向剤中間体(S5)と液晶配向剤中間体(U2)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[K5]を得た。
<実施例6>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHGを19.4g、BCS6.5g、TEOS22.5g、合成例3で得られた化合物11を8.2g、MPMSを14.9g、及びM8MSを3.2g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG9.7g、BCS3.2g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(S6)を得た。
 得られた液晶配向剤中間体(S6)と実施例5で得られた液晶配向剤中間体(U2)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[K6]を得た。
<比較例1>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG22.1g、BCS7.3g、TEOS35.0g、C18を4.2g、及びMPMSを5.0g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.0g、BCS3.7g、水10.8g及び触媒として蓚酸0.4gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤[L1]を得た。
<比較例2>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG22.6g、BCS7.5g、TEOS39.2g、C18を4.2g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.3g、BCS3.7g、水10.8g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(S5)を得た。
 得られた液晶配向剤中間体(S5)と合成例2で得られた液晶配向剤中間体(U1)を、2:8の比率で混合し、SiO換算濃度が4重量%の液晶配向剤[L2]を得た。
<比較例3>
 温度計、還流管を備え付けた200mLの四つ口反応フラスコ中でHG20.5g、BCS6.8g、TEOS22.5g、C18を4.2g、及びMPMSを19.9g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG10.3g、BCS3.4g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.6g、HG0.3g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g、BCS20.0gを混合し、SiO換算濃度が4重量%の液晶配向剤中間体(L3)を得た。
<セル実施例1>
 実施例1で得られた液晶配向剤[K1]を、ベタITO電極が形成されているITO電極基板のITO面にスピンコートした。80℃のホットプレートで2分間乾燥した後、200℃もしくは220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この基板を2枚用意し、一方の基板の液晶配向膜面上に4μmもしくは6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。他方の基板を液晶配向膜面を内側にし、張り合わせた後、シール剤を硬化させて空セルを作製した。液晶MLC-6608(メルク社製商品名)を、空セルに減圧注入法によって、前記液晶を注入した液晶セルを作製した。
 その後、得られた液晶セルを100℃の循環式オーブンで30分のアニールを行った。取り出したセルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメインの状態を観察した。その結果を表1示した。
<セル実施例2>
 実施例2で得られた液晶配向剤[K2]を、画素サイズが100×300ミクロンで、ライン/スペースがそれぞれ5ミクロンのITO電極パターンが形成されているITO電極基板のITO面にスピンコートした。80℃のホットプレートで2分間乾燥した後、200℃もしくは220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。合成例2で得られた液晶配向剤[K2]を、電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで2分間乾燥した後、上記基板同様に200℃もしくは220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。これらの2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。他方の基板を液晶配向膜面を内側にし、張り合わせた後、シール剤を硬化させて空セルを作製した。液晶MLC-6608(メルク社製商品名)を、空セルに減圧注入法によって、前記液晶を注入した液晶セルを作製した。
 これら液晶セルの応答速度特性を、液晶セルに、±5VのAC電圧、周波数1kHzの矩形波を印加した際の、液晶パネルの輝度の時間変化をオシロスコープにて取り込んだ。電圧を印加していない時の輝度を0%、±5Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%~90%まで変化する時間を立ち上がりの応答速度とした。
 後述する方法により測定した。
 その後、この液晶セルに20VのDC電圧を印加した状態で、この液晶セルの外側からUVを20J照射した。その後、再び応答速度特性を測定し、UV照射前後での応答速度を比較した。その結果を表2に示した。
 その後、得られた液晶セルを100℃の循環式オーブンで30分のアニールを行った。取り出したセルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメインの状態を観察した。その結果も表2に合わせて示した。
<セル実施例3>
 液晶配向剤[K2]を実施例3で得られた液晶配向剤[K3]に変更した以外は、セル実施例2と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
<セル実施例4>
 液晶配向剤[K2]を実施例4で得られた液晶配向剤[K4]に変更した以外は、セル実施例2と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
<セル実施例5>
 液晶配向剤[K2]を実施例5で得られた液晶配向剤[K5]に変更した以外は、セル実施例2と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
<セル実施例6>
 液晶配向剤[K2]を実施例6で得られた液晶配向剤[K6]に変更した以外は、セル実施例2と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
<セル比較例1>
 液晶配向剤[K1]を比較例1で得られた液晶配向剤[L1]に変更した以外は、セル実施例1と同様にして液晶セルを作製した。その後、得られた液晶セルを100℃の循環式オーブンで30分のアニールを行った。取り出したセルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメインの状態を観察した。その結果を表1に示した。
<セル比較例2>
 液晶配向剤[K2]を比較例2で得られた液晶配向剤[L2]に変更した以外は、セル実施例2と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
<セル比較例3>
 液晶配向剤[K1]を比較例3で得られた液晶配向剤[L3]に変更した以外は、セル実施例1と同様にして液晶セルを作製し、応答速度を測定し、アニール後の配向乱れであるドメインを観察した。その結果を表2に示した。
[応答速度特性]
 液晶セルに、±5VのAC電圧、周波数1kHzの矩形波を印加した際の、液晶パネルの輝度の時間変化をオシロスコープにて取り込んだ。電圧を印加していない時の輝度を0%、±5Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%~90%まで変化する時間を立ち上がりの応答速度とした。
Figure JPOXMLDOC01-appb-T000059
 表43からわかるように、セル実施例1の液晶セルでは、アニール後に、配向乱れであるドメインは全く観察されなかった。一方、セル比較例1の液晶セルでは、アニール後に、配向乱れであるドメインが多数観察された。
Figure JPOXMLDOC01-appb-T000060
 応答速度の判定 ○:早い(良好) ×:遅い(悪い)
 アニール後のドメイン観察結果
  ×:ドメインが多数観察される
  ○:良好
  ◎:非常に良好
 表44からわかるように、セル実施例2ではUV照射後の応答速度が速く、かつアニール後のドメイン観察結果でも、良好な結果であった。一方セル比較例2においては、アニール後のドメイン観察結果は非常に良好であるが、応答速度が遅かった。セル比較例3においては、応答速度は速かったが、アニール後にドメインが多数観察された。更に化合物11を使ったセル実施例3、4においては、UV照射後の応答速度が速く、且つアニール後のドメイン観察結果でも非常に良好な結果を示した。
 更にセル実施例5、6においても、UV照射後の応答速度が速く、且つアニール後のドメイン観察結果でも非常に良好な結果を示した。
 本発明の液晶配向剤を用いて作製した液晶表示素子は、重合性化合物を添加しない液晶を用いて、PSA方式と同様に処理しUV照射後の応答速度を向上させる方式の液晶表示素子においても、垂直配向力を低下させることなく、UV照射後の応答速度を向上させることが可能な液晶配向膜を形成可能な液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することが出来る。そのため、上記方法で製造されるTFT液晶表示素子、TN液晶表示素子、VA液晶表示素子などに有用である。
 なお、2011年5月27日に出願された日本特許出願2011-118824号及び2011年11月17日に出願された日本特許出願2011-251377号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記の式(1)で表されるアルコキシシラン及び下記の式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサン(A)を含有することを特徴とする液晶配向剤。
         RSi(OR     (1)
    (Rは下記式(2)の構造を表し、Rは炭素原子数1~5のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000001
    (Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。Yは単結合、二重結合を含有する炭素数3~8の直鎖状又は分岐状の炭化水素基、または-(CR17R18-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。Yはベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基、または、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、及びフッ素原子から選ばれる基で置換されていてもよい。Yはベンゼン環、シクロへキシル環および複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。nは0~4の整数である。Yは、水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
         RSi(OR     (3)
    (Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基若しくはスチリル基で置換された炭素数1~30のアルキル基であり、Rは炭素数1~5のアルキル基である。)
  2.  前記式(3)において、Rが、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基若しくはスチリル基で置換された炭素数3~10のアルキル基である請求項1に記載の液晶配向剤。
  3.  さらに、下記の式(5)で表されるアルコキシシランを50%~100%含有するアルコキシシランを重縮合して得られるポリシロキサンポリシロキサン(B)を含有する請求項1又は2に記載の液晶配向剤。
         Si(OR15     (5)
    (R15は炭素数1~5のアルキル基を表す。)
  4.  ポリシロキサン(B)が、さらに式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項3に記載の液晶配向剤。
  5.  ポリシロキサン(B)が、さらに下記の式(6)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項3または4に記載の液晶配向剤。
         R16Si(OR17     (6)
    (R16は、炭素数1~5のアルキル基、R17は炭素数1~5のアルキル基を表す。)
  6.  ポリシロキサン(A)及びポリシロキサン(B)の少なくとも一方が、さらに、下記式(4)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項1~5のいずれかに記載の液晶配向剤。
         (R13Si(OR144-n     (4)
    (式(4)中、R13は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基であり、R14は炭素原子数1~5のアルキル基であり、nは0~3の整数を表す。)
  7.  前記式(1)で表されるアルコキシシランが、ポリシロキサン(A)に用いられる全アルコキシシラン中、2~20モル%含まれ、かつ前記式(3)で表されるアルコキシシランが、ポリシロキサン(A)に用いられる全アルコキシシラン中、5~80モル%含まれる請求項1~6のいずれかに記載の液晶配向剤。
  8.  請求項1~7のいずれかに記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。
  9.  請求項8に記載の液晶配向膜を有する液晶表示素子。
  10.  請求項1~7のいずれかに記載の液晶配向剤を塗布し、焼成された2枚の基板で液晶が挟持された液晶セルに、電圧を印加した状態でUVを照射した液晶表示素子。
  11.  請求項1~7のいずれかに記載の液晶配向剤を塗布し、焼成した2枚の基板で液晶を挟持し、電圧を印加した状態でUVを照射する液晶表示素子の製造方法。
PCT/JP2012/063550 2011-05-27 2012-05-25 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子 WO2012165354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280036983.3A CN103718091B (zh) 2011-05-27 2012-05-25 硅类液晶取向剂、液晶取向膜及液晶显示元件
KR1020137034392A KR101883521B1 (ko) 2011-05-27 2012-05-25 규소계 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2013518063A JP6079626B2 (ja) 2011-05-27 2012-05-25 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-118824 2011-05-27
JP2011118824 2011-05-27
JP2011251377 2011-11-17
JP2011-251377 2011-11-17

Publications (1)

Publication Number Publication Date
WO2012165354A1 true WO2012165354A1 (ja) 2012-12-06

Family

ID=47259210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063550 WO2012165354A1 (ja) 2011-05-27 2012-05-25 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6079626B2 (ja)
KR (1) KR101883521B1 (ja)
CN (1) CN103718091B (ja)
TW (1) TWI553040B (ja)
WO (1) WO2012165354A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151609A (ja) * 2012-01-25 2013-08-08 Shin-Etsu Chemical Co Ltd 硬化性樹脂組成物並びにその硬化成形品及び硬化皮膜を有する物品
WO2014021174A1 (ja) * 2012-07-31 2014-02-06 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
WO2014034792A1 (ja) * 2012-08-30 2014-03-06 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
WO2014171493A1 (ja) * 2013-04-16 2014-10-23 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤
WO2015022980A1 (ja) * 2013-08-14 2015-02-19 日産化学工業株式会社 液晶表示素子
WO2015053395A1 (ja) * 2013-10-10 2015-04-16 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
TWI490253B (zh) * 2013-07-12 2015-07-01 Daxin Materials Corp 液晶配向劑、液晶配向膜以及液晶顯示元件
KR20160018597A (ko) 2013-06-06 2016-02-17 닛산 가가쿠 고교 가부시키 가이샤 알콕시실란 화합물, 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2018505447A (ja) * 2015-06-18 2018-02-22 深▲セン▼市華星光電技術有限公司 液晶垂直配向膜及び液晶表示素子及び液晶表示素子の調製方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104054019B (zh) * 2011-11-17 2016-11-09 日产化学工业株式会社 硅系液晶取向剂、液晶取向膜及液晶显示元件
CN105556381B (zh) * 2013-07-19 2019-03-15 日产化学工业株式会社 液晶表示元件、液晶取向处理剂和液晶取向膜
KR102546376B1 (ko) * 2015-03-02 2023-06-21 닛산 가가쿠 가부시키가이샤 액정 표시 소자
KR20180114070A (ko) * 2016-02-26 2018-10-17 닛산 가가쿠 가부시키가이샤 액정 표시 소자
CN110109293A (zh) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 液晶无机配向薄膜的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148099A1 (ja) * 2008-06-04 2009-12-10 日産化学工業株式会社 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
JP2010217866A (ja) * 2009-02-19 2010-09-30 Jsr Corp 液晶配向剤、液晶表示素子およびその製造方法
WO2010126108A1 (ja) * 2009-05-01 2010-11-04 日産化学工業株式会社 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757514B2 (ja) 1996-02-16 2006-03-22 日産化学工業株式会社 液晶垂直配向膜の形成方法
JP4504626B2 (ja) 2003-03-31 2010-07-14 シャープ株式会社 液晶表示装置及びその製造方法
JP4513950B2 (ja) 2004-03-05 2010-07-28 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
KR101708949B1 (ko) * 2008-12-25 2017-02-21 닛산 가가쿠 고교 가부시키 가이샤 잉크젯 도포용 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2011095967A (ja) 2009-10-29 2011-05-12 Yamaha Corp バス共有システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148099A1 (ja) * 2008-06-04 2009-12-10 日産化学工業株式会社 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
JP2010217866A (ja) * 2009-02-19 2010-09-30 Jsr Corp 液晶配向剤、液晶表示素子およびその製造方法
WO2010126108A1 (ja) * 2009-05-01 2010-11-04 日産化学工業株式会社 ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151609A (ja) * 2012-01-25 2013-08-08 Shin-Etsu Chemical Co Ltd 硬化性樹脂組成物並びにその硬化成形品及び硬化皮膜を有する物品
WO2014021174A1 (ja) * 2012-07-31 2014-02-06 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
WO2014034792A1 (ja) * 2012-08-30 2014-03-06 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
JPWO2014171493A1 (ja) * 2013-04-16 2017-02-23 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤
WO2014171493A1 (ja) * 2013-04-16 2014-10-23 日産化学工業株式会社 液晶表示素子、液晶配向膜及び液晶配向処理剤
KR102196273B1 (ko) * 2013-04-16 2020-12-29 닛산 가가쿠 가부시키가이샤 액정 표시 소자, 액정 배향막 및 액정 배향 처리제
KR20150143737A (ko) * 2013-04-16 2015-12-23 닛산 가가쿠 고교 가부시키 가이샤 액정 표시 소자, 액정 배향막 및 액정 배향 처리제
KR20160018597A (ko) 2013-06-06 2016-02-17 닛산 가가쿠 고교 가부시키 가이샤 알콕시실란 화합물, 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI490253B (zh) * 2013-07-12 2015-07-01 Daxin Materials Corp 液晶配向劑、液晶配向膜以及液晶顯示元件
WO2015022980A1 (ja) * 2013-08-14 2015-02-19 日産化学工業株式会社 液晶表示素子
CN105637410A (zh) * 2013-08-14 2016-06-01 日产化学工业株式会社 液晶表示元件
JPWO2015022980A1 (ja) * 2013-08-14 2017-03-02 日産化学工業株式会社 液晶表示素子
CN105637410B (zh) * 2013-08-14 2019-08-02 日产化学工业株式会社 液晶表示元件
KR20160068869A (ko) * 2013-10-10 2016-06-15 닛산 가가쿠 고교 가부시키 가이샤 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JPWO2015053395A1 (ja) * 2013-10-10 2017-03-09 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2015053395A1 (ja) * 2013-10-10 2015-04-16 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
KR102280839B1 (ko) 2013-10-10 2021-07-22 닛산 가가쿠 가부시키가이샤 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP2018505447A (ja) * 2015-06-18 2018-02-22 深▲セン▼市華星光電技術有限公司 液晶垂直配向膜及び液晶表示素子及び液晶表示素子の調製方法

Also Published As

Publication number Publication date
TW201313786A (zh) 2013-04-01
KR101883521B1 (ko) 2018-07-30
KR20140035959A (ko) 2014-03-24
CN103718091A (zh) 2014-04-09
CN103718091B (zh) 2016-08-31
TWI553040B (zh) 2016-10-11
JP6079626B2 (ja) 2017-02-15
JPWO2012165354A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6079626B2 (ja) ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
JP5605359B2 (ja) ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
KR101419962B1 (ko) 규소계 액정 배향제 및 액정 배향막
JP6398973B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6107661B2 (ja) ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
JP5761180B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2011068123A1 (ja) ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
JP6459513B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5999084B2 (ja) ケイ素系液晶配向剤、液晶配向膜及び液晶表示素子
WO2014021174A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137034392

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12793198

Country of ref document: EP

Kind code of ref document: A1