WO2016139756A1 - 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法 - Google Patents

測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法 Download PDF

Info

Publication number
WO2016139756A1
WO2016139756A1 PCT/JP2015/056251 JP2015056251W WO2016139756A1 WO 2016139756 A1 WO2016139756 A1 WO 2016139756A1 JP 2015056251 W JP2015056251 W JP 2015056251W WO 2016139756 A1 WO2016139756 A1 WO 2016139756A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
information
area
test object
measurement processing
Prior art date
Application number
PCT/JP2015/056251
Other languages
English (en)
French (fr)
Inventor
紘寛 八嶋
史倫 早野
章利 河井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2015/056251 priority Critical patent/WO2016139756A1/ja
Priority to CN201580077303.6A priority patent/CN107407646A/zh
Priority to JP2017503257A priority patent/JP6886606B2/ja
Priority to EP15883924.1A priority patent/EP3267183B1/en
Publication of WO2016139756A1 publication Critical patent/WO2016139756A1/ja
Priority to US15/694,538 priority patent/US10481106B2/en
Priority to US16/569,113 priority patent/US10809209B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • G01B15/045Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures by measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention relates to a measurement processing apparatus, an X-ray inspection apparatus, a measurement processing method, a measurement processing program, and a structure manufacturing method.
  • Patent Document 1 there is a known technology that uses an X-ray measuring device for non-destructive internal inspection, compares the specimen with the design three-dimensional data, and evaluates the thickness of the specimen and internal defects.
  • the measurement processing apparatus is a measurement processing apparatus used in an X-ray inspection apparatus, and applies X-rays transmitted through a first region that is a part of a first test object.
  • An area information acquisition unit that acquires first area information based on the storage area; a storage unit that stores second area information related to the second area of the second test object that is larger than the first area; and the first area information and the second area
  • a determination unit that determines whether an area corresponding to the first area is included in the second area based on the information.
  • the first region has a predetermined thickness including a predetermined cross section of the first test object, and the second region The region preferably has a greater thickness than the first region.
  • the first test object and the second test object have an equivalent structure, and the second region information is 2 It is preferable that the information is based on design data representing the structure of the test object.
  • the first test object and the second test object have the same structure, and the second area information is The information is preferably based on X-rays transmitted through the second region of the two specimens.
  • the first test object and the second test object have the same structure, and the second region information is X It is preferable that the measurement inspection apparatus other than the line inspection apparatus is measurement information obtained by measuring at least a part of the second region of the second test object.
  • the determination unit further includes a determination unit, and the second region information is inspection target region information regarding a region to be inspected of the first test object. Preferably, the determination unit determines whether or not the first area information corresponds to the inspection target area information based on the first area information and the second area information.
  • the measurement processing apparatus is a measurement processing apparatus used for an X-ray inspection apparatus, and includes an inspection target area of a test object, and a predetermined area larger than the inspection target area.
  • a storage unit that stores corresponding predetermined region information, a region information acquisition unit that acquires region information related to a partial region based on X-rays transmitted through the partial region of the test object, and the region information and the predetermined region information. And a determination unit that determines whether or not the partial region corresponds to the inspection target region.
  • the predetermined area information is information based on design data representing the structure of the test object.
  • the predetermined area information is preferably information based on X-rays transmitted through the predetermined area of the test object.
  • the predetermined area information is measured at least by a measurement / inspection apparatus other than the X-ray inspection apparatus. It is preferable that the measurement information be measured.
  • the determination unit determines that the partial area corresponds to the inspection target area
  • the partial area is based on the area information.
  • the position of the partial area and the inspection area is determined based on the area information and the predetermined area information. It is preferable to further include a position difference calculation unit that calculates the difference.
  • the measurement processing apparatus is a measurement processing apparatus used for an X-ray inspection apparatus, and relates to a partial region based on X-rays transmitted through a partial region of the test object.
  • a region information acquisition unit that acquires region information
  • a reference information storage unit that stores reference information about a partial region of the test object
  • a location specification that specifies the position of the partial region based on the region information and the reference information A section.
  • an X-ray inspection apparatus includes the measurement processing apparatus according to any one of the first to thirteenth aspects, an X-ray source that irradiates a test object with X-rays, and a test A detection unit that detects X-rays transmitted through the object.
  • an X-ray inspection apparatus includes the measurement processing apparatus according to any one of the first to seventh aspects, an X-ray source that irradiates a test object with X-rays, and a test A detection unit that detects X-rays transmitted through the object, and the first and second regions are sized in a direction orthogonal to the region surrounded by the light emitting point of the X-ray source and the center of the detection unit. Is different.
  • an X-ray inspection apparatus includes the measurement processing apparatus according to the seventh aspect, an X-ray source that irradiates the first specimen with X-rays, and the first specimen.
  • a detection unit that detects X-rays transmitted through the X-ray source, and a positional relationship changing unit that changes a positional relationship between the X-ray source or the detection unit and the first object, and the first region information is detected by the detection unit.
  • the positional relationship changing unit detects information based on the position difference calculated by the position difference calculating unit when the determining unit determines that the first region information does not correspond to the inspection target region information. The positional relationship is changed so that X-rays that have passed through the region to be inspected are detected by the unit.
  • an X-ray inspection apparatus includes the measurement processing apparatus according to the twelfth aspect, an X-ray source that irradiates the test object with X-rays, and X transmitted through the test object.
  • a detection unit that detects a line, and a positional relationship change unit that changes a positional relationship between the X-ray source or the detection unit and the test object, and the region information is information based on the detection result of the detection unit,
  • the relationship changing unit detects X-rays transmitted through the inspection target region by the detection unit based on the position difference calculated by the position difference calculation unit. The positional relationship is changed so as to detect.
  • the measurement processing apparatus is a measurement processing apparatus used for an X-ray inspection apparatus, and includes an inspection target area of a test object and a predetermined area larger than the inspection target area.
  • a storage unit that stores corresponding predetermined region information, a first region information acquisition unit that acquires first region information based on X-rays transmitted through the first region that is part of the test object, and first region information;
  • a specifying unit that specifies a region corresponding to the inspection target region in the first region based on the predetermined region information.
  • the measurement processing apparatus is a measurement processing apparatus used for an X-ray inspection apparatus, and corresponds to a predetermined area that includes the inspection target area of the test object and is larger than the inspection target area.
  • a storage unit that stores predetermined region information, a first region information acquisition unit that acquires first region information based on X-rays transmitted through the first region that is a part of the test object, the first region information and the predetermined region
  • a first determination unit that determines whether the first region information includes inspection target region information related to the inspection target region based on the region information; and the first determination unit determines whether the first region information is the inspection target region information.
  • an X-ray inspection apparatus includes a measurement processing apparatus according to the seventh aspect, an X-ray source that irradiates the first specimen with X-rays, and the first specimen. And a detection range setting unit for setting a detection range for detecting X-rays transmitted through the first test object by the detection unit.
  • the measurement processing method acquires first region information based on X-rays transmitted through the first region that is a part of the first test object, and from the first region Is larger than the second region information on the second region of the second test object and the first region information, it is determined whether the region corresponding to the first region is included in the second region.
  • the measurement processing method acquires first area information based on X-rays transmitted through the first area that is a part of the test object, and the test object of the test object Whether or not the first area corresponds to the inspection target area is determined based on the predetermined area information including the area and corresponding to the predetermined area larger than the inspection target area and the first area information.
  • the measurement processing method acquires region information regarding a partial region based on X-rays transmitted through the partial region of the test object, and the partial region of the test object. The position of the partial region in the test object is specified based on the reference information for specifying the position of the region and the region information.
  • the measurement processing program includes region information acquisition processing for acquiring first region information based on X-rays transmitted through the first region that is a part of the first test object. Whether the second region includes a region corresponding to the first region based on the second region information on the second region of the second test object, which is larger than the previous first region, and the first region information.
  • the computer is caused to execute determination processing for determining whether or not.
  • the measurement processing program includes a first region information acquisition process for acquiring first region information based on X-rays transmitted through the first region that is a part of the test object.
  • the measurement processing program includes region information acquisition processing for acquiring region information relating to a partial region based on X-rays transmitted through the partial region of the test object, and the test Based on the reference information for specifying the position of the partial region in the object and the region information, the computer is caused to execute a specifying process for specifying the position of the partial region in the test object.
  • the structure manufacturing method creates design information related to the shape of the structure, creates the structure based on the design information, and sets the shape of the created structure.
  • the shape information is obtained by measurement using the measurement processing device according to any one of the first to fourteenth aspects or the X-ray inspection device according to the sixteenth aspect, and the obtained shape information is compared with the design information.
  • the measurement processing apparatus is a measurement processing apparatus used for an X-ray inspection apparatus, and detects X-rays transmitted through a partial region of the first test object.
  • An area information acquisition unit that acquires first area information relating to one area, an inclination detection unit that detects an inclination of the first object when acquiring the first area information, and a first object detected by the inclination detection unit;
  • a comparison unit that compares the inclination of the inspection with a reference inclination;
  • the inclination detecting unit obtains the first area information based on the first area information. It is preferable to detect the inclination of the.
  • An object of an aspect of the present invention is to provide a measurement processing apparatus, an X-ray inspection apparatus, a measurement processing method, a measurement processing program, and a structure manufacturing method that can suppress detection failures.
  • FIG. 1 The figure which shows typically an example of a structure of the X-ray inspection apparatus of 1st Embodiment.
  • Block diagram of inspection processing equipment The figure which shows typically about the test object for explanation of master data Diagram showing master data area Diagram showing master data area
  • (A) is a conceptual diagram which shows the relationship between a slice surface and a reconstruction image
  • (b) is a conceptual diagram which shows the reconstruction image of a slice surface.
  • (A) is a conceptual diagram which shows the relationship between a slice surface and a reconstruction image
  • (b) is a conceptual diagram which shows the reconstruction image of a slice surface.
  • A) is a conceptual diagram which shows the relationship between a slice surface and a reconstruction image
  • (b) is a conceptual diagram which shows the reconstruction image of a slice surface.
  • (A) is a conceptual diagram which shows the relationship between a slice surface and a reconstruction image
  • (b) is a conceptual diagram which shows the reconstruction image of a slice surface. It is a conceptual diagram which shows the reconstruction image corresponding to a different slice surface.
  • (A) is a figure which shows an example of the evaluation area
  • (b) is a figure explaining a surface reference
  • (A) to (e) are diagrams schematically showing a reconstructed image obtained by performing X-ray inspection on a plurality of slice planes while changing the slice position little by little.
  • (A) shows the reconstructed image selected as the reconstructed image of the slice plane to be used for the examination of the evaluation area, and (b) shows the reconstructed image when the rotation is calculated for the corresponding data of the master data.
  • a composition image is shown.
  • FIG. 1 The block diagram which shows an example of a structure of the structure manufacturing system by embodiment
  • FIG. 1 Flowchart explaining processing of structure manufacturing system
  • (A) is a conceptual diagram which performs external shape measurement about a thin area
  • (b) is a conceptual diagram which performs external shape measurement about a thick area
  • Diagram explaining the overall configuration of equipment used to provide program products Flowchart explaining setting of measurement condition according to embodiment
  • An X-ray inspection apparatus and an inspection processing apparatus for an X-ray inspection apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
  • An X-ray inspection apparatus irradiates a test object with X-rays and detects transmitted X-rays transmitted through the test object, thereby acquiring non-destructive internal information (for example, internal structure) of the test object.
  • non-destructive internal information for example, internal structure
  • the X-ray inspection apparatus is used as an internal inspection apparatus for acquiring internal information of a cast product such as an engine block and performing quality control thereof. .
  • the X-ray inspection apparatus 100 acquires not only a cast product such as an engine block but also a resin molded product and shape information of the internal structure of the joint portion when the members are joined together by an adhesive or welding. The inspection may be performed. Further, the present embodiment is for specifically describing the purpose of the invention, and does not limit the present invention unless otherwise specified.
  • FIG. 1 is a diagram schematically showing an example of the configuration of an X-ray inspection apparatus 100 according to the present embodiment.
  • a coordinate system consisting of an X axis, a Y axis, and a Z axis is set as shown.
  • the X-ray inspection apparatus 100 includes an inspection processing apparatus 1, an X-ray source 2, a placement unit 3, a detector 4, a control device 5, a display monitor 6, and an input operation unit 11. Note that the inspection processing apparatus 1 configured separately from the X-ray inspection apparatus 100 is also included in one aspect of the present invention.
  • the X-ray source 2, the placement unit 3, and the detector 4 are accommodated in a housing (not shown) that is disposed on a floor surface of a factory or the like so that the XZ plane is substantially horizontal.
  • the housing contains lead as a material in order to prevent X-rays from leaking to the outside.
  • the X-ray source 2 is a fan-shaped X-ray (so-called so-called X-axis) along the optical axis Zr parallel to the Z-axis with the emission point Q shown in FIG. A fan beam is emitted.
  • the exit point Q corresponds to the focal spot of the X-ray source 2. That is, the optical axis Zr connects the exit point Q, which is the focal spot of the X-ray source 2, and the center of the imaging region of the detector 4 described later.
  • the X-ray source 2 radiates conical X-rays (so-called cone beams) instead of those that radiate X-rays in a fan shape.
  • the X-ray source 2 has, for example, an ultra-soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, a hard X-ray of about 20 to 100 keV, and an energy of 100 keV or more. At least one of the X-rays can be emitted.
  • the mounting unit 3 includes a mounting table 30 on which the test object S is mounted, a rotation driving unit 32, a Y-axis moving unit 33, an X-axis moving unit 34, a Z-axis moving unit 35, and an inclination adjusting unit 37. And a manipulator unit 36, which is provided on the Z axis + side with respect to the X-ray generation unit 2.
  • the mounting table 30 is rotatably provided by the rotation drive unit 32, and moves together when the rotation axis Yr by the rotation drive unit 32 moves in the X-axis, Y-axis, and Z-axis directions. Further, the inclination of the mounting table 30 with respect to the XZ plane, that is, the angle formed between the upper surface of the mounting table 30 and the rotation axis Yr can be adjusted by the inclination adjusting unit 37.
  • the rotation drive unit 32 is constituted by, for example, an electric motor or the like, and is parallel to the Y axis and passes through the center of the mounting table 30 by a rotational force generated by an electric motor controlled and driven by the control device 5 described later.
  • the mounting table 30 is rotated with the axis to be rotated as the rotation axis Yr.
  • the Y-axis moving unit 33, the X-axis moving unit 34, the Z-axis moving unit 35, and the tilt adjusting unit 37 are controlled by the control device 5 to be within the irradiation range of the X-rays emitted from the X-ray generation unit 2.
  • the mounting table 30 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction so that the inspection object S is positioned, and the inclination of the mounting table 30 with respect to the XZ plane is changed. Further, the Z-axis moving unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the test object S is a distance at which the test object S in the captured image has a desired magnification. The mounting table 30 is moved in the Z-axis direction.
  • the detector 4 is provided on the + side in the Z-axis direction with respect to the X-ray source 2 and the mounting table 30. That is, the mounting table 30 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction.
  • the detector 4 is a so-called line sensor having an incident surface 41 extending in the X-axis direction on a plane parallel to the XY plane.
  • the detector 4 is radiated from the X-ray source 2 and mounted on the mounting table 30. X-rays including transmitted X-rays transmitted through the object S enter the incident surface 41.
  • the detector 4 includes a scintillator portion containing a known scintillation substance, a photomultiplier tube, a light receiving portion, and the like.
  • the detector 4 converts X-ray energy incident on the incident surface 41 of the scintillator portion into visible light, ultraviolet light, or the like.
  • the light energy is converted into light energy, amplified by a photomultiplier tube, the amplified light energy is converted into electric energy by the light receiving unit, and is output to the control device 5 as an electric signal.
  • the detector 4 may convert incident X-ray energy into electric energy without converting it into light energy, and output the electric energy as an electric signal.
  • the detector 4 has a structure in which a scintillator section, a photomultiplier tube, and a light receiving section are each divided into a plurality of pixels.
  • the detector 4 may have a structure in which the scintillator portion is formed directly on the light receiving portion (photoelectric conversion portion) without providing a photomultiplier tube.
  • the detector 4 is not limited to a line sensor, and may be a two-dimensional plane detector. That is, in the present embodiment, the line sensor of the detector 4 has an incident surface 41 extending in the X-axis direction on a plane parallel to the XY plane, but only one incident surface 41 is arranged in the Y-axis direction. ing. A plurality of incident surfaces 41 are arranged in the X-axis direction on the XY plane.
  • each of the plurality of incident surfaces 41 can independently detect the X-ray intensity.
  • a plurality of incident surfaces 41 may be arranged in the Y-axis direction.
  • a two-dimensional plane detector in which a plurality of incident surfaces 41 are arranged in the X-axis direction and the Y-axis direction on the XY plane in FIG. 1 may be used.
  • a two-dimensional plane detector is used, among the incident surfaces 41 arranged in the Y-axis direction, only the incident surface 41 in the X-axis direction at a predetermined position in the Y-axis direction is used and used as a line sensor. It doesn't matter.
  • the X-ray intensity distribution of the incident surface 41 in the X-axis direction at a predetermined position in the Y-axis direction is acquired, and the specimen S is obtained from the X-ray intensity distribution acquired at the predetermined position in the Y-axis direction.
  • the shape information may be analyzed. Further, in this case, when acquiring the X-ray intensity distribution of the incident surface 41 in the X-axis direction at a plurality of positions in the Y-axis direction, the incident in the X-axis direction at positions separated from each other in the Y-axis direction.
  • the X-ray intensity distribution on the surface 41 may be acquired.
  • the X-ray source 2, the placement unit 3, and the detector 4 are supported by a frame (not shown).
  • This frame is manufactured with sufficient rigidity. Therefore, it is possible to stably support the X-ray source 2, the placement unit 3, and the detector 4 while acquiring the projection image of the test object S.
  • the frame is supported by a vibration isolation mechanism (not shown), and prevents vibration generated outside from being transmitted to the frame as it is.
  • the input operation unit 11 includes a keyboard, various buttons, a mouse, and the like. The operator inputs the position of the inspection area or updates the inspection area when inspecting the inspection object S as will be described later. It is operated when doing. When operated by the operator, the input operation unit 11 outputs an operation signal corresponding to the operation to the inspection processing apparatus 1.
  • the control device 5 has a microprocessor, peripheral circuits, and the like, and reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby executing the X-ray inspection device 100. Control each part.
  • the control device 5 includes an X-ray control unit 51, a movement control unit 52, an image generation unit 53, and an image reconstruction unit 54.
  • the X-ray control unit 51 controls the operation of the X-ray source 2, and the movement control unit 52 controls the movement operation of the manipulator unit 36.
  • the image generation unit 53 generates X-ray projection image data of the test object S based on the electrical signal output from the detector 4, and the image reconstruction unit 54 controls the manipulator unit 36 and has different projection directions.
  • the surface model constructing unit provided in the image reconstructing unit 54 has a three-dimensional structure that is the internal structure of the test object S. Shape information is generated.
  • the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the X-ray inspection apparatus 100 moves the mounting table 30 in each direction of XYZ and adjusts the inclination angle of the mounting table 30 to inspect the test object S. To position. Then, the X-ray inspection apparatus 100 irradiates a slit beam having a predetermined width in the Y-axis direction from the X-ray source 2 toward the test object S that rotates as the mounting table 30 rotates.
  • the detector 4 receives transmitted X-rays including X-rays transmitted through the test object S, and the cross-section of the test object S according to the width (for example, approximately 1 mm) of the slit beam in the Y-axis direction. The shape information of the specimen S is obtained.
  • the X-ray inspection apparatus 100 performs irradiation of the slit beam onto the rotationally driven specimen S and movement of the mounting table 30 in the Y-axis direction, that is, movement of the specimen S in the Y-axis direction. Repeat.
  • the slit beam is performed in a range extending over the entire length in the Y-axis direction of the test object S placed on the mounting table 30, it is possible to generate the shape information of the entire test object S (hereinafter referred to as “slit”). Called full scan).
  • slit shape information of the entire test object S
  • shape information of a part of the test object S can be generated (hereinafter referred to as a partial scan).
  • a region where the test object S and the slit beam overlap is referred to as a slice plane.
  • the test object S when the test object S is arranged in a region defined by the emission point Q and the incident surface 41 of the detector 4, X-rays transmitted through the test object S can be detected.
  • the detectable range of X-rays transmitted through the test object S is called a slice plane.
  • the slice plane is an area having a predetermined width.
  • a region where the region defined by the incident surface 41 and the emission point Q of the detector 4 overlaps the specimen S is a slice surface.
  • the slice plane may be, for example, a region connecting the emission point Q and the center of the detector 4.
  • the mounting table 30 is moved in an intersecting direction with respect to a region surrounded by the emission point Q of the X-ray source 2 and the center of the detector 4. Thereby, the area that could not be detected before the movement can be detected by the movement of the mounting table 30.
  • a region surrounded by the emission point Q of the X-ray source 2 and the center of the detector 4 is parallel to the XZ plane. Therefore, the mounting table 30 is moved along the Y direction intersecting 90 ° as the direction intersecting the XZ plane.
  • the intersecting direction is not limited to 90 °, and may be 10 °, 20 °, 30 °, 40 °, 50 °, 60 °, 70 °, 80 °, for example.
  • a full scan or a partial scan is inspected for a large number of specimens S having the same shape as a cast product.
  • Full scan means a measurement operation for generating a reconstructed image at a predetermined interval in the Y-axis direction in order to acquire the entire internal structure of the test object S. This is performed at a time when a relatively large amount of time is allocated to the inspection time when mass production such as after maintenance of the mold for manufacturing the object S is not performed.
  • the partial scan refers to a measurement operation for generating a reconstructed image of only a part of the test object S including an evaluation area to be described later. In the partial scan, when a part having a high possibility of occurrence of internal defects (hereinafter referred to as an evaluation area) is selected and inspected for a large number of specimens S other than the timing at which the full scan is performed. Done.
  • the inspection processing apparatus 1 includes a microprocessor and its peripheral circuits, and reads a control program stored in advance in a storage medium (not shown) (for example, a flash memory). By performing the above, various processes for inspecting a part of the test object S to be described later are performed.
  • the inspection processing apparatus 1 includes a control unit 110, a configuration information acquisition unit 111, a region information acquisition unit 112, a comparison unit 113, a position difference calculation unit 114, an inspection range setting unit 115, an evaluation unit 116, data
  • the storage unit 117, the inspection unit 118, and the evaluation area setting unit 119 are provided.
  • the control unit 110 controls each part of the inspection processing apparatus 1 described below, and also controls each part of the X-ray inspection apparatus 100 via the control apparatus 5.
  • the configuration information acquisition unit 111 acquires shape information of the test object S obtained from design information such as CAD related to the test object S.
  • the area information acquisition unit 112 acquires shape information of a predetermined area obtained by the partial scan.
  • area information the three-dimensional shape information of the predetermined area acquired by the area information acquisition unit 112 is referred to as area information.
  • the comparison unit 113 compares the region information acquired by the region information acquisition unit 112 with the master data M. The master data M will be described later.
  • the position difference calculation unit 114 calculates the difference between the position in the test object S corresponding to the acquired area information and the position of the area to be inspected in the test object S based on the comparison result by the comparison unit 113. .
  • the inspection range setting unit 115 sets an area including an evaluation area set by an evaluation area setting unit 119, which will be described later, as an area for partial scanning of the test object S (hereinafter referred to as a partial scan area).
  • the evaluation unit 116 evaluates the quality of the test object S based on the area information obtained by partial scanning of the test object S.
  • the data storage unit 117 is a non-volatile storage medium for storing various data generated by the processes performed by the above-described units of the inspection processing apparatus 1.
  • the inspection unit 118 generates internal information based on the partial scan data.
  • the evaluation area setting unit 119 uses the information based on the design information acquired by the configuration information acquisition unit 111 to set an evaluation area for causing the inspection object S to be inspected during a partial scan. Process.
  • the master data generation unit 120 generates master data M based on the information acquired by the configuration information acquisition unit 111 and the region information acquisition unit 112.
  • the master data M is information representing the shape of at least a part of the test object S, and details will be described later. The details of the above-described units of the inspection processing apparatus 1 will be described later.
  • the test object S placed on the placement table 30 is partially scanned once, and the result is compared with master data M to be described later. Whether or not the test object S is accurately positioned is determined.
  • the term “position” is a concept including “tilt”.
  • the position of the test object includes the position on the XZ plane of the test object S in the apparatus coordinate system, the height in the Y-axis direction, and the inclination of the test object S with respect to the apparatus coordinate system. .
  • the inclination of the test object S relative to the apparatus coordinate system may be simply referred to as an inclination or the posture of the test object S.
  • the master data M is information relating to the shape of at least a partial region of the test object S, and is used to determine which part of the test object S the partial scan is performed on.
  • the master data M includes information regarding the position of the evaluation area. Since the master data M is data having redundancy in the width in the Y-axis direction, the test object S when placed on the mounting table 30 is shifted or tilted in the Y-axis direction. However, the part to be partially scanned can be specified in the measured object S.
  • the width in the Y-axis direction such as the master data M and the partial scan area, is also referred to as the thickness.
  • the specimen S has a shape as shown in FIG.
  • the test object SX shown in FIG. 3 is assumed to have a hexahedral shape.
  • a coordinate system including the U axis, the V axis, and the W axis is set for the test object SX as shown in the figure.
  • the right side in the drawing is not parallel to the UV plane, and among the sides 60a, 60b, 60c and 60d on the right side in the drawing, the side 60a on the back side in the drawing is parallel to the V axis, and the lower side in the drawing Side 60b is parallel to the U axis.
  • the side 60c on the front side in the figure is inclined so as to go in the W axis ⁇ direction as it goes in the direction of the axis V +, and the side 60d on the upper side in the figure is inclined so as to go in the direction of the W axis + as it goes in the U axis + direction.
  • it has the column-shaped hole part 61 extended in a W-axis + direction from the surface of the left side of illustration.
  • the hole 61 does not penetrate in the W axis + direction.
  • a rectangular parallelepiped denoted by reference numeral 62 represents an evaluation area.
  • a cylinder denoted by reference numeral 63 indicates a member cast in the specimen S (hereinafter referred to as a cast-in member). Since the cast-in member is usually a different material from the surrounding material, the X-ray absorption rate is usually different from that of the surrounding material.
  • a cast iron member is cast in aluminum.
  • the master data M for the test object SX is data relating to the shape of a partial area SXa of the test object SX, for example, shown by a thick line in FIG.
  • the master data M may be data relating to the entire shape of the test object SX.
  • the master data M includes, for example, information indicating the outer shape of the area SXa, information indicating the shape of the hole 61, information indicating the position of the hole 61 in the area SXa, information regarding the shape of the evaluation area 62, and the area SXa.
  • Information on the position of the evaluation region 62 in FIG. 5 and information on the position of the region SXa in the test object SX, that is, information indicating the range of the region SXa, etc., are not necessarily included.
  • the area SXa includes the evaluation area 62. If the master data M includes information about the positional relationship between the area SXa and the evaluation area 62, as shown in FIG. An evaluation area 62 may exist at a remote location. The inspection procedure in this case will be described later. For convenience of explanation, in the following explanation, it is assumed that the area SXa includes an evaluation area 62 as shown in FIG. Further, it is assumed that the central axis CL of the hole 61 is parallel to the W axis, and the evaluation region 62 exists on the extended line.
  • FIG. 6A when the slice plane 80 includes the center axis CL of the hole 61 and is parallel to the UW plane, a reconstructed image 81a of the slice plane 80 is shown in FIG. It becomes the shape shown.
  • a broken line denoted by reference numeral 62a in FIG. 6B indicates the evaluation region 62 in the reconstructed image 81a.
  • FIG. 7A shows a case where the slice plane 80 is separated in the V-axis + direction compared to the case of FIG.
  • the reconstructed image 81b of the slice plane 80 has a shape shown in FIG.
  • FIG. 8A shows a case where the slice plane 80 is separated in the V-axis-direction compared to the case of FIG.
  • the reconstructed image 81c of the slice plane 80 has a shape shown in FIG.
  • the slicing surface 80 overlaps with the upper end of the figure, which is a part of the cast-in member 63. For this reason, a portion 63a with different brightness appears in the reconstructed image 81c shown in FIG.
  • FIG. 9A shows a case where the slice plane 80 is not parallel to the UW plane.
  • the reconstructed image 81d of the slice plane 80 has a shape shown in FIG.
  • FIG. 10 is a view showing the above-described reconstructed images 81a to 81d side by side for comparison.
  • the two lines 61a corresponding to the inner peripheral surface of the hole 61 are parallel.
  • the two lines 61a corresponding to the inner peripheral surface of the hole 61 are parallel, but the distance between them is more than the distance between the two lines 61a in the reconstructed image 81a. small.
  • the position of the intersection 60C between the side 60c and the slice plane 80 moves to the left side of the figure as compared to the intersection 60C of the reconstructed image 81a.
  • the two lines 61a representing the inner peripheral surface of the hole 61 are parallel, but the distance between them is smaller than the distance between the two lines 61a in the reconstructed image 81a.
  • the position of the intersection 60C between the side 60c and the slice plane 80 moves to the right side of the figure as compared to the intersection 60C of the reconstructed image 81a.
  • a portion 63a with different brightness corresponding to a part of the cast-in member 63 appears.
  • the two lines 61a representing the inner peripheral surface of the hole 61 are not parallel.
  • the two lines 61a of the reconstructed image 81d in FIGS. 9B and 10 are simplified and represented by straight lines, they are actually curved.
  • the shape of the reconstructed image changes depending on the position of the slice plane 80 in the test object SX. Therefore, by comparing the shape of the slice surface 80 with the master data M, the position of the slice surface 80 in the region SXa corresponding to the master data M can be specified.
  • the reconstructed image 81a two lines 61a are parallel, and it can be seen from the distance between them that the slice plane 80 is a plane including the central axis CL of the hole 61 (FIG. 6). reference).
  • the inclination of the slice surface 80 can be known from information on the outer shape, for example, the position of the intersection 60A or the intersection 60C between the side 60a and the slice surface 80.
  • the slice plane 80 is parallel to the W axis.
  • the distance between the slice plane 80 and the central axis CL of the hole 61 in the Y-axis direction is known from the distance between the two lines 61a (FIGS. 7 and 8). reference).
  • the inclination and position of the slice plane 80 can be known from the external shape information, for example, the position of the intersection 60A or the intersection 60C.
  • the two lines 61a are not parallel, and the distance between them increases in the W axis + direction (see FIG. 9). Therefore, it is necessary that the slice surface 80 is inclined.
  • the inclination and the position of the slice plane 80 can be known by determining the contour information, for example, the positional relationship between the intersection 60A and the intersection 60C.
  • the contour information for example, the positional relationship between the intersection 60A and the intersection 60C.
  • the position of the slice surface 80 on the test object SX can be known.
  • the X-ray absorptivity as shown by 63a is different from that of the surrounding material, the existence and shape of the region having different brightness in the reconstructed image are compared with the information of the master data M. This also makes it possible to know the position of the slice surface 80 in the test object SX.
  • FIG. 11A is a perspective view of a cylinder block.
  • FIG. 11A shows an evaluation area 600 of this cylinder block.
  • the evaluation area 600 includes various three-dimensional shapes. For example, there are an evaluation region 601 in the vicinity of the crank journal portion, an evaluation region 602 in the vicinity of the cast pin, and an evaluation region 603 in the cylinder portion.
  • a portion where shrinkage nest generation is predicted by simulation is also an evaluation region.
  • Reconstructed images 82a to 82e shown in FIGS. 12 (a) to 12 (e) include, for example, a cross section 83 and 84 of a recess corresponding to a casting pin, a cross section 85 of a cooling flow path, and a cast hole in a crank journal portion.
  • FIG. 12 A cross section 86 of the cast iron portion, a cross section 87 inside the crankcase, a cast iron liner portion 88 cast into the cylinder liner portion, and the like appear.
  • the evaluation area 62a is set only in FIG.
  • FIGS. 12A to 12E it can be seen that the reconstructed image changes when the slice position in the cylinder block changes. That is, in FIG. 11A, a surface parallel to the WU plane is placed on the mounting table 30, and in FIG. 11A, the end surface in the V axis + direction is placed on the mounting table 30.
  • the outer structure and the inner structure on the WU plane differ depending on the position in the V-axis direction.
  • the cross section 83 caused by the shape of the recess is confirmed in FIGS. 12 (a), 12 (b), and 12 (c), but is confirmed in FIGS. 12 (d) and 12 (e). I can't.
  • FIG. 12B is compared with FIG. 12C, the area surrounded by the cross section of the recess is different. This indicates that the area of the recess in the WU plane in FIG. 12B decreases toward FIG. 12C with the movement along the V axis.
  • the external structure of the test object is not uniform along the V-axis direction. Therefore, depending on the structure of the test object, the position varies. Therefore, for example, by using the size of the area surrounded by the recess 83, the position in the V-axis direction can be specified. For example, even in an image obtained by measuring with a test object different from that in FIG. 12C and creating a reconstructed image, the area surrounded by the recess 83 is used as an index, so that the V of the different test object can be obtained. The measurement position in the axial direction can be estimated. Therefore, when the structure changes around the measurement position, the cross-sectional structure may be used and compared with the master data M.
  • the correlation position can be obtained in a shorter time. Furthermore, for example, in the device under test, in some cases, part of the internal structure of the device under test may be damaged during the production. Accordingly, when trying to compare with the master data M based on the shape of the object to be measured, it is difficult to find the position of the measurement data from the master data M because the shape data does not match due to the destruction of the internal structure. become. In this case, a correlation failure with the master data M may be suppressed by weighting a partial shape of the tomographic image.
  • the outer shape of the material is made heavier than in the material, and the correlation may be obtained. I do not care. Thereby, the correlation failure with the master data M can be suppressed.
  • a plurality of places may be used instead of one place.
  • the material used for a cylinder block is not necessarily one type.
  • the material used is different from other parts.
  • the material used for 86 is different from the material used around it in the elements used.
  • the composition ratio for producing the alloy may be different from the surroundings. Therefore, since the X-ray absorption rate differs between the surrounding area and the area 86, the image obtained by reconstruction is displayed so that the luminance is different from that of the surrounding area. Therefore, when comparing with the master data M, the position at the time of measurement may be estimated using the luminance information of the image. Further, for example, the cast iron liner portion 88 cast into the cylinder liner portion is not recognized in the reconstructed images 82a to 82d, but clearly appears as a portion having high luminance in the reconstructed image 82e.
  • FIG. 13A shows the selected reconstructed image.
  • the image is the same as the reconstructed image 82c in FIG.
  • the master data M may be information based on the outer shape of the test object S obtained by an inspection apparatus other than the X-ray inspection apparatus 100, such as a three-dimensional measurement apparatus. Alternatively, the design information of the test object S may be used like the CAD data of the test object S. Further, the master data M may be measurement information of the test object S obtained by inspecting part or all of the test object S with the X-ray inspection apparatus 100. Several cases are described below.
  • the configuration information acquisition unit 111 shown in FIG. Information on a part of the outline is acquired from another inspection apparatus.
  • the master data generation unit 120 for example, information on the outer shape of the test object S acquired by the configuration information acquisition unit 111, information indicating the correlation between the portion corresponding to the outer shape and the position on the test object S, Master data M is generated based on the information indicating the correlation between the position of the evaluation region and the position of the test object S.
  • the master data M generated by the master data generation unit 120 is stored in the data storage unit 117.
  • the configuration information acquisition unit 111 shown in FIG. 2 acquires information manually input by an operator based on design information such as three-dimensional CAD.
  • the master data generation unit 120 represents, for example, the design information of at least a part of the test object S acquired by the configuration information acquisition unit 111 and the correlation between the position corresponding to the design information and the position of the test object S.
  • Master data M is generated based on the information and information indicating the correlation between the position of the evaluation region and the position of the test object S.
  • the master data M generated by the master data generation unit 120 is stored in the data storage unit 117.
  • the configuration information acquisition unit 111 may automatically acquire design information such as three-dimensional CAD through an interface.
  • the X-ray inspection apparatus 100 When the master data M is based on measurement information obtained by the X-ray inspection apparatus 100
  • the X-ray inspection apparatus 100 generates the master data M as follows.
  • the master data M when sequentially inspecting a plurality of specimens S with the X-ray inspection apparatus 100, the master data M is generated from the measurement information of the specimen S to be inspected first among the plurality of specimens S. To do.
  • the plurality of specimens S are products manufactured based on the same design information. Therefore, for example, it is inspected whether or not all the plurality of test objects S are manufactured according to the design information.
  • the test object S to be inspected first is mounted on the mounting table 30. In the following description, the test object S to be inspected first is referred to as a first test object S1.
  • the mounting table 30 is provided with a positioning pin (not shown), and the first test object S1 can be positioned on the mounting table 30 by bringing the first test object S1 into contact with the positioning pin. It is not essential to provide a positioning pin on the mounting table 30.
  • the upper surface of the mounting table 30 is set parallel to the XZ plane. In this state, a partial scan is performed while rotating the mounting table 30.
  • each test object S sequentially inspected after the initial test object S1 has a height of the mounting table 30 such that substantially the same position as the partial scan for the first test object S1 is partially scanned. The sheath angle is adjusted.
  • the inspection range setting unit 115 shown in FIG. 2 sets the partial scan region of the initial test object S1 to a thickness that includes the test region and has redundancy in the Y-axis direction as described above.
  • the data storage unit 117 stores variation information indicating variations in the type of the test object S and the outer dimensions of the test object S, and the inspection range setting unit 115 performs the initial test based on the variation information.
  • the thickness of the partial scan region of the object S1 may be set.
  • the partial scan area of the first test object S1 set in this way is called a master data area.
  • the master data area is an area corresponding to the area SXa shown in FIG. 4, for example.
  • the movement control unit 52 controls the manipulator unit 36 to rotate the mounting table 30 so that a transmission image for generating a reconstructed image can be acquired in the master data area set by the inspection range setting unit 115.
  • the master-data area is partially scanned while being driven and moved in the Y-axis direction.
  • the inspection unit 118 generates internal information of the master data area based on the partial scan data.
  • the master data generation unit 120 generates master data M by adding information about the evaluation area and information indicating which part of the first test object S1 the master data area corresponds to the internal information of the master data area. .
  • information about the evaluation area information about the evaluation area set by the evaluation area setting unit 119 and stored in the data storage unit 117 can be used.
  • the information showing which part of the first test object S1 corresponds to the master data area is obtained as follows, for example. First, a reconstructed image in an arbitrary slice plane is generated from the internal information of the master data area, and the position of the arbitrary slice plane in the initial test object S1 is compared with the design information of the initial test object S1. Identify. If it is possible to identify which part of the first specimen S1 the position of the arbitrary slice plane corresponds to, it is also possible to identify which part of the first specimen S1 the master data area corresponds to.
  • the master data M generated by the master data generation unit 120 in this way is stored in the data storage unit 117.
  • step S1 the control unit 110 instructs the movement control unit 52 to move the mounting table 30 to the inspection start position for acquiring the master data M by controlling the manipulator unit 36. Proceed to In step S ⁇ b> 2, the control unit 110 instructs the X-ray control unit 51 to control the X-ray source 2.
  • the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to rotate the mounting table 30 and move in the Y-axis direction.
  • the inspection unit 118 performs inspection while the mounting table 30 moves a distance corresponding to the thickness set by the inspection range setting unit 115. Thereby, the internal information of the master data area is acquired.
  • step S2 the process proceeds to step S3.
  • step S3 the master data generation unit 120 uses the internal information of the master data area acquired in step S2 as information on the evaluation area and information indicating which part of the first test object S1 the master data area corresponds to. To generate master data M.
  • step S4 the master data generation unit 120 stores the master data M generated in step S3 in the data storage unit 117, and ends this program.
  • the X-ray inspection apparatus 100 sequentially inspects a plurality of objects S as follows. First, the test object S is mounted on the mounting table 30. As described above, the test object S can be positioned on the mounting table 30 by bringing the test object S into contact with the positioning pin of the mounting table 30. In addition, when mounting the to-be-tested object S, the upper surface of the mounting base 30 is set in parallel with XZ plane.
  • the inspection range setting unit 115 sets a partial scan region of the test object S in a region including the inspection region.
  • the region to be inspected is a region selected as a region to be inspected from a plurality of evaluation regions in the inspection process. Since the inspection time increases as the partial scan region is thicker, it is preferable that the partial scan region is as thin as possible. Therefore, the thickness of the partial scan region set in this case is generally smaller than the thickness of the master data region that is the partial scan region of the first test object S1.
  • the partial scan area set by the inspection range setting unit 115 is called a target partial scan area.
  • a partial scan for the specimen S is performed.
  • the partial scan with respect to the partial scan region having a small thickness set when sequentially inspecting the test object S is referred to as a thin slice scan here.
  • the movement control unit 52 controls the manipulator unit 36 to rotate the mounting table 30 and move it in the Y-axis direction.
  • the area information acquisition unit 112 acquires area information obtained by thin slice scanning.
  • the comparison unit 113 compares the region information acquired by the region information acquisition unit 112 with the master data M stored in the data storage unit 117 based on the thin slice scan, and based on the result, the thin slice scan region is inspected. It is determined whether or not it corresponds to the inspection region set by the range setting unit 115, that is, whether or not the thin-cut scan region includes the inspection region set by the inspection range setting unit 115. For example, the comparison unit 113 calculates a correlation coefficient between the cross-sectional shape of the inspection area obtained from the master data M and the area information based on the thin slice scan, and makes a determination based on the value of the correlation coefficient.
  • the comparison unit 113 determines that the thin slice scan region includes the inspection region set by the inspection range setting unit 115, the evaluation unit 116 determines the specimen S based on the region information obtained by the thin slice scan. Evaluate the quality of the product. Thereafter, the inspection of the next test object S is started.
  • the position difference calculation unit 114 corresponds to the area information acquired by the thin scan based on the comparison result by the comparison unit 113.
  • the difference (deviation) between the position of the inspection object S to be detected and the position of the inspection area is calculated.
  • the characteristic shapes appearing in each part of the reconstructed image are, for example, the positions of the intersection 60A and the intersection 60C, the direction of the line 61a, and the surroundings in the reconstructed images 81a to 81d shown in FIG. This is how the portion 63a with different brightness appears.
  • the movement control unit 52 controls the manipulator unit 36 to move the mounting table 30 so that the difference between the sliced scan area and the position of the inspection area calculated by the position difference calculation unit 114 becomes zero.
  • the slice scan of the test object S is performed again.
  • the position of the test object S is corrected so that the position of the thin slice scan (hereinafter referred to as rescan) performed again includes the position of the test area. Therefore, the area of the thin slice scan to be performed again is performed on the inspection area.
  • the area information acquisition unit 112 acquires area information obtained by rescanning.
  • the comparison unit 113 compares the region information acquired by the region information acquisition unit 112 based on the rescan and the master data M stored in the data storage unit 117, and based on the result, the scan region when the rescan is performed Is included in the inspection area set by the inspection range setting unit 115.
  • the comparison unit 113 determines that the rescan region includes the inspection region set by the inspection range setting unit 115
  • the evaluation unit 116 determines that the test object S is based on the region information obtained by the rescan. Evaluate the quality of the product.
  • the position difference calculation unit 114 obtains the region information acquired by the rescan based on the comparison result by the comparison unit 113. The difference between the position on the test object S corresponding to and the position of the test area is calculated, and the same process is repeated thereafter. However, as described above, the position of the test object S is corrected so that the rescan position includes the position of the test area. Therefore, after the position of the test object S is corrected, the rescan position is corrected. Is likely to include the position of the region to be inspected. Thereafter, the inspection of the next test object S is started.
  • whether or not the scan area for thin slice scan or rescan includes the inspection area may be determined based on whether or not the entire inspection area is included in the scan area for thin slice scan or rescan. Alternatively, the determination may be made based on whether or not a part of the area to be inspected is included in the scan area for thin slice scanning or rescanning. The extent to which the region to be inspected must be included in the scan region for thin slice scanning or rescanning may be set as appropriate depending on the purpose of inspection. Whether the scan area for thin slice scan or rescan includes the area to be inspected is, for example, whether the difference in position between the scan area for thin slice scan or rescan and the target partial scan area is exactly zero. It may be determined, or may be performed by determining whether or not the difference between the two is within a predetermined range. The degree of the predetermined difference may be appropriately set depending on the purpose of the inspection.
  • step S11 the inspection range setting unit 115 sets a target partial scan area and proceeds to step S12.
  • step S12 the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to move the mounting table 30 to the thin slice scan movement start position, and proceeds to step S13.
  • step S ⁇ b> 13 the control unit 110 instructs the X-ray control unit 51 to control the X-ray source 2.
  • the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to set each slice plane, rotate the mounting table 30, and move in the Y-axis direction. As a result, thin slice scanning is performed.
  • the inspection unit 118 generates internal information based on the sliced scan data, and proceeds to step 14.
  • the comparison unit 113 compares the region information acquired based on the thin slice scan with the master data M stored in the data storage unit 117, and determines whether the thin scan region includes the region to be inspected. to decide.
  • step S14 When an affirmative determination is made in step S14, the process proceeds to step S15, and the evaluation unit 116 evaluates the non-defectiveness of the test object S based on the area information obtained by the thin slice scanning, and proceeds to step 16.
  • step S16 the data storage unit 117 stores area information based on the sliced scan, information on the positional relationship between the sliced scan area and the inspection area, and information on the evaluation result of the quality of the specimen S, Exit this program.
  • step S14 If a negative determination is made in step S14, the process proceeds to step S17, and the position difference calculation unit 114 calculates the difference between the position of the thin slice scan and the position of the inspection area based on the comparison result by the comparison unit 113, and step S18. Proceed to In step S18, the control unit 110 controls the manipulator unit 36 with respect to the movement control unit 52 so as to cancel the difference in position calculated in step S18, so that the positions of the sliced scan region and the inspection region are determined. It is instructed to move the mounting table 30 so that the difference between the two is zero, and the process proceeds to step S19. In step S ⁇ b> 19, the control unit 110 instructs the X-ray control unit 51 to control the X-ray source 2.
  • the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to measure each slice plane, rotate the mounting table 30, and move in the Y-axis direction. As a result, rescanning is performed.
  • the inspection unit 118 generates internal information based on the rescan data, and proceeds to step 20.
  • the comparison unit 113 determines whether or not the rescan area includes the inspection area. When an affirmative determination is made in step S20, the process proceeds to step S21, and the evaluation unit 116 evaluates the non-defectiveness of the test object S based on the area information obtained by rescanning, and proceeds to step 22.
  • step S22 the data storage unit 117 stores area information based on the thin slice scan, information on the positional relationship between the thin slice scan area and the inspection area, and information on the evaluation result of the non-defectiveness of the inspection object S, Exit this program. If a negative determination is made in step S20, the process returns to step S17.
  • the evaluation unit 116 evaluates the quality of the test object S based on the area information obtained by the partial scan of the test object S.
  • a region to be inspected that is, a region including a region selected as a region to be inspected from a plurality of evaluation regions is divided into unit three-dimensional lattices.
  • Perform grid grid An example of the grid grid 650 is shown in FIG.
  • the grid grid 650 is provided in a three-dimensional manner along each of the UVW directions of orthogonal coordinates including the U axis, the V axis, and the W axis set for the test object S.
  • the inspection area is divided by a plurality of grid grids 650, so that when the test results of the test object S are analyzed, the test results can be handled by the grid grid 650.
  • the volume (volume ratio) of the nest per volume of the unit grid can be calculated, and the quality of the test object S can be evaluated based on the result.
  • the positions of the examination areas with respect to the partial scan areas are the same for each of the plurality of specimens S. become. Therefore, when the inspection areas of the plurality of inspection objects S are formed into a grid grid, the division positions and the division directions of the grid grid 650 can be matched between the inspection areas. That is, it is possible to set individual lattice grids 650 at the same position and inspect based on the plurality of test objects S that are sequentially inspected.
  • the evaluation unit 116 detects the presence / absence of a nest for each lattice grid 650, and calculates the nest volume ratio in the lattice grid 650 when a nest is detected. Further, the evaluation unit 116 calculates the thickness for each grid grid 650. The evaluation unit 116 evaluates the quality of each test object S based on the index set for each lattice grid 650 based on the calculated volume ratio and thickness of the nest.
  • the first embodiment described above has the following operational effects.
  • the area information acquisition unit 112 acquires area information obtained by partial scanning.
  • the comparison unit 113 corresponds to the inspection region set by the inspection range setting unit 115 based on the region information obtained by the partial scan and the master data M stored in the data storage unit 117. Determine whether or not. Thereby, even in a partial scan, that is, a scan of only a part of the test object S, it can be determined whether or not the area to be scanned can be scanned, and it can be determined whether or not the partial scan area is appropriate. Thereby, the test
  • the master data M includes information related to the shape of at least a part of the specimen S.
  • the partial scan area sliced scan area or rescan area
  • the position of the test object S can be corrected when the partial scan (rescan) is performed again. Therefore, even if the test object S is displaced or tilted in the Y-axis direction due to the variation in shape, the substantially same region can be scanned with respect to the plurality of test objects S. Can be minimized. Thereby, the inspection time of the test object S can be shortened and it contributes to the improvement of productivity.
  • the thickness of the master data area is made larger than the thickness of the partial scan area in consideration of variation in the shape of the test object S.
  • the master data M can be generated using information on the outer shape of the test object S obtained by an inspection apparatus other than the X-ray inspection apparatus 100 (for example, a three-dimensional measuring machine). In this case, the test object can be accurately inspected without the design information of the test object S.
  • Master data M can be generated using design information (for example, CAD information) of the test object S. In this case, it is not necessary to generate master data M for the test object S by the X-ray inspection apparatus 100 or other inspection apparatuses.
  • Master data M can be generated using scan data obtained when the X-ray inspection apparatus 100 inspects the first object S1. In this case, the master data M can be generated simultaneously with the inspection, which is efficient.
  • the quality of the specimen S is evaluated based on the area information of the sliced scan area. Further, when it is determined that the thin slice scan area does not correspond to the inspection area, the positional deviation between the thin slice scan area and the inspection area is calculated. Thereby, since the posture of the test object can be easily corrected, there is a high possibility that the rescan area includes the test area, thereby contributing to improvement of productivity.
  • the inspection unit 118 controls the manipulator unit 36 via the movement control unit 52 so that the position shift is zero.
  • the mounting table 30 is configured to move.
  • FIG. 17 is a diagram schematically showing an example of the configuration of an X-ray inspection apparatus 100A according to the second embodiment.
  • the manipulator part 36 ⁇ / b> A of the placement part 3 is not provided with the inclination adjusting part 37.
  • the other configuration is the same as that of the X-ray inspection apparatus 100 of the first embodiment shown in FIG.
  • the master data M is generated in the same manner as in the first embodiment.
  • the X-ray inspection apparatus 100A sequentially inspects the plurality of objects S as follows. First, the test object S is mounted on the mounting table 30. As described above, the test object S can be positioned on the mounting table 30 by bringing the test object S into contact with the positioning pin of the mounting table 30. In the present embodiment, the inclination adjusting unit 37 is not provided. For this reason, the upper surface of the mounting table 30 is always parallel to the XZ plane.
  • the inspection range setting unit 115 sets a partial scan area of the test object S in an area including the inspection area.
  • the length (thickness) of the scan area in the Y-axis direction so that the test area is included in the scan area of one partial scan. ) Is set larger (thicker). That is, the thickness of the partial scan region set in the present embodiment is larger than the thickness of the sliced scan region in the first embodiment.
  • the partial scan in the present embodiment is also referred to as a thick cut scan.
  • the movement control unit 52 controls the manipulator unit 36 to rotate the mounting table 30 and move it in the Y-axis direction.
  • the area information acquisition unit 112 acquires area information obtained by thick cutting scanning.
  • the comparison unit 113 compares the region information acquired by the region information acquisition unit 112 based on the thick slice scan and the master data M stored in the data storage unit 117, and based on the result, the thick slice scan region is determined.
  • the area corresponding to the master data area is specified. That is, it is specified which portion in the area of the master data M has been scanned with a thick cut.
  • the position difference calculation unit 114 extracts an extraction region including the region to be inspected from the region information acquired by the thick slice scan from the positional relationship between the position of the region to be inspected and the thick slice scan region in the region of the master data M. (select.
  • the evaluation unit 116 evaluates the quality of the test object S based on the extraction region. The evaluation result is stored in the data storage unit 117.
  • step S31 the inspection range setting unit 115 sets a thick cut scan region and proceeds to step S32.
  • step S32 the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to move the mounting table 30 to the movement start position for performing the thickness cutting scan, and then proceeds to step S33. move on.
  • step S33 the control unit 110 instructs the X-ray control unit 51 to control the X-ray source 2.
  • the control unit 110 instructs the movement control unit 52 to control the manipulator unit 36 to set each slice plane, rotate the mounting table 30, and move in the Y-axis direction.
  • step S34 the comparison unit 113 compares the region information acquired by the thick slice scan with the master data M stored in the data storage unit 117, and the thick slice scan region is located at which position in the master data region. And the process proceeds to step S35.
  • step S ⁇ b> 35 the position difference calculation unit 114 calculates an extraction region including the region to be inspected from the region information acquired by the thick slice scan from the positional relationship between the position of the region to be inspected and the thick slice scan region in the region of the master data M. Select and proceed to step S36.
  • step S ⁇ b> 36 the evaluation unit 116 evaluates the quality of the test object S based on the region information in the extraction region, and proceeds to step 37.
  • step S37 the data storage unit 117 stores region information based on the thick slice scan, information on the positional relationship between the thick slice scan region and the extraction region, and information on the quality evaluation result of the test object S. End this program.
  • the evaluation unit 116 evaluates the quality of the test object S based on the area information obtained by the thick slice scan of the test object S.
  • the extraction region is divided into unit three-dimensional lattices to form a lattice grid.
  • the evaluation unit 116 performs a grid grid on the extraction region.
  • the extraction regions are the same, and as a result, the grid division position and division direction are the same. That is, the grid grid 650 can be set at substantially the same position for a plurality of specimens S to be sequentially examined, and the same position can be evaluated.
  • the comparison unit 113 is configured to select an extraction region from the thick scan region. This makes it possible to form a grid grid based on the inclination of the evaluation area in the thick-cut scan area, so that the quality of the plurality of test objects S can be evaluated under the same conditions, and the reliability of the evaluation Will improve.
  • the thickness of the thick scan region was increased. Accordingly, since the inspection region is included in the scan region, the inspection region can be reliably evaluated by one thick cut scan, which contributes to improvement in productivity.
  • Embodiment of structure manufacturing system An embodiment of a structure manufacturing system including the X-ray inspection apparatus 100 according to the first embodiment described above or the X-ray inspection apparatus 100A according to the second embodiment will be described.
  • the structure manufacturing system creates a molded product such as an electronic component including, for example, an automobile door portion, an engine portion, a gear portion, and a circuit board.
  • the structure manufacturing system will be described as including the X-ray inspection apparatus 100 described in the first embodiment.
  • the structure manufacturing system includes the X-ray inspection apparatus 100A described in the second embodiment. Since the same applies to the case where it is, the description thereof is omitted.
  • FIG. 19 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to this embodiment.
  • the structure manufacturing system 400 includes the X-ray inspection apparatus 100 described in the first embodiment, a design apparatus 410, a molding apparatus 420, a control system 430, and a repair apparatus 440.
  • the design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information.
  • the design information is information indicating the coordinates of each position of the structure.
  • the design information is output to the molding apparatus 420 and a control system 430 described later.
  • the molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410.
  • the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
  • the X-ray inspection apparatus 100 performs an inspection process for inspecting the shape of the structure molded by the molding apparatus 420.
  • the X-ray inspection apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is an inspection result obtained by inspecting the structure, to the control system 430.
  • shape information information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is an inspection result obtained by inspecting the structure, to the control system 430.
  • the control system 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
  • the inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray inspection apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing.
  • the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
  • the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440.
  • the defective part is the coordinate of the shape information that does not match the coordinate of the design information
  • the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part.
  • the repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
  • step S81 the design apparatus 410 is used when the structure is designed by the user.
  • the design apparatus 410 creates and stores design information related to the shape of the structure by the design process, and the process proceeds to step S82.
  • the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is.
  • step S82 the forming apparatus 420 creates and forms a structure based on the design information by the forming process, and proceeds to step S83.
  • step S83 the X-ray inspection apparatus 100 performs inspection processing, measures the shape of the structure, outputs shape information, and proceeds to step S84.
  • step S84 the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information inspected and output by the X-ray inspection apparatus 100, and the process proceeds to step S85.
  • step S85 based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S85 and the process ends.
  • step S85 If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information or if coordinates that are not in the design information are detected, a negative determination is made in step S85 and the process proceeds to step S86.
  • step S86 the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part is not repairable, that is, if the difference between the coordinates of the design information and the shape information in the defective part exceeds the predetermined range, a negative determination is made in step S86 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S86 and the process proceeds to step S87. In this case, the inspection unit 432 outputs repair information to the repair device 440.
  • step S87 the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S83. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
  • the structure manufacturing system described above has the following effects.
  • the X-ray inspection apparatus 100 of the structure manufacturing system 400 performs an inspection process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection of the control system 430.
  • the unit 432 performs an inspection process for comparing the shape information acquired by the inspection process with the design information created by the design process. Therefore, it is possible to determine whether or not a structure is a non-defective product created according to design information by inspecting the defect of the structure and information inside the structure by nondestructive inspection. Contribute to.
  • the repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
  • the comparison unit 113 changes the thin slice scan region to the inspection range setting unit. It is configured to determine whether or not it corresponds to the inspection area set in 115. That is, in the above description, it is assumed that the sliced scan area is included in the master data area. However, if the error of the shape of the test object S is larger than expected or the thickness of the master data area is inappropriate, there is a possibility that the sliced scan area is out of the master data area.
  • the comparison unit 113 determines whether the sliced scan area is included in the master data area. You may make it determine. As a result, even if the shape error of the specimen S is larger than expected or the master data area is small and inappropriate, for example, the thickness of the scan area is increased and the partial scan is performed again. If the thick partial scan area and the master data area overlap, the position of the thick partial scan area can be specified, and the positional relationship with the evaluation area can also be grasped.
  • the information used for the evaluation of the quality of the test object S is obtained by one thick scan, but the following may be used. . That is, even if the manipulator part 36A of the placement part 3 is not provided with the inclination adjustment part 37, the thin slice scan may be performed as the first partial scan as in the first embodiment. Good. Specifically, the thin slice scan (partial scan) similar to that of the first embodiment is performed for the first time, and the positions of the first partial scan region and the region to be inspected set by the inspection range setting unit 115 are determined. Calculate the difference. Then, based on the calculated position difference, an area including the evaluation area is reset as the target partial scan area, and the second partial scan is performed.
  • the thickness of the target partial scan region when performing the second partial scan is the same as that of the test object S even if the test object S is tilted. It is set to include the inspection area.
  • the inspection range setting unit 115 is based on the position difference. Then, the second partial scan region of the test object S is set in a region including the test region. As described above, the thickness of the target partial scan region when the partial scan is performed for the second time is set so as to include the inspection region even when the inspection object S is inclined.
  • the second partial scan for the test object S is performed.
  • the thickness of the target partial scan region is set so that the region to be inspected is included in the partial scan region in the second partial scan
  • the region to be inspected is included in the second partial scan region. included.
  • the operation of each part after the second partial scan is performed is the same as the operation of each part after the thick slice scan in the second embodiment described above.
  • the partial scan may be performed twice.
  • the second scan is performed.
  • the inspection time of one specimen S can be shortened. That is, when the variation in the outer shape of the test object S is large and the deviation or inclination in the Y-axis direction is large, the thickness of the thick-cut scan region must be increased, and even with one partial scan, As described above, there is a possibility that the inspection time becomes longer than in the case where the partial scan is performed twice. Therefore, when the variation in the outer shape of the test object S is large, the inspection time of one test object S can be shortened compared to the second embodiment, which contributes to the improvement of productivity. To do.
  • the area SXa for the master data M has been described as including the evaluation area 62 as shown in FIG.
  • the characteristic shape as described above is difficult to appear in the reconstructed image in the vicinity of the evaluation region 62, so that it is difficult to specify the position of the slice plane. It becomes.
  • an area SXa for the master data M is set at a location away from the evaluation area 62.
  • the master data area is separated from the evaluation area to be inspected, that is, the inspection area, information used for evaluating the quality of the inspection object S is acquired as follows. .
  • the inspection range setting unit 115 sets a target partial scan area in a partial area of the master data area.
  • the control unit 110 controls each unit so as to perform the first partial scan of the test object S.
  • the comparison unit 113 compares the region information acquired by the region information acquisition unit 112 with the master data M stored in the data storage unit 117 based on the first partial scan, and based on the result, the first time
  • the partial scan area is identified as to which area in the master data area. If the position of the first partial scan area corresponds to which position in the master data area, the difference between the position of the first partial scan area and the position of the area to be inspected can also be known. Therefore, the position difference calculation unit 114 calculates the difference in position between the first partial scan region and the region to be inspected.
  • the movement control unit 52 controls the manipulator unit 36 so that the difference in position is zero, and the mounting table 30. Move.
  • the scan area of the second partial scan includes the inspection area.
  • the X-ray inspection apparatus 100 may include an X-ray source that emits a cone beam and a detector 4 having a structure in which pixels are arranged in a two-dimensional manner instead of a line sensor.
  • a signal may be output from the pixels arranged in a line according to the slice plane 700 from the detector 4.
  • the slice plane 700 can be displaced in directions other than the Y direction.
  • the upper surface of the mounting table 30 is set parallel to the XZ plane, and the test object S is It mounted on the mounting surface with the attitude
  • the following procedure may be adopted prior to generating the master data M.
  • the surface reference 604 is usually provided on the specimen S that is a cast product.
  • the surface reference 604 is an area for setting a reference surface.
  • the reference surface is set by three surface references.
  • the reference plane is set as a reference for measuring the dimension of the test object.
  • the surface reference 604 is set at a position deeper than the surrounding casting surface 605, so that the surface of the cast product is processed.
  • the surface-based surface remains unprocessed. For example, as shown in FIG.
  • the height is set so that the surface of the surface reference 604 remains unprocessed even if the casting surface 605 of the casting is processed to the surface indicated by the two-dot chain line 605a.
  • the upper surface of the mounting table 30 is set parallel to the XZ plane, the first test object S1 is mounted on the mounting table 30, and a positioning pin (not shown) is provided.
  • the first test object S1 is brought into contact with the first test object S1, and the first test object S1 is positioned on the mounting table 30. In this state, three surface references 604 of the first test object S1 are measured with a three-dimensional measuring instrument.
  • the tilt adjustment mechanism is operated so that the tilt of the reference surface with respect to the mounting surface 30 is zero. That is, the tilt adjustment mechanism is operated to match the apparatus coordinate system of the X-ray inspection apparatus 100 with the coordinate system of the first test object S. Thereafter, the master data M is generated from the first test object S by performing a partial scan while rotating the mounting table 30.
  • the scan thickness when generating the master data M is set based on the calculated tilt of the reference surface with respect to the mounting surface.
  • the three-dimensional measuring device may be a contact type three-dimensional measuring device or a non-contact type three-dimensional measuring device. Further, it may be a three-dimensional measuring device installed inside the X-ray inspection apparatus 100 or a portable three-dimensional measuring device.
  • the measurement target includes a reference region such as a surface reference in the measurement
  • the position is calculated even if the surface reference and the other slice regions are continuous or separated. can do.
  • the reference portion is not included in the measurement range, it is not known whether the target region is the actual measurement region. In some cases, there is a problem that a region outside the target region is measured.
  • the master data M since the master data M is generated, it can be determined whether or not the measurement region is the target region even when the reference region is not included. Furthermore, by comparing the position of the measurement area with the master data M, the position can be obtained.
  • the outer shape of the test object S may be measured by a three-dimensional measuring instrument or the like in a state where the surface reference 604 is received by the measuring jig after casting.
  • the following procedure may be introduced prior to generation of the master data M. That is, when the outer shape is measured by a three-dimensional measuring instrument or the like in a state where the measurement jig receives the surface reference 604 of the cast product, the initial test object S1 is mounted on the mounting table 30 of the X-ray inspection apparatus 100. Also measure the surface. Thereby, the inclination of the mounting surface in the X-ray inspection with respect to the reference surface based on the surface reference 604 can be calculated.
  • the procedure for generating the master data M after the inclination of the mounting surface with respect to the reference surface is calculated is the same as the procedure described above.
  • the master data M may be generated based on the outer shape of the test object S obtained by an inspection apparatus other than the X-ray inspection apparatus 100. .
  • the master data M can be generated as follows.
  • the upper surface of the mounting table 30 is set parallel to the XZ plane, and is mounted on the mounting table 30 by a non-contact type three-dimensional measuring device (hereinafter simply referred to as the three-dimensional measuring device 200) such as a portable three-dimensional measuring device 200.
  • the three-dimensional measuring device 200 such as a portable three-dimensional measuring device 200.
  • the measurement range S1a in the Y-axis direction may be small. That is, measurement is performed at a plurality of positions in a thin area in the Y-axis direction, and outline information is obtained.
  • the measurement result is acquired by the configuration information acquisition unit 111 shown in FIG.
  • the position difference calculation unit 114 obtains information on the inclination of the first test object S1 in the apparatus coordinate system based on the first measurement result and, for example, the design information of the first test object S1.
  • the inclination adjusting mechanism is operated so that the inclination of the reference surface with respect to the mounting surface is zero. That is, the tilt adjustment mechanism is operated to match the coordinate system of the mounting table 30 with the coordinate system of the first test object S.
  • the three-dimensional measuring device 200 measures a plurality of positions in a region having a predetermined thickness in the Y-axis direction while rotating the mounting table 30. Master data is generated from the first specimen S based on the obtained measurement information.
  • the mounting table 30 does not have a tilt adjustment mechanism, based on the obtained tilt information, the thickness in the Y-axis direction when measuring with the three-dimensional measuring device 200 is set, and a plurality of positions are set. Measure for position.
  • master data M is generated from the first test object S.
  • the mounting table 30 does not have an inclination adjusting mechanism, the thickness in the Y-axis direction generally increases. Note that when the first test object S1 is measured by the three-dimensional measuring device 200, the first test object S1 may be mounted on another mounting table instead of the mounting table 30 of the X-ray inspection apparatus 100.
  • the master data M is data generated from information based on the outer shape of the test object S obtained by an inspection apparatus other than the X-ray inspection apparatus 100
  • the three-dimensional measuring device 200 may measure the outer shape of a part of the specimen S in the Y-axis direction. Then, a partial scan corresponding to the rescan in the first embodiment may be performed with reference to the measurement result by the three-dimensional measuring device 200.
  • a program for realizing the control function is recorded on a computer-readable recording medium, and the above-described control-related program recorded on the recording medium is read into the computer system and executed.
  • the “computer system” includes an OS (Operating System) and peripheral hardware.
  • the “computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, and a memory card, and a storage device such as a hard disk built in the computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case may be included and a program that holds a program for a certain period of time may be included.
  • the above program may be for realizing a part of the functions described above, or may be realized by a combination with the program already recorded in the computer system. .
  • FIG. 22 is a diagram showing this state.
  • the personal computer 950 is provided with a program via the CD-ROM 953.
  • the personal computer 950 has a function of connecting to the communication line 951.
  • a computer 952 is a server computer that provides the program, and stores the program in a recording medium such as a hard disk.
  • the communication line 951 is a communication line such as the Internet or personal computer communication, or a dedicated communication line.
  • the computer 952 reads the program using the hard disk and transmits the program to the personal computer 950 via the communication line 951. That is, the program is transmitted as a data signal by a carrier wave and transmitted via the communication line 951.
  • the program can be supplied as a computer-readable computer program product in various forms such as a recording medium and a carrier wave.
  • the setting of the measurement conditions of the X-ray inspection apparatus 100 in the embodiment described above will be described.
  • the measurement conditions for selecting and inspecting the region to be inspected in the above-described embodiment will be described.
  • the X-ray inspection apparatus 100 will be described.
  • An example will be described in which a region to be inspected is selected and partial scanning is performed.
  • an inspection area is set (S41). For example, when a region to be inspected is selected, the X-ray inspection apparatus 100 calculates a distance through which X-rays irradiated to the object pass.
  • the inspection time is shortened.
  • the optimum mounting direction of the test object is determined from the total number of slice surfaces with respect to the test object S and the total movement amount of the test object S.
  • the distance that the X-ray passes through the test object is calculated.
  • the X-ray inspection apparatus estimates the required X-ray intensity from the distance through which the X-ray passes and the material of the test object.
  • the acceleration voltage and current of the X-ray source that irradiates the X-ray to achieve the estimated X-ray intensity are estimated.
  • the exposure time of a detector that detects X-rays transmitted through the test object may be used.
  • the X-ray measurement conditions may be determined according to the size of the defect. In this way, thin slice scanning is performed using the estimated measurement conditions (S44). Before performing thin slice scanning, the test object is moved to a predetermined position by moving the mounting table 30. The X-ray measurement conditions may be set before or after moving the mounting table 30. Next, a projection image or a reconstructed image after thin slice scanning is created. It is estimated whether the created projection image or reconstructed image is optimal for inspection (S45).
  • the measurement conditions are reset again (S46). For example, the exposure time is increased so that the size of the defect in the internal structure can be recognized.
  • the defect of the internal structure can be recognized by adjusting the contrast of the projection image and the reconstructed image, the contrast of the image may be adjusted and the measurement using the X-rays may be unnecessary.
  • PCT / JP2014 / 073096 and / or PCT / JP2014 / 073097 may be partially used.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Quality & Reliability (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 X線検査装置に用いる測定処理装置であって、第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する領域情報取得部と、第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報を格納する格納部と、第1領域情報と第2領域情報とに基づいて、第1領域に対応する領域が第2領域に含まれているかを判定する判定部と、を備える。

Description

測定処理装置、X線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法
 本発明は、測定処理装置、X線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法に関する。
 従来から、非破壊用内部検査用途としてX線計測装置を使用して、被検物を設計三次元データとの比較や、被検物の肉厚、内部欠陥の評価を行う技術が知られている(たとえば特許文献1)。
米国公開特許2013-0083896号
 同一条件で製造された複数の被検物について、被検物の全体でなく一部分をX線計測装置で測定する場合、複数の被検物のそれぞれについて同じ場所を測定する必要がある。しかし、たとえば被検物が鋳造品である場合、溶融金属が凝固するときの収縮や、金型の摩耗の影響によって、形状にばらつきが生じるおそれがある。また、加工前の鋳肌には凹凸がある。これらにより、被検物毎に高さや傾きが異なるおそれがあり、複数の被検物のそれぞれについて同じ領域を測定できなくなるという問題がある。特に、鋳肌の面が載置部に接触するように載置された場合、このような問題が顕在化する。
(1)本発明の第1の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する領域情報取得部と、第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報を格納する格納部と、第1領域情報と第2領域情報とに基づいて、第1領域に対応する領域が第2領域に含まれているかを判定する判定部と、を備える。
(2)本発明の第2の態様によると、第1の態様の測定処理装置において、第1領域は、第1被検物の所定の断面を含んだ所定の厚さを有し、第2領域は、第1領域よりも大きい厚さを有することが好ましい。
(3)本発明の第3の態様によると、第2の態様の測定処理装置において、 第1被検物と第2被検物とは同等の構造を有し、第2領域情報は、第2被検物の構造を表す設計データに基づく情報であることが好ましい。
(4)本発明の第4の態様によると、第2の態様の測定処理装置において、第1被検物と第2被検物とは同等の構造を有し、第2領域情報は、第2被検物の第2領域を透過したX線に基づく情報であることが好ましい。
(5)本発明の第5の態様によると、第2の態様の測定処理装置において、第1被検物と第2被検物とは同等の構造を有し、第2領域情報は、X線検査装置以外の測定検査装置が第2被検物の第2領域の少なくとも一部を測定した測定情報であることが好ましい。
(6)本発明の第6の態様によると、第2の態様の測定処理装置において、判定部をさらに備え、第2領域情報は、第1被検物の検査対象の領域に関する検査対象領域情報を含み、判定部は、第1領域情報と第2領域情報とに基づいて、第1領域情報が検査対象領域情報に対応するか否かを判定することが好ましい。
(7)本発明の第7の態様によると、第6の態様の測定処理装置において、判定部で第1領域情報が検査対象領域情報に対応すると判定されると、第1領域情報に基づいて当該第1領域の状態を評価する評価部と、判定部で第1領域情報が検査対象領域情報に対応しないと判定されると、第1領域情報と第2領域情報とに基づいて、第1領域と検査対象の領域との位置の差を算出する位置差算出部とをさらに備えることが好ましい。
(8)本発明の第8の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、被検物の検査対象領域を含み、検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、被検物の一部領域を透過したX線に基づいて一部領域に関する領域情報を取得する領域情報取得部と、領域情報と所定領域情報とに基づき、一部領域が検査対象領域に対応するか否かを判定する判定部と、を備える。
(9)本発明の第9の態様によると、第8の態様の測定処理装置において、所定領域情報は、被検物の構造を表す設計データに基づく情報であることが好ましい。
(10)本発明の第10の態様によると、第8の態様の測定処理装置において、所定領域情報は、被検物の所定領域を透過したX線に基づく情報であることが好ましい。
(11)本発明の第11の態様によると、第8の態様の測定処理装置において、所定領域情報は、X線検査装置以外の測定検査装置が被検物の所定領域の少なくとも一部を測定した測定情報であることが好ましい。
(12)本発明の第12の態様によると、第8の態様の測定処理装置において、判定部で一部領域が検査対象領域に対応すると判定されると、領域情報に基づいて当該一部領域の状態を評価する評価部と、判定部で一部領域が検査対象領域と対応しないと判定されると、領域情報と所定領域情報とに基づいて、一部領域と検査対象領域との位置の差を算出する位置差算出部とをさらに備えることが好ましい。
(13)本発明の第13の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、被検物の一部領域を透過したX線に基づいて一部領域に関する領域情報を取得する領域情報取得部と、被検物の一部領域に関する基準情報を格納する基準情報格納部と、領域情報と基準情報とに基づいて、一部領域の位置を特定する位置特定部と、を備える。
(14)本発明の第14の態様によると、X線検査装置は、第1乃至13のいずれかの態様の測定処理装置と、被検物にX線を照射するX線源と、被検物を透過したX線を検出する検出部と、を備える。
(15)本発明の第15の態様によると、X線検査装置は、第1乃至7のいずれかの態様の測定処理装置と、被検物にX線を照射するX線源と、被検物を透過したX線を検出する検出部と、を備え、第1、第2領域は、X線源の発光点と、検出部の中心とで囲まれた領域と直交する方向において、大きさが異なる。
(16)本発明の第16の態様によると、X線検査装置は、第7の態様の測定処理装置と、第1被検物にX線を照射するX線源と、第1被検物を透過したX線を検出する検出部と、X線源または検出部と第1被検物との位置関係を変更する位置関係変更部と、を備え、第1領域情報は、検出部の検出結果に基づく情報であり、位置関係変更部は、判定部で第1領域情報が検査対象領域情報と対応しないと判定されると、位置差算出部で算出された位置の差に基づいて、検出部で検査対象の領域を透過したX線を検出するように位置関係を変更する。
(17)本発明の第17の態様によると、X線検査装置は、第12の態様の測定処理装置と、被検物にX線を照射するX線源と、被検物を透過したX線を検出する検出部と、X線源または検出部と被検物との位置関係を変更する位置関係変更部と、を備え、領域情報は、検出部の検出結果に基づく情報であり、位置関係変更部は、判定部で一部領域が検査対象領域と対応しないと判定されると、位置差算出部で算出された位置の差に基づいて、検出部で検査対象領域を透過したX線を検出するように位置関係を変更する。
(18)本発明の第18の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、被検物の検査対象領域を含み、検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得部と、第1領域情報と所定領域情報とに基づき、第1領域における検査対象領域に対応する領域を特定する特定部と、を備える。
(19)本発明の第19の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、被検物の検査対象領域を含み検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得部と、第1領域情報と所定領域情報とに基づき、第1領域情報が検査対象領域に関する検査対象領域情報を含むか否かを判定する第1の判定部と、第1の判定部によって第1領域情報が検査対象領域情報を含まないと判定された場合に、第1領域を含み第1領域よりも大きい第2領域を透過したX線に基づく第2領域情報を取得する第2領域情報取得部と、第2領域情報から検査対象領域情報を抽出する抽出部と、を備える。
(20)本発明の第20の態様によると、X線検査装置は、第7の態様の測定処理装置と、第1被検物にX線を照射するX線源と、第1被検物を透過したX線を検出する検出部と、検出部で第1被検物を透過したX線を検出する検出範囲を設定する検出範囲設定部と、を備え、領域情報取得部は、検出部で検出した第1被検物を透過したX線に基づいて第1領域情報を取得し、検出範囲設定部は、判定部で第1領域情報が検査対象領域情報と対応しないと判定されると、位置差算出部で算出された位置の差に基づいて、検査対象の領域を含む新たな検出範囲を設定する。
(21)本発明の第21の態様によると、測定処理方法は、第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得し、第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報と、第1領域情報とに基づいて、第1領域に対応する領域が第2領域に含まれているかを判定する。
(22)本発明の第22の態様によると、測定処理方法は、被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得し、被検物の検査対象領域を含み、検査対象領域よりも大きい所定領域に対応する所定領域情報と、第1領域情報とに基づき、第1領域が検査対象領域に対応するか否かを判定する。
(23)本発明の第23の態様によると、測定処理方法は、被検物の一部領域を透過したX線に基づいて一部領域に関する領域情報を取得し、被検物における一部領域の位置を特定するための基準情報と、領域情報とに基づいて、被検物における一部領域の位置を特定する。
(24)本発明の第24の態様によると、測定処理プログラムは、第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する領域情報取得処理と、前第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報と、第1領域情報とに基づいて、第1領域に対応する領域が第2領域に含まれているかを判定する判定処理とをコンピュータに実行させる。
(25)本発明の第25の態様によると、測定処理プログラムは、被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得処理と、被検物の検査対象領域を含み、検査対象領域よりも大きい所定領域に対応する所定領域情報と、第1領域情報とに基づき、第1領域が検査対象領域に対応するか否かを判定する判定処理とをコンピュータに実行させる。
(26)本発明の第26の態様によると、測定処理プログラムは、被検物の一部領域を透過したX線に基づいて一部領域に関する領域情報を取得する領域情報取得処理と、被検物における一部領域の位置を特定するための基準情報と、領域情報とに基づいて、被検物における一部領域の位置を特定する特定処理とをコンピュータに実行させる。
(27)本発明の第27の態様によると、構造物の製造方法は、構造物の形状に関する設計情報を作成し、設計情報に基づいて構造物を作成し、作成された構造物の形状を、第1乃至14のいずれか一つの態様の測定処理装置もしくは第16の態様のX線検査装置を用いて計測して形状情報を取得し、取得された形状情報と設計情報とを比較する。
(28)本発明の第28の態様によると、測定処理装置は、X線検査装置に用いる測定処理装置であって、第1被検物の一部領域を透過したX線を検出して第1領域に関する第1領域情報を取得する領域情報取得部と、第1領域情報を取得する際の第1被検物の傾きを検出する、傾き検出部と、傾き検出部で検出した第1被検物の傾きと、基準となる傾きとを比較する比較部と、を備える。
(29)本発明の第29の態様によると、第28の態様の測定処理装置において、領域情報取得部は、第2被検物の一部領域を透過したX線を検出して第2領域に関する第2領域情報を取得し、傾き検出部は、第2領域情報を取得する際の第2被検物の傾きを検出し、比較部は、傾き検出部で検出した第1被検物の傾きと、第2被検物の傾きとを比較することが好ましい。
(30)本発明の第30の態様によると、第28の態様の測定処理装置において、傾き検出部は、第1領域情報に基づいて、第1領域情報を取得する際の第1被検物の傾きを検出することが好ましい。
 本発明の態様は、検出不良を抑制できる、測定処理装置、X線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法を提供することを目的とする。
第1の実施の形態のX線検査装置の構成の一例を模式的に示す図 検査処理装置のブロック図 マスターデータの説明のための被検物について模式的に示す図 マスターデータの領域を示す図 マスターデータの領域を示す図 (a)は、スライス面と再構成画像との関係を示す概念図であり、(b)は、スライス面の再構成画像を示す概念図である。 (a)は、スライス面と再構成画像との関係を示す概念図であり、(b)は、スライス面の再構成画像を示す概念図である。 (a)は、スライス面と再構成画像との関係を示す概念図であり、(b)は、スライス面の再構成画像を示す概念図である。 (a)は、スライス面と再構成画像との関係を示す概念図であり、(b)は、スライス面の再構成画像を示す概念図である。 異なるスライス面に対応する再構成画像を示す概念図である。 (a)は、被検物としてエンジンのシリンダーブロックを検査する場合に設定される評価領域の一例を示す図であり、(b)は、面基準を説明する図である。 (a)~(e)は、スライス位置を少しずつ変更しながら複数のスライス面についてX線検査を行うことにより得られる再構成画像を模式的に示す図である。 (a)は、評価領域の検査に用いるべきスライス面の再構成画像として選択された再構成画像を示し、(b)は、マスターデータの該当するデータに対して回転が算出された場合の再構成画像を示す。 初回被検物の測定情報からマスターデータを生成する処理を説明するフローチャート 第1の実施の形態の検査処理を説明するフローチャート 格子グリッドを説明する図 第2の実施の形態のX線検査装置の構成の一例を模式的に示す図 第2の実施の形態の検査処理を説明するフローチャート 実施の形態による構造物製造システムの構成の一例を示すブロック図 構造物製造システムの処理を説明するフローチャート (a)は、薄い領域について外形測定を行う概念図であり、(b)は厚い領域について外形測定を行う概念図である。 プログラム製品を提供するために用いる機器の全体構成を説明する図 実施の形態による測定条件の設定を説明するフローチャート
---第1の実施の形態---
 図面を参照しながら、本発明の第1の実施の形態によるX線検査装置およびX線検査装置用の検査処理装置について説明する。X線検査装置は、被検物にX線を照射して、被検物を透過した透過X線を検出することにより、被検物の内部情報(たとえば内部構造)等を非破壊で取得する。本実施の形態においては、X線検査装置が、エンジンブロック等の鋳造品の内部情報を取得して、その品質管理等を行うための内部検査装置として用いられる場合を例に挙げて説明を行う。
 なお、X線検査装置100は、エンジンブロックのような鋳造品に限らず、樹脂成型品、部材同士を接着剤や溶接によって接合した場合の接合部の内部構造の形状情報を取得して、これらの検査を行うものであっても良い。
 また、本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。
 図1は本実施の形態によるX線検査装置100の構成の一例を模式的に示す図である。なお、説明の都合上、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。
 X線検査装置100は、検査処理装置1、X線源2、載置部3、検出器4、制御装置5、表示モニタ6および入力操作部11を備えている。なお、検査処理装置1がX線検査装置100とは別体に構成されるものについても本発明の一態様に含まれる。X線源2、載置部3および検出器4は、工場等の床面上にXZ平面が実質的に水平となるように配置された筐体(不図示)の内部に収容される。筐体はX線が外部に漏洩しないようにするために、材料として鉛を含む。
 X線源2は、制御装置5による制御に応じて、図1に示す出射点Qを頂点としてZ軸に平行な光軸Zrに沿って、Z軸+方向へ向けて扇状のX線(いわゆるファンビーム)を放射する。出射点QはX線源2のフォーカルスポットに相当する。すなわち、光軸Zrは、X線源2のフォーカルスポットである出射点Qと、後述する検出器4の撮像領域の中心とを結ぶ。なお、X線源2は扇状にX線を放射するものに代えて、円錐状のX線(いわゆるコーンビーム)を放射するものについても本発明の一態様に含まれる。X線源2は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20~100keVの硬X線、さらに100keV以上のエネルギーを有するX線の少なくとも1つを放射することができる。
 載置部3は、被検物Sが載置される載置台30と、回転駆動部32、Y軸移動部33、X軸移動部34、Z軸移動部35、および傾斜調整部37からなるマニピュレータ部36とを備え、X線発生部2よりもZ軸+側に設けられている。載置台30は、回転駆動部32により回転可能に設けられ、回転駆動部32による回転軸YrがX軸、Y軸、Z軸方向に移動する際に、ともに移動する。また、載置台30のXZ平面に対する傾き、すなわち、載置台30の上面と回転軸Yrとの成す角度は、傾斜調整部37によって調整可能である。
 回転駆動部32は、たとえば電動モータ等によって構成され、後述する制御装置5により制御されて駆動した電動モータが発生する回転力によって、Y軸に平行であり、かつ、載置台30の中心を通過する軸を回転軸Yrとして載置台30を回転させる。Y軸移動部33、X軸移動部34、Z軸移動部35、および傾斜調整部37は、制御装置5により制御されて、X線発生部2から射出されたX線の照射範囲内に被検物Sが位置するように、載置台30をX軸方向、Y軸方向およびZ軸方向にそれぞれ移動させるとともに、載置台30のXZ平面に対する傾きを変更する。さらに、Z軸移動部35は、制御装置5により制御されて、X線源2から被検物Sまでの距離が、撮影される画像における被検物Sが所望の拡大率となる距離に載置台30をZ軸方向に移動させる。
 検出器4は、X線源2および載置台30よりもZ軸方向+側に設けられている。すなわち、載置台30は、Z軸方向において、X線源2と検出器4との間に設けられる。検出器4は、XY平面に平行な面上にX軸方向に延伸する入射面41を有する、いわゆるラインセンサであり、X線源2から放射され、載置台30上に載置された被検物Sを透過した透過X線を含むX線が入射面41に入射する。検出器4は、公知のシンチレーション物質を含むシンチレータ部と、光電子増倍管と、受光部等とによって構成され、シンチレータ部の入射面41に入射したX線のエネルギーを可視光や紫外光等の光エネルギーに変換して光電子増倍管で増幅し、当該増幅された光エネルギーを上記の受光部で電気エネルギーに変換し、電気信号として制御装置5へ出力する。
 なお、検出器4は、入射するX線のエネルギーを光エネルギーに変換することなく電気エネルギーに変換し、電気信号として出力してもよい。検出器4は、シンチレータ部と光電子増倍管と受光部とがそれぞれ複数の画素として分割された構造を有している。これにより、X線源2から放射され、被検物Sを通過したX線の強度分布を取得できる。なお、検出器4として、光電子増倍管を設けずに、シンチレータ部が受光部(光電変換部)の上に直接形成された構造であってもよい。
 なお、検出器4はラインセンサに限られず、2次元平面の検出器でも構わない。すなわち、本実施形態において、検出器4のラインセンサは、XY平面に平行な面上にX軸方向に延伸する入射面41を有するが、入射面41はY軸方向には1つのみ配置されている。また、XY平面において、X軸方向に複数の入射面41が配置されている。また、複数の入射面41のそれぞれが、独立してX線の強度を検出することが可能である。本実施形態において、入射面41はY軸方向に複数配列されていても構わない。たとえば図1のXY平面において、X軸方向およびY軸方向に複数の入射面41が配置される2次元平面の検出器でも構わない。また、2次元平面の検出器を用いる場合に、Y軸方向に複数配列される入射面41のうち、Y軸方向の所定位置におけるX軸方向の入射面41のみを使用し、ラインセンサとして使用しても構わない。この場合には、Y軸方向の所定位置におけるX軸方向の入射面41のX線の強度分布を取得し、Y軸方向の所定位置で取得されるX線の強度分布から被検物Sの形状情報を解析しても構わない。また、この場合に、Y軸方向の複数の位置でのX軸方向の入射面41のX線の強度分布を取得する際には、Y軸方向に互いに離れた位置でのX軸方向の入射面41のX線の強度分布を取得しても構わない。
 X線源2と載置部3と検出器4とはフレーム(不図示)によって支持される。このフレームは、十分な剛性を有して製造される。したがって、被検物Sの投影像を取得中に、X線源2、載置部3および検出器4を安定に支持することが可能となる。また、フレームは除振機構(不図示)により支持されており、外部で発生した振動がフレームにそのまま伝達することを防いでいる。
 入力操作部11は、キーボードや各種ボタン、マウス等によって構成され、オペレータによって、後述するように被検物Sを検査する際に被検査領域の位置を入力したり、被検査領域の更新をしたりする際に操作される。入力操作部11は、オペレータによって操作されると、操作に応じた操作信号を検査処理装置1へ出力する。
 制御装置5は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線検査装置100の各部を制御する。制御装置5は、X線制御部51と、移動制御部52と、画像生成部53と、画像再構成部54とを備える。X線制御部51はX線源2の動作を制御し、移動制御部52はマニピュレータ部36の移動動作を制御する。画像生成部53は検出器4から出力された電気信号に基づいて被検物SのX線投影画像データを生成し、画像再構成部54はマニピュレータ部36を制御しながらそれぞれの投影方向の異なる被検物Sの投影画像データに基づいて、公知の画像再構成処理を施して再構成画像を生成する。本実施形態では、Y軸方向において異なる位置で取得された再構成画像を基に、画像再構成部54内部に設けられたサーフェスモデル構築部により、被検物Sの内部構造である3次元の形状情報が生成される。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。
 X線検査装置100は、被検物Sの内部構造の検査を行う際に、載置台30をXYZの各方向に移動させるとともに、載置台30の傾斜角度を調整して被検物Sを検査位置に位置させる。そして、X線検査装置100は、X線源2からY軸方向に所定の幅を有するスリットビームを載置台30の回転駆動に伴って回転する被検物Sに向けて照射する。検出器4は被検物Sを透過したX線を含む透過X線を受光して、上記のスリットビームのY軸方向の幅(たとえば、およそ1mm)に応じた被検物Sの断面の被検物Sの形状情報を得る。X線検査装置100は、回転駆動中の被検物Sへのスリットビームの照射と、上記の載置台30のY軸方向への移動、すなわち被検物SのY軸方向への移動とを繰り返し行う。スリットビームが、載置台30に載置された被検物SのY軸方向の長さの全域に及ぶ範囲で行われると、被検物Sの全体の形状情報を生成することができる(以後、フルスキャンと呼ぶ)。スリットビームの照射が、載置台30に載置された被検物SのY軸方向の長さの一部の範囲で行われる場合には、該当部分の透過像を取得し、その透過像に基づいて被検物Sの一部分の形状情報を生成できる(以後、部分スキャンと呼ぶ)。
 なお、本明細書では、以下の説明において、上記の被検物Sとスリットビームが重なる領域をスライス面と呼ぶ。本実施の形態において、出射点Qと検出器4の入射面41とで規定される領域に被検物Sが配置されると、被検物Sを透過したX線を検出することができる。この場合、被検物Sを透過したX線の検出可能範囲をスライス面と呼ぶ。スライス面は、所定の幅を持った領域である。なお、本実施の形態では、検出器4の入射面41と出射点Qとで規定される領域と被検物Sとが重複する領域がスライス面である。勿論、スライス面は、たとえば出射点Qと検出器4の中心とを結ぶ領域であっても構わない。載置台30のY軸方向への移動に伴って、載置台30上の被検物Sに対するスライス面の位置は相対的にY軸方向に移動する。以下の説明においては、このスライス面の被検物Sに対する相対的な移動を変位と呼び、そのときの移動量を変位量と呼ぶ。なお、本実施の形態において、所定位置での所定領域を検出した後に載置台30をY軸方向へ移動させる場合には、移動前に検出した所定領域と移動後に検出した所定領域とが重複しないようにする。勿論、一部重複しても構わない。本実施形態においては、X線源2の出射点Qと検出器4の中心とで囲まれた領域に対して、交差する方向に載置台30を移動させる。これにより、載置台30の移動により、移動前では検出できなかった領域を検出することができる。例えば、本実施形態においては、X線源2の出射点Qと検出器4の中心とで囲まれた領域がXZ平面と平行である。そのため、XZ平面に交差する方向として、90°に交差したY方向にそって載置台30を移動させる。勿論、交差する方向は90°に限られず、たとえば、10°、20°、30°、40°、50°、60°、70°、80°でも構わない。
 本実施の形態のX線検査装置100では、たとえば鋳造品のように同じ形状を有する多数の被検物Sに対して、フルスキャンまたは部分スキャンを行って検査を行う。フルスキャンは、被検物S全体の内部構造を取得するために、Y軸方向において所定の間隔で再構成画像を生成するための測定動作を意味する。被検物Sを製造するための金型のメンテナンス後等の量産製造が行われていない比較的検査時間に多くの時間が割り当てられる機会にて行われる。部分スキャンは、被検物Sのうち後述する評価領域を含む一部分のみの再構成画像を生成するための測定動作を意味する。部分スキャンは、上記のフルスキャンを行うタイミング以外で、多数の被検物Sについての内部欠陥発生可能性の高い部分(以後、評価領域と呼ぶ)を被検査領域として選択して検査する際に行われる。
 図2のブロック図に示すように、検査処理装置1は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、後述する被検物Sの一部を検査する際の各種処理を行う。検査処理装置1は、制御部110と、構成情報取得部111と、領域情報取得部112と、比較部113と、位置差算出部114と、検査範囲設定部115と、評価部116と、データ蓄積部117と、検査部118と、評価領域設定部119とを備える。
 制御部110は、以下に説明する検査処理装置1の各部を制御するほか、制御装置5を介してX線検査装置100の各部も制御する。構成情報取得部111は、被検物Sに関するCAD等の設計情報により得られた被検物Sの形状情報を取得する。領域情報取得部112は、部分スキャンによって得られた所定領域の形状情報を取得する。領域情報取得部112で取得した所定領域の3次元の形状情報を、以下、領域情報と呼ぶ。比較部113は、領域情報取得部112で取得した領域情報と、マスターデータMとを比較する。マスターデータMについては後述する。位置差算出部114は、比較部113による比較結果に基づいて、取得された領域情報に相当する被検物Sにおける位置と、被検物Sにおける検査すべき領域の位置との差を算出する。検査範囲設定部115は、後述する評価領域設定部119で設定された評価領域を含む領域を、被検物Sを部分スキャンする領域(以後、部分スキャン領域と呼ぶ)として設定する。
 評価部116は、被検物Sを部分スキャンして得られた領域情報に基づいて、被検物Sの良品性を評価する。データ蓄積部117は、検査処理装置1の上述した各部による処理による生成された各種のデータを記憶するための不揮発性の記憶媒体である。検査部118は、部分スキャンデータに基づいて内部情報を生成する。評価領域設定部119は、構成情報取得部111により取得された設計情報に基づく情報等を用いて、被検物Sに対して部分スキャン時に検査を行わせるための評価領域を設定する評価領域設定処理を行う。マスターデータ生成部120は、構成情報取得部111や領域情報取得部112で取得した情報に基づいて、マスターデータMを生成する。マスターデータMとは、被検物Sの少なくとも一部についての形状を表す情報であり、詳細については説明を後述する。
 なお、検査処理装置1の上述した各部の詳細については説明を後述する。
---被検物Sの位置決めについて---
 複数の被検物Sを順次検査する際には、いずれの被検物Sに対しても、被検物Sの同じ領域をスキャンすることが求められ、そのために、X線検査装置100の装置座標系に対して被検物Sを正確に位置決めする必要がある。
 しかし、上記の通り、被検物Sの形状にはばらつきが生じるため、載置部30に載置された被検物毎に高さや傾きが異なるおそれがある。
 そこで、本実施の形態では、評価領域をスキャンする際に、載置台30に載置した被検物Sを一旦部分スキャンし、その結果を後述するマスターデータMと比較することで、装置座標系に対して被検物Sが正確に位置決めされているか否かを判断する。以下、具体的に説明する。なお、以下の説明では、「位置」という文言は、「傾き」も含む概念とする。たとえば、被検物の位置とは、装置座標系における、被検物SのXZ平面上での位置やY軸方向の高さ、装置座標系に対する被検物Sの傾きが含まれるものとする。また、以下の説明では、装置座標系に対する被検物Sの傾きのことを、単に、傾きと呼んだり、被検物Sの姿勢と呼ぶことがある。
---マスターデータMについて---
 図3~図10を参照して、マスターデータMについて説明する。マスターデータMは、被検物Sの少なくとも一部の領域についての形状に関する情報であって、部分スキャンが被検物Sのどの部分に対して行われたのかを判断するために用いられる。マスターデータMには、評価領域の位置に関する情報が含まれる。マスターデータMは、Y軸方向の幅に冗長性を有するデータであるため、載置台30に載置したときの被検物Sが、Y軸方向へずれた場合、あるいは、傾いた場合であっても、部分スキャンした部分を被測定物Sにおいて特定できる。以下の説明では、マスターデータMや、部分スキャン領域等のY軸方向の幅を厚さとも呼ぶ。
 説明の都合上、被検物Sが図3に示すような形状を有するものとする。図3に示す被検物SXは、6面体形状を呈するものと仮定する。また、説明の都合上、被検物SXに対して、U軸、V軸、W軸からなる座標系を図示の通りに設定する。被検物SXは、図示右側の面がUV平面に平行ではなく、図示右側の辺60a、60b、60c、および60dのうち、図示奥側の辺60aはV軸と平行であり、図示下側の辺60bはU軸と平行である。図示手前側の辺60cは軸V+方向に向かうにつれてW軸-方向に向かうように傾斜しており、図示上側の辺60dはU軸+方向に向かうにつれてW軸+方向に向かうように傾斜している。また、図示左側の面からW軸+方向に延在する円柱状の穴部61を有する。穴部61は、W軸+方向には貫通していない。なお、符号62を付した直方体は、評価領域を表す。また、符号63を付した円柱は、被検物Sに鋳ぐるみされた部材(以下、鋳ぐるみ部材と呼ぶ)を示す。鋳ぐるみ部材は通常、周囲の材料とは異なる材料なので、X線の吸収率が周囲の材料とは異なるのが普通である。ここでは、アルミニウム中に鋳鉄の部材が鋳ぐるみされているものとする。
 被検物SXについてのマスターデータMは、たとえば図4で太線で示した、被検物SXの一部の領域SXaについての形状に関するデータである。なお、マスターデータMは被検物SXの全体の形状に関するデータであってもよい。マスターデータMには、たとえば、領域SXaの外形を表す情報や、穴部61の形状を表す情報、領域SXa内での穴部61の位置を表す情報、評価領域62の形状に関する情報、領域SXaにおける評価領域62の位置についての情報、被検物SXにおける領域SXaの位置についての情報、すなわち領域SXaの範囲を表す情報などが相当するが、これらの情報が全て含まれている必要はない。なお、領域SXaが評価領域62を含むことは必須ではなく、マスターデータMに領域SXaと評価領域62との位置関係についての情報が含まれていれば、図5に示すように、領域SXaから離れた場所に評価領域62が存在してもよい。この場合の検査の手順については後述する。説明の都合上、以下の説明では、図4に示すように、領域SXaが評価領域62を含むものとする。また、穴部61の中心軸CLはW軸に平行であり、その延長線上に評価領域62が存在するものとする。
 次に、領域SXaにおけるスライス面の位置を、マスターデータMを参照して特定する方法の概要について説明する。
 一般に、あるスライス面の形状は、被検物SXにおけるスライス面の位置によって変化する。たとえば、図6(a)に示すように、スライス面80が穴部61の中心軸CLを含み、UW平面と平行である場合、スライス面80の再構成画像81aは、図6(b)に示す形状となる。図6(b)で符号62aを付した破線は、再構成画像81aにおける評価領域62を示す。
 次に、スライス面80が図6(a)の場合と比べてV軸+方向に離れている場合について図7(a)に示す。この場合、スライス面80の再構成画像81bは、図7(b)に示す形状となる。また、スライス面80が図6(a)の場合と比べてV軸-方向に離れている場合について図8(a)に示す。この場合、スライス面80の再構成画像81cは、図8(b)に示す形状となる。図8(a)に示したように、スライス面80は、鋳ぐるみ部材63の一部である図示上端部と重なっている。このため、図8(b)に示す再構成画像81cには、明るさの異なる部分63aが現れる。
 さらに、スライス面80がUW平面と平行でない場合について図9(a)に示す。この場合、スライス面80の再構成画像81dは、図9(b)に示す形状となる。図10は、比較のために上述した再構成画像81a~81dを並べて示した図である。
 再構成画像81aでは、穴部61の内周面に相当する2本の線61aが平行となる。再構成画像81bでは、穴部61の内周面に相当する2本の線61aは平行であるが、両者の間の距離は、再構成画像81aにおける2本の線61aの間の距離よりも小さい。また、辺60cとスライス面80の交点60Cの位置は再構成画像81aの交点60Cに比べて、図示左側に移動する。
 再構成画像81cでは、穴部61の内周面を表す2本の線61aは平行であるが、両者の間の距離は、再構成画像81aにおける2本の線61aの間の距離よりも小さくなる。また、辺60cとスライス面80の交点60Cの位置は再構成画像81aの交点60Cに比べて、図示右側に移動する。上記の通り、再構成画像81cには、鋳ぐるみ部材63の一部に相当する、明るさの異なる部分63aが現れる。
 再構成画像81dでは、穴部61の内周面を表す2本の線61aは平行でない。なお、図9(b)および図10における再構成画像81dの2本の線61aを簡略化して直線で表しているが、実際には曲線となる。
 このように、再構成画像の形状は、被検物SXにおけるスライス面80の位置によって変化する。したがって、スライス面80の形状とマスターデータMとを比較することにより、マスターデータMに対応する領域SXaにおけるスライス面80の位置を特定できる。
 具体的に説明すると、再構成画像81aにおいて、2本の線61aが平行であり、両者間の距離から、スライス面80は穴部61の中心軸CLを含む面であることが分かる(図6参照)。また、外形の情報、たとえば、辺60aとスライス面80の交点60Aや交点60Cの位置等により、スライス面80の傾きを知ることができる。この場合には、スライス面80はW軸と平行となっている。
 また、再構成画像81bおよび再構成画像81cにおいては、2本の線61aの間の距離から、Y軸方向におけるスライス面80と穴部61の中心軸CLとの距離が分かる(図7,8参照)。また、外形の情報、たとえば、交点60Aや交点60Cの位置等により、スライス面80の傾きと位置を知ることができる。
 また、再構成画像81dにおいては、2本の線61aが平行ではなく、両者の間の距離は、W軸+方向に向かって大きくなる(図9参照)。このことから、スライス面80は傾斜していることがかかる。また、外形の情報、たとえば、交点60Aと交点60Cとの位置関係を併せて判断することにより、スライス面80の傾きと位置を知ることができる。
 以上説明したように、スライス面80の情報から得た外形情報をマスターデータMの情報と比較することにより、被検物SXにおけるスライス面80の位置を知ることができる。また、63aとして示したような、X線の吸収率が周囲の材料とは異なるために、再構成画像において明るさが異なっている領域の存在やその形状を、マスターデータMの情報と比較することによっても、被検物SXにおけるスライス面80の位置を知ることができる。
 説明の都合上、上述の説明では、被検物Sの構造を単純化している。しかし、実際の被検物Sは複雑な形状を有する場合が多い。たとえば、図11(a)に示すような複雑な形状を有するエンジンのシリンダーブロックを測定する場合について次に説明する。図11(a)は、シリンダーブロックの斜視図である。図11(a)には、このシリンダーブロックの評価領域600が図示されている。評価領域600には、様々な3次元状形状が含まれる。たとえば、クランクジャーナル部近傍の評価領域601、鋳抜きピン近傍の評価領域602、および、シリンダ部の評価領域603等がある。図11(a)において不図示であるが、シミュレーションで引け巣発生が予測される部分についても評価領域となる。
 図11(a)に示すシリンダーブロックを、図11(a)における右端の面を載置面としてX線検査装置100の載置台30に載置し、スライス位置を少しずつ変更しながら複数のスライス面についてX線検査を行うことにより得られる再構成画像を、図12(a)~(e)に模式的に示す。図12(a)~(e)に示すそれぞれの再構成画像82a~82eには、たとえば、鋳抜きピンに相当する凹部の断面83および84、冷却流路の断面85、クランクジャーナル部に鋳ぐるみされた鋳鉄部分の断面86、クランクケースの内側の断面87、シリンダーライナー部に鋳ぐるみされた鋳鉄ライナー部分88等が表れている。なお、図12においては、図12(c)にのみ評価領域62aが設定されている。
 図12(a)から(e)に示す通り、シリンダーブロックにおける、スライス位置が変わると再構成画像が変化することがわかる。すなわち、図11(a)において、WU平面と平行な面を載置台30に載置し、図11(a)において、V軸+方向の端面を載置台30に載置する。例えば、シリンダーブロックでは、外形構造および内部構造が複雑であることから、シリンダーブロックにおいては、例えば、WU平面の外形構造および内部構造が、V軸方向での位置に応じて異なる。凹部の形状に起因する断面83は、図12(a)、図12(b)、図12(c)においては、確認されるものの、図12(d)、図12(e)においては確認することができない。さらに、図12(b)と図12(c)とを比較すると、その凹部の断面で囲まれる面積が異なる。これは、図12(b)でのWU面内における凹部の面積が、V軸に沿った移動に伴って図12(c)に向けて、小さくなることを表している。このように、V軸方向にそって、被検物の外形構造は、一様ではない。そのため、被検物の構造によっては、検出される位置によって、異なる。したがって、例えば、凹部83で囲まれる面積の大きさを用いることで、V軸方向の位置を特定することができる。例えば、図12(c)とは異なる被検物で測定し、再構成画像を作成した画像であっても、その凹部83で囲まれる面積を指標とすることで、その異なる被検物のV軸方向での測定位置を推測することができる。したがって、測定位置の周辺でその構造が変わる場合には、その断面構造を使いマスターデータMと比較しても構わない。この場合には、その構造のみを使用して比較できるので、より短時間で相関位置を求めることが可能である。さらに、例えば、被測定物において、場合によって、製造途中で被測定物の内部構造の一部が破損してしまう場合がある。これにより、被測定物の形状に基づいて、マスターデータMと比較しようとした場合に、その内部構造の破壊により形状データが一致せずに、測定データの位置をマスターデータMから探すことが困難になる。この場合に、断層像の一部形状を重み付けすることによって、マスターデータMとの相関不良を抑制することがある。また、さらに、製造途中で被測定物の内部構造の材料内に、空洞ができることがわかっている場合には、材料内よりもその材料の外形形状を重くして、その相関を求めることとしても構わない。これにより、マスターデータMとの相関不良を抑制することができる。勿論、重み付する場合には、一箇所ではなく、複数箇所を用いても構わない。
 また、シリンダーブロックに用いられる材料は一種類とは限らない。例えば、図12においては、86においては、その他の部分と用いられる材料が異なる。例えば、本実施形態においては、86に用いられる材料はその周囲に用いられる材料と用いる元素が異なる。勿論、86に用いる材料として例えば、合金を用いる場合にはその合金を生成するための組成比が、その周囲と異なっていても構わない。そのため、その周囲と86とでX線を吸収率が異なるために、再構成して得られる画像においてその周囲と輝度が異なるように表示される。そのために、マスターデータMと比較する場合には、画像の輝度情報を用いて、測定時の位置を推定しても構わない。
 また、例えば、シリンダーライナー部に鋳ぐるみされた鋳鉄ライナー部分88については、再構成画像82aから82dでは認められないのに対して、再構成画像82eでは輝度の高い部分として明瞭に表れている。さらに、上記以外のシリンダーブロックの外形についても、スライス位置の変化に応じて様々な変化が見られる。
 以上説明したように、スライス位置が変化すると、再構成画像の外形や輝度に関して変化が現れるので、これらの情報をマスターデータMの情報と比較することによって、被検物SXにおけるスライス面80の位置を知ることができる。これにより評価領域の検査に用いるべきスライス面の再構成画像を選択する。
 図13(a)は選択された再構成画像を示す。ここでは、図12(c)の再構成画像82cと同じものであるとする。次に、マスターデータMの情報と比較して、評価領域の検査に用いるべき再構成画像が、マスターデータMの該当するデータに対して回転または/および位置ずれしているかどうか算出する。例えば、図13(b)の場合には、マスターデータMを取得した場合に対して、被測定物が載置された状態が異なることから、得られる再構成画像82f中の構造物の位置がずれている。図13(b)においては、構造物が回転している。この場合に、マスターデータMとの相関を取得する場合に、相関不良が起こり、マスターデータM中に、対象とする構造物を推定することが困難となってしまう。そこで、この場合には、図13(a)と図13(b)との62aで囲まれた領域の形状を用いて、図13(a)に対して図13(b)の回転量および位置ずれ量を求めることが可能となる。この場合には、例えば、図12の通りV軸方向において位置を変更すると、その断面形状が異なる場所ではないことが望ましい。また、図13においては予め、62aが設定されているが、62aが設定されていない場合には、再構成して得られる断面画像において、取得される画像の中で所定の大きさの円形画像を抽出し、その円形画像から、85に相当する円の位置を抽出する。その場合に、その円の周囲の所定領域の画像を選択し、その選択領域同士での位置ずれ、および回転ズレを求めても構わない。なお、図13(a)と図13(b)は62aの面積は同じでも構わないし、違っていても構わない。なお、マスターデータとの比較は、得られる再構成画像のボクセルデータ同志で比較しても構わないし、そのボクセルデータを二次元画像に変換した後に、比較しても構わない。
 マスターデータMは、たとえば3次元測定装置のように、X線検査装置100以外の他の検査装置によって得られた被検物Sの外形形状に基づく情報であってもよい。あるいは、被検物SのCADデータのように、被検物Sの設計情報であってもよい。また、マスターデータMは、X線検査装置100で被検物Sの一部または全部を検査することで得られた被検物Sの測定情報であってもよい。幾つかの場合について次に説明する。
(1)マスターデータMがX線検査装置100以外の検査装置によって得られた被検物Sの外形形状に基づく情報の場合
 図2に示した構成情報取得部111は、被検物Sの少なくとも一部分の外形の情報を他の検査装置から取得する。マスターデータ生成部120は、たとえば、構成情報取得部111で取得した被検物Sの外形形状の情報と、その外形形状に相当する部分と被検物Sにおける位置との相関を表す情報と、評価領域の位置と被検物Sにおける位置との相関を表す情報とに基づいてマスターデータMを生成する。マスターデータ生成部120で生成されたマスターデータMは、データ蓄積部117に記憶される。
(2)マスターデータMが被検物Sの設計情報に基づく場合
 図2に示した構成情報取得部111は、3次元CAD等の設計情報に基づいてオペレータが手動で入力した情報を取得する。マスターデータ生成部120は、たとえば、構成情報取得部111で取得した被検物Sの少なくとも一部分の設計情報、および、これらの設計情報に相当する位置と被検物Sにおける位置との相関を表す情報、評価領域の位置と被検物Sにおける位置との相関を表す情報とに基づいてマスターデータMを生成する。マスターデータ生成部120で生成されたマスターデータMは、データ蓄積部117に記憶される。なお、設計情報に基づいてマスターデータMを生成するにあたり、鋳造工程のシミュレーションや被検物Sの実測値などに基づいて、除去加工を行わない領域の中から凝固収縮の少ない領域をあらかじめ求めておき、この領域の設計情報に基づいてマスターデータMを生成することが望ましい。構成情報取得部111が、インターフェースを通じて3次元CAD等の設計情報を自動で取得するようにしてもよい。
(3)マスターデータMがX線検査装置100による測定情報に基づく場合
 X線検査装置100は次のようにしてマスターデータMを生成する。
 本実施の形態では、複数の被検物SをX線検査装置100で順次検査する場合、複数の被検物Sのうち、最初に検査する被検物Sの測定情報からマスターデータMを生成する。これら複数の被検物Sは、同一の設計情報を基に製造された製品である。したがって、例えば、それら複数の被検物Sがすべて設計情報どおりに製造されたか否かを検査する。
 まず、最初に検査する被検物Sを載置台30に載置する。以後の説明では、最初に検査する被検物Sを初回被検物S1と呼ぶ。載置台30には不図示の位置出しピンが設けられており、この位置出しピンに初回被検物S1を当接させることで、載置台30上で初回被検物S1を位置決めできる。なお、載置台30に位置出しピンを設けることは必須ではない。
 初回被検物S1を載置台30に載置させる際には、載置台30の上面をXZ平面と平行としておく。この状態で、載置台30を回転させながら部分スキャンを行う。後述するように、初回被検物S1の後に順次検査される各被検物Sは、初回被検物S1に対する部分スキャンと実質的に同じ位置が部分スキャンされるように、載置台30の高さや傾斜角度が調整される。
 図2に示す検査範囲設定部115は、初回被検物S1で部分スキャン領域が、被検査領域を含み、かつ、上述したようにY軸方向に冗長性を持たせた厚さに設定する。なお、データ蓄積部117には、被検物Sの種類や被検物Sの外形寸法のばらつきを示したばらつき情報を記憶し、検査範囲設定部115は、このばらつき情報に基づいて初回被検物S1の部分スキャン領域の厚さを設定してもよい。このようにして設定された初回被検物S1の部分スキャン領域をマスターデータ領域と呼ぶ。マスターデータ領域は、たとえば図4に示した領域SXaに該当する領域である。
 検査範囲設定部115で設定されたマスターデータ領域で再構成画像を生成するための透過像が取得可能となるように、移動制御部52は、マニピュレータ部36を制御して、載置台30を回転駆動およびY軸方向へ移動させながら、マスタ-データ領域を部分スキャンさせる。検査部118は、部分スキャンデータに基づいて、マスターデータ領域の内部情報を生成する。
 マスターデータ生成部120は、マスターデータ領域の内部情報に、評価領域に関する情報や、マスターデータ領域が初回被検物S1のどの部分に該当するのかを表す情報を付加してマスターデータMを生成する。
 なお、評価領域に関する情報としては、評価領域設定部119で設定されてデータ蓄積部117に記憶されている評価領域に関する情報を利用できる。また、マスターデータ領域が初回被検物S1のどの部分に該当するのかを表す情報は、たとえば、次のようにして得られる。まず、マスターデータ領域の内部情報から任意のスライス面での再構成画像を生成し、初回被検物S1の設計情報と比較することによって、初回被検物S1における当該任意のスライス面の位置を特定する。当該任意のスライス面の位置が初回被検物S1のどの部分に該当するのかを特定できれば、マスターデータ領域が初回被検物S1のどの部分に該当するのかも特定できる。
 このようにしてマスターデータ生成部120で生成されたマスターデータMは、データ蓄積部117に記憶される。
 図14のフローチャートを参照して、初回被検物S1の測定情報からマスターデータMを生成する処理について説明する。図14のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査処理装置1のマイクロプロセッサにより読み出されて実行される。なお、載置台30には初回被検物S1が載置されているものとする。
 ステップS1において、制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、マスターデータMを取得するための検査開始位置に載置台30を移動させることを指令してステップS2へ進む。ステップS2において、制御部110は、X線制御部51に対して、X線源2を制御するよう指令する。制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、載置台30の回転およびY軸方向への移動を行うよう指令する。検査部118は、載置台30が検査範囲設定部115で設定された厚さに相当する距離を移動する間検査を行う。これにより、マスターデータ領域の内部情報が取得される。
 ステップS2が実行されるとステップS3へ進む。ステップS3において、マスターデータ生成部120は、ステップS2で取得されたマスターデータ領域の内部情報に、評価領域に関する情報や、マスターデータ領域が初回被検物S1のどの部分に該当するのかを表す情報を付加してマスターデータMを生成する。ステップS3が実行されるとステップS4へ進む。ステップS4において、マスターデータ生成部120は、ステップS3で生成したマスターデータMをデータ蓄積部117に格納して、本プログラムを終了する。
---検査処理について---
 上述した(1)~(3)のいずれかのマスターデータMを用いて、以下のようにして、X線検査装置100は複数の被検物Sを順次検査する。
 まず、被検物Sを載置台30に載置する。上述したように、載置台30の位置出しピンに被検物Sを当接させることで、載置台30上で被検物Sを位置決めできる。なお、被検物Sを載置させる際に、載置台30の上面をXZ平面と平行としておく。
 検査範囲設定部115は、被検査領域を含む領域に被検物Sの部分スキャン領域を設定する。被検査領域は、検査処理に当たり、複数箇所の評価領域から検査対象の領域として選択された領域である。
 なお、部分スキャン領域が厚いほど検査時間がかるため、部分スキャン領域の厚さはできるだけ薄いことが好ましい。したがって、この場合に設定される部分スキャン領域の厚さは、一般に初回被検物S1の部分スキャン領域であるマスターデータ領域の厚さよりも小さい。検査範囲設定部115が設定する部分スキャン領域を目標部分スキャン領域と呼ぶ。
 次いで、被検物Sについての部分スキャンが行われる。被検物Sを順次検査する際に設定されるこのような厚さが小さい部分スキャン領域に対する部分スキャンを、ここでは薄切りスキャンと呼ぶ。移動制御部52は、マニピュレータ部36を制御して、載置台30を回転駆動およびY軸方向へ移動させる。領域情報取得部112は、薄切りスキャンによって得られた領域情報を取得する。
 比較部113は、薄切りスキャンに基づいて、領域情報取得部112で取得した領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較し、その結果に基づいて、薄切りスキャン領域が検査範囲設定部115で設定された被検査領域と対応するか否か、すなわち、薄切りスキャン領域が検査範囲設定部115で設定された被検査領域を含むか否かを判断する。たとえば、比較部113は、マスターデータMから求めた被検査領域の断面形状と、薄切りスキャンに基づく領域情報との相関係数を算出し、この相関係数の値により判断する。なお、相関係数を算出する際には、被検物Sの内部欠陥である巣の発生や、金型の鋳抜きピンの折れ等により発生する偶発的な画像変化による影響を受けないように、これらが発生する可能性のある領域を除外したり、あるいは、重み付けを軽くしたりするようにしてもよい。
 比較部113が、薄切りスキャン領域が検査範囲設定部115で設定された被検査領域を含むと判断した場合、評価部116は、この薄切りスキャンにより得られた領域情報に基づいて、被検物Sの良品性を評価する。その後、次の被検物Sの検査が開始される。
 比較部113が、上記の薄切りスキャン領域が被検査領域を含まないと判断した場合、位置差算出部114は、比較部113による比較結果に基づいて、この薄切りスキャンにより取得された領域情報に相当する被検物Sにおける位置と、被検査領域の位置との差(ずれ)を算出する。これにより、薄切りスキャンによって得られた再構成画像の特徴に基づいて、薄切りスキャンを行った部分がマスターデータ領域のどの部分に相当するかを知ることができる。ここで、再構成画像の各部に表れた特徴的な形状とは、たとえば、図10に示した再構成画像81a~81dにおける、交点60Aや交点60Cの位置や、線61aの方向、周囲に比べて明るさが異なる部分63aの現れ方等である。
 移動制御部52は、マニピュレータ部36を制御して、位置差算出部114により算出された、薄切りスキャン領域と被検査領域の位置との差をゼロとするように、載置台30を移動する。
 次いで、被検物Sについての再度薄切りスキャンを行う。被検物Sの位置は、再度行われる薄切りスキャン(以下、再スキャンと言う)の位置が被検査領域の位置を含むように補正されている。したがって、再度行われる薄切りスキャンの領域は被検査領域に対して行われる。領域情報取得部112は、再スキャンによって得られた領域情報を取得する。
 比較部113は、再スキャンに基づく領域情報取得部112で取得した領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較し、その結果に基づいて、再スキャンした際のスキャン領域が検査範囲設定部115で設定された被検査領域を含むか否かを判断する。比較部113が、再スキャン領域が検査範囲設定部115で設定された被検査領域を含むと判断した場合、評価部116は、この再スキャンにより得られた領域情報に基づいて、被検物Sの良品性を評価する。
 比較部113が、上記の再スキャン領域が被検査領域を含まないと判断した場合には、位置差算出部114は、比較部113による比較結果に基づいて、この再スキャンにより取得された領域情報に相当する被検物Sにおける位置と、被検査領域の位置との差を算出し、以下、同様の工程を繰り返す。ただし、上記の通り、被検物Sの位置は、再スキャンの位置が被検査領域の位置を含むように補正されているので、被検物Sの位置を補正した後には、再スキャンの位置が被検査領域の位置が含まれるようになる可能性が高い。その後、次の被検物Sの検査が開始される。
 なお、薄切りスキャンまたは再スキャンのスキャン領域が被検査領域を含むかどうかの判断は、被検査領域の全体が薄切りスキャンまたは再スキャンのスキャン領域に含まれているか否かによって判断してもよいし、あるいは、被検査領域の一部分が薄切りスキャンまたは再スキャンのスキャン領域に含まれているか否かによって判断してもよい。薄切りスキャンまたは再スキャンのスキャン領域に被検査領域がどの程度含まれていなければならないのかは、検査の目的により適宜設定すればよい。
 また、薄切りスキャンまたは再スキャンのスキャン領域が被検査領域を含むかどうかの判断は、たとえば、薄切りスキャンまたは再スキャンのスキャン領域と目標部分スキャン領域との位置の差が厳密にゼロとなったかどうか判断してもよいし、あるいは、両者の差が所定の範囲内であるか否かを判断することにより行ってもよい。所定の差をどの程度とするかは、検査の目的により適宜設定すればよい。
 図15のフローチャートを参照して、本実施の形態における被検物Sの測定処理について説明する。図15のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査処理装置1のマイクロプロセッサにより読み出されて実行される。なお、載置台30には被検物Sが載置されているものとする。
 ステップS11において、検査範囲設定部115は、目標部分スキャン領域を設定してステップS12へ進む。ステップS12において、制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、薄切りスキャン移動開始位置に載置台30を移動させることを指令してステップS13へ進む。ステップS13において、制御部110は、X線制御部51に対して、X線源2を制御するよう指令する。制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、各スライス面の設定と載置台30の回転およびY軸方向への移動するよう指令する。これにより薄切りスキャンが行われる。検査部118は、薄切りスキャンデータに基づいて内部情報を生成し、ステップ14に進む。
 ステップS14において、比較部113は、薄切りスキャンに基づいて取得した領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較して、薄切りスキャン領域が被検査領域を含むか否かを判断する。
 ステップS14において肯定判断された場合、ステップS15へ進み、評価部116は、この薄切りスキャンにより得られた領域情報に基づいて、被検物Sの良品性を評価し、ステップ16に進む。ステップS16において、データ蓄積部117は、薄切りスキャンに基づく領域情報と、薄切りスキャン領域と被検査領域との位置関係に関する情報と、被検物Sの良品性の評価結果に関する情報を格納して、本プログラムを終了する。
 ステップS14において否定判断された場合、ステップS17へ進み、位置差算出部114は、比較部113による比較結果に基づいて、薄切りスキャンの位置と被検査領域の位置との差を算出し、ステップS18へ進む。
 ステップS18において、制御部110は、ステップS18で算出された位置の差を相殺するように、移動制御部52に対して、マニピュレータ部36を制御して、薄切りスキャン領域と被検査領域の位置との差をゼロとするように、載置台30を移動させることを指令して、ステップS19へ進む。
 ステップS19において、制御部110は、X線制御部51に対して、X線源2を制御するよう指令する。制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、各スライス面の測定と載置台30の回転およびY軸方向への移動するよう指令する。これにより再スキャンが行われる。検査部118は、再スキャンデータに基づいて内部情報を生成し、ステップ20に進む。
 ステップS20において、比較部113は、再スキャン領域が被検査領域を含むか否かを判断する。ステップS20において肯定判断された場合、ステップS21へ進み、評価部116は、再スキャンにより得られた領域情報に基づいて被検物Sの良品性を評価し、ステップ22に進む。ステップS22において、データ蓄積部117は、薄切りスキャンに基づく領域情報と、薄切りスキャン領域と被検査領域との位置関係に関する情報と、被検物Sの良品性の評価結果に関する情報を格納して、本プログラムを終了する。ステップS20において否定判断された場合、ステップS17へ戻る。
---被検物Sの良品性の評価---
 評価部116は、被検物Sの部分スキャンによって得られた領域情報に基づいて、被検物Sの良品性を評価する。評価の手順としては、たとえば、部分スキャン領域の一部であって被検査領域、すなわち、複数箇所の評価領域から検査対象の領域として選択された領域を含む領域を単位3次元格子に分割して格子グリッド化を行う。図16に格子グリッド650の一例を示す。格子グリッド650は、被検物Sに対して設定されるU軸、V軸、W軸からなる直交座標のUVW方向のそれぞれに沿って3次元状に設けられる。被検査領域は複数の格子グリッド650によって分割されることにより、被検物Sの検査結果を解析する際、検査結果を格子グリッド650で扱うことができる。たとえば、単位格子グリッドの体積あたりの巣の体積(体積率)を算出し、その結果により被検物Sの良品性を評価することができる。
 本実施の形態では、上述したように、順次検査される複数の被検物Sの姿勢が補正されるので、複数の被検物Sのそれぞれについて、部分スキャン領域に対する被検査領域の位置が同じになる。したがって、複数の被検物Sのそれぞれの被検査領域を格子グリッド化する際に、格子グリッド650の分割位置および分割方向をそれぞれの被検査領域同士で一致させることができる。すなわち、順次検査された複数の被検物Sについて、同じ位置に個々の格子グリッド650を設定し、それに基づいて検査できる。
 たとえば、被検物Sの内部に存在する巣を検査する場合について説明する。評価部116は、格子グリッド650毎に巣の有無を検出し、巣を検出した場合には格子グリッド650における巣の体積率を算出する。また、評価部116は、格子グリッド650ごとに肉厚を算出する。評価部116は、算出した巣の体積率および肉厚に基づいて、各格子グリッド650に設定された指標に基づいて、個々の被検物Sの良品性を評価する。
 上述した第1の実施の形態では、次の作用効果を奏する。
(1)領域情報取得部112は、部分スキャンによって得られた領域情報を取得する。比較部113は、部分スキャンによって得られた領域情報と、データ蓄積部117に記憶されたマスターデータMとに基づいて、部分スキャン領域が検査範囲設定部115で設定された被検査領域と対応するか否かを判断する。これにより、部分スキャン、すなわち被検物Sの一部分だけのスキャンであっても、スキャンすべき領域をスキャンできているか否かが判断でき、部分スキャン領域が妥当であるかどうか判断できる。これにより、被検物Sの検査を正確に、かつ、短時間で行うことができ、生産性の向上に寄与する。
(2)マスターデータMには、被検物Sの少なくとも一部の領域についての形状に関する情報を含む。部分スキャン領域(薄切りスキャン領域や再スキャン領域)をマスターデータMに対して参照することで、部分スキャン領域がマスターデータ領域の中のどの位置に該当するのかを特定できる。これにより、スキャンすべき領域と実際に部分スキャンを行った領域とのずれが分かるので、再度部分スキャン(再スキャン)を行う際に、被検物Sの位置を補正できる。したがって、被検物Sが形状のばらつきに起因してY軸方向へずれたり、傾いたりしても、複数の被検物Sに対して実質的に同じ領域をスキャンできるので、再スキャンの回数を最小限に抑制できる。これにより、被検物Sの検査時間を短縮化でき、生産性の向上に寄与する。
(3)被検物Sの形状のばらつきを考慮して、マスターデータ領域の厚さを部分スキャン領域の厚さよりも大きくしている。これにより、被検物Sが外形のばらつきに起因してY軸方向へずれたり、傾いたりしても、部分スキャンを行った領域をマスターデータ領域に対して照合し易い。これにより、被検物Sの検査時間を短縮化でき、生産性の向上に寄与する。
(4)X線検査装置100以外の検査装置(たとえば三次元測定機)によって得られた被検物Sの外形の情報を用いてマスターデータMを生成することができる。この場合には、被検物Sの設計情報がなくても被検物の検査を正確に行うことができる。
(5)被検物Sの設計情報(たとえばCAD情報)を用いてマスターデータMを生成することができる。この場合には、被検物SをX線検査装置100やそれ以外の検査装置によりマスターデータMを生成する必要がない。
(6)X線検査装置100による初回被検物S1の検査を行う際に得られたスキャンデータを用いてマスターデータMを生成することができる。この場合には、検査と同時にマスターデータMを生成することができるので、効率的である。
(7)薄切りスキャン領域が被検査領域と対応すると判断されると、薄切りスキャン領域の領域情報に基づいて被検物Sの良品性を評価するように構成した。また、薄切りスキャン領域が被検査領域と対応しないと判断されると、薄切りスキャン領域と被検査領域との位置のずれを算出するように構成した。これにより、被検物の姿勢を容易に補正できるので、再スキャン領域が被検査領域を含む可能性が高くなり、それにより、生産性の向上に寄与する。
(8)薄切りスキャン領域と被検査領域との位置のずれが算出されると、この位置のずれをゼロにするように、検査部118が移動制御部52を介してマニピュレータ部36を制御して、載置台30を移動させるように構成した。これにより、被検物Sの位置が正しく補正されるので、再スキャンを迅速に開始でき、生産性の向上に寄与する。
---第2の実施の形態---
 図面を参照しながら、本発明の第2の実施の形態によるX線検査装置およびX線検査装置用の検査処理装置について説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。
 図17は、第2の実施の形態によるX線検査装置100Aの構成の一例を模式的に示す図である。上述したように、載置部3のマニピュレータ部36Aには傾斜調整部37が設けられていない。それ以外の構成については、図1に示した第1の実施の形態のX線検査装置100の構成と同じである。なお、マスターデータMについては、第1の実施の形態と同様に生成されている。
---検査処理について---
 本実施の形態では、以下のようにして、X線検査装置100Aは複数の被検物Sを順次検査する。
 まず、被検物Sを載置台30に載置する。上述したように、載置台30の位置出しピンに被検物Sを当接させることで、載置台30上で被検物Sを位置決めできる。なお、本実施の形態では、傾斜調整部37が設けられていない。このため、載置台30の上面は常にXZ平面と平行である。
 検査範囲設定部115は、被検査領域を含む領域に被検物Sの部分スキャン領域を設定する。本実施の形態では、仮に被検物Sが傾いている状態であっても、一度の部分スキャンのスキャン領域に被検査領域が含まれるように、スキャン領域のY軸方向の長さ(厚さ)を大きめに(厚めに)設定する。すなわち、本実施の形態において設定される部分スキャン領域の厚さは、第1の実施の形態における薄切りスキャン領域の厚さよりも大きい。本実施の形態における部分スキャンを厚切りスキャンとも呼ぶ。
 次いで、被検物Sについての厚切りスキャンが行われる。移動制御部52はマニピュレータ部36を制御して、載置台30を回転駆動およびY軸方向へ移動させる。領域情報取得部112は、厚切りスキャンによって得られた領域情報を取得する。
 比較部113は、厚切りスキャンに基づいて領域情報取得部112で取得した領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較し、その結果に基づいて、厚切りスキャン領域が、マスターデータ領域内のどの領域に相当するかを特定する。すなわち、マスターデータMの領域内のどの部分を厚切りスキャンしたことになったのかを特定する。
 次に、位置差算出部114は、マスターデータMの領域における、被検査領域の位置と厚切りスキャン領域の位置関係から、厚切りスキャンにより取得した領域情報から被検査領域を含む抽出領域を抽出(選択)する。X線検査装置100Aは傾斜調整部37を備えていないので、複数の被検物Sに対する厚切りスキャン領域の傾きにはばらつきがあるが、位置差算出部114は、各被検物Sにおける実質的に同じ位置を選択する。
 次に、評価部116は、抽出領域に基づいて、被検物Sの良品性を評価する。評価結果はデータ蓄積部117に格納される。
 図18のフローチャートを参照して、本実施の形態における被検物Sの測定処理について説明する。図18のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査処理装置1のマイクロプロセッサにより読み出されて実行される。なお、載置台30には被検物Sが載置されているものとする。
 ステップS31において、検査範囲設定部115は、厚切りスキャン領域を設定してステップS32へ進む。ステップS32において、制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、厚切りスキャンをするための移動開始位置に載置台30を移動させることを指令してステップS33へ進む。ステップS33において、制御部110は、X線制御部51に対して、X線源2を制御するよう指令する。制御部110は、移動制御部52に対して、マニピュレータ部36を制御して、各スライス面の設定と載置台30の回転およびY軸方向への移動するよう指令する。これにより厚切りスキャンが行われ、ステップ34へ進む。
 ステップS34において、比較部113は、厚切りスキャンにより取得された領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較して、厚切りスキャン領域が、マスターデータ領域内のどの位置に相当するかを特定し、ステップS35へ進む。ステップS35において、位置差算出部114は、マスターデータMの領域における、被検査領域の位置と厚切りスキャン領域の位置関係から、厚切りスキャンにより取得した領域情報から被検査領域を含む抽出領域を選択し、ステップS36へ進む。
 ステップS36において、評価部116は、抽出領域における領域情報に基づいて被検物Sの良品性を評価し、ステップ37に進む。ステップS37において、データ蓄積部117は、厚切りスキャンに基づく領域情報と、厚切りスキャン領域と抽出領域との位置関係に関する情報と、被検物Sの良品性の評価結果に関する情報を格納して、本プログラムを終了する。
---被検物Sの良品性の評価---
 評価部116は、被検物Sの厚切りスキャンによって得られた領域情報に基づいて、被検物Sの良品性を評価する。評価の手順としては、たとえば、抽出領域を単位3次元格子に分割して格子グリッド化を行う。本実施の形態において、X線検査装置100Aは傾斜調整部37を備えていないので、複数の被検物Sに対する厚切りスキャン領域の傾きにはばらつきがある。そこで、評価部116は抽出領域に対して格子グリッド化を行う。複数の被検物Sにおいて、抽出領域が同じになり、その結果、グリッドの分割位置および分割方向が同じになる。すなわち、順次検査される複数の被検物Sについて、実質的に同じ位置に格子グリッド650を設定でき、同じ位置について評価ができる。
 上述した第2の実施の形態では、第1の実施の形態の作用効果に加えて、次の作用効果を奏する。
(1)比較部113が厚切りスキャン領域から抽出領域を選択するように構成した。これにより、厚切りスキャン領域における評価領域の傾きに基づいて格子グリッド化を行うことが可能となるので、複数の被検物Sに対して、同じ条件で良品性を評価でき、評価の信頼性が向上する。
(2)厚切りスキャン領域の厚さを大きくした。これにより、スキャン領域に被検査領域が含まれるため、一度の厚切りスキャンによって被検査領域を確実に評価でき、生産性の向上に寄与する。
---構造物製造システムの実施の形態---
 上述した第1の実施の形態によるX線検査装置100または第2の実施の形態によるX線検査装置100Aを含む構造物製造システムの実施の形態について説明する。構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。以下の説明では、構造物製造システムが第1の実施の形態にて説明したX線検査装置100を備えるものとして説明するが、第2の実施の形態で説明したX線検査装置100Aを備えている場合も同様であるので、その説明は省略する。
 図19は本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、第1の実施の形態にて説明したX線検査装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。
 設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。
 X線検査装置100は、成形装置420により成形された構造物の形状を検査する検査処理を行う。X線検査装置100は、構造物を検査した検査結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。
 検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線検査装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。
 修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
 図20に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
 ステップS81では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS82へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS82では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS83へ進む。ステップS83においては、X線検査装置100は検査処理を行って、構造物の形状を計測し、形状情報を出力してステップS84へ進む。
 ステップS84では、検査部432は、設計装置410により作成された設計情報とX線検査装置100により検査され、出力された形状情報とを比較する検査処理を行って、ステップS85へ進む。ステップS85では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS85が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS85が否定判定されてステップS86へ進む。
 ステップS86では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップS86が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS86が肯定判定されてステップS87へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS87においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS83へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
 上述した構造物製造システムでは、次の作用効果を奏する。
(1)構造物製造システム400のX線検査装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する検査処理を行い、制御システム430の検査部432は、検査処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。
(2)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)上述の説明では、比較部113が、1回目の部分スキャンによって得られる再構成画像と、データ蓄積部117に記憶されたマスターデータMとに基づいて、薄切りスキャン領域が検査範囲設定部115で設定された被検査領域と対応するか否かを判断するように構成した。すなわち、上述の説明では、薄切りスキャン領域がマスターデータ領域に含まれていることを前提としている。しかし、被検物Sの形状の誤差が想定以上に大きかったり、マスターデータ領域の厚さが不適当であったりすると、薄切りスキャン領域がマスターデータ領域から外れてしまう恐れもある。そこで、薄切りスキャン領域が検査範囲設定部115で設定された被検査領域と対応するか否かを判断する前に、比較部113が、薄切りスキャン領域がマスターデータ領域に含まれているか否かを判定するようにしてもよい。これにより、被検物Sの形状の誤差が想定以上に大きかったり、マスターデータ領域の厚さが小さくて不適当であったりしても、たとえばスキャン領域の厚さを大きくして再度部分スキャンを行って、厚くなった部分スキャン領域とマスターデータ領域とが重なれば、厚くなった部分スキャン領域の位置を特定でき、評価領域との位置関係も把握できる。
(2)上述した第2の実施の形態では、被検物Sの良品性の評価に用いられる情報を1回の厚切りスキャンによって得るように構成しているが、次のようにしてもよい。すなわち、載置部3のマニピュレータ部36Aに傾斜調整部37が設けられていない場合であっても、第1の実施の形態と同様に、1回目の部分スキャンとして薄切りスキャンを行うようにしてもよい。
 具体的には、1回目に第1の実施の形態と同様の薄切りスキャン(部分スキャン)を行い、1回目の部分スキャン領域と、検査範囲設定部115で設定された被検査領域との位置の差を算出する。そして、算出した位置の差に基づいて、評価領域を含むような領域を目標部分スキャン領域として再設定して、2回目の部分スキャンを行う。
 傾斜調整部37が設けられていないために被検物Sの傾きを補正できないので、2回目に部分スキャンを行う際の目標部分スキャン領域の厚さは、被検物Sが傾いていても被検査領域を含むように設定される。
 1回目の部分スキャンを行う際の目標部分スキャン領域の設定、被検物Sについての1回目の部分スキャン、1回目の部分スキャン領域が被検査領域と対応すると判断された場合の各部の動作については、上述した第1の実施の形態の薄切りスキャンの場合と同じである。1回目の部分スキャン領域が被検査領域と対応しないと判断した場合に、1回目の部分スキャンにより取得された領域情報に相当する被検物Sにおける位置と、被検査領域との位置の差を算出するまでの各部の動作についても、上述した第1の実施の形態と同じである。
 1回目の部分スキャンにより取得された領域情報に相当する被検物Sにおける位置と、被検査領域との位置の差が算出されると、当該位置の差に基づいて、検査範囲設定部115は、被検査領域を含む領域に被検物Sの2回目の部分スキャン領域を設定する。2回目に部分スキャンを行う際の目標部分スキャン領域の厚さは、上述したように、被検物Sが傾いていても被検査領域を含むように設定される。
 次いで、被検物Sについての2回目の部分スキャンが行われる。上述したように、被検査領域が2回目の部分スキャンにおける部分スキャン領域に含まれるように目標部分スキャン領域の厚さが設定されているので、2回目の部分スキャン領域には、被検査領域が含まれる。
 2回目の部分スキャンが行われた後の各部の動作は、上述した第2の実施の形態における、厚切りスキャンを行った後の各部の動作と同じである。
 このように構成した場合には、部分スキャンを2回行う場合が生じるが、たとえば、被検物Sの外形のばらつきに起因するY軸方向へのずれや傾きが大きい場合には、第2の実施の形態のように1回の厚切りスキャンを行う場合と比べて、1つの被検物Sの検査時間を短くすることができる。すなわち、被検物Sの外形のばらつきが大きく、Y軸方向へのずれや傾きが大きい場合、厚切りスキャン領域の厚さを大きくしなければならず、1回の部分スキャンであっても、上述したように部分スキャンを2回行う場合と比べて検査時間が長くなってしまうおそれがある。
 したがって、被検物Sの外形のばらつきが大きい場合には、第2の実施の形態と比べて1つの被検物Sの検査時間を短くすることができるので、生産性の向上に有効に寄与する。
(3)上述の説明では、図4に示すように、マスターデータMについての領域SXaが評価領域62を含むものとして説明した。しかし、評価領域62の近傍で被検物SX構造が単純であると、評価領域62の近傍の再構成画像に上述したような特徴的な形状が表れ難いので、スライス面の位置の特定が困難となる。
 このような場合には、図5に示すように、評価領域62から離れた場所にマスターデータMについての領域SXaを設定する。
 図5に示すように、マスターデータ領域と検査すべき評価領域、すなわち被検査領域とが離れている場合には、次のようにして被検物Sの良品性の評価に用いる情報を取得する。
 まず、検査範囲設定部115は、マスターデータ領域の一部の領域に目標部分スキャン領を設定する。次いで、制御部110は、被検物Sについての1回目の部分スキャンを行うように各部を制御する。比較部113は、1回目の部分スキャンに基づいて、領域情報取得部112で取得した領域情報と、データ蓄積部117に記憶されたマスターデータMとを比較し、その結果に基づいて、1回目の部分スキャン領域が、マスターデータ領域内のどの領域に相当するかを特定する。
 1回目の部分スキャン領域の位置がマスターデータ領域のどの位置に該当するのかが分かれば、1回目の部分スキャン領域の位置と被検査領域の位置との差も分かる。そこで、位置差算出部114は、1回目の部分スキャン領域と、被検査領域との位置の差を算出する。
 1回目の部分スキャン領域と、被検査領域との位置の差が算出されると、この位置の差をゼロとするように、移動制御部52は、マニピュレータ部36を制御して、載置台30を移動させる。これにより、2回目の部分スキャンのスキャン領域は被検査領域を含むようになる。
(4)上述の説明では、載置台30の移動によって、X線源2および/または検出器4と被検物Sとの位置関係を変更しているが、載置台30の移動でなく、X線源2および/または検出器4を移動させることで、被検物Sとの位置関係を変更するようにしてもよい。
(5)X線検査装置100がコーンビームを放射するX線源と、ラインセンサではなく2次元状に画素が配列された構造を有する検出器4とを有するものであっても良い。この場合、検出器4からスライス面700に応じてライン状に並ぶ画素から信号を出力すれば良い。このような構成とすることで、スライス面700をY方向以外にも変位させることが可能となる。
(6)上述の説明では、X線検査装置100によって最初に検査する被検物SからマスターデータMを生成する場合に、載置台30の上面をXZ平面と平行としておき、被検物SをX線検査する姿勢で載置面上に載置し、この状態で、載置台30を回転させながら部分スキャンを行うことで初回被検物S1の形状情報を取得するように構成した。しかし、マスターデータMの生成に先立って、以下のような手順を取り入れてもよい。
 図11(a)に示すように、鋳造品である被検物Sには、通常、面基準604が設けられている。面基準604とは、基準面を設定するための領域のことであり、たとえば、3か所の面基準により基準面が設定される。基準面とは、被検物の寸法を測定するための基準として設定される。エンジンのシリンダーブロックのような鋳造品においては、図11(b)に示すように、面基準604は周囲の鋳肌面605よりも奥まった位置に設定されることにより、鋳造品の表面は加工されても、面基準の表面は加工されずに残る。たとえば、図11(b)に示すように、鋳物の鋳肌である605が2点鎖線605aで示す面まで加工されても、面基準604の表面は加工されずに残るように高さが設定されている。
 初回被検物S1の測定情報を取得する際に、まず、載置台30の上面をXZ平面と平行としておき、初回被検物S1を載置台30に載置して、不図示の位置出しピンに初回被検物S1を当接させて、載置台30上で初回被検物S1を位置決めする。この状態で、初回被検物S1の3か所の面基準604を3次元測定器で測定する。これにより、載置面に対する基準面の傾きが算出できる。
 X線検査装置100が載置台30の傾斜調整機構を有している場合には、載置面30に対する基準面の傾きをゼロとするように、傾斜調整機構を動作させる。即ち、傾斜調整機構を動作させて、X線検査装置100の装置座標系と初回被検物Sの座標系を合わせる。その後、載置台30を回転させながら部分スキャンを行うことで初回被検物SからマスターデータMを生成する。
 X線検査装置100が載置台30の傾斜調整機構を有していない場合には、算出された載置面に対する基準面の傾きに基づいて、マスターデータMを生成する際のスキャン厚さを設定した後、既に説明した手順により初回被検物SからマスターデータMを生成する。
 3次元測定器は、接触式の3次元測定器であってもよく、非接触式の3次元測定器であってもよい。また、X線検査装置100の内部に設置された3次元測定器であってもよく、可搬式の3次元測定器であってもよい。
 なお、本実施形態において、測定する場合に、面基準などの基準部位を含む測定対象とする場合には、面基準とそれ以外のスライス領域が連続していても、離間しても位置を算出することができる。しかしながら、本実施形態において、測定とする範囲に基準部分が含まれていない場合において、実際に測定する領域が目的とする領域がどうかがわからない。場合によっては、目的とする領域から外れた領域を測定してしまうという問題がある。そのため、複数の被検物のそれぞれについて、目的とする同一領域を測定できなくなるという問題がある。本実施形態においては、マスターデータMを生成するので、基準部位を含まない場合においても、測定領域が目的とする領域かどうかがわかる。さらに、測定領域の位置を、マスターデータMと比較することで、その位置を求めることが可能となる。   
 被検物Sは、鋳造後に面基準604を測定用治具に受けた状態で3次元測定器等により外形を測定する場合がある。このような場合には、マスターデータMの生成に先立って以下のような手順を取り入れてもよい。すなわち、測定用治具に鋳造品の面基準604を受けた状態で3次元測定器等により外形を測定する場合に、初回被検物S1をX線検査装置100の載置台30の載置する面についても測定を行う。これにより、面基準604に基づく基準面に対するX線検査の際の載置面の傾きを算出することができる。
 基準面に対する載置面の傾きが算出された後に、マスターデータMを生成する手順は、上記説明の手順と同様である。
(7)上述した第1の実施の形態において、X線検査装置100以外の他の検査装置によって得られた被検物Sの外形形状に基づいてマスターデータMを生成してもよい旨記載した。具体的には次のようにしてマスターデータMを生成することができる。
 載置台30の上面をXZ平面と平行としておき、可搬式の3次元測定器200等の非接触式の3次元測定器(以下、単に3次元測定器200と呼ぶ)によって、載置台30に載置された初回被検物S1のY軸方向の一部分について、載置台30回転させながら外周の複数個所を測定する。この様子を図21(a)に示す。Y軸方向における測定範囲S1aは小さくてよい。すなわち、Y軸方向において薄い領域の複数個所の位置について測定を行い、外形情報を得る。測定結果は、図2に示した構成情報取得部111により取得する。位置差算出部114は、1回目の測定結果と、たとえば初回被検物S1の設計情報とに基づいて、装置座標系における初回被検物S1の傾きに関する情報を得る。
 載置台30に傾斜調整機構を有している場合には、載置面に対する基準面の傾きをゼロとするように、傾斜調整機構を動作させる。すなわち、傾斜調整機構を動作させて、載置台30の座標系と初回被検物Sの座標系を合わせる。その後、図21(b)に示すように、載置台30を回転させながら、3次元測定器200により、Y軸方向において所定の厚さの領域における複数個所の位置について測定を行う。得られた測定情報に基づいて初回被検物Sからマスターデータを生成する。
 載置台30に傾斜調整機構を有していない場合には、得られた上記傾き情報に基づいて、3次元測定器200により測定を行う際のY軸方向における厚さを設定し、複数個所の位置について測定を行う。得られた測定情報に基づいて初回被検物SからマスターデータMを生成する。載置台30に傾斜調整機構を有していない場合には、一般的にY軸方向の厚さは大きくなる。なお、初回被検物S1を3次元測定器200により測定する際に、X線検査装置100の載置台30ではなく、他の載置台に初回被検物S1を載置してもよい。
 このように、マスターデータMがX線検査装置100以外の他の検査装置によって得られた被検物Sの外形形状に基づく情報から生成されたデータである場合、上述した第1の実施の形態における薄切りスキャンに代えて、被検物SのY軸方向の一部分についての外形形状を3次元測定器200で測定してもよい。そして、3次元測定器200による測定結果を参照して、第1の実施の形態における再スキャンに相当する部分スキャンを行うようにしてもよい。
(8)上述した各実施形態における検査処理装置1または変形例における検査処理装置1の一部の機能をコンピュータで実現するようにしてもよい。この場合、その制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録された、上述した制御に関するプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含んでもよい。また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。
 また、パーソナルコンピュータなどに適用する場合、上述した制御に関するプログラムは、CD-ROMなどの記録媒体やインターネットなどのデータ信号を通じて提供することができる。図22はその様子を示す図である。パーソナルコンピュータ950は、CD-ROM953を介してプログラムの提供を受ける。また、パーソナルコンピュータ950は通信回線951との接続機能を有する。コンピュータ952は上記プログラムを提供するサーバーコンピュータであり、ハードディスクなどの記録媒体にプログラムを格納する。通信回線951は、インターネット、パソコン通信などの通信回線、あるいは専用通信回線などである。コンピュータ952はハードディスクを使用してプログラムを読み出し、通信回線951を介してプログラムをパーソナルコンピュータ950に送信する。すなわち、プログラムをデータ信号として搬送波により搬送して、通信回線951を介して送信する。このように、プログラムは、記録媒体や搬送波などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給できる。
(9)上述した実施例における、X線検査装置100の測定条件の設定に関して、説明する。なお、上述の実施形態での被検査領域を選択し、検査する際の測定条件に関して説明する。例えば、X線検査装置100に関して説明する。被検査領域が選択され、部分スキャンする場合を例に挙げて、説明する。最初に、被検査領域を設定する(S41)。例えば、被検査領域が選択された場合に、X線検査装置100は、被検物に対して照射されるX線が通過する距離を算出する。距離を算出する場合には、例えば、PCT/JP2014/073096および又は、PCT/JP2014/073097に記載されているように、被検査領域としての評価領域が設定される場合に、検査時間が短縮されるように、被検物Sに対するスライス面数の総和と被検物Sの移動量の総和から、被検物の最適な載置方向を決定する。これによりX線が被検物を通過する距離を算出する。X線検査装置は、例えば、X線が通過する距離と被検物の材質とから、事前に必要とするX線の強度を見積もる。見積もられたX線の強度を達成するための、X線を照射するX線源の加速電圧および電流を見積もる。見積もられたX線源の加速電圧および電流量の他には、被検物を透過したX線を検出する検出器の露出時間を用いても構わない。さらに、対象とする検査において、欠陥の大きさに応じて、X線の測定条件を決めても構わない。
このように、見積もられた測定条件を用いて、薄切りスキャンを行う(S44)。薄切りスキャンを行う前に、載置台30を移動させることで被検物を所定の位置に移動させる。なお、X線の測定条件の設定は載置台30を移動する前でも後でも構わない。次に、薄切りスキャンを行った後の、投影像もしくは再構成画像を作成する。その作成された投影像もしくは再構成画像が、検査を行うのに最適かどうかを見積もる(S45)。例えば、内部構造の欠陥(微小空間)を検査する場合に、外形構造もしくは内部構造の外形部分のみは認識できる程度に明らかであるが、内部構造の欠陥の大きさを十分に認識できない場合には、再度、測定条件の再設定を行う(S46)。例えば、内部構造の欠陥の大きさを認識できるように、露出時間を長くすることを行う。また、例えば、投影画像および再構成画像のコントラストを調整することによって、内部構造の欠陥が認識できる場合には、画像のコントラスト調整を行い、再度X線を用いた計測を不要としても構わない。
 なお、被測定物のフルスキャンもしくは設計情報に用いて、被測定物の載置方向に関わらず、被測定物を透過するのに十分な被測定条件を算出して、その算出された測定条件を用いて、被測定物を測定しても構わない。
 また、PCT/JP2014/073096および又は、PCT/JP2014/073097の一部援用して用いても構わない。
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1…検査処理装置、2…X線源、3…載置部、4…検出器、5…制御装置、36,36A…マニピュレータ部、100,100A…X線検査装置

Claims (30)

  1.  X線検査装置に用いる測定処理装置であって、
     第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する領域情報取得部と、
     前記第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報を格納する格納部と、
     前記第1領域情報と前記第2領域情報とに基づいて、前記第1領域に対応する領域が前記第2領域に含まれているかを判定する判定部と、を備える測定処理装置。
  2.  請求項1に記載の測定処理装置において、
     前記第1領域は、前記第1被検物の所定の断面を含んだ所定の厚さを有し、
     前記第2領域は、前記第1領域よりも大きい厚さを有する測定処理装置。
  3.  請求項2に記載の測定処理装置において、
     前記第1被検物と前記第2被検物とは同等の構造を有し、
     前記第2領域情報は、前記第2被検物の構造を表す設計データに基づく情報である測定処理装置。
  4.  請求項2に記載の測定処理装置において、
     前記第1被検物と前記第2被検物とは同等の構造を有し、
     前記第2領域情報は、前記第2被検物の前記第2領域を透過したX線に基づく情報である測定処理装置。
  5.  請求項2に記載の測定処理装置において、
     前記第1被検物と前記第2被検物とは同等の構造を有し、
     前記第2領域情報は、前記X線検査装置以外の測定検査装置が前記第2被検物の前記第2領域の少なくとも一部を測定した測定情報である測定処理装置。
  6.  請求項2に記載の測定処理装置において、
     判定部をさらに備え、
     前記第2領域情報は、前記第1被検物の検査対象の領域に関する検査対象領域情報を含み、
     前記判定部は、前記第1領域情報と前記第2領域情報とに基づいて、前記第1領域情報が前記検査対象領域情報に対応するか否かを判定する測定処理装置。
  7.  請求項6に記載の測定処理装置において、
     前記判定部で前記第1領域情報が前記検査対象領域情報に対応すると判定されると、前記第1領域情報に基づいて当該第1領域の状態を評価する評価部と、
     前記判定部で前記第1領域情報が前記検査対象領域情報に対応しないと判定されると、前記第1領域情報と前記第2領域情報とに基づいて、前記第1領域と前記検査対象の領域との位置の差を算出する位置差算出部とをさらに備える測定処理装置。
  8.  X線検査装置に用いる測定処理装置であって、
     被検物の検査対象領域を含み、前記検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、
     被検物の一部領域を透過したX線に基づいて前記一部領域に関する領域情報を取得する領域情報取得部と、
     前記領域情報と前記所定領域情報とに基づき、前記一部領域が前記検査対象領域に対応するか否かを判定する判定部と、を備える測定処理装置。
  9.  請求項8に記載の測定処理装置において、
     前記所定領域情報は、被検物の構造を表す設計データに基づく情報である測定処理装置。
  10.  請求項8に記載の測定処理装置において、
     前記所定領域情報は、被検物の前記所定領域を透過したX線に基づく情報である測定処理装置。
  11.  請求項8に記載の測定処理装置において、
     前記所定領域情報は、前記X線検査装置以外の測定検査装置が被検物の前記所定領域の少なくとも一部を測定した測定情報である測定処理装置。
  12.  請求項8に記載の測定処理装置において、
     前記判定部で前記一部領域が前記検査対象領域に対応すると判定されると、前記領域情報に基づいて当該一部領域の状態を評価する評価部と、
     前記判定部で前記一部領域が前記検査対象領域と対応しないと判定されると、前記領域情報と前記所定領域情報とに基づいて、前記一部領域と前記検査対象領域との位置の差を算出する位置差算出部とをさらに備える測定処理装置。
  13.  X線検査装置に用いる測定処理装置であって、
     被検物の一部領域を透過したX線に基づいて前記一部領域に関する領域情報を取得する領域情報取得部と、
     被検物の一部領域に関する基準情報を格納する基準情報格納部と、
     前記領域情報と前記基準情報とに基づいて、前記一部領域の位置を特定する位置特定部と、を備える測定処理装置。
  14.  請求項1乃至13のいずれか一項に記載の測定処理装置と、
     被検物にX線を照射するX線源と、
     前記被検物を透過したX線を検出する検出部と、を備えるX線検査装置。
  15.  請求項1乃至7のいずれか一項に記載の測定処理装置と、
     被検物にX線を照射するX線源と、
     前記被検物を透過したX線を検出する検出部と、を備え、
     前記第1、第2領域は、前記X線源の発光点と、前記検出部の中心とで囲まれた領域と直交する方向において、大きさが異なるX線検査装置。
  16.  請求項7に記載の測定処理装置と、
     前記第1被検物にX線を照射するX線源と、
     前記第1被検物を透過したX線を検出する検出部と、
     前記X線源または前記検出部と前記第1被検物との位置関係を変更する位置関係変更部と、を備え、
     前記第1領域情報は、前記検出部の検出結果に基づく情報であり、
     前記位置関係変更部は、前記判定部で前記第1領域情報が前記検査対象領域情報と対応しないと判定されると、前記位置差算出部で算出された前記位置の差に基づいて、前記検出部で前記検査対象の領域を透過したX線を検出するように前記位置関係を変更するX線検査装置。
  17.  請求項12に記載の測定処理装置と、
     被検物にX線を照射するX線源と、
     被検物を透過したX線を検出する検出部と、
     前記X線源または前記検出部と被検物との位置関係を変更する位置関係変更部と、を備え、
     前記領域情報は、前記検出部の検出結果に基づく情報であり、
     前記位置関係変更部は、前記判定部で前記一部領域が前記検査対象領域と対応しないと判定されると、前記位置差算出部で算出された前記位置の差に基づいて、前記検出部で前記検査対象領域を透過したX線を検出するように前記位置関係を変更するX線検査装置。
  18.  X線検査装置に用いる測定処理装置であって、
     被検物の検査対象領域を含み、前記検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、
     前記被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得部と、
     前記第1領域情報と前記所定領域情報とに基づき、前記第1領域における前記検査対象領域に対応する領域を特定する特定部と、を備える測定処理装置。
  19.  X線検査装置に用いる測定処理装置であって、
     被検物の検査対象領域を含み前記検査対象領域よりも大きい所定領域に対応する所定領域情報を格納する格納部と、
     前記被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得部と、
     前記第1領域情報と前記所定領域情報とに基づき、前記第1領域情報が前記検査対象領域に関する検査対象領域情報を含むか否かを判定する第1の判定部と、
     前記第1の判定部によって前記第1領域情報が前記検査対象領域情報を含まないと判定された場合に、前記第1領域を含み前記第1領域よりも大きい第2領域を透過したX線に基づく第2領域情報を取得する第2領域情報取得部と、
     前記第2領域情報から前記検査対象領域情報を抽出する抽出部と、を備える測定処理装置。
  20.  請求項7に記載の測定処理装置と、
     前記第1被検物にX線を照射するX線源と、
     前記第1被検物を透過したX線を検出する検出部と、
     前記検出部で前記第1被検物を透過したX線を検出する検出範囲を設定する検出範囲設定部と、を備え、
     前記領域情報取得部は、前記検出部で検出した前記第1被検物を透過したX線に基づいて前記第1領域情報を取得し、
     前記検出範囲設定部は、前記判定部で前記第1領域情報が前記検査対象領域情報と対応しないと判定されると、前記位置差算出部で算出された前記位置の差に基づいて、前記検査対象の領域を含む新たな検出範囲を設定するX線検査装置。
  21.  第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得し、
     前記第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報と、前記第1領域情報とに基づいて、前記第1領域に対応する領域が前記第2領域に含まれているかを判定する測定処理方法。
  22.  被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得し、
     被検物の検査対象領域を含み、前記検査対象領域よりも大きい所定領域に対応する所定領域情報と、前記第1領域情報とに基づき、前記第1領域が前記検査対象領域に対応するか否かを判定する測定処理方法。
  23.  被検物の一部領域を透過したX線に基づいて前記一部領域に関する領域情報を取得し、
     前記被検物における前記一部領域の位置を特定するための基準情報と、前記領域情報とに基づいて、前記被検物における前記一部領域の位置を特定する測定処理方法。
  24.  第1被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する領域情報取得処理と、
     前記第1領域よりも大きい、第2被検物の第2領域に関する第2領域情報と、前記第1領域情報とに基づいて、前記第1領域に対応する領域が前記第2領域に含まれているかを判定する判定処理とをコンピュータに実行させる測定処理プログラム。
  25.  被検物の一部である第1領域を透過したX線に基づく第1領域情報を取得する第1領域情報取得処理と、
     被検物の検査対象領域を含み、前記検査対象領域よりも大きい所定領域に対応する所定領域情報と、前記第1領域情報とに基づき、前記第1領域が前記検査対象領域に対応するか否かを判定する判定処理とをコンピュータに実行させる測定処理プログラム。
  26.  被検物の一部領域を透過したX線に基づいて前記一部領域に関する領域情報を取得する領域情報取得処理と、
     前記被検物における前記一部領域の位置を特定するための基準情報と、前記領域情報とに基づいて、前記被検物における前記一部領域の位置を特定する特定処理とをコンピュータに実行させる測定処理プログラム。
  27.  構造物の形状に関する設計情報を作成し、
     前記設計情報に基づいて前記構造物を作成し、
     作成された前記構造物の形状を、請求項1乃至14のいずれか一項に記載の測定処理装置もしくは請求項16に記載のX線検査装置を用いて計測して形状情報を取得し、
     前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
  28.  X線検査装置に用いる測定処理装置であって、
     第1被検物の一部領域を透過したX線を検出して第1領域に関する第1領域情報を取得する領域情報取得部と、
     前記第1領域情報を取得する際の前記第1被検物の傾きを検出する、傾き検出部と、
     前記傾き検出部で検出した前記第1被検物の傾きと、基準となる傾きとを比較する比較部と、を備える測定処理装置。
  29.  請求項28に記載の測定処理装置において、
     前記領域情報取得部は、第2被検物の一部領域を透過したX線を検出して第2領域に関する第2領域情報を取得し、
     前記傾き検出部は、前記第2領域情報を取得する際の前記第2被検物の傾きを検出し、
     前記比較部は、前記傾き検出部で検出した前記第1被検物の傾きと、前記第2被検物の傾きとを比較する測定処理装置。
  30.  請求項28に記載の測定処理装置において、
     前記傾き検出部は、前記第1領域情報に基づいて、前記第1領域情報を取得する際の前記第1被検物の傾きを検出する測定処理装置。
PCT/JP2015/056251 2015-03-03 2015-03-03 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法 WO2016139756A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/056251 WO2016139756A1 (ja) 2015-03-03 2015-03-03 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法
CN201580077303.6A CN107407646A (zh) 2015-03-03 2015-03-03 测量处理装置、x射线检查装置、测量处理方法、测量处理程序及结构物的制造方法
JP2017503257A JP6886606B2 (ja) 2015-03-03 2015-03-03 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、制御装置、および構造物の製造方法
EP15883924.1A EP3267183B1 (en) 2015-03-03 2015-03-03 Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
US15/694,538 US10481106B2 (en) 2015-03-03 2017-09-01 Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
US16/569,113 US10809209B2 (en) 2015-03-03 2019-09-12 Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056251 WO2016139756A1 (ja) 2015-03-03 2015-03-03 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/694,538 Continuation US10481106B2 (en) 2015-03-03 2017-09-01 Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method

Publications (1)

Publication Number Publication Date
WO2016139756A1 true WO2016139756A1 (ja) 2016-09-09

Family

ID=56848567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056251 WO2016139756A1 (ja) 2015-03-03 2015-03-03 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法

Country Status (5)

Country Link
US (2) US10481106B2 (ja)
EP (1) EP3267183B1 (ja)
JP (1) JP6886606B2 (ja)
CN (1) CN107407646A (ja)
WO (1) WO2016139756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003213A (ja) * 2018-06-25 2020-01-09 株式会社ミツトヨ 計測用x線ct装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199531B2 (en) * 2016-05-05 2021-12-14 Epica International, Inc. Diagnostic support for skins and inspection method of skin
US10419384B2 (en) * 2017-01-06 2019-09-17 Sony Interactive Entertainment LLC Social network-defined video events
US10948430B2 (en) * 2017-06-27 2021-03-16 Shenzhen Our New Medical Technologies Dev Co., Ltd Method and device for determining CT system parameter
WO2019082596A1 (ja) * 2017-10-23 2019-05-02 東レ株式会社 樹脂成形品の検査方法および製造方法、樹脂成形品の検査装置および製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851131A (ja) * 1994-08-08 1996-02-20 Kobe Steel Ltd X線検査方法
JPH1130595A (ja) * 1997-05-02 1999-02-02 General Electric Co <Ge> 物体の実際の形状を予定の形状と比較する方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141514A (ja) * 2002-10-28 2004-05-20 Toshiba Corp 画像処理装置及び超音波診断装置
US7602963B2 (en) * 2006-01-10 2009-10-13 General Electric Company Method and apparatus for finding anomalies in finished parts and/or assemblies
JP4840148B2 (ja) * 2007-01-12 2011-12-21 株式会社島津製作所 X線ct装置
US8050473B2 (en) * 2007-02-13 2011-11-01 The Trustees Of The University Of Pennsylvania Segmentation method using an oriented active shape model
JP2009047440A (ja) * 2007-08-13 2009-03-05 Central Res Inst Of Electric Power Ind 非破壊検査装置及び非破壊検査方法
JP5125423B2 (ja) * 2007-11-01 2013-01-23 オムロン株式会社 X線断層画像によるはんだ電極の検査方法およびこの方法を用いた基板検査装置
US20100194749A1 (en) * 2009-01-30 2010-08-05 Gerald Bernard Nightingale Systems and methods for non-destructive examination of an engine
JP5246187B2 (ja) * 2010-03-15 2013-07-24 オムロン株式会社 X線検査装置、x線検査方法およびプログラム
JP2013079825A (ja) * 2011-10-03 2013-05-02 Hitachi Ltd X線ct画像再構成方法およびx線ct装置
JP5850060B2 (ja) 2011-10-04 2016-02-03 株式会社ニコン 形状計測装置、x線照射方法、及び構造物の製造方法
EP2747655B1 (en) * 2011-10-24 2019-02-06 Koninklijke Philips N.V. Apparatus and method for motion compensated second pass metal artifact correction for ct slice images
JP2013217773A (ja) * 2012-04-09 2013-10-24 Nikon Corp X線装置、x線照射方法、構造物の製造方法
JP2013217797A (ja) * 2012-04-10 2013-10-24 Nikon Corp 装置、判定方法、及び構造物の製造方法
US10388020B2 (en) * 2012-04-11 2019-08-20 The Trustees Of Columbia University In The City Of New York Methods and systems for segmentation of organs and tumors and objects
JP6246724B2 (ja) * 2012-09-26 2017-12-13 株式会社ニコン X線装置、及び構造物の製造方法
US9916009B2 (en) * 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
EP4012331A1 (en) * 2013-06-17 2022-06-15 Hexagon Metrology, Inc Method and apparatus of measuring objects using selective imaging
WO2016035147A1 (ja) 2014-09-02 2016-03-10 株式会社ニコン 測定処理装置、測定処理方法、測定処理プログラムおよび構造物の製造方法
JP6677161B2 (ja) 2014-09-02 2020-04-08 株式会社ニコン 測定処理装置、測定処理方法および測定処理プログラム
US10149958B1 (en) * 2015-07-17 2018-12-11 Bao Tran Systems and methods for computer assisted operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851131A (ja) * 1994-08-08 1996-02-20 Kobe Steel Ltd X線検査方法
JPH1130595A (ja) * 1997-05-02 1999-02-02 General Electric Co <Ge> 物体の実際の形状を予定の形状と比較する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267183A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003213A (ja) * 2018-06-25 2020-01-09 株式会社ミツトヨ 計測用x線ct装置
JP7211722B2 (ja) 2018-06-25 2023-01-24 株式会社ミツトヨ 計測用x線ct装置

Also Published As

Publication number Publication date
EP3267183B1 (en) 2023-04-05
JPWO2016139756A1 (ja) 2017-12-28
US20180120243A1 (en) 2018-05-03
US20200003705A1 (en) 2020-01-02
JP6886606B2 (ja) 2021-06-16
CN107407646A (zh) 2017-11-28
US10481106B2 (en) 2019-11-19
US10809209B2 (en) 2020-10-20
EP3267183A4 (en) 2019-04-17
EP3267183A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US11016039B2 (en) Measurement processing device, measurement processing method, measurement processing program, and method for manufacturing structure
US10760902B2 (en) Measurement processing device, x-ray inspection apparatus, method for manufacturing structure, measurement processing method, x-ray inspection method, measurement processing program, and x-ray inspection program
US10809208B2 (en) X-ray inspection device, X-ray inspection method, and method of manufacturing structure
WO2016139756A1 (ja) 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法
JP6455516B2 (ja) X線装置および構造物の製造方法
JP2011191085A (ja) X線検査装置、x線検査方法、x線検査プログラムおよびx線検査システム
KR101125109B1 (ko) 레퍼런스 정보를 이용한 부품의 내부 결함 검사 방법 및 그 시스템
JP6729652B2 (ja) 測定処理方法、測定処理装置、x線検査装置および構造物の製造方法
JP7330033B2 (ja) 計測用x線ct装置の校正方法、測定方法、及び、計測用x線ct装置
KR101865434B1 (ko) 조사될 대상물에 있는 구조의 위치를 x-선 컴퓨터 단층 촬영기로 결정하는 방법 및 평가 장치
JP2019007972A (ja) 測定処理方法、測定処理装置、x線検査装置、および構造物の製造方法
JP6676023B2 (ja) 検査位置の特定方法及び検査装置
JP6391365B2 (ja) X線検査装置、x線検査方法およびx線検査プログラム
KR101199977B1 (ko) 투시광선을 이용한 객체의 3차원 형상 검수 방법 및 장치
JP2009109416A (ja) 組立品の検査方法及び検査システム
WO2015145548A1 (ja) X線装置、x線計測装置および構造物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015883924

Country of ref document: EP